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5 Streszczenie 

STRESZCZENIE ROZPRAWY DOKTORSKIEJ 

Proces starzenia stanowi końcowy etap w rozwoju ontogenetycznym roślin, 

bezpośrednio poprzedzający śmierć wybranej grupy komórek, tkanek, organów lub całych 

organizmów roślinnych. Pomimo, iż jest to proces destrukcyjny, postępuje w sposób 

uporządkowany i wysoce regulowany. Uznawany jest zazwyczaj za przejaw programowanej 

śmierci komórki 〉PCD《, obejmujący szereg mechanizmów prowadzących do śmierci komórek 

w następstwie degradacji ich protoplastu. Znaczenie PCD dla przebiegu procesu starzenia 

zostało potwierdzone w liściach i płatkach kwiatów, jednakże mechanizmy regulujące 

starzenie korzeni chłonnych – organów równie efemerycznych jak liście bądź płatki korony, 

były dotąd nieznane. Formowanie korzeni chłonnych zachodzi szczególnie w okresach 

silnego zapotrzebowania na wodę i związki mineralne z gleby, tj. na początku sezonu 

wegetacyjnego oraz podczas intensywnego wzrostu. Jesienią, gdy zapotrzebowanie na te 

związki maleje, większość korzeni starzeje się i zamiera.  

Nadrzędnym celem pracy doktorskiej było poszerzenie wiedzy dotyczącej starzenia 

i zamierania korzeni chłonnych. Sformułowano hipotezę główną, zakładającą istnienie 

analogii w przebiegu procesu starzenia liści i korzeni chłonnych poprzez wykształcenie 

wspólnych mechanizmów regulujących ten proces. Materiał do badań stanowiły liście 

i korzenie chłonne topoli kalifornijskiej 〉Populus trichocarpa), uprawianej w systemie 

ryzotronów. System ten umożliwiał obserwację wzrostu i funkcjonowania korzeni 

w warunkach in situ.  

Przeprowadzone badania wykazały liczne podobieństwa pomiędzy procesem 

starzenia liści i korzeni chłonnych. Obejmowały one podobne zmiany na poziomie 

morfologicznym, anatomicznym i ultrastrukturalnym tj. zmiana barwy organów, modyfikacja 

kształtu komórek, a na końcowym etapie przerwanie ciągłości tonoplastu i degradacja 

protoplastu. W obu organach udokumentowano uruchomienie mechanizmów związanych 

z procesem autofagii: wzrost ekspresji genów ATG (AuTophagy-related Genes《, zwiększoną 

zawartość białka ATGｸ, jak również obecność struktur związanych z tym procesem 

tj. autofagosomy i ciała autofagowe w starzejących się organach. Analiza ekspresji genów 

wykazała ponadto znaczne zmiany w ekspresji genów, związanych z sygnalizacją, biosyntezą 

oraz metabolizmem wielu fitohormonów w tym kwasu abscysynowego 〉ABA《 i kwasu 
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jasmonowego 〉JA《. Zwiększoną zawartość tych związków wykazano zarówno w liściach, jak 

i w korzeniach chłonnych. Uzyskane wyniki sugerują jednak odmienny sposób ich działania 

w obu organach. W korzeniach chłonnych, ABA i JA nie regulują bezpośrednio procesu 

starzenia, uczestniczą jednak w tym procesie pośrednio poprzez ochronę korzeni przed 

atakiem patogenów 〉JA《 oraz zwiększenie oporności na niską temperaturę 〉ABA《. Rola tych 

fitohormonów w liściach jest bardziej złożona i związana jest z regulacją wielu procesów 

poprzez ich wpływ na działanie czynników transkrypcyjnych. Starzenie zarówno liści, jak 

i korzeni chłonnych uruchamiało mechanizmy pozwalające na remobilizację azotu. 

Udokumentowano spadek zawartości tego pierwiastka w obu starzejących się organach, 

powiązany ze wzrostem ekspresji genów kodujących cytozolową formę syntetazy 

glutaminianowej 〉GSｱ《, jak również ze wzrostem zawartości samego enzymu. Metabolizm 

węglowodanów różnicował natomiast oba organy, w korzeniach chłonnych były one bowiem 

magazynowane, podczas gdy w liściach skrobia była wycofywana ze starzejących się tkanek.  

Uzyskane wyniki przyczyniły się do szczegółowego poznania biologii starzenia 

korzeni chłonnych oraz wykazały, iż pomimo różnic w budowie oraz odmiennego środowiska 

wzrostu, proces starzenia korzeni chłonnych i liści angażuje zbliżone mechanizmy aktywacji 

szlaków autofagii i remobilizacji azotu. Uzyskane wyniki sugerują, że starzenie korzeni 

chłonnych można sklasyfikować jako jeden z  kolejnych przykładów programowanej śmierci 

komórki 〉PCD《 podczas rozwoju roślin. 
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SUMMARY OF DOCTORAL THESIS 

Senescence is a coordinated series of events that begins at a cellular level and then 

broadens to entire tissues, organs, or the whole organism. Despite its destructive character, 

senescence is a precisely controlled process that follows a prescribed order. This process is 

often associated with programmed cell death (PCD) as has been demonstrated in the 

senescence of leaves and petals. To date, however, there was a lack of comprehensive data on 

the process of senescence, and its mechanisms, in fine roots, organs that are as ephemeral as 

leaves and petals. Fine roots are formed at the beginning of the growing season to increase 

water and nutrient absorption. Then, begin to senesce and die in the autumn when demand 

for water and nutrients decreases.  

The aim of this thesis was to broaden our knowledge of senescence process in fine roots 

by documenting its temporal occurrence and confirming the similarities that exist between the 

senescence of fine roots, leaves, and petals due to activation of a common mechanism. All 

experiments were performed on leaves and fine, absorptive roots of Populus trichocarpa grown 

in a rhizotron system that enabled in situ observations of roots.  

