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The leading nonadiabatic corrections to rovibrational levels of a diatomic molecule are expressed in
terms of three functions of internuclear distance: corrections to the adiabatic potential, the effective
nuclear mass, and the effective moment of inertia. The resulting radial Schrödinger equation for
nuclear motion is solved numerically yielding accurate nonadiabatic energies for all rovibrational
levels of the H2 molecule. Results for states with J�10 are in excellent agreement with previous
calculations by Wolniewicz, and for states with J�10 are new. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3114680�

I. INTRODUCTION

In the fully nonadiabatic approach the total nonrelativis-
tic energy of a molecular state is obtained by solving the
Schrödinger equation with kinetic energy of electrons and of
nuclei on the same footing. This approach has been applied
to vibrational states of several small diatomic molecules.1–5

Much more commonly though, the total energy of a molecu-
lar state is obtained in a two-step procedure based on the
Born–Oppenheimer6 �BO� approximation,7 in which a sepa-
ration of electronic and nuclear motion is assumed. Namely,
in the first step, the electronic Schrödinger equation with the
clamped nuclei Hamiltonian is solved for different nuclear
configurations yielding the electronic energy as a function of
the nuclear coordinates. This function, called the potential
energy surface �PES�, serves as a potential for the motion of
nuclei in the nuclear Schrödinger equation. Solving this
equation in the second step yields the total rovibronic energy
of the system.

The accuracy of theoretical predictions for molecular
states, limited due to the BO approximation, can be increased
by including the adiabatic, relativistic, and radiative correc-
tions without renouncing the notion of PES. Further increase
in the accuracy requires the nonadiabatic effects to be taken
into account. A desirable way of inclusion of these effects is
in terms of a geometry dependent function, which can be
added to PES in the same manner as all the other corrections.
On one hand, the nuclear Schrödinger equation, when solved
with such a potential, gives the molecular energy levels with
spectroscopic precision. On the other, the notion of the PES
is preserved with all its advantages.

Several more or less successful attempts to construct
such a nonadiabatic correction function for a diatomic mol-
ecule can be found in literature.8–12 Bunker and Moss9 de-
rived, in the second order of the perturbative expansion, an
effective nuclear Hamiltonian for the ground electronic state
of diatomic molecules, in terms of the nonadiabatic potential,
vibrational, and rotational masses. Assuming constant vibra-

tional and rotational masses and neglecting the nonadiabatic
potential, they obtained values of these effective masses for
H2 and D2 by fitting to the experimental data. Later Sch-
wenke in Ref. 13 used the Bunker and Moss9,14 effective
Hamiltonian to perform ab initio calculations of nonadiabatic
corrections for H2 and H2O. His results for purely vibrational
spectrum of H2 differ from that of Wolniewicz15 by about
20% due to the inaccurate numerical representation of the
wave function and, what we demonstrate in this work, due to
the approximate second order nonadiabatic potential of Bun-
ker and Moss.9 The accuracy of Schwenke calculations13 for
H2O is probably not higher, but clearly demonstrates wide
applicability of the perturbative approach. Very recently
Kutzelnigg11 and Jaquet and Kutzelnigg12 performed simpli-
fied calculations of the nonadiabatic potential and both effec-
tive masses as functions of the internuclear distance in H2

+

and H2. In our recent work16 we introduced the nonadiabatic
perturbative theory and derived formulae for the leading
nonadiabatic corrections to energies and wave functions. The
formula for the nonadiabatic energy from that work, al-
though apparently different, is in fact equivalent to that of
Bunker and Moss.9 Our results for rotationless vibrational
states have been obtained as the expectation value of nona-
diabatic corrections with the adiabatic wave function. Al-
though numerically accurate, due to the neglected third order
nonadiabatic corrections �see Eq. �47��, our results differed
by about 2% from the previous calculations by Wolniewicz15

and by Stanke et al.17

In this paper, the nonadiabatic perturbation theory has
been extended in two directions. First, we generalized the
previous derivation to rotational states. Second, we included
the previously missing third order correction, which proved
significant. Moreover, we presented a rigorous formulation
of the nonadiabatic perturbative theory and included the nu-
merical example of the H2 molecule. This can be extended to
any diatomic molecule and potentially to an arbitrarily large
molecule. We derived formulae valid to all orders, presented
the leading corrections of order O��n

−2�, and expressed them
in terms of the nonadiabatic correction to the potential and
the effective R-dependent nuclear mass and the moment of
inertia. These three functions enter the nuclear Schrödinger
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equation, which can be solved numerically for an arbitrary
energy level. As a test of the presented perturbative theory,
we performed calculations on all 301 rovibrational levels of
the H2 molecule. We found an excellent 0.1% agreement
with the accurate nonadiabatic corrections for states with the
angular momentum J�10, which were obtained by
Wolniewicz in Ref. 15, and we present for the first time
results for states with J�10.

II. THE ADIABATIC APPROXIMATION

The total wave function � is the solution of the station-
ary Schrödinger equation

�H − E���� = 0, �1�

with the Hamiltonian

H = Hel + Hn, �2�

split into the electronic and nuclear parts. In the electronic
Hamiltonian

Hel = − �
a

�a
2

2me
+ V , �3�

nuclear masses are, by definition, set to infinity, and the po-
tential V includes all the Coulomb interactions with fixed

positions R� A of the nuclei. The nuclear Hamiltonian involves
kinetic energies of all nuclei

Hn = − �
A

�RA

2

2MA
. �4�

The separation of center of mass motion and the choice of
the reference frame depend on a particular molecule. For
example, for a diatomic molecule in the space fixed reference
frame attached to the geometrical center of two nuclei, Hn

takes the form

Hn = −
�R

2

2�n
−

�el
2

2�n
− � 1

MB
−

1

MA
	�� R · �� el, �5�

where

�� el 

1

2�
a

�� a, �6�

R� =R� AB=R� A−R� B, and 1 /�n=1 /MA+1 /MB is the nuclear re-
duced mass. The last term in Eq. �5� vanishes for homo-
nuclear diatomic molecules.

