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Poznań 2018





5

Acknowledgement

In this place, I would like to express my greatest gratitude to my advisor, Professor
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Chapter 1

Introduction

Loosely speaking, Ramsey Theory is an area of discrete mathematics which is con-
cerned with the existence of well-ordered subsets in large sets. Ramsey Theory plays an
important role in many branches of mathematics, for instance in combinatorics, number
theory, geometry, and logic. Crucial applications of Ramsey Theory can be found in many
other disciplines of science, like information theory or game theory (see [31]).

In 1928 the English mathematician Frank Plumpton Ramsey proved in his seminal
paper [29] a theorem which, in the special case of graphs, states that in any edge-colored
large complete graph one can always find a monochromatic clique of a given size. This
publication has had a considerable impact on the growth of combinatorics.

Strictly related to Ramsey’s theorem is the Ramsey number R(a, b), which in a classical
form is defined as the least integer N such that every red-blue coloring of the edges of
the complete graph KN on N vertices contains a red complete subgraph Ka or a blue Kb.
Determining Ramsey numbers is one of the most difficult problems related to Ramsey’s
theorem (see [10] for details). In this dissertation we will focus on hypergraph Ramsey
numbers (see definition in Section 2.2).

Our main result asserts that the Ramsey number R(P 3
3 ; r) for the 3-uniform loose path

of length 3, P 3
3 , and for the number of colors r 6 7, equals r + 6 (Theorem 2.1 for r = 3

and Theorem 2.2). In order to prove these results we determine some Turán numbers
and their extensions: Turán numbers of higher orders and conditional Turán numbers.
Most importantly, we give a relatively simple inductive proof of an exact formula for the
Turán number ex3(n;P 3

3 ) for every n (Theorem 2.7). Moreover, we also determine the

second order Turán number ex
(2)
3 (n;P 3

3 ) (Theorem 2.9) and the third order Turán number

ex
(3)
3 (12;P 3

3 ) (Theorem 2.10). These results are published in my paper [15], as well as two
joint papers with Polcyn and Ruciński: [16] and [17]. However, some proofs presented in
the thesis have been modified compared with the journal versions. Moreover, my thesis
contains also material which has never been published. In particular, a second proof of
Theorem 2.1, as well as an alternative proof of Theorem 2.7. In order to distinguish my
own results from those of other authors, I will follow the convention of not quoting my
own papers next to the theorem number.

The thesis is divided into six chapters including Introduction and Conclusions. Chap-
ter 2 is devoted to basic terminology and definitions and a review of selected earlier results
on hypergraph Ramsey and Turán numbers. Moreover, in Section 2.2 we formulate our
Theorem 2.1 and its generalization, Theorem 2.2, which, in my opinion, is the main
result of this dissertation. Then, in Section 2.3, we state our results on Turán numbers,
Theorems 2.7, 2.9, and 2.10, which are instrumental in proving Theorem 2.2.

The main goal of Chapter 3 is to prove Theorem 2.1 and Theorem 2.2. At the beginning
we will present my original, self-contained, unpublished proof of Theorem 2.1. Then, we
recall a general strategy of finding upper bounds on Ramsey numbers based on Turán
numbers and employ it to conduct a second proof of Theorem 2.1. We finish Chapter 3
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with the proof of Theorem 2.2, emphasizing the necessity of applying the Turán numbers
of higher orders.

In our proofs we will need another variation of Turán numbers, called conditional. We
define them at the beginning of Chapter 4 and state Theorem 4.1 which captures a relation
between conditional and ordinary Turán numbers for P 3

3 . Then we present two proofs of
Theorem 2.7. The first one was published in [16], while the idea of the second proof of
Theorem 2.7 was suggested by one of the reviewers of our paper (see acknowledgements
in [16]).

The main purpose of Chapter 5 is to prove Theorems 2.9 and 2.10. We finish the
dissertation with Chapter 6, where we summarize our impact on hypergraph Ramsey and
Turán Theory, briefly present recent results by other authors related to our research, and
suggest some open problems for further studies.



Chapter 2

Preliminaries and main results

In this Chapter, after formulating some basic definitions of hypergraph theory, we
present the main results of the thesis.

2.1. Basic definitions

Definition 2.1. (k-uniform hypergraph)
For k > 2, a k-uniform hypergraph (or k-graph, for short) is an ordered pair H = (V,E),
where V is a finite, non-empty set of vertices and E ⊆

(
V
k

)
is a set of distinct k-element

subsets of V , called edges. A hypergraph H is often identified with its edge-set E ; for
instance, |H| stands for the number of edges of H. Sometimes, a hypergraph is also called
a set system or a family of sets.

For a given k-graph H = (V,E) we say that a k-graph H ′ = (V ′, E ′) is a sub-k-graph
of H if V ′ ⊆ V and E ′ ⊆ E. A copy of a k-graph F in another k-graph H is a sub-k-graph
of H isomorphic to F .

Definition 2.2. (Vertex degree)
We say that a vertex v is of degree i in H when it belongs to exactly i edges of H. We
denote the degree of a vertex v in H by degH(v).

Definition 2.3. (F-free k-graph)
For a given family of k-graphs F , we say that a k-graph H is F -free if H contains no
copy of a member of F . If F = {F}, then we write F -free instead of {F}-free.

Definition 2.4. (Intersecting k-graph)
If for all e1, e2 ∈ E, e1 ∩ e2 6= ∅, then H is called intersecting.

A trivial example of an intersecting k-graph is a star.

Definition 2.5. (Star)
A star is a k-uniform hypergraph with a vertex, called the center, belonging to all its
edges (see Figure 2.1). Note that a star may have up to k centers. An n-vertex k-uniform
star, n > k is called full and denoted by Sk

n, if it has
(
n−1
k−1

)
edges, that is the degree of its

(unique) center equals
(
n−1
k−1

)
.

Definition 2.6. (Complete k-graph)
A complete k-graph Kk

n (or the clique) is a k-graph on a set V of n vertices in which every
k-element subset of V forms an edge. Thus, |Kk

n| =
(
n
k

)
. When n < k, Kk

n is just a set of
n isolated vertices, that is E(Kk

n) = ∅.
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Figure 2.1. A star

There are several natural definitions of k-uniform paths and cycles. In this thesis we
focus on the symmetric case when the intersections of consecutive edges have a fixed size
(see for instance [32]).

Definition 2.7. (Hyperpath and hypercycle)
An `-overlapping k-uniform path with m edges, denoted by P k,`

m , is a k-graph whose
vertex set has size k + (m− 1)(k − `) and can be linearly ordered in such a way that the
edges are segments of that order and every two consecutive edges share exactly ` vertices
(see Figure 2.2). An `-overlapping k-uniform cycle with m edges, denoted by Ck,`

m , is
defined similarly. Note that for ` > k/2 also non-consecutive edges may have non-empty
intersections.

Figure 2.2. A tight path P 3
m

For ` = 1 we use the terms loose paths and loose cycles (see Figure 2.3). Some authors,
for instance Füredi, Jiang, and Seiver in [8] and Kostochka, Mubayi, and Verstraëte in
[20], call such paths and cycles linear, while by loose they mean paths in which consecutive
edges may intersect on more vertices (but non-consecutive edges are disjoint). Notice that
for k = 2 we get the usual graph definitions of the path Pm and the cycle Cm with m edges.

In this dissertation we focus on loose paths, mainly of length 3. To simplify notation
we will write P k

m instead of P k,1
m and P instead of P 3

3 (see Figure 2.4).
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Figure 2.3. A loose path and a loose cycle

Figure 2.4. The loose path P

As a helpful tool, in our proofs we will use a 3-uniform loose cycle of length 3, C3
3 , which

will be called a triangle. For convenience, we will write C instead of C3
3 (see Figure 2.5).

Figure 2.5. The triangle C
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2.2. Results on Ramsey numbers

One of the most basic definitions in my thesis is that of a Ramsey number.

Definition 2.8. (Ramsey number)
For a given k-graph F and a natural number r > 2, the (r-colored) Ramsey number
R(F ; r) is the least integer n such that every coloring of the edges of a clique Kk

n with
r colors results in a monochromatic copy of F .

If F itself is a clique, we are dealing with classical Ramsey numbers which are hard
to determine and thus very little is known. In fact, the only known value of a classical
Ramsey number for k > 3 is R(K3

4 ; 2) = 13 and was computed by Radziszowski and
McKay in 1991 ([24]) with some help of computer. Due to this hardness, sometimes
instead of cliques researchers consider other structures with smaller density, for instance,
hyperpaths and hypercycles.

There are many results in graph Ramsey theory related to cycles and paths (see [28]).
In the classical case of two colors (r = 2), Gerencsér and Gyárfás [9] proved that

R(Pm; 2) =
⌊
3m+1

2

⌋
, where m > 1,

while Károlyi and Rosta (see [30], [18]) and Faudree, and Schelp (see [4]), showed that

R(Cm; 2) =

{
2m− 1 for odd m and m > 3,
3m
2
− 1 for even m and m > 4.

Let us now turn to hypergraphs. Recall that subscript m in P k
m and Ck

m stands for the
number of edges not vertices. First, for r = 2 and k = 3, it was proved by Haxell,  Luczak,
Peng, Rödl, Ruciński, Simonovits, and Skokan in [13] that R(C3

m; 2) and R(P 3
m; 2) are

asymptotically equal to 5m
2

. Subsequently, Omidi and Shahsiah in [25] proved that

R(P 3
m; 2) = R(C3

m; 2) + 1 =
⌊
5m+1

2

⌋
for m > 2.

For higher dimensions (k > 4), but small m, Gyárfás and Raeisi [11] proved that

R(P k
2 ; 2) = 2k − 1,

R(P k
3 ; 2) = R(Ck

3 ; 2) + 1 = 3k − 1,

R(P k
4 ; 2) = R(Ck

4 ; 2) + 1 = 4k − 2,

while in [12] Gyárfás, Sárközy, and Szemerédi established an asymptotic formula for fixed
k and m→∞:

R(Ck
m; 2) ∼ 2k−1

2
m.

Taking into account, a standard construction with dm
2
e − 1 vertices on the left, (k − 1)m

vertices on the right, where all k-tuples with at least one vertex on the left are colored
blue and the remaining k-tuples are colored red, we conclude that also R(P k

m; 2) ∼ 2k−1
2
m.

For r > 3, Axenovich, Gyárfás, Liu, and Mubayi in [1] determined the value of R(P 3
2 ; r)

for an infinite subsequence of integers r (including 2 6 r 6 10) and for r →∞ they proved
that
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R(P 3
2 ; r) ∼

√
6r.

For cycles and r > 3, we only know (see [11]) that R(C; 3) = 8. Proving an analog of
the latter result for P was the starting point of our research. Indeed, Chapter 2 of this
thesis brings two proofs of the following result from [15].

Theorem 2.1. R(P ; 3) = 9.

The first proof, presented in Section 3.2, relies on a detailed case analysis. In the
second proof, in order to establish an upper bound on Ramsey numbers for P , we apply
Turán numbers which are determined for all n in Theorem 2.7, stated in Section 2.3, and
proved in Section 4.2.

In the last section of Chapter 3, we prove our main contribution to the theory of
Ramsey numbers which appeared in [17].

Theorem 2.2. For all r 6 7, R(P ; r) = r + 6.

2.3. Results on Turán numbers

We begin this section with the definitions of Turán numbers and extremal k-graphs.

Definition 2.9. (Turán number)
For a family of k-graphs F and a positive integer n, the Turán number exk(n;F) is the
maximum number of edges in an F -free k-graph on n vertices.

Definition 2.10. (Extremal k-graph)
An n-vertex k-graph H is called extremal with respect to F if H is F -free and
|H| = exk(n;F). We denote by Exk(n;F) the set of all pairwise non-isomorphic n-vertex
k-graphs which are extremal with respect to F .

If F = {F}, then we write exk(n;F ) and Exk(n;F ) instead of exk(n; {F}) and
Exk(n; {F}), respectively.

One of the most important results in extremal set theory is the celebrated theorem of
Erdős, Ko, and Rado which asserts that for n > 2k+1 the full star Sk

n is the unique largest
intersecting k-graph. This result is formulated below in terms of the Turán numbers. Let
Mk

2 be a k-graph consisting of two disjoint edges.

