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Exponentially correlated Gaussian functions in variational calculations.
Momentum space properties of the ground state helium dimer

Jacek Komasaa)

Quantum Chemistry Group, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6,
60-780 Poznan´, Poland

~Received 16 November 2000; accepted 30 March 2001!

Microhartree accuracy wave functions composed of exponentially correlated Gaussians were
transformed in closed form to momentum space representation and applied to compute various
isotropic momentum space properties of helium dimer in the ground state. The set of properties
includes electron momentum density distribution, expectation values of powers of the electronic
momentum operator, and the Compton profile. Calculations were performed at many internuclear
separationsR including the united atom~beryllium! and the separated atoms~helium! limits.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1373428#
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I. INTRODUCTION

The existence of stable He2 molecule was confirmed
experimentally1–4 which immediately implies many ques
tions concerning the electronic structure and properties
this system. A large number ofab initio calculations on the
ground state of helium dimer that appeared only in the
two years demonstrates that it is a very intensively explo
field of research.5–16Among new theoretical papers there a
several dealing with micro- and macroscopic properties
He2 often aiming at direct confrontation with the experime
tal data. The papers concern electric,17–20 magnetic,21

thermophysical,22 wave-optical,23 and low-temperature flow
properties.24

Full description of the electronic structure of molecul
must include both position and momentum space proper
However, because of a relative scarcity of the moment
space data, they have brought much smaller contributio
the knowledge of the electronic structure of molecules th
the position space properties. It is, therefore, desirable
develop this branch of the description of the molecular s
tems and phenomena. In particular, it is important to sup
accurate data for simple systems which might serve a
reference for future work. As the hydrogen molecule in t
past, the helium dimer today became a test case for deve
ment of new computational methods and tools. As a sm
but, for his exceptionally weak binding, particularly deman
ing system, the helium dimer is a real challenge for the m
sophisticated quantum chemical methods aiming at high
curacy.

Since the wave functions of microhartree accuracy
came available for helium dimer25,26a possibility of comput-
ing reliable properties of this system has increased. In
preceding papers27,28 of the series devoted to properties
He2, the accurate expectation values of energy compon
and quadrupole moment operators were presented. The i
mation complementary to the position space properties
be obtained in the momentum space and this opportunit

a!Electronic mail: komasa@man.poznan.pl
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exploited in this work. Of particular interest is the manife
tation of significant changes in the electronic structure of H2

at short internuclear distances, described in terms of the
sition space properties reported previously,27,28 in the mo-
mentum space.

Despite difficulties in determination of the momentu
space wave function the field of the momentum space pr
erties has enjoyed much interest.29–34 There are many rea
sons which make the momentum space properties so at
tive. One surely comes from the fact that many of them
accessible from measurements. This opens a possibilit
mutual verification of the experimental data and the mo
used in their interpretation on one side and the theory e
ployed in the computations on the other; e.g., validity of t
impulse approximation35 can be verified by a comparison o
Compton profile measured in scattering process with t
obtained theoretically from highly accurate calculations.36–38

The x-ray andg-ray Compton scattering and electron sc
tering experiments allow also the radial moments^pi

k& of
momentum density distribution to be indirectly calculat
and confronted with those known from theory.

The most common technique used to compute mom
tum space properties is based on Fourier transformatio
the wave function obtained from the solution of the positi
space Schro¨dinger equation. For systems with a few ele
trons the highest quality solutions can be obtained using
plicitly correlated wave functions, i.e., functions of the inte
electron distance,r i j . In the past, momentum spac
properties obtained from this type of wave functions ha
proven to be an important tool in interpreting physic
phenomena.37,39 However, a wide class of the explicitly cor
related molecular wave functions, namely those includ
odd powers of the interelectronic distance, cannot be tra
formed analytically to the momentum space representat
On the other hand, the linearr i j factor increases the rate o
the energy convergence and is necessary to fulfill the c
condition. The exponentially correlated Gaussian~ECG!
wave functions allow this bottleneck to be circumvente
These wave functions with Gaussian correlation satisfy n
© 2001 American Institute of Physics



