
Jakub Paś 
 
 
 
 
 
 
 

Application and implementation of probabilistic profile-profile comparison 
methods for protein fold recognition 

 
 

(pol.: Wdrożenie i zastosowania probabilistycznych metod 
porównawczych profil-profil w rozpoznawaniu pofałdowania białek) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rozprawa doktorska  
ma formę spójnego tematycznie zbioru artykułów  

opublikowanych w czasopismach naukowych* 
 
 
Wydział Chemii, Uniwersytet im. Adama Mickiewicza w Poznaniu 
Promotor: dr hab. Marcin Hoffmann, prof. UAM 
Promotor pomocniczy: dr Krystian Eitner 
 
 



 
 

 

 

 

 

 

 

 
* Ustawa o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki  
Dz.U.2003.65.595 - Ustawa z dnia 14 marca 2003 r. o stopniach naukowych i tytule naukowym oraz o stopniach 
i tytule w zakresie sztuki 
Art 13 
1. Rozprawa doktorska, przygotowywana pod opieką promotora albo pod opieką promotora i promotora 
pomocniczego, o którym mowa w art. 20 ust. 7, powinna stanowić oryginalne rozwiązanie problemu naukowego 
lub oryginalne dokonanie artystyczne oraz wykazywać ogólną wiedzę teoretyczną kandydata w danej 
dyscyplinie naukowej lub artystycznej oraz umiejętność samodzielnego prowadzenia pracy naukowej lub 
artystycznej. 
2. Rozprawa doktorska może mieć formę maszynopisu książki, książki wydanej lub spójnego tematycznie zbioru 
rozdziałów w książkach wydanych, spójnego tematycznie zbioru 
artykułów opublikowanych lub przyjętych do druku w czasopismach naukowych, określonych przez ministra 
właściwego do spraw nauki na podstawie przepisów dotyczących finansowania nauki, jeżeli odpowiada 
warunkom określonym w ust. 1. 
3. Rozprawę doktorską może stanowić praca projektowa, konstrukcyjna, technologiczna lub artystyczna, jeżeli 
odpowiada warunkom określonym w ust. 1. 
4. Rozprawę doktorską może także stanowić samodzielna i wyodrębniona część pracy zbiorowej, jeżeli 
wykazuje ona indywidualny wkład kandydata przy opracowywaniu koncepcji, 
wykonywaniu części eksperymentalnej, opracowaniu i interpretacji wyników tej pracy, odpowiadający warunkom 
określonym w ust. 1. 
5. Za zgodą rady jednostki przeprowadzającej przewód, rozprawa doktorska może być przedstawiona w języku 
innym niż polski. 
6. Rozprawa doktorska powinna być opatrzona streszczeniem w języku angielskim, a rozprawa doktorska 
przygotowana w języku obcym również streszczeniem w języku polskim. W przypadkach, gdy rozprawa 
doktorska nie ma formy pisemnej powinna być opatrzona opisem w języku polskim i angielskim. 
7. Streszczenie rozprawy doktorskiej łącznie z recenzjami zamieszcza się na stronie internetowej szkoły wyższej 
lub jednostki organizacyjnej przeprowadzającej przewód doktorski. 
Streszczenie rozprawy doktorskiej zamieszcza się w dniu podjęcia przez radę jednostki uchwały o przyjęciu 
rozprawy doktorskiej, a recenzje w dniu ich przekazania przez recenzentów. Streszczenie rozprawy i recenzje 
pozostają na stronie internetowej co najmniej do dnia nadania stopnia doktora. Warunek zamieszczenia 
streszczenia rozprawy doktorskiej i recenzji nie dotyczy rozprawy doktorskiej, której przedmiot jest objęty 
ochroną informacji niejawnych. 
8. Recenzje podlegające zamieszczeniu na stronie internetowej przekazuje się niezwłocznie po ich złożeniu do 
Centralnej Komisji w celu ich opublikowania w Biuletynie Informacji Publicznej. 
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Streszczenie w języku polskim 

Jakub Paś 

Wdrożenie i zastosowania probabilistycznych metod porównawczych profil-profil w 
rozpoznawaniu pofałdowania białek 

 

Metody rozpoznawania pofałdowania białka zwane też rozpoznawaniem foldów (eng. Fold 
Recognition) są metodami wykrywania i przewidywania struktury trzeciorzędowej białka, 
stosowanymi dla białek, które nie posiadają sekwencji homologicznych o znanej strukturze 
trzeciorzędowej, zdeponowanych w międzynarodowej bazie danych struktur białkowych (eng. 
Protein Data Bank). Metody te opierają się na założeniu, że w wyniku ewolucji oraz 
ogranczeń fizycznych i chemicznych w przyrodzie znajduje się określona i ograniczona liczba 
odmiennych zwojów białek 

Metody Rozpoznawania ufałdowania białka są wykorzystywane do przewidywania struktury 
białek, analizy ewolucyjnej, analizy szlaków metabolicznych, enzymatycznych, przewidywania 
skuteczności dokowania molekularnego i projektowania leków. 

Obecnie istnieje około 1300 odkrytych i scharakteryzowanych foldów białek zgrupowanych w 
bazach danych takich jak SCOP czy CATCH. Każde nowo odkryte białko ma duże szanse by 
zostać sklsyfikowane jako członek jednej z takich grup.  Dotychczas zostało 
zaproponowanych wiele odmiennych podejść w znajdowaniu poprawnego foldu dla nowo 
scharakteryzowanych sekwencji. Zwykle wykorzystuje się do tego informacje o ewolucji 
zarówno sekwencji poszukiwanej jak i sekwencji docelowych. Jedną z metod 
wykorzystujących takie informacje to porównanie profilu białkowego sekwencji poszukiwanej 
z profilami sekwencji w bazach dancych zawierajcacych znane struktury. Metody takie 
nazywane są metodami porównywania typu profil-profil. 

