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Abstract

On the role of entanglement in the formation and stability of
composite bosons

by mgr. Zakarya Lasmar

Composite bosons are many-body systems made of many ele-
mentary bosons, or an even number of elementary fermions. Re-
cently, it was suggested that quantum entanglement can be under-
stood as the origin of the bosonic character of the simplest systems
of this type (bipartite composite bosons). This idea motivated a new
direction of research: quantum information oriented study of com-
posite particles. In the present work, the role of entanglement in the
formation and dynamics of composite bosons is studied. We show
that, in some special situations, two entangled fermions can exhibit
bosonic behaviour while being specially separated. We propose a
nonlocal scheme that leads two pairs of entangled fermions to form
an analogue of a two-partite bosonic Fock state. Also, we show that
in some situations entanglement can provide stability for a compos-
ite particle. In this case, the interaction-free dynamics of an entan-
gled bipartite system appear to mimic the behaviour of two inter-
acting particles. In addition, we discuss the possible reasons that
can limit the influence of entanglement on the behaviour of com-
posite particles. The no-signalling condition seems to play a crucial
role, which suggests that interactions in some situations become nec-
essary. Regarding the formation of composite bosons, I present an
entanglement-based method to study the bosonic quality of fermionic
multipartite systems. Using this method, I examine the bosonic qual-
ity of the ground state of the extended one-dimensional Hubbard
model while tuning the strength of interactions.
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Streszczenie

Rola splątania w procosie formowania i stabilności bozonów
złożonych

autorstwa mgra Zakaryi Lasmara

Bozony złożone to układy wielociałowe powstałe z wielu podsta-
wowych bozonów lub z parzystej liczby podstawowych fermionów.
W ostatnich czasach zasugerowano, że wielkością odpowiedzialną
za bozonową własność najprostrzych układów tego typu (dwuci-
ałowych bozonów złożonych) jest splątanie kwantowe. Ten pomysł
zapoczątkował nowy kierunek badań: analizę własności cząstek
złożonych w języku teorii informacji kwantowej. W tej rozprawie
omówiona zostanie rola splątania w procesie powstawania
i dynamiki bozonów złożonych. Pokażemy, że w szczególnych przy-
padkach, dwa splątane fermiony mogą wykazywać bozonowe właś-
ciwości nawet jeśli znajdują się w dwóch odległych miejscach. Za-
proponujemy metodę pozwalającą na przekształcenie stanu dwóch
par splątanych fermionów w dwucząstkowy bozonowy stan Foka.
Następnie pokażemy, że w niektórych sytuacjach splątanie może za-
pewnić stabilność cząstki złożonej. W tym przypadku
dynamika nieodziałującej pary splątanych cząstek przypomina dy-
namikę dwóch oddziałujących cząstek. Ponadto, zbadamy możliwe
przyczyny ograniczeń wpływu splątania na zachowanie się cząstek
złożonych. Zasada braku sygnalizowania wydaje się odgrywać tu-
taj kluczową rolę, co sugeruje, że oddziaływanie między cząstkami
może być czasem niezbędne. Odnośnie problemu powstawania bo-
zonów złożonych, zaproponuję metodę badania bozonowej
własności wielocząstkowych układów fermionowych, która jest
oparta na splątaniu wielociałowym. Ta metoda zostanie użyta do
zbadania bozonowości stanu podstawowego rozszerzonego modelu
Hubbarda w sytuacji kiedy siła oddziaływań pomiędzy cząstkami
rośnie.
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1

Introduction

In nature, elementary particles can be classified into two categories,
bosons or fermions. For example, we all know that electrons are par-
ticles which behave in a fermionic way, while photons exhibit a the
typical bosonic behaviour. The difference between these two types
of particles can be manifested via several effects and phenomena.
Due to the Pauli exclusion principle, the same quantum state cannot
be occupied by more than one fermion. On the other hand, bosons
should not experience any restrictions on their occupation numbers.
Another simple scenario in which fermions and bosons exhibit dras-
tically different behaviours is when two indistinguishable particles
meet at a symmetric beam splitter. If these particles are indistinguish-
able bosons, they will always appear at the same output, i.e. they
bunch. However, if they are indistinguishable fermions, they will
always appear at different outputs, i.e. they anti-bunch. This phe-
nomenon is called the Hong-Ou-Mandel effect [5].

Most of systems studied in laboratories consist of composite par-
ticles, e.g. molecules, atoms or even neutrons and protons. Basically,
most of bosonic particles are composed of several elementary bosons
or an even number of elementary fermions or some combination of
both. Hence, the term composite bosons is used by the community
studying such systems [6]. Inquisitively, we can say that a composite
boson emerges when its constituents are strongly attracted to each
other. This will bound the constituents together, and hence it can be
treated as single particle. As long as the external forces are weaker
than the interactions between the constituents, the composite parti-
cle can be effectively described by its centre of mass in addition to its
total momentum.

Remarkably, bound states of composite particles are usually
strongly entangled. For instance, bipartite composite particles such
as Hydrogen atoms, Cooper pairs or excitons can exist in pure states
while the states of each of theirs constituents are highly mixed. It
can be intuitive to imagine a Hydrogen atom in harmonic trap. The
coulomb interaction will keep the electron in the vicinity of the pro-
ton, while both constituents get delocalized within the well. Ergo, if
the size of the trap is much larger than the radius of the Hydrogen
atom, the electron and the proton become highly entangled. This idea
was further developed, and it was suggested that the bosonic be-
haviour of a bipartite composite particle is proportional to the amount
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of quantum correlations between the constituents [7, 8]. This has
stimulated many works by authors from the quantum information
community [9–28]. However, some ambiguity regarding the role of
entanglement behind the behaviour of composite bosons remained
undressed. This is because in all the previous works, the authors
presented studies of entanglement properties of stationary quantum
states describing bipartite composite particles. Here, I will consider
the dynamics of such systems. In order to single out the effects of en-
tanglement, I will focus on interaction-free dynamics. For instance, a
scenario in which the entangled constituents are spatially separated,
so they do not interact while remaining correlated.

The present work consists of two parts. In the first three chapters,
I will study the behaviour of composite bosons with a special focus
on the role of quantum correlations in interaction-free dynamics of
bipartite composite bosons. In the fourth chapter, I will study the for-
mation of composite bosons made of more than two constituents and
discuss their bosonic quality and entanglement properties. Bellow, I
will briefly describe the structure of this thesis.

In the first chapter, I will first introduce few concepts from the the-
ory of composite bosons. Then, I will present a study of non-local
bosonic behaviour of two elementary fermions. I will consider two
bipartite composite bosons with spatially separated constituents. My
aim will be to show that these two composite bosons can bunch
solely via local operations. However, studying the change of the en-
tanglement properties of system through its evolution suggests that
interaction between constituents of the same type is necessary.

In the second chapter, I will first state some definitions regarding
what can be considered as stable composite particle, or a decayed
one. Considering these definitions, I will study the interaction-free
spread of a bipartite composite particle in a one-dimensional space.
My aim will be to examine the role of quantum correlations in pre-
serving the stability of the system. Then, I will study the effects of
non-zero temperatures over the dynamics of the same system.

In the third chapter, I will first recall few aspects of the standard
Mach-Zhender Interferometer (MZI). Next, I will present an idea of
a MZI-like setup, within the one-dimensional Hubbard model. Con-
sidering a bipartite composite particle spreading over a discrete lat-
tice, my aim will be to take advantage of the stability due to entangle-
ment (discussed in the second chapter) for observing the collective
de Broglie wavelength of the considered system. I will show that
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if the constituents are highly entangled, proper post-selective mea-
surements can lead to the observation of a collective behaviour the
composite particle.

In the fourth chapter, I will first discuss the formation of compos-
ite bosons made of two fermions. Then, I will extend these results to
multipartite composite bosons. I will consider the one-dimensional
Hubbard model with two types of interactions, i.e. long-range and
short-range interactions. Mainly, I will examine the ground state of a
system made of many pairs of fermions and discuss its correspond-
ing entanglement properties and bosonic quality. My aim is to ob-
serve the behaviour of the total system as a function of the strength
of interactions. I will show that the control of the strength of interac-
tions is crucial for the formation and control of the composite struc-
tures.
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Chapter 1

Nonlocal bunching of
composite bosons

The results included in this chapter were published as a regular article in
Physical Review A [1].

1.1 Introduction

When is it reasonable to expect two fermions to behave like a single
boson? This question has been actively investigated for many years,
because the problem applies to a wide range of topics, like supercon-
ducting Cooper pairs [29], Bose-Einstein Condensates [30, 31] and
Excitons [6, 31, 32]. In 2005, C.K. Law suggested a hypothesis to ad-
dress the aforementioned question:

“ . . . quantum entanglement provides an understanding of
the origin of composite behaviour . . . This implies an interest-
ing picture that constituent particles are somehow bounded by
quantum entanglement. Mechanical binding forces are not es-
sential, they serve only as physical means to enforce quantum
correlations.” [7]

In other words, the bosonic behaviour is solely due to entanglement,
and that the role of interactions is to provide a mechanism to create
quantum correlations. He supported that by positively testing his hy-
pothesis on a specific class of quantum states. Also, he suggested ex-
tending this class of states to a more general one as an open problem.
In 2010, W. K. Wootters and his team published an argument proving
that Law’s claim is in fact more general than Law himself expected.
They showed that it is valid for all bipartite quantum states [8]. Re-
markably, this idea has stimulated the community working on com-
posite bosons, and it was further developed in a number of works
[9–28].

However, since entanglement stands as the origin of all bosonic
behaviour, Law also argued in his paper that two spatially separated
fermions can behave like a single boson [7]. In fact, Wootters and his
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team have come to a similar conclusion, and their comment on that
can be summarized in the following quote

“Taking this idea to its logical conclusion, Law notes that
two particles can be highly entangled even if they are far apart.
Could we treat such a pair of fermions as a composite boson?
The above analysis suggests that we can do so. However, we
would have to regard the pair as a very fragile boson in the ab-
sence of an interaction that would preserve the pair’s entangle-
ment in the face of external disturbances. On this view, the role
of interaction in creating a composite boson is not fundamen-
tally to keep the two particles close to each other, but to keep
them entangled.” [8]

The analysis upon which they arrived to this conclusion was by
considering a system made of N pairs of fermions, and studying the
ladder structure of its states — a detailed discussion of their argu-
ment will be presented later in this chapter. Also, they considered the
change of the structure after adding or subtracting a pair to/from the
total system. In other words, their analysis was limited to quantum
systems in stationary states. Therefore it is natural to ask: What about
the dynamics of such systems? This is the main question which I will
consider in this chapter.

First, I will consider a pair of fermions undergoing a beam splitting
operation. My primary goal will be to show that entanglement is not
enough by itself to keep the constituents close to each other, i.e. to
keep the composite particle stable. I will show that interaction has a
fundamental role in this scenario, namely entanglement production.
Then, I will consider two identical pairs of fermions, and discuss the
necessary conditions for their bunching, via the Hang-Ou-Mandel
effect. In the last part of this chapter, for two pairs of fermions, I will
propose a nonlocal bunching scenario. In this case, I will show that
interaction is required only between constituents of the same type.
In addition, I will show that the probabilities for the success of such
a scenario depends directly on the amount of entanglement between
the constituents, which is in agreement with the previous findings.

1.2 Preliminaries

1.2.1 Coboson made of two fermions

In this section, I will present the general argument which suggests
that two elementary fermions can behave like a single boson when
they are highly entangled. First, Let us consider an arbitrary state of



1.2. Preliminaries 7

a bipartite system

|ψ〉 =
∞∑

m,n=1

γm,na
†
mb
†
n|0〉. (1.1)

such that a†m (b†n) stands for the creation operator of a fermion of type
A (B) in modem (n). The coefficients γm,n are complex numbers, such
that γm,nγ∗m,n = |γm,n|2 is the probability of finding particle A in mode
m and particle B in mode n. However, using the Schmidt decompo-
sition [33], one can rewrite the state (1.1) in the form

|ψ〉 =
∞∑
i=1

√
λiã
†
i b̃
†
i |0〉. (1.2)

This can be achieved by finding the proper rotation of the basis.

ã†i =
∑
k

αi,ka
†
k,

b̃†i =
∑
k

βi,kb
†
k.

(1.3)

For simplicity, I will drop the ˜. The Schmidt coefficients are proba-
bilities, therefore always positive real numbers

0 ≤ λi ≤ 1. (1.4)

As a matter of fact, the Schmidt rank is the number of non-zero
Schmidt coefficients. Let us denote it by d. We can say that the state
|ψ〉 is separable if and only if d = 1, and entangled otherwise. In
addition to that, the set {λi}di=1 needs to satisfy the normalization
condition.

d∑
i=1

λi = 1. (1.5)

In order to quantify the amount of entanglement, one can compute
the purity of the reduced state of particle A or B. Note that the pu-
rity takes values between 0 and 1. 1 corresponds to a separable state
while 0 corresponds to an infinitely entangled state. In fact, since we
have a bipartite systems, there is only one way to bipartition it. Ergo,
for pure states, both purities computed from both reduced states will
always be equal to each other.

P = Tr{ρ2
a} = Tr{ρ2

b}, (1.6)

where ρa and ρb are the reduced density matrices of particle A and B,
respectively. These can be computed from the state |ψ〉 by using the
method discussed in [34]. For instance

ρan,m = 〈ψ|a†man|ψ〉. (1.7)
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Which leads to

ρA =
d∑
i=1

λia
†
i |0〉〈0|ai, (1.8)

ρB =
d∑
i=1

λib
†
i |0〉〈0|bi. (1.9)

Therefore, the purity takes the general definition

P =
d∑
i=1

λ2
i . (1.10)

Considering this form of the purity in addition to the normalization
condition expressed in Eq. (1.5), we can say that the value of P is
bounded

1

d
≤ P ≤ 1. (1.11)

Clearly, the upper bound corresponds to a separable state (d = 1).
On the other hand, the lower bound corresponds to the maximally
entangled state for which all the non-zero Schmidt coefficients are
equal to each other. In the limit of an infinitely large Schmidt rank,
d→∞, the lower bound will drop to zero.

Now, let us define, in the Schmidt basis, the creation operator of a
composite particle made of two entangled constituents, A and B.

c† =
∑
i

√
λia
†
ib
†
i . (1.12)

The action of this operator on vacuum will engender a single com-
posite particle state of the form of |ψ〉 in Eq. (1.2). This composite
particle has an internal structure described by the sum over the in-
dex i.

c†|0〉 = |ψ〉 ≡ |1〉. (1.13)

Since A and B are fermions, one might ask if the pair is a composite
boson. Using the results from [13] we can write

[c, c†] = 1−∆, (1.14)

such that [c, c†] = cc† − c†c is the commutation relation of the com-
posite particle.

∆ =
d∑
i=1

λi(a
†
iai + b†ibi). (1.15)

It is clear from Eq. (1.14) that the operator c† is not perfectly bosonic.
This can be explained by the fact that this composite particle has an
internal structure and that it has fermionic constituents which have
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to obey the Pauli exclusion principle. The operator ∆ describes the
deviation of the behaviour of c† from the perfect bosonic one. Evi-
dently, the expectation value of ∆ should vanish for perfect bosons
[13].

Another mathematical aspect of bosonic operators, is the construc-
tion of Fock states. For example, by using the definition in Eq. (1.12)
we can write

(c†)N |0〉 =
√
χNN !|N〉. (1.16)

Here, |N〉 is an N-partite Fock state. Because the operator c† is not
perfectly bosonic, the normalization factor χN is required so the Fock
state is normalized. In fact, it can be shown that χN has the form [6–8,
13]

χN =
1

N !
〈0|cN(c†)N |0〉 =

1

N !

∑
k1···kN

all different

λk1 · · ·λkN . (1.17)

If we add to an N-partite Fock state another composite boson, we get

c†|N〉 =
1√
χNN !

c†(c†)N |0〉.

=

√
χN+1

χN

√
N + 1√

χN+1(N + 1)!
(c†)N+1|0〉.

= αN+1

√
N + 1|N + 1〉. (1.18)

Such that
αN+1 =

χN+1

χN
. (1.19)

However, when we subtract a composite boson from |N〉, the system
can lose the ladder structure. From Eq. (1.18), we can write

〈N − 1|c|N〉 = (〈N |αN
√
N)|N〉. (1.20)

However, if we apply the operator c on |N〉, the value of 〈N − 1|c|N〉
should remain the same. Therefore, we write

〈N − 1|c|N〉 = 〈N − 1|(αN
√
N |N − 1〉+ |εN〉). (1.21)

Hence,
c|N〉 = αN

√
N |N − 1〉+ |εN〉. (1.22)

The state |εN〉 is orthogonal to |N − 1〉, and it corresponds to a pure
state of an N-partite system describing all the permutations lacking
the proper bosonic ladder structure. Obviously, in the case of perfect
bosons, we should have

〈εN |εN〉 = 0. (1.23)
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In order to examine the equation above, let us compute the general
form of 〈εN |εN〉 for an arbitrary state describing a composite particle.
For that, we need to evaluate the expectation value of the commuta-
tion relation given in Eq. (1.14)

〈N |[c, c†]|N〉 = 〈N |cc†|N〉 − 〈N |c†c|N〉.
= 〈N + 1|α2

N+1(N + 1)|N + 1〉 − 〈N − 1|α2
N(N)|N − 1〉

− 〈εN |εN〉.
= α2

N+1(N + 1)− α2
N(N)− 〈εN |εN〉 (1.24)

The expectation value of the right hand side of Eq. (1.14) takes the
form

〈N |1−∆|N〉 = 〈N |N〉 − 〈N |
d∑
i=1

λi(a
†
iai + b†ibi)|N〉.