co
at
tic

o
re
h
th
ce
ic

b

ra

,
ia

n-

lin

y
th
th

rm
g
ve

fra

ex

8
–

av
w

t

be

le
ar

ical
ich
of
ion

s of

on
-

the

f
is

o

all
les
be
s of

tors

e
xi-

159J. Chem. Phys., Vol. 115, No. 1, 1 July 2001 Helium dimer
ther the electron-nucleus nor the electron–electron cusp
dition, however, they are capable of yielding very accur
energy and, simultaneously, undergo easily mathema
manipulations including analytic Fourier transformation.37

To the best of the author’s knowledge there are no m
mentum space calculations concerning helium dimer
ported in the literature and this gap should be filled up. T
aim of this paper is to present analytic expressions for
correlatedn-electron wave function in the momentum spa
~Sec. II B! and benchmark results for a variety of isotrop
momentum space properties of He2 ~Sec. III!. Hopefully, the
accurate theoretical data presented in this paper will
stimulating to the experimentalists, too.

II. METHOD OF COMPUTATION

A. Position space wave function

The ansatz for then-electron K-term wave function
reads

C~r ,s!5ÂS Jn,S,MS
~s! Ŝ(

k51

K

ckck~r !D , ~1!

whereÂ andŜ are permutation and spatial symmetry ope
tors, respectively, andJn,S,MS

is ann-electron spin function
with the spin quantum numbersS and MS ~S50 and MS

50 in the present case!. s andr are vectors of, respectively
spin and space coordinates of the electrons. Exponent
correlated Gaussian~ECG! functions of Singer40 were used
as then-electron spatial basis functionsck :

ck~r !5exp@2~r2sk!Ak~r2sk!
T#, ~2!

where the superscriptT denotes a vector transpose. The li
ear, ck , and the nonlinear parameters,Ak,i j and sk,i , were
determined in a variational optimization process. The non
ear parameters were optimized in smalln(n11)/2-
dimensional subspaces. Each subspace was defined b
rameters belonging to a single basis function. While
other parameters were kept fixed, the energy minimum in
subspace was located by means of Powell’s method.41 Such a
procedure was applied subsequently to all expansion te
comprising a single cycle of the optimization. The ener
gain from the cycle was taken as a measure of the con
gence. For each internuclear distance,R, as many cycles was
performed as needed to converge the energy gain to a
tion of microhartree.

Detailed description of the method as well as many
pectation values~including energies! obtained with the wave
functions applied in this work may be found in Refs. 25–2
We only note here that the error in the total Born
Oppenheimer energy curve obtained from the ECG w
functions applied in this work ranges from a fraction to a fe
tens of microhartree,27 depending onR, and this is the mos
accurate variational curve of He2 currently available.

The spatial part of the ECG wave function can
equivalently represented in the form introduced by Boys:42

ck~r !5expF2(
i 51

n

ak,i ur i2Ck,i u22 (
iÞ j 51

n

bk,i j ur i2r j u2G . ~3!
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Both forms of the ECG wave function are easily convertib
to each other with the following relation of their nonline
parameters:

bk,i j 52Ak,i j ~ iÞ j !, ~4a!

ak,i5(
j 51

n

Ak,i j , ~4b!

Ck,i5S (
j 51

n

Ak,i j si D Y ak,i . ~4c!

In the past, the Boys form, having more transparent phys
interpretation, was used rather than the form of Singer wh
in turn is more convenient from the mathematical point
view and which was subjected to the Fourier transformat
presented below.

B. Transformation to momentum space representation

The wave function in the position space,C, can be trans-
formed to the momentum space representation by mean
the Fourier integral

C̃~p,s!5~2p!2 ~3/2! nE C~r ,s!exp@2 ip rT#dr . ~5!