Results of the investigation revealed numerous similarities between the senescence 

process that occurs in leaves and fine roots, including similar changes in morphology (color 

changes, wilting/shrinkage), anatomy (changes in cell shape,) and cytology (tonoplast rupture, 

degradation of protoplast). Importantly, the activation of mechanisms associated with 

autophagy was documented in senescing fine roots. Autophagy was indicated by the elevated 

expression of ATG genes (AuTophagy-related genes), increased levels of ATG8 protein, and 

the presence of autophagy-related structures in senescing organs. Molecular analyses revealed 

significant changes in gene expression, including those associated with signaling, 

biosynthesis, and the metabolism of several phytohormones, including abscisic acid (ABA) 

and jasmonic acid (JA). The increased levels of these phytohormones was confirmed in both 

leaves and fine roots. The data indicate, however, that ABA and JA in fine roots act indirectly 

in the regulation of senescence by contributing to the protection of these organs against 

pathogens (JA) and increasing their tolerance to low temperature (ABA). Activation 

of mechanisms related to nitrogen remobilization were documented in both senescing leaves 
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and roots. Decreases in nitrogen content, increased expression of genes encoding the cytosolic 

form of glutamine synthetase (GS1), and increased levels of GS1 were observed in both organs. 

In contrast, differences in the metabolism of carbohydrates were identified in the two studied 

organs. While carbohydrates accumulated in senescing fine roots, starch levels decreased 

in senescing leaves. 

The results of this thesis investigation provide a deeper understanding of the 

senescence process in fine roots and also demonstrate that despite differences in structure, 

as well as different growth conditions, the senescence process in fine roots and leaves involve 

similar mechanisms, including changes in morphology and anatomy, and the activation 

of  autophagy and nitrogen remobilization. Based on these results, it is suggested that fine root 

senescence should be classified as another type of programmed cell death (PCD) that occurs 

within the life cycle of plants.  
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 WPROWADZENIE 

Starzenie roślin jest procesem zachodzącym w ich rozwoju ontogenetycznym w sposób 

naturalny wraz z wiekiem, jak również może być indukowane przez czynniki endo- 

i  egzogenne, takie jak ciemność, niedobór składników mineralnych, chłód czy susza (Lim i in. 

2007, Guiboileau i in. 2012, Sobieszczuk-Nowicka i in. 2018). Starzenie może obejmować całą 

roślinę, poszczególne jej organy, bądź nawet grupy komórek╉ może też występować sezonowo 

w okresach narażenia na czynniki stresowe 〉np. przed zimą《 jak również wynikać 

z  progresywnego starzenia i zamierania starszych organów i tkanek oraz zastępowania ich 

nowopowstałymi. Najczęściej jednak starzenie jest utożsamiane z ostatnim, poprzedzającym 

śmierć, etapem w rozwoju ontogenetycznym roślin (Quirino i in. 2000). Pomimo 

destrukcyjnego charakteru, jest to proces wysoce regulowany i uporządkowany, postępujący 

zgodnie ze ściśle określoną sekwencją zdarzeń. Proces starzenia jest często uznawany 

za przykład programowanej śmierci komórki 〉PCD, ang. Programmed Cell Death《. Różni się 

on jednak od pozostałych typów PCD – zachodzących znacznie szybciej niż starzenie 

m.in. ksylogenezy (Iakimova i Woltering 2017), tworzenia warstwy odcinającej (Bar-Dror i in. 

2011) lub degradacji tapetum (Li i in. 2006). Wydłużenie przebiegu PCD podczas starzenia 

umożliwia proces remobilizacji, podczas którego ze starzejących się tkanek wycofywane 

zostają cenne dla rośliny pierwiastki (Avila-Ospina i in. 2014, 2015). Jednakże aspekt starzenia, 

w kontekście PCD, jest w dalszym ciągu zagadnieniem szeroko dyskutowanym. Część 

badaczy uważa, że PCD i starzenie to dwa niezależne procesy, w których PCD występuje 

po procesie starzenia (van Doorn i Woltering 2004). Postuluje się również, że PCD jest 

procesem odnoszącym się do śmierci pojedynczych komórek, podczas gdy starzenie dotyczy 

organów, a nawet całych organizmów roślinnych (Nooden 2003, Thomas 2003). Inne 

kryterium sugeruje, że starzenie można zaklasyfikować jako PCD dopiero po przekroczeniu 

pewnej granicy, gdy proces ten stanie się nieodwracalny, a zmiany, które zaszły 

w obumierającym organie uniemożliwiają odzyskania pełnej aktywności (Bagniewska-

Zadworna i Arasimowicz-Jelonek 2016, Sobieszczuk-Nowicka i in. 2018). W naturze 

odwrócenie sezonowego starzenia zachodzi niezwykle rzadko, a przekroczenie wspomnianej 

granicy następuje natychmiast po rozpoczęciu tego procesu (van Doorn i Woltering 2004). 

Pomimo tych rozbieżności większość autorów przyznaje, że starzenie wiąże się z genetycznie 

zaprogramowanym „samozniszczeniem”, prowadzącym do śmierci komórek i należy 
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je rozpatrywać w kontekście poszczególnych komórek, tkanek, organów lub całego 

organizmu.  