Theorem 2.3. [3] For all n > 2k, exk(n;Mk
2 ) =

(
n−1
k−1

)
. Moreover, for all n > 2k + 1,

Exk(n;Mk
2 ) = {Sk

n}.

Another important ingredient of our proofs is the Turán number for the triangle C.
It was firstly computed by Frankl and Füredi in [7], but only for n > 75. Csákány and
Kahn in [2] improved this result to cover all n.

Theorem 2.4. [2] For all n > 6,

ex3(n;C) =

(
n− 1

2

)
.
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Moreover, for all n > 8,

Ex3(n;C) = {S3
n}.

From Theorem 2.4 we can conclude the following far reaching generalization the proof
of which is deferred to Section 4.2.

Corollary 2.5. For a family F such that C ∈ F and F does not contain any star,

for n > 6 ex3(n;F) =

(
n− 1

2

)
and for n > 8 Ex3(n;F) = {S3

n}.

For k > 4, the Turán number for P k
2 , the loose path of length two, was determined in

[5] for large n and in [19] for all n: exk(n;P k
2 ) =

(
n−2
k−2

)
and the extremal k-graph is the

maximal star with a 2-element center. In my thesis, we will need a much simpler analog
of this result for k = 3, first observed in [19].

Proposition 2.6. [19] For n > 1, we have ex3(n;P 3
2 ) = n if n is divisible by 4, ex3(n;P 3

2 ) =
n− 1 if n = 1( mod 4), and ex3(n;P 3

2 ) = n− 2 in all other cases.

Füredi, Jiang, and Seiver [8] and Kostochka, Mubayi, and Verstraëte [20] determined
the Turán numbers exk(n;P k

m) for all fixed k and m, where k > 4 or m > 4, and sufficiently
large n. Unfortunately, there were no corresponding results for k = m = 3. So, in [16] we
filled this gap by determining ex3(n;P ). What is more, our formula is valid for all n.

Theorem 2.7.

ex3(n;P ) =


(
n
3

)
and Ex3(n;P ) = {K3

n} for n 6 6,
20 and Ex3(n;P ) = {K3

6 ∪K3
1} for n = 7,(

n−1
2

)
and Ex3(n;P ) = {S3

n} for n > 8.

As |V (P )| = 7, Theorem 2.7 is trivial for n 6 6. Two proofs of Theorem 2.7 for n > 7
are presented in Section 4.2.

Theorem 2.7 yields quickly one of the proofs of Theorem 2.1. Unfortunately, it is not
strong enough to prove Theorem 2.2 and we needed more elaborated tools, namely Turán
numbers of higher order. So, we now introduce a hierarchy of Turán numbers, where
in each generation we consider only k-graphs which are not sub-k-graphs of extremal
k-graphs from any previous generation. An ordinary Turán number is a Turán number of
the 1st order. The following definition is iterative.

Definition 2.11. For a family of k-graphs F and integers d, n > 1, set Ex
(1)
k (n;F) =

Exk(n;F) and define the Turán number of the (d+ 1)-st order as

ex
(d+1)
k (n;F) = max{|E(H)| : |V (H)| = n, H is F − free,

and ∀H ′ ∈ Ex
(1)
k (n;F) ∪ . . . ∪ Ex

(d)
k (n;F), H * H ′},

if such a k-graph H exists. An n-vertex F -free k-graph H is called (d + 1)-extremal for

F if |E(H)| = ex
(d+1)
k (n;F) and ∀H ′ ∈ Ex

(1)
k (n;F) ∪ . . . ∪ Ex

(d)
k (n;F), we have H * H ′;

we denote by Ex
(d+1)
k (n;F) the family of all pairwise non-isomorphic n-vertex k-graphs

which are (d+ 1)-extremal for F .
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As before, we naturally simplify notation whenever F = {F}.

A historically first example of a Turán number of the second order is related to the
Erdős-Ko-Rado theorem (Theorem 2.3 above). Indeed, Theorem 2.3 brought about a quite
natural question: what is the largest number of edges in an n-vertex intersecting k-graph
which is not a star (such a k-graph is often called a non-trivial intersecting k-graph). In

other words we are asking about the second order Turán number ex
(2)
k (n;Mk

2 ). Hilton and
Milner [14] fully answered this question (see [6] for a short proof). Here we state their

result for k = 3 only and suppress the family Ex
(2)
3 (n;M3

2 ).

Theorem 2.8. [14] For all n > 7, ex
(2)
3 (n;M3

2 ) = 3n− 8.

To prove Theorem 2.2, we use two results on higher order Turán numbers for P .
First, in Theorem 2.9, we determine ex

(2)
3 (n;P ) for all n, together with the corresponding

2-extremal 3-graphs. Then, in Theorem 2.10 we determine, ex
(3)
3 (12;P ). The proofs of

Theorems 2.9 and 2.10 are presented in Section 5.1. To state these results, we start with
a definition of a comet, a 3-graph which turns out to be 2-extremal for P .

Definition 2.12. (Comet)
For n > 7, a comet Co(n) is a 3-graph with n vertices consisting of a copy of K3

4 to
which a full star S3

n−3 is attached and they share only one vertex - the center of the star.
This unique vertex is called the center of the comet, while the set of the remaining three
vertices of the K3

4 is called the head (see Figure 2.6).

Figure 2.6. The comet Co(n)

Let us emphasize that Co(n) is P -free and is not a star. The following result was
proved in [17].
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Theorem 2.9.

ex
(2)
3 (n;P ) =


15 and Ex

(2)
3 (n;P ) = {S3

7} for n = 7,

20 +
(
n−6
3

)
and Ex

(2)
3 (n;P ) = {K3

6 ∪K3
n−6} for 8 6 n 6 12,

40 and Ex
(2)
3 (n;P ) = {K3

6 ∪K3
6 ∪K3

1 ,Co(13)} for n = 13,

4 +
(
n−4
2

)
and Ex

(2)
3 (n;P ) = {Co(n)} for n > 14.

Note that we cannot define ex
(2)
3 (n;P ) for n 6 6, since then each 3-graph is a sub-3-graph

of K3
n, the unique extremal k-graph for the ordinary Turán number ex3(n;P ) (see Theo-

rem 2.7 above).

At last, in [17] we also calculated the 3rd order Turán number for P , ex
(3)
3 (12;P ). As

it was mentioned before, for our application to Ramsey numbers it is enough to determine
it for n = 12 only.

Theorem 2.10.

ex
(3)
3 (12;P ) = 32 and Ex

(3)
3 (12;P ) = {Co(12)}.



Chapter 3

Ramsey numbers

In this chapter we prove our results concerning Ramsey numbers, especially Theorems
2.1 and 2.2. At the beginning we show a lemma which gives us immediately lower bounds
on Ramsey numbers in question. Then we present two proofs of Theorem 2.1. As it was
mentioned before, the first proof is based on a detailed analysis of all possible coloring
cases. The second proof applies Theorem 2.7 and is more suitable for generalizations. We
then attempt to apply Theorem 2.7 to prove Theorem 2.2 for r = 4 and explain why it
fails. It follows that to accomplish our goal, applications of Theorems 2.9 and 2.10 are
essential.

A standard approach to prove that R(F ; r) = n is to show, by quite different methods,
that R(F ; r) > n and R(F ; r) 6 n. To prove that R(F ; r) > n, we have to find a coloring
of the edges of Kk

n−1 such that there is no monochromatic copy of F .

3.1. The lower bound

The derivation of the lower bound in Theorem 2.1 is based on a construction used
already by Gyárfás and Raeisi in [11] to determine R(C; 3). We state it here in a general
form.

Lemma 3.1. Let r > 2. If a k-graph F is not a star, then

r + |V (F )| − 1 6 R(F ; r).

Proof. Let us consider the following r-coloring of the edges of the clique Kk
n on the vertex

set {1, 2, . . . n}, where

n = r + |V (F )| − 2.

Color an edge e by color i, for i ∈ {1, 2, ..., r − 1}, if the minimum vertex in e equals i,
that is, min(e) = i, and by color r otherwise. This way we obtain r − 1 monochromatic
stars, in colors 1, 2, ..., r − 1. There will be no monochromatic F in colors 1, 2, ..., r − 1,
because F is not a star. We do not obtain a copy of F in color r either, because the edges
of color r form a clique Kk

n−r+1, while |V (F )| = n− r + 2.

As a consequence of Lemma 3.1, for F = P we can formulate the following corollary.

Corollary 3.2. For all r > 2, R(P ; r) > r + 6.

Particularly, substituting r = 3 we obtain R(P ; r) > 9. To finish the proof of Theorem 2.1
we have to show that R(P ; 3) 6 9.
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3.2. The first proof of Theorem 2.1

By Corollary 3.2, we have R(P ; 3) > 9, and it remains to show that R(P ; 3) 6 9. We
will consider an arbitrary coloring the edges of K3

9 by three colors red, blue, and green.
For convenience we label the vertices of K3

9 by 1, ..., 9, and represent the vertex set of K3
9

as a 3 × 3 grid (see Figure 3.1). In order to simplify notation introduced in Chapter 2,
every edge of K3

9 is represented by a triple ijk, where i, j, k ∈ {1, 2, . . . , 9}. A copy of
the path P will be written as (abcdefg), where {a, . . . , g} = {1, 2, . . . , 9}, and underlined
elements are vertices of degree 2 in P .

Let us suppose that there is no monochromatic copy of P in K3
9 , and consider a star

with four 3-uniform edges, which intersect in exactly one vertex. From the Pigeonhole
Principle we always find, in this star, two edges e and f of the same color. Without loss of
generality, we may assume that the edges e = 123 and f = 147 are green (see Figure 3.1).

Figure 3.1. 3× 3 grid of 9 labeled vertices

It can be observed that neither of the edges 258, 369, 456, and 789 is green, since
otherwise we would obtain a green P . Let us consider two cases:

Case 1: The edges 258 and 369 have the same color.

As we noticed before these edges cannot be green. Without loss of generality, we
assume that they are red. It implies that edges 456 and 789 are blue (red 456 would give
red (2854639) and red 789 would form red (2587963)) (see Figure 3.2).

Consequently 159 must be green, since otherwise (8251963) would be red, or (4651978)
would be blue. Let us consider the edge 348. If it is green, then it forms green (8432159). If
it is red, then we get red (9634852). Otherwise (6543879) would be blue. Now we observe
that no matter what the color of 348 is, a monochromatic P arises, a contradiction (see
Figure 3.3).

Case 2: The edges 258 and 369 have different colors.

Then also the edges 456 and 789 have different colors (one of them is red and the
other is blue). Indeed, by symmetry, if 456 and 789 had the same color, then we would
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Figure 3.2. Case 1

Figure 3.3. Case 1

be quick in Case 1. Without loss of generality, we may assume that 258 and 456 are red
and 369, 789 blue (see Figure 3.4).

Figure 3.4. Case 2

Firstly, we consider the color of the edge 134. If 134 is red, then it forms red (1346528).
Similarly, if 134 is blue, then (1436987) is blue. This implies that 134 is green. By the
same argument 127 must be green and 458 must be red, otherwise they would form red
(1728546) or blue (1278936), and green (3217458) or blue (4587963), respectively.

Let us consider the edge 126. It can be green or red, but not blue, since otherwise it
would form blue (1263987).
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Subcase 1: 126 is green.

It implies that, in particular, 235 is red, since otherwise (2536987) would be blue, or
(4716235) would be green. Similarly one can argue that 349 and 378 are blue.

Then no matter what the color of the edge 269 is, we have a monochromatic P . Indeed,
(9627134) would be green, (9623548) would be red, or (2694378) would be blue.

Subcase 2: 126 is red.

Analogously to Subcase 1, we pick up edges whose color is determined. The edge 358
is blue, since otherwise (8534127) would be green, or (3854621) would be red. The edge
345 is green, since otherwise (5436978) would be blue, or (3458216) would be red.

