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Abstract—Self-imaging of waves is an intriguing and
spectacular effect. The phenomenon was first observed
for light in 1836 by Henry Fox Talbot and to this day
is the subject of research in many areas of physics,
for various types of waves and in terms of different
applications. This paper is a Talbot-effect study for spin
waves in systems composed of a thin, ferromagnetic
waveguide with a series of single-mode sources of spin
waves flowing into it. The proposed systems are studied
with the use of micromagnetic simulations, and the spin
wave self-imaging dependencies on many parameters are
examined. We formulated conditions required for the
formation of self-images and suitable for experimental
realization. The results of the research form the basis for
the further development of self-imaging-based magnonic
devices.

Index Terms—magnonics, spin waves, Talbot effect,
self-imaging, waveguides.

I. Introduction
Due to their unique properties, such as a strong depen-

dence on the material parameters and the magnetization
orientation in relation to the direction of propagation or
the film plane, spin waves (SWs, i.e, coherent magnetization
disturbances propagating in magnetic materials in the form
of waves) are a fascinating research object[1]. Their dynamic
properties are related to coexisting short-range, strong, and
isotropic exchange interactions and long-range, weak, and
anisotropic magnetostatic interactions. Moreover, one of the
essential advantages of SWs as an information carrier is
the fact that their frequency spans range from a few to
hundreds of gigahertz, with the corresponding wavelength
range extending from micrometers to tens of nanometers.
All this adds up to the type of medium that can be influ-
enced and configurable on many levels, making them flexible
for applications in devices that can potentially support or
replace conventional electronic solutions[2], [3].

Usually, the transmission and processing of SWs in narrow
waveguides[4], [5] that are often coupled[6] are considered
in magnonics. Another promising line of research is the use
of elements much wider than the waveguides themselves
to redirect[7], [8], [9] and process SWs[10], [11], [12], [13],
[14]. These elements, being multimode waveguides, can
be referred to as processing blocks. Most commonly, SWs
are delivered to these elements via a single or a group
of narrow waveguides. Subsequently, these entering SWs
interfere with each other. Moreover, this interference can be
further molded in processing blocks by properly modifying

the medium where SWs propagate. It can be achieved
by the introduction of defects[14], programmable magnetic
elements on top of that region[12], or the utilization of non-
colinear magnetization textures[15]. The main advantage of
this approach is the possibility of using interference effects
to process SW-carried information[12], [13], [14].

It is important to note that as waves fall into the process-
ing block from a group of evenly spaced waveguides, the in-
terference image with the same symmetry as the waveguide
array is formed. There is a strong analogy to the Talbot
effect[16], [17] that was firstly observed for electromagnetic
waves. It results from waves interference coming from a
series of periodically arranged sources. The most visible
distribution of self-images, the so-called Talbot carpet, is
created for infinitely many sources, corresponding to an
infinitely long diffraction grating through which a plane
wave passes. This phenomenon is extensively studied in
recent years for many types of waves[18] and found already
applications, for instance to improve x-ray imaging[19]. It
has been theoretically demonstrated that this effect can
occur also for SWs[20]. However, the conditions of the
formation of the SWs’ self-images in a thin ferromagnetic
multimode waveguide have never been studied.

In this paper, we numerically investigate prototypes of
SW multimode waveguides with multiple input single-mode
stripes (see Fig. 2) and use the phenomenon of multimode
interference (MMI). The fact that self-imaging is here an
inherent property of the system allows assuming that in this
type of device the interference images will form patterns
analogous to the classic Talbot carpets. We will analyze
how the width of the multimode waveguide, the number
and separations between input waveguides influence the
interference pattern, and finally we will discuss prospects
for applications. We believe that due to the advantage
of magnonic systems over the photonic ones in terms of
miniaturization, the self-imaging effect may result in effi-
cient magnonic devices, such as logic gates, couplers, multi-
/demultiplexers, or phase controllers.

The paper is organized as follows. In Section II we
describe system and method used in our investigations. In
Section III we present the simulation results for different
geometrical parameters and in Section IV we discuss the
influence of damping on formation of the self-images. The
paper is finishing with conclusions of the results.
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II. Model description
A. Self-imaging

The phenomenon of the self-imaging of waves is well
described and widely used today[18], [21]. It dates back to
the early 19th century when Henry Fox Talbot first observed
it for light passing through a diffraction grating and a lens
with high magnifying power[16].