Badania dotyczące liści i płatków kwiatów wykazały, że starzenie tych organów 

roślinnych można zaklasyfikować jako rodzaj PCD (Lee i Chen 2002, Shibuya i in. 2009). Jak 

odnotowano w pracy Wojciechowska i in. 2018 (Publikacja 1),  w literaturze brakuje natomiast 

kompleksowego ujęcia przebiegu procesu starzenia korzeni chłonnych. Zgodnie z najnowszą 

klasyfikacją korzenie chłonne są jedną z grup funkcjonalnych składających się, razem 

z korzeniami transportowymi, na korzenie drobne 〉ø<ｲmm《 charakteryzujące się brakiem 

budowy wtórnej, często obecnością mikoryzy oraz wysokim stosunkiem powierzchni 

do masy (McCormack i in. 2015). Cechy te stanowią przystosowanie do funkcji jaką te korzenie 

pełnią, czyli absorpcji wody i zawartych w niej związków mineralnych z gleby. Dane 

literaturowe podają, iż długość życia korzeni chłonnych jest cechą gatunkową i może się 

wahać od kilku tygodni do ｲ lat (Wells i Eissenstat 2001, Xia i in. 2010), a w przypadku drzew 

z rodzaju Populus rzadko przekracza 95 dni (McCormack i in. 2012). Korzenie chłonne, 

stanowiące istotną składową biomasy gleby, w dużej mierze wpływają na przebieg procesów 

biologicznych w ekosystemach leśnych. Biorąc pod uwagę wielkość rocznej produkcji 

biomasy korzeni drobnych, rozważenie aspektu starzenia i zamierania korzeni chłonnych jest 

istotne również w perspektywie obiegu pierwiastków w przyrodzie (Gill i Jackson 2008, 

Brassard i in. 2009).  

Starzenie liści, płatków oraz korzeni chłonnych, pomimo różnic w ich budowie, funkcji 

organów oraz środowisku wzrostu przejawia się występowaniem podobieństw w morfologii 

i anatomii (Publikacja 1, Fig. 1). Zaliczyć do nich można m.in.: podobieństwa w morfologii 

i  anatomii, jak: zmiana barwy, utrata turgoru, występowanie licznych obkurczeń i zmiany 

kształtu komórek. Ponadto, badania ultrastrukturalne wykazały, że w każdym z wyżej 

wymienionych organów, podczas starzenia obserwowano, obecność struktur związanych 

z procesem autofagii, a finalnie przerwanie ciągłości tonoplastu powodujące degradację 

protoplastu i śmierć komórki (Matile i Winkenbach 1971, Uzelac i in. 2016). Dla starzejących 

się liści i płatków przeprowadzone zostały liczne analizy na poziomie metabolomicznym, 

proteomicznym i transkryptomicznym (Porat i in. 1993, Guo i in. 2004, Langston i in. 2005, 

Gregersen i Holm 2007, Shibuya i in. 2009, Avila-Ospina i in. 2015, Salleh i in. 2016, Chen i in. 

2018, Sobieszczuk-Nowicka i in. 2018, Yang i in. 2019, Bengoa Luoni i in. 2019), których wyniki 
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wskazują, iż pomimo destrukcyjnego charakteru, starzenie jest ściśle regulowanym procesem, 

co zostało również podkreślone i opisane w Publikacji 1. W przypadku korzeni chłonnych, 

wnikliwe analizy umożliwiające poznanie szlaków regulujących starzenie nie zostały 

dotychczas przeprowadzone, dlatego kwestia ich starzenia i zamierania w dalszym ciągu jest 

tematem słabo poznanym.   

Nadrzędnym celem przedstawionej rozprawy doktorskiej było poszerzenie wiedzy 

dotyczącej starzenia i zamierania korzeni chłonnych oraz zweryfikowanie hipotezy 

głównej zakładającej istnienie analogii w przebiegu procesu starzenia liści i korzeni 

chłonnych poprzez wykształcenie wspólnych mechanizmów.  

W celu weryfikacji hipotezy głównej, przeprowadzone zostały cztery zadania 

badawcze:  

1) Identyfikacja morfologicznych, anatomicznych, cytologicznych oraz 

molekularnych markerów procesu starzenia w badanych organach roślinnych 

2) Analiza procesu autofagii jako kluczowego mechanizmu uczestniczącego 

w degradacji struktur komórkowych podczas starzenia 

3) Określenie czy starzenie korzeni chłonnych wykorzystuje te same szlaki związane 

z regulacją hormonalną, które są zaangażowane w regulację starzenia liści 

4) Analiza procesu remobilizacji pierwiastków i związków organicznych podczas 

procesu starzenia.
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OMÓWIENIE WYNIKÓW 

 

Materiał do badań stanowiły liście i korzenie chłonne topoli kalifornijskiej 〉Populus 

trichocarpa《. Gatunek ten, ze względu na szybki przyrost biomasy oraz zsekwencjonowany 

genom stanowi doskonały model badawczy spośród roślin drzewiastych. Rośliny uprawiano 

w systemie ryzotronów, który umożliwił bezpośrednią obserwację korzeni w warunkach 

in  situ, bez konieczności wcześniejszego izolowania ich z rośliny macierzystej. 

Pierwszym etapem badań pracy doktorskiej było wyselekcjonowanie różnych stadiów 

zachodzącego starzenia dla obu badanych organów roślinnych. Bazując na analizach 

morfologicznych i spadku poziomu chlorofilu na pierwszy etap starzenia liści wyznaczono 

liście żółknące 〉LSｱ《 w których poziom chlorofilu obniżył się o 4ｰ%, natomiast liście żółte, 

gdzie poziom tego barwnika zmniejszył się o 6ｰ% określono jako drugi etap procesu starzenia 

(LS2) (Publikacja 2; Fig. 1, Fig. 3A-C). W przypadku korzeni chłonnych, podobnie jak w liściach, 

jednym z morfologicznych symptomów procesu starzenia była zmiana barwy. Korzenie, 

początkowo białe, zmieniały barwę poprzez jasnobrązową, brązową 〉pierwszy etap starzenia╉ 

RSｱ《, aż do ciemnobrązowej 〉drugi etap starzenia╉ RSｲ《 (Publikacja 2, Fig. 2A-C). Wyniki analiz 