This implies that the edge 129 completes a monochromatic copy P regardless of its
color. Indeed, either (9217453) is green, or (9128546) is red, or (1297853) is blue. It
contradicts our assumption and finishes the first proof of Theorem 2.1.

3.3. The second proof of Theorem 2.1

In the previous section we showed that R(P ; 3) 6 9 which constitutes the harder part
of the proof of Theorem 2.1. The method used there was very tedious and, therefore,
not suitable for generalizations. That was our motivation for trying a different, more
sophisticated approach based on Turán numbers.

It is well-known that Turán numbers provide upper bounds on Ramsey numbers (see,
e.g. [11]). This relation is captured by the following result formulated in [15] and [17].

Lemma 3.3. Let n > r + k, r > 2, and k > 2. If exk(n;F ) < 1
r

(
n
k

)
or exk(n;F ) = 1

r

(
n
k

)
,

but the only extremal k-graph is a star, then R(F ; r) 6 n.

Proof. Let us consider an r-coloring of the complete k-graph Kk
n. If we color the edges of

Kk
n by r colors, then there exist at least 1

r

(
n
k

)
edges in one of the colors. If exk(n;F ) < 1

r

(
n
k

)
,

we obtain a copy of F in that color. The same is true if exk(n;F ) = 1
r

(
n
k

)
but there are

more than 1
r

(
n
k

)
edges in one of the colors. Finally, if there are exactly 1

r

(
n
k

)
edges in

each color, not all the colors may form stars. Indeed, since n > r + k, there would be at
least k vertices which are not centers of any star. But then we would obtain at least one
k-uniform edge not colored by any of the colors, a contradiction.

One consequence of Theorem 2.7 and Lemma 3.3 is the following upper bound on
R(P ; r).

Corollary 3.4. For all r > 3, R(P ; r) 6 3r.

Proof. By Theorem 2.7, for n > 8, ex3(n;P ) =
(
n−1
2

)
and S3

n is the only extremal 3-graph.
If n = 3r, then

(
n
3

)
= r · ex3(n;P ) and Corollary 3.4 follows from Lemma 3.3 with

F = P .
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Second proof of Theorem 2.1. In view of Corollary 3.2 it is enough to prove the upper
bound only. On the other hand by Corollary 3.4, with r = 3, we have R(P ; 3) 6 9. This
completes the second proof of Theorem 2.1.

3.4. The proof of Theorem 2.2

The goal of this section is to prove Theorem 2.2, stated in Chapter 2. So far, we have
only proved the case r = 3 (Theorem 2.1) where we applied ordinary Turán numbers.
Indeed, Theorem 2.7 equipped us with Turán numbers which were a useful tool in the
proof of Corollary 3.4. However, in order to prove Theorem 2.2, we need Turán numbers
of higher order. To realize this, let us, for instance, try to compute the Ramsey number
R(P ; 4) based on Lemma 3.3. The lower bound, by Corollary 3.2, is R(P ; 4) > 10. For
the upper bound, by Theorem 2.7, we have

ex3(10;P ) =

(
9

2

)
= 36,

but the average number of edges per color equals

1

4

(
10

3

)
= 30.

Therefore the assumptions of Lemma 3.3 are not satisfied. The only result we could obtain
this way is a weaker estimate R(P ; 4) 6 12. So, we indeed need some refinement of this
approach.

As a source of reference for the proof of Theorem 2.2, Table 3.1 compares the values
of the Turán numbers of the 1st, 2nd, and 3rd order, with the average number of edges
per color in a clique K3

n.

n r
(
n
3

) (
n
3

)
/r ex3(n;P ) ex

(2)
3 (n;P ) ex

(3)
3 (n;P )

8 2 56 28 21 - -
9 3 84 28 28 - -
10 4 120 30 36 24 -
11 5 165 33 45 30 -
12 6 220 36,7 55 40 32
13 7 286 40,9 66 40 -

Table 3.1. Comparison of the values of Turán numbers and the average numbers of edges per
color

Now we are ready to prove Theorem 2.2. By Corollary 3.2, R(P ; r) > r + 6 holds for
all r > 2. The case r = 3 was considered in Theorem 2.1, hence to prove Theorem 2.2 it
is enough to show that R(P ; r) 6 r+6 for each r = 4, 5, 6, 7. To prove cases r = 4, 5, 7 we
apply Turán numbers of the 2nd order (see Theorem 2.9), while for r = 6 the 3rd order
Turán number (Theorem 2.10) is essential.
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Proof of Theorem 2.2.

Case r = 4. Let us consider an arbitrary 4-coloring of the
(
10
3

)
= 120 edges of the com-

plete 3-graph K3
10. There exists a color with at least 1

4
· 120 = 30 edges (see Table 3.1).

Denote the set of these edges by H. Since, by Theorem 2.7, Ex
(1)
3 (10;P ) = {S3

10}, and,

by Theorem 2.9, ex
(2)
3 (10;P ) = 24 < 30, either P ⊆ H or H ⊆ S3

10. In the latter case
we delete the center of the star containing H, together with the incident edges, obtaining
a 3-coloring of K3

9 . Since R(P ; 3) = 9 (see Theorem 2.1), there is a monochromatic copy
of P .

Case r = 5. The proof of this case is very similar to the previous one. We consider
an arbitrary 5-coloring of the

(
11
3

)
= 165 edges of the complete 3-graph K3

11. There exists
a color with at least 1

5
·165 = 33 edges (see Table 3.1). Denote the set of these edges by H.

Again, by Theorem 2.7, Ex
(1)
3 (11;P ) = {S3

11}, and by Theorem 2.9, ex
(2)
3 (11;P ) = 30 < 33,

so either P ⊆ H or H ⊆ S3
11. In the latter case we delete the center of the star containing

H, together with its incident edges, obtaining a 4-coloring of K3
10. Since, as we have just

proved in the previous case, R(P ; 4) = 10, there is a monochromatic copy of P .

Case r = 6. This is the most difficult case in which we have to appeal to the 3rd order
Turán number. We begin, as before, by considering an arbitrary 6-coloring of the complete
3-graph K3

12 on the set of vertices V and assuming that it does not yield a monochromatic
copy of the path P . Then none of the color classes can be contained in a star S3

12, since
otherwise we would delete this star, obtaining a 5-coloring of K3

11, which as we have just
proved, contains a monochromatic P . By Theorems 2.7 and 2.9, S3

12 and K3
6 ∪ K3

6 are,
respectively, the unique 1-extremal and 2-extremal 3-graphs for P . Consequently, since
the containment in a star has ben already excluded, by Theorem 2.10, every color class
with more than 32 edges must be a sub-3-graph of K3

6 ∪K3
6 (see Table 3.1).

On the other hand, there exists a color class with at least d
(
12
3

)
· 1
6
e = 37 edges which,

as explained above, is contained in a copy K of K3
6 ∪ K3

6 . After deleting all edges of
K from K3

12, we obtain a complete bipartite 3-graph B with bipartition V = U ∪ W ,
|U | = |W | = 6, and with

|E(B)| =
(

12

3

)
− 2 ·

(
6

3

)
= 220− 40 = 180

edges, colored by 5 colors. (Bipartite means here that every edge of B intersects both, U
and W ). Thus, an average number of edges per color is 180

5
= 36. However, any copy K ′

of K3
6 ∪K3

6 may share with B at most 36 edges. It follows from the fact that for every
V ′ ⊆ V , |V ′| = 6, the quantity |K ′ ∩ B|, where the cliques of K ′ are spanned by V ′ and
V \ V ′, is maximized (uniquely) when |V ′ ∩ U | = |V ′ ∩W | = 3, in which case

|K ′ ∩B| = |E(B[V ′])|+ |E(B[V \ V ′])| = 2 · 2 · 3 · 3 = 36.

Consequently, since, as explained above, every color class with more than 32 edges (in
particular with 37 edges) must be contained in K3

6 ∪K3
6 , all five color classes on B have

each less than 37 edges, and thus, precisely 36 edges.
Let Gi, i = 1, 2, 3, 4, 5, be the 5 color classes. Then, for each i, Gi is fully defined by

two partitions, U = U ′i ∪ U ′′i and W = W ′
i ∪W ′′

i , where |U ′| = |U ′′| = |W ′| = |W ′′| = 3.
The reason is that Gi is then a disjoint union of two copies of K3

6 −M3
2 , one on the vertex

set U ′i ∪W ′
i , the other one on U ′′i ∪W ′′

i , with U ′i ,W
′
i , U

′′
i ,W

′′
i being the 4 missing edges

(see Figure 3.5).
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Figure 3.5. Illustration of the proof of Theorem 2.2, case r = 6

It can be easily seen that only 2 of these 5 color classes can be disjoint which is
a contradiction (with a big cushion). Indeed, for G1 and G2 to be disjoint, we need that
{U ′1, U ′′1 } = {U ′2, U ′′2 } and {W ′

1,W
′′
1 } = {W ′

2,W
′′
2 }, which simply means that one of the

partitions, of U or of W , must be swapped. But this implies that already G1, G2, and G3

cannot be pairwise disjoint.

Case r = 7. Similarly to the cases r = 4 and r = 5 we consider an arbitrary 7-coloring
of the

(
13
3

)
= 286 edges of the complete 3-graph K3

13. There exists a color with at least
d1
7
· 286e = 41 edges (see Table 3.1). Denote the set of these edges by H. Since, by

Theorem 2.7, Ex
(1)
3 (13;P ) = {S3

13}, and, by Theorem 2.9, ex
(2)
3 (13;P ) = 40 < 41, either

P ⊆ H or H ⊆ S3
13. In the latter case, we delete the center of the star containing H,

together with the incident edges, obtaining a 6-coloring of K3
12. Since R(P ; 6) = 12, there

is a monochromatic copy of P .



Chapter 4

Conditional Turán numbers and proofs of
Theorem 2.7

The aim of this chapter is to prove Theorem 2.7, that is to determine the Turán
number ex3(n;P ) and assigning a unique extremal graph for each n. The main idea of
our proof is to link the presence of a copy of P with the presence of the triangle C which
for a 3-graph with at least

(
n−1
2

)
edges is guaranteed by Theorem 2.4.

To this end we introduce another concept of Turán numbers, namely conditional Turán
numbers exk(n;F|G), defined in the subsequent section, where an additional constraint of
containing a member of a given family of k-graphs G is imposed. Then we state Theorem
4.1, which exhibits a relation between ordinary Turán numbers and conditional Turán
numbers, and plays a crucial role in the first proof of Theorem 2.7.

In Section 4.2 we present our proof of Theorem 2.7, as well as another proof which
is almost entirely based on Theorem 2.3 and Proposition 2.6. Sections 4.3 and 4.4 are
totally devoted to prove, resp., Theorem 4.1 and the lemmas used therein.

Conditional Turán numbers are needed not only in the proof of Theorem 2.7, but
also later in Section 5.1 to prove Theorems 2.9 and 2.10. We finish Chapter 4 with
Section 4.5, where we consider some additional problems on conditional Turán numbers for
non-intersecting 3-graphs and state two important results, Theorem 4.9 and Theorem 4.11,
which are needed later. Their proofs are deferred to Chapter 5.

4.1. Conditional Turán numbers

Definition 4.1. (Conditional Turán number)
For a family of k-graphs F , a family of F -free k-graphs G, and an integer
n > min{|V (G)| : G ∈ G}, the conditional Turán number is defined as

exk(n;F|G) = max{|E(H)| : |V (H)| = n, H is F -free, and ∃G ∈ G : H ⊇ G}.

Every n-vertex F -free k-graph with exk(n;F|G) edges and such that H ⊇ G for some
G ∈ G is called G-extremal for F . We denote by Exk(n;F|G) the family of all n-vertex
k-graphs which are G-extremal for F . (If F = {F} or G = {G}, we will simply write
exk(n;F |G), exk(n;F|G), exk(n;F |G), Exk(n;F |G), Exk(n;F|G), or Exk(n;F |G), respec-
tively). Obviously, exk(n;F|G) 6 exk(n;F).

In [16] we established a relation between the ordinary Turán number ex3(n;P ) and
conditional Turán number ex3(n;P |C) which makes the proof of Theorem 2.7 much shorter
than the original one.

