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Exponentially correlated Gaussian functions in variational calculations.
Momentum space properties of the ground state helium dimer
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Microhartree accuracy wave functions composed of exponentially correlated Gaussians were
transformed in closed form to momentum space representation and applied to compute various
isotropic momentum space properties of helium dimer in the ground state. The set of properties
includes electron momentum density distribution, expectation values of powers of the electronic
momentum operator, and the Compton profile. Calculations were performed at many internuclear
separationsR including the united atomberyllium) and the separated atonfkelium) limits.
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I. INTRODUCTION exploited in this work. Of particular interest is the manifes-
tation of significant changes in the electronic structure of He
at short internuclear distances, described in terms of the po-

0§ition space properties reported previou€tg® in the mo-
mentum space.

The existence of stable KHemolecule was confirmed
experimentally™* which immediately implies many ques-
tions concerning the electronic structure and properties
this system. A large number aib initio calculations on the . e I
ground state of helium dimer that appeared only in the last Despite difficulties in determination of the momentum

two years demonstrates that it is a very intensively explore& pt?‘ce r\:v ave f%*”c“é’” thehflglf Oé‘%tTgf_ltrrl]omentum SPpace prop-
field of researcii~1® Among new theoretical papers there are €1€s Nas €Njoyed much interest. There are many rea-

several dealing with micro- and macroscopic properties of°NS Which make the momentum space properties so attrac-
He, often aiming at direct confrontation with the experimen- iVe- One surely comes from the fact that many of them is
tal data. The papers concern electfic?® magnetic2,1 acceSS|bIe_f_rom measurements_. This opens a possibility of
thermophysicaf? wave-optica® and low-temperature flow mutugl venﬂcghon of thg experlment'al data and the model
properties* used in their interpretation on one side and the theory em-
Full description of the electronic structure of moleculesPloyed in the computations on the other; e.g., validity of the
must include both position and momentum space propertiedMPUISe approximatioit can be verified by a comparison of
However, because of a relative scarcity of the momentunfompton profile measured in scattering process with that
space data, they have brought much smaller contribution tgbtained theoretically from highly accurate calculatié#s®
the knowledge of the electronic structure of molecules thard he x-ray andy-ray Compton scattering and electron scat-
the position space properties. It is, therefore, desirable téering experiments allow also the radial mome(s) of
develop this branch of the description of the molecular sysmomentum density distribution to be indirectly calculated
tems and phenomena. In particular, it is important to supplyand confronted with those known from theory.
accurate data for simple systems which might serve as a The most common technique used to compute momen-
reference for future work. As the hydrogen molecule in thetum space properties is based on Fourier transformation of
past, the helium dimer today became a test case for develophe wave function obtained from the solution of the position
ment of new computational methods and tools. As a smalspace Schidinger equation. For systems with a few elec-
but, for his exceptionally weak binding, particularly demand-trons the highest quality solutions can be obtained using ex-
ing system, the helium dimer is a real challenge for the mosplicitly correlated wave functions, i.e., functions of the inter-
sophisticated quantum chemical methods aiming at high aclectron distance,r;;. In the past, momentum space
curacy. properties obtained from this type of wave functions have
Since the wave functions of microhartree accuracy beproven to be an important tool in interpreting physical
came available for helium dim&*°a possibility of comput-  phenomend”-* However, a wide class of the explicitly cor-
ing reliable properties of this system has increased. In tW@elated molecular wave functions, namely those including
preceding papef§° of the series devoted to properties of odd powers of the interelectronic distance, cannot be trans-
He,, the accurate expectation values of energy componentgrmed analytically to the momentum space representation.
and quadrupole moment operators were presented. The infofy, the other hand, the lineay; factor increases the rate of
mation complementary to the position space properties Caghe energy convergence and is necessary to fulfill the cusp
be obtained in the momentum space and this opportunity isyndition. The exponentially correlated Gaussi€ECG)

wave functions allow this bottleneck to be circumvented.
3Electronic mail: komasa@man.poznan.pl These wave functions with Gaussian correlation satisfy nei-
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ther the electron-nucleus nor the electron—electron cusp comoth forms of the ECG wave function are easily convertible

dition, however, they are capable of yielding very accurateo each other with the following relation of their nonlinear