In the adiabatic approximation the total wave function of
an arbitrary molecule,

�a�r�,R� � = �el�r����R� � , �7�

is represented as a product of the electronic wave function
�el and the nuclear wave function �. We note that �el de-

pends implicitly on the nuclear coordinates R� . The electronic
wave function obeys the clamped nuclei electronic
Schrödinger equation

�Hel − Eel�R� ����el� = 0, �8�

while the nuclear wave function is a solution to the
Schrödinger equation in the effective potential generated by
electrons

�Hn + Ea�R� � + Eel�R� � − Ea���� = 0, �9�

where

Ea�R� � = ��el�Hn��el�el. �10�

For the diatomic molecule the nuclear radial equation reads

�−
1

2R2

�

�R

R2

�n

�

�R
+

J�J + 1�
2�nR2 + Ea�R� + Eel�R� − Ea
�J�R� = 0,

�11�

where J is the rotational quantum number.

III. PERTURBATIVE FORMALISM

The total wave function

� = �a + ��na = �el� + ��na �12�

is the sum of the adiabatic solution and a nonadiabatic cor-
rection. The nonadiabatic correction ��na is decomposed into
two parts

��na = �el�� + ���na, �13�

which obey the following orthogonality conditions

����na��el�el = 0, �14�

������ = 0. �15�

The last equation means that normalization of � is of the
form

��el���� = 1. �16�

The total energy

E = Ea + �Ena �17�

is the sum of the adiabatic energy Ea and the nonadiabatic
correction �Ena. Using above definitions we proceed with the
derivation of the perturbative formulae.

The starting point is the Schrödinger Eq. �1� with the
Hamiltonian H, the wave function �, and the energy E de-
composed into adiabatic and nonadiabatic parts

��Hel − Eel� + �Eel + Hn − Ea − �Ena����el�� + ��� + ���na� = 0.

�18�

One rewrites this equation to the form

�Eel − Hel�����na� = �Eel + Hn − Ea − �Ena���el�� + ���

+ ���na� , �19�

and since ���na is orthogonal to �el, Eq. �14�, the formal
solution
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����na� =
1

�Eel − Hel��
�Hn��el�� + ����

+ �Eel + Hn − Ea − �Ena�����na�� , �20�

is obtained, where the prime in the denominator denotes sub-
traction of the reference state from the Hamiltonian inver-
sion. When �� and ���na on the right hand side are ne-
glected, Eq. �20� becomes the leading nonadiabatic
correction to the wave function. In the next step one takes
Eq. �18� and multiplies it from the left by ��el�,

��el�Eel + Hn − Ea − �Ena��el�� + ��� + ���na�el = 0. �21�

Since � satisfies Eq. �9� the above can be simplified to

�Eel + Ea + Hn − Ea����� = �Ena�� + ��� − ��el�Hn����na�el,

�22�

and due to Eq. �15� the solution is

���� =
1

�Ea − Eel − Ea − Hn��
���el�Hn����na�el − �Ena�� + ���� .

�23�

In the last step, one takes Eq. �22�, multiplies it from the left
by ���, and obtains

�Ena = ��el��Hn����na� . �24�

The set of recursive Eqs. �20�, �23�, and �24� forms the per-
turbative expansion of the wave functions ���na, ��, and
energy �Ena. For example, starting from Eq. �24� one gets

�Ena = ��el��Hn
1

�Eel − Hel��
�Hn��el�� + ����

+ �Eel + Hn − Ea − �Ena�����na�� , �25�

which is the sum of the leading, Eq. �28�, and the higher
order nonadiabatic correction, Eq. �44�. This perturbative ex-
pansion in general assumes that Eel+Hn−Ea is small with
respect to the electronic excitation energy. It is not always
true, especially for rovibrational levels close to the dissocia-
tion threshold. In spite of this fact, we claim that each power
of Eel+Hn−Ea in these particular matrix elements is at least

of the order of O��me /�n�, which we demonstrate in next
sections for the leading terms ��2�Ena and ��3�Ena of the nona-
diabatic perturbative expansion.

A. Second-order nonadiabatic corrections

In the leading order of perturbative treatment of nona-
diabatic effects one has

����na� =
1

�Eel − Hel��
Hn��el�� , �26�

���� =
1

�Ea − Eel − Ea − Hn��
��el�Hn����na�el, �27�

��2�Ena = ��el��Hn
1

�Eel − Hel��
Hn��el�� . �28�

The general formula �28�, following Ref. 16, can be readily
rearranged to a more practical form. From now on we con-
sider the homonuclear diatomic two-electron molecule and
separate out electronic matrix elements from the nuclear ones

��2�Ena =� d3R�����Hn�el�
1

�Eel − Hel��
�Hn�el�el

−
���R

i �

�n
�Hn�el�

1

�Eel − Hel��
��R

i �el�el

−
�R

i ���

�n
��R

i �el�
1

�Eel − Hel��
�Hn�el�el

+
�R

i ���R
j �

�n
2 ��R

i �el�
1

�Eel − Hel��
��R

j �el�el
 �29�


� d3R����U�R� − �R
i �����Vi�R�

+ �R
i ���R

j �Wij�R�� , �30�

where the last equation is the definition of potentials U, Vi,
and Wij. For the � electronic state �el,

Vi = niV , �31�

Wij = ninjW� + ��ij − ninj�W�, �32�

where n� =R� /R, hence

��2�Ena =� d3R�����Ena�R� + ninj�R
i ���R

j �W��R�

+ ��ij − ninj��R
i ���R

j �W��R�� . �33�

The function

�Ena�R� = U�R� + � 2

R
+

�

�R
	V�R� �34�

is the nonadiabatic correction to the adiabatic energy curve
Eel�R�+Ea�R� and pseudopotentials U, V, and W are

U�R� = �Hn�el�
1

�Eel − Hel��
�Hn�el�el, �35�

V�R� =
1

�n
�Hn�el�

1

�Eel − Hel��
�n� · �� R�el�el, �36�

W��R� =
1

�n
2 �n� · �� R�el�

1

�Eel − Hel��
�n� · �� R�el�el, �37�
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W��R� =
1

�n
2

��ij − ninj�
2

��R
i �el�

1

�Eel − Hel��
��R

j �el�el.