żywotności (FDA) potwierdziły, że zmiana barwy koresponduje z utratą żywotności przez 

badane organy (Publikacja 2, Fig. 2D-F; Fig. 3D-F). Dodatkowych danych dotyczących 

symptomów starzenia, szczególnie tych związanych ze starzeniem korzeni chłonnych, 

dostarczyły przeprowadzone analizy anatomiczne. Wykazano, że podczas tego procesu 

znacząco zmniejsza się liczba komórek miękiszu kory pierwotnej, jak również średnica 

korzenia oraz walca osiowego (Publikacja 1, Fig. 4A,B). Zmiany w anatomii starzejących się liści 

nie były tak wyraźne, aczkolwiek zaobserwowano statystycznie istotne zmniejszenie 

szerokości blaszki liściowej (Publikacja 1, Fig. 4D). W obu badanych organach roślinnych, liczne 

zmiany wywołane przez proces starzenia, obserwowano na poziomie ultrastrukturalnym 

(Publikacja 2, Fig. 5,6). Wśród nich wyróżniono m.in.: pojawienie się struktur związanych 

z procesem autofagii, zmianę kształtu komórek oraz finalnie przerwanie ciągłości tonoplastu 

i degradację protoplastu. W liściach obserwowano także liczne zmiany w obrębie morfologii 

chloroplastów, dotyczące zmiany kształtu tych organelli, zwiększenia liczby i wielkości 

plastoglobul (Publikacja 2, Fig. 6D) oraz rozdęcia błon tylakoidów (Publikacja 2, Fig. 6G). 
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Ponadto, udokumentowano obecność struktur przypominających ciała RCB 〉ang. Rubisco-

Containing Bodies) (Publikacja 2, Fig. 6E), które uczestniczą w przenoszeniu na drodze autofagii 

białek chloroplastowych do wakuoli, gdzie następnie podlegają degradacji (Izumi i in. 2010). 

Biorąc pod uwagę, że w obu badanych organach analizy ultrastrukturalne wykazały 

obecność struktur związanych z procesem autofagii, takich jak autofagosomy oraz ciała 

autofagowe, kolejny etap badań dotyczył analizy tego procesu. Zarówno w liściach, 

jak i w korzeniach chłonnych wykazano wzrost  ekspresji wielu genów z rodziny ATG (ang. 

AuTophagy-related Genes《 podczas procesu starzenia. Wzrost ten dotyczył zwłaszcza genów 

kodujących różne izoformy białka ATGｸ (Publikacja 2, Fig. 7,8). Wzory ekspresji badanych 

genów były jednak różne dla obu analizowanych organów roślinnych, wskazując 

na specyficzność organową ekspresji tych genów. Została ona już wcześniej potwierdzona 

także u Arabidopsis (Thompson i in. 2005). Mając na uwadze, że ATGｸ, odpowiadając 

za prawidłowe formowanie się autofagosomu, a także regulując jego wielkość, jest 

kluczowym białkiem dla procesu autofagii (Xie i in. 2008, Nakatogawa i in. 2009), dalsze 

badania dotyczyły detekcji i lokalizacji tego białka. Przeprowadzona analiza western blot 

wykazała wzrost zawartości tego białka 〉zarówno formy wolnej jak i związanej 

z  fosfatydyloetanoloaminą [PE]《 w starzejących się organach (Publikacja 2, Fig. 9A, 10A). Co 

więcej, przy użyciu metod immunohistochemicznych potwierdzono, iż sygnał świadczący 

o obecności białka ATGｸ lokalizowany był w tych tkankach, w których wcześniejsze analizy 

anatomiczne i ultrastrukturalne wykazały liczne zmiany spowodowane postępującym 

procesem starzenia (Publikacja 2, Fig. 9E-J; Fig. 10F-N). Stanowiło to kolejny dowód 

na zaangażowanie autofagii w proces starzenia. 

Aby jednoznacznie potwierdzić, iż proces starzenia korzeni chłonnych jest procesem 

regulowanym genetycznie i można klasyfikować go jako przykład PCD przeprowadzona 

została analiza mikromacierzy. Uzyskane wyniki wykazały znaczące zmiany w ekspresji 

genów podczas starzenia liści i korzeni chłonnych (Publikacja 3, Fig. 2A,B). Odnotowano 1898 

i ｱｳ4ｸ genów, których ekspresja zmieniła się odpowiednio podczas starzenia korzeni 

chłonnych i liści. Co ciekawe, spośród tej puli jedynie wąska grupa genów była wspólna dla 

obu badanych organów roślinnych (Publikacja 3, Fig. 2C). Przeprowadzone analizy 

funkcjonalne wykazały, że duża grupa genów o zmienionej ekspresji związana była 

z biosyntezą, metabolizmem oraz szlakami sygnałowymi wielu hormonów roślinnych 
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(Publikacja 3, Fig. 3A,B). Postanowiono zatem sprawdzić czy starzenie korzeni chłonnych 

wykorzystuje te same szlaki związane z regulacją hormonalną, które są zaangażowane 

w regulację starzenia liści. Pomimo, iż analiza mikromacierzy wykazały znaczące zmiany 

w ekspresji genów związanych z wieloma fitohormonami, dalsze analizy dotyczyły kwasu 

abscysynowego (ABA) i kwasu jasmonowego (JA) - dwóch hormonów roślinnych znanych 

jako dodatnie regulatory procesu starzenia liści (Publikacja 1, Tab. 2). W korzeniach chłonnych 

geny związane z ABA, których ekspresja wzrastała podczas starzenia kodowały m.in. białka 

związane z odpowiedzią na stres chłodu  - WCOR413 oraz COR413IM1. Ponadto, odnotowano 

obniżoną ekspresję wielu genów kodujących akwaporyny, jak również wykazano zmiany 

w ekspresji genów kodujących enzymy uczestniczące w szlakach sygnalizacyjnych tj. kinazy  

i fosfatazę (Publikacja 3, Fig. 4A). Geny te nie kodują białek bezpośrednio zaangażowanych 

w regulację procesu starzenia, dlatego możliwe jest, że ABA wpływa na proces starzenia 

korzeni chłonnych w sposób pośredni poprzez regulację odpowiedzi na stres chłodu. 