energy and, simultaneously, undergo easily mathematicadarameters:

manipulations including analytic Fourier transformatidn. b, = _A i 4

To the best of the author’s knowledge there are no mo- ki~ 7kl (=1, (43

mentum space calculations concerning helium dimer re- n

ported in the literature and this gap should be filled up. The — axi= >, Acij, (4b)

aim of this paper is to present analytic expressions for the =1

correlatedn-electron wave function in the momentum space n

(Sec. 1B and benchmark results for a variety of isotropic Ck,i=( E Ak,ijs) / ay i (40

momentum space properties of H&ec. Ill). Hopefully, the =1

accurate theoretical data presented in this paper will bén the past, the Boys form, having more transparent physical

stimulating to the experimentalists, too. interpretation, was used rather than the form of Singer which
in turn is more convenient from the mathematical point of
view and which was subjected to the Fourier transformation

Il. METHOD OF COMPUTATION presented below.

A. Position space wave function ) )
) B. Transformation to momentum space representation
The ansatz for then-electron K-term wave function o N
reads The wave function in the position spack, can be trans-

K formed to the momentum space representation by means of
~l e - the Fourier integral
V(ro)=A| Ensu0) S candn) |, (1)

. . _ _ W (p,0)=(27)" <3/2>”f Y(r,o)exd —ipr'ldr. (5
where A andS are permutation and spatial symmetry opera-

tors, respectively, an , s v is ann-electron spin function |t has been known for a long time that for the two-electron
with the spin quantum numbei® and Mg (S=0 andMg  atomi¢®**and moleculaf*® ECG wave functions the inte-
=0 in the present cageo andr are vectors of, respectively, gration in Eq.5) can be carried out analytically. As will now
spin and space coordinates of the electrons. Exponentiallpe shown this is also true in the general case of the
correlated Gaussia(ECG) functions of Singel’ were used n-electron ECG wave function. Inserting Eq4) and (2)

as then-electron spatial basis functionf : into Eq. (5) we arrive at¥ expanded in the basis of
() =exg — (r—s)A(r—s) 7], 2) n-electron, functions. Such a Fourier transformed basis

where the superscrigt denotes a vector transpose. The Iin-funCtIon Y can be written down in closed form as:

ear, ¢y, andl the no_nli.near parameters ;; andsy;, were T(p)=2"G20|a |- (R exg— tpApT—isp’]  (6)
determined in a variational optimization process. The nonlin-
ear parameters were optimized in smaf(n+1)/2-  OF. in analogy with Eq(2), as:
dimensional subspaces. Each subspace was defined by pa- .\ _ 53(1- n2) % |- (312 AR (T
rameters belonging to a single basis function. While the () =227 IR exXH ~ (P=SIAP~S) +C](7)
other parameters were kept fixed, the energy minimum in the _ _
subspace was located by means of Powell's mefhGiich a ~ With 5= —2isAy, A=A, ', andC=—sA,s; . Using re-
procedure was applied subsequently to all expansion termfations similar to those of Eq4), i, can be expressed also
comprising a single cycle of the optimization. The energyin the Boys-like form.
gain from the cycle was taken as a measure of the conver- The Fourier transformation preserves the shape and all
gence. For each internuclear distariReas many cycles was the advantages of the original ECG function, which enables
performed as needed to converge the energy gain to a frathe evaluation of integrals in the momentum space to be
tion of microhartree. readily accomplished. For instance, the expectation values of
Detailed description of the method as well as many exsimple electronic momentum operatqrs can be computed
pectation valuesincluding energiesobtained with the wave as easily as the expectation values of the position operators
functions applied in this work may be found in Refs. 25—-28.rk with .
We only note here that the error in the total Born-—
Oppenheimer energy curve obtained from the ECG wavell. RESULTS AND DISCUSSION
functions applied in this work ranges from a fraction to a few
tens of microhartre&’ depending orR, and this is the most
accurate variational curve of Heurrently available.
The spatial part of the ECG wave function can be ~ n ~
equivalently represented in the form introduced by B&ys: <6i>:J ‘I’*(p,ﬂ)( izl 6i)‘1’(p,0)dp do (8