Uliniowienia w profilach sekwencyjnych metod profil-profil mogą być obliczane przy pomocy 
iloczynu skalarnego, modelu probablistycznego, stochastycznego albo przy pomocy miar 
teoretycznych. Zaprezentowane tu zastosowania i wdrożenia metod porównywania białek 
typu profil-profil wskazują na zalety zastosowania probablistycznych funkcji oceniających 
jakość porównania profili nad innymi metodami rozpoznawania foldów.  

Celem pracy jest wskazanie iż metody porównywania profil-profil mogą przewyższać inne 
metody rozpoznawania foldów w analizie spokrewnionych białek, i że mogą być one 
stosowane nie tylko do rozpoznawania foldów, ale także do innych celów takich jak 
wykrywanie i identyfikacja genów, granic domen białkowych oraz modelowania złożonych 
struktur białkowych. 
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I. Summary 

 
Fold recognition is a method of fold detecting and protein tertiary structure prediction 
applied for proteins lacking homologues sequences of known fold and structure 
deposited in the Protein Data Bank. They are based on assumption that there is strictly 
limited number of different protein folds in nature, mostly as a result of evolution and 
due to basic physical and chemical constraints of polypeptide chains.  
Fold recognition methods are useful for protein structure prediction, evolutionary 
analysis, metabolic pathways and enzymatic efficiency prediction, molecular docking 
and drug design. 
Currently there are about 1300 discovered and characterized protein folds in SCOP and 
CATH databases. Every newly discovered protein sequence has significant chances to 
be classified into one of those folds. Many different approaches have been proposed for 
finding the correct fold for a new sequence and it is often useful to include evolutionary 
information for query as well as for target proteins. One of the methods of including this 
information is a comparison of a query and target sequences profiles. These fold 
recognition techniques are called profile-profile methods.  
Profile-profile alignments can be calculated using a dot-product, a probabilistic model, 
stochastic or theoretical measures. Here are presented applications and 
implementations of probabilistic profile-profile comparison methods and advantages of 
usage of probabilistic scoring function over comparable fold recognition techniques. 
The purpose of this comparison is to show that probabilistic profile-profile methods may 
outperform other fold recognition methods in comparison in analysis of distantly related 
proteins and that they can be applied not only for fold recognition but also for slightly 
different purposes like gene identification[1], detection of domain boundaries and 
modeling of complex proteins[2]. 
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II. Introduction 

 
Since the insulin protein was characterized by Fred Sanger in 1951[3] millions of protein 
sequences have been identified. The evolutionary relationships between these proteins 
can be discovered by aligning them together to show their similarities and assigning 
such alignment numerical values defines their evolutionary distance. There are two 
main types of sequence alignment. The pair wise alignment which compares two 
different sequences and multiple sequence alignment in which many sequences are 
compared.  
Chronologically the first and most frequently used algorithms for pairwise sequence 
comparison are Needleman-Wunsch[4], the Smith-Waterman and BLAST[5]. Most 
common application for pairwise sequence alignment is comparison of two sequences 
under study and database searching for homologous sequences which usually means 
performing a of comparison of sequence in study with all know sequences stored in 
database. Compared sequences are generally ordered by similarity to show the most 
closely related sequences and the matches are usually reported with a measure of 
statistical significance. 
For multiple sequence alignment the ClustalW[6] and T-Coffee[7] are most popular 
algorithms. Multiple alignments are usually used to detect relationships within the group 
of similar sequences like protein family to show evolutionary relationships. As the 
multiple sequences alignment contains more information then pair wise alignment the 
multiple sequence alignment can be used for a more sensitive study of two sequences 
comparison by using evolutionary information from neighboring sequences.  
The problem arises when the two sequences are so distant that simple pairwise 
alignment cannot be used to comparison. 
 
 
1. Sequence comparison methods used for fold recognition. 
 
Before the profile-profile methods were discovered the simple sequence-sequence 
methods were used for fold recognition. Those methods can be divided to global and 
local aligning methods. In principle the global alignment is the comparison of entire two 
sequences regardless that some parts of those sequences can be aligned poorly or the 
reasonable alignment can not be performed at all. The local alignment performs only the 
alignment of one or more conserved parts of the sequences in study excluding the not 
conserved parts from comparison.  
Historically  the basic algorithm for computing an optimal alignment of two sequences 
was independently developed by different scholars from different scientific disciplines: 
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Vintsyuk in 1968[8] for speech processing, Needleman-Wunsch in 1970[4] for molecular 
biology and  Wagner-Fischer in 1974 [9] for computer science. Basic principle of those 
algorithms is the same and only the Needleman & Wunsch are cited in biomedical 
sciences. 
 

1.1. Needleman-Wunsch 
 
Needleman and Wunsch designed their algorithm explicitly for the case when the 
alignment is penalized by the matches and mismatches and gaps representing 
insertions and deletions have no penalty. An algorithm performs the optimal global pair 
wise alignment of two sequences using dynamic programming. The basic idea was to 
build an optimal alignment using optimal alignments of smaller subsequences[10]. 
To perform this task all segments of the sequences are compared with each other. The 
algorithm recursively calculates the total scores for all subsequences from top to bottom 
and from left to right. In each recursion step, a specific scoring function is employed in 
order to evaluate matching segments. In order to obtain the alignment of the sequences 
a trace back function had to be applied to find the path of best choices. The scoring 
function depends on the purpose of the analysis. The simplest way is to penalize 
mismatches and matches with 1 and 0 respectively. The matches means the exact, 
identical amino acid or amino acid with similar biochemical computed from substitution 
matrix like log-odds matrices like PAM (Point Accepted Mutation) [11] or BLOSUM  
(BLOck SUbstitution Matrix)[12]. The original publication[4] suggests usage of the 
recursion and arbitrary gap for penalization. More efficient version of this algorithm was  
introduced by Sankoff in 1972 [13].  
Needleman and Wunsch formulated their problem in terms of maximizing similarity but 
other approach could be to minimize distance between sequences which is an 
equivalent computational problem. In modern terminology, "Needleman-Wunsch" refers 
to the global alignment similarly like “Smith-Waterman” refers to local alignment. 
 