�38�

In order to simplify the nonadiabatic correction of Eq. �33�,
one notes that the nuclear wave function � has a definite
angular momentum,

� = �Jm�R� � = �J�R�YJm�n�� , �39�

where YJm are spherical harmonics, thus the nonadiabatic
correction can be transformed to the form

��2�Ena =� R2dR��J�
2W��R�

+ �J
2��Ena�R� +

J�J + 1�
R2 W��R�
� . �40�

Let us note that Eq. �40� can also be expressed in terms of an
expectation value of an effective nonadiabatic Hamiltonian
�Hna,

��2�Ena = ��J��Hna��J� , �41�

where

�Hna = −
1

R2

�

�R
R2W��R�

�

�R
+

J�J + 1�
R2 W��R� + �Ena�R� .

�42�

Now, the nonadiabatic correction �� of Eq. �27� can be con-
veniently rewritten in terms of �Hna,

���J� =
1

�Ea − Eel − Ea − Hn��
�Hna��J� , �43�

where it is understood that the derivatives with respect to
electronic variables of the function � do vanish.

B. Third-order nonadiabatic correction

The third order nonadiabatic correction of Eq. �25� is

��3�Ena = ��el��Hn
1

�Eel − Hel��
�Hn + Eel − Ea�

�
1

�Eel − Hel��
Hn��el��

+ ��el��Hn
1

�Eel − Hel��
Hn��el��� , �44�

where �� is given in Eq. �27�. Let us split this sum into two
parts accordingly

��3�Ena = ��3�Ena� + ��3�Ena� . �45�

While the first part ��3�Ena� involves many terms which are
negligible, since they include the third power of �n in the
denominator, the dominating O��n

−2� term is

��3�Ena� =
1

�n
2 ��R

i �el�R
i ��

1

�Eel − Hel��
�Hn + Eel − Ea�

�
1

�Eel − Hel��
��R

j �el�R
j �� + O��n

−3� �46�

�−� d3Rn� · �� R������V�R� + O��n
−3� , �47�

where

�V�R� =
1

2�n
2

�Eel

�R
�n� · �� R�el�

1

��Eel − Hel���2 �n� · �� R�el�el,

�48�

and this correction is included into �Ena of Eq. �34�, which
now becomes

�Ena�R� = U�R� + � 2

R
+

�

�R
	�V�R� + �V�R�� . �49�

The second term ��3�Ena� can be obtained from the nonpertur-
bative solution of the nuclear equation with the nonadiabatic
Hamiltonian �Hna from Eq. �42�. Namely, for the states with
the rotational quantum number J, ��3�Ena� takes the form

��3�Ena� = ��J��Hna���J�

= ��J��Hna
1

�Ea − Eel − Ea − Hn��
�Hna��J� , �50�

which is interpreted as a second order correction due to �Hna.

C. Nuclear equation with effective potentials

Instead of calculating the second order correction Eq.
�41� and the third order correction of Eq. �50�, it is more
appropriate to solve nonperturbatively the corresponding
equation:

�Hn + Eel�R� + Ea�R� + �Hna��J = E�J, �51�

where the total energy E is

E = Ea + ��2�Ena + ��3�Ena + ¯ , �52�

and this is done in this work. Moreover, from comparison of
subsequent terms of Eq. �42� with those of Eq. �11�, one
concludes that the first term can be interpreted as an
R-dependent correction to the nuclear reduced mass �n,

1

2���R�



1

2�n
+ W��R� , �53�

whereas the second term—as an R-dependent correction to
the inverse of the moment of inertia ���R�R2,

1

2���R�



1

2�n
+ W��R� . �54�

With these newly defined functions one can write the radial
equation as
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�−
1

2R2

�

�R

R2

���R�
�

�R
+

J�J + 1�
2���R�R2 + Y�R�
�J�R�

= E�J�R� , �55�

where

Y�R� = Eel�R� + Ea�R� + �Ena�R� �56�

forms the effective nonadiabatic potential.

D. Asymptotics of the effective masses

The adiabatic correction Ea�R�, Eq. �10�, and the nona-
diabatic correction �Ena�R�, Eq. �34�, do not vanish at large
internuclear distances. For example, for the large atomic
separation in the hydrogen molecule, Ea�R� and �Ena�R� are
equal to me /mp and −�me /mp�2, respectively, which corre-
sponds to the first terms in the expansion of the atomic re-
duced mass �= �1 /mp+1 /me�−1 in the electron-nucleus mass
ratio,

1 −
�

me
=

me/mp

1 + me/mp
=

me

mp
− �me

mp
	2

+ �me

mp
	3

− ¯ . �57�

Large R asymptotics of the pseudopotentials W��R� and
W��R� are equal to −me /mp

2, which is related to the change
in Eqs. �53� and �54� of the reduced nuclear mass �n to the
reduced mass �A= �mp+me� /2 of two hydrogen atoms,

1

2���	�
=

1

2���	�
=

1

2�A
=

1

mp + me
=

1

mp
�1 −

me

mp
+ ¯	 .