For an arbitrary one-electron operatdy we use the
shorthand notation

n n
Neexd = a. Ir—C, |2— be lri—rl2l. (3 with the normalization tm—the number of electrons. As we
Yilr) ;{ Zl il = Ccl ig‘il alfi=nl®) @ work in the framework of the Born—Oppenheimer approxi-
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FIG. 1. Spherically averaged momentum dendityp,R) obtained from 10F ¢ E
1200-term ECG wave functions.
mation both the position and the momentum space wave . ﬁﬁﬁti-*.*,*_*__x__***_*,**_*.*
functions depend parametrically on the internuclear distance, S a%‘“ e S R S M -3 e}
R. Hence, all the properties considered in this paper implic- s
itly depend onR as well. :
Except for the separated atom limit, where the ECG Q S
wave function with K=600 was usef the 1200-term o L_Bpgeeg a-f @ e BREETEY
expansiof’ was applied for the whole range Bf 00 10 20 30 40 50 60 70 80

Throughout the atomic units are used. R

FIG. 2. R-dependence ofp; %), (p; %), (p;), andII(0) obtained from

A. Electron momentum density distribution 1200-term ECG wave functions.

The distribution of the electronic momentum is often
analyzed in terms of one-dimensional functions: the spheri

_ is also supported by an observation that the shapé&(6f) at
cally averaged momentum density

small R is consistent with behavior of the quadrupole mo-

1 ment expectation values reported in Ref. 28.
H(p):ﬁ<5(p_pi)> C) The exact spherically averaged momentum density is
mp r{19.51.52
know to behave as
or the radial momentum density ’ . 6
() =4mpTI(p) 10 I1(p)=11(0) +a;p®+a,p™+ O(p°) (12
p)=amp=p)- . for smallp, and as
With the ECG wave function the integration in E§) can 3 3 3 3
[(p)=Agp +A1p '+ App 2+ 0O(p™ ) (13

be performed in closed form leading to analytic expressions
for II(p) andI(p). For instance, the matrix elements of for large values of momentum. The power series expansion
II(p) have the following simple functional dependence oncoefficients at selected internuclear distances are listed in
p: Table I. The parameters of the smpllexpansion Eq(12)
ZAR? _ were determined from the fit of the parabala+ a,p? to the

e " sinBp)p~*. 1D points of the functiof I1(p) —I1(0)]/p? (Ref. 52 computed

The shape of thdl(p;R) surface is presented graphi- in the range (0,0.1with the step 0.01. The parameters of the
cally in Fig. 1. A table with the numerical values was depos-large momentum expansion E(L3) come from the fit to
ited in E-PAPS'’ The density surface smoothly connects thell(p;) with p;=10, 15, 20, 50, 100, and 200. The number of
united atom and the separated atoms limits. It has a globaligits of the entries in Table | depends on the quality of the

maximum atp=0.0, R=0.4 and a saddle point arounm
=0.4, R=1.25.

When the two nuclei approach each otHd(0) slowly
decreases in order to reach a 0.68 deep minimuR=ad.9
and than to jump up to a maximum Bt=0.4 (Fig. 2). This

fit measured by means of the standard deviation of a particu-
lar parameter.

The a,=11"(0)/2 parameter is positive in the range
0.626=R/bohr<1.712. The sign of the second derivative
determines whether the critical point€0) is a local mini-

behavior can be explained on the basis of a joint momenturmum or maximum. For these values®fwherea,>0, there
and position space picture. If we recall that the value ofis a local minimum atp=0 andII(p) must be nonmono-

I1(0) emphasizes the largeregion, so that it can be em-
ployed as a measure of the size of the outerrsastital in
atoms?8-°0

that in the range oR<0.7 the electrons are pulled off to the

tonic, i.e., exhibits a local maximum at sompe-0. Indeed,
the maxima appear aroumd=0.4. Westgatet al,*® in their

we shall see that the above description indicatestudy of momentum density of atoms and ions, called the

density maxima appearing belgp= 0.6 and larger than the

outer region of electron position density. This interpretationvalue ofI1(0) “slow.” They related the slow maxima to the
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TABLE |. Parameters of the small- and largeexpansiongEqgs. (12) and (13)] of the spherically averaged
momentum densityX[ Y] stands forXx 10Y.