W liściach duża grupa genów związanych z ABA dotyczyła tych kodujących czynniki 

transkrypcyjne (TF) m.in. MYB, bZIP oraz NAC. Ponadto, odnotowano wzrost ekspresji 

genów związanych z metabolizmem węglowodanów, lipidów, degradacją białek, a także geny 

kodujące fosfatazy  i kinazy  (Publikacja 3, Fig. 4C). Analiza ilościowa poziomu ABA wykazała, 

że w obu badanych organach roślinnych jego zawartość wzrastała podczas procesu starzenia 

(Publikacja 3, Fig. 5A,B). Ponadto, na podstawie immunocytochemicznej lokalizacji ABA 

wykazano zwiększoną koncentracje tego fitohormonu w tych tkankach korzeni chłonnych, 

w których uprzednio obserwowano pozostałe symptomy starzenia tj.: zmianę kształtu 

komórek, obecność struktur związanych z procesem autofagii, obecność białka ATGｸ 

(Publikacja 2, Fig. 9C-F vs Publikacja 3, Fig. 7C,D). W liściach najwyższy poziom ABA 

zarejestrowano w liściach żółknących 〉LSｱ《, w których chloroplasty nie były jeszcze w pełni 

zdegradowane (Publikacja 2, Fig. 6D-E) i wciąż odnotowywana była autofluorescencja 

chlorofilu (Publikacja 3, Fig. 8D-F). Wysoki poziom zawartości ABA oraz jego zwiększona 

lokalizacja w komórkach mezofilu (Publikacja 3, Fig. 8D- F), są zgodne z ostatnimi ustaleniami 

dotyczącymi roli ABA w procesie chlorofagii (Zhuang i Jiang 2019).  

Spośród genów związanych z JA w korzeniach chłonnych nie odnotowano genów 

bezpośrednio związanych z procesem starzenia. Udokumentowano jednak zwiększoną 

ekspresję genu kodującego białko ERECTA, zaangażowanego w regulację odpowiedzi 
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Arabidopsis thaliana na atak patogenów 〉Llorente i in. ｲｰｰｵ, Häffner i in. ｲｰｱ4《 oraz genu 

kodującego jeden z czynników transkrypcyjnych z grupy MYB (Publikacja 3, Fig. 4B), których 

zwiększoną ekspresję  wykazano podczas starzenia się liściach  Solanum i Arabidopsis (Huang 

i in. 2015, Li i in. 2019). W liściach, oprócz zwiększonej ekspresji genów kodujących czynniki 

transkrypcyjne należące do rodziny MYB, odnotowano wzrost ekspresji genów kodujących 

czynnik transkrypcyjny zależny od etylenu RAPｲ-ｳ oraz TBFｱ. Co więcej, zauważono 

zwiększoną ekspresję genu kodującego białko JAZｱ, który oddziałuje z czynnikiem 

transkrypcyjnym z grupy MYB w kaskadzie sygnalizacyjnej JA (Publikacja 3, Fig. 4D). Analiza 

ilościowa wykazała, że zawartość JA zwiększa się w obu badanych organach roślinnych. 

Ponadto wzrost odnotowano również dla jasmonianu metylu 〉MeJA《 (Publikacja 3, Fig. 6), 

związku stymulującego starzenie liści owsa 〉Avena sativa) (Ueda i Kato 1980). Wyniki reakcji 

immunolokalizacji wykazały zwiększoną koncentrację JA w starzejących się organach, 

zwłaszcza w tych tkankach, w których wcześniej odnotowano inne symptomy procesu 

starzenia (Publikacja 3, Fig. 9C-F, Fig. 10D-I). Wyniki te wskazują, że jasmoniany mogą 

odgrywać ważną rolę w pośredniej regulacji starzenia. W korzeniach chłonnych JA może być 

zaangażowany w reakcję na stres biotyczny i ochronę tych organów przed patogenami. 

Wydłużenie starzenia umożliwia remobilizację zmagazynowanych składników odżywczych, 

które uległyby utracie podczas szybkiej śmierci korzeni chłonnych. Rola JA w liściach wydaje 

się być bardziej złożona i wiąże się z regulacją wielu procesów poprzez wpływ JA 

na aktywację TF. 

Biorąc pod uwagę wyniki badań Guiboileau i in. (2012, 2013), w których wykazano, 

że poza niezaprzeczalną rolą autofagii w degradacji struktur komórkowych, proces ten pełni 

również istotną rolę w procesie remobilizacji, ostatni etap badań dotyczył sprawdzenia czy 

procesy relokacji cennych dla roślin substancji tj. pierwiastków 〉azot, węgiel《 oraz 

związków organicznych 〉węglowodany《 są uruchamiane podczas starzenia korzeni 

chłonnych, tak jak ma to miejsce w przypadku liści. Aspekt ten był niezwykle interesujący, 

ponieważ w literaturze prezentowane są sprzeczne dane odpowiednio potwierdzające 

(Zadworny i in. 2015) oraz negujące (Kunkle i in. 2009) relokację azotu ze starzejących się 

korzeni. Analiza ilościowa zawartości azotu wykazała, że w obu badanych organach 

roślinnych poziom tego pierwiastka zmniejszał się podczas procesu starzenia (Publikacja 4, 

Fig. 1A,B). W przeciwieństwie do azotu, zawartość węgla utrzymywała się na tym samym 
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poziomie przez cały sezon wegetacyjny (Publikacja 4, Fig. 1C,D). Istotniejszym parametrem 

wpływającym na procesy związane z regulacją metabolizmu komórkowego jest jednak 

stosunek węgla do azotu 〉C:N《 (Chen i in. 2015). W starzejących się liściach i korzeniach 

chłonnych Populus trichocarpa obserwowano wzrost tego parametru (Publikacja 3, Fig. 1E,F). 