= 1− 2(1− α2
N+1) = 2α2

N+1 − 1. (1.25)

In fact, it has been shown in [6] that the value of 〈N |∆|N〉 has to be
equal to 2(1 − α2

N+1). On the other hand, considering Eq. (1.14), we
know that the right-hand sides of Eqs. (1.24) and (1.25) should be
equal to each other.

2α2
N+1 − 1 = α2

N+1(N + 1)− α2
N(N)− 〈εN |εN〉, (1.26)

which can be rewritten as

〈εN |εN〉 = 1− α2
N+1 + (α2

N+1 − α2
N)N. (1.27)

It is clear from the equation above that 〈εN |εN〉 → 0 when χN
χN−1

→ 1.
Starting from this idea, C. K. Law considered a double Gaussian state
for each pair, and showed that the total system made of N pairs can
behave like a collection of bosons.

ψ(xA, xB) = N e−(xA+xB)2/σ2
ce−(xA−xB)2/σ2

r . (1.28)

N is a normalization constant. xA (xB) corresponds to the position of
the fermion A (B). σc and σr stands for the width along the direction
of the centre of mass and the relative distance, respectively. For such
a special state, the normalization factors can be computed exactly.
Interestingly, the expressions of χN and χN+1

χN
depend on the degree

of entanglement between each pair [7].

χ
(D.G.)
N+1

χ
(D.G.)
N

≈ 1−NP, (1.29)

where the upper script (D.G.) stands for Double Gaussian, and P for
the purity of each pair. The value NP indicates a deviation from
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the ideal bosonic behaviour. In simple words, if each pair is suffi-
ciently entangled, for a given N, the total system will exhibit an ideal
bosonic behaviour. However, even if this has been proven for double
Gaussians, C. K. Law speculated that there might be other classes of
quantum states for which the same conclusions will hold.

In fact, the hypothesis of C. K. Law was suggested for composite
bosons made of two elementary fermions or two elementary bosons
[7]. However, in this work I will only consider the fermionic case.

In 2010, W. K. Wootters and his team published a proof extending
Law’s conclusions to be valid for any bipartite state [8]. Basically, us-
ing equations (1.5, 1.10 and 1.17), they showed that the normalization
ratio is in fact bounded like

1−NP ≤ χN+1

χN
≤ 1− P. (1.30)

Clearly, when each pair is strongly entangled, P → 0, both bounds
will converge to 1, which implies an ideal bosonic behaviour.

In 2012, M. C. Tichy, P. A. Bouvrie and K. Mølmer published an-
other proof for bounds which are tighter than the ones mentioned
above [19]. The same team has also considered the general case of
composite bosons made of two elementary bosons [20]. This results
marked the beginning of a new direction of research, namely a quan-
tum information based studies on composite bosons. Since then this
topic has been attracting more and more attention and so far many
works has been publish [9–28].

1.2.2 Maximally entangled cobosons made of two
fermions

The creation operator of a bipartite composite boson c† has the
most general form defined in the Eq. (1.12). For such a definition, the
entanglement between the constituents depend on the choice of the
Schmidt distribution {λi}di=1, see Eq. (1.10). In the limit of maximal
entanglement the Schmidt distribution need to be uniform
{λi = 1

d
}di=1. In this case, the purity depends only on the Schmidt

rank P = 1
d

and the operator c† takes the form

c† =
1√
d

d∑
i=1

a†ib
†
i , (1.31)
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which leads to

χN =
d!

dN(d−N)!
, (1.32)

αN =

√
d−N + 1

d
, (1.33)

〈εN |εN〉 = 0, (1.34)

1− N

d
≤ χN+1

χN
≤ 1− 1

d
. (1.35)

Clearly, when the Schmidt rank is much larger than the number of
composite bosons N � d the system exhibits an ideal bosonic be-
haviour χN+1

χN
→ 1.

1.3 Entanglement and stability under beam
splitting transformation

1.3.1 Single coboson

The most general form of the Hamiltonian for a single particle
Beam Splitter (BS) can be written as

HBS = a†LaR + a†RaL. (1.36)

One can easily check that

HBS|+BS〉 = |+BS〉 =
1√
2

(a†R + a†L)|0〉, (1.37)

HBS|−BS〉 = −|−BS〉 = − 1√
2

(a†R − a
†
L)|0〉, (1.38)

where, |+BS〉 and |−BS〉 are the eigenvectors of HBS , and the corre-
sponding eigenvalues are +1 and −1, respectively. Hence, the eval-
uation of the time evolution generated by HBS is straightforward.
Assuming natural units, we can write

a†R |0〉 →
1√
2

(e−it|+BS〉+ e+it|−BS〉), (1.39)

a†L |0〉 →
1√
2

(e−it|+BS〉 − e+it|−BS〉), (1.40)

which can be rewritten as

a†R → cos (t)a†R − i sin (t)a†L, (1.41)
a†L → cos (t)a†L − i sin (t)a†R. (1.42)
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In Out

a)

b)

c)

Figure 1.1: Three scenarios for beam-splitting of elementary and compos-
ite particles, with and without interactions. a) An elementary particle can
appear at one of the two outputs. b) An interaction-free transformation of
two particles - Each particle evolves independently of the other one. Con-
sequently, among the four possible outcomes two correspond to the decay
of the composite particle. c) Transformation of two interacting particles -
They exhibit a collective behaviour and always remain together. This is

similar to the single particle behaviour. [1]

Hence, if the time of evolution is t = π
4
, we get a symmetric BS.

a†R →
1√
2

(a†R − ia
†
L), (1.43)

a†L →
1√
2

(a†L − ia
†
R). (1.44)

In this case, a single particle has equal chances for passing through
or getting reflected, see Fig. 1.1 a).

Now, let us consider a bipartite system described by Eq. (1.2). In
this case, each constituent will have two degrees of freedom, a†i,X
and b†i,Y . Namely, one corresponding to the internal structure and the
other one to the in/output of the BS, i = 1, · · · , d and X, Y = L,R,
respectively. If we assume a standard BS operation, i.e. interaction-
free, the evolution of each particle will be independent of the other.
For this operation the Hamiltonian take the form

Hind = HA +HB, (1.45)
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such that

HA =
d∑
i=1

(a†i,Lai,R + a†i,Rai,L), (1.46)

HB =
d∑
i=1

(b†i,Lbi,R + b†i,Rbi,L). (1.47)

By using the results found for the single particle case (1.43), one can
easily show thatHind will lead to the transformation

c†L|0〉 ≡
1√
d

d∑
i=1

a†i,Lb
†
i,L|0〉 → (1.48)

1

2
√
d

d∑
i=1

(a†i,Lb
†
i,L − ia

†
i,Rb

†
i,L − ia

†
i,Lb
†
i,R − a

†
i,Rb

†
i,R)|0〉.

Clearly, the constituents have 50% of chance to go out through the
same output, and 50% of chance to go out through different ones.
The later can be interpreted as a decay of the composite particle (see
Fig. 1.1 b).

In order to prevent the composite particle from decaying, one can
consider a BS operation for which the constituents can interact. In
fact, this was already studied in many previous works [23–25, 28]. In
this discussion, I will consider a model similar to the one proposed in
[24]. In this model, the Hamiltonian will be similar to Hind, but with
one extra term:

Hdep = HA +HB +Hint, (1.49)

such that

Hint = −γ
∑

X=R,L

d∑
i=1

a†i,Xai,Xb
†
i,Xbi,X . (1.50)

This term describes an interaction between particles A and B,
parametrized by the constant γ. When this interaction is strongly
attractive γ � 1 the evolution of the composite particle can be ap-
proximated like

c†L|0〉 ≡
1√
d

d∑
i=1

a†i,Lb
†
i,L|0〉 → (1.51)

1√
2d

d∑
i=1

(a†i,Lb
†
i,L − a

†
i,Rb

†
i,R)|0〉 ≡ 1√

2
(c†L − c

†
R)|0〉.

In this transformation, the two components will always exit through
the same output, which can be seen as a collective behaviour. This is
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because no information regarding the internal structure of the system
was exposed, see Fig. 1.1 c).

At this stage of the discussion, one might wonder if it is possible
to avoid interaction while preserving the stability of the composite
particle. In fact, in order to understand the role of interaction it is
important to note that the BS model discussed so far has a particular
feature. Namely, the evolution does not effect the internal structure,
and acts solely on the X = R,L degree of freedom. Consequently,
we can simplify the system by considering a pair of fermions in a
separable state. Regardless of the details of the transformation, we
would require the following evolution to occur.

a†Lb
†
L →

1√
2

(a†Lb
†
L + eiϕa†Rb

†
R)|0〉, (1.52)

where the phase ϕ is arbitrary. Note that this transformation is simi-
lar to the one for the single particle case, see (1.43). But, from trans-
formation (1.52) one can easily show that it is entangling since the
single particle state evolves from a pure to a mixed one.

ρA = a†L|0〉〈0|aL →
1

2
(a†L|0〉〈0|aL + a†R|0〉〈0|aR). (1.53)

We can also show that for a composite boson described by (1.31) the
single fermion purity decreases through the transformation with in-
teraction (1.51) from 1

d
to 1

2d
. While in the transformation without in-

teraction (1.48) the purity remains unchanged.

This suggests that the stability of a composite particle undergoing
a BS transformation requires entanglement production, which im-
plies that interaction has an important role and cannot be avoided.
While this argument is sufficient to prove that the role of interac-
tion is fundamental and not limited to the protection of the system
against external forces, the same conclusion can be drown if we con-
sider the no-signalling principle. This will be discussed in details in
the third Chapter.

1.3.2 The Hong-Ou-Mandel effect

One of the most fundamental effects that distinguish bosonic from
fermionic behaviour is the so-called Hong-Ou-Mandel effect [5]. We
all know that in nature elementary particles can be either fermions,
like electrons and protons, or bosons, like photons. In fact, two parti-
cles of the same type that enter different parts of a 50/50 beam splitter
will either go out through the same output or through different out-
puts, depending on the nature of these particles. Using (1.43) we can
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write the following transformation

f †Rf
†
L →

1

2
(f †R − if

†
L)(f †L − if

†
R), (1.54)

h†Rh
†
L →

1

2
(h†R − ih

†
L)(h†L − ih

†
R), (1.55)

where f † and h† stands for the creation operator of an elementary
fermion and boson, respectively. The transformations above can be
rewritten as

f †Rf
†
L →

1

2
(f †Rf

†
L − if

†
Lf
†
L − if

†
Rf
†
R − f

†
Lf
†
R), (1.56)

h†Rh
†
L →

1

2
(h†Rh

†
L − ih

†
Lh
†
L − ih

†
Rh
†
R − h

†
Lh
†
R). (1.57)

We know that two identical fermions cannot occupy the same state,
thus we can write f †Lf

†
L|0〉 = f †Rf

†
R|0〉 = 0. On the other hand, we

know that states of identical bosons are symmetric under particle
permutations, which means h†Rh

†
L − h

†
Lh
†
R = 0. Consequently, we can

simplify the transformations above to

f †Rf
†
L →

1

2
(f †Rf

†
L − f

†
Lf
†
R) = f †Rf

†
L, (1.58)

h†Rh
†
L →

−i
2

(h†Lh
†
L + h†Rh

†
R). (1.59)

Clearly, identical fermions always go out via different outputs, which
is called anti-bunching. On the other hand, elementary bosons al-
ways go out from the same output, which corresponds to bunching.
In this work, I will consider identical pairs of fermions and ask if
they can behave like two elementary bosons, i.e. if it possible to make
them bunch.

1.3.3 Two cobosons

In the previous subsection, we saw that for a two-port beam split-
ter, the Hang-Ou-Mandel effect suggests that two indistinguishable
bosons, prepared at input as a†La

†
R|0〉, will bunch, i.e. will be trans-

formed to 1√
2
(a†2L + a†2R )|0〉. Since it is a fundamental manifestation of

bosonic behaviour, naturally, one may ask if composite bosons can
also bunch. In order to answer this question, let us consider the ideal
bunching transformation of maximally entangled composite bosons
(1.31)
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|ψi〉 = c†Lc
†
R|0〉 ≡

1

d

d∑
i,j=1

a†i,Lb
†
i,La

†
j,Rb

†
j,R|0〉 → (1.60)

1

2d
√
χ2

d∑
i,j=1

(a†i,Lb
†
i,La

†
j,Lb

†
j,L + a†i,Rb

†
i,Ra

†
j,Rb

†
j,R)|0〉,

≡ (c†2L + c†2R )

2
√
χ2

|0〉 = |ψf〉,

where

χ2 = 1− 1

d
= 1− P. (1.61)

Now that we have defined the desired transformation, let us ex-
amine the entanglement properties of both initial and final states. It
is crucial to note that, in this particular case, the total system is made
of indistinguishable subsystems. Of the total of 4 particles, two are of
type A and two are of type B. This requires the use of the approach
presented in [35]. However, considering the kind of information we
are interested in, it is sufficient to examine the purity of some sub-
systems.

Since the system is made of two components for each type of parti-
cles, the trace of each single particle reduced density matrix is equal
to 2 [34]. Ergo, renormalization is required. Using the definition in
(1.7), considering particle of type A, we can show that its single par-
ticle state does not change through the transformation (1.60).

ρAi = ρAf =
1

2d

∑
X=L,R

d∑
i=1

a†i,X |0〉〈0|ai,X . (1.62)

Thus, the value of the single-particle purity does not change too, P =
1
2d

. Of course, since the system is symmetric with regards to the type
of particles, the single particle state for type B is analogue to the one
for type A.

At this point, we need to consider two-partite states. More pre-
cisely, here we are interested in reduced states of particles of the same
type. By definition, the matrix elements can be computed using the
formula

ρAkl,nm = 〈ψ|amana†ka
†
l |ψ〉. (1.63)
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We get

ρAi =
1

d2

d∑
i,j=1

a†i,La
†
j,R|0〉〈0|aj,Rai,L, (1.64)

ρAf =
1

d2χ2

d∑
i,j=1
i>j

(
a†i,La

†
j,L|0〉〈0|aj,Lai,L (1.65)

+ a†i,Ra
†
j,R|0〉〈0|aj,Rai,R

)
.

Clearly, the final state is different from the initial one. In fact, the
two-partite purity changes from P

(2)
i = 1

d2 to P (2)
f = 1

d(d−1)
.

Therefore, we can say that the transformation (1.60) affects the
entanglement at the level of two particles. We observe that at the
two particle level, for particles of the same type, the entanglement
decreases through this transformation. Hence, interaction may not
be required between particles of different types. Nevertheless, some
kind of interaction between particles of the same type may lead to
the necessary decrease of entanglement, P (2)

i < P
(2)
f .

1.4 Nonlocal bunching

Now, our goal is to confirm the conjecture suggested in the previ-
ous section. I fact, this will also answer to the question: can a pair of
spatially separated fermions exhibit some kind of single boson be-
haviour? This requires particles A and B to be spatially separated, so
they cannot interact while remaining entangled.

Let us say that Alice and Bob are conducting two spatially sep-
arated experiments. They share two composite bosons, which are
split into two elementary fermions. Particles of type A are in Alice’s
laboratory, while particles of type B are with Bob. In order to show
that the transformation (1.60) can be realised using only local oper-
ations, we can take advantage of a Bell-like setup [36]. Usually, this
kind of setup is considered for disproving local realistic description
of measurements with spatially separated constituents. However, in
this study we are not interested in that. Our goal is to achieve the
transformation (1.60). The entanglement between particles A and B
does not depend on the distance between them, ergo each composite
boson can be described by the state (1.13). In addition to that, let us
consider that the constituents belonging to each composite boson are
occupying a different mode, i.e. modes labelled X = R,L. Therefore,
we can write the initial state
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Figure 1.2: Sketch of the nonlocal bunching scenario of two composite
bosons. The possible outcomes correspond to particles occupying the same
mode. In this case, one cannot distinguish which particle belongs to which

composite boson. [1]

|ψi〉 = c†Lc
†
R|0〉 ≡

1

d

d∑
i,j=1

a†i,Lb
†
i,La

†
j,Rb

†
j,R|0〉. (1.66)

As a matter of fact, if particles of the same type are allowed to
interact via the Hamiltonian (see Fig. 1.2),

HA =
d∑

i,j=1
i>j

(a†i,La
†
j,Laj,Rai,L + a†i,Ra

†
j,Rai,Raj,L

+ a†i,La
†
j,Raj,Lai,L + a†j,La

†
i,Raj,Rai,R), (1.67)

and

HB =
d∑

i,j=1
i>j

(b†i,Lb
†
j,Lbj,Rbi,L + b†i,Rb

†
j,Rbi,Rbj,L

+ b†i,Lb
†
j,Rbj,Lbi,L + b†j,Lb

†
i,Rbj,Rbi,R), (1.68)

we will arrive at a transformation that is very similar to (1.60). More-
over, this generated transformation depends on the Schmidt rank,
i.e. the amount of entanglement between the constituents. In fact,
for highly entangled composite bosons, the Hamiltonians (1.67) and
(1.68) will generate a transformation that is identical to (1.60).
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1.4.1 Evolution generated byHA andHB

First, let us consider the Hamiltonian (HA) for particles of type A.
The eigenvectors of this Hamiltonian are

|1〉 =
1√
2

(a†i,La
†
j,L + a†i,La

†
j,R), (1.69)

|2〉 =
1√
2

(a†i,La
†
j,L − a

†
i,La

†
j,R), (1.70)

|3〉 =
1√
2

(a†i,Ra
†
j,L − a

†
i,Ra

†
j,R), (1.71)

|4〉 =
1√
2

(a†i,Ra
†
j,L + a†i,Ra

†
j,R), (1.72)

|5〉 = a†i,La
†
i,R, (1.73)

and the corresponding eigenvalues are: +1 for (1.69, 1.72), −1 for
(1.70, 1.71) and 0 for (1.73).