R/bohr 11(0) a, a, Ag A Ai
0.00 4.834493  —3.488%1] 1.4342] 1.41§3] —9.345] 2.596]
0.01 4.836 795 —3.49221] 1.4372] 1.4083] —9.275] 2.576]
0.10 4955520 —3.61881] 1.4932] 8.12] —8[4] —1.16]
0.40 5.456556  —4.29061] 1.8962] 2.242] —2.645] 1.736]
0.60 1557194  —1.0551] —3.5q1] 8.61] 7.03] 7.696]
0.80 0.217 022 7.133 —5.211] 7.41] 5[3] —3][5]
1.00 0.225 636 3.2119 —1.8541] 9.91] —6.93] 3.646]
1.25 0.304 694 113244  —5.70 7.261] 8[2] —1.446]
1.50 0.388 865 0.355 14 —2.410 8.101] -2.033] 5.15]
2.00 0540730 —0.337408  —0.564 7.6296L] —1.0993] 1.945]
3.00 0.744174  —1.03724 0.7204 7.382] -1.143] —2[5]
4.00 0.836110 —1.38513 1.354 7.400] —1.3403] 7.03]
5.00 0.870076  —1.54375 1.681 7.4090] —1.39853] 1.1694]
5.60 0.878241  —1.59083 1.793 7.40%1] —1.38973] 1.1174]
6.00 0.881245 —1.61050 1.843 7.4085) —1.400%3] 1.1844]
7.00 0.884 709 —1.637 35 1.923 7.4108] —1.4093] 1.2114]
8.00 0.885764  —1.64790 1.960 7.4191] —1.41Q3] 1.2414]

12.00 0.886254  —1.65541 2.002 7.4128)] ~1.4113] 1.2534]
15.00 0.886221 —1.65492 1.999 7.4130] —1.4143] 1.2594]
© 0.886 256 —1.65503 1.994 7.4108] —1.40603] 1.21§4]

outermostp-shell electrons. In this work a similar shell- pectation value ofip; which is involved in theS(1) sum

contribution analysis cannot be performed because the ECfyle and when combined Wit{”pf} leads to two-electron op-
ansatz is free of the one-electron approximation. Instead, l&frator expectation valu@oﬁ).

us notice that th&-interval of the slow maximum coincides Analytically evaluateoKpik) with odd k lead to the fol-
with that of the smallest values ®(0) and can be ascribed |owing integral:

the same physical origin, i.e., the contraction of the position

density. This contraction of space accessible for the electrons 1 )

increases the probability density of finding electrons with ~ Gi(a.B)= fo s¥e* " Fds, (14
higher average momentum.

Recently, Koga and co-workéfssuggested the follow-
ing classification of atomidI(p) functions: IT(p) with a 2 .
single maximum ap=_0 (Type ), IT(p) with a single maxi- =fés?e ¢ ds,t?(_), well known in the standar?l qu_antum
mum atp>0 (Type II), andI1(p) with both maxima(Type c?ezr?ltt:z:!ﬂcalculatlon,. ar.1d. of the Dawsgns integral
IIl). Assuming that this classification can be extended to moJ oS~ ell )%3 appearing in inverse-square distance poten-
lecular densities, the momentum density inside the criticafi@l intégrals>” To ensure accurate and rapid evglganon of
R-interval belongs to Type Il and outside to Type . G;( e, B) the algorithm of McMurchie and DavidsdiP°was
adopted to positive values af.

The expectation values of the electron momentum den-
sity moments at selected internuclear distances are listed in
Table Il and drawn in Figs. 2 and 3. THe; %) and(p; )