The Talbot effect is the result of waves’ interference as
they pass through any periodic aperture. In its close diffrac-
tion field, at strictly defined distances from the sources,
replication of the periodic structure – self-imaging will take
place [see Fig. 1(a)]. The effect is the more visible, the wider
diffraction grating is in relation to the wavelength of waves
passing through it. For an infinitely long periodic grating
(or sources array), one can obtain the Talbot carpet – ideal
and repeated recreations of the periodic structure in every
period, so-called Talbot lengths, described by a formula

zT = nd2/λ, (1)

where n is an integer specifying the number of subsequent
self-images, d is a period of the grating, and λ is a wave-
length. The theory of the Talbot effect has been described
many times for various types of interactions [20], so in this
paper, we will limit it only to the general description.

(a) (b) 0 max
Intensity

Figure 1. Illustrative self-imaging representation for (a) an infinitely
long array of sources on the left and (b) for a finite number of inputs,
where the near diffraction field quickly turns into the far diffraction
field, and the Talbot effect disappears. In both cases, SW frequency
is equal to 40 GHz, inputs period is 120 nm and infinitely wide
waveguides were assumed.
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Figure 2. Scheme of a M -input multimode device.

B. Micromagnetic simulations
In order to present magnonic systems based on the

self-imaging effect with MMI, the micromagnetic package

MUMAX3 was used[22]. The studied systems were
discretized uniformly by 5 × 5 × 5 nm3 unit cells, with one
cell per thickness. The following magnetic parameters were
applied in the simulations: saturation magnetization of
MS = 860 kA/m, an exchange constant of A = 13 pJ/m,
these are the parameters related to permalloy, and initially
negligibly low damping constant α = 10−5. In each of
the analyzed cases, the waveguide was homogeneously
magnetized by the external magnetic field of the value
µ0H0 = 1.1 T (H0 > MS), directed perpendicular to the
plane of the system. Low amplitude harmonic SWs were
excited continuously by a microwave antenna placed on
each of the input single-mode waveguides of 40 nm width,
at a distance of 90 nm from the multimode part (see Fig.
2), until the system reached a steady state, i.e. a state
where the interference image in the multimode layer is
no longer dependent on time. The analyzed frequency
of the SWs in our systems is 40 GHz enabling to excite
exchange interaction dominated SWs of the wavelength
(λ = 68.83 nm) only a dozen times greater than the
exchange length (lex =

√
2A/(µ0M2

S) = 6 nm). To illustrate
the propagation of SWs through the system, the intensity
maps were calculated as the square of the mx-component of
magnetization and averaged over time

〈
m2

x

〉
t

after reaching
the steady state.

III. Multiple, long-range self-imaging in
multimode waveguides

The simulations were divided into three parts, where the
Talbot effect in the M -input MMI systems was examined in
terms of parameters like the distance between the inputs,
the number of inputs, and the multimode waveguide width.
In each of the presented cases, the impact of changing
only one of these parameters was analyzed, leaving the
other unchanged. This allows to access the possibilities of
manipulating interference images in terms of their best use
in future magnonic devices.

1) Variable distance between inputs: The first studies
are for systems with a variable distance between the in-
puts while maintaining a constant number of them and
unchanged width of the system. We assume M = 8 inputs
and the waveguide width equal 1.64 µm.

The analysis of the SW interference images in the multi-
mode layer in Fig. 3 clearly shows that the interference first
causes the formation of self-images in the near diffraction
field, then due to the MMI, the structure is reconstructed
further away from the source. As the distance between the
inputs increases, so does the distance at which the repro-
ductions of Talbot carpets appear. By further increasing
the distance between the inputs while keeping the condition
of their number and system width constant, we will come
to the point where the series of inputs will span the entire
width of the waveguide (see Fig. 4).