If we consider an initial state of the form

1√
2

(|1〉 − |2〉). (1.74)

It will evolve and become at time t

1√
2

(e−it|1〉 − eit|2〉). (1.75)

Actually, the state (1.75) can be rewritten as

(−i sin(t)a†i,La
†
j,L + cos(t)a†i,La

†
j,R)|0〉. (1.76)

Using a similar approach, the state

1√
2

(|3〉+ |4〉), (1.77)

will evolve to
1√
2

(e−it|4〉+ eit|3〉), (1.78)

which can be rewritten as

(−i sin(t)a†i,Ra
†
j,R + cos(t)a†i,Ra

†
j,L)|0〉. (1.79)
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Consequently, for t = π
2
,HA will generate the following evolutions

a†i,La
†
j,R → −ia

†
i,La

†
j,L for i > j, (1.80)

a†j,La
†
i,R → −ia

†
i,Ra

†
j,R for i > j, (1.81)

a†i,La
†
i,R → a†i,La

†
i,R. (1.82)

By following similar steps, it can be easily shown that the same holds
for particles of type B with the HamiltonianHB (1.68).

Ergo, the state (1.66) will evolve to

1

d

( d∑
i>j=1

− a†i, Lb
†
i, La

†
j, Lb

†
j, L − a

†
i, Rb

†
i, Ra

†
j, Rb

†
j, R

+
d∑

k=1

a†k, Lb
†
k, La

†
k,Rb

†
k,R

)
|0〉

=
(
− (c†L)2 + (c†R)2

2
+

1

d

d∑
k=1

a†k, Lb
†
k, La

†
k,Rb

†
k,R

)
|0〉,

= −
√

1− P |ψf〉+
√
P |γ〉, (1.83)

such that

|ψf〉 =
(c†L)2 + (c†R)2

2
√
χ2

|0〉, (1.84)

|γ〉 =
1√
d

d∑
k=1

(
a†k,Lb

†
k,La

†
k,Rb

†
k,R

)
|0〉. (1.85)

Here, we have a local evolution, because particles of the same type
are in the same spatial location. Clearly, this evolution can lead to the
state |ψf〉. The probability of this case to happen 1−P depends solely
on the amount of entanglement inside each composite boson. Which
means that the constituents need to be strongly correlated (d� 1 and
P → 0) in order to recover the transformation (1.60). Note that this
result is in agreement with previous claims regarding the bosonic
quality and its relation to the degree of entanglement.

The scenario discussed above is an atypical bunching scenario, be-
cause the bosons considered here are not elementary, but composite
particles. This makes interaction crucial for the stability of the sys-
tem when going through a beam splitter. However, one need to be
careful when considering interacting constituents. For instance, pre-
viously suggested scenarios like [24] may seem like the standard one
(interaction-free bunching scenario using elementary bosons). This is
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because particles A and B are allowed to interact only to provide sta-
bility to the composite boson. However, since all the constituents of
both composite bosons are in the same mode, one cannot distinguish
which particle of type A belongs to the first or the second composite
boson. The same holds also for particles of type B. Consequently, the
interaction will bind all the constituents into a four-partite system,
which can be interpreted as a two-particle Fock state.

1.5 Summary

In this chapter, we saw that an entangled pair of spatially sepa-
rated fermions can exhibit a single particle bosonic behaviour. Using
two copies of such a pair, it is possible to locally evolve the system
and arrive at a state which can be interpreted as an analogue of a
two-partite bosonic Fock state. Also, we saw that it is impossible for
a pair of entangled fermions to undergo an interaction free beam
splitting operation, in an intact manner. Consequently, we can say
that such pairs cannot be considered as single bosons in an unam-
biguous way. In addition, it is important to mention that these com-
posite bosons are very fragile. Even if entangled pairs of spatially
separated fermions can exhibit single boson behaviour, they would
be extremely sensitive to external disturbance [8].
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Chapter 2

On dynamical stability of
composite particles

The results included in this chapter were published as a regular article in
Physical Review A [2].

2.1 Introduction

A composite particle is a divisible system, made of at least two in-
divisible constituents. This divisible nature implies that the system
has an internal structure. In other words, it has information hidden
inside of it. Understanding the reasons and conditions which make
the constituents exhibit a collective behaviour, as if they make a sin-
gle entity to the outside observer, is one of the key problems of the
field of many body physics, and complex quantum systems, for re-
cent reviews see [6, 37].

Previous works suggested that the information embedded within
the internal structure of composite bosons has a crucial role behind
some collective behaviour [7–9, 38–42]. In the previous chapter, we
arrived at a similar conclusion. However, while considering the sta-
bility of a composite particle going through a beam splitting opera-
tion, we also saw that interactions are necessary, namely for entan-
glement production or consumption (depending on the case). This
lead us to ask: is it possible to have a situation where only entangle-
ment is responsible for a collective behaviour? This is the question I
will consider in this chapter.

In the quantum regime, we know that objects can exhibit particle-
like behaviour, while in other situations the same objects can behave
in a wave-like manner. This is called wave-particle duality, and this is
going to be of crucial importance in the following discussions. In fact,
in the previous chapter, our approach for studying composite parti-
cles exposed their particle-like nature. In this case, we saw that in-
teractions are required in order to keep them stable. However, when
a composite particle is behaving like a wave, thing will be different
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regarding its stability. In this chapter, I will consider a system made
of two constituents, and I will be interested in the way the system
will spread via an interaction-free evolution.

In fact, the concept of a composite particle is often ambiguous. This
is why I will start this chapter by stating few definitions regarding
what can be considered as stable composite particle, or a decayed
one. Considering these definitions, I will discuss an interaction-free
spread of a bipartite system, in a double Gaussian state, over a one-
dimensional space. More precisely, I will be interested in the role of
the quantum correlations in preserving the stability of the system. In
the last part of this chapter, I will examine the effects of thermaliza-
tion over the spread of the same system.

2.2 Preliminaries

2.2.1 Single vs. composite particles

The most obvious property of a particle is the fact that it is a local-
ized object. Unlike waves, a particle can be associated with a single
position. Therefore, when a particle is confined within a region of
space, and a number of detectors is distributed over this region, at
most one detector will click every time a measurement is performed.
Ergo, one can say that a single particle can be associated with a sin-
gle detector click. In addition to the localization, one can enumerate
many other properties (like spin, charge ... etc) which are fundamen-
tal to what one can consider as a particle. However, in this discussion,
only the position and momentum, or velocity, will bring a significant
impact. This is why only these two variables will be brought to focus.

First, let us consider a system made of many elementary consti-
tuents. If after performing the same measurement described above,
only one detector will click, such a system can be viewed as a com-
posite particle. In other words, a composite particle should mimic
the localization property of a single particle. After an evolution of
time t, this composite particle is considered to be stable as long as its
constituents remain close enough to each other. Otherwise, one can
say that the composite particle has decayed. Also, by following this
line of thoughts, one can say that a composite particle requires few
parameters to be fully described. However, if this composite particle
will fall apart, one will need more parameters to describe it. This is
because when a composite particle falls apart, some correlations are
lost. For instance, since a composite particle has all its constituents
close to each other, then the knowledge of the position of one of the
constituents can imply some information regarding the position of
the other constituents. On the other hand, in order to express the
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state of a decayed composite particle one needs to know about the
position and momentum of each constituent.

As matter of fact, the stability of a composite particle can be main-
tained if its constituents are properly correlated, or if they are attrac-
tively interacting. When the constituents are initially close to each
other, and all their velocities are identical, the entire system will move
toward the same direction with the same speed. This will keep the
intra-constituents distances constant as long as they do not experi-
ence any external forces. In such a scenario, the composite particle
will remain intact while being in a perpetual motion. Here, the source
of the composite particle’s stability is the correlations between the ve-
locities and positions of its constituents. However, if external forces
are exerted, stability might become temporary. If all the constituents
experience the same forces, the change of their velocities will be the
same. Consequently, the composite particle will remain stable, as in
the previous example. However, if these forces act differently on each
constituent, then their velocities will start to diverge, and so will be
their intra-constituents distances. In this case, the composite parti-
cle will inevitably fall apart. By the time this constituents will be
far enough from each other to make two detectors click, the system
can no longer be considered as a composite particle. When the con-
stituents are attractively interacting, even if the external forces do not
act in the same way on all the constituents, the composite particle
will remain stable, provided that the intra-constituents interactions
are strong enough (see Fig 2.1).

2.2.2 Quantum particles

Within the domain of quantum theory, one can no longer think
about particles following the behaviour mentioned in the previous
section. Due to the particle-wave duality, an initially localized quan-
tum object will evolve in time and spontaneously disperse like a
wave. This object will be in a superposition of being in many dif-
ferent positions at the same time, i.e. it will be delocalized. In such a
case, performing a measurement of the position of this object as de-
scribed in the previous section will lead to the collapse of the wave
function. In other words, the performed operation of measurement
will bring the object back to a localized state. This means that only a
single detector, in an indeterministic way, will click. At the moment
of the measurement, the particle will be within the region associated
with the click, and all the other superpositions will be destroyed.
Similarly to the classical ones, a quantum particle can also be associ-
ated with a single click.
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a) b) c)

Figure 2.1: Sketch of three scenarios describing the dynamics of a clas-
sical composite particle. a) The two constituents are not interacting but
their momenta are correlated. After reflecting of a flat wall both momenta
will change in similar way. Consequently, both constituents will remain
close to each other. b) Two non-interacting constituents with correlated
momenta scattered by an irregular wall away from each other. The corre-
lation between their momenta gets disturbed because each particle is re-
flected by the wall at a different angle. c) Two attractively interacting con-
stituents scattered by an irregular wall remain together. Even if they get
reflect at different angles, the interaction keeps them close to each other.

Hence, their momenta remain correlated. [2]

On one hand, the concept of compositeness, within a classical
framework, is closely related to the correlations between the posi-
tions and momenta of the constituents. However, the physics of a
quantum composite particle have to obey the Heisenberg uncertainty
principle. In other words, one is not allowed to know simultaneously
both position and momentum of each constituent. For instance, if a
bipartite system is initially localized in a single position, then both
constituents are in the same position. Nevertheless, in such a case,
one is unable to know any thing about their velocities. Therefore,
each one will spread independently, which will lead to the decay of
the composite particle as a whole. This is because the knowledge of
the state of one particle will say noting about the other one. Thus, it
will be highly unlikely for the constituents to remain close to each
other.
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Assuming a bipartite system spreading via a free evolution. If the
constituents remain close enough to each other, performing a mea-
surement will lead to a single detector click. In this case, the total
quantum system mimics a classical composite particle. Considering
the conclusions drawn by C. K. Law and C. Chudzicki et al. [7, 8],
it is natural to think about the role of entanglement behind such a
composite behaviour. In other words, we can ask: is it possible to keep
these two constituents close to each other without interactions and using
only entanglement as a resource for the stability of the total system? In this
chapter, I will consider this question and discuss the free dynamics of
a bipartite system in a double Gaussian state. My goal is to identify
a single particle behaviour of the total system and to examine how it
depends on entanglement.

2.3 Spread of a composite particle

2.3.1 A composite particle in a double Gaussian state

Gaussian wave packets are particularly suited for studying the
considered problem. This is because they are mathematically sim-
ple while having interesting properties. However, the conclusions
which will be drown later can also be applicable for more general
class of states. First, let us recall some elementary definitions. A stan-
dard single-particle Gaussian packet can be expressed by

ψ(x, t = 0) = N exp(−x2/2σ2). (2.1)

Here, the initial position is centred around x = 0 and the momen-
tum is also centred around the same value p = 0. N is a normal-
ization constant and σ/

√
2 is the so-called standard deviation. For

an interaction-free evolution the standard deviation will grow with
time as

∆x(t) =
1√
2

√
σ2 +

h̄2t2

m2σ2
, (2.2)

wherem is the mass of the particle. Note that at t = m
h̄
σ2, the standard

deviation would have grown by the factor of
√

2. In fact, it is possible
to rewrite the equation (2.2) as

∆x(t) =
1√
2

h̄

mσ

√(mσ2

h̄

)2

+ t2. (2.3)

Clearly, for t � m
h̄
σ2, the time-dependent standard deviation can be

approximated as

∆x(t) ≈ h̄√
2mσ

t. (2.4)
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This means that for a greater initial variance, the wave packet spread
is slower.

Now, let us consider two one-dimensional particles in a double
Gaussian state.

ψ(x1, x2, t = 0) = N e−
(x1−x2)2

4σ2 e−
(x1+x2)2

4Σ2 , (2.5)

such that σ/
√

2 and Σ/
√

2 are the standard deviations along the di-
rections of the relative distance x1−x2√

2
and the centre of mass x1+x2√

2
,

respectively. In the same way used in chapter 1, let us consider the
purity of a single particle density matrix as a measurement of the de-
gree of entanglement between the particles. We already know that its
general definition is given by

P = Tr{ρ1(x1, x
′
1)2} = Tr{ρ2(x2, x

′
2)2}. (2.6)

The purity was calculated in [7] and it has the form

P =
1−Z
1 + Z

, (2.7)

where

Z =

(
σ − Σ

σ + Σ

)2

. (2.8)

Thus, it can be rewritten as

P =
2σΣ

σ2 + Σ2
. (2.9)

Note that only when σ = Σ the purity is equal to 1, which means that
the state is separable. In the limit of σ � Σ or σ � Σ the particles
are strongly correlated. Actually, the entanglement properties of the
double Gaussian quantum states was already studied in [7]. Now, let
us consider the dynamics.

2.3.2 Free spread of a composite particle

First, let us examine an interaction-free evolution of the state (2.5)
via the free particle Hamiltonian defined by

Hfree =
p2

1 + p2
2

2m
, (2.10)

assuming that both particles have the same mass. In fact, one can
rewriteHfree as

Hfree =
(p1 + p2)2

4m
+

(p1 − p2)2

4m
, (2.11)
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or
Hfree = H+ +H−, (2.12)

where H± = (p1±p2)2

4m
. This suggests that each Gaussian in (2.5) will

evolve like a single particle free Gaussian wave-packet, independently
of the other one. Consequently, the standard deviations of each Gaus-
sian will grow similarly to (2.2).

When the system is in a separable state, i.e. σ = Σ, the state (2.5)
becomes

N e−x2
1/2σ

2

e−x
2
2/2σ

2

. (2.13)

Thus, each particle will exhibit an independent free evolution, and
consequently the system as whole will not be able to fulfil the afore-
mentioned criteria for composite particles.

Remarkably, when the constituents are highly entangled, the sys-
tem will mimic an evolution of a composite particle. Note that in this
case the factorization (2.13) is no longer possible. Also, when the sys-
tem evolves for long times, the standard deviations corresponding to
the centre of mass and the relative position will grow as t/Σ and t/σ,
respectively. Which means that for Σ � σ, the centre of mass will
get delocalized, while the distance between the particles will grow
slowly (see Fig. 2.2).

Now, let us define criteria for the decay of a composite particle.
For that, let δ ≡ σ/

√
2 be the initial size of the composite particle and

τ ≡ m
h̄
σ2 be its lifetime. As long as the size of the system is less

than
√

2δ, we say that the composite particle is still stable. Other-
wise, we say that it has decayed. In fact, for t > τ , the size of the
composite particle will be large enough to consider that a decay has
occurred. Using (2.2) and (2.9), we can easily show that the centre of
mass spreads over the distance

∆cm(t) =
1√
2

√
Σ2 +

h̄2t2

mΣ2
. (2.14)

For t = τ , we can write

∆cm(τ) =
1√
2

√
Σ4 + σ4

Σ2
=

δ

P

√
4− 2P 2. (2.15)

Clearly, in this case the distance ∆cm(τ) depends only on the initial
size of the composite particle δ and the degree of entanglement P .
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Figure 2.2: Interaction-free evolution of two particles in a double Gaussian
state for a separable case (top) and an entangled one (bottom). Natural

units are considered (h̄ = 1 and m = 1). [2]

2.3.3 Effect of temperature on the spread of a compos-
ite particle

Now, let us consider the same scenario as above, but with non-zero
temperatures. Using the model presented in [43], we can redefine the
initial state as

ψk1,k2(x1, x2, t = 0) = N e−
(x1−x2)2

4σ2 +i
(k1−k2)(x1−x2)

2

× e−
(x1+x2)2

4Σ2 +i
(k1+k2)(x1+x2)

2 , (2.16)

where k1 (k2) stands for the momentum associated with the first (sec-
ond) particle. In case of a non-zero temperature, these momenta need
to be random. Hence, we have to associate them with some probabil-
ity distributions µ1(k1) and µ2(k2).

For convenience, we can assume k1 and k2 to be discrete, indepen-
dent and identically distributed according to Maxwell distribution.

µ(k, T ) =
1

Z
e
− h̄2k2

2kBT , (2.17)
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Figure 2.3: Effects of thermalization on the dynamics of two particles in a
double Gaussian state for few temperatures. Natural units are considered

kB = 1 and h̄ = 1. [2]

where Z stands for the partition function, Z =
∑

k e
− h̄2k2

2kBT , T is
the temperature, and kB is the Boltzmann constant. The effect of the
thermalization on the spread of the considered composite particle
is shown in Fig. 2.3. Here, each momentum can take values ± h̄nπ

5
,

where n = 0, 1, . . . , 10. Clearly, we can see that the distance between
the constituents grows as temperatures get higher. Therefore, we can
say that, as expected, the increase of temperature will lead to a faster
decay of our composite particle.