�58�

E. Evaluation of the wave function derivatives

The electronic matrix elements in Eq. �29� involve mul-
tiple differentiation of the electronic wave function with re-
spect to the internuclear distance R, which is difficult to cal-
culate directly. Therefore, following Ref. 16, we rewrite
these terms to a more convenient form, where differentiation
is taken of the Coulomb potential, namely,

�� R�el =
1

�Eel − Hel��
�� R�V��el, �59�

�R
2�el =

1

�Eel − Hel��
��R

2�V��el + 2�� R�V − Eel�

�
1

�Eel − Hel��
�� R�V��el� + �el��el��R

2 ��el�el.

�60�

The derivatives of potential V,

V = −
1

r1A
−

1

r1B
−

1

r2A
−

1

r2B
+

1

r12
+

1

RAB
, �61�

are the following

�� R�V� =
1

2
�−

r�1A

r1A
3 +

r�1B

r1B
3 −

r�2A

r2A
3 +

r�2B

r2B
3 	 −

R�

R3 , �62�

�R
2�V� = 
���r�1A� + ��r�1B� + ��r�2A� + ��r�2B�� − 4
��R� � ,

�63�

and the matrix elements with these operators are readily
evaluated. The presence of the Dirac delta operators in Eq.
�60� may potentially decrease the accuracy of the evaluation
of those quantities, which contain �R

2�el. If we note that

�el
2 �V� = 
���r�1A� + ��r�1B� + ��r�2A� + ��r�2B�� , �64�

we can get rid of Dirac deltas by a simple rearrangement of
the nuclear part of the Hamiltonian Hn to the form

Hn = −
1

2�n
��R

2 − �el
2 � −

1

�n
�el

2 . �65�

The difference in parenthesis collects the terms of Eqs. �63�
and �64�, which cancel out, up to the negligible −4
��R� �
term, so that we can write it down as

��R
2 − �el

2 ��el =
2

�Eel − Hel��
�� R�V − Eel�

1

�Eel − Hel��
�� R�V��el

−
2

�Eel − Hel��
�� el�V�

1

Eel − Hel
�� el�V��el + ��el,

�66�

with some constant �. In this way the Dirac delta terms are
eliminated at the expense of employing additional basis sets
for evaluation of the last resolvent in Eq. �66�.

IV. NUMERICAL CALCULATIONS

In order to form the radial nonadiabatic Eq. �55�, apart
from the clamped nuclei energy Eel�R� and the adiabatic cor-
rection Ea�R�, it is necessary to know the pseudopotentials
U�R�, V�R�+�V�R�, W��R�, and W��R�. The evaluation of
these functions is the main numerical task described here.
Calculations were performed at 80 points including long and
very short internuclear distances R. At each point several
electronic wave functions of different symmetries were gen-
erated. All these functions were represented as linear expan-
sions of properly symmetrized two-electron basis functions.
The basis functions were taken in the form of exponentially
correlated Gaussians �ECGs�,

�k�r�1,r�2� = �1 + P̂12��1 
 ı̂��k

�exp�− �
i,j=1

2

Aij,k�r�i − s�i,k��r� j − s� j,k�
 , �67�

where the matrices Ak and vectors s�k contain nonlinear pa-
rameters, five per basis function, to be variationally opti-

mized. The antisymmetry projector �1+ P̂12� ensures singlet

symmetry, the spatial projector �1
 ı̂� ensures the gerade �+�
or ungerade ��� symmetry, and the �k prefactor enforces �
states when equal to 1, or � states when equal to yi, the
perpendicular Cartesian component of the electron coordi-
nate.

Six different basis sets have been prepared to represent
the variety of the electronic wave functions. To ensure high
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accuracy of the potentials, the basis sets have been variation-
ally optimized with respect to pertinent goal functions ac-
cording to the specification in Table I.

Particular goal functions have been chosen to reflect the
contents of the expression the basis set is to be used for. The
first basis �labeled A�, composed of 600 ECG functions �Eq.
�67��, was employed to expand the X1�g

+ electronic ground
state wave function �el. Their nonlinear parameters were op-
timized variationally with respect to the clamped nuclei en-
ergy with the target accuracy of the order of a fraction of
microhartree. The bases B, C, and D were intended for
evaluation of the resolvents present in Eqs. �59� and �66�.
The two �g

+ bases �B and D� were optimized in the presence
of basis A; the first 600 terms were taken from the �el wave
function and their nonlinear parameters were kept fixed dur-
ing the optimization �only the remaining 600 terms were
actually optimized�. This ensures that the internal wave func-
tion �el is well represented at every step of optimization.
Then, the subtraction of the reference state, denoted by the �
symbol within the resolvent, was achieved by orthogonaliza-

tion of �� R�V���el� to the internal ��el�. In the final calcula-
tions the three bases A, B, and D were assembled together to
form a 1800-term �g

+ basis applied not only to evaluate the
pertinent resolvents but also to expand the external ground
state function �el. The two ungerade bases �E and F� were
employed to evaluate the resolvent and to form the compo-
nents of the scalar product in the second term of the right
hand side of Eq. �66�.

The adiabatic potential of the nuclear Schrödinger Eq.
�12� was composed of the clamped nuclei energy, Eel�R�, and
the adiabatic correction Ea�R�. For Eel�R� we used the ana-
lytic potential constructed by Łach18 on the basis of the en-
ergy points computed by Cencek19 from 1200-term ECG
wave functions and Sims and Hagstrom20 from Hylleraas
wave functions. Their energy points were converged up to 13
significant digits. The adiabatic correction Ea�R� was evalu-
ated as an expectation value of the Hamiltonian Hn, Eq. �10�,

Ea�R� = −
1

2�n
��el��R

2 + �el
2 ��el�el. �68�

To avoid the cumbersome differentiation of the electronic
wave function with respect to internuclear distance, we re-
placed the expectation value in the first term on the right
hand side of Eq. �68� by an equivalent expression,

��el��R
2 ��el�el = − ��� R�el��� R�el�el, �69�

which, with the help of Eq. �59�, can be further transformed
to

��el��R
2 ��el�el = − ��� R�V�

1

��Eel − Hel���2�� R�V��
el

. �70�

The formula �70�, when evaluated with the optimized bases
A, B, and C, yields the adiabatic correction with an accuracy
of at least 1 ppm. The adiabatic potential curve was then
obtained by means of a ten-point piecewise polynomial
interpolation.