The asymptotic behavior of the exdd{p) and its finite  curves differ in shape from the other radial momentum
nonzero value ap=0 implies a limitation ork in (pX) and  curves. They exhibit global maxima and minima at sniall
it can be shown that this expectation value is well definedaroundR=0.4 bohr andR=1.2 bohr, respectively, and in
only for —2=<k=4. The moments are particularly interesting this way they mimic thd1(0) curve of Fig. 2. The momen-
for their relation to many other physical quantits®  tum operators with negative powers sample the momentum
(pi‘1> is twice the height of the Compton profile at the ori- space density distribution near the origin and the outer region
gin,(p?) evaluates to the number of electrofig,) is related  of the position space density. Analogously F(0) curve
to the average magnitude of the current density and the exhey can be employed to measure effectively the electron
change energy of Density Functional Theo(y),iz) is just  cloud size and to observe the variations in thepace den-
twice the kinetic energy of the system which in combinationsity distribution with changing internuclear distance.
with the virial theorem may be employed as an independent The remaining(p!‘) curves reach global maxima at the
source of the total energy of the systefp?) is often linked  united atom limit. They are monotonic except () curve
with the initial value of the Patterson function widely used in which has a local minimum &=0.5 bohr and a local maxi-
crystallography, and finally,p;') enters the Breit—Pauli rela- mum aroundR= 1.2 bohr. At smalR, this curve follows the
tivistic correction to the kinetic energy originating from the shape of the electron—electron repulsion energy and the par-
variation of mass with velocity. Another example is the ex-allel component of the kinetic energy cur/ésThe <pi2)

which is a generalization of the Boys functitf’ 8 F (t)

B. Moments of the electron momentum density
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TABLE Il. Moments of the electron momentum density distribution calculated from 1200-term ECG wave
function of He.

Ribohr  (p; 3 (o Y (pi) (pipp) (p?) (P} (p)
0.00 21.9068 5.903 16 7.533 780 0.460229 3 29.33471 186.3700 2162.7
0.01 21.9133 5.904 18 7.530 104 0.4599735 29.292 59 185.5245 2086.9
0.05 22.0309 5.924 03 7.456 369 0.454752 8 28.489 03 173.7124 1753.1
0.10 22.2973 5.971 07 7.283 305 0.441 883 6 26.73978 152.9070 1389.9
0.40 23.8178 6.268 29 6.090 424 0.3042701 17.013 87 70.7777 474.2
0.60 11.3033 4.686 24 6.031 135 -0.2619697 14.324 28 50.7843 306.9
0.80 5.9724 3.86576 6.144 458 -0.5722651 13.608 93 44.4338 255.6
1.00 5.2597 3.670 30 6.194 003 -0.547 6394 13.428 69 42.7013 242.5
1.25 5.2106 3.62172 6.192 009 -0.348 1395 13.286 11 41.8921 238.6
1.50 5.5276 3.683 25 6.116 329 -0.134 5578 13.005 49 40.9271 234.7
2.00 6.3513 3.878 25 5.917 948 0.1340853 12.378 02 38.9621 226.0
3.00 7.5138 4.147 74 5.695 327 0.291 827 2 11.760 58 37.1836 217.5
4.00 7.9895 4,243 98 5.640 199 0.3147138 11.634 15 36.8606 216.2
5.00 8.1416 4.269 82 5.630570 0.3177102 11.616 44 36.8211 216.2
5.60 8.1734 4.274 39 5.629 495 0.3180115 11.614 98 36.8185 216.2
6.00 8.1841 4.27578 5.629 264 0.3180788 11.614 76 36.8183 216.2
6.50 8.1916 4.276 66 5.629 165 0.3181138 11.614 72 36.8184 216.2
7.00 8.1953 4.277 06 5.629 143 0.3181267 11.614 76 36.8186 216.2
8.00 8.1982 4.277 32 5.629 149 0.318134 6 11.614 83 36.8188 216.2

12.00 8.1992 4.277 38 5.629 168 0.3181385 11.614 89 36.8190 216.2

15.00 8.1991 4.277 37 5.629 170 0.3181384 11.614 90 36.8190 216.2
o0 8.1992 4.277 38 5.629 170 0.3181390 11.614 90 36.8191 216.3

curve and their Cartesian components were already discuss€bulomb approximation, i.e., without the Breit correction
in Ref. 27.

The knowledge of(p), in connection with electron- relativistic correction to the total energy of abot.26 mil-
nucleus(dj,) and electron—electrofs;;) Dirac-delta expec-
tation values, enables in principle an evaluation of the relawhat is the influence of the relativistic effects on the He—He
tivistic correction of®(c~?) (c is speed of lightin Dirac—
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FIG. 3. R-dependence ofp?), (p?), and(p}') obtained from 1200-term
ECG wave functions.