Theorem 4.1. For all n > 6,

ex3(n;P |C) = 20 + ex3(n− 6;P ).
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Moreover, Ex3(n;P |C) = {K3
6 ∪Hn−6}, where Hn−6 is the unique extremal P -free 3-graph

on n− 6 vertices, namely the only member of Ex3(n− 6;P ).

We will prove Theorem 4.1 in Section 4.4. Note that Theorem 4.1, combined with
Theorem 2.7, yields immediately the explicit values of ex3(n;P |C), for all n, along with
the extremal sets Ex3(n;P |C).

Corollary 4.2.

ex3(n;P |C) =


20 +

(
n−6
3

)
, and Ex3(n;P |C) = {K3

6 ∪K3
n−6} for 6 6 n 6 12,

40, and Ex3(n;P |C) = {K3
6 ∪K3

6 ∪K3
1} for n = 13,

20 +
(
n−7
2

)
, and Ex3(n;P |C) = {K3

6 ∪ S3
n−6} for n > 14.

Comparing Corollary 4.2 and Theorem 2.7 we see that for n > 14

ex3(n;P )− ex3(n;P |C) =

(
n− 1

2

)
− 20−

(
n− 7

2

)
= 6n− 47.

Thus, in this case, the conditional Turán number is not much smaller than its uncondi-

tional counterpart. We showed in [16] that this behaviour is typical whenever the members
of family F are connected. Let us first define a connected k-graph.

Definition 4.2. (Connected k-graph)
A k-graph H = (V (H), E(H)) is connected if for every bipartition of the set of vertices
V (H) = V1 ∪ V2, V1 6= ∅, V2 6= ∅, there exists an edge h ∈ E(H) such that h∩ V1 6= ∅ and
h ∩ V2 6= ∅.

Theorem 4.3. If F consists of connected k-graphs only, F 6= {Kk
k}, and neither F nor

G depends on n, then, as n→∞,

exk(n;F|G) ∼ exk(n;F).

Proof. Consider a disjoint union H of any G ∈ G and any extremal F -free k-graph on
n − |V (G)| vertices. By the connectivity of the k-graphs F ∈ F , H is F -free. Since in
addition H ⊇ G, setting g = |V (G)|, we thus have

|H| = exk(n− g;F) + |G| 6 exk(n;F|G) 6 exk(n;F). (4.1)

Now, let us take an extremal F -free k-graph on n vertices Hn, and remove iteratively
g vertices, each time taking away a vertex of minimum degree in the current sub-k-graph.
Note that with the first vertex v1 we removed at most∑

v∈V (Hn)
degHn(v)

n
=
k · |Hn|
n

edges.
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Let Hn−i = Hn−{v1, v2, . . . , vi} denote the sub-k-graph obtained from Hn after delet-
ing the vertices v1, v2, . . . , vi. The deletion of the next vertex vi+1 results in a loss of no
more than ∑

v∈V (Hn−i)
degHn−i

(v)

n− i
=
k · |Hn−i|
n− i

6
k · |Hn|
n− i

edges.

The obtained k-graph Hn−g is still F -free, has n− g vertices, and at least

|Hn| −
g−1∑
i=0

k · |Hn|
n− i

> |Hn| − g ·
k · |Hn|
n− g + 1

edges.

Hence, recalling that |Hn| = exk(n;F) and |Hn−g| 6 exk(n− g;F) we infer that

exk(n− g;F) > exk(n;F)

(
1− kg

n− g + 1

)
. (4.2)

Since F 6= {Kk
k}, by considering a matching Mbnkc we have

exk(n;F) > |Mbnkc| =
⌊n
k

⌋
→∞

on n→∞. Hence by the (4.1) and (4.2) it follows that

exk(n;F)

(
1− kg

n− g + 1

)
6 exk(n− g;F) + |G| 6 exk(n;F|G) 6 exk(n;F).

From the Squeeze Theorem of Calculus we conclude that

lim
n→∞

exk(n;F|G)

exk(n;F)
= 1.

In striking contrast, for a family F containing a disconnected k-graph, conditioning
on the presence of specified sub-k-graphs may cause a Turán number drop significantly.
A prime example of this phenomenon is furnished by Theorems 2.3 and 2.8 stated in
Chapter 2.

Indeed, one can check that an intersecting 3-graph is not a star if, and only if, it
contains either the triangle C, or K3

4 , or a 3-graph F5 where V (F5) = {a, b, c, d, e},
E(F5) = {{a, b, c}, {c, d, e}, {e, a, b}}. Hence, setting M := M3

2 ,

ex
(2)
3 (n;M) = ex3(n;M |{C,K3

4 , F5}).

We can thus reformulate Theorem 2.8 in terms of a conditional Turán number.

Corollary 4.4. [14] For 3-graph H, where |V (H)| = n and n > 6, we have

ex3(n;M |{C,K3
4 , F5}) = 3n− 8.
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Hence, for F = {M}, a conditional Turán number can be much smaller than the uncon-
ditional one (linear vs. quadratic function of n).

Returning to the main theme of this chapter, in [17] we stated a lemma which is crucial
in the proof of Theorem 4.1. Let excon

3 (n;P |C) be defined as ex3(n;P |C), but where the
maximum number of edges is taken over all connected 3-graphs only.

Lemma 4.5. For all n > 7,

excon
3 (n;P |C) = 3n− 8.

Comparing the results of Lemma 4.5 and Corollary 4.2 we see that this time the assump-
tion of connectivity may lead to a significant drop in the order of magnitude of a Turán
number. Furthermore, it is not a coincidence that in Lemma 4.5 and Theorem 2.8 we
have the same extremal number 3n−8. Indeed, in that proof we consider the intersecting
and non-intersecting case. Due to the presence of C the intersecting case is necessarily
non-trivial and the bound of Theorem 2.8 applies. In the non-intersecting case, the size
of H drops even further (cf. Corollary 4.7 below).

The proof of Lemma 4.5 requires a few preparations and for this purpose it is deferred
to Section 4.4. As a main tool in that proof we apply another lemma, Lemma 4.6, where
we additionally assume the existence of M , which means that 3-graph is non-intersecting.
To formulate this result we need one more construction.

Definition 4.3. (Satellite)
A satellite Sa(n) is a 3-graph with n vertices consisting of a copy of K3

5 to which n − 5
3-uniform edges are attached, and all these edges intersect in exactly two vertices of K3

5 .
The K3

5 is the core of the satellite, while the remaining n − 5 edges form the tail of the
satellite (see Figure 4.1).

Note that Sa(n) is a P -free 3-graph, M,C ⊂ Sa(n), and |Sa(n)| = n+ 5.

Figure 4.1. A satellite Sa(n)
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Lemma 4.6. Let H be a connected, P -free 3-graph with n > 7 vertices and such that
H ⊃M,C. Then H ⊂ Sa(n).

Lemma 4.6 is very strong, because it characterizes the structure of all connected P -free
graphs containing C and M , paving way for potential applications (see Chapter 6). In
addition, it immediately yields the corresponding Turán numbers.

Corollary 4.7. For all n > 7

excon
3 (n;P |{C,M}) = n+ 5, Excon

3 (n;P |{C,M}) = Sa(n).

Comparing Lemma 4.5 and Corollary 4.7, we notice that imposing the additional con-
straint that a 3-graph H is non-intersecting results in a further drop of the conditional
Turán number in question.

Both, Lemma 4.6 and Corollary 4.7, first appeared in [26], where [17] was pointed to
as a source of an implicit proof. In Section 4.4 we give these proofs explicitly.

4.2. Proofs of Theorem 2.7

In this section we conduct two proofs of Theorem 2.7. The first of the presented
proofs was published in [16]. That result relies heavily on Theorem 2.4, that is, on the
presence of the triangle C in every 3-graph with more than

(
n−1
2

)
edges. Here we present

a streamline version of that proof where a crucial role is played by Theorem 4.1.

Since the first proof of Theorem 2.7 uses Corollary 2.5, we need to prove that result
first.

Proof of Corollary 2.5. Let C ∈ F and F not contain any star. By Theorem 2.4 and
monotonicity, for n > 6 we get

ex3(n;F) 6 ex3(n;C) =

(
n− 1

2

)
.

On the other hand, because there are no stars in F , the full star S3
n is F -free. Consequently

ex3(n;F) > |S3
n| >

(
n− 1

2

)
,

which proves that

ex3(n;F) =

(
n− 1

2

)
.

Clearly, S3
n ∈ Ex3(n;F). If for n > 8 there was another extremal 3-graph for F , it

would also be an extremal 3-graph for C, a contradiction with Theorem 2.4.

First proof of Theorem 2.7. Recall that we want to determine the Turán number ex3(n;P )
for all n. As Theorem 2.7 is trivial for n 6 6, we assume that n > 7. By considering
whether or not a 3-graph contains the triangle C, we infer that
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ex3(n;P ) = max{ex3(n;P |C), ex3(n; {P,C})}. (4.3)

By Theorem 2.4, for n > 6,

ex3(n; {P,C}) =

(
n− 1

2

)
, (4.4)

and, for n > 8,

Ex3(n; {P,C}) = {S3
n}. (4.5)

n = 7 (initial step).

By Theorem 4.1, ex3(7;P |C) = 20, while, by (4.4), ex3(n; {P,C}) = 15. So, by (4.3),

ex3(7;P ) = ex3(7;P |C) = 20.

Moreover,

Ex3(7;P ) = Ex3(7;P |C) = {K3
6 ∪K3

1}.

Indeed, the second equation above follows by the second part of Theorem 4.1, while the
first one follows from the observation that there cannot be a C-free extremal 3-graph for
P , because ex3(n; {P,C}) = 15.

n > 8 (inductive step).

Again by Theorem 4.1,

ex3(n;P |C) = 20 + ex3(n− 6;P ) = 20 +


(
n−6
3

)
, 6 6 n 6 12,

20, n = 13,(
n−7
2

)
, n > 14,

where the second equality comes from the induction assumption.
It is easy to check that in each case the above quantity is strictly smaller than

(
n− 1

2

)
= ex3(n; {P,C}).

Hence, by (4.3),

ex3(n;P ) =

(
n− 1

2

)
and, by (4.5), the only extremal 3-graph is the same as that for ex3(n;C), i.e. S3

n.

The second proof of Theorem 2.7, suggested by an anonymous referee of paper [16],
avoids any reference to Theorem 2.4 and instead is based on the Erdős-Ko-Rado Theorem,
Theorem 2.3, as well as Proposition 2.6. The proof is similar to, but simpler than the
proof of Theorem 4.11 in Chapter 5.
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Second proof of Theorem 2.7. For n = 7, suppose that H is P -free and |H| > 20. By
Theorem 2.3, H contains two disjoint edges, e1 and e2. Let v be the vertex of H not in
e1 ∪ e2. If degH(v) = 0, we obtain the extremal 3-graph K3

6 ∪K3
1 . If {v, x, y} ∈ H, then,

since H is P -free, there is i = 1, 2 such that {x, y} ⊂ ei. However, the presence of such
an edge excludes from H[e1 ∪ e2] six edges of the form {a, b, c}, where a ∈ ei, a 6= x, y,
b ∈ {x, y}, and c ∈ e3−i, because each of them, together with e3−i and {v, x, y}, would
form a copy of P . Hence, in this case, |H| 6 max{3 + 20− 6, 6 + 20− 12} = 17 < 20, a
contradiction.

The rest of the proof is by induction on n. For n > 8, suppose that H is P -free and
|H| >

(
n−1
2

)
. By Theorem 2.3, either H is a full star and we are done or H contains two

disjoint edges e1 and e2. Let S = V \ (e1 ∪ e2). We will consider two cases. Let P 3
2 ∪K3

3

consist of a copy of P 3
2 and an edge K3

3 vertex-disjoint from it.

Case 1. H is (P 3
2 ∪K3

3)-free

For n > 9, we employ Proposition 2.6 to, say, V \e1, obtaining an upper bound of n−3
for the number edges induced in H by this set, provided 4|(n− 3), and n− 4 otherwise.
Observe further that there are at most

max{3, n− 6} = n− 6

edges between e1 and S (always with two vertices in e1). Also, there are at most 19 edges
spanned by e1 ∪ e2, excluding e2 which we have already counted in. Altogether, we have
at most

2n+ 10 <

(
n− 1

2

)
edges, for n > 10, a contradiction.