1.2. Smith-Waterman 
 
The Smith-Waterman algorithm is a well known algorithm for performing local sequence 
alignment between two sequences instead of looking at the total sequence lenght. The 
algorithm was first proposed by Temple F. Smith and Michael S. Waterman in 1981[14] 
and it is a variation of Needleman-Wunsch algorithm. The main difference to the 
Needleman-Wunsch is that negative scoring matrix cells are set to zero so only local 
alignments are visible. Smith-Waterman is also dynamic programming algorithm which 
means that is guaranteed to find the optimal local alignment with respect to the scoring 
system being used. Backtracking starts at the highest scoring matrix cell and proceeds 
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until a cell with score zero is encountered providing the highest scoring local alignment. 
Currently multiple improved alternatives of Smith-Waterman are available[15, 16]. The 
Smith-Waterman algorithm is time consuming for large sequences. A linear time 
algorithms such BLAST has been modified to decrease the amount of time required to 
identify conserved regions between two sequences under study. 
 

1.3. BLAST 
 
BLAST (Basic Local Alignment Search Tool) is the algorithm for comparison of 
biological sequences designed to perform fast database searches. BLAST enables a 
researcher to compare a query sequence with a library or database of sequences with 
similarity above a certain threshold in reasonable time. The BLAST program was 
designed by Stephen Altschul, and David J. Lipman in 1990[5]. It is one of the most 
widely used bioinformatic heuristic algorithms and it is much faster than calculating an 
optimal alignment using Smith-Waterman. This emphasis on speed is crucial to make 
the algorithm practical in searching against the huge genome databases. While BLAST 
is faster than Smith-Waterman, it cannot guarantee the optimal alignments of the query 
and database sequences. Because of its speed the BLAST algorithm is widely used for 
creating sequence profiles by iteratively performing searches with the results of 
previous queries. Such implementation of BLAST is used in PSI-BLAST program. 
 
2. Sequence-Profile methods.  
 
In principle the sequence-profile fold recognition methods use the initially build profiles 
which are then compared with sequences. In 1987 Michael Gribskov introduced the 
method of aligning two sequences by comparison of multiple sequence alignment of 
one sequence to another sequence [17]. The representation of such multiple alignment 
is also known as Position Specific Scoring Matrices (PSSM) which is commonly used 
for representation of sequences, motifs and patterns in biological data. PSSM is a 
matrix of score values that gives a weighted match to any given string of fixed length. It 
has one row for each symbol of the alphabet (for every amino acid or DNA base) and 
one column for each position in the pattern. The probabilistic interpretation of profiles 
was introduced by Brown and Haussler in 1993[18] using hidden Markov models. These 
models have become known as HMM - profiles. In sequence – profile methods the 
profiles can by build for both query or target sequence. 
  

2.1. PSI - BLAST 
 
PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool) was 
historically the first algorithm that performs sequence-profile comparison[19]. PSI-
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BLAST builds a profile which is practically a PSSM from sequences aligned witch the 
score below given threshold. Such profile is then used to further search the database for 
new matches.  
The PSI-BLAST program is often much more sensitive than the corresponding BLAST 
program but it takes a little more time to perform comparison because of multiple 
iterations during search. In work of Henikoff and Henikoff [20] it was described how to 
modify BLAST so that it may operate on a position-specific score matrix-  a single virtual 
sequence that may be used as a query with the original BLAST program. The alignment 
of position-specific score matrix to sequence is almost completely analogous to the 
alignment of two sequences. The only real difference is that the score for aligning a 
amino acid letter with a pattern from position is taken directly form PSSM under study 
rather than from default substitution matrix. Position-specific protein score matrices 
draw their power from its improved estimation of the probabilities of amino at given 
positions and from relatively precise definition of the boundaries of important motifs. The 
greatest challenge of automatic process off building PSSM is to set the universal 
constraints which may be used for searching against distinct protein families. Also the 
query sequence may contain multiple different protein domains so the preparation of 
query sequence and interpretation of the results may be challenging and may require 
human supervision. 
 

2.2. RPS-BLAST 
 
RPS-BLAST is also known as Reverse PSI-BLAST. It searches a query sequence 
against a database of profiles[21]. In principle this is the opposite of PSI-BLAST which 
searches a profile against a database of sequences.  RPS-BLAST uses a BLAST like 
algorithm, finding single or double word hits and then performs an ungapped extension 
on this candidate. If a sufficiently high-scoring ungapped alignment is produced, a 
gapped extension is performed and those gapped alignments with sufficiently low 
expect value are reported. The similar attempt was used in  IMPALA[22] method which 
instead of BLAST performs a Smith-Waterman calculation between the query and  each 
profile which is more time consuming. RPS-BLAST uses a BLAST and pre-computed 
profiles to allow the search to proceed faster. The natural evolution of methods such as 
PSI-BLAST, RPS-BLAST or IMPALA are the profile–profile methods where for both 
query and target sequences the profiles needs to be pre-computed before database 
searches can be performed.   
 
3. Profile-profile methods.  
 
In recent years numerous methods have been developed that allow direct comparison 
of profiles[23]. Profile-profile alignments can be implemented in several fundamentally 

 6 



different ways. The similarity between two positions can be calculated mainly by three 
different methods: using a dot-product, probabilistic model or an information theoretical 
measure.  
Profile-profile methods perform much better than standard sequence-profile methods 
both in their ability to recognize superfamily-related proteins and in the quality of the 
obtained alignments. Although the performance between different profile-profile 
methods is quite similar, methods using probabilistic scoring function have an 
advantage as they can create good alignments and show a good fold recognition 
capacity using the same gap-penalties, while the other methods need to use several 
different parameters at the same time to obtain comparable performances[23].  
 