(see, e.g., Ref. 46 Such preliminary calculations yield the
lihartree at allR=4.0 bohr. It is more interesting, however,

interaction energy curve and the binding energy of this ex-
tremely weakly bound system. Unfortunately, in the present
attempt, the accuracy of the Dirac-delta expectation values
calculated with 1200-term ECG turned out to be too low to

give a quantitative answer and still more accurate wave func-
tions have to be employed to solve this problem.

In order to assess the accuracy of the computed moments
an analysis of the convergence versus the lengthof the
wave function expansion was performed. The convergence
was checked aR=0.0, R=0.6, R=5.6%nd R=x. The
most accurate are the expectation valuespaf pip;, piz,
and pi3 operators as 6—7 significant figures can be recognized
stable. To 5 significant figures converge thg, 1) and
(p; ?). The worse accuracy is observed @), but still 4
digits remain stable.

As there is lack of published data available, the moments
of the electron momentum density of Heould not be con-
fronted with the corresponding literature values. Only the
limit cases ofR=0 (beryllium atom} andR=c (helium at-
oms give an opportunity to compare the results of this work
with literature data. In 1992 Tripathet al®® presented
configuration-interaction results of the momentum space
properties of beryllium atom. A few years later Meyer
et al®? computed(p¥) (—2<k=2) from MR-SDCI wave
function of Be. There are also numerical Hartree—Fock re-
sults available for both Be and H2 Correlated expectation
values for helium atom were computed by Regier and
Thakkar with 40-term Gaussian gemin&tsAlso experimen-
tal data are available from the work of L&The abovemen-
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TABLE IIl. Comparison of(p¥) values obtained from the ECG wave functions for He and Be with literature data.
Method ) ) (P (PP (PP (p)
He
600-term ECG 4.099 607 2.138 688 2.814 585 5.807 449 18.409 54 108.1698
40-term GG 4.0986 2.13860 2.81459 5.807 40 18.4056 106.56
616-term VEC - - - 5.807 449 108.176 13
204-term VEC 4.081 69 2.136 82 2.814 63 5.806 82 18.402 83 108.047 96
CI® - 2.13596 2.8147 5.8063 108.59
NHF 4.0923 2.1410 2.7990 5.7234 17.990 105.63
Experiment 4.115-0.144 2.1280.016 2.8280.042 5.8180.291 17.1%+3.42 67.05-67.0
Be
1200-term EC® 21.906 848 5.903 158 7.533780 29.33471 186.3672 2162.698
650-term Cl 21.9387 5.9076 7.5330 29.3329 - -
MRSDCI 21.9287 5.9050 7.5334 29.3312 - -
NHF 25.294 6.3185 7.4342 29.146 185.55 2158.7

aThis work, the ECG wave function of Ref. 46(He)=—2.903 724 377 hartree.

bCorrelated calculations with 40-term Gaussian geminals by Regier and Thiédard4, E(He)=—2.903 701 hartree.

“Variational explicitly correlated wave function of DrakRef. 74, E(He)=—2.903 724 377 034 073 hartree.

dvariational explicitly correlated wave function of Arias de Saaveetral. (Ref. 79, E(He)=—2.903 520 hartree.

€35-term configuration interaction calculations by Banyard and M@Ref. 67, E(He)=—2.903 20 hartree.

fNumerical Hartree—Fock calculations by Koga and ThakRaf. 63, E(He)=—2.861 679 996 hartree (Be)=—14.573 023 17 hartree.
90btained by fitting the measured Compton proffRef. 64.

"This work, the ECG wave function of Ref. 76(He)=—14.667 355 022 hartree.

iConfiguration interaction calculations by Tripati al. (Ref. 61), E(Be)=—14.666 902 hartree.

IMulti-reference singly and doubly excited configuration interaction calculations by Mstyar (Ref. 62, E(Be)=—14.666 29 hartree.

tioned results are specified in Table Ill and compared with
the present work. For both atoms also tipep;) values can
be found in literature. For beryllium 0.460229 from the
present work can be compared with 0.4617 inferred from
Ref. 65. For helium 0.159 069 of Peketfs).157 35 of Ban-
yard and Mooré’ and 0.159 07 of Froelich and Alexanfér
can be compared with 0.1590695 obtained from the 600-
term ECG wave function.