It has been known for a long time that for the two-electr
atomic43,44 and molecular37,45 ECG wave functions the inte
gration in Eq.~5! can be carried out analytically. As will now
be shown this is also true in the general case of
n-electron ECG wave function. Inserting Eqs.~1! and ~2!

into Eq. ~5! we arrive at C̃ expanded in the basis o
n-electron c̃k functions. Such a Fourier transformed bas
function c̃k can be written down in closed form as:

c̃k~p!522 ~3/2! nuAku2 ~3/2! exp@2 1
4 p Ak

21pT2 isk pT# ~6!

or, in analogy with Eq.~2!, as:

c̃k~p!523(12 n/2)uÃku2 ~3/2! exp@2~p2 s̃k!Ãk~p2 s̃k!
T1C̃#

~7!

with s̃k522iskAk , Ãk5 1
4Ak

21 , andC̃52skAksk
T . Using re-

lations similar to those of Eq.~4!, c̃k can be expressed als
in the Boys-like form.

The Fourier transformation preserves the shape and
the advantages of the original ECG function, which enab
the evaluation of integrals in the momentum space to
readily accomplished. For instance, the expectation value
simple electronic momentum operatorspk can be computed
as easily as the expectation values of the position opera
r k with C.

III. RESULTS AND DISCUSSION

For an arbitrary one-electron operatorôi we use the
shorthand notation

^ôi&5E C̃* ~p,s!S (
i 51

n

ôi D C̃~p,s!dp ds ~8!

with the normalization ton—the number of electrons. As w
work in the framework of the Born–Oppenheimer appro
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mation both the position and the momentum space w
functions depend parametrically on the internuclear distan
R. Hence, all the properties considered in this paper imp
itly depend onR as well.

Except for the separated atom limit, where the EC
wave function with K5600 was used,46 the 1200-term
expansion27 was applied for the whole range ofR.

Throughout the atomic units are used.

A. Electron momentum density distribution

The distribution of the electronic momentum is ofte
analyzed in terms of one-dimensional functions: the sph
cally averaged momentum density

P~p!5
1

4pp2 ^d~p2pi !& ~9!

or the radial momentum density

I ~p!54pp2P~p!. ~10!

With the ECG wave function the integration in Eq.~9! can
be performed in closed form leading to analytic expressi
for P(p) and I (p). For instance, the matrix elements
P(p) have the following simple functional dependence
p:

e2Ap2
sin~Bp!p21. ~11!

The shape of theP(p;R) surface is presented graph
cally in Fig. 1. A table with the numerical values was depo
ited in E-PAPS.47 The density surface smoothly connects t
united atom and the separated atoms limits. It has a glo
maximum atp50.0, R50.4 and a saddle point aroundp
50.4, R51.25.

When the two nuclei approach each other,P(0) slowly
decreases in order to reach a 0.68 deep minimum atR50.9
and than to jump up to a maximum atR50.4 ~Fig. 2!. This
behavior can be explained on the basis of a joint momen
and position space picture. If we recall that the value
P(0) emphasizes the larger region, so that it can be em
ployed as a measure of the size of the outermosts orbital in
atoms,48–50 we shall see that the above description indica
that in the range ofR,0.7 the electrons are pulled off to th
outer region of electron position density. This interpretat

FIG. 1. Spherically averaged momentum densityP(p,R) obtained from
1200-term ECG wave functions.
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is also supported by an observation that the shape ofP(0) at
small R is consistent with behavior of the quadrupole m
ment expectation values reported in Ref. 28.

The exact spherically averaged momentum density
known49,51,52to behave as

P~p!5P~0!1a2p21a4p41O~p6! ~12!

for small p, and as

P~p!5A8p281A10p
2101A12p

2121O~p214! ~13!

for large values of momentum. The power series expans
coefficients at selected internuclear distances are liste
Table I. The parameters of the small-p expansion Eq.~12!
were determined from the fit of the parabolaa21a4p2 to the
points of the function@P(p)2P(0)#/p2 ~Ref. 52! computed
in the range (0,0.1& with the step 0.01. The parameters of t
large momentum expansion Eq.~13! come from the fit to
P(pj ) with pj510, 15, 20, 50, 100, and 200. The number
digits of the entries in Table I depends on the quality of t
fit measured by means of the standard deviation of a part
lar parameter.