Remarkably, the effect of thermalization is mainly focused on the
relative distance between the constituents. To explain why, let us de-
fine ∆T (k) as the thermal spread of the momentum. For a particle of
mass m, after time t, the thermal fluctuations give rise to a spread
which will cover the distance ∆T (k)

m
t. Note that ∆T (k) ≤ 4h̄π. In addi-

tion, we saw earlier in this chapter that, in the limit of long times of
evolution, the spread will scale as ≈ h̄√

2mσ
t. Consequently, the effect

of thermalization will dominate the natural spreading of our com-
posite particle if h̄√

2σ
� ∆T (k). In this discussion, the initial state was

always prepared such that Σ � σ. As temperatures get higher, the
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thermal fluctuations will dominate first the spreading of the Gaus-
sian associated with the relative distance. In the limit h̄√

2σ
� h̄√

2Σ
,

the temperatures will need to get even higher for the thermal fluc-
tuations to dominate the spreading of both Gaussians. Therefore, we
can argue that if the temperature is low enough, the effects of ther-
malization are limited to one degree of freedom, namely the relative
distance.

From [43], we know that the standard deviation of the relative dis-
tance, assuming thermalization, changes as

∆T (x1 − x2)(t) =
1√
2

√
σ2 +

(
h̄2

m2σ2
+
kBT

m

)
t2. (2.18)

Clearly, for high temperatures, the composite particle will decay after
time τT ≈

√
m
kBT

. Note that in this case, the initial entanglement does

not have any role.

From the discussion above, one can easily show that the thermal
fluctuations dominate the spread of our composite particle when

T >
h̄2

mkBσ2
. (2.19)

For a numerical example, let is consider a system made of two elec-
trons at one hundred nanometres apart (10−7 m). From the inequality
above we get T > 0.088K. Note that the considered distance between
the electrons is within the range known for Cooper pairs [44]. Re-
markably, the temperatures T > 0.088K are also within the range of
temperatures at which the formation of Cooper pairs are observed
[45]. However, one need to keep in mind that in this work we are
considering an over simplified toy model. Therefore, in realistic situ-
ations other effects should be also taken into account.

2.3.4 Entanglement as resource for the stability of com-
posite particles

We saw in the previous chapter that the stability of a composite
particle going through a splitting operation requires the generation
of entanglement. We considered a transformation of the form

c†x0
→
∑
x

αxc
†
x, (2.20)
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such that
∑

x|αx|2= 1 and

c†x0
=

d∑
i=1

√
λia
†
x0,i
b†x0,i

. (2.21)

c†x0
is the creation operator of a composite particle in mode x0. The

Schmidt rank dwith the Schmidt distribution {λi}di=1 indicate the de-
gree of entanglement stored inside each composite particle. In the
case of d = 1, we can write c†x0

= a†x0
b†x0

, which means that the
constituents a and b are disentangled. Therefore, the transformation
(2.20) takes the form

a†x0
b†x0
→
∑
x

αxa
†
xb
†
x. (2.22)

Clearly, the transformation above creates entanglement, because its
right hand side is very similar to the definition in Eq. (2.21), see the
discussion on the purity and the Schmidt decomposition of bipartite
states in chapter 1. The fact that entanglement production is needed
implies that the transformation above is not possible without inter-
action.

However, in this chapter we saw that a bipartite non-interacting
system can get delocalized while its constituents remain close to each
other. If fact, this phenomena does not contradict the conclusion stated
above, because the actual transformation in this case is of the form

c†x0
→
∑
x

αxd
†
x, (2.23)

such that

c†x0
=
∑
y

βya
†
x0,y

b†x0,y
, (2.24)

d†x =
∑
y

γx,ya
†
x,yb

†
x,y. (2.25)

Note that the entanglement in this case is stored in two degrees of
freedom. One corresponds to the internal structure of the compos-
ite particle, encoded over y in

∑
y γx,ya

†
x,yb

†
x,y and the second corre-

sponds to the spatial position of the composite particle encoded over
x in

∑
x αxd

†
x. The idea of the study presented in this chapter con-

sists of the following: the total entanglement should remain the same
through the evolution. So, if the entanglement encoded over the spa-
tial degree of freedom increases, the entanglement stored within the
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internal structure of the system should decrease. In other words, con-
sidering the component a, its initial state is given by

ρa(0) =
∑
y

|βy|2a†x0,y
|0〉〈0|ax0,y, (2.26)

and it final state takes the form

ρa(t) =
∑
x,y

|αx|2|γx,y|2a†x,y|0〉〈0|ax,y. (2.27)

The idea is to have the same purities for both of the states above
equal to each other.

To conclude, a composite particle remains stable during a free evo-
lution because the entanglement stored within its internal structure
is consumed. Once all entanglement is converted to its spatial de-
gree of freedom, i.e. its internal structure runs out of quantum corre-
lations, d†x = a†xb

†
x , the decay of the system become inevitable. Note

that this interpretation explains why the more entangled is the ini-
tial state, the further the system will spread before it falls apart, see
Eq. (2.15).

2.4 Summary

In this chapter, the problem of stability of quantum systems was
studied. Here, the aim was to investigate the role of entanglement be-
hind the stability of composite particles. I considered a free evolution
of a bipartite quantum system in a double Gaussian state. We saw
that even if the constituents are not attracted to each other, they will
remain close to each other, provided that their initial state is prop-
erly entangled. Namely, if the Gaussian corresponding to the centre
of mass is much narrower than the one corresponding to the rela-
tive distance, the first will spread much faster than the second. This
means that the centre of mass will get delocalized much faster than
the growth of the relative distance. Also, the expression of the dis-
tance over which the centre of mass will get delocalized before the
composite particle will decay was shown. The explicit form of this
expression suggests that it describes a distance which depends solely
on the initial size and the amount of entanglement of the system. We
saw that during the spread of the system the internal entanglement
stored inside the composite particle is consumed and converted into
spatial entanglement. This allows the composite particle to get de-
localized without falling apart. In the last part of this chapter, I ex-
amined the effects of thermalization on the dynamics of the same
system. As expected, we saw that increasing temperatures lead to a
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faster decay. In addition, I discussed the thermal contributions spe-
cific to each degree of freedom. For our particular double Gaussian
states, if the temperatures are low enough, the thermal contribution
will only effect the relative distances.
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Chapter 3

On the de Broglie wavelength
of composite particles

The results included in this chapter were published as a regular article in
Physical Review A [2].

3.1 Introduction

One of the key episodes that has lead to the rise of quantum physics
to the theory which we know today is the discovery of the concept
of wave-particle duality. Back in 1905, A. Einstein published an ar-
gument explaining the photoelectric effect [46]. Basically, he showed
that this effect is due to a particle-like behaviour of light. At that time,
this was a very counter-intuitive concept, since it was unanimously
accepted that light was of an electromagnetic wave. In 1924, L. de
Broglie argued in his Ph.D. thesis that the idea of Einstein can be ap-
plied the other way around for massive particles [47]. The idea of de
Broglie was experimentally confirmed in 1927 by C. Davisson and L.
Germer using electrons (they observed diffraction patterns after scat-
tering of a crystal of nickel metal) [48]. To make the theory consistent
with itself, since massive particles can behave in a wave-like man-
ner, de Broglie introduced the concept of an effective wavelength to
be associated to this massive particles. Nowadays, we call it the de
Broglie wavelength. Let us denote it by λdB. Also, he gave a mathe-
matical definition for this wavelength

λdB =
h

p
, (3.1)

such that h stands for the Planck constant, and p for the momentum
of the particle. Clearly, this wavelength depends on the mass of the
particle in question, since we can write

p = mv, (3.2)

where v and m stand for the velocity and the mass of the particle,
receptively.
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In the third volume of The Feynman Lectures on Physics published
in 1965, R. P. Feynman outlined a thought experiment of single elec-
trons passing through a double-slit. By that time, experiments using
beams of electrons in double-slit experiment was already realized,
e.g. in 1961 by C. Jönsson [49]. However, the work of C. Jönsson has
only illustrated a collective wave-like behaviour of a beam of elec-
trons, while the thought experiment of Feynman aimed to show that
individual electrons can behave like waves. The first experimental
realization of single-electron diffractions was done by G. Pozzi and
his team in 1974 [50]. However, in this experiment the authors mim-
icked the double-slits by using a prism to diffract individual elec-
trons, and they observed the build-up of the diffracted electrons into
a the fringe pattern. It was until 2008, that the same team reported the
first experiment using an actual double-slit [51], and in 2012 they re-
ported the first experiment where they measured the arrival of each
electron individually [52].

In a single-electron double-slit experiment, each electron will be
in a superposition and will pass through both slits. When it will ar-
rive at the screen behind the slits, it will interfere with itself. In this
scenario, for the electron to arrive to a given point on the screen,
it can take one of two paths (one path corresponding to each slit).
Because these two paths can have different lengths, the two super-
positions will arrive to the screen with a relative phase shift. This is
why the interference of each electron with itself will lead to the well
known fringe pattern. Interestingly, this fringe pattern will have a
period which depends on the de Broglie wavelength of the particle
in question, λdB. In other words, the double-slit scheme allow for ex-
perimental observation of the de Broglie wavelength.

In 1891, L. Zehnder proposed the idea of an interferometer using
two mirrors and two half-reflecting mirrors [53]. A beam of light can
be split into two beams and later recombined in order to observe
the interferences. In a follow-up article published in 1892, L. Mach
suggested that by tuning the position of the mirrors, we can change
the length of each path [54]. In this case, the difference between the
length of the two paths will lead to a phase shit between the two
light beams. This made it possible to observe the interferences of the
two beams as a function of the relative offset between their phases.
Nowadays, this scheme is called the Mach-Zehnder interferometer
(MZI). In Figure 3.1, a sketch of Mach-Zehnder interferometer is il-
lustrated. We can see that when the light beam will arrive to first
Beam Splitter (BS1) it will be split between two paths. After reflect-
ing from the mirrors, the beam will either go directly to the second
Beam Splitter (BS2), or pass through phase shifting device (ϕ) before
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Figure 3.1: Schematic representation of Mach-Zehnder interferometer. [2]

arriving at BS2. This device can change the length of the correspond-
ing path, which will lead to relative phase shift between the phases
of the two beams.

As a matter of fact, the MZI is considered as a simpler, yet more
controllable, version of the double-slit experiment. This is because
in the quantum regime the concept of both of them is based on a
particle in a superposition taking two paths at the same time and in-
terfering with itself at the output. In 1995, Y. Yamamoto and his team
first suggested to use a MZI for observing the collective de Broglie of
composite particles [38]. This has stimulated many works investigat-
ing different methods for observing and manipulating this collective
behaviour [39–42]. In addition, the concept of collective de Broglie
wavelengths has been proven to be applicable for quantum metrol-
ogy [55]. Since it can allow for imaging and sensing with precisions
beyond the classical limit.

In this work, my goal will be to show that the collective behaviour
due to entanglement is conditioned on the performed measurement.
Here, my study of compositeness is related to previous works within
quantum optics [38–42] and quantum information theory [1, 7–28,
56]. I will first discuss in details the standard MZI. Later, I will pro-
pose a MZI-like setup, within the one-dimensional Hubbard model,
and then discuss its similarities with the standard one. I will consider
a bipartite system in a double Gaussian state spreading over a dis-
crete lattice. Then, I will examine conditions under which a MZI-like
setup can lead to the observation of the collective de Broglie wave-
length of the considered system.
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3.2 Preliminaries

3.2.1 Standard Mach-Zehnder Interferometer

Now, let us go through the mathematics of what happens to a par-
ticle through a MZI. Initially, let a single particle be at the first input
of BS1. As we saw in the first chapter, the corresponding operation
will lead to the transformation (1.43)

a†1 →
1√
2

(a†1 − ia
†
2). (3.3)

Then, the particle in the second path, a†2, will undergo a phase shift
and acquire an extra phase factor e−iϕ = e

−i 2π∆x
λdB

1√
2

(a†1 − ia
†
2)→ 1√

2
(a†1 − ie−iϕa

†
2). (3.4)

Where ∆x stands for the difference between of the lengths of the two
paths, and λdB is the de Broglie wavelength of this single particle.
After, the particle will undergo a second beam splitting operation

1√
2

(a†1 − ie−iϕa
†
2) → 1√

2
(

1√
2

(a†1 − ia
†
2)− ie−iϕ 1√

2
(a†2 − ia

†
1)),

→ 1

2
((1− e−iϕ)a†1 − i(1 + e−iϕ)a†2). (3.5)

Therefore the probabilities of having the particle at detector 1 or 2
will take the form

〈a†1a1〉 =
1

2
(1− cos(

2π∆x

λ
(1)
dB

)), (3.6)

〈a†2a2〉 =
1

2
(1 + cos(

2π∆x

λ
(1)
dB

)). (3.7)

Clearly, the two probabilities are periodic as a function of the extra
length on the second path, ∆x. The period of these oscillations cor-
responds to an extra length that is exactly equal to the de Broglie
wavelength of a single constituent, 〈a†1a1〉|∆x=0= 〈a†1a1〉|∆x=λ

(1)
dB

.

Now, let us consider the case of two elementary particles. For sim-
plicity, we can assume that both particles have the same mass and ve-
locity. Hence, we can say λ(1)

dB correspond to each one of these single
particles. In addition, the collective de Broglie (λ(2)

dB) corresponding
to the total system can be written as

λ
(2)
dB =

λ
(1)
dB

2
. (3.8)
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First, let us assume that both particle are in input one of BS1, and
follow the same steps taken above.

a†1b
†
1 →

1

2
(a†1 − ia

†
2)(b†1 − ib

†
2). (3.9)

The operators a† and b† stand for the creation operators of the first
and second particle, respectively. Then, the particles on the second
path will acquire an extra phase factor e−iϕ

1

2
(a†1 − ia

†
2)(b†1 − ib

†
2)→ 1

2
(a†1 − ie−iϕa

†
2)(b†2 − ie−iϕb

†
2). (3.10)

Before the detection, a second beam splitting operation will be per-
formed at BS2.

1

2
(a†1 − ie−iϕa

†
2)(b†2 − ie−iϕb

†
2)→ (3.11)

→ 1

4
((1− e−iϕ)a†1 − i(1 + e−iϕ)a†2)((1− e−iϕ)b†1 − i(1 + e−iϕ)b†2).

Hence, the probabilities of having both particle at the same detector
take the form

〈a†1a1b
†
1b1〉ind = |1

4
(1− 2e−iϕ + e−i2ϕ)|2, (3.12)

〈a†2a2b
†
2b2〉ind = |−1

4
(1 + 2e−iϕ + e−i2ϕ)|2, (3.13)

such that |z| correspond to the modulus of the complex number z.
The subscript ind stands for independent particles. Here, we see that
we have oscillations as function of ϕ in addition to double oscilla-
tions as function of 2ϕ. This indicates an ambiguous behaviour of
total system which we cannot interpret as a single particle behaviour.

On the other hand, using the transformation (3.11), the probabili-
ties of having each particle at a different detector can be written as

〈a†1a1b
†
2b2〉ind = |−i

4
(1− e−i2ϕ)|2, (3.14)

〈a†2a2b
†
1b1〉ind = |−i

4
(1− e−i2ϕ)|2. (3.15)

Of course, using the equations above one can easily show that the
sum of the probabilities corresponding to all the possible outcomes
is equal to 1.

〈a†1a1b
†
1b1〉ind + 〈a†2a2b

†
2b2〉ind + 〈a†1a1b

†
2b2〉ind + 〈a†2a2b

†
1b1〉ind = 1. (3.16)
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In this discussion, we focus on the situations where a composite
particle exhibits single partite dynamics. The probabilities of hav-
ing each particle at a different detector, 〈a†1a1b

†
2b2〉ind and 〈a†2a2b

†
1b1〉ind,

correspond to outcomes which fail to fulfil our definition of single
particle behaviour stated in the previous chapter. Hence, we are only
interested in the cases for which the constituents stay together, i.e.
outcomes corresponding to 〈a†1a1b

†
1b1〉ind and 〈a†2a2b

†
2b2〉ind.

Now, let us consider the case of interacting particles, i.e. the beam
splitting operations are performed via the Hamiltonian described by
Eq. (1.49). In this case, both particles will always go out from the
same output

a†1b
†
1 →

1√
2

(a†1b
†
1 − ia

†
2b
†
2). (3.17)

Consequently, both particles will either undergo the phase shift to-
gether or avoid it together.

1√
2

(a†1b
†
1 − ia

†
2b
†
2)→ 1√

2
(a†1b

†
1 − ie−iϕa

†
2e
−iϕb†2). (3.18)

Also, they will go out of BS2 through the same output

1√
2

(a†1b
†
1−ie−iϕa

†
2e
−iϕb†2)→ 1

2
((1−e−i2ϕ)a†1b

†
1−i(1+e−i2ϕ)a†2b

†
2). (3.19)

This time, the probabilities of having both particle at the same detec-
tor take the form

〈a†1a1b
†
1b1〉int =

1

2
(1− cos(

2π∆x

λ
(1)
dB/2

)) =
1

2
(1− cos(

2π∆x

λ
(2)
dB

)), (3.20)

〈a†2a2b
†
2b2〉int =

1

2
(1 + cos(

2π∆x

λ
(1)
dB/2

)) =
1

2
(1 + cos(

2π∆x

λ
(2)
dB

)). (3.21)

Here, the subscript int stands for interacting particles. Visibly, the
period of these oscillations correspond to the collective de Broglie
wavelength of the composite particle,

〈a†1a1b
†
1b1〉int|∆x=0= 〈a†1a1b

†
1b1〉int|∆x=λ

(2)
dB
. (3.22)

Therefore, we can consider this as a single particle behaviour of the
total composite system. Note that, later in this chapter, the interfer-
ences will be plotted as a function of ϕ. In this case, one will need to
keep in mind that ϕ|

∆x=λ
(2)
dB

= π and ϕ|
∆x=λ

(1)
dB

= 2π. In other words, a
period equal to 2π implies individual behaviour of the constituents,
while a period equal to π may correspond to a collective behaviour
of the total system.
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We saw in this section that keeping the constituents together while
going through the interferometer is crucial for observing its collec-
tive de Broglie wavelength. As we saw in the first chapter, keeping
two particles together through a beam splitting operation requires
the generation of entanglement. Hence, interaction (or some kind of
post selection) is inevitable for observing a collective behaviour of
the total system. However, we saw in the previous chapter that en-
tangled non-interacting particles can stay close to each other while
their centre of mass spreads over the space. Ergo, one can expect that
such a phenomenon can lead to the observation of the collective de
Broglie wavelength in a generalized MZI scheme. Later in this chap-
ter, this hypothesis will be investigated while considering our defini-
tion of composite particles (from last chapter) and without revealing
the internal structure of system.