For n = 9, we have at most

2 · 9 + 9 <

(
9− 1

2

)
= 28

edges, a contradiction again.
For n = 8, we argue similarly but more subtly, using also the argument from the case

n = 7. By Proposition 2.6 there are at most 4 edges within, say, V \ e1. But any such
edge, except for e2 itself, due to the P -freeness of H, forbids the presence of 6 edges of
H[e1 ∪ e2]. Observe further that there are at most max{3, 2} = 3 edges between e1 and
S, but any one of them forbids 6 edges of H[e1 ∪ e2], which, however, are different from
the 6 edges excluded earlier. Altogether,

|H| 6 max{4 + 3 + 19− 12, 1 + 3 + 19− 6, 1 + 0 + 19} = 20 < 21,

a contradiction.

Case 2. H contains a copy of P 3
2 ∪K3

3

For a pair of vertices {x, y} we call a vertex z a co-neighbor of {x, y} in H if the triple
{x, y, z} is an edge of H.
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Let e1 = {a1, a2, a3}, e2 = {b1, b2, b3}, and f = {c1, c2, a3} form a copy of P 3
2 ∪K3

3 in H.
For a pair of vertices {x, y} contained in e1 ∪ f , let N(x, y) denote the set of co-neighbors
of {x, y} outside e1 ∪ f .

Observe that if either |N(a1, a2)| > 2 or |N(c1, c2)| > 2, then N(ai, cj) = ∅ for all
i, j ∈ {1, 2}; otherwise, we could find a loose path P in H. Similarly, if |N(ai, cj)| > 2 for
some i, j, then |N(a1, a2)| = |N(c1, c2)| = ∅. Further, we have

|N(a1, a2)|+ |N(c1, c2)| 6 2n− 13, (4.6)

since otherwise we could find i, j ∈ {1, 2, 3}, i 6= j such that {a1, a2, bi}, {c1, c2, bj} ∈ H,
which together with {b1, b2, b3} form P in H.

Let us now make more observations about N(ai, cj), where i, j ∈ {1, 2}. If ai, cj have
a co-neighbor bk in {b1, b2, b3}, then f, {ai, cj, bk}, and e2 form P in H. So, N(ai, cj) ⊆
V \ (e1 ∪ f ∪ e2). From this we can see that

|N(a1, c1)|+ |N(a2, c2)| 6 n− 7. (4.7)

Indeed, otherwise |N(a1, c1) ∩ N(a2, c2)| > 2, and so we could find two different vertices
d1, d2 outside e1 ∪ e2 ∪ f such that {a1, c1, d1}, {a2, c2, d2}, and {c1, c2, a3} form P in H.
For a similar reason, we have

|N(a1, c2)|+ |N(a2, c1)| 6 n− 7. (4.8)

Let W = {a1, a2, c1, c2} and σW =
∑
{x,y}⊆W |N(x, y)|. By our previous observations,

if |N(a1, a2)| > 2 or |N(c1, c2)| > 2, then, by (4.6) σW 6 2n − 13. If |N(ai, cj)| > 2 for
some i, j, then, by (4.7) and (4.8) σW 6 2n − 14. In the remaining case, when for all
{x, y} ⊆ W , |N(x, y)| 6 1, we have trivially σW 6 6. In summary,

∑
{x,y}⊆W

|N(x, y)| 6 max{2n− 13, 6}. (4.9)

Since H does not contain P , no edge of H intersects W in exactly one vertex. The
number of edges of H that intersect W and are contained in {a1, a2, a3, c1, c2} is at most(
5
3

)
= 10. If n− 4 > 7, then by (4.9) the number of edges incident to W is at most

10 + σW 6 2n− 3.

Thus, we can delete W and apply induction to H −W to get

|H| 6
(
n− 5

2

)
+ 2n− 3 <

(
n− 1

2

)
.

If n ∈ {8, 9} then we have

|H| 6
(
n− 4

3

)
+ 10 + σW 6

(
n− 4

3

)
+ 16 <

(
n− 1

2

)
.

It remains to consider the case where n = 10. Our previous estimates yield only

|H| 6
(

6

3

)
+ 17 = 37.
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However, if |H −W | > 19, then the edge e1 together with two edges of H −W (found
greedily) would form a copy of P in H. So, |H − W | 6 18 and, consequently, |H| 6
18 + 17 = 35 <

(
9
2

)
.

Comparing these two proofs, the first proof of Theorem 2.7 seems considerably shorter
than the second one. However, it relies on Theorems 2.4 and 4.1, both having quite
involved and technical proofs (see, respectively, [2] and the next section).

4.3. Proof of Theorem 4.1

In this section, first of all, we focus on the proof of Theorem 4.1. Then we make some
preparations toward the proof of Lemma 4.5, and finally we prove it. To prove Theorem
4.1 we need the following fact.

Fact 4.1. If F is a family of connected k-graphs then exk(n;F), as a function of n, is
superadditive, that is, for any pair of natural numbers n1, n2

ex3(n1;F) + ex3(n2;F) 6 ex3(n1 + n2;F).

Proof. Let F be a family of connected k-graphs, and n1, n2 be natural numbers. Choose
H1 ∈ Exk(n1;F) and H2 ∈ Exk(n2;F). By the connectivity of all k-graphs in F , the
vertex disjoint union H1 ∪H2 is also F -free. Consequently

ex3(n1;F) + ex3(n2;F) = |H1|+ |H2| = |H1 ∪H2| 6 ex3(n1 + n2;F).

Proof of Theorem 4.1. Let H be a P -free 3-graph with V (H) = V , |V | = n > 7, and let
C ⊂ H. Further, denote by H1 a connected component of H containing a copy of C and
set H2 = H − V (H1). Set also ni = |V (Hi)|, i = 1, 2, and note that n1 + n2 = n. Clearly,
n1 > 6. Note that |H2| 6 ex3(n2;P ).

If n1 = 6, then

|H| 6 |K3
6 |+ ex3(n− 6;P ) = 20 + ex3(n− 6;P ),

and every 3-graph H which reaches this bound is a disjoint union of H1 = K3
6 and a

3-graph H2 ∈ Ex3(n− 6;P ). To finish the proof, it is enough to show that if n1 > 7, then

|H| < 20 + ex3(n− 6;P ).

We first estimate |H1|. For 7 6 n1 6 12, by Lemma 4.5 and Theorem 2.7 (for n 6 6),

|H1| 6 3n1 − 8 < 20 +

(
n1 − 6

3

)
= 20 + ex3(n1 − 6;P ).

For n1 > 13, again by Lemma 4.5 (applied twice),

|H1| 6 3n1 − 8 < 20 + 3(n1 − 6)− 8 = 20 + excon
3 (n1 − 6;P |C) 6 20 + ex3(n1 − 6;P ).
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Finally, by the above estimates of |H1| and by Fact 4.1,

|H| = |H1|+ |H2| 6 20 + ex3(n1 − 6;P ) + ex3(n2;P ) 6 20 + ex3(n− 6;P ).

4.4. Proofs of Lemma 4.5 and Lemma 4.6

Before we prove Lemma 4.6, we have to prepare some background. Let H be a
connected, P -free 3-graph with V (H) = V and |V | = n > 7 vertices, containing a copy
of the triangle. With some abuse of notation, let us denote by C a fixed copy of triangle
in H. Set

U = V (C) = {x1, x2, x3, y1, y2, y3}, U = U1 ∪ U2,

where U1 = {y1, y2, y3} is the set of vertices of degree one in C, while U2 = {x1, x2, x3} is
the set of vertices of degree two.

Let us also recall that we identify the edge set of a 3-graph with the 3-graph itself,
hence (see Figure 4.2)

C = {{x1, y2, x3}, {x3, y1, x2}, {x2, y3, x1}}.

Figure 4.2. A fixed copy of triangle in H

Then, for s > 1, let W = V \U = {w1, ..., ws}, where |W | = s = n− 6. Further, let us
divide the set of edges of H into three sets (see Figure 4.3):
.

H[U ] = H ∩
(
U
3

)
, H[W ] = H ∩

(
W
3

)
and H(U,W ) = H\(H[U ] ∪H[W ]).
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Figure 4.3. The division of the set of edges of H

Notice that H(U,W ) is the set of all edges of H which intersect both U and W .
Finally, we define two sets of triples (not necessarily in H):

E1 = {{xi, yi, wl} : 1 6 i 6 3, 1 6 l 6 s},

E2 = {{xi, xj, wl} : 1 6 i < j 6 3, 1 6 l 6 s},

and set

E ′ = E1 ∪ E2. (4.10)

The edges in E ′ are formed by taking one vertex from the set W and two vertices from
C. For an edge in E1, one vertex is of degree 1 in C, another of degree 2, but they do not
belong to the same edge of C. Similarly, the edges in E2 are formed by one vertex from
the set W and two vertices of degree 2 in C (see Figure 4.4).

Now, let us formulate several simple observations. Fact 4.2 below has been first ob-
served in [15] (Facts 1-3,6) and then used in [16] (Facts 1-2). It implies that although,
in principle, H(U,W ) may consist of edges having one vertex in U and two in W , the
assumption that H is P -free makes it impossible. For the same reason, out of all potential
edges with two vertices in U and one in W , only those belonging E ′ can actually occur
in H.

Fact 4.2.

a) H = H[U ] ∪H(U,W ), that is, H[W ] = ∅,

b) H(U,W ) ⊆ E ′ = E1 ∪ E2.
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Figure 4.4. The edges from the family E′ = E1 ∪ E2 are shaded

Proof. By the P -freeness of H, no edge of H intersects U in just one vertex. If |f∩U | = 2,
then there is ef ∈ C : |ef ∩ f | = 1. Suppose HW 6= ∅. Then, by the connectivity of H,
there exist g ∈ H[W ] and f ∈ H(U,W ) such that |g ∩ f ′| = 1. Consequently, {ef , g, f} is
a copy of P (see Figure 4.5), a contradiction. Hence, H[W ] = ∅ and a) holds.

If there were an edge e ∈ C and f ∈ H(U,W ) such that e ∩ f = ∅, then {e, ef , f}
would be a copy of P , a contradiction. Thus, every edge of H(U,W ) must intersect all
three edges of C, and thus belong to E ′. Hence, H(U,W ) ⊆ E ′ and b) holds.

Figure 4.5. Illustrations to the proof of Fact 4.2

Fact 4.3. H(U,W ) is intersecting.

Proof. Recall that H(U,W ) ⊆ E ′ and note that E2 is intersecting by definition. Suppose
there exist e ∈ E1 and f ∈ E ′ such that e∩f = ∅. Then C∪{e}∪{f} ⊃ P , a contradiction.
Thus, either e or f cannot be in H, and H(U,W ) is, indeed, intersecting.

Now, we are ready to prove Lemma 4.6.

Proof of Lemma 4.6. Let H be a connected, P -free 3-graph on n > 7 vertices, containing
M and C. We use notation introduced at the beginning of this section. Let f, h ∈ H
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satisfy f ∩h = ∅. By Facts 4.2 and 4.3, at least one of f and h belongs to H[U ]. Without
loss of generality we assume that f ∈ H[U ]. If also h ∈ H[U ], then clearly, f ∪ h = U .
Since n > 7 and H is connected, H(U,W ) 6= ∅. By the P -freeness of H, each e ∈ H(U,W )
needs to be disjoint from either f or h. Either way, there exist two disjoint edges e, f ∈ H
such that e ∈ H(U,W ) and f ∈ H[U ].

Notice that if e ∈ E1, then C ∪ {e} ∪ {f} ⊃ P , a contradiction. Thus, e ∈ E2, say,
e ∩ U = {x1, x2}. Then, the only edge in H[U ] disjoint from e, which does not create a
copy of the path P with e and an edge of C is f = {x3, y1, y2} (see Figure 4.6).