The fundamental difference between different profle-profle alignment methods lies in 
how they calculate the score between two profile positions. A profile or PSSM is simply 
a set of vectors, where each vector contains the frequency of each type of amino acid in 
a particular position of the multiple sequence alignment. In sequence-profile alignments 
like PSI-BLAST[19], RPS-BLAST[21] or IMPALA[22] the score is calculated by 
extracting logarithm of the probability for an amino acid in this vector. However, in 
profile-profile alignments, we have to compare two frequency vectors and this can be 
done in several different ways, including calculating the sum of pairs, the dot-product, or 
a correlation coefficient between the two vectors. In addition, information about the 
background frequency can be used. The performance of profile-profile methods 
depends on: calculation of the score between two profile positions, alignment 
methodology and score function to measure evolutionary distance between two 
sequences in study 
Profile–profile methods are better at detecting distantly related proteins and provide 
better alignments for these proteins than sequence–sequence, and sequence-profile 
methods. Profile-profile scoring methods are better at distinguishing evolutionary related 
positions from non-related positions. 
In this study the implementations and applications of four different profile-profile 
methods are described: FFAS[24], Meta-BASIC[25] and ORFEUS[26]. 
 

3.1. BASIC (Bilateral Amplified Sequence Information Comparison)  
 
The BASIC [27] algorithm was historically first algorithm which utilized procedure for 
profile calculation and using profiles on both sides of the alignment. This algorithm 
compares a sequence profile of a query protein to a library of profiles representing 
known protein structures. The two main differences between this algorithm and PDB-
BLAST[24] algorithm is a different, simplified procedure for profile calculation which is 
applied for query and each target profile. Two sequence profiles are compared using 
Smith-Waterman dynamic programming algorithm. The similarity score between 
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positions in two sequences is calculated with the mutation matrix such as for the 
Gonnett similarity matrix [28]. For two profiles, this value is calculated as an average of 
scores between all amino acid pairs, averaged according to the probability distribution in 
each profile. Three parameters, gap introduction penalty, gap extension penalty and a 
constant, added to each element of the mutation matrix are optimized for a fold 
recognition benchmark.  
 

3.2. FFAS (Fold & Function Assignment) 
 
This algorithm is similar to BASIC and can be recognized as it’s improved version. 
FFAS similarly as BASIC uses profile information on both sides of the alignment, but it 
is based on a novel procedure for profile preparation from the multiple alignments of 
sequences in the family of homologous proteins[29].  
Calculation of a multiple sequence alignment for each profile is performed by five 
iterations of PSI-BLAST against the sequence pool database nr85s (Non Redundand 
GenBank[30] protein database clustered as 85% of identity). Then calculation of a 
sequence profile using sequences found by PSI-BLAST is performed. Weights are 
assigned to sequences based on their uniqueness. 
FFAS aligns profiles using a standard local-local dynamic programming algorithm. The 
value of the comparison score between positions n and m from the two profiles is 
calculated as a vector*matrix*vector product that includes the n-th column from the first 
profile, the substitution matrix BLOSUM62 [20], and the m-th column from the second 
profile. The alignment score is then calculated using dynamic programming. 
Finally the calculation of the final FFAS score is performed by comparing it with the 
distribution of scores obtained for pairs of unrelated proteins. 
FFAS algorithm well balances two effects: introducing of new information, which leads 
to increased sensitivity in recognizing distant homologues with avoidance of errors, 
leading to incorrect homology assignments. 
 

3.3. ORFEUS 
 
ORFeus is a fully automated, sensitive protein sequence similarity search algorithm 
available to the academic community via the Structure Prediction Meta Server[31]. The 
goal of the method was to increase the sensitivity of the detection of distantly related 
protein families by adding secondary structure information. The technique which 
combines the information from analysis of protein structures with information coming 
from the analysis of  homologous proteins families is also called “hybrid threading” 
approach[32]. The alignment of meta-profiles created this way is more sensitive in 
detecting remote homology between protein families. The specificity of the alignment 
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score is improved in the lower specificity range compared with the sequence-only 
profiles[26]. 
 
The secondary structure prediction is stored in the form of a profile of probabilities. 
ORFeus can utilize any secondary structure prediction method that produces estimated 
probabilities for local structure described using three states, that is, the helix, the beta 
sheet and the loop produced by PSIPRED [33] method. The sequence profiles are 
generated as in FFAS [29]. The main difference is that all the vectors of probabilities for 
the occurrence of all amino acids at each position are normalized. The similarity 
between two positions equals sum of the shifted dot product of the sequence profile and 
the shifted dot product of the secondary structure probability vector multiplied by the 
secondary structure weight at the given position. 
 
The combined local alignment of two sequence profiles and two secondary structure 
profiles conducted by ORFeus requires five parameters: gap initiation penalty, gap 
extension penalty, a weight for the contribution of the secondary structure profiles and 
two values, which shift the expected dot product of the secondary structure and 
sequence vectors below zero (expected score of aligning two vectors representing two 
residues). All five parameters were selected using brute-force optimization on a test set 
of artificially constructed two-domain families. A genetic algorithm was used to evolve 
and improve the program parameters.  
Two types of scoring functions were used for the optimization of parameters. The total 
sensitivity score for the test set was measured as the sum of prediction scores over all 
118 targets. Each prediction score, calculated for each target, is the sum of all correct 
hits scaled by the number of wrong hits with higher alignment score.  
 