3.2.2 Discrete double Gaussian state

Similarly to the previous chapter, let us consider the evolutions of
double Gaussian states. Here, these sates are defined in a discrete
and finite space as follows

|ψ〉 = N
d∑

x1,x2=1

e
(x1+x2)2

4σ2 e
(x1−x2)2

4Σ2 a†x1
b†x2
|0〉, (3.23)

where a†x1
(b†x2

) stands for a creation operator of the first (second) con-
stituent at position x1 (x2). Also, let us assume periodic boundary
conditions, i.e., xj + d ≡ xj for j = 1, 2. This system will evolve via
the HamiltonianH = Hfree + V , such that

Hfree = −
d∑

x=1

(
a†x+1ax + a†xax+1 + b†x+1bx + b†xbx+1

)
, (3.24)

will give rise to the free spread of our composite particle. The term
V stands for a potential which will be exerted on the system.

3.2.3 Measurements

Now, let us recall few statements from the previous chapter. We
assumed that a bipartite system can be considered as a single entity if
its constituents are close to each other. So, we associated the concept
of a composite particle with a single detector click. However, for this
discussion, we will need to concretely define when two objects are
close and when they are spatially separated.

By definition, in a double Gaussian state the particles do not nec-
essarily share the same position. However, the relative distance be-
tween the constituents has a standard deviation δ = σ/

√
2, which we
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can consider as the size of the composite particle. In fact, when we
treat a composite system as single entity we need to discard any in-
formation regarding its internal structure. For instance, we can limit
our focus to the centre of mass of the system, provided that the rela-
tive distance is bellow some threshold ∆ (∆ ≥ δ). Practically, we can
implement this threshold by coarse graining the space.

From the definition of the state in Eq. (3.23), we can see that the
two constituents of the system are assumed to be distinguishable.
However, we would like to avoid revealing the internal structure of
our composite particle. Thus, we should neither be able to distin-
guish the constituents, nor to address them individually. This can
be achieved by appropriately choosing the operation for performing
the measurement. Our space is made of d different positions, with
periodic boundary conditions. For the coarse graining, let us say we
would like to divide it to m unit cells. Therefore, each cell will need
to have a size of ∆ = d

m
positions. We associate to each cell a detector

which can be described by the operator

Dj =

(j+1)∆∑
x1,x2=j∆+1

a†x1
ax1b

†
x2
bx2 . (3.25)

The index j stands for the label associated to each coarse grained
unit cell. The operator Dj has an eigenvalue equal to 1 only if both
particles are located within the jth cell, j∆ + 1 ≤ x1, x2 ≤ (j + 1)∆.
Otherwise, it has an eigenvalue equal to 0.

All things considered, in this measurement scenario we assume
that the space is coarse grained into m unit cells. Each cell is asso-
ciated with a detector. At most, one detector will click, register an
outcome 1, if both constituents are within its corresponding cell. In
case of a decay of our composite particle, which we interpret as hav-
ing each constituent in a different cell, all the detectors will register
an outcome 0 and will not click. However, one need to keep in mind
that coarse graining in this protocol might give rise to some imperfec-
tions. In some cases, the relative distance can be shorter than ∆, while
the constituents are in different unit cells. For example, for x1 = ∆−1
and x2 = ∆ + 1, neither of the detectors D0 or D1 will click, even if
|x2−x1|= 2. However, if ∆ is large enough, the probabilities for such
cases to happen will be relatively low.

It might be tempting to think of different detections operation,
such as

D
(a)
j +D

(b)
j =

(j+1)∆∑
x1=j∆+1

a†x1
ax1 +

(j+1)∆∑
x2=j∆+1

b†x2
bx2 . (3.26)
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This operation will lead to two clicks every time a measurement is
performed (one for each constituent). Of course, such an operation
can be used for checking if the composite particle has decayed or not.
Nevertheless, the aim of this work is to investigate the role of entan-
glement. Since the average value of this operation takes the form

〈D(a)
j +D

(b)
j 〉 = Tr{D(a)

j ρa}+ Tr{D(b)
j ρb}, (3.27)

we can say that no information is revealed regarding the quantum
correlations between the constituents. In order to access such infor-
mation, one will need to consider the variance or higher moments.

3.3 Mach-Zehnder-like setup

The main idea of this scheme is as follows. We consider a discrete
lattice of d positions with periodic boundary conditions. We coarse
grain this space into 4 unit cells, ∆ = d/4, labelled by j = 0, 1, 2, 3.
The initial state should be prepared at the centre of one of these unit
cells. Then, we let the wave-packet spread to the two neighbouring
cells and apply a phase shift only in one of them. After that, we let
the system evolve again and let it recombine and interfere with itself
at the forth cell where the measurements will be performed. To be
more specific, let us go through the details step by step.

First - State preparation: We prepare the initial state at the centre of
the cell labelled by j = 1, i.e the double Gaussian should be centred
around the position 3d/8

|ψ〉 = N
d∑

x1,x2=1

e
(x1+x2−3d/4)2

4σ2 e
(x1−x2)2

4Σ2 a†x1
b†x2
|0〉. (3.28)

In order to be consistent with our definition of a composite particle,
we choose the parameters σ and Σ such that the entire wave-packet
is located only within one unit cell, j = 1. Then, we let it spread to
the two neighbouring cells, j = 0 and j = 2, which will play the role
of the two paths in the standard MZI.

Second - Splitting of the wave-packet: We let the system evolve
via the HamiltonianHfree for a time period we call T/2 (see Eq. (3.24)).
Here, we are trying to realize a 50/50 beam splitting operation to the
cells j = 0 and j = 2. However, via Hfree, it is impossible to realize
that with perfect efficiency. This is due to the fact that the ideal 50/50
splitting is a perfectly periodic operation. However, since the ratio of
the eigenvalues ofHfree is in general irrational, the operator e−iHfreet is
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quasi-periodic.

E(k1, k2) = −2 cos

(
2π

d
k1

)
− 2 cos

(
2π

d
k2

)
, (3.29)

where E(k1, k2), and k1, k2 = 0, 1, . . . , d − 1 stands for the spectrum
ofHfree and the momentum of the first and the second particle. Nev-
ertheless, it is possible to approximately find value for T/2 such that
e−iHfree2T ≈ 1. In other words, our wave-packet starts to spread from
the cell j = 1 to the rest of the space. Since we are assuming that
our space is finite and with periodic boundary conditions, the wave-
packet will eventually continue spreading and at some point it will
recombine around its initial position, 3d/8. This state does not have
to match perfectly the initial wave-packet. Here we are interested in
the time where its fidelity with the initial wave-packet is at its max-
imum, we chose to call that time 2T . At half that time, T , the wave-
packet should be at the opposite cell j = 3, and at the quarter of that
time, T/2, the wave-packet should be in a superposition at the two
neighbouring cells, j = 0 and j = 2 (see Fig. 3.2, first row).

Third - Phase shift: Now that our wave-packet is split between
cells j = 0 and j = 2, a phase shift is applied at the cell j = 2 via
the operator Uϕ = e−iV ϕ, such that

V =

3d/4∑
x1,x2=d/2+1

(a†x1
ax1 + b†x2

bx2). (3.30)

and ϕ correspond to the time period over which the potential is ex-
erted.

Fourth - Recombination of the wave-packet: Now, we let the sys-
tem evolve again via the operator U = e−iHfreeT/2. As discussed above,
this should lead to the recombination of the wave-packet in the op-
posite unit cell, j = 3.

Fifth - Measurement: At this point, we apply the operator D3 in
order to verify if both constituents are within the corresponding cell
(see the definition of D3 in Eq. (3.25)).

The evolution of the initial wave-packet defined in Eq. (3.28) was
numerically simulated for three case, entangled without interactions
(Σ = 0.01 and σ = 2), separable without interactions (Σ = 0.01 and
σ = 0.01), and the same separable state with interactions. In the later
case, the dynamics were generated via Hfree + Hint, such that Hint
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Figure 3.2: Two-particle probability density plots showing the evolution in
the MZI-like setup for ϕ = 0. The first row corresponds to entangled initial
conditions, the second one to separable initial conditions, and the third one
to the evolution with an interaction (γ = 10) between the particles. T = 11

for the first two cases and T = 50 for the last one. [2]

correspond to a point-like interaction term.

Hint = −γ
d∑

x=1

a†xaxb
†
xbx, (3.31)

γ stands for an interaction parameter (attractive interactions corre-
spond to a positive γ and repulsive otherwise). In this simulations,
the parameters were chosen as d = 40, T = 11, and γ = 10. In order
to illustrate the splitting and recombination of the wave-packet, the
evolution of the system without the phase shift ϕ = 0 is presented in
Fig. 3.2.

On the other hand, in the case with phase shifts, I considered three
different sizes for the detector, D3. This will allow us to examine the
effects of revealing the internal structure of our composite particle
on the observed interferences. First, I assumed that the detector can
cover the entire cell j = 3, which correspond to a size ∆ = 10 (the
detector clicks if 31 ≤ x1, x2 ≤ 40). For the second case, I assumed a
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Figure 3.3: Average values 〈D3〉 as functions of ϕ. The first row corre-
sponds to entangled initial conditions, the second one to separable initial
conditions, and the third one to the evolution with an interaction (γ = 10)
between the particles. The graphs in each row represent different coarse
graining of space which corresponds to different resolutions of the detec-
tor D3. The coarse graining effect is especially important in the first two

cases with no interaction. [2]

smaller size ∆ = 4 to be covered by the detector, which means that
we get a click if both particles are within 34 ≤ x1, x2 ≤ 37 (a small
part at the centre of the cell j = 3). For the last case, I considered the
smallest size possible, ∆ = 1, which corresponds to a click if the first
and second constituent is at position x1 = 35 and x2 = 36, respec-
tively. For these three cases, the expectation value 〈D3〉 is plotted as
a function of the applied phase shift ϕ in Fig. 3.3.

As mentioned above, when the oscillations have a period of 2π it
corresponds to a single particle de Broglie wavelength, λ(1)

dB. On the
other hand, a period equal to π may imply a collective behaviour
of the composite particle, λ(2)

dB. Clearly, when the detector covers the
entire cell, j = 3, the collective behaviour is only visible when the
constituents are attractively interacting. However, when ∆ = 4, we
can see that the entangled state starts to lead to single particle be-
haviour of the total system. This can be attributed to the fact that in
this case ∆ and the composite particle are of comparable sizes. In
other words, we can say that the detector starts to reveal the internal
structure. For ∆ = 1, we can see that the period of the oscillations is
equal to π, even when the initial state is separable. In the previous
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chapter, we saw that separable states cannot lead to a single parti-
cle behaviour without interaction. Ergo, this double oscillations is a
consequence of the detection strategy, and neither due to the entan-
glement nor to a collective behaviour. For a separable state, we can
write 〈a†x1

ax1b
†
x2
bx2〉 = 〈a†x1

ax1〉〈b†x2
bx2〉. Assuming that both 〈a†35a35〉

and 〈b†36b36〉 are periodic functions with a period equal to 2π, it is
possible for the product 〈a†35a35〉〈b†36b36〉 to have a period equal to π.
Note that a similar case was already discussed when we considered
the standard MZI (see Eqs. (3.14) and (3.15)).

3.4 Why interaction is so important?

In this chapter, we saw that properly entangled states (3.23) of a
bipartite non-interacting system can manifest “some” composite be-
haviour. In this case, the success of observing composite features de-
pends on the measurement strategy. But, in general, interaction is re-
quired for observing a true manifestation of compositeness, that does
not depend on the performed measurement. In this section I will dis-
cuss why non-interacting systems cannot exhibit a fully composite
behaviour, and why interaction is so important for this behaviour.

First, let us reconsider the standard MZI. In the case of two parti-
cles with no interactions, from Eq. (3.11) we can write the probability
of having particle A at detector 1 as

〈a†1a1〉ind =
1

2
(1− cos(ϕ)). (3.32)

Note that in this case we have an individual behaviour of particle A.
On the other hand, when particles are allowed to interact, using Eq.
(3.20) we get

〈a†1a1〉int =
1

2
(1− cos(2ϕ)). (3.33)

In this case, we have a composite behaviour which corresponds to
the collective de Broglie wavelength, λ(2)

dB. Note that in Eq. (3.32), we
have an identical probability to the one we got for a single particle in
the standard MZI, see Eq. (3.6). This can be explained by the fact that
the free-evolution of each particle is independent of the behaviour of
the other one. In other words, during the evolution, if particles do not
interact, they do not know about each other. For instance, by looking
at the evolution of particle A, we cannot say anything about the evo-
lution of particle B. In fact, we can not know if particle B is in the
interferometer or not. However, when interaction is included, things
get different. In this case, particles can communicate, and share in-
formation. Such communication is not possible without interaction.
In fact, this is a variant of the no-signalling condition
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For example, let us consider ϕ = π. We see that in the independent
case, the particle A has zero chance of being at D1, 〈a†1a1〉ind|ϕ=π= 0.
On the other hand, when interaction is included, the probability cor-
responding to the same outcome is equal to one, 〈a†1a1〉int|ϕ=π= 1.
Thus, by allowing interaction and just looking for particle A, we can
say if particle B is in the interferometer or not. Ergo, we can say that
a composite particle requires interaction whenever it is involved in a
scenario that allows for signalling between its constituents. Note that
post-selective measurements can also simulate an effective interac-
tion, and consequently can lead to the observation of some compos-
ite features.

3.5 Summary

In this chapter I considered a Mach-Zehnder-like setup and my
aim was to observe the collective de Broglie wavelength of a bipar-
tite system. I considered a discrete space, which was divided into 4
coarse grained unit cells. We saw that when the system is prepared
in a double Gaussian wave-packet, and properly entangled, the en-
tire system can exhibit single particle behaviour and spread over
the space without falling apart. We saw that by considering periodic
boundary conditions, the dynamics of the system can mimic the dy-
namics of a particle in a standard Mach-Zehnder interferometer, and
thus allow for the observation of a composite feature of the system,
namely the collective de Broglie wavelength. For the measurements,
I considered three different strategies, ∆ = 10, ∆ = 4, and ∆ = 1. The
interference patterns were computed numerically for the considered
MZI. We saw that only when the measurement precision is compa-
rable to the size of the system, ∆ = 4, that entanglement can lead to
the observation of some composite behaviour. However, one need to
keep in mind that the true compositeness requires the constituents
to stay correlated, and therefore interactions are fundamentally re-
quired.
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Chapter 4

On the formation of
multipartite composite bosons

The results included in this chapter were published as a preprint version of
a regular article [3]. Currently, it is under review in Physical Review A.

4.1 Introduction

The concept of composite bosons has attracted the attention of
many authors from the quantum information community [7–28].
However, all the previous works published so far were considering
composite bosons made two constituents. It is only natural to ask if
this concept is also applicable for composite particles made of many
constituents. In this chapter, I will present a generalization to com-
posite bosons made of 2N fermionic constituents.

In fact, a system made ofN indistinguishable pairs of fermions has
many possible ways to form composite bosons. For instance, it can
be a single composite boson made 2N constituents. Also, the system
can split and form two composite bosons, each one made of N ele-
mentary fermions (assuming N is even). It is also possible to have N
bipartite composite bosons. Thus, one might ask: what are the con-
ditions necessary for the formation of these possible assemblies? and
what is their respective bosonic quality? Here, I will consider these
questions. I will study the ground state of the one-dimensional Hub-
bard model while tuning the strength of the inter-particle interac-
tions. Specifically, I will discuss the behaviour of N identical pairs of
elementary fermions on a lattice, and examine their corresponding
bosonic quality.

Considering a large number of constituents implies many possi-
ble structures. This leads to the question: how can we control the
structure of composite particles in laboratory? The relevance of this
question stems from the fact that some structures seems to appear
spontaneously. In some situations, this spontaneous behaviour can
be disadvantageous. Especially, if it does not lead to the structure
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of interest. For instance, the Bose-Einstein condensation of atomic
Hydrogen [57]. The main challenge here was to keep the Hydrogen
atoms from forming H2 molecules, e.g. by using high magnetic fields
to achieve spin polarization [58]. In this chapter, I will show that the
control of the strength of interactions has a crucial role behind the
formation and control of composite structures.

4.2 Composite boson made of a single A-B
pair

In this section, I consider a system made of a single A-B pair within
the Hubbard model. My aim is to find the ground state and to exam-
ine its bosonic properties depending on the strength of interactions.
Here, I will show that this system can exhibit a good bosonic be-
haviour in the limit of strong point-like interactions. This is a quick
warm up, since the behaviour of such a system was already dis-
cussed in a previous work [24].