Figure 4.6. Illustration to the proof of Lemma 4.6

Further, observe that all triples in E ′, except those of the type {x1, x2, w}, w ∈ W ,
form a copy of P with f and some edge of C (see Figure 4.7). Hence,

Figure 4.7. Examples of triples in E′ which form a copy of P

H(U,W ) ⊆ {{x1, x2, w} : w ∈ W}. (4.11)
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Let

X =

{
h ∈

(
U

3

)
\C : y3 ∈ h

}
.

For each h ∈ X, we have C ∪ {e, f, h} ⊃ P , and thus

H[U ] ⊆
(
U

3

)
\X. (4.12)

It means, however, that the setH[U ] consists of the edges formed by vertices {x1, x2, x3, y1, y2},
which form the core of a satellite, and the edge {x1, y3, x2}, which, along with the edges
of H(U,W ), forms the tail of the satellite (cf. (4.11)). We conclude that H ⊆ Sa(n) (see
Figure 4.8).

Figure 4.8. Satellite as an extremal graph for H in a proof of Lemma 4.6

Last, but not least, we prove Lemma 4.5.

Proof of Lemma 4.5. Let H be a connected P -free 3-graph with n > 7 vertices, containing
a copy of the triangle C. Clearly H cannot be a subset of the star S3

n. If M * H, then
by Theorem 2.8,

|H| 6 ex
(2)
3 (n; {P,M}) 6 ex

(2)
3 (n;M) = 3n− 8

and the assertion follows. On the other hand, if M ⊆ H, then, by Lemma 4.6, H ⊆ Sa(n)
and therefore

|H| 6 |Sa(n)| = n+ 5 < 3n− 8.

4.5. Turán numbers for non-intersecting 3-graphs

In this section we focus on conditional Turán numbers for non-intersecting H, that is,
when H ⊃M := M3

2 . We start with the following result which was first proved in [16].
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Proposition 4.8. We have

ex
(2)
3 (n;P ) = ex3(n;P |M) for n > 11

and

ex
(2)
3 (n;C) = ex3(n;C|M) for n > 8.

Proof. Observe that, for each F ∈ {P,C}

ex
(2)
3 (n;F ) = max{ex3(n;F |M), ex

(2)
3 (n; {F,M})} (4.13)

and by Theorem 2.8

ex
(2)
3 (n; {F,M}) 6 ex

(2)
3 (n;M) = 3n− 8.

Let us consider a comet Co(n) for n > 6 (see Figure 2.6). Note that Co(n) ⊇ M and
Co(n) + P , and so

ex3(n;P |M) > Co(n) =

(
n− 4

2

)
+ 4 > 3n− 8

for n > 11, which, in turn, by (4.13), implies that

ex
(2)
3 (n;P ) = ex3(n;P |M).

To prove the second equality, we use the following construction. For n > 7, consider
a 3-graph H(n;C|P ) consisting of an edge {x, y, z} and all edges of the form {x, y, w},
w 6= z, and {z, w′, w′′}, where {w′, w′′} ∩ {x, y} = ∅ (see Figure 4.9).

Figure 4.9. Part of the 3-graph H(n;C|P )

Note that H(n;C|P ) ⊇ P and H(n;C|P ) + C and thus

ex3(n;C|P ) > |H(n;C|P )| = 1 + (n− 3) +

(
n− 3

2

)
=

(
n− 2

2

)
+ 1. (4.14)

Since M ⊂ P ,
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ex3(n;C|M) > ex3(n;C|P ) > |H(n;C|P )| >
(
n− 2

2

)
+ 1 > 3n− 8

for n > 8, and thus, we also have

ex
(2)
3 (n;C) = ex3(n;C|M).

Inspired by the above result, we state now the following theorem from [17] which is
going to be instrumental in the proofs of Theorems 2.9 and 2.10. It will be proved in
Section 5.2.

Theorem 4.9.

ex3(n;P |M) =


20 +

(
n−6
3

)
and Ex3(n;P |M) = {K3

6 ∪K3
n−6} for 6 6 n 6 12,

40 and Ex3(n;P |M) = {K3
6 ∪K3

6 ∪K3
1 ,Co(13)} for n = 13,

4 +
(
n−4
2

)
and Ex3(n;P |M) = {Co(n)} for n > 14.

We can draw the following corollary of Theorem 4.9.

Corollary 4.10. For n > 14,

ex3(n;C|M) = ex3(n;C|P ).

Proof. By (4.14) and Theorem 4.9, for n > 14

ex3(n;C|P ) > |H(n;C|P )| =
(
n− 2

2

)
+ 1 > 4 +

(
n− 4

2

)
= ex3(n;P |M).

Thus,

ex3(n;C|M) = max{ex3(n;C|{M,P}), ex3(n; {C,P}|M)} 6

max{ex3(n;C|P ), ex3(n;P |M)} = ex3(n;C|P ).

The inverse inequality is trivial (as explained in the proof of Proposition 4.8).

In [17] we also considered a more restricted version of Theorem 4.9, where we forbad the
pair {P,C}, conditioning on a 3-graph H being non-intersecting. This result, interesting
in its own right, serves as a main tool in the proof of Theorem 4.9.

Theorem 4.11.

ex3(n; {P,C}|M) =


2n− 4 for 6 6 n 6 9,
20 for n = 10,
4 +

(
n−4
2

)
and Ex3(n; {P,C}|M) = {Co(n)} for n > 11.

Note that the Turán numbers ex3(n;P |M), and ex
(2)
3 (n;P ) coincide for n > 8, and

moreover they coincide with the Turán number ex3(n; {P,C}|M) for n > 13.



Chapter 5

Determining Turán numbers of higher order

In this chapter we focus on the proofs of Theorem 2.9, determining the second order
Turán number for all n, and Theorem 2.10, determining the third order Turán number for
n = 12. In their proofs we will use some results stated earlier, most notably Theorem 4.9.

To prove Theorem 4.9 we will need Theorem 4.11, while in the proof of Theorem 4.11
we will make use of a lemma, formulated in [17], which states that if, additionally to
{P,C}, we forbid also P 3

2 ∪ K3
3 , then the formula for ex3(n; {P,C}|M) valid only for

6 6 n 6 9 (cf. Theorem 4.11), takes over for all values of n.

Lemma 5.1. For n > 6

ex3(n; {P,C, P 3
2 ∪K3

3}|M) = 2n− 4.

In Section 5.1 we prove Theorems 2.9 and 2.10. Then, in Section 5.2 we give a proof
of Theorem 4.9 in which we use Theorem 4.11. The proof of this latter theorem is very
technical and relies, in turn, on Lemma 5.1. Both these results are proved in the last
section, Section 5.3.

5.1. Proofs of Theorems 2.9 and 2.10

Proof of Theorem 2.9. We begin the proof with considering the case n = 7 separately.

Case (n=7). By Theorem 2.7,

ex3(7;P ) = 20 and Ex3(7;P ) = {K3
6 ∪K3

1}.

By Definition 2.11 to determine ex
(2)
3 (7;P ) we need to find the largest number of edges

in a 7-vertex P -free 3-graph H which is not a sub-3-graph of K3
6 ∪K3

1 . Note that

P * S3
7 * K3

6 ∪K3
1 ,

and thus,

ex
(2)
3 (7;P ) > |S3

7 | =
(

7− 1

2

)
= 15.

If H is a 7-vertex P -free 3-graph with |H| > 15, then, by Theorem 2.4, C ⊂ H.
But then, since H * K3

6 ∪ K3
1 , H must be connected. Consequently, by Lemma 4.5,

|H| 6 3 · 7− 8 = 13, a contradiction. Thus, ex
(2)
3 (7;P ) = 15.
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To finish the proof in the case n = 7, we have to show that S3
7 is the unique 2-extremal

3-graph for P . Let H be a 7-vertex P -free 3-graph with 15 edges and such that H *
K3

6 ∪ K3
1 and H 6= S3

7 . Since H 6= S3
7 and |H| > 13, by Theorem 2.8, M ⊂ H. Let

e1 = {a, b, c} and e2 = {x, y, z} be two disjoint edges of H, and let v be the seventh
vertex. Since H * K3

6 ∪K3
1 , degH(v) > 0. However, since H is P -free, there are no edges

containing v and one vertex from each e1 and e2. W.l.o.g., let {v, a, b} ∈ H. Then to avoid
P , none of the following six edges can be present in H (we skip brackets for convenience):
cax, cay, caz, cbx, cby, cbz. If there is also an edge containing v and intersecting e2, then
another six edges must be missing from H. Thus, in this case |H| 6 6 + 20− 12 = 14, a
contradiction. Otherwise we have to refine our count and observe that, due to the presence
of {v, a, b} in H, at least one edge out of each of the following pairs must be absent from
H: axy or cyz, axz or cxy, azy or cxz. This means that |H| 6 3 + 20− 6− 3 = 14, again

a contradiction. Hence Ex
(2)
3 (7;P ) = {S3

7}.

Case (n > 8). By Theorem 2.7,

ex3(n;P ) =

(
n− 1

2

)
and Ex3(n;P ) = {S3

n}.

Therefore, to determine ex
(2)
3 (n;P ) for n > 8 we need to find the largest number of edges

in an n-vertex P -free 3-graph H which is not a star. We have,

ex
(2)
3 (n;P ) = max{ex

(2)
3 (n; {P,M}), ex3(n;P |M)}.

By monotonicity and Theorem 2.8,

ex
(2)
3 (n; {P,M}) 6 ex

(2)
3 (n;M) = 3n− 8,

while ex3(n;P |M) is given by Theorem 4.9. One can easily verify that for n > 8 we have
ex3(n;P |M) > 3n− 8. Consequently,

ex
(2)
3 (n;P ) = ex3(n;P |M)

and Theorem 2.9 for n > 8 follows from Theorem 4.9.

Proof of Theorem 2.10. Let us recall that we are to show that

ex
(3)
3 (12;P ) = 32 and Ex

(3)
3 (12;P ) = {Co(12)}.

By Theorem 2.9,

ex
(2)
3 (12;P ) = 40 and Ex

(2)
3 (12;P ) = {K3

6 ∪K3
6},

while by Theorem 2.7,

Ex
(1)
3 (12;P ) = {S3

12}.
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Therefore, to determine ex
(3)
3 (12;P ) we have to find the largest number of edges in a

12-vertex P -free 3-graph H such that

H * S3
12 and H * K3

6 ∪K3
6 . (5.1)

The comet Co(12) satisfies all the above conditions and has 32 edges. Let H be a
12-vertex P -free 3-graph satisfying conditions (5.1) but H 6=Co(12). In order to prove
Theorem 2.10, we have to show that |H| < 32.

If H is non-trivially intersecting then, by Theorem 2.8,

|H| 6 3 · 12− 8 = 28 < 32.

If H ⊃M and H is disconnected, then, since H * K3
6 ∪K3

6 , by Theorems 2.7 and 4.9,

|H| 6 max{ex3(7;P ) + ex3(5;P ), ex3(8;P ) + ex3(4;P ),

ex3(9;P ) + ex3(3;P ), ex3(10;P |M), ex3(11;P |M)} =

max{20 + 10, 21 + 4, 28 + 1, 24, 30} = 30 < 32.

Finally, assume that H is connected and H ⊃M . If, in addition, C ⊆ H, then, by Lemma
4.5, we have

|H| 6 excon
3 (n;P |C) = 3 · 12− 8 = 28 < 32.

Otherwise, H is a {P,C}-free 3-graph containing M and, by Theorem 4.11,

|H| 6 ex3(12; {P,C}|M) = 4 +

(
12− 4

2

)
= 32.

However, again by Theorem 4.11, the comet Co(12) is the only M -extremal 3-graph for

{P,C} and, consequently, |H| < 32.

5.2. Proof of Theorem 4.9

In this section we present the proof of Theorem 4.9.

Proof of Theorem 4.9. Our goal is to determine ex3(n;P |M) and Ex3(n;P |M) for all
n > 6. But first we need another piece of notation. Let êx3(n;P |{C,M}) be the largest
number of edges in an n vertex P -free 3-graph H which contains both, a copy of M and
a copy of C. Note that the definition of ex3(n;P |{C,M}) given in Section 4.1 requires
only that there is a copy of M in H or there is a copy of C in H. (In [17] we erroneously
used notation ex3(n;P |{C,M}) for êx3(n;P |{C,M})).