Only one top-scoring prediction for each family is taken into account. This corresponds 
to the common procedure of specificity evaluation conducted in the LiveBench [34]. The 
performance of optimized ORFeus algorithm was compared with version without 
secondary structure and with PSI-Blast. The results show that the more complex meta 
profiles that utilize predicted secondary structure preferences are 10% more specific 
than the simple sequence-only profiles. The sensitivity of the meta profiles conducted by 
ORFeus is able to boost the sensitivity even further, providing up to 50% improvement 
compared with other two methods. 
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4. Other fold recognition methods 
 

4.1. Threading 
 
The word threading implies that the protein query sequence is dragged step by step 
through each possible position on each template to search for the best arrangement of 
the sequence as measured by score function which is usually quasi-energy function.  
The name for prediction method[35] came from observation that one can verify the 
predicted protein structure using atomic representation of the protein template[36].   
Finding the best arrangement of residues, including gaps and insertions is the problem 
of sequence to structure alignment. Because threading calculations may by computation 
time consuming the initial library of target structure is usually reduced by initial 
homology search. Protein threading treats the template in an alignment as a structure, 
and both sequence and structure information extracted from the alignment are used for 
prediction. When there is no significant homology found, protein threading can make a 
prediction based on the structure information. That also explains why protein threading 
may be more effective than homology modeling in many cases. In practice, when the 
sequence identity in a sequence alignment is low homology modeling may not produce 
a significant prediction. In this case, if there is distant homology found for the target, 
protein threading can generate a prediction. The closer a template is to the correct 
answer; the more likely the sequence is to score well on it. Statistically, the well 
represented fold is more likely to score well by chance. The threading methods are 
often use for fold recognition and the final alignment is refined by other methods.  
Threading score functions are usually more simplified than those used in a real energy 
calculation. In a threading calculation, the sequence residues are placed on the 
backbone of the template structure and from there, one can calculate ideal coordinates 
for the C-beta atom. Consequently, a threading score function usually represents each 
residue by one or a few interaction sites.  
Most popular threading software are: HHpred[37], RaptorX[38], MUSTER[39]  and  
relatively new method SPARKS-X[40].   
 

4.2. “Ab Initio” protein structure prediction methods 
 
“Ab initio” methods are “holy grail” of the fold recognition and protein structure prediction 
methods. The aim of such methods is to provide protein models built “de novo” based 
on bio-physical principles rather than directly on previously solved structures. There are 
multiple possible procedures performing “ab initio” prediction. Some of them perform 
simulated folding; the same way at it is performed in cell during translation process. 
Other uses the stochastic method to search possible conformations of protein by global 
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optimization of a suitable energy function. All procedures tend to require significant 
amount of computational power to overcome so called “Levinthal's paradox”.  As it was 
observed by Cyrus Levinthal[41] small protein of 100 residues may misfold up to 3198  
conformations (where 198 is the number of possible different phi and psi bond angles). 
It is not possible to check all those conformations in reasonable time even though in the 
cell folding process takes miliseconds. Also in many cases the conformation with lowest 
energy does not necessarily represents the native protein structure.  
 
To solve the problem of “ab initio” folding large supercomputers or distributed computing 
platforms are used. As an intermediate steps towards predicted protein structures 
several different approach were proposed like contact map predictions (CMAPpro [42]), 
usage of  discrete grids (TOUCHSTONE [43]) or combining the proteins from available 
small 3D predicted protein fragments (ROSETTA [44]). The constant increasing power 
of standard desktop computers and more sophisticated algorithms allow currently (in 
2013) to perform in reasonable time sampling for large peptides of size up to 40 - 50 
amino acids however the time of prediction increases exponentially with the increase of 
peptide length [45] [46] [47] 
 
5. Improvement and benchmarking of fold recognition methods 
 

5.1. CASP 
 
Critical Assessment of protein Structure Prediction, or CASP, is a worldwide experiment 
performed by protein predictors for evaluation of structure prediction which take place 
every two years since 1994 [48]. The primary goal of CASP is to help advance the 
methods of identifying protein three-dimensional structure from sequence alone. CASP 
provides research groups and their software with an opportunity to objectively test 
prediction methodology and delivers an independent assessment of the state of the art 
in protein structure modeling to the research community and software users. 
 
In order to ensure that no predictor can have information about a protein's structure 
under evaluation, predictors, organizers and assessors don’t know the structures of the 
target proteins until the end of experiment. Targets for structure prediction are 
unreleased or on-hold X-ray crystallography and NMR spectroscopy provided mainly by 
structural genomics and proteomics centers. The difficulty of the target protein is 
determined by the sequence based comparison methods to the existing protein 
structures. If the given sequence is found to be related by common descent to a protein 
sequence of known structure, comparative protein modeling may be used to predict the 
tertiary structure. Such targets are classified as easy ones. Templates that can be found 
using threading or profile methods are classified as fold recognition targets. Third class 

 11 



is “ab initio” targets for which it is difficult to find the template using above methods so 
“de novo” protein structure prediction must be applied[49, 50].  
 
The primary method of evaluation in CASP is a comparison of the predicted model 
α-carbon positions with those in original structure. The comparison is shown visually by 
cumulative plots of distances between pairs of equivalents α-carbon in the alignment 
and the score describing percentage of well-modeled residues in the model called GDT-
TS (Global Distance Test - Total Score)[51] is assigned. The GDT score is calculated as 
the largest set of amino acid residues alpha carbon atoms in the model structure falling 
within a defined distance cutoff of their position in the experimental structure. 
 
Free modeling (template-free, or de novo) is also evaluated visually by the assessors 
however in difficult cases with high RMSD the assessment is not straightforward. CASP 
provides with many other scoring functions. Some of them perform better for local and 
some for global alignment. Other doesn’t take into account coiled regions. Other 
methods push more emphasis on correct fold and overall backbone packing then 
alignment itself. There is no easy answer to question which methods are the best but 
when taking into account specific prediction categories and target groups one can better 
compare different methods and check how they are progressing every year.  
 
The overall performance of protein prediction is strongly related to the predictor 
experience and manuals corrections made. The prediction groups using similar tools 
may submit slightly different models of the same target. To avoid human factor influence 
on the production methods the fully automated version of experiment was proposed.  
 