The a25P9(0)/2 parameter is positive in the rang
0.626&R/bohr&1.712. The sign of the second derivativ
determines whether the critical point (p50) is a local mini-
mum or maximum. For these values ofR wherea2.0, there
is a local minimum atp50 andP(p) must be nonmono-
tonic, i.e., exhibits a local maximum at somep.0. Indeed,
the maxima appear aroundp50.4. Westgateet al.,48 in their
study of momentum density of atoms and ions, called
density maxima appearing belowp50.6 and larger than the
value ofP(0) ‘‘slow.’’ They related the slow maxima to the

FIG. 2. R-dependence of̂pi
22&, ^pi

21&, ^pi&, and P(0) obtained from
1200-term ECG wave functions.
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TABLE I. Parameters of the small- and large-p expansions@Eqs. ~12! and ~13!# of the spherically averaged
momentum density.X@Y# stands forX310Y.

R/bohr P~0! a2 a4 A8 A10 A12

0.00 4.834 493 23.4885@1# 1.434@2# 1.418@3# 29.36@5# 2.59@6#
0.01 4.836 795 23.4922@1# 1.437@2# 1.408@3# 29.22@5# 2.52@6#
0.10 4.955 520 23.6188@1# 1.493@2# 8.1@2# 28.@4# 21.1@6#
0.40 5.456 556 24.2906@1# 1.896@2# 2.23@2# 22.68@5# 1.73@6#
0.60 1.557 194 21.055@1# 23.56@1# 8.6@1# 7.0@3# 7.69@6#
0.80 0.217 022 7.133 25.21@1# 7.4@1# 5.@3# 23.@5#
1.00 0.225 636 3.2119 21.858@1# 9.9@1# 26.8@3# 3.64@6#
1.25 0.304 694 1.132 44 25.70 7.26@1# 8.@2# 21.48@6#
1.50 0.388 865 0.355 14 22.410 8.10@1# 22.03@3# 5.1@5#
2.00 0.540 730 20.337 408 20.564 7.6295@1# 21.099@3# 1.90@5#
3.00 0.744 174 21.037 24 0.7204 7.382@1# 21.18@3# 22.@5#
4.00 0.836 110 21.385 13 1.354 7.400@1# 21.340@3# 7.0@3#
5.00 0.870 076 21.543 75 1.681 7.4090@1# 21.3985@3# 1.165@4#
5.60 0.878 241 21.590 83 1.793 7.4051@1# 21.3897@3# 1.112@4#
6.00 0.881 245 21.610 50 1.843 7.4085@1# 21.4005@3# 1.184@4#
7.00 0.884 709 21.637 35 1.923 7.4106@1# 21.405@3# 1.211@4#
8.00 0.885 764 21.647 90 1.960 7.4121@1# 21.410@3# 1.241@4#

12.00 0.886 254 21.655 41 2.002 7.4128@1# 21.411@3# 1.253@4#
15.00 0.886 221 21.654 92 1.999 7.4130@1# 21.412@3# 1.259@4#

` 0.886 256 21.655 03 1.994 7.4108@1# 21.4060@3# 1.218@4#
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outermostp-shell electrons. In this work a similar shel
contribution analysis cannot be performed because the E
ansatz is free of the one-electron approximation. Instead
us notice that theR-interval of the slow maximum coincide
with that of the smallest values ofP(0) and can be ascribe
the same physical origin, i.e., the contraction of the posit
density. This contraction of space accessible for the elect
increases the probability density of finding electrons w
higher average momentum.

Recently, Koga and co-workers50 suggested the follow-
ing classification of atomicP(p) functions: P(p) with a
single maximum atp50 ~Type I!, P(p) with a single maxi-
mum atp.0 ~Type II!, andP(p) with both maxima~Type
III !. Assuming that this classification can be extended to m
lecular densities, the momentum density inside the crit
R-interval belongs to Type II and outside to Type I.