4.2.1 A bipartite composite boson

In the first chapter, we discussed the idea of composite bosons in a
maximally entangled state

c†|0〉 =
1√
d

d−1∑
k=0

a†kb
†
k|0〉. (4.1)

For this state, the Schmidt distribution is uniform, i.e. all the non-zero
Schmidt coefficients are equal to each other, {λi = 1/d}di=1. Hence,
the name “uniform state” was allocated to (4.1) in [19]. The internal
structure for this state depends on a single variable, d. This makes
the evaluation of its bosonic quality relatively easy, see Eqs. (1.32 –
1.35). However, for this discussion, it is more convenient to consider
a more general description of a composite boson made of two distin-
guishable fermions.

c†s,r|0〉 =
1√
d

d−1∑
k=0

ei
2π
d
kra†kb

†
k+s|0〉. (4.2)

such that, r, s = 0, 1, . . . , d − 1. Note that regardless of the indices
r and s the quality of the composite boson created by c†s,r depends
only on the Schmidt rank, d. One can easily show that the purity for
a given d corresponds to its smallest possible value, P = 1/d. Ergo,
we can say that the operator c†s,r creates a composite boson with the
best possible quality.
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As matter of fact, expression (4.2) describes a set of d2 orthonormal
states

〈0|cs,rc†s′,r′ |0〉 = δs,s′δr,r′ , (4.3)

such that δx,y stands for the Kronecker delta. However, as reported
in [6], this orthogonality is not preserved for states corresponding to
more than one composite boson.

|〈0|c†Ns,r |c
†N
s′,r′ |0〉|≥ 0 6= δs,s′δr,r′ . (4.4)

Interestingly, when N = d, the Pauli exclusion principle implies that
every mode is occupied, which correspond to a unique state,

c†ds,r|0〉 ≡ c†ds′,r′ |0〉, (4.5)

regardless of the values of s, s′, r and r′.

Now, let us consider that our system is described by the operator
c†s,r but in a superposition for different values of the indices s and r.

d−1∑
s,r=0

αs,rc
†
s,r|0〉. (4.6)

In this case, many terms might cancel out. In fact, it is possible to
remain only with a single term, i.e. a†kb

†
k′ . This corresponds to a sep-

arable state, therefore the system cannot exhibit any bosonic quality.
On the other hand, we can say that the more terms will remain, the
more ideal the bosonic behaviour will be.

4.2.2 Bosonic quality of the Hubbard ground state

In 1968, E. H. Lieb and F. Y. Wu showed that the one dimensional
Hubbard model have an exact solution with Bethe ansatz [59]. How-
ever, in this section, we are considering two distinguishable particles
(an A-B pair) within the same model. I assume that attractive inter-
action occurs when both particles are in the same site. When the en-
ergy corresponding to this interaction is much stronger than the ki-
netic energy of the particles, the ground state of the system will be a
superposition corresponding to both particles always occupying the
same site. In this case, the A-B pair can be approximated by a hard-
core boson. Inspired by the results reported in [59], I will show that
the bipartite ground state is simply a sum of maximally entangled
terms of the form (4.2).

First, let us consider that the Hubbard Hamiltonian contains two
terms

H = JH0 + UHp, (4.7)
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such that J and U are positive parameters. H0 and Hp stand for the
hoping and point-like interaction terms, respectively.

H0 = −
d−1∑
i=0

(
a†iai+1 + b†ibi+1 + h.c.

)
. (4.8)

Hp = −
d−1∑
i=0

a†iaib
†
ibi. (4.9)

In addition, I consider the periodic boundary condition d ≡ 0.

Now, let us discuss the action ofH on |s, r〉 ≡ c†s,r|0〉. One can easily
show that

H|s, r〉 = − J(1 + ei
2π
d
r)|s+ 1, r〉

− J(1 + e−i
2π
d
r)|s− 1, r〉

− Uδs,0|s, r〉. (4.10)

Clearly,H does not affect the degree of freedom described by r. Con-
sequently, every value of r will lead to an independent set of equa-
tions. The hoping contribution is described by−J(1+e±i

2π
d
r). Hence,

its smallest possible value corresponds to −2J for r = 0.

For a moment, let us consider an infinite lattice, −∞ ≤ s ≤ ∞,
which means d → ∞. In this case, the states (4.2) correspond to a
purity equal to zero

P = lim
d→∞

1

d
= 0. (4.11)

This implies an ideal bosonic behaviour of the states (4.2), regardless
of the number of composite bosons, N .

Now, let us consider

|ψ0〉 =
∞∑

s=−∞

αs|s, 0〉, (4.12)

as a possible ground state forH. We can write

H|ψ0〉 = ε|ψ0〉, (4.13)

such that ε stands for the ground state energy. In order to determine
the values αs and ε we need to solve a set of recurrence equations of
the form

− ε

2J
αs = αs+1 + αs−1, (4.14)
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for s 6= 0, and an atypical equation

− (U + ε)

2J
α0 = α1 + α−1. (4.15)

First, let us focus on the typical equations (4.14). In general, this
kind of recurrence equations have solutions of the form

αs = Ars0 +Br−s0 , (4.16)

such that A and B are constants, while r0 and r−1
0 are roots of

r2 +
ε

2J
r + 1 = 0. (4.17)

In order to keep the ground state normalized, we need to assume
the condition

lim
s→±∞

αs = 0. (4.18)

Obviously, assuming |r0|≤ 1 means | 1
r0
|≥ 1. Thus, considering the

condition (4.18) implies

αs = Ars0 (s > 0), (4.19)
αs = Br−s0 (s < 0), (4.20)

In addition, by substituting the general form (4.16) in our recurrence
equations (4.12), we can get

ε = −2J(r0 + r−1
0 ). (4.21)

Now, let us plug the above in

− ε

2J
α1 = α2 + α0, (4.22)

− ε

2J
α−1 = α0 + α−2, (4.23)

which we can rewrite as

A(r2
0 + 1) = Ar2

0 + α0, (4.24)
B(r2

0 + 1) = Br2
0 + α0. (4.25)

Ergo, we get A = B = α0.

Now, let us substitute ε and αs in the atypical equation (4.14). After
simplifications, we can write

− Ū + r0 + r−1
0 = 2r0, (4.26)
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such that Ū = U/2J . Now, let us multiply the equation above by r0

and write
r2

0 + Ūr0 − 1 = 0. (4.27)

Clearly, the solutions to the equation above have the form

r0 = −1

2
(Ū ±

√
Ū2 + 4). (4.28)

In order to have |r0|≤ 1, we choose the solution with the minus sign.

From the results above, we can write the final form of the solution
as

αs = A

(√
U2 + 16J − U

4J

)|s|
, (4.29)

such that A is a normalization constant. In addition, the correspond-
ing energy is

ε = −
√
U2 + 16J2. (4.30)

From the discussion above we can say that the ground state (4.12)
does not necessarily correspond to a perfect composite boson. Basi-
cally, it is a sum of terms that might cancel each other and decrease
the total amount of entanglement between the particles. This might
even lead to separable state, and thus the lack of bosonic quality. The
results above imply that in the strong interaction regime, U � J ,
things are less ambiguous. In this regime, we have α0 → 1 while
αs → 0 for s 6= 0. Hence, the ground state of H is simply c†0,0|0〉,
which describes a composite boson with the best possible quality.
Note that, in the same limit, the ground state energy tends to take a
negative value of the interaction parameter, ε→ −U .

In order to examine the origin of the bosonic behaviour observed
above, we need to consider the same system without the hoping term
(4.8). In this case, assuming J = 0 will lead to a degenerate ground
state which we can write as

η†k|0〉 ≡ a†kb
†
k|0〉, (4.31)

such that
η†2k = 0, η†kη

†
k′ = η†k′η

†
k. (4.32)

Which means that any state of both particles occupying the same
site is a ground state. In fact, the relations (4.32) are not bosonic.
However, they are proper to the so-called hardcore bosons. Clearly,
these relations stand for a special case, d = 1, of the commutation
relations for composite bosons discussed in first chapter, Eq. (1.14).
When d = 1, the system is in a separable state and the contribution
of ∆, i.e. the deviation from the perfect bosonic behaviour becomes
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(a) (b) (c)

Figure 4.1: Possible assemblies with two fermions of type A and two
fermions of type B. (a) No interactions – All the constituents are free. (b)
Strong point-like interactions – Formation of two independent A-B pairs.
(c) Strong point-like interactions and nearest-neighbour interactions – For-

mation of a single compound made of two A-B pairs. [3]

important. Therefore, we can say that the hoping term is required in
order to lift this degeneracy, and give rise to the entanglement neces-
sary for a good bosonic behaviour.

4.3 Composite boson made of a two A-B pairs

In the last section, we saw that, in the regime of strong point-like
interactions and an infinite lattice, the Hubbard Hamiltonian leads to
an ideal bosonic behaviour of a single A-B pair. Now, I will consider
a system made of two A-B pairs within the same model. My aim is
to examine the bosonic properties of the ground states depending on
the strength of interactions. For this system, we can have compos-
ite bosons similar to the one observed in the previous section, i.e.
two bipartite composite bosons as shown in the Fig. 4.1 (b). The sec-
ond possible combination would be a four-partite composite boson
made of all the constituents, see Fig. 4.1 (c). Clearly, in order to ob-
serve the later possibility, we will need to make all the constituents
interact with each other. However, the point-like interaction leads to
the formation of hardcore boson, η†k ≡ a†kb

†
k, which have to obey the

Pauli exclusion. Ergo, the on-site interaction, per se, is not enough to
make this hardcore bosons interact with each other. Intuitively, we
can say that the introduction of some long-rang interaction, e.g. be-
tween first-nearest neighbours, is required for the formation of the
larger composite boson.

In this discussion, I will first present the states describing two bi-
partite composite bosons and a four-partite one. I will examine the
differences between these states and analyse the ground state of the
system. I will investigate the transition of the system from the first
type of composite bosons to the other one as a function of the strength
of the nearest-neighbour interaction.
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4.3.1 Two bipartite composite bosons

Considering a single composite boson, while U � J , the ground
state ofH takes the form

c†0,0|0〉 =
1√
d

d−1∑
k=0

η†k|0〉. (4.33)

The operator c†0,0 corresponds to the creation operator of our compos-
ite boson. Therefore, we can write the two-partite Fock state as

c†20,0√
2χ2

|0〉 =
1

d
√

2χ2

d−1∑
k,k′=0

η†kη
†
k′|0〉, (4.34)

such that χ2 = 1 − P = (d − 1)/d is the normalization factor, see
its definition in chapter 1. Bellow, I will show that the state (4.34) can
correspond to the ground state of the system, assuming the extended
one-dimensional Hubbard model.

4.3.2 Four-partite entangled states

Now, let us consider the general case of a system made of two
hardcore bosons. Similarly to the definition (4.2), the states describ-
ing such a system can be written in terms of the operators η†k as

q†s,r|0〉 ≡
1√
d

d−1∑
k=0

ei
2π
d
krη†kη

†
k+s|0〉, (4.35)

such that r = 0, 1, . . . , d − 1. However, since η†kη
†
k+s = η†k+sη

†
k and

assuming that d is even, we can consider that s = 1, . . . , d/2 without
loosing any generality.

Clearly, the above states span an orthonormal basis,

〈0|qs′,r′q†s,r|0〉 = δs,s′δr,r′ . (4.36)

In other words, every possible state of two hardcore bosons can be
described by some linear combination of the states above. Hence, the
two-partite Fock state (4.34) can be written in terms of q†s,r operators
as

c†20,0√
2χ2

|0〉 =

√
2

d

d/2∑
s=1

q†s,0|0〉. (4.37)

Now, let us discuss the differences between the states (4.34) and
(4.35). While the state (4.35) counts d different terms, the state (4.34)
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contains quadratically more terms. This implies that the informa-
tion encoded within each one of them is somehow different. First,
we need to keep in mind that both of them describe two hardcore
bosons, which indicates bipartite correlations between the consti-
tuents of each hardcore boson. If fermion A is at position k, we can
say that a fermion of type B is also at the same position. However,
in the state (4.34) every term has the form η†kη

†
k′ , such that the indices

k and k′ are independent. Therefore, knowing the position k of one
hardcore boson does not imply any information about the position
k′ of the second one, apart from the knowledge that it is not at the
same place as the first one k 6= k′. On the other hand, the state (4.35)
counts terms of the form η†kη

†
k+s, such that s is a constant. This means

that knowing the position one constituent implies information about
the positions of the remaining three particles. This can be considered
as a genuine four-partite correlations.

4.3.3 Bosonic properties of the four-partite entangled
state

Let us examine the bosonic behaviour of a four-partite system de-
scribed by the state q†1,0|0〉. As discussed in the first chapter, I will
evaluate and analyse the normalization constant χ(2)

N associated to
the operator q†1,0.

〈0|qN1,0q
†N
1,0 |0〉 = χ

(2)
N N ! . (4.38)

It is clear that the operator q†1,0 can give rise to a ladder structure
similar to Eqs. (1.18) and (1.22).

In this case, the normalization constant takes the form (for a proof
see the section 4.4.2)

χ
(2)
N =

N !

dN

(
d−N
d− 2N

)
. (4.39)

Thus, the normalization ratio can be written as

χ
(2)
N+1

χ
(2)
N

=

(
1− N + 1

d

)
ΠN
i=1

(
1− 2

d+ i− 2N

)
≤ 1. (4.40)

The value of the normalization ratio is upper bounded by 1. Remark-
ably, it is also lower bounded by

χ
(2)
N+1

χ
(2)
N

≥
(

1− N + 1

d

)(
1− 2

d+ 1− 2N

)N
. (4.41)
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The relations above implies that lim
d�N

χ
(2)
N+1

χ
(2)
N

→ 1, because

lim
d�N

(
1− N + 1

d

)(
1− 2

d+ 1− 2N

)N
→ 1. (4.42)

This means that the operator q†1,0 acts as an ideal bosonic one in the
limit d� N .

4.3.4 Extended Hubbard model

Now, let us consider the Hamiltonian

H = JH0 + UHp + γHnn. (4.43)

which is basically the one considered before (4.7) in addition to the
term

Hnn = −
d−1∑
k=0

a†kakb
†
k+1bk+1, (4.44)

that describes an interaction between first nearest-neighbours. Here,
I assume that all the parameters in the Hamiltonian (4.43) are posi-
tive, J, U, γ ≥ 0.

It might seem that the model above considers only nearest-neighb-
our interactions between particles of different types, i.e. A and B,
while omitting the same kind of interactions between particles of
the same type, i.e. (A and A) or (B and B). However, the point-like
interactions described by the term Hp will give rise to an indirect
interaction between particles of the same type when occupying first-
neighbouring positions. For instance, if particle A is at site k, since
we are considering hardcore bosons, it will interact with the particle
B which is in the same position viaHp. On the other hand, if the other
hardcore boson is at position k ± 1, the particle A will also interact
with the particle B, belonging to the second pair, via Hnn. Thus, we
can say that both particles B, each one belonging to a different hard-
core boson, will experience an indirect nearest-neighbour interaction
mediated by the particle A. Of course, the same also holds for an
indirect interaction between A and A mediated by B.

Intuitively, we can say that in the limit of strong nearest-neighb-
our interactions both hardcore bosons will tend to stick next to each
other. However, the aim of this discussion is to examine the entangle-
ment and the bosonic properties of the ground state as the strength
of the nearest neighbour interactions changes, i.e. as a function of γ.
In order to have a system that is susceptible to this interactions, we
need to consider relatively small values for the variable γ.



4.3. Composite boson made of a two A-B pairs 61

Here, we are interested in deriving an effective Hamiltonian of the
form

H(1) = JH0 + UHp, (4.45)

which can approximate the original one (4.43) in the limit
U � J � γ. First, let us define the projector on the ground state
ofHp as

Pg =
∑

j1<j2<···<jN

(
N⊗
n=1

η†jn |0〉 〈0| ηjn

)
. (4.46)

The unitary evolution operator forHp can be expressed as

Ug = e−itHp/h̄ = Pge
−itEg/h̄ + Pee

−itEe/h̄,

= Pge
−itNU/h̄ + Pee

−it(N−1)U/h̄, (4.47)

such that Pe stands for the projector on the first excited state which
corresponds to a state of an independent A-B pair in addition to a
compound made of N − 1 pairs with energy (N − 1)U . It has been
shown that at first order of perturbation [60]

PgU (1)
I Pg = − i

h̄

∫ t

0

PgHI(t1)Pgdt1,

= − i
h̄

∫ t

0

PgUg(t1)†H0Ug(t1)Pgdt1 = 0, (4.48)

because PgH0Pg = 0. At the second order [60], we have

PgU (2)
I Pg = − i

h̄

∫ t

0

PgHI(t1)dt1

∫ t1

0

HI(t2)Pgdt2,

= − i
h̄

∫ t

0

∫ t1

0

dt1dt2Pg
(
Ug(t1)†H0Ug(t1)

)
×
(
Ug(t2)†H0Ug(t2)

)
Pg,

= − i
h̄

∫ t

0

∫ t1

0

dt1dt2PgH2
0Pge

i(t2−t1)U/h̄,

= −
(
i

h̄

)2
h̄

iU

(
t+

h̄

iU
e−itU/h̄ − 1

)
PgH2

0Pg,

U�J
≈ i

Uh̄
PgH2

0Pg, (4.49)

such that

PgH2
0Pg = −N4J2

d−1∑
k=0

η†kηk − 2J2

d−1∑
k=0

(η†kηk+1 + h.c.)

+4J2

d−1∑
k=0

η†kηkη
†
k+1ηk+1. (4.50)
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In the limit U � J , the effective HamiltonianH(1) takes the form

H(1)
eff = − N

(
U +

4J2

U

) d−1∑
k=0

η†kηk −
2J2

U

d−1∑
k=0

(η†kηk+1 + h.c.)

+
4J2

U

d−1∑
k=0

η†kηkη
†
k+1ηk+1. (4.51)

assuming that PgHpPg = −NU .

Now, let us consider the full HamiltonianH. At first order we get,

PgHnnPg = −2γ
d−1∑
k=0

η†kηkη
†
k+1ηk+1. (4.52)

Note that the second order contributions are negligible since they
depend on γ2/U � J2/U . Thus, in the limit U � J � γ, the effective
Hamiltonian takes the form

Heff = − N

(
U +

4J2

U

) d−1∑
k=0

η†kηk −
2J2

U

d−1∑
k=0

(η†kηk+1 + h.c.)