5.2. CAFASP 
 
The aim of CAFASP (Critical Assessment of Fully Automated Structure Prediction) was 
to assess the performance of methods without the user intervention that several groups 
used in their CASP submissions. Although currently still human predictors are superior 
to automated ones[52] it provides an indication of the performance of the methods 
alone. This information may aid scientists in choosing which programs they wish to use 
and in evaluating the reliability of the programs when applied to their specific prediction 
targets. 
To avoid submission of manually “curated” models the predictions must have been sent 
automatically to the evaluation center in very short time span (several minutes). 
 
The experiment runs once every two years in parallel with CASP and recently has been 
has been incorporated into the CASP. Results for humans and server are evaluated 
separately in different categories. In contrast to continues benchmarking techniques like 
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LiveBench[34] and EVA[53], which run weekly against new proteins published in the 
Protein Data Bank, CAFASP generates much less data.  
 

5.3. LIVEBENCH 
 
LiveBench[34] is a continuously running benchmark project for assessing the quality of 
protein structure prediction and secondary structure prediction methods. The main 
advantage of LiveBench is that it is run continuously and unlike the related CASP and 
CAFASP experiments, LiveBench is intended to study the accuracy of predictions that 
would be performed by non-expert users of publicly available prediction methods. Live 
bench is designed to assess the tertiary and secondary structure predictions. 
 
The experiments like CASP and CAFASP can point out best predicting research groups 
and methods but one of the drawbacks of both experiments is the limited number of 
protein targets used to assess the quality of groups or prediction methods. LiveBench 
project follows the CAFASP ideology, but its goal is to overcome the problem of a 
limited number of targets by selecting a large number of prediction targets through 
weekly scanning of the protein structure database PDB for novel proteins. Similarly to  
CAFASP, LiveBench uses sequences of newly released but published structures and 
assumes that the evaluated servers do not utilize information form those structures for 
databases incorporated in their algorithms. Immediate availability of the structures and 
instant predictions allows reducing risk of such events.  
LiveBench assesses publicly available fold-recognition servers and it is designed to 
provide researchers with constant information about quality of prediction and 
performance of methods used in experiment. 
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III. Applications profile-profile comparison methods  

There are many purposes of profile-profile sequence comparison in molecular biology. 
They can be used to identification sequences features such as active sites, post 
translational modification sites, corresponding gene-structures, reading frames, 
distributions of introns and exons, regulatory elements, domains, secondary structure, 
metabolic paths and activates, structure prediction and  revealing the evolution and 
genetic diversity of sequences and organisms. The sensitivity of those methods extends 
those applications for sequences very distant in their evolution for which the fold 
recognition and sequence comparison could not be performing even 10 years ago using 
sequence to sequence analysis.  
 
 
1. Gene identification and detection of distinct homologues 
 
In the publication about detection of chalcone synthase sequences encoded in yellow 
lupin[1] profile-profile fold recognition methods were used to detect two full copies of 
cDNA sequences encoding chalcone synthase (CHS) from Lupinus luteus root. 
Sequence alignment to distant homologues and phylogenetic studies of chalcone 
synthases from 54 other plant species as well as distant homologue from Deinococcus 
radiodurans revealed the possibility that lupin chalcone synthase is encoded by 
multigene family of at least two distinct genes evolved by gene duplication about 16 
million years ago. Additionally application of Structure Prediction Metaserver[31] 
allowed creation of consensus multiple alignment of several profile-profile comparison 
methods. The alignment of 57 protein sequences was then used to perform of molecular 
model and detection of 21 amino-acids in chalcone synthase catalytic pocket to confirm 
that new discovered sequences are functional chalcone synthases. The alignment of 
profile-profile methods was also used in molecular phylogeny calculations as a guide 
tree for topology estimation of chalcone synthase tree. As the actual number of possible 
topologies for 57 sequences was very high, which makes the analysis computationally 
expensive the tree based on alignment of chalcone synthases detected by profile-profile 
methods was used to choose the most probable tree topology based on distances 
between most distant homologues detected and the correct choice was confirmed by a 
bootstrap test.  
 
2. Detection of domain boundaries and modeling of complex proteins 
 
In the work describing structure and function of tenascin-C gene[2], usage of sensitive 
profile-profile sequence comparison analysis allowed to detect the order of functional 
elements in large multidomain tenascin-C protein, all variable part of a molecule as well 
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as all isoforms of the protein. The number of putative fibronectin repeats was corrected. 
Also previously not identified HSP33 domain with was described.  
In order to identify domain boundaries and the homologs of the Tn-C domains, the 
Gene Relate Sequence Database (GRDB)[54]. For the corresponding Tenascin-C 
elements, the characteristic profiles were computed as well as for every protein families 
collected from Pfam, COG, the PDB7 and from other genomic sources. The comparison 
of the target families with about 100,000 other families was performed using Meta-
BASIC program[25]. Finally, the models of Tenascin-C domains, we searched the PDB 
database to find distant homologs with known tertiary structure. The sequences of each 
identified domain were used as a query. The molecular modeling was performed with 
the MODELER program [55]. 
 
 
 

 
Figure 1. Schematic analysis of Tn-C polypeptide sequence (1-2200 aa). Pictograms represent the 
repeats involved in the main parts: (a) N-terminal part consisted of HSP33 (diagonal), heptads 
region (dots) and EGF-like (plain), (b) fibronectin III repeats 
 
To evaluate the local environment and interresidue contacts we used the Verify3D 
program (Carugo & Pongor, 2002). It provides assessment of the structures on the 
residue level, which enables the user to locate the parts of a protein that are likely to 
have the correct con-formation or to look for misfolded regions. The program uses 
information about the local secondary structure, sol-vent accessibility and the fraction of 
side-chain area that is covered by polar atoms. We decided to take advantage of this 
feature and apply Verify3D to improve the incorrectly folded model sections. The 
alignment in the regions poorly scored by Verify3D was corrected. Oligonucleotide 
sequences of Tn-C were taken from GEO Profiles database (Barrett et al., 2005) by 
single blast run with genomic Tn-C sequence.  
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3. Evolutionary analysis and protein-ligand interaction 
 
In the attempt to characterize evolution and ligand interaction of CRE1 protein[56] the 
standard methods such as BLAST failed to find close homologs of target gene as well 
distant structure representative of the CHASE domain. Very often domains may become 
very diverse during evolution but still possess the same fold which sometimes can be 
detected using more sensitive tools. Once again the GRDB software[54] was used to 
identify distant homologue sequence of the CHASE domain and perform model of 
CRE1 protein.  
 