The electronic matrix elements U, V+�V, W�, and W�

entering Eq. �33� were evaluated with the ECG basis sets
described above, yielding smooth functions of R. Because
for the highest vibrational levels the nuclear wave functions
are spread out and the contributions from larger internuclear
distances are non-negligible, the functions U�R�, V�R�, and
W�R� were represented by their asymptotic forms:

U�R� � u0 + u6/R6 + u8/R8,

V�R� � v9/R9 + v11/R11,

�V�R� � v7�/R
7 + v9�/R

9, �71�

W��R� � w�0 + w�12/R12 + w�14/R14,

W��R� � w�0 + w�12/R12 + w�14/R14,

subject to u0=w�0=w�0=−�me /mp�2 restriction �in a.u.�. The
remaining, free parameters ui, vi, and wi were determined by
fitting the above functions to the calculated points in the
range of �6.0,10.0� bohrs. Because at distances R�6, the
numerical precision of the potentials U and V was not high
enough, we used lower R-values for the extrapolation. At the
origin R=0 all the potentials are finite with V�R, W� �R2,
and W��R2. Numerical results for �Ena, W�, and W� are
shown graphically in Fig. 1.

The nonadiabatic correction to energy levels can be
computed perturbatively from Eq. �40� as has been done in
our previous paper,16 or, in a more accurate way, the radial
Eq. �51� can be solved for the total nonadiabatic energy. This
second method is described shortly below. The first term
including the second order derivative is rewritten to the more
convenient form

TABLE I. Goal functions used in optimization of the basis sets.

Label Size Symmetry Goal function

A 600 �g Eel

B 600a
�g ��R

� �V�
1

�Eel − Hel��
�R

� �V��
C 1200 �g ��R

��V�
1

Eel − Hel
�R

��V��
D 600a

�g ��el
2 1

�Eel − Hel��
�el

2�
E 600 �u ��el

� �V�
1

Eel − Hel
�el

� �V��
F 600 �u

��el
��V�

1

Eel − Hel
�el

��V��
aOptimized along with the fixed basis A.
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−
1

R2

�

�R
R2� 1

2�n
+ W��R�	 �

�R

= −
1

R

�

�R
� 1

2�n
+ W��R�	 �

�R
R +

W���R�
R

. �72�

The resulting radial equation,

�

�R

1

���R�
�

�R
�J�R�

= − 2�E − Y�R� −
W���R�

R
−

J�J + 1�
2���R�R2
�J�R� , �73�

is solved numerically for the function �J�R�=R�J�R�. We
used the code developed by Johnson,21 described recently in
his book, and modified it to account for the dependence of
the mass on the internuclear distance. In the calculations we
used the following constants:22 the proton mass mp

=1836.152 672 47me and the energy units conversion factor
1 hartree=219 474.631 370 5 cm−1.

V. RESULTS AND DISCUSSION

In a molecule, the moving nuclei are “coated” with elec-
trons and the amount of additional mass carried by the nuclei
changes with R. For a homonuclear molecule in a purely
vibrational state, the effective mass of the nucleus at given R,
m��R�, is just twice the reduced mass ���R� defined in Eq.
�53�. Analogously, for a rigid rotating molecule, the effective
nuclear mass m��R� is related to ���R� of Eq. �54�. Thus,
their R-dependence can be determined explicitly from the
potentials W��R� and W��R�, respectively. Figure 2 illus-
trates the changes in the two effective nuclear masses with
the internuclear distance in H2. The functions m��R� and
m��R� join smoothly the proton mass at the united atom
limit with the hydrogen atomic mass �mp+me� at the sepa-
rated atoms limit. Interestingly, for R�2.41 a.u., the effec-
tive mass m��R� is greater than the sum of proton and elec-
tron masses, reaching mp+1.6me at the maximum located
near R=3.8 a.u.

The radial Eq. �73� has been solved for all bound states
with three versions of the potential Y�R�,

Y�R� = Eel�R� BO,

Y�R� = Eel�R� + Ea�R� adiabatic,

Y�R� = Eel�R� + Ea�R� + �Ena�R� nonadiabatic,

yielding three sets of dissociation energies. The correspond-
ing dissociation thresholds were �1 hartree in the BO ap-
proximation, −1+me /mp hartree in adiabatic approximation,
and −1+me /mp− �me /mp�2 hartree in the nonadiabatic level
of theory. The results are listed in Table II, where for each
pair of quantum numbers v and J three entries are given �in
cm−1�: the BO dissociation energy, the adiabatic correction,
and the nonadiabatic correction to the dissociation energy.
Thus, the total nonrelativistic dissociation energy can be ob-
tained by summing up all three entries. The only exception is
the state with v=14 and J=4, for which a nonadiabatic level
lying just beneath the dissociation threshold has been pre-
dicted, although neither BO nor adiabatic bound states exist.
The entry given for this state is the energy separation from
the nonadiabatic dissociation threshold.