−
(

2γ − 4J2

U

) d−1∑
k=0

η†kηkη
†
k+1ηk+1. (4.53)

In the expression above, the first term is constant when the number
of particles is fixed. Ergo, we can drop it and write

Heff = − 2J2

U

d−1∑
k=0

(η†kηk+1 + h.c.)

−
(

2γ − 4J2

U

) d−1∑
k=0

η†kηkη
†
k+1ηk+1.

= − J̄
d−1∑
k=0

(η†kηk+1 + h.c.)− γ̄
d−1∑
k=0

η†kηkη
†
k+1ηk+1. (4.54)

For simplicity, let us define J̄ = 2J
2

U
and γ̄ = 2(γ − J̄). Remarkably,

this approximation reduced our system from a four-partite to a two-
partite problem.

As discussed in the previous section, let us investigate the form of
the ground state by analysing the action ofHeff on q†s,r|0〉 ≡ |s, r〉q. We
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get

Heff|s, r〉q = − J̄(1 + ei
2π
d
r)|s+ 1, r〉q

− J̄(1 + e−i
2π
d
r)|s− 1, r〉q

− γ̄δs,1|s, r〉q. (4.55)

Clearly, Heff does not affect the parameter r which implies that the
hoping contribution takes its smallest values, −2J̄ , for r = 0. Also,
s has no upper bound when we consider an infinite discrete lattice,
d→∞.

Now, let us consider the general form of the ground state

|ψ0〉 =
∞∑
s=1

βs|s, 0〉q, (4.56)

such that
Heff|ψ0〉 = ε̄|ψ0〉. (4.57)

As before, we get a set of typical recurrence equations

− ε̄

2J̄
βs = βs+1 + βs−1, (4.58)

for s > 1, in addition to an atypical equation

− (γ̄ + ε̄)

2J̄
β1 = β2, (4.59)

for s = 0.

The solution to the above recurrence equations can be found with
a similar approach to the one considered for Eqs. (4.14) and (4.15). A
general form of the solution of Eq. (4.58) can be expressed as

βs = Brs0 + Ar−s0 , (4.60)

such that A and B are constants and

ε̄ = −2J̄(r0 + r−1
0 ). (4.61)

Assuming that r0 ≤ 1 and because we have lims→∞ βs = 0, we can
say that A = 0. Ergo,

βs = Brs0. (4.62)

Now, we substitute the above in Eq. (4.59). After simplification, we
write

(r0 + r−1
0 −

γ̄

2J̄
)r0 = r2

0. (4.63)
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Ergo,

r0 =
2J̄

γ̄
=

J̄

γ − J̄
=

1
γU
2J2 − 1

. (4.64)

Finally, one can show that the above leads to

βs = B
(

J̄

γ − J̄

)s
, (4.65)

ε̄ =
4γJ̄ − 4J̄2 − 2γ2

γ − J̄
, (4.66)

such that B stands for a normalization constant. In fact, normaliza-
tion is a crucial assumption for our solution. Since we have the limit
lims→∞ βs 6= 0 for γ ≤ 2J̄ , we can say that the solution above works
only in the regime U � γ > 2J̄ .

In the limit of strong nearest neighbour interactions we get

lim
γ�2J̄

β1 � lim
γ�2J̄

βk for k ≥ 2. (4.67)

Namely, the coefficient β1 become much larger than all the other co-
efficients. Thus, in this limit, we can say that q†1,0|0〉 dominates the
ground state of the system.

Interestingly, when γ approaches the value 2J̄ we get

lim
γ→2J̄

βs → B. (4.68)

In this case, all the coefficients are equal to each other. This corre-
sponds to the two-partite Fock state previously presented in Eq. (4.34)
or (4.37), i.e. two independent bipartite composite bosons.

The idea of two composite bosons requiring attractive interaction
to be probabilistically independent from each other might be surpris-
ing. However, it can be explained as follows. In general the ground
state of the system contains all the possible configurations of two
hardcore bosons, η†kη

†
k′ . However each configuration might contribute

with a different amount of energy. In the state (4.34), the probabili-
ties corresponding to the different configurations are all the same.
Hence, the composite bosons are independent. If the ground state of
the system is to be identical to the state (4.34), the energy contribu-
tions will need to be the same for all the different configurations. In
other words, the ground state should have the form

N
∑
k<k′

η†kη
†
k′ |0〉. (4.69)
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Figure 4.2: Plots of the fidelities |〈ψ(γ)|q†1,0|0〉|2 (dashed) and

|〈ψ(γ)| c
†2
0,0√
2χ2
|0〉|2 (solid) as functions of the strength of the nearest-

neighbour interactions, γ. The parameters J and U are fixed at different
values while d = 8. [3]

such that N stands for a normalization constant. The action of Heff

on the state above leads to

N
∑
k<k′

εk,k′η
†
kη
†
k′|0〉. (4.70)

Here, εk,k′ stands for different energy contributions. When γ = 0,
only the hoping contributes to εk,k′ . In this case, we can write
εk,k+1 = −2J̄ and εk,k′ = −4J̄ for k′ ≥ k + 2. This difference is due to
the fact that the operators η†k and η†k′ correspond to hardcore bosons
which cannot occupy the same site, see (4.32). This is why nearest-
neighbour interactions are required to be with strength −γ = −2J̄
when k′ = k + 1 in order to compensate for the difference.

4.3.5 Numerical simulations

Assuming periodic boundary conditions, the ground state |ψ(γ)〉
of the system was evaluated numerically for d = 8. These numerical
simulations were performed in the limit U � J � γ. More precisely,
while the parameter of the nearest-neighbour interactions, γ, takes
values between 0 and 4, the parameter of the point-link interactions
was fixed at two values U = 1 × 105 or 2 × 105, and the hoping pa-
rameter was fixed as J = 1 × 102 or 2 × 102. In Fig. 4.2, the fideli-

ties |〈ψ(γ)|q†1,0|0〉|2 and |〈ψ(γ)| c
†2
0,0√
2χ2
|0〉|2 are plotted as functions of the
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parameter γ. Visibly, when the fidelity of the ground state with the
two-partite Fock state approaches 1, the fidelity with the four-partite
composite boson rises to 1/4. This is a consequence of the finite na-
ture of the considered lattice. Using Eqs. (4.37) and (4.35), one can
easily show that

|〈0|q1,0

c†20,0√
2χ2

|0〉|2= d

(
d

2

)−1

. (4.71)

This implies that these two states will tend to be orthogonal in the
limit of an infinite lattice,

lim
d→∞
|〈0|q1,0

c†20,0√
2χ2

|0〉|2→ 0. (4.72)

As a matter of fact, these simulations were run twice. First, I consid-
ered the original Hamiltonian (4.43). Next, I used the effective one
(4.54). The obtained results were identical.

4.4 Multipartite composite bosons

Now, let us consider a system made of N fermionic A-B pairs,
which makes a total of 2N fermions. For this system, many possi-
ble multifermionic assemblies can be achieved, see Fig. 4.3. These as-
semblies can be expected to appear in the model discussed above,
see the effective extended Hamiltonian (4.54). For example, when
parameter γ is large enough to compensate for Pauli blocking on
the hoping contribution, the ground state of the system will corre-
spond to a state of N independent bipartite composite bosons, each
made of an A-B pair. From that point, as nearest-neighbour inter-
actions gets stronger, we can expect larger composite particles to
emerge in the ground state. Intuitively, we can say that in the limit
of strong nearest-neighbour interactions, the system will form a 2N -
partite composite boson. Here, I will consider the transition of the
ground state through the different combinations as the strength of
the nearest-neighbour interactions increases.

4.4.1 Multipartite entangled states

Let us define the state of a composite particle made ofM fermionic
A-B pairs

q†(M)|0〉 ≡
1√
d

d−1∑
k=0

η†kη
†
k+1 . . . η

†
k+M−1|0〉. (4.73)

As before, we can say that in the limit of strong point-like interac-
tions, every A-B pair will tend to make a hardcore boson described
by the operator η†k. In addition to that, when the nearest-neighbour
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(a) (b)

(c) (d)

Figure 4.3: Different possible assemblies for many fermions of type A and
B. (a) No interactions – All the fermions are free. (b) Strong point-like inter-
actions and weak nearest-neighbour interactions – Formation of bipartite
composite bosons, each one made of a single A-B pair. (c) Strong point-like
interaction and increasing nearest-neighbour interactions – Emergence of
large assemblies of multipartite composite bosons. (d) Strong point-like in-
teraction and strong nearest-neighbour interactions – Formation of a single

bosonic compound made of all the fermions. [3]

interactions are also relatively strong, all these hardcore bosons will
tend to stick next to each other. Therefore, the ground state of the
system in such a limit can be expected to be of the form of the state
presented above (4.73). In fact, this state is a general form of previ-
ously discussed states. For instance, when M = 1 the state above be-
comes the state of a singe bipartite composite boson c†0,0|0〉, see (4.2).
Also, whenM = 2 the state (4.73) corresponds to a single four-partite
composite boson q†1,0|0〉, see (4.35).

4.4.2 Bosonic properties of multipartite entangled
states

For a composite particle made of M fermionic A-B pairs described
by η†k = a†kb

†
k, we can write an unnormalized state of N such compos-

ite particles
q†N(M)|0〉, (4.74)



68 Chapter 4. On the formation of multipartite composite bosons

Figure 4.4: The lower bound for the normalization ratio
χ
(M)
N+1

χ
(M)
N

as a function

of the size (M ) and the number (N ) of the composite bosons, for d = 10000.

such that

q†(M) =
1√
d

d−1∑
k=0

η†kη
†
k+1 . . . η

†
k+M−1. (4.75)

Its corresponding normalization factor can be computed using the
formula

χ
(M)
N =

1

N !
〈0|qN(M)q

†N
(M)|0〉. (4.76)

However, for convenience purposes, we can define the operator

Γ†k = η†kη
†
k+1 . . . η

†
k+M−1, (4.77)

which obeys

Γ†kΓ
†
k′ = Γ†k′Γ

†
k, (4.78)

Γ†kΓ
†
k′ = 0 if |k − k′|< M. (4.79)

Hence, we can write

q†N(M)|0〉 =
1

dN/2

∑
k1,...,kN

Γ†k1
. . .Γ†kN |0〉,

=
N !

dN/2

∗∑
k1<...<kN

Γ†k1
. . .Γ†kN |0〉,

≡ N !

dN/2

∗∑
k1<...<kN

|k1, . . . , kN〉,
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such that ∗ means that within the sum we consider the relations
(4.79). Consequently, we get

χ
(M)
N =

N !

dN

∗∑
k1<...<kN

1 =
N !

dN

(
N + d−NM
d−NM

)
. (4.80)

The binomial coefficient stands for the combination with repetitions.
For example, let us consider a bowl containing y items, each one
marked with a different number from 1 to y. From this bowl, we pick
randomly a single item, note its number and put it back in the bowl.
If we repeat this process of picking, noting and putting back x times,
we will end up with a string of numbers. This sequence of num-
bers correspond to one possible combination, and obviously there
are many other combinations. In fact, the total number of possible
combinations is given by

(
x+y−1
x

)
. In the formula (4.80), we consid-

ered N compounds, each composed of M A-B pairs. Since each com-
pound occupies M positions, after placing N compounds, d − NM
positions will remain unoccupied. Here, we consider the N com-
pound and distribute the unoccupied positions around them. For in-
stance, we can put the first empty position before the 1st compound,
between the 1st and the 2nd, . . ., after theN th. Then we repeat the same
for all the other unoccupied positions. In simpler words, we choose
one position from N + 1 possibilities, and repeat d−NM times.

Now, let us rewrite the formula (4.80) as

χ
(M)
N =

ΠN
i=1(d−NM + i)

dN
. (4.81)

Hence, the ratio χ
(M)
N+1

χ
(M)
N

takes the form

χ
(M)
N+1

χ
(M)
N

=
ΠN+1
i=1 (d− (N + 1)M + i)

dΠN
i=1(d−NM + i)

. (4.82)

=

(
1− (N + 1)(M − 1)

d

)
ΠN
i=1

(
1− M

d+ i−NM

)
.

Note that above value is upper-bounded by 1 and lower-bounded by(
1− (N + 1)(M − 1)

d

)(
1− M

d+ 1−NM

)N
. (4.83)

Clearly, this lower-bound approaches 1 in the limit d � NM . In
Fig. 4.4, the value of the lower bound is plotted for d = 10000.

The operator q†(M) associated with a single compound made of M
A-B pairs will exhibit an ideal bosonic behaviour when d � M .
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Therefore, in this limit the state

q†N(M)√
χ

(M)
N N !

|0〉, (4.84)

corresponds to a Fock state made of N components.

In fact, the bosonic behaviour observed above is due to multipar-
tite entanglement between the constituents. But, a multipartite en-
tanglement is not enough. Bellow, I will show that any possible sep-
arability of the state q†(M)|0〉 will imply that q†(M) cannot recover the
ladder structure, which suggests that entanglement need to be gen-
uinely multipartite.

4.4.3 Why genuine multipartite entanglement is im-
portant?

Obviously, the state q†sep|0〉 given by

q†sep|0〉 ≡ η†k1
. . . η†kM |0〉, (4.85)

leads to q†2sep|0〉 = 0. This state is separable according to a definition
in [61]. Ergo, the system cannot be considered as a composite boson.

If we consider a system made of many A-B pairs, and we assume
that at least one hardcore boson is at a well defined mode, we get(

η†k1

∑
k2,...,kM

αk2,...,kMη
†
k2
. . . η†kM

)2

|0〉 = 0. (4.86)

In this case also, the system cannot be considered as a composite bo-
son. This means that all the constituents should be entangled to have
q†2(M) |0〉 6= 0.

Now, let us consider an arbitrary number of hardcore bosons asso-
ciated to states which are not genuinely multipartite entangled, i.e.
states which are separable with respect to some partitions. Separabil-
ity in this case implies that we can write

c†|0〉 ≡

( ∑
i1,i2,...

wi1,i2,...η
†
i1
η†i2 . . .

)

×

( ∑
j1,j2,...

vj1,j2,...η
†
j1
η†j2 . . .

)
|0〉, (4.87)
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such that wi1,i2,... and vj1,j2,... are normalized symmetric coefficients
associated to two partitions

〈0|cc†|0〉 =
∑
i1,i2,...
j1,j2,...

|wi1,i2,...|2|vj1,j2,...|2= 1. (4.88)

In the first chapter, we discussed in details the creation and annihi-
lation operators of composite bosons and how they should obey the
ladder structure (1.18). We know that if c†|0〉 corresponds to a single
composite boson, c†2|0〉 should correspond to two composite bosons
while its norm ≈ 2. Considering the definition (4.87), we can write

c†2|0〉 =
∑
i1,i2,...
i′1,i
′
2,...

(
wi1,i2,...η

†
i1
η†i2 . . .

)(
wi′1,i′2,...η

†
i′1
η†i′2

. . .
)

×
∑
j1,j2,...
j′1,j
′
2,...

(
vj1,j2,...η

†
j1
η†j2 . . .

)(
vj′1,j′2,...η

†
j′1
η†j′2

. . .
)
|0〉.

Assuming non-overlapping terms, i.e. all indices i1, i2, . . . , i′1, i′2, . . .
are different, we have(

wi1,i2,...η
†
i1
η†i2 . . .

)(
wi′1,i′2,...η

†
i′1
η†i′2

. . .
)

=(
wi′1,i′2,...η

†
i′1
η†i′2

. . .
)(

wi1,i2,...η
†
i1
η†i2 . . .

)
. (4.89)

Obviously, the same also holds for the second partition. Therefore,
we can use above formula and write

c†2|0〉 = 4
∗∑

i1,i2,...
i′1,i
′
2,...

i1<i′1

(
wi1,i2,...wi′1,i′2,...η

†
i1
η†i2 . . . η

†
i′1
η†i′2

. . .
)

×
∗∑

j1,j2,...
j′1,j
′
2,...

j1<j′1

(
vj1,j2,...vj′1,j′2,...η

†
j1
η†j2 . . . η

†
j′1
η†j′2

. . .
)
|0〉. (4.90)

The sums with ∗means that only non-overlapping terms are counted.
Assuming the inequalities i1 < i′1 and j1 < j′1 leads to counting ev-
ery possible non-overlapping term only once. Clearly, from (4.89) we
can say that every non-overlapping term will appear twice. Since we
have two partitions in this case, we need to include the factor 22 = 4.
Hence, in the case of s partitions, the factor should be 2s. Therefore,
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we can write

〈0|c2c†2|0〉 = 16
∗∑

i1,i2,...
i′1,i
′
2,...

i1<i′1

∗∑
j1,j2,...
j′1,j
′
2,...

j1<j′1

(
|wi1,i2,...|2

× |vj1,j2,...|2|wi′1,i′2,...|
2|vj′1,j′2,...|

2
)
. (4.91)

The expression above can be simplified as

4
∑
i1,i2,...
i′1,i
′
2,...

∑
j1,j2,...
j′1,j
′
2,...

|wi1,i2,...|2|vj1,j2,...|2|wi′1,i′2,...|
2|vj′1,j′2,...|

2−4ω(∗) = 4(1− ω(∗)),

(4.92)
such that

ω(∗) =

‡∑
|wi1,i2,...|2|vj1,j2,...|2|wi′1,i′2,...|

2|vj′1,j′2,...|
2. (4.93)

Here, ‡ means that the sum counts only the terms with overlapping
indices. When ω(∗) = 1/2, the norm of c†2|0〉 will be approximately
equal to 2. However, in this case the number of overlapping terms
needs to be large. This can occur only for weakly entangled states.
However, strong entanglement is required for c†N to recover the lad-
der structure. Consequently, we can say that when ω(∗) = 1/2, the
norm 〈0|cNc†N |0〉 6= N ! for N > 2. In fact, Pauli exclusion implies
that states c†N |0〉 do not have any overlapping terms. Therefore, if
the state c†|0〉 is weakly entangled, we get 〈0|cNc†N |0〉 → 0.