By considering whether or not a 3-graph H contains a copy of the triangle C, we infer
that

ex3(n;P |M) = max{ex3(n; {P,C}|M), êx3(n;P |{C,M})}.
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The number ex3(n; {P,C}|M) is given by Theorem 4.11, whereas

êx3(n;P |{C,M}) = ex3(n;P |C),

since the unique extremal graph from Corollary 4.2 contains M . Now, we are going to
show that for 6 6 n 6 12,

ex3(n;P |C) > ex3(n; {P,C}|M),

for n = 13,

ex3(n;P |C) = ex3(n; {P,C}|M),

while, for n > 14,

ex3(n;P |C) < ex3(n; {P,C}|M).

Indeed,

for 6 6 n 6 9,

ex3(n;P |C) = 20 +

(
n− 6

3

)
> 2n− 4 = ex3(n; {P,C}|M),

for n = 10,

ex3(n;P |C) = 24 > 20 = ex3(10; {P,C}|M),

for 11 6 n 6 12,

ex3(n;P |C) = 20 +

(
n− 6

3

)
> 4 +

(
n− 4

2

)
= ex3(n; {P,C}|M),

for n = 13,

ex3(13;P |C) = 40 = 4 +

(
13− 4

2

)
= ex3(13; {P,C}|M),

while for n > 14,

ex3(n;P |C) = 20 +

(
n− 7

2

)
< 4 +

(
n− 4

2

)
= ex3(n; {P,C}|M).

Hence, Theorem 4.9 follows immediately from the respective parts of Corollary 4.2 and
Theorem 4.11.
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5.3. Proof of Theorem 4.11

This section of my dissertation is entirely devoted to the proof of Theorem 4.11. Recall,
that Theorem 4.11 determines the maximal number of edges in an n-vertex 3-graph H
which is P -free and C-free but is not intersecting, that is, H contains M .

Before going through the proof of Theorem 4.11, we first prove Lemma 5.1.

Proof of Lemma 5.1. Let V be a set with |V | = n > 6. Fix four different vertices

v1, v2, v3, v4 ∈ V and define a 3-graph H
(0)
n on V as

H(0)
n =

{
h ∈

(
V

3

)
: {vi, vi+1} ⊂ h, i ∈ {1, 3}

}
.

Note that M ⊂ H
(0)
n and |H(0)

n | = 2n− 4. Moreover, since every edge contains one of the
pairs {v1, v2} or {v3, v4}, among any three edges at least two share two vertices. Therefore,

H
(0)
n is {P,C, P 3

2 ∪K3
3}-free and, thus,

ex3(n; {P,C, P 3
2 ∪K3

3}|M) > 2n− 4.

To show the opposite inequality, consider a {P,C, P 3
2 ∪K3

3}-free 3-graph H containing
a matching M = {e, f}, with V (H) = V , |V | = n > 6. Since H is P 3

2 ∪K3
3 -free, H[V \e]

and H[V \f ] are P 3
2 -free, and by Proposition 2.6

|H[V \e]| 6 n− 3 and |H[V \f ]| 6 n− 3.

Since H is P -free, there is no edge h ∈ H with |h ∩ e| = |h ∩ f | = 1. Hence, if
|H[e ∪ f ]| = 2, then |H| 6 2(n− 3) = 2n− 6.

On the other hand, if there exists an edge h ∈ H[e ∪ f ]\{e, f}, then, since H is
P 3
2 ∪K3

3 -free, all edges of H intersect one of e or f on at least two vertices. Let

Fe = {h ∈ H : |h ∩ e| = 2}, Ff = {h ∈ H : |h ∩ f | = 2}.

If there existed h1, h2 ∈ Fe with |h1 ∩ h2| = 1, then, depending on whether
|(h1 ∪ h2) ∩ f | = 0, 1 or 2, the edges {h1, h2, f} would form, respectively, a copy of C,P
or P 3

2 ∪K3
3 (see Figure 5.1).
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Figure 5.1. Illustration to the proof of Lemma 5.1

Thus,

∀h1, h2 ∈ Fe, |h1 ∩ h2| = 2,

so, either all pairs h1, h2 ∈ Fe share two vertices of e or all pairs h1, h2 ∈ Fe share one
vertex of V \e (and another in e).

This implies that

|Fe| 6 max{n− 3, 3} = n− 3.

Similarly, |Ff | 6 n− 3 and, consequently,

|H| = |{e, f}|+ |Fe|+ |Ff | 6 2 + (n− 3) + (n− 3) = 2n− 4,

which completes the proof.

We still have to make some more preparations before proceeding with the proof of
Theorem 4.11. Note that since |V (P 3

2 ∪K3
3)| = 8, no n-vertex 3-graph, n = 6, 7, contains

a copy of P 3
2 ∪K3

3 and therefore, by Lemma 5.1,

ex3(n; {P,C}|M) =ex3(n; {P,C, P 3
2 ∪K3

3}|M) = 2n− 4.

Thus, from now on we will be assuming that n > 8. Define a sequence of 3-graphs

Hn =

 H
(0)
n for 8 6 n 6 9,

K3
5 ∪K3

5 for n = 10,
Co(n) for n > 11,
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where H
(0)
n is the 3-graph introduced in the proof of Lemma 5.1. By an inspection, we

can see that Hn is {P,C}-free and contains M . Hence

ex3(n; {P,C}|M) > |Hn| =


2n− 4 for 8 6 n 6 9,
20 for n = 10,
4 +

(
n−4
2

)
for n > 11.

The main difficulty lies in showing the reverse inequality, namely, that any {P,C}-free
3-graph H on n > 8 vertices, containing M , satisfies |H| 6 |Hn|. Moreover, for n > 11,
we want to show that the equality is reached by the extremal 3-graph Hn =Co(n) only.
We may assume that H contains a copy P 3

2 ∪K3
3 . On the other hand, by Lemma 5.1,

|H| 6 2n− 4 6 |Hn|,

where, in fact, 2n− 4 < |Hn| for n > 10. Before turning to the actual proof of Theorem
4.11, we need to introduce some notation and prove facts related to the structure of H.

Let us assume that H is {P,C}-free and contains a copy of P 3
2 ∪K3

3 . Let e1, e2 ∈ H
and x ∈ V = V (H) be such that e1 ∩ e2 = {x} and there is an edge in H disjoint from
e1 ∪ e2. We know that such a choice of e1, e2, x exists, because P 3

2 ∪K3
3 ⊆ H. We split

V = U ∪W , where

U = e1 ∪ e2, and W = V \U.

Note that |U | = 5 and |W | = n− 5. Further set

H(U,W ) = H\(H[U ] ∪H[W ])

for the sub-3-graph of H consisting of all edges intersecting both, U and W . Notice that
H[W ] 6= ∅, and thus the set W0 of vertices of degree 0 in H[W ] has size

|W0| 6 n− 8. (5.2)

Set also W1 = W\W0 (see Figure 5.2 ).
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Figure 5.2. The structure of H in the proof of Theorem 4.11

Let us split

H[U ] = {e1, e2} ∪ E(x) ∪ E(x),

where E(x) contains all edges of H[U ] which contain vertex x, except for e1 and e2, while
E(x) contains all other edges of H[U ]. Note that

max{|E(x)|, |E(x)|} 6 4. (5.3)

We also split the set of edges of H(U,W ). First, notice that if for some h ∈ H(U,W )
we have |h ∩ U | = 1, then h ∩ U = {x}, since otherwise h together with e1 and e2 would
form a copy of P in H. Let

F 0 = {h ∈ H(U,W ) : h ∩ U = {x}}.

The edges h ∈ H(U,W ) with |h∩U | = 2 must satisfy h∩U ⊂ e1 or h∩U ⊂ e2, since
otherwise h together with edges e1 and e2 would form a copy of C in H. For k = 1, 2 we
define

F k = {h ∈ H(U,W ) : |h ∩ (U\{x})| = k}.

We have H(U,W ) = F 0 ∪ F 1 ∪ F 2. (Note that in each case k = 0, 1, 2, the superscript k
stands for the common size of the set h ∩ (U\{x})− see Figure 5.3).

For a sub-3-graph F ⊆ H(U,W ) and i = {0, 1}, set

Fi = {h ∈ F : h ∩W ⊂ Wi},
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Figure 5.3. Illustration of the three types of edges in H(U,W )

which in the particular case when F = H(U,W ) will be abbreviated to Hi. Especially, for
i = {0, 1}, Hi = F 0

i ∪ F 1
i ∪ F 2

i , where F 0
i is the subset of edges h ∈ F 0 with |h ∩Wi| = 2,

while F k
i , k = {1, 2}, is the subset of edges of F k whose unique vertex in W lies in Wi.

A crucial observation is that, since H is P -free, for every two disjoint edges in H, no
edge may intersect each of them in exactly one vertex. Thus, there is no edge in H with
one vertex in each of the sets, U , W0 and W1. Therefore,

H(U,W ) = H0 ∪H1, (5.4)

and consequently,

H = H[U ]∪H(U,W )∪H[W ] = H[U ]∪H0∪H1∪H[W ] = H[U ∪W0]∪H1∪H[W ]. (5.5)

Furthermore, by the same principle, if e ∈ F 0
1 , then the pair e∩W1 must be non-separable

in H[W1], that is, every edge of H[W1] must contain both these vertices or none. Since
the non-separable pairs in H[W1] form a graph of maximum degree at most 2, there are
at most |W1| of them. Therefore,

|F 0
1 | 6 |W1|. (5.6)

The above crucial observation brings about another consequence, namely F 1
1 = ∅.

Thus,

H1 = F 0
1 ∪ F 2

1 . (5.7)
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If we bring equations (5.6), and (5.7) together, we need to bound |F 2
1 | which, however,

requires a detailed analysis of the degrees of vertices v ∈ W in the 3-graphs F k, k =
{0, 1, 2}. For v ∈ W and F ⊆ H, let F (v) be a a neighborhood of v in F , that is, the set
of pairs of vertices which together with v form edges of F , thus |F (v)| = degF (v). Notice
that, since H is P -free, for every v ∈ W either

F 0(v) = ∅ or F 2(v) = ∅. (5.8)

Moreover, by the definition of F 1 and F 2 (and the remarks preceding them),

|F 1(v)| 6 4 and |F 2(v)| 6 2. (5.9)

For v ∈ W0, by the remark preceding equation (5.4), |F 0(v)| 6 |W0| − 1, and thus, by
(5.8), (5.9) and (5.2),

|H(v)| = |F 0(v)|+ |F 1(v)|+ |F 2(v)| 6 4 + max{2, n− 9}.

In particular, for n = 10,

∀v ∈ W0, |H(v)| 6 6, (5.10)

while for n > 11,

∀v ∈ W0, |H(v)| 6 n− 5, (5.11)

where the equality for n > 12 is achieved only when |F 0(v)| = n − 9, |F 1(v)| = 4, and
F 2(v) = ∅.

Consider now v ∈ W1. For each e ∈ F 0, the pair e ∩W1 must be non-separable in W1

and, v belongs to at most two non-separable pairs. Thus, |F 0(v)| 6 2 and, consequently,
by (5.7), (5.8) and (5.9),

∀v ∈ W1, |H1(v)| = |F 0(v)|+ |F 2(v)| 6 2. (5.12)

We can also show that

|F 2
1 | 6 max{|W1|, 2|W1| − 4}. (5.13)
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Indeed, if for all v ∈ W1 we have |F 2(v)| = |F 2
1 (v)| = 1, then |F 2

1 | 6 |W1|. Otherwise,
let v ∈ W1 have, by (5.9), |F 2(v)| = 2 and let {v, v′, v′′} ∈ H[W ]. Since H is P -free,
F 2(v′) = F 2(v′′) = ∅, and therefore, again by (5.9),

|F 2
1 | 6 2(|W1| − 2) = 2|W1| − 4.

Now we are ready to set bounds on the number of edges in H1, as well as in H[U ]∪H1,
which will be repeatedly used in the proof of Theorem 4.11. Recall that |W1| > 3.