Wzrost stosunku C:N w liściach i korzeniach chłonnych P. trichocarpa potwierdza, iż inicjacja 

starzenia jest wywołana wysoką zawartością węgla i niską dostępnością azotu w tkankach 

roślinnych (Wingler i in. 1998, Aoyama i in. 2014). Syntetaza glutaminianowa (GS) jest jednym 

z najważniejszych enzymów zaangażowanych w remobilizację azotu w starzejących się 

liściach (Avila-Ospina i in. 2014). U P. trichocarpa forma cytozolowa (GS1) kodowana jest przez 

trzy paralogi genu GS1: GS1.1, GS1.2, GS1.3, podczas gdy chloroplastowa izoforma (GS2) 

przez jeden gen GS2 (Castro-Rodríguez i in. ｲｰｱｱ《. Aby sprawdzić czy podobny mechanizm 

związany z remobilizacją azotu wykorzystywany jest w obu badanych organach roślinnych, 

przeprowadzona została analiza ekspresji genów GS1, jak również immunodetekcja syntetazy 

glutaminianowej (GS) podczas sezonu wegetacyjnego. Wykazano, że zarówno w starzejących 

się liściach, jak i w korzeniach chłonnych wzrasta ekspresja genu kodującego cytozolową 

izoformę GS, jak również poziom tego białka (Publikacja 4, Fig. 2A-D). Poza GS, w obu 

badanych organach roślinnych analiza mikromacierzy wskazuje na znaczące zmiany 

w ekspresji innych genów związanych z metabolizmem azotu tj. transportery aminokwasów 

czy geny związane z metabolizmem glutaminanu (Publikacja 4, Fig. 4).  

Istotne różnice między badanymi organami zaobserwowano w metabolizmie 

węglowodanów podczas starzenia. W starzejących się korzeniach chłonnych, 

w przeciwieństwie do liści, stwierdzono akumulację rozpuszczalnych cukrów prostych oraz 

skrobi (Publikacja 4, Fig. B,D). W liściach, zawartość rozpuszczalnych cukrów prostych nie 

wykazywała statystycznie istotnych zmian, podczas gdy poziom skrobi znacząco się obniżył 

(Publikacja 4, Fig. A,C). Rezultaty te potwierdzają  udokumentowany w transmisyjnym 

mikroskopie elektronowym spadek zawartości ziaren skrobi w starzejących się liściach 

(Publikacja 2, Fig. 6). Źródła obserwowanych wzorów należy upatrywać w zmianach 

w ekspresji genów związanych z metabolizmem skrobi, w tym wzrostu ekspresji genu 

kodującego β-amylazę w starzejących się liściach (Publikacja 4, Fig. 5). Oprócz genów 

zaangażowanych w metabolizm skrobi, w obu badanych organach roślinnych odnotowano 
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znaczące zmiany w ekspresji genów zaangażowanych w metabolizm sacharozy, heksoz oraz 

genów kodujących transportery cukrowe (Publikacja 4, Fig. 5).   
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WNIOSKI 

 

Na podstawie przeprowadzonych badań wyciągnięto następujące wnioski:  

 

1. Proces starzenia korzeni chłonnych i liści Populus trichocarpa charakteryzuje się 

podobnymi symptomami na poziomie morfologicznym, anatomicznym 

i ultrastrukturalnym, do których zaliczyć można m.in.: zmianę barwy starzejących się 

organów, zmianę kształtu komórek oraz przerwanie ciągłości tonoplastu 

 

2. W obu badanych organach roślinnych podczas starzenia uruchamiane są mechanizmy 

związane z procesem autofagii, na co wskazuje obecność ciał autofagowych 

i autofagosomów, wzrost ekspresji genów należących do rodziny ATG oraz 

zwiększony poziom białka ATGｸ  

 

3. Zarówno starzenie korzeni chłonnych, jak i liści jest związane ze znaczącymi zmianami 

w ekspresji genów, co wraz z pozostałymi wynikami sugeruje, że proces ten można 

zaklasyfikować jako kolejny przykład PCD podczas rozwoju roślin  

 

4. Wykazano, że czynnikami odpowiedzialnymi za inicjację i koordynację procesu 

starzenia są fitohormony. Analiza funkcjonalna wykazała, że wiele genów, których 

ekspresja zmienia się podczas starzenia liści i korzeni chłonnych związana jest właśnie 

z metabolizmem, sygnalizacją i biosyntezą hormonów roślinnych. Wykazano wzrost 

zawartości ABA, JA oraz MeJA. Jednakże, zmiany w ekspresji genów związanych 

z tymi fitohormonami wskazują, że w korzeniach chłonnych ABA i JA wpływają 

na  proces starzenia w sposób pośredni poprzez regulację odpowiedzi na stres chłodu 

i  obecność patogenów  

 

5. Podczas procesu starzenia w obu organach roślinnych wykazano uruchomienie 

mechanizmów związanych z remobilizacją azotu, potwierdzone spadkiem jego 
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poziomu, wzrostem ekspresji genów kodujących syntetazę glutaminianową 〉GSｱ《 oraz 

wzrostem zawartości GSｱ w obu badanych organach roślinnych  

 

6. Wykazano, że podczas procesu starzenia korzenie chłonne i liście prezentują 

odmienny metabolizm węglowodanów. Podczas gdy w liściach skrobia jest 

wycofywana ze starzejących się tkanek, w korzeniach wykazano akumulację tego 

wielocukru, jak również rozpuszczalnych cukrów prostych. Magazynowanie cukrów 

niestrukturalnych wpływa na zwiększenie ciśnienia osmotycznego w komórkach 

przez co może zapobiegać mechanicznym uszkodzeniom wywołanym niską 

temperaturą i przedłużać ich żywotność, tym samym umożliwiając przeprowadzenie 

procesu starzenia i remobilizację cennych dla roślin związków.  
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PODSUMOWANIE 

Wyniki niniejszej rozprawy doktorskiej znacząco rozszerzyły dotychczasową wiedzę 

na temat starzenia korzeni chłonnych, do tej pory opierającej się w głównej mierze na ujęciu 

ekologicznym. Wykazano, iż pomimo różnic w budowie liści i korzeni chłonnych, a także 

zupełnie odmiennego środowiska wzrostu, procesy starzenia wykazują wiele analogii (Fig. 1). 