By applying distant homology detection it was possible to describe CHASE domain as 
similar to the photoactive yellow protein-like sensor domain. The active site pocket and 
amino acids that are involved in receptor–ligand interactions was identified. With help of 
such sensitive tools it was shown that fold evolution of cytokinin receptors is very 
important for a full understanding of the signal transduction mechanism in plants. 
 
The key future of algorithm of GRDB software is that unlike many other methods used in 
fold recognition, it does not require any information about any native structure of protein 
in search. The initial search was performed using truncated CRE1a protein. Using two 
discovered proteins with known fold which posess sensor kinase activity and which 
praciptitate in signaling by two-component system the consensus alignment was 
performed. It confirmed that CHASE, CACHE (CHEmotaxis receptors) and the PAS 
domains are phylogenetically related.  
 

 16 



 
Figure 2. Topological representation and fold evolution of PYP-like family. The cartoon 
representation of topology of selected related sensing domains of: (a) Profilin; (b) PAS; (c) 
CACHE; (d) GAP; and (e) CHASE. The triangular symbols represent beta strand, circular symbols 
represent helices. The direction information for strands is indicated by up and down pointing 
triangles. Common structural motif in all structures is circled red. Cartoons were performed using 
the TOPS program. Dendrogram is calculated using PRIDE based on the measure of the degree of 
similarity between proteins and shows distances between structurally diverged 3D structures. The 
evolutionary distant sensing domain ACT was used as an outgroup. 
 
Multiple sequence alignment between the consensus sequence of the CHASE domain 
and the two families shows conservation of sequence pat-terns and secondary structure 
despite the low amino acid identity. Molecular modeling and docking were performed to 
examine the possibility of ligand binding. Information about known ligands bound to 
related proteins was used as initial guide. 
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The docking of model and related structures was performed. The docked ligand was 
entirely buried. Molecular modeling confirmed the importance of threonine 278 for the 
catalytic activity of the enzyme.  
 

 
Figure 3. Molecular model of CRE1 receptor from A. thaliana docked with (a) trans-zeatin, (b) 
kinetin. The yellow and red colors indicate strands and helices, respectively. Ligand is colored in 
orange. The part of the chain whose residues are at contact distance with ligand is colored in 
blue. The visible side chain belongs to threonine 278 whose mutation is responsible for loss of 
function. 
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IV. Implementations of profile-profile comparison methods  

 
1. The PDB Preview 
 
The Protein Data Bank (PDB) is a central repository where biological macromolecules 
obtained by X-ray crystallography and NMR spectroscopy are stored and available on 
the Internet. Not all the entries in the database are publicly available. A new structure 
can be deposited as “on-hold” entry, non-accessible for public before final release. To 
allow scientists early access to the 3D structure, it is possible in most cases to generate 
relatively accurate automatically created computational models. Creation of a database 
for those on-hold entries that cannot be obtained with standard homology modeling 
tools as the newly deposited structures often differs significantly in sequence from those 
already deposited in PDB. Profile-profile Fold Recognition methods allows for automatic 
generation of models for such “difficult” cases.  
The PDB Preview [57] service every week scans, the newly deposited on-hold entries in 
the Protein Data Bank [58] are scanned to select those that correspond to proteins with 
no significant sequence similarity to any protein of known structure and perform Fold 
Recognition using BioinfoBank metaserver and then generates  “consensus” models 
using using the 3D-Jury method [54]. 
Each prediction is automatically incorporated into the PDB Preview database. The on-
hold sequences are described by three different scoring mechanisms: the BLAST E-
Value, the PDB BLAST E-Value and 3D-Jury score.  
The models with BLAST E-value to the PDB sequence above 0.001 are considered as 
homology-modeling targets. The PDB Blast E-value to the PDB database clustered at 
70% sequence identity using the 3D – Hit [59] and masked with low complexity filters. 
Usually targets with score below 0.002 are considered as simple Fold Recognition 
targets.  
The 3D-Jury score is obtained with default parameters. Usually 3D-Jury predictions with 
scores above 50 correspond to essentially correct predictions, meaning that the overall 
folds of the predicted models are structurally similar to the corresponding experimental 
structures. 
Additionally, the PDB-Preview highlights those 3D-Jury predictions that are regarded as 
confident but cannot be obtained with a significant score by PDB-Blast. These targets 
are potentially most interesting cases. The system periodically removes from the PDB-
Preview database those PDB entries whose status has changed from “on-hold” to 
“available”. At this point, the accuracy of the stored predictions can be evaluated, 
because the experimental 3D coordinates become available. The second section of the 
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PDB-Preview database corresponds to predictions of previously on-hold entries that 
have been released.  
The PDB-Preview high-scoring Fold Recognition predictions provide biologists with 
relatively accurate 3D models for not yet released PDB shortly after they are deposited 
in the PDB, and well before the experimental structure is released. This allows 
researchers to perform studies that normally are possible only after official 3D 
coordinates are available. Also the theoretical model allows crystallographers to  verify 
correctness of the new released structure[60]. Additionally the resulting PDB-CAFASP 
analysis provides computational biologists with a continuous blind evaluation of their 
methods thus effectively extending other benchmarking experiments such as LiveBench 
[61] and CAFASP [62]. 
 