B. Moments of the electron momentum density

The asymptotic behavior of the exactP(p) and its finite
nonzero value atp50 implies a limitation onk in ^pi

k& and
it can be shown that this expectation value is well defin
only for 22<k<4. The moments are particularly interestin
for their relation to many other physical quantities:53–56

^pi
21& is twice the height of the Compton profile at the o

gin, ^pi
0& evaluates to the number of electrons,^pi& is related

to the average magnitude of the current density and the
change energy of Density Functional Theory,^pi

2& is just
twice the kinetic energy of the system which in combinati
with the virial theorem may be employed as an independ
source of the total energy of the system,^pi

3& is often linked
with the initial value of the Patterson function widely used
crystallography, and finally,̂pi

4& enters the Breit–Pauli rela
tivistic correction to the kinetic energy originating from th
variation of mass with velocity. Another example is the e
G
et

n
ns

-
l

d

x-

nt
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pectation value ofpipj which is involved in theS(1) sum
rule and when combined witĥpi

2& leads to two-electron op
erator expectation valuêpi j

2 &.
Analytically evaluated̂ pi

k& with odd k lead to the fol-
lowing integral:

GJ~a,b!5E
0

1

s2Jeas22b ds, ~14!

which is a generalization of the Boys function,42,57,58FJ(t)
5*0

1s2Je2ts2
ds,t>0, well known in the standard quantum

chemical calculation, and of the Dawson’s integr
*0

1s2Jet(s221) ds appearing in inverse-square distance pot
tial integrals.59 To ensure accurate and rapid evaluation
GJ(a,b) the algorithm of McMurchie and Davidson57,59was
adopted to positive values ofa.

The expectation values of the electron momentum d
sity moments at selected internuclear distances are liste
Table II and drawn in Figs. 2 and 3. The^pi

22& and ^pi
21&

curves differ in shape from the other radial momentu
curves. They exhibit global maxima and minima at smallR:
aroundR50.4 bohr andR51.2 bohr, respectively, and in
this way they mimic theP(0) curve of Fig. 2. The momen
tum operators with negative powers sample the momen
space density distribution near the origin and the outer reg
of the position space density. Analogously toP(0) curve
they can be employed to measure effectively the elect
cloud size and to observe the variations in ther -space den-
sity distribution with changing internuclear distance.

The remaininĝ pi
k& curves reach global maxima at th

united atom limit. They are monotonic except the^pi& curve
which has a local minimum atR50.5 bohr and a local maxi-
mum aroundR51.2 bohr. At smallR, this curve follows the
shape of the electron–electron repulsion energy and the
allel component of the kinetic energy curves.27 The ^pi

2&
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TABLE II. Moments of the electron momentum density distribution calculated from 1200-term ECG w
function of He2.