Our nonadiabatic corrections agree very well with those
computed by Wolniewicz15 for rovibrational states of J�10.
For all rotational states of the lowest vibrational level, the
difference is merely 0.0002 cm−1 or less. In all the cases the
difference is smaller than 0.1%, which corresponds to the
magnitude of the neglected higher order terms of relative
order O�1 /�n�. This is the first confirmation of Wolniewicz’s
results15 for J�0 rovibrational states and, simultaneously, a
numerical validation of the nonadiabatic perturbation theory
presented in this work. Let us note that the nonadiabatic
corrections to the dissociation energy from Table II differ in
sign from the corrections to the adiabatic energy of Ref. 15
and their absolute values differ by the constant 1 /mp

2

=0.065 097 87 cm−1 corresponding to the asymptotic value
of the nonadiabatic potential �Ena�R�, discussed in Sec. III D.

-6
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0

0 2 4 6 8 10

R/a.u.

x 10-7

δεna(R)

WII(R)

W⊥(R)

-1/mp
2

FIG. 1. �Color online� The nonadiabatic potentials �in a.u.�: �Ena�R� �bolded,
black�, W��R� �lower dotted, blue�, and W��R� �upper dotted, red�. The
potentials asymptote goes at −1 /mp

2=−2.966 077�10−7.

1836.0
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1837.5
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m||(R)

m⊥(R)
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FIG. 2. �Color online� The R-dependence of the effective nuclear masses
m��R� and m��R� �in a.u.�.
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TABLE II. The dissociation energy of the rovibrational states of H2 �in cm−1�. For each pair of vibrational �v� and rotational �J� quantum numbers, three
entries are given: the BO dissociation energy, the adiabatic correction, and the nonadiabatic correction. The sum of the three numbers gives the total
nonrelativistic dissociation energy of the �v ,J� state.

v \J 0 1 2 3 4 5 6 7

0 36 112.5927 35 994.0372 35 758.0143 35 406.6660 34 943.1216 34 371.4040 33 696.3152 32 923.3094
0 5.7711 5.8348 5.9611 6.1481 6.3931 6.6924 7.0418 7.4367
0 0.4339 0.4406 0.4539 0.4739 0.5005 0.5338 0.5736 0.6200

1 31 949.1892 31 836.5534 31 612.3337 31 278.6001 30 838.3755 30 295.5437 29 654.7385 28 921.2187
1 7.1740 7.2311 7.3443 7.5119 7.7310 7.9983 8.3096 8.6605
1 1.2704 1.2761 1.2874 1.3044 1.3271 1.3555 1.3896 1.4294

2 28 021.4345 27 914.5889 27 701.9154 27 385.4159 26 968.0130 26 453.4605 25 846.2343 25 151.4125
2 8.3336 8.3840 8.4839 8.6314 8.8240 9.0583 9.3304 9.6358
2 2.0271 2.0318 2.0414 2.0557 2.0749 2.0989 2.1279 2.1618

3 24 324.4498 24 223.3066 24 022.0055 23 722.4851 23 327.5744 22 840.9061 22 266.8106 21 610.1998
3 9.2420 9.2855 9.3714 9.4982 9.6632 9.8633 10.0945 10.3525
3 2.7088 2.7127 2.7206 2.7326 2.7485 2.7686 2.7929 2.8214

4 20 855.2072 20 759.7245 20 569.7150 20 287.0583 19 914.4976 19 455.5548 18 914.4286 18 295.8815
4 9.8890 9.9251 9.9966 10.1017 10.2378 10.4019 10.5902 10.7985
4 3.3187 3.3219 3.3283 3.3379 3.3508 3.3670 3.3868 3.4100

5 17 612.7145 17 522.9036 17 344.2107 17 078.4626 16 728.3253 16 297.2225 15 789.2368 15 209.0018
5 10.2629 10.2915 10.3476 10.4298 10.5356 10.6618 10.8049 10.9606
5 3.8576 3.8599 3.8647 3.8719 3.8816 3.8938 3.9087 3.9262

6 14 598.2891 14 514.2237 14 346.9982 14 098.3935 13 771.0098 13 368.1874 12 893.9129 12 352.7160
6 10.3525 10.3729 10.4130 10.4712 10.5449 10.6313 10.7268 10.8271
6 4.3218 4.3232 4.3262 4.3306 4.3365 4.3440 4.3531 4.3639

7 11 815.9479 11 737.7779 11 582.3242 11 351.3310 11 047.3466 10 673.6480 10 234.1517 9733.3170
7 10.1486 10.1606 10.1839 10.2169 10.2573 10.3020 10.3476 10.3901
7 4.7029 4.7031 4.7037 4.7044 4.7055 4.7067 4.7081 4.7095

8 9272.9561 9200.9278 9057.7445 8845.1263 8565.5890 8222.3732 7819.3619 7360.9906
8 9.6483 9.6517 9.6577 9.6648 9.6707 9.6726 9.6670 9.6500
8 4.9838 4.9824 4.9796 4.9752 4.9692 4.9614 4.9516 4.9393

9 6980.5984 6915.0837 6784.9238 6591.8323 6338.3203 6027.6323 5663.6708 5250.9187
9 8.8590 8.8537 8.8422 8.8232 8.7945 8.7533 8.6963 8.6196
9 5.1364 5.1325 5.1246 5.1124 5.0958 5.0743 5.0472 5.0138

10 4955.2699 4896.8118 4780.7739 4608.8912 4383.7137 4108.5514 3787.4126 3424.9438
10 7.8021 7.7882 7.7597 7.7151 7.6525 7.5691 7.4616 7.3260
10 5.1160 5.1082 5.0925 5.0684 5.0354 4.9926 4.9386 4.8720

11 3220.0418 3169.4253 3069.1017 2920.8723 2727.3991 2492.1652 2219.4373 1914.2414
11 6.5140 6.4918 6.4469 6.3777 6.2821 6.1573 5.9996 5.8045
11 4.8566 4.8429 4.8151 4.7725 4.7140 4.6379 4.5418 4.4224