For large distances, when the inputs fill whole waveguide
width, it can be noticed, that in near field the self-imaging
effect is very clear. The first Talbot images (a series of first
reproductions of periodic sources, laterally shifted in phase
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Figure 3. Intensity maps of SWs entering from a series of 8 single-mode
40 nm wide waveguides (on the left) into a 1.64 µm wide multimode
film. The distance between the sources is respectively (a) 80 nm, (b)
110 nm, and (c) 140 nm. The solid red and dashed green vertical lines
represent the cross-section along which the normalized SW intensities
as a function of the width are plotted (on the right).
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Figure 4. Intensity maps of SWs in the near diffraction field of
multimode, 1.64 µm wide waveguides, with 8 inputs separated by (a)
170 nm and (b) 200 nm.

by half of their period) are very similar to the theoretical
ones [see Fig. 1(a)], despite the finite dimensions of the
system. The difference is only visible at the edges of the
system, where the resulting SW focus points are clearly out
of line with the others, disturbing the self-imaging. For the
first two Talbot lengths (see Eq. 1), this disturbance does
not significantly affect the phenomenon, however, for further
distances the pattern regularity is increasingly disturbed.
Nevertheless, due to reflections from the waveguide edges,
the reproductions of the entire patterns are created also at
a distance of a dozen µm. However, the self-images resulting
from the Talbot effect in the near field are more interesting
from the application point of view, because they maintain
their regularity and high intensity (see the insets on the
right side of Fig. 3), even in materials with relatively high
damping, as will be discussed in Section IV.

2) Variable number of inputs: The second type of nu-
merical simulation is performed to check how the change
in the number of single-mode inputs affects the formation
of both Talbot carpets and their reproductions on the
further sections of multimode waveguide. Analogically to

the previous paragraph, the width of the system and the
distance between the sources will remain unchanged here,
i.e., 80 nm and 1.64 µm, respectively.

(a)

(b)

(c)
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Figure 5. Intensity maps of SWs in a 1.64 µm wide multimode film
coming from (a) 3, (b) 5, and (c) 10 single-mode inputs, separated by
80 nm. The solid red and dashed green lines represent the cross-section
along which the normalized SW intensities as a function of the width
are plotted (on the right).

In Fig. 5 it can be seen that, in contrast to the distance be-
tween the inputs, their number does not affect the distance
at which the Talbot pattern is reconstructed in a multimode
waveguide. However, for a small number of sources, this self-
imaging in far field practically does not occur – for three
sources in Fig. 5(a), a specific interference pattern can be
seen, but with significantly lower intensity. Only in the case
of 5 or more sources, we can observe the reproduction of the
near diffraction field.

3) Variable MMI waveguide width: The last type of sys-
tem in which we decided to analyze SW self-imaging are
multimode waveguides with different widths. Here again,
as in the previous cases, the remaining parameters tested,
i.e., the number and the distance between the inputs, are
constant, M = 10 and 80 nm, respectively.

The simulation results presented in Fig. 6 clearly show,
following the intuition from geometric optics, the tendency
of the SWs’ re-focus area to move away from the inputs
with increasing width of the waveguide. It points that
the width of the multimode waveguide and its edges are
important factors influencing reproduction of the pattern in
far field. Comparing Figs. 6(a)-(c), it can be seen that the
interference image shown in Fig. 6(a) most closely resembles
the classical Talbot image, a similar conclusion may be
drawn from comparing Fig. 3(a)-(c). This indicates that by
properly choosing the width of the multimode waveguide,
the number and a separation between the input single-mode
waveguides, one can reproduce a Talbot carpet in relatively
far distances in multimode waveguides, the same as for an
infinite number of periodically arranged SW sources. This
is because, the lateral edges on which reflections occur can
act similarly to periodic boundary conditions. This means
that for materials with low damping, it can be possible
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Figure 6. Intensity maps of SWs entering from a series of 10 single-
mode 40 nm wide waveguides (on the left) into a (a) 1.25 µm, (b)
1.75 µm and (c) 2.5 µm wide multimode film. The distance between
the sources is equal in all cases 100 nm. The solid red and dashed
green lines represent the cross-section along which the normalized SW
intensities as a function of the width are plotted (on the right).

to transmit information about a geometry of a diffraction
grating/array of sources over long distances thanks to the
self-imaging phenomenon.

IV. Impact of Gilbert damping on the
self-imaging effect

The Talbot effect in finite systems of thin ferromagnetic
layers can be used in two ways. (i) At short distances
from the source array, as we have presented in Fig. 4
for a wide distribution of a number of sources. Here the
near diffraction field is distributed over the width of the
multimode waveguide and is close to the classic Talbot
carpet, and it doesn’t significantly depend on the edges of
the waveguide (see Figs. 3-6). (ii) As we presented in the
other examples, where the near field pattern is reproduced
over longer distances. Of course, especially the latter case
raises the question of the SW damping and whether this
effect is achievable experimentally.