R/bohr ^pi
22& ^pi

21& ^pi& ^pipj& ^pi
2& ^pi

3& ^pi
4&

0.00 21.9068 5.903 16 7.533 780 0.460 229 3 29.334 71 186.3700 216
0.01 21.9133 5.904 18 7.530 104 0.459 973 5 29.292 59 185.5245 208
0.05 22.0309 5.924 03 7.456 369 0.454 752 8 28.489 03 173.7124 175
0.10 22.2973 5.971 07 7.283 305 0.441 883 6 26.739 78 152.9070 138
0.40 23.8178 6.268 29 6.090 424 0.304 270 1 17.013 87 70.7777 47
0.60 11.3033 4.686 24 6.031 135 -0.261 969 7 14.324 28 50.7843 30
0.80 5.9724 3.865 76 6.144 458 -0.572 265 1 13.608 93 44.4338 25
1.00 5.2597 3.670 30 6.194 003 -0.547 639 4 13.428 69 42.7013 24
1.25 5.2106 3.621 72 6.192 009 -0.348 139 5 13.286 11 41.8921 23
1.50 5.5276 3.683 25 6.116 329 -0.134 557 8 13.005 49 40.9271 23
2.00 6.3513 3.878 25 5.917 948 0.134 085 3 12.378 02 38.9621 22
3.00 7.5138 4.147 74 5.695 327 0.291 827 2 11.760 58 37.1836 21
4.00 7.9895 4.243 98 5.640 199 0.314 713 8 11.634 15 36.8606 21
5.00 8.1416 4.269 82 5.630 570 0.317 710 2 11.616 44 36.8211 21
5.60 8.1734 4.274 39 5.629 495 0.318 011 5 11.614 98 36.8185 21
6.00 8.1841 4.275 78 5.629 264 0.318 078 8 11.614 76 36.8183 21
6.50 8.1916 4.276 66 5.629 165 0.318 113 8 11.614 72 36.8184 21
7.00 8.1953 4.277 06 5.629 143 0.318 126 7 11.614 76 36.8186 21
8.00 8.1982 4.277 32 5.629 149 0.318 134 6 11.614 83 36.8188 21

12.00 8.1992 4.277 38 5.629 168 0.318 138 5 11.614 89 36.8190 21
15.00 8.1991 4.277 37 5.629 170 0.318 138 4 11.614 90 36.8190 21

` 8.1992 4.277 38 5.629 170 0.318 139 0 11.614 90 36.8191 216
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curve and their Cartesian components were already discu
in Ref. 27.

The knowledge of̂ pi
4&, in connection with electron-

nucleuŝ d ia& and electron–electron̂d i j & Dirac-delta expec-
tation values, enables in principle an evaluation of the re
tivistic correction ofO(c22) (c is speed of light! in Dirac–

FIG. 3. R-dependence of̂pi
2&, ^pi

3&, and ^pi
4& obtained from 1200-term

ECG wave functions.
ed

-

Coulomb approximation, i.e., without the Breit correctio
~see, e.g., Ref. 46!. Such preliminary calculations yield th
relativistic correction to the total energy of about20.26 mil-
lihartree at allR>4.0 bohr. It is more interesting, howeve
what is the influence of the relativistic effects on the He–
interaction energy curve and the binding energy of this
tremely weakly bound system. Unfortunately, in the pres
attempt, the accuracy of the Dirac-delta expectation val
calculated with 1200-term ECG turned out to be too low
give a quantitative answer and still more accurate wave fu
tions have to be employed to solve this problem.

In order to assess the accuracy of the computed mom
an analysis of the convergence versus the length,K, of the
wave function expansion was performed. The converge
was checked atR50.0, R50.6, R55.660and R5`. The
most accurate are the expectation values ofpi , pipj , pi

2 ,
andpi

3 operators as 6–7 significant figures can be recogni
stable. To 5 significant figures converge the^pi

21& and
^pi

22&. The worse accuracy is observed for^pi
4&, but still 4

digits remain stable.
As there is lack of published data available, the mome

of the electron momentum density of He2 could not be con-
fronted with the corresponding literature values. Only t
limit cases ofR50 ~beryllium atom! andR5` ~helium at-
oms! give an opportunity to compare the results of this wo
with literature data. In 1992 Tripathiet al.61 presented
configuration-interaction results of the momentum spa
properties of beryllium atom. A few years later Mey
et al.62 computed^pi

k& (22<k<2) from MR-SDCI wave
function of Be. There are also numerical Hartree–Fock
sults available for both Be and He.63 Correlated expectation
values for helium atom were computed by Regier a
Thakkar with 40-term Gaussian geminals.44 Also experimen-
tal data are available from the work of Lee.64 The abovemen-
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TABLE III. Comparison of^pi
k& values obtained from the ECG wave functions for He and Be with literature data.