 

 

Fig. 1. Skonstruowana w oparciu o uzyskane wyniki, sekwencja zdarzeń 

wywołanych procesem starzenia w korzeniach chłonnych i liściach P. trichocarpa. 

  [   wzrost,       spadek, ABA – kwas abscysynowy, JA – kwas jasmonowy, MeJA – Jasmonian 

metylu, N – azot, ATG8 – geny ATG (AuTophagy related Genes), ATG8 – białko ATGｸ, GS1 – 

gen kodujący cytozolową izoforme syntetazy glutaminianowej, GSｱ – syntetaza 

glutaminianowa, forma cytozolowa] 

 

Przeprowadzenie badań na poziomie molekularnym umożliwiło potwierdzenie tezy o 

genetycznym podłożu procesu starzenia korzeni chłonnych, podobnie jak liści, stanowiąc 

kolejny przykład programowanej śmierci komórki 〉PCD《 u roślin. Uzyskane wyniki stanowią 

cenne źródło informacji o mechanizmach związanych ze starzeniem efemerycznych organów 
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roślinnych. Dzięki wielopłaszczyznowym analizom, łączącym aspekt cytochemiczny, 

fizjologiczny i molekularny, stanowią innowacyjne podejście do poszerzenia wiedzy 

o  czynnikach regulujących starzenie korzeni chłonnych. Długofalową konsekwencją starzenia 

i zamierania korzeni chłonnych jest uwolnienie nagromadzonych związków węgla i włączenie 

ich do obiegu pierwiastków. Biorąc pod uwagę wielkość biomasy korzeni chłonnych 

w  ekosystemach leśnych, która często jest równa lub przewyższa biomasę liści, zrozumienie 

mechanizmów kontrolujących starzenie korzeni ma podstawowe znaczenie dla dalszych 

badań nad krążeniem pierwiastków w przyrodzie.  
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ABSTRACT

Senescence is the final stage of plant ontogeny before death. Senescence may occur
naturally because of age or may be induced by various endogenous and exogenous fac-
tors. Despite its destructive character, senescence is a precisely controlled process that
follows a well-defined order. It is often inseparable from programmed cell death
(PCD), and a correlation between these processes has been confirmed during the
senescence of leaves and petals. Despite suggestions that senescence and PCD are two
separate processes, with PCD occurring after senescence, cell death responsible for
senescence is accompanied by numerous changes at the cytological, physiological and
molecular levels, similar to other types of PCD. Independent of the plant organ anal-
ysed, these changes are focused on initiating the processes of cellular structural degra-
dation via fluctuations in phytohormone levels and the activation of specific genes.
Cellular structural degradation is genetically programmed and dependent on autop-
hagy. Phytohormones/plant regulators are heavily involved in regulating the senes-
cence of plant organs and can either promote [ethylene, abscisic acid (ABA), jasmonic
acid (JA), and polyamines (PAs)] or inhibit [cytokinins (CKs)] this process. Auxins
and carbohydrates have been assigned a dual role in the regulation of senescence, and
can both inhibit and stimulate the senescence process. In this review, we introduce
the basic pathways that regulate senescence in plants and identify mechanisms
involved in controlling senescence in ephemeral plant organs. Moreover, we demon-
strate a universal nature of this process in different plant organs; despite this process
occurring in organs that have completely different functions, it is very similar. Pro-
gress in this area is providing opportunities to revisit how, when and which way senes-
cence is coordinated or decoupled by plant regulators in different organs and will
provide a powerful tool for plant physiology research.

INTRODUCTION

Senescence is a universal feature of all living organisms and
involves the gradual deterioration of function of multiple
cells and tissues. Plant senescence is usually referred to as a
process of developmental ageing; however, the term can
relate to a specific group of cells, tissues or organs or an
entire plant. On the basis of many substantive/semantic
arguments (Thomas et al. 2003; van Doorn & Woltering
2004; Thomas 2004, 2013; van Doorn et al. 2011; Jones
et al. 2014; Munn�e-Bosch 2015), the processes of senescence,
ageing, lifespan and death should be considered separate in
plants. At the level of the whole organism, senescence is the
terminal phase of plant ontogenetic development, leading to
death. In many cases, however, we focus on the description
of cellular senescence and its progress.

Cellular senescence is highly regulated by environmental and
autonomous factors. Many stimuli that induce senescence
exist, such as shortened days in autumn, drought, frost and
shading as well as ageing, phytohormone levels, higher-order
epigenetic mechanisms and the expression of specific environ-
ment-dependent genes (Guo & Gan 2005; Ay et al. 2014).
Senescence can also be induced by several treatments, including

darkness (Kunz et al. 2009), nitrogen deficiency (Criado et al.
2007) and other biotic or abiotic stresses (Miller et al. 1999).
However, compared with developmental senescence, induced
senescence results in significantly different patterns of genetic
regulation (van der Graaff et al. 2006).
Another subject of debate is whether programmed cell