12 1806.9489 1765.3260 1683.0605 1562.1049 1405.3733 1216.7368 1001.0464 764.2101
12 5.0372 5.0068 4.9451 4.8505 4.7203 4.5506 4.3360 4.0685
12 4.2657 4.2429 4.1965 4.1254 4.0271 3.8984 3.7345 3.5281

13 760.3903 729.5279 668.9437 580.9383 469.0254 338.0600 194.5461 47.4825
13 3.3933 3.3526 3.2697 3.1417 2.9631 2.7253 2.4123 1.9886
13 3.2221 3.1850 3.1095 2.9927 2.8294 2.6113 2.3232 1.9317

14 141.7951 124.7523 92.3077 48.0033
14 1.5343 1.4739 1.3479 1.1416
14 1.5847 1.5226 1.3933 1.1825 0.0887a

v \J 8 9 10 11 12 13 14 15

0 32 058.3583 31 107.8190 30 078.3065 28 976.5781 27 809.4302 26 583.6105 25 305.7462 23 982.2860
0 7.8718 8.3418 8.8411 9.3642 9.9055 10.4596 11.0212 11.5852
0 0.6728 0.7322 0.7981 0.8704 0.9491 1.0343 1.1260 1.2240
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TABLE II. �Continued.�

v \J 8 9 10 11 12 13 14 15

1 28 100.7394 27 199.4234 26 223.6397 25 179.8929 24 074.7260 22 914.6378 21 706.0160 20 455.0847
1 9.0458 9.4605 9.8991 10.3562 10.8264 11.3045 11.7850 12.2629
1 1.4749 1.5263 1.5834 1.6464 1.7154 1.7903 1.8713 1.9584

2 24 374.5496 23 521.5539 22 598.5709 21 611.8782 20 567.7938 19 472.5994 18 332.4783 17 153.4682
2 9.9697 10.3271 10.7026 11.0910 11.4869 11.8851 12.2802 12.6671
2 2.2008 2.2449 2.2942 2.3488 2.4089 2.4744 2.5456 2.6225

3 20 876.4463 20 071.2651 19 200.6029 18 270.5391 17 287.1990 16 256.6838 15 185.0135 14 078.0862
3 10.6327 10.9300 11.2393 11.5554 11.8729 12.1865 12.4908 12.7804
3 2.8543 2.8917 2.9337 2.9804 3.0320 3.0885 3.1500 3.2167

4 17 605.1247 16 847.7045 16 029.3982 15 156.1198 14 233.8415 13 268.5282 12 266.0890 11 232.3425
4 11.0221 11.2561 11.4954 11.7348 11.9690 12.1923 12.3995 12.5849
4 3.4370 3.4677 3.5023 3.5409 3.5836 3.6304 3.6814 3.7365

5 14 561.5917 13 852.4141 13 087.1119 12 271.4764 11 411.3755 10 512.6972 9581.3093 8623.0355
5 11.1244 11.2915 11.4566 11.6146 11.7601 11.8873 11.9906 12.0642
5 3.9466 3.9699 3.9962 4.0254 4.0576 4.0926 4.1304 4.1704

6 11 749.5653 11 089.7678 10 378.8781 9622.6208 8826.8275 7997.3920 7140.2429 6261.3368
6 10.9279 11.0242 11.1110 11.1829 11.2344 11.2597 11.2528 11.2071
6 4.3763 4.3903 4.4058 4.4226 4.4406 4.4592 4.4779 4.4957

7 9176.0486 8567.6048 7913.5170 7219.5226 6491.5173 5735.5270 4957.7045 4164.3543
7 10.4250 10.4474 10.4524 10.4343 10.3876 10.3060 10.1831 10.0114
7 4.7108 4.7118 4.7119 4.7108 4.7076 4.7012 4.6902 4.6724

8 6852.1602 6298.1569 5704.5851 5077.3199 4422.4828 3746.4465 3055.8806 2357.8507
8 9.6172 9.5638 9.4847 9.3741 9.2260 9.0337 8.7892 8.4833
8 4.9241 4.9053 4.8820 4.8528 4.8160 4.7692 4.7092 4.6313

9 4794.3657 4299.4465 3771.9991 3218.2507 2644.8437 2058.9184 1468.2878 881.7751
9 8.5188 8.3891 8.2250 8.0203 7.7678 7.4587 7.0814 6.6193
9 4.9730 4.9232 4.8624 4.7880 4.6962 4.5819 4.4375 4.2515

10 3026.3806 2597.5217 2144.7391 1675.0460 1196.2612 717.3517 249.1650
10 7.1577 6.9514 6.7003 6.3963 6.0280 5.5786 5.0193
10 4.7905 4.6909 4.5694 4.4200 4.2343 3.9995 3.6930

11 1582.3694 1230.4417 866.0734 498.2452 138.1669
11 5.5658 5.2756 4.9227 4.4892 3.9416
11 4.2752 4.0939 3.8689 3.5852 3.2148

12 513.3908 257.4738 8.3253
12 3.7358 3.3166 2.7633
12 3.2682 2.9354 2.4878

v \J 16 17 18 19 20 21 22 23

0 22 619.4577 21 223.2371 19 799.3296 18 353.1603 16 889.8728 15 414.3355 13 931.1527 12 444.6818
0 12.1465 12.7005 13.2425 13.7681 14.2729 14.7525 15.2029 15.6196
0 1.3286 1.4396 1.5572 1.6814 1.8122 1.9497 2.0939 2.2451

1 19 167.8656 17 850.1517 16 507.4922 15 145.1868 13 768.2885 12 381.6135 10 989.7585 9597.1235
1 12.7332 13.1911 13.6317 14.0502 14.4420 14.8023 15.1262 15.4086
1 2.0516 2.1512 2.2570 2.3693 2.4881 2.6134 2.7453 2.8838