Method ^pi
22& ^pi

21& ^pi& ^pi
2& ^pi

3& ^pi
4&

He
600-term ECGa 4.099 607 2.138 688 2.814 585 5.807 449 18.409 54 108.1698
40-term GGb 4.0986 2.138 60 2.814 59 5.807 40 18.4056 106.56
616-term VECc 2 2 2 5.807 449 2 108.176 13
204-term VECd 4.081 69 2.136 82 2.814 63 5.806 82 18.402 83 108.047 9
CIe 2 2.135 96 2.8147 5.8063 2 108.59
NHFf 4.0923 2.1410 2.7990 5.7234 17.990 105.63
Experimentg 4.11560.144 2.12860.016 2.82860.042 5.81860.291 17.1163.42 67.05667.0

Be
1200-term ECGh 21.906 848 5.903 158 7.533 780 29.334 71 186.3672 2162.698
650-term CIi 21.9387 5.9076 7.5330 29.3329 2 2

MRSDCIj 21.9287 5.9050 7.5334 29.3312 2 2

NHFf 25.294 6.3185 7.4342 29.146 185.55 2158.7

aThis work, the ECG wave function of Ref. 46, E~He!522.903 724 377 hartree.
bCorrelated calculations with 40-term Gaussian geminals by Regier and Thakkar~Ref. 44!, E~He!522.903 701 hartree.
cVariational explicitly correlated wave function of Drake~Ref. 74!, E~He!522.903 724 377 034 073 hartree.
dVariational explicitly correlated wave function of Arias de Saavedraet al. ~Ref. 75!, E~He!522.903 520 hartree.
e35-term configuration interaction calculations by Banyard and Moore~Ref. 67!, E~He!522.903 20 hartree.
fNumerical Hartree–Fock calculations by Koga and Thakkar~Ref. 63!, E~He!522.861 679 996 hartree, E~Be!5214.573 023 17 hartree.
gObtained by fitting the measured Compton profile~Ref. 64!.
hThis work, the ECG wave function of Ref. 76, E~Be!5214.667 355 022 hartree.
iConfiguration interaction calculations by Tripathiet al. ~Ref. 61!, E~Be!5214.666 902 hartree.
jMulti-reference singly and doubly excited configuration interaction calculations by Meyeret al. ~Ref. 62!, E~Be!5214.666 29 hartree.
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tioned results are specified in Table III and compared w
the present work. For both atoms also the^pipj& values can
be found in literature. For beryllium 0.460 229 from th
present work can be compared with 0.4617 inferred fr
Ref. 65. For helium 0.159 069 of Pekeris,66 0.157 35 of Ban-
yard and Moore,67 and 0.159 07 of Froelich and Alexander68

can be compared with 0.159 069 5 obtained from the 6
term ECG wave function.

Gálvez and Porras69 obtained inequalities limiting from
above the spherically averaged momentum density of
atom

P~p!<
k^pi

k23&
4ppk ~1<k<7!. ~15!

These bounds were constructed under the assumption
P(p) is a monotonically decreasing function ofp. Both at-
oms, Be and He, fulfill this condition and inequality~15! can
be verified using numerical data represented in this wo
This inequality happens to be fulfilled also for all He–H
internuclear distances considered in the present work w
suggests that Eq.~15! may hold also for molecular system

C. Compton profile

In the frames of the impulse approximation35 the isotro-
pic Compton profile is defined as

J~q!52pE
uqu

`

p P~p!dp. ~16!

The following well-known equations relate the isotrop
Compton profile to the moments of the electron moment
density:70
h

-

n

hat

k.

h

^pi
k&52~k11!E

0

`

qkJ~q!dq ~0<k<4!, ~17!

^pi
21&52J~0!, ~18!

^pi
22&52E

0

`

q22@J~0!2J~q!#dq, ~19!

which gives an excellent opportunity to mutually verify th
computed quantities. Equations~17!–~19! are also of particu-
lar interest because they allow the experimentally access
Compton scattering data to be, at least formally, transla
into quantities which characterize a distribution of electr
momentum in a molecule.