In the limit of large number of modes d� N and assuming that the
states corresponding to each partition are highly entangled, we can
say that the term ω(∗) is relatively small. This implies that the norm
of c†2|0〉 is ≈ 4 6= 2. In case of s partitions, the norm will be ≈ 2s.
Clearly, a proper bosonic behaviour emerges only if s = 1. Hence,
genuine multipartite entanglement is necessary for a good bosonic
behaviour to take place.

4.4.4 Composite bosons of various sizes

Now, let us consider a system of N fermionic A-B pairs assem-
bled in k composite bosons, which can be of different sizes. Its corre-
sponding state can be written as

|M1 + . . .+Mk〉 ≡ N q†(M1) . . . q
†
(Mk)|0〉, (4.94)

Here, I assume that M1 ≥ . . . ≥Mk, i.e. the composite bosons are de-
creasingly ordered with respect to their sizes. The fact that the system
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is made of N pairs implies the constrain M1 + . . .+Mk = N . In addi-
tion to that, N stands for a normalization constant. Due to the indis-
tinguishability of fermionic A-B pairs, and due to the Pauli exclusion
principle and that the considered lattice is finite, even if the states
q†(M1)|0〉, . . . , q

†
(Mk)|0〉 are normalized, this normalization will not hold

for the state q†(M1) . . . q
†
(Mk)|0〉. Hence, the necessity of the constant N .

For example, let us consider the case of m composite bosons of
the identical sizes, Mi = . . . = Mi+m = M . Without N , the state
q†(M) . . . q

†
(M)|0〉would have a norm proportional to χ(M)

m m!.

As a second example, the state

|3 + 1〉 = N 1

d

d−1∑
k,l=0

η†kη
†
k+1η

†
k+2η

†
l |0〉, (4.95)

implies a normalization constant of the form

N 2 =
d2

d2 − 4d
. (4.96)

Clearly, in the limit of an infinite lattice, the value of the normaliza-
tion constant approaches one, lim

d→∞
N → 1.

4.4.5 Numerical simulations for N=3 and N=4

Considering a system made of 3 and 4 fermionic A-B pairs, the
ground state of the system, |ψ(γ)〉, was numerically evaluated for the
effective Hamiltonian (4.54) while assuming the
limit γ � J � U . In Fig. 4.5, the fidelities |〈ψ(γ)|M1 + . . . + Mk〉|2
are plotted as functions of γU/J2 = γJ̄/2, for d = 10. As in the case
of 2 A-B pairs, the ground state was evaluated for a variable parame-
ter γ, while the parameters U and J were fixed. In Fig. 4.5, the values
of γ were converted to the corresponding values of the ratio γU/J2

in order to illustrate the rescaling of the plots for different values of
U and J . As a matter of fact, regardless of the values at which the
parameters U and J were fixed, all the rescaled plots were identical.
The choice of the lattice size was restricted by the high computational
complexity of the problem. Consequently, the corresponding bosonic
quality might not be ideal. However, some important qualitative be-
haviour of the model is still observable via these simulations.

In the case of three pairs,N = 3, clearly the ground state of the sys-
tem is dominated by the state |1+1+1〉when the strength of the near-
est neighbour interactions is relatively weak. In fact, the ground state
matches |1+1+1〉when γU/J2 = 4, which corresponds to γ 6= 0. This
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Figure 4.5: The fidelities of the ground state with few possible assemblies
of three (top) and four (bottom) A-B pairs as functions of the ratio γU/J2,

for d = 10. [3]

perfect fidelity can be explained by the same argument discussed
in the case N = 2. After this maximum, the fidelity |〈ψ(γ)|1 + 1 +
1〉|2 decreases rapidly, while the ground state becomes briefly domi-
nated by |2 + 1〉, but they never reach a perfect match. After that, the
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ground state becomes dominated by |3〉. In the limit of strong near-
est neighbour interactions, γU/J2 � 4, the perfect fidelity is reached,
|〈ψ(γ)|3〉|2→ 1.

In the case of four pairs, N = 4, we observe that the ground state
is dominated by |1 + 1 + 1 + 1〉 when γU/J2 < 4 and dominated by
|4〉 in the limit γU/J2 � 4. The fidelities |〈ψ(γ)|1 + 1 + 1 + 1〉|2 and
|〈ψ(γ)|4〉|2 reach one for γU/J2 = 4 and γU/J2 � 4, respectively. This
is similar to the behaviour observed in the previous case. However,
during the transition from |1 + 1 + 1 + 1〉 to |4〉, there is an interme-
diate region where |2 + 1 + 1〉 and then |3 + 1〉 briefly takes over the
ground state of the system. As before, the fidelities corresponding to
these intermediate states never reach one. The state |2 + 2〉 has kept
relatively low fidelities with the ground state through the transition,
with a maximum around ≈ 0.3. This fidelity |〈ψ(γ)|2 + 2〉|2 is due
to the overlap of |2 + 2〉 with the other states. Clearly, the value of
|〈ψ(γ)|2 + 2〉|2 does not change much after reaching its peak, even in
the limit γU/J2 � 4. This can be interpreted as a result of the overlap
between |2 + 2〉 and |4〉. In this case, the overlap is due to the finite-
ness of the considered space. As discussed above, in the limit of an
infinite lattice, d→∞, this overlap is expected to vanish.

From the results above, we can suggest a transition of the form

|1 + 1 + . . .〉 → |2 + 1 + . . .〉 → |3 + 1 + . . .〉 → . . .→ |N〉, (4.97)

for the case of N A-B pairs. Initially, the system is made of N in-
dependent bipartite composite bosons. Then, two of these bosonic
particles will merge and make a four-partite composite boson, which
will absorb the other bipartite composite bosons one after the other.
Through this transition, only one large composite boson will emerge,
and will grow until it will absorb all the other bipartite ones. Eventu-
ally, it will form a single 2N -partite composite boson in state |N〉. In
the subsection bellow, I will discuss the transition (4.97) in terms of
energy. Assuming that the system will always be in its ground state
while increasing the strength of the nearest-neighbour interactions,
my aim is to show that the transition (4.97) is the most energetically
favourable.

4.4.6 Transition from N bipartite composite bosons to
a single bosonic particle

Considering the state

|M1 + . . .+Mk〉 = K
∑
j1,...,jk

η†j1 . . . η
†
j1+M1−1 . . . η

†
jk
. . . η†jk+Mk−1|0〉, (4.98)
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such that K is a normalization constant, and η†ji . . . η
†
ji+Mi−1 corre-

sponds to the i’th compound made of Mi A-B pairs. The state above
describes a system made of N =

∑
jMj A-B pairs, which are assem-

bled into k components. The terms in the sum stand for the superpo-
sition of all the different arrangements of the compounds in the lat-
tice. However, in the limit d� N , we can say that the probabilities of
having two compounds right next to each other are rather negligible,
e.g. η†ji . . . η

†
ji+Mi−1 and η†ji+1

. . . η†ji+1+Mi+1−1 such that ji+1 = ji + Mi.
Consequently, we can write

〈M ′
1 + . . .+M ′

k′ |M1 + . . .+Mk〉 = 0. (4.99)

such that {M1, . . . ,Mk} and {M ′
1, . . . ,M

′
k′} are different configura-

tions, i.e. we have k 6= k′ or at least there exist two values i for which
Mi 6= M ′

i . Let us call this the non-adjacency assumption.

Considering the states |M1 + . . .+Mk〉, let us evaluate the expecta-
tion value of the effective Hamiltonian (4.54)

〈Heff〉 = 〈Hk〉+ 〈Hp〉, (4.100)

such that

Hk = −J̄
d−1∑
k=0

(η†kηk+1 + h.c.), (4.101)

and

Hp = −γ̄
d−1∑
k=0

η†kηkη
†
k+1ηk+1, (4.102)

are the kinetic and potential parts, respectively.

First, let us examine the action of Hk on a component made of
many A-B pairs

Hkη
†
ji
η†ji+1 . . . η

†
ji+Mi−2η

†
ji+Mi−1|0〉 =

−J̄η†ji−1η
†
ji+1 . . . η

†
ji+Mi−2η

†
ji+Mi−1|0〉

−J̄η†jiη
†
ji+1 . . . η

†
ji+Mi−2η

†
ji+Mi

|0〉. (4.103)

Basically, this results in a single A-B pair separated from the rest of
the cluster. In general, we can say that the state |M1 + . . . + Mk〉 will
change to |M ′

1+. . .+M ′
k′〉. In the extreme case, when the original state

does not describe any single A-B pairs, the resulting state will contain
a superposition of states that are all different from |M1 + . . . + Mk〉.
Ergo, considering the non-adjacency assumption, we can write

〈M1 + . . .+Mk|Hk|M1 + . . .+Mk〉 = 0 if Mk > 1. (4.104)
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However, if we consider that |M1 + . . .+Mk〉 describes r single A-
B pairs, the action of Hk will lead to the same original configuration
2r times. Considering the non-adjacency of the components, we can
assume that each single A-B pair can hop left or right and remain a
single pair. If the number of components remains the same, and their
sizes as well, the configuration remains unchanged. Hence, we can
write

〈M1 + . . .+Mk|Hk|M1 + . . .+Mk〉 = −2rJ̄,

if Mk−r+1 = . . . = Mk = 1. (4.105)

The action ofHp is much simpler. Clearly, all states |M1 + . . .+Mk〉
are eigenstates of Hp. From the non-adjacency assumption, we can
say that A-B pairs are first neighbours only if they are constituents of
the same component. Consequently, the eigenvalues depend only on
the number of components, regardless of their sizes.

〈M1 + . . .+Mk|Hp|M1 + . . .+Mk〉 = −(N − k)γ̄. (4.106)

From the two relations above, we can write

〈Heff〉 = −2rJ̄ − (N − k)γ̄. (4.107)

Now, let us examine the expectation values 〈Heff〉 for two states
describing the same number of components but with different sizes.
More precisely, let us assume that they differ in the number of single
A-B pairs. From Eq. (4.107), the second term −(N − k)γ̄ will be the
same for both, since it depends only on the number of components,
k. On the other hand, the first term −2rJ̄ depends on the number of
single A-B pairs, r. Therefore, the state with the higher number of
single pairs will have a lower expectation value, i.e. more energeti-
cally favourable. For example, let us consider a system made of five
pairs assembled into three components, k = 3. Here, we consider two
configurations. The first with two single pairs, and the second with
only one. Using the formula (4.107), we can write

〈3 + 1 + 1|Heff|3 + 1 + 1〉 = −4J̄ − 2γ̄, (4.108)

and
〈2 + 2 + 1|Heff|2 + 2 + 1〉 = −2J̄ − 2γ̄. (4.109)

The results above suggests that during the transition from |1+. . .+
1〉 to |N〉, the system will pass through states of the form |M + 1 +
. . .+1〉. Note that this is in accordance with our previous hypothesis,
see Eq. (4.97). In general, we can express the average energy of these
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Figure 4.6: The average energy of ten A-B pairs in the states |10〉, |7 + 1 +
· · ·+ 1〉, |3 + 1 + · · ·+ 1〉, and |1 + 1 + . . .+ 1〉 as functions of the ratio γ̄/J̄

and under the assumption of no-adjacency, d� N . [3]

intermediate states as

〈M + 1 . . .+ 1|Heff|M + 1 . . .+ 1〉 =

−(M − 1)γ̄ − 2(N −M + δM,1)J̄ , (4.110)

such that δM,1 stands for a Kronecker delta.

In Fig. 4.6, the average energies for some states are plotted as a
function of the ratio γ̄/J̄ , considering ten A-B pairs, N = 10. Clearly,
through this transition, only the states |1+1+ . . .+1〉 and |10〉will be
associated with lowest value. This suggests that while increasing the
strength γ, in the limit d� N (no-adjacency assumption), the system
will skip the intermediate states and will go from |1 + 1 + . . . + 1〉
directly to |N〉. In other words, this transition will consist of a one
step process: the assembly sketched in Fig. 4.3 (b) will skip (c) and
will get transformed directly to assembly (d). Using Eq. (4.110), we
can find the transition point from |1 + . . .+ 1〉 to |N〉

〈1 + . . .+ 1|Heff|1 + . . .+ 1〉 = 〈N |Heff|N〉,
−2NJ̄ = −(N − 1)γ̄. (4.111)

Hence, the transition should take place for

γ̄/J̄ = 2N/(N − 1), (4.112)
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which we can rewrite as

γU/J2 = 2 + 2N/(N − 1). (4.113)

This is in agreement with our numerical simulations illustrated in
Fig. 4.5. In terms of entanglement, the results above suggest that a
system containing only bipartite correlations will get transformed
directly to a state with only genuine multipartite quantum correla-
tions.

4.5 Summary

In this chapter, I considered the problem of the formation of com-
posite bosons made of several fermionic constituents. We saw that
maximally entangled states of a fermionic pair can approximate the
ground states of 1-D Hubbard model with point-like interactions.
Also, I discussed the cases of 4 fermions and then generalized it to 2N
fermions. I showed that some multipartite entangled states can cor-
respond to composite bosons. Following the approach of C. K Law
[7], I studied their bosonic behaviour. We saw that, for multipartite
composite bosons, stronger correlations imply better bosonic quality,
similarly to the case of bi-fermions. In addition, I examined quali-
tatively the correlations between the fermions for different possible
arrangements. For instance, we saw that the states of two bipartite
composite bosons have only bipartite correlations, while the states of
a four-partite composite boson has only genuine four-partite correla-
tions. In the general case, the formation of a composite boson made
2N fermions requires genuine 2N -multipartite fermionic entangle-
ment.

Also, I considered interacting fermions within the one-dimensional
Hubbard model. I used an effective Hamiltonian to approximate pairs
of fermions as hard-core bosons and I numerically studied the sys-
tem’s ground state, for a finite lattice d = 8, 10. We saw that while
increasing the strength of the nearest neighbour interaction several
possible structures emerged.

Finally, I studied the average energies corresponding to different
fermionic arrangements. We saw that the transition is more energet-
ically favourable if it consists of a single step process, in the limit
of a large lattice d � 10. In this case, the increase of the strength of
the nearest neighbour interaction will lead to a transformation from
many bipartite composite bosons to a single multipartite one, with-
out having any intermediate structures.
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Summary

The main thread discussed in this work is the study of many-body
systems within the frame of quantum information. First, I presented
a non-local bunching scenario of composite bosons. We saw that a
single composite boson cannot undergo a beam splitting operation
and remain stable without some kind of interactions. In this case,
the stability of the composite boson require entanglement generation
which suggests the need for interactions or some post-selective mea-
surements. Then, we saw that two spatially separated pairs of highly
entangled fermions can behave in a manner proper to two bosons,
if local operations are allowed. Using only local operations, two of
such pairs can evolve to a state that can be interpreted as a Fock state
made of two composite bosons.

Next, I considered a more flexible definition for the stability of
a composite particle. I showed that entanglement can lead to the
spread of the centre of mass of a bipartite composite particle while
the relative distance between its constituents grows relatively slowly.
Also, we saw that the distance over which the centre of mass gets de-
localized before the decay of the composite particle depends only
on its initial size and the amount of entanglement between its con-
stituents. In this case, while the composite particle gets delocalized,
the correlations encoded over its internal structure gets transformed
into spatial entanglement. This leads to the spread of the composite
particle while preventing its decay. Also, I considered the dynamics
of the same system under non-zero temperatures. As expected, the
thermalization leads to a faster decay of the composite particle. In
addition, we saw that the effects of thermalization is not the same
for all degrees of freedom. Interestingly, if the temperature is low
enough, the thermalization effects only the relative distances.

Then, I presented a Mach-Zehnder-like setup. I considered a dis-
crete lattice with periodic boundary conditions. We saw that the en-
tire system with no interactions can get delocalized over the space
without falling apart. Since, we considered periodic boundary con-
ditions, the spread of the composite particle make it interferer with
itself which allows for the observation of the collective de Broglie
wavelength. We saw that some post-selective measurements were
required, along side the strong entanglement of the constituents, in
order to observe the collective behaviour of the system. This is due to
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a variety of the no-signalling principle, since the observation of true
composite features requires the constituents to remain correlated.

Finally, I discussed the formation of bipartite and multipartite com-
posite bosons. Also, I considered the transition from the first type to
the second one. Assuming a system made of several fermionic com-
ponents (of two types A and B) within the one-dimensional Hub-
bard model, we saw that the strength of interactions has a crucial
role in determining the dominant structure of the ground state. In
order to have only independent bipartite composite bosons, the sys-
tem should be in the limit of strong short-range interactions and rel-
atively weak long-range interactions. Here, the long-range interac-
tions are needed to compensate for an effective repulsion that occurs
due to the Pauli blocking. While increasing the strength of the long-
range interactions, the numerical simulations indicated that larger
structures of a composite boson made of more than a single pair of
fermions emerges. In the limit of strong long-range interactions, we
saw that all the fermions merge together and form a single composite
boson. In the case of a multipartite composite particle, we saw that its
bosonic behaviour requires genuine multipartite entanglement be-
tween all the constituents. In addition, in the limit of an infinitely
large space, we saw that it is energetically more favourable to have
a direct transition from bipartite composite bosons to a single mul-
tipartite one made of all the fermionic pairs. This corresponds to a
transition from a system only with bipartite correlations directly to a
system with only genuine multipartite correlations.
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