2 15 941.4274 14 702.0131 13 440.6714 12 162.6372 10 872.9422 9576.4337 8277.7999 6981.6067
2 13.0406 13.3957 13.7272 14.0300 14.2988 14.5281 14.7122 14.8446
2 2.7052 2.7938 2.8884 2.9890 3.0955 3.2080 3.3263 3.4502

3 12 941.6497 11 781.2863 10 602.4104 9410.2757 8209.9952 7006.5729 5804.9493 4610.0657
3 13.0501 13.2944 13.5077 13.6843 13.8181 13.9026 13.9307 13.8939
3 3.2886 3.3657 3.4479 3.5352 3.6272 3.7237 3.8240 3.9274
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VI. SUMMARY

We presented the nonadiabatic perturbation theory appli-
cable to any molecule in an arbitrary rovibrational state. The
leading nonadiabatic corrections for the diatomic molecule
are expressed in terms of three R-dependent functions de-
picted in Fig. 1: the nuclear reduced mass in Eq. �53�, the
moment of inertia in Eq. �54�, and the correction Eq. �49� to
the adiabatic potential, which enter the radial Schrödinger
equation for nuclei Eq. �51�. This equation can be solved for
an arbitrary molecular states by standard numerical
methods.21 Although representation of the nonadiabatic cor-
rection by pseudopotentials has been studied previously �see
Refs. 9, 11, and 12 and references therein�, we rigorously
derived new expressions for W�, W�, and �Ena functions of
the internuclear distance, which give nonadiabatic correc-

tions with O�me /�n� accuracy. Moreover, we performed ex-
plicit numerical calculations for the simplest example of H2

molecule in order to verify the obtained perturbative formu-
lae. All the electronic matrix elements with differentiation of
the wave function over the internuclear distance were rewrit-
ten in a convenient form involving differentiation of the
Coulomb potential. Such an approach enables achieving
much higher numerical precision even for the well known
adiabatic correction. The final accuracy of all three nonadia-
batic functions is limited only by the neglected higher order
terms, namely, O�me /�n� relative to the leading order and
results for rovibrational levels agree within this uncertainty
with former results of Wolniewicz.15 Having accurate non-
relativistic energies one can include relativistic and QED
corrections, which become significant for the states close to

TABLE II. �Continued.�

v \J 16 17 18 19 20 21 22 23

4 10 172.9970 9093.6453 7999.7724 6896.7794 5790.0229 4684.8764 3586.8202 2501.5762
4 12.7427 12.8672 12.9520 12.9905 12.9756 12.8991 12.7513 12.5207
4 3.7957 3.8587 3.9253 3.9948 4.0665 4.1392 4.2113 4.2803

5 7643.6478 6648.8775 5644.4446 4636.1112 3629.7676 2631.5640 1648.1214 686.8842
5 12.1016 12.0965 12.0417 11.9291 11.7496 11.4918 11.1414 10.6779
5 4.2124 4.2556 4.2990 4.3412 4.3801 4.4126 4.4344 4.4383

6 5366.6735 4462.3376 3554.5745 2649.9163 1755.3887 878.8631 29.7112
6 11.1158 10.9712 10.7645 10.4851 10.1192 9.6476 9.0402
6 4.5115 4.5235 4.5291 4.5249 4.5055 4.4629 4.3836

7 3361.9951 2557.4749 1758.1694 972.3301 209.7400
7 9.7827 9.4869 9.1113 8.6376 8.0373
7 4.6449 4.6038 4.5430 4.4532 4.3193

8 1660.0067 970.9237 300.7647
8 8.1037 7.6332 7.0443
8 4.5286 4.3911 4.2015

9 309.8952
9 6.0447
9 4.0047

v \J 24 25 26 27 28 29 30 31

0 10 959.0542 9478.2014 8005.8846 6545.7303 5101.2727 3676.0048 2273.4444 897.2218
0 15.9981 16.3340 16.6221 16.8572 17.0329 17.1423 17.1769 17.1261
0 2.4031 2.5682 2.7404 2.9199 3.1066 3.3006 3.5019 3.7105

1 8207.9415 6826.3161 5456.2676 4101.7929 2766.9437 1455.9363 173.3131
1 15.6440 15.8264 15.9492 16.0045 15.9831 15.8734 15.6600
1 3.0290 3.1807 3.3389 3.5032 3.6734 3.8488 4.0283

2 5692.3452 4414.4956 3152.6140 1911.4560 696.1630
2 14.9184 14.9254 14.8559 14.6980 14.4356
2 3.5795 3.7135 3.8516 3.9923 4.1340

3 3426.9550 2260.8735 1117.5022
3 13.7827 13.5850 13.2850
3 4.0327 4.1379 4.2403

4 1435.3165 395.0112
4 12.1920 11.7435
4 4.3427 4.3926

aThis state appears as a resonance in BO and adiabatic approximations. The entry is a dissociation energy of this nonadiabatic level.
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the dissociation threshold. Relativistic corrections for the
electronic ground state of H2 are known accurately for a
wide range of internuclear distances.23 Their large R asymp-
totics, including QED corrections, is presently investigated
by Jeziorski and co-workers.24 Combining all the knowledge
would enable achieving at least an order of magnitude in-
crease in the precision of theoretical prediction for all mo-
lecular states of H2.

Analogous calculations can be performed for D2 and HD
molecules. It is worth noting that in the former case there is
no need to recompute the pseudopotentials and only a proper
rescaling due to different reduced masses is required. The
calculations on the latter system, due to difference in mass of
the proton and deuteron, would involve additional correction
to �Ena coming from the last term of Eq. �5�. While this
perturbative approach can be further extended to larger di-
atomic molecules, it would be more challenging to investi-
gate three-atomic molecules such as H3

+, which is a system of
great astrophysical interest. We expect no principal difficul-
ties in such calculations except for much more increased de-
mands in computer resources needed to perform optimization
of pertinent wave functions.
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