The integral Eq.~16! was evaluated in three differen
ways and checked against each other. First, a direct num
cal integration in two separate intervals (0,c) and (c,`) was
performed. The integrand for the matrix element of Comp
profile was

e2Ap2
sin~Bp!. ~20!

The splitting parameterc5400 was chosen to minimize co
lectively the differences between̂pi

k& obtained analytically
and from the relation

^pk&54pE
0

`

pk12P~p!dp ~22<k<4! ~21!

evaluated numerically. In the finite (0,c) interval the piece-
wise Gauss–Lagrange quadrature was applied,
(c,`)—the 64-point Gauss–Laguerre quadrature.

In the second method the integration domain in Eq.~16!
was converted from (uqu,`) to ~0,1! interval by a complex
variable substitution.71 The imaginary part was subsequent
ruled out leading to the following integral:
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0

1

e2Aq2t21Bt2@cos~Cqt2!2Dq2t2 sin~Cqt2!#dt ~22!

evaluated by means of the 128-point Gauss quadrature.
Finally, in the third, analytic approach, the matrix el

ments of the Compton profile were expressed in terms
Faddeeva function72 w(z)5e2z2

erfc(2iz), where erfc is the
complementary error function, as proposed in Ref. 71. T
w(z) function was evaluated according to the algorith
given by Poppe and Wijers.73

A relative difference between pairs of these three me
ods never exceeded 10210 and, with respect to the accurac
the methods described above can be recognized equiva
However, evaluation times for these three methods w
1200-term wave function of He2 were approximately like
8:2:1 for a singleq, and 6:12:1 for a simultaneous evaluatio
of J(q) at a collection of 25 values ofq.

The Compton profile is depicted in Fig. 4. Numeric
values ofJ(q;R) are available from E-PAPS.47 The peak of
the profileJ(0) as a function ofR has a global maximum a
R50.4 bohr and global minimum aroundR51.25 bohr. Go-
ing from this minimum toward large separations the pro
peak grows monotonically to the separated atoms limit. T
largest variations inJ(q) appear at smallR. For q.0, Eq.
~27! below predicts thatdJ/dq,0. Indeed, in theq-direction
the computed profile is monotonically decreasing for allR
and, contrary to the momentum density surface, has
saddle points.

In a similar way asP(p) in Eqs. ~12! and ~13!, the
isotropic Compton profile can be represented in a power
ries

J~q!5 1
2 ^pi

21&1b2q21b4q41b6q61O~q8! ~23!

for small q, and as

J~q!5B6q261B8q281B10 q2101O~q212! ~24!

for largeq. The following simple equations,49

b2 j52
p

j
a2 j 22 ~ j >1!, ~25!

FIG. 4. Compton profileJ(q,R) obtained from 1200-term ECG wave func
tions.
f

e

-

nt.
h

e

o

e-

B2 j51
p

j
A2 j 12 ~ j >3!, ~26!

bind the expansion parameters of the Compton profile w
those of the momentum density quoted in Table I.

Experimental Compton profile is most accurate near
peak (q50), therefore, modeling of this region is of particu
lar interest. Note that

dJ

dq
522pqP~q! ~27!

and at q50 the derivative vanishes. This suggests th
aroundq50 the Compton profile can be modeled by t
Gaussian distribution

J~q!5c1e2c2q2
. ~28!

From Eq. ~18! we immediately havec15 1
2^pi

21&, while
c2 can be determined either from the fit to the small-q values
of J(q) or using Eq.~27! and known value ofP(q) at a
small q.

IV. SUMMARY

It was shown that then-electron ECG wave function ca
be Fourier transformed in closed form to the moment
space representation retaining all the advantages of
Gaussian type functions. In the basis of the ECG functio
the matrix elements of the momentum space properties~in-
cluding the Compton profile! can be evaluated analyticall
using standard or in some cases special mathematical f
tions, hence, the time consuming numerical integration
be avoided. The wave functions used in this work yield e
ergies accurate up to a fraction of microhartree. High qua
of the wave functions allows the momentum space proper
recommended in this work to be treated as benchmarks.
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