Fact 5.1. We have
|H1| 6 2|W1| − 3 (5.14)

and for |W1| > 4,

|H[U ]|+ |H1| 6 2|W1|+ 2. (5.15)

Proof. Let h ∈ H[W ]. Notice that
∑

v∈h |H1(v)| 6 3, while for v ∈ W1\h, by (5.12),
|H1(v)| 6 2. This yields |H1| 6 3 + 2(|W1| − 3) and takes care of (5.14).

If H1 = ∅ then (5.15) holds, as |H[U ]| 6 10. To prove (5.15) also when H1 6= ∅, we
need a better bound on |H[U ]|. To this end, note that if F 0 6= ∅ then E(x) = ∅, while if
F 2
1 6= ∅ then E(x) = ∅. Hence, by (5.7) and (5.3),

H1 6= ∅ ⇒ |H[U ]| 6 6. (5.16)

So, if one of the sets, F 0
1 or F 2

1 , is empty, then we get (5.15) by (5.16), (5.6), and (5.13).
If both these sets are non-empty, then E(x) = E(x) = ∅, and thus |H[U ]| = 2. In this
case (5.15) follows by (5.14) with a margin.

Since H is C-free, on several occasions our proof relies on two instances of Theorem 2.4.
Namely, if |W0| > 1 then

|H[U ∪W0]| 6
(
|W0|+ 4

2

)
, (5.17)

while if |W | = n− 5 > 6 then

|H[W ]| 6
(
n− 6

2

)
. (5.18)

Finally, there cannot be too many edges between U and the vertex set of a copy of P 3
2

in H[W ] if there happens to be one. For a subset W ′ ⊂ W , we denote by H(U,W ′) the
bipartite, induced sub-3-graph of H with bipartition (U,W ′).
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Fact 5.2. If H[W ] contains a copy Q of P 3
2 with V (Q) ⊆ W , then

|H(U, V (Q))| 6 4. (5.19)

Proof. Recall that, the edges of H(U, V (Q)) with one vertex in U are those belonging
to F 0 that is those containing the central vertex x. Note that due to the fact that H is
P -free, there are at most two such edges in H(U, V (Q)). By symmetry, there are also at
most two edges in H(U, V (Q)) with one vertex in W , which yields (5.19).

Only now we are fully prepared for the proof of Theorem 4.11.

Proof of Theorem 4.11. At the beginning of the proof we will consider the three smallest
cases for n = 8, 9, 10 separately. Afterwards, we turn to the main case of n > 11. Here,
after quickly taking care of the subcase W0 = ∅, we will assume that W0 6= ∅ and proceed
by induction on n with n = 11 being the initial step.

Let H be a {P,C}-free n-vertex 3-graph which contains a copy of P 3
2 ∪K3

3 . We use
the same notation and terminology as it was introduced at the beginning of this section.
In addition, for v ∈ V , we will write H − v for H[V \{v}].

Case n = 8.

We have |W1| = 3, |H[W ]| = 1, and W0 = ∅. If H(U,W ) = H1 = ∅, then

|H| = |H[U ]|+ |H[W ]| 6 10 + 1 < 12 = |H8|.

Otherwise, by (5.16), |H[U ]| 6 6 and, therefore by (5.14),

|H| = |H[U ]|+ |H1|+ |H[W ]| 6 6 + 3 + 1 < 12.

Case n = 9.

We have |W | = 4 and |H[W ]| 6
(
4
3

)
= 4.

If W0 = ∅ then, by (5.15),

|H| = |H[U ]|+ |H1|+ |H[W ]| 6 2|W1|+ 2 + 4 = 14 = |H9|.

If W0 6= ∅, then |W0| = 1, |W1| = 3 and |H[W ]| = 1. By (5.14), |H1| 6 3, and
consequently, by (5.5) and (5.17),

|H| = |H[U ∪W0]|+ |H1|+ |H[W ]| 6 10 + 3 + 1 = 14.
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Case n = 10.

We have |W | = 5, |W0| 6 2 and |H[W ]| 6
(
5
3

)
= 10. If W0 = ∅ then, by (5.15),

|H[U ]|+ |H1| 6 2|W |+ 2 = 12.

If, additionally, |H[W ]| 6 5, then

|H| = |H[U ]|+ |H1|+ |H[W ]| 6 12 + 5 < 20 = |H10|.

Otherwise, by Proposition 2.6, H[W ] contains a copy Q of P 3
2 (note that V (Q) = W1),

and, by (5.19), |H1| 6 4. Hence, using (5.16) along the way,

|H| = |H[U ]|+ |H1|+ |H[W ]| 6 max{10 + 0, 6 + 4}+ 10 = 20.

Now, let W0 6= ∅. Fix v ∈ W0 and notice that H− v is {P,C}-free and contains M . Since
we have already proved that ex3(9; {P,C}|M) = 14,

|H − v| 6 14.

Moreover, by (5.10), |H(v)| 6 6, and consequently,

|H| = |H − v|+ |H(v)| 6 14 + 6 = 20.

Case n > 11.

The proof is by induction on n with n = 11 being the base case. First, however, we
take care of a subcase when W0 = ∅, for which, by (5.15) and (5.18),

|H| = |H[U ]|+ |H1|+ |H[W ]| 6 2(n− 5) + 2 +

(
n− 6

2

)
= 3 +

(
n− 4

2

)
< |Hn|.

Hence, in what follows we will be assuming that W0 6= ∅.

Case n = 11 (initial step).

Suppose first that H[W ] contains a copy Q of P 3
2 . Then |W0| = 1, |W1| = 5,

V (Q) = W1, and by (5.19), |H1| 6 4. Consequently, by (5.5), (5.17), and (5.18),

|H| = |H[U ∪W0]|+ |H1|+ |H[W ]| 6 10 + 4 + 10 < 25 = |H11|.
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In the remainder of this part of the proof, besides the assumption that W0 6= ∅, we
will be also assuming that H[W ] is P 3

2 -free and thus, by Proposition 2.6, |H[W ]| 6 6. We
consider three cases with respect to the size of |W0|.

|W0| = 1.

We have |W1| = 5 and, by (5.14), |H1| 6 7. Consequently, by (5.5) and (5.17),

|H| = |H[U ∪W0]|+ |H1|+ |H[W ]| 6 10 + 7 + 6 < 25.

|W0| = 2.

We have |W1| = 4 and therefore |H[W ]| 6
(
4
3

)
= 4. Moreover, by (5.14), |H1| 6 5 and

finally, by (5.5) and (5.17),

|H| = |H[U ∪W0]|+ |H1|+ |H[W ]| 6 15 + 5 + 4 < 25.

|W0| = 3.

We have |W1| = 3 and therefore |H[W ]| = 1. Moreover, by (5.14), |H1| 6 3 and thus, by
(5.5) and (5.17),

|H| = |H[U ∪W0]|+ |H1|+ |H[W ]| 6 21 + 3 + 1 = 25,

with equality only when |H1| = 3 and |H[U ∪W0]| = 21. The latter, by the second part
of Theorem 2.4, is possible only when H[U ∪W0] is a star (with the center at x). This, in
turn, implies that F 2 = ∅ (otherwise H would not be P -free) and, further, by (5.7), that
H1 = F 0

1 . Hence, H =Co(11) with x at the center and W1 as the head.

Case n > 12 (inductive step).

Fix v ∈ W0. By the induction hypothesis

|H − v| 6 4 +

(
n− 5

2

)

with the equality only when H − v =Co(n− 1). Looking at the structure of H − v, if it
is a comet, then it must have the center at x and the head must be the unique edge of
H[W ]. Moreover, by (5.11), |H(v)| 6 n− 5, with the equality only when |F 0(v)| = n− 9,
|F 1(v)| = 4, and F 2(v) = ∅. Consequently,

|H| = |H − v|+ |H(v)| 6 4 +

(
n− 5

2

)
+ n− 5 = |Hn|.
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and this bound is achieved only when both H − v =Co(n− 1) and |H(v)| = n− 5. This,
however, implies that H =Co(n) (with the same center and head as in H − v). This way
we have proved Theorem 4.11.
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Conclusions

The main subject of this dissertation were Ramsey and Turán numbers for the 3-uniform
path P of length 3. We began by introducing the basic definitions and terminology used
in this thesis, together with the most important results related to Ramsey and Turán
numbers. In Section 2.2 we stated Theorem 2.1 and, the most crucial in our research,
Theorem 2.2. Then, we moved to results connected to Turán numbers. We quoted the
well-known Erdős-Ko-Rado Theorem (Theorem 2.3), Theorem 2.4 concerning the Turán
number for the triangle C and its generalization. Nonetheless, the most important result
in this thesis, related to Turán numbers is Theorem 2.7 which gives values of ex3(n;P ) for
all n. Moreover, in Chapter 2 we stated our two other results, Theorem 2.9 and Theorem
2.10, which were useful in the proof of Theorem 2.2.

Then in Chapter 3, we focused exclusively on the proofs of Theorems 2.1 and 2.2.
In Section 3.1 we introduced a standard approach towards determining lower bounds on
Ramsey numbers and concentrated on two proofs of Theorem 2.1. The first proof was
based on detailed analysis of all possible 3-colorings in a 3-graph which contains 9 vertices,
very strenuous and, thus, not suitable for generalizations. The second proof was based
on Turán numbers. The relation between Turán and Ramsey numbers is laid down in
Lemma 3.3. We finished Chapter 3 with the proof of Theorem 2.2, where we employed
another variant of Turán numbers, so called Turán number of higher order, which had
first appeared in [14] (see Theorem 2.8).

In Chapter 4 we defined a new type of Turán numbers, the conditional Turán numbers
and used them to prove Theorem 2.7 which determines Turán numbers ex3(n;P ) for
all n. We also formulated a few results such that Theorems 4.9 and 4.11, and Corollary
4.10, about conditional Turán numbers. Chapter 5 was mainly devoted to the proofs of
Theorem 2.9, Theorem 2.10, Theorem 4.9, and Theorem 4.11.

The most important, in my opinion, result of this dissertation, Theorem 2.2 gives the
exact value R(P ; r) = r + 6 for r 6 7. In [27] Polcyn and Ruciński used the third and
fourth order Turán numbers for P to show that R(P ; r) = r + 6 also for r ∈ {8, 9} and
soon after Polcyn [26] proved that R(P ; 10) = 16 but she had to use the fifth order Turán
number for P , which she determined for all n. Quite recently, the authors of [22] improved
the upper bound R(P ; r) 6 3n down to R(P ; r) 6 2n+

√
18n+ 1 + 2 and in [23]  Luczak,

Polcyn, and Ruciński gave bounds on R(P k; r), for k-uniform paths of length 3, which,
interestingly, turned out to be independent of k (for k large). It would be interesting to
decide if R(P ; r) = r + 6 also for all r > 11. To achieve this task it seem to be essential
to compute Turán numbers of order s, ex(s)(c;P ), for s > 6 or, otherwise, come up with
a totally new idea.

There are some related problems too. For instance the only facts we know about
Ramsey number R(C; r) are that R(C; r) = r + 5 for r = 2, 3 and R(C; r) > r + 5 for
all r [11]. Gyárfás and Raeisi conjectured in [11] that R(C; r) = r + 5 for all r. To solve
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this problem one may need to compute ex
(s)
3 (n;C) for s > 2 and at least for some small

values of n.
It would also be interesting to compute the conditional Turán numbers ex3(n;C|M)

= ex3(n;C|P ) (c.f. Corollary 4.10). By (4.14) we know that lower bound on ex3(n;C|P )
is
(
n−2
2

)
+ 1. We dare to formulate the following conjecture.

Conjecture 6.1. With a possible exception of some small values of n,

ex3(n;C|P ) =

(
n− 2

2

)
+ 1.

Finally,  Luczak and Polcyn in [21], Sect. 4, formulated a question of characterizing the
structure of all connected P -free 3-graphs H. One important case of this problem, when
H contains the triangle C and is not intersecting (i.e., H contains also M), is covered by
Lemma 4.6, proved in my thesis, which asserts that such an H must be a sub-3-graph of
a satellite. It would be very desirable to complete this characterization.
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