2. Gene Relational DataBase (GRDB) 
 
The profile-profile comparison was also implemented in GRDB service[63]. Gene 
Relational DataBase GRDB is the web bases system which contains the characteristic 
protein sequence profiles for many protein families classification resources such as 
PFAM  [64], CDD [65] and from COGs [66] and also for  representatives of  structure 
profiles genereted from PDB[58] or from other genomic sources. GRDB performs the 
comparison of the target family with 100,000 other families, using Meta BASIC profile-
profile comparison methods. It is possible because profile-profile methods in contrast to 
many other Fold Recognition methods, does not require any information about native 
structure to perform the comparison. In contrast to pure Meta Basic method the GRDB 
conducts additional simple PSI-Blast search procedure to include additional information 
from amino acid sequences translated from open reading frames of unfinished genomes 
which increases the level of information in the profile.  
 
GRDB was successfully used for comprehensive classification of nucleotidyltransferase 
fold proteins and identification of novel families and their representatives in human [67]. 
The strategy used in typical approach of this purpose is usually to collect sequences of 
know representatives of given family and then using GRDB for searching of missing 
members. The researcher should note that most trusted results are obtained with the 
Meta-BASIC[25] score grater then 40. According to rigorous structural criteria used in 
LiveBench[34] experiment with this score GRDB finds less then 5% of false positive 
results. It also should be noted then in results with Meta-BASIC score higher then 20 it 
is possible to find some sequences that are correct. The next step is to find the links 
between potential representatives of families and deep analysis o sequence alignments 
and secondary structure of candidates. The last step of the typical search strategy may 
be analysis of molecular models built based on GRDB predictions. 
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Currently the following databases are available: CDD[65], PFAM[64], and PDB90[58] 
(representatives from PDB filtered at 90% of sequence identity). Meta-BASIC calculates 
connections between 10 340 PFAM, 4852 KOG[68] and 4872 COG[66] families and 20 
540 proteins of known structure. The final HTML output is given right away or is send 
back to the user by email if the computation takes more time. 
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V. Conclusions 

 
The practical implementations and applications of protein structure prediction are now 
more important than ever when the massive amounts of protein sequence data are 
produced by modern large-scale DNA sequencing projects. Despite the efforts in 
structural genomics, the output of experimentally determined protein structures form 
X-ray crystallography and NMR spectroscopy are still expensive and time consuming.  
 
The profile-profile comparison methods are most accurate and successful methods so 
far, especially when there exists a structure template to the target[43]. They are usually 
superior to other methods because they can pick up possible homologous structure 
templates even when the sequence identity is very low and that profile-profile 
comparison can align the sequence to the structure template more accurately, 
producing more accurate structure models[43]. As more and more novel sequences are 
produced from the genome projects, the profile-based methods can be expected to 
become even more sensitive. Fold assignments that were traditionally accomplished 
from threading methods can be successfully done with comparative modeling instead.  
 
The statistics of Protein Data Base [69] shows that in recent years, only a limited 
number of completely new protein folds from several thousand new structures are 
deposited to the databases. In most cases single-domain proteins of up to 200 residues 
can be aligned to a protein in the PDB with an average RMSD less than 5Å and an 
average coverage of 70%. These observations imply that in principle, if a reasonably 
good template can be identified the good quality prediction can be made using profile-
profile methods. On the other hand “Ab Initio” based methods can still be expected to 
play an important role in identifying new folds as the accuracy of these methods 
increase. 
 
The addition of predicted secondary structure to conventional sequence profiles is able 
to boost the sensitivity of profile-profile comparison methods substantially. The increase 
of sensitivity of such improved hybrid threading algorithm should eventually result in an 
increase of specificity. Currently best way to boost the specificity of predictions is the 
application of consensus methods. This will increase not only the chance that the 
comparative modeling can assign the fold correctly but also the likelihood that the fold 
identified is more structurally similar to the target, thus increasing the accuracy of the 
structural model.  
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Despite the fact that there might be a limit to which sequence comparison methods can 
align sequence to structure when the sequence identity is low, further improvement in 
the sequence-structure alignment can also improve the accuracy of the structure 
models. The current sequence comparison methods can only align a fraction of the 
residuals that can be aligned in structure alignments[70]. Better alignment can 
significantly improve the accuracy of the structure models.  
Another way of improving quality of structural models might be refinement made by 
molecular dynamics (MD) with accurate all-atom physical potentials. The most severe 
obstacle of the application in MD in protein structure prediction has been the long time 
which takes for the protein to fold from the completely unfolded states. In homology 
based methods the energy barriers encountered in the course of folding are removed. If 
the simulation starts from the near native, the MD simulation perhaps can reach the 
native structures much easily. The constant increase of computational power, cloud and 
distributed computing projects like FoldIt! [71] Can bring new perspective for protein 
structure prediction as well as for increase of profile-profile methods performance.  
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Figure 1. Schematic analysis of Tn-C polypeptide sequence (1-2200 aa). Pictograms represent 
the repeats involved in the main parts: (a) N-terminal part consisted of HSP33 (diagonal), 
heptads region (dots) and EGF-like (plain), (b) fibronectin III repeats ........................................15 
Figure 2. Topological representation and fold evolution of PYP-like family. The cartoon 
representation of topology of selected related sensing domains of: (a) Profilin; (b) PAS; (c) 
CACHE; (d) GAP; and (e) CHASE. The triangular symbols represent beta strand, circular 
symbols represent helices. The direction information for strands is indicated by up and down 
pointing triangles. Common structural motif in all structures is circled red. Cartoons were 
performed using the TOPS program. Dendrogram is calculated using PRIDE based on the 
measure of the degree of similarity between proteins and shows distances between structurally 
diverged 3D structures. The evolutionary distant sensing domain ACT was used as an outgroup.
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Figure 3. Molecular model of CRE1 receptor from A. thaliana docked with (a) trans-zeatin, (b) 
kinetin. The yellow and red colors indicate strands and helices, respectively. Ligand is colored in 
orange. The part of the chain whose residues are at contact distance with ligand is colored in 
blue. The visible side chain belongs to threonine 278 whose mutation is responsible for loss of 
function. ....................................................................................................................................18 
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