On the basis of micromagnetic simulations, we analyzed
the influence of a damping constant on the self-imaging
effect, by simulations with the two values of α: 3.2 × 10−4

[characteristic for yttrium iron garnet (YIG)], and α =
5 × 10−3 (permalloy). The remaining material parameters,
characteristic for permalloy, are unchanged in relation to the
previous simulations. YIG and permalloy are some of the
most popular magnetic materials in magnonics due to low
damping; therefore, the choice the tabular damping values
characteristic for these materials as an example is justified.

Figure 7 shows the SW amplitude distribution for two
types of system geometries, with smaller separation between
the inputs [(a) and (c)] and large separation [(b) and
(d)], for the two values of α. The conclusion that arises
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Figure 7. SW intensity maps in multimode waveguides with Gilbert
damping factors equal to (a), (b) α = 5 × 10−3 and (c), (d) α = 3.2 ×
10−4. The period of inputs in (a) and (c) is equal to 80 nm, while in (b)
and (d) is 200 nm. In both cases the waveguide width is 1.64 µm. The
graph (e) shows the intensity of SWs on a line from the fourth source
for both analyzed damping values (and smaller input period cases).
The Talbot length is marked as zT, while the length of reproducing
self-images as zMMI.

is certainly a large decrease in the intensity of self-images
in the far diffraction field for the α of permalloy – here
detection by measuring techniques such as micro-BLS may
be limited only to classic Talbot images formed near the
source array. However, in systems with small damping, the
situation is much more promising – reproductions at the
distance of even a few µm from the sources should be
measurable using standard techniques for measuring the
dynamics of magnetization.

Figure 7(e) shows the SW intensity as a function of the
distance from the array sources along the line crossing the
fourth source. It can be clearly seen that in the system with
the damping constant characteristic for permalloy (orange
line) the decrease in SW energy by 50% occurs after around
700 nm, thus only classic Talbot effect (zT) can be exploited.
For YIG-value of damping the signal decreases by 50%
only after around 8 µm, which allows for observation at
least 3 reproduced Talbot images (3zMMI) and makes it
a good candidate for applications. It is also important to
point out that both YIG, permalloy, and materials with
a slightly higher damping factor can be used in systems
where the Talbot effect in the near field will be used. This is
especially promising for future potential magnonic devices
where miniaturization, e.g. computing systems, will be a
key.

V. Conclusions
The propagation of high-frequency SWs in multimode

structures is of a great interest. Such studies allow under-
standing the dynamics of SWs in structures that can replace
conventional CMOS systems in high-speed signal process-
ing, logic circuits, and information storage technologies in
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the near future. Using different types of system geometry,
materials and changing the direction and value of the
external magnetic field, we can manipulate the interference
field generated in the multimode part. SW self-imaging may
be utilized to realize logic operations using interference pat-
terns. Moreover, using the Talbot effect properties, similar
systems can be used, for example, as input phase coherence
controllers or (de)multiplexers.

The combination of the Talbot effect with MMI was the
core of the structures proposed in this paper. We showed
that a series of single-mode SW sources causes the forma-
tion of self-images in multimode waveguides in the near
diffraction field and also to be transferred for much further
distances creating reproduced Talbot carpets due to MMI.
The quality of these reproduced carpets depends on the
multimode waveguide widths, edges and the arrangement
of single-mode waveguides. In materials with low Gilbert
damping, this may result in focusing SW beams at far
distances from the sources, while the near diffraction field
may retain properties close to the theoretical undisturbed
Talbot carpets even for moderate values of damping.

The out-of-plane alignment of the magnetization used in
the paper is advantageous in the analysis of Talbot phe-
nomena due to the circular shape of isofrequency contours.
It makes the analyzed magnonic systems a good analogue
of the systems known from photonics. However, there are
still a number of technical issues, including high frequency
and the value of the external magnetic field assumed in our
simulations required to uniformly magnetize the system.
One of the solutions may be the use of in-plane magne-
tized ferromagnetic layer, which would certainly contribute
to lowering these two parameters, but at the same time
introducing an anisotropy to the system.

We hope that this work will draw the attention of the
magnonic community to the potential of SW self-imaging
in many sorts of future technological solutions.
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