Gavez and PorrdS obtained inequalities limiting from
above the spherically averaged momentum density of al

(pHy=2(k+1) f;quq)dq (0=k=4), (17
(pi Hy=23(0), (18)

(pf2>=2f:q’2[~](0)—J(q)]dq. (19

which gives an excellent opportunity to mutually verify the
computed quantities. Equatio(s7)—(19) are also of particu-
far interest because they allow the experimentally accessible

atom Compton scattering data to be, at least formally, translated
k<pik_3> into quantities which characterize a distribution of electron
I(p)= r (1=ks7). (15  momentum in a molecule.

The integral Eq.(16) was evaluated in three different
These bounds were constructed under the assumption thays and checked against each other. First, a direct numeri-
I1(p) is a monotonically decreasing function pf Both at-  cal integration in two separate intervals¢0and (c,) was
oms, Be and He, fulfill this condition and inequalitis) can  performed. The integrand for the matrix element of Compton
be verified using numerical data represented in this workprofile was

This inequality happens to be fulfilled also for all He—He a2 .

: ; : : : e AP sin(Bp). (20)
internuclear distances considered in the present work which

suggests that Eq15) may hold also for molecular systems. The splitting parameter=400 was chosen to minimize col-

lectively the differences betwegp¥) obtained analytically
and from the relation

C. Compton profile

Ky — F k2 Co<k<
In the frames of the impulse approximatidihe isotro- (P 4WJ’0 e (p)dp (—2=k=4) @1

ic Compton profile is defined as . . . .
P pton p evaluated numerically. In the finite @), interval the piece-

o wise Gauss—Lagrange quadrature was applied, in
‘](Q):wa Ip I1(p)dp. (16) (¢ ,0)—the 64-point Gauss—Laguerre quadrature.
K In the second method the integration domain in &)
The following well-known equations relate the isotropic was converted from|(|,) to (0,1) interval by a complex
Compton profile to the moments of the electron momentunvariable substitutiod! The imaginary part was subsequently
density’® ruled out leading to the following integral:
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/n- .
BZ]:+_A2J+2 (]23), (26)

bind the expansion parameters of the Compton profile with
those of the momentum density quoted in Table I.

Experimental Compton profile is most accurate near the
peak @=0), therefore, modeling of this region is of particu-
lar interest. Note that

dJ
ﬁ=—2qu(q) (27)

and atq=0 the derivative vanishes. This suggests that
aroundq=0 the Compton profile can be modeled by the
Gaussian distribution

FIG. 4. Compton profildd(q,R) obtained from 1200-term ECG wave func- —co02

tions. Penp (@R J(q)=cqpe 2. (28)
From Eq. (18) we immediately havec;=2%(p; ), while
C, can be determined either from the fit to the sntpllalues

1 of J(q) or using Eq.(27) and known value oflI(q) at a
J e—Aq2t2+Bt2[CO§thZ)_Dq2t2 Siﬂ(CC]tz)]dt (22) smaIIq.
0
evaluated by means of the 128-point Gauss quadrature. V. SUMMARY
Finally, in the third, analytic approach, the matrix ele- It was shown that tha-electron ECG wave function can
ments of the Compton profile were expressed in terms obe Fourier transformed in closed form to the momentum

Faddeeva functidi W(Z)zeﬂ2 erfc(—iz), where erfc is the Space representation retaining all the advantages of the
complementary error function, as proposed in Ref. 71. Théaussian type functions. In the basis of the ECG functions
w(z) function was evaluated according to the algorithmthe matrix elements of the momentum space propefires
given by Poppe and Wijers. cluding the Compton profijecan be evaluated analytically

A relative difference between pairs of these three methusing standard or in some cases special mathematical func-
ods never exceeded 18 and, with respect to the accuracy, tions, hence, the time Consuming numerical integration can
the methods described above can be recognized equivale®€ avoided. The wave functions used in this work yield en-
However, evaluation times for these three methods witergies accurate up to a fraction of microhartree. High quality
1200-term wave function of Hewere approximately like Of the wave functions allows the momentum space properties
8:2:1 for a singley, and 6:12:1 for a simultaneous evaluation 'ecommended in this work to be treated as benchmarks.
of J(q) at a collection of 25 values df.
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