death (PCD) is involved in senescence or whether senescence
is just an example of PCD. The term PCD indicates an active
process of elimination of cellular components, which ulti-
mately leads to death that occurs during development, some-
times in response to environmental conditions (Greenberg
1996). Some authors present a different opinion, suggesting
that senescence and PCD are two separate processes, with
PCD occurring after senescence (van Doorn & Woltering
2004). It is also recommended that senescence be classified as
PCD when the process becomes irreversible and the cells
cannot recover their full vitality (Bagniewska-Zadworna &
Arasimowicz-Jelonek 2016). In nature, reversal of seasonal
senescence is extremely rare, and crossing the point-of-no-
return occurs instantaneously. In many cases, senescence
starts when the programme leading to death has already been
initiated (van Doorn & Woltering 2004). In contrast,
Noode0n (2004) assumed that the term senescence describes
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a process that leads to the death of organs or even entire
plants, whereas PCD relates to the death of single cells.
According to Barlow (1982), senescence in leaves must meet
several criteria that allow the entire process to be classified as
PCD: (i) cells die at a predetermined time and place; (ii) cell
death enables survival of the whole organism; and (iii) infor-
mation about death is encoded in the genetic material.
Despite these discrepancies, most authors admit that senes-
cence involves genetically programmed self-destruction that
leads to cell death, and that senescence can apply to the age-
ing of particular cells, tissues, organs or the entire organism.
Thus, we support the notion that PCD during senescence is

considered another example of developmental PCD (Olvera-
Carrillo et al. 2015). However, other types of developmental
PCD, such as xylogenesis, formation of the abscission layer and
degradation of the tapetal and synergid cells during the devel-
opment of male and female gametophytes, occur much faster
than does senescence (Lim & Nam 2007). The prolonged
course of PCD is a simple consequence of the remobilisation of
valuable elements and their translocation to other parts of the
plant (Lim et al. 2003). Several ultrastructural, physiological
and molecular studies have shown that PCD is involved in the
senescence of leaves and flower petals (Beers 1997; Rogers
2006). Moreover, studies performed by Bagniewska-Zadworna
et al. (2014) have suggested that PCD can also participate in
the seasonal senescence of fine roots. This phenomenon is con-
firmed by similar changes at the anatomical and ultrastructural
level that are common features of the senescence of fine roots,
leaves and petals. We would argue that separating PCD and
senescence is not always needed, given that there are no traits
allowing definition of the spatiotemporal boundary and
unequivocal separation of these processes. Moving forward, it
will be important for the community to adopt common – even
basic – regulatory pathways and mechanisms that enable com-
parative linkages to be made between different plant organs
and senescence.
Where meaningful patterns can be identified, senescence is a

highly complex phenomenon that must be controlled strictly
by different regulatory pathways and can potentially improve
our understanding of the process at scales larger than those
encompassing only cellular changes. It is not possible to indi-
cate one constant mechanism regulating senescence; in many
cases, these mechanistic pathways are interdependent and com-
plement each other. However, in this review, we demonstrate
the possible common mechanisms that are involved in control-
ling the senescence process in different ephemeral plant organs,
and we provide highly valuable information on many broad
aspects and combine these findings into a general picture. We
take account of previous efforts to identify broad patterns for
comparing the course of senescence in different plant organs
(leaves, petals and fine roots). We specifically address questions
that were not directly considered in previous reports. Does the
senescence process occur in a universal manner for all ephem-
eral organs? Which links of these processes are common, and
where are the most crucial differences in the case of leaves,
petals and fine roots? Accurate analysis of the senescence pro-
cesses of different organs allows demonstration of the potential
differences associated with dissimilar functions in senescent
plant organs or indication that senescence is not a tissue-speci-
fic process but progresses in a universal manner (Fig. 1,
Table S1).

SENESCENCE-ASSOCIATED EVENTS

Despite its destructive character, senescence is a precisely con-
trolled process that is regulated and conducted in a well-defined
order. It entails many morphological, cytological, physiological
and molecular changes, such as activation of the expression of
specific genes, fluctuations in phytohormone levels and initiating
the processes of cellular structural degradation. These intricate
regulatory pathways are activated to enable the realization of one
of the most important purposes of senescence, namely, the
remobilisation process. This process is activated to withdraw and
translocate valuable nutrients such as carbon, nitrogen and other
minerals from senescing tissues to other parts of the plant (Lam
2004; Rogers 2006; Milla et al. 2007; Wang 2012).

In leaves, one of the initial signs of senescence is the degrada-
tion of chloroplasts as well as a reduction in photosynthetic
efficiency; this degradation is a mutual feature of developmen-
tal and induced senescence. Chloroplasts are the first organelles
that are degraded and represent a large pool of deposited

Fig. 1. Main symptoms of senescence in different ephemeral plant organs.

Comparison of the main symptoms of senescence indicates the universality

of the senescence process. Despite the differences in function of the anal-

ysed organs, the symptoms are analogous. R – fine roots; L – leaves; P –

petals.
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nitrogen. Up to 75% of the total nitrogen in leaves resides in
chloroplasts; thus, it is reasonable that this nitrogen must be
recovered and transported to other parts of the plant as part of
the remobilisation process (Peoples & Dalling 1988). A vesicle-
based process associated with autophagy may be crucial for
chloroplast degradation and selective nutrient recycling (Li &
Viestra 2012; Avila-Ospina et al. 2014). The degradation of
chloroplasts leads to one of the most commonly observed phe-
nomena associated with senescence – change in leaf colour
(Carri�on et al. 2013). This change is associated with a decrease
in the photosynthetic pigment chlorophyll. The loss of chloro-
phyll always occurs in the same manner – from the leaf margins
towards the centre of the leaf (Gan & Amasino 1997). Thus,
the senescence of individual cells is not synchronous: the cells
that surround the vascular tissues age later to facilitate the
mobilisation of nutrients from adjacent senescing cells (Gan &
Amasino 1997).

Knowledge concerning the patterns and underlying mecha-
nisms of the senescence of other organs is less advanced.

However, morphological, anatomical, cytological and even
physiological and molecular symptoms can show similar pat-
terns despite dissimilar organ functions (Fig. 1, Table S1).
Thus, senescence of other ephemeral organs (petals and fine
roots) is also related to changes in colour (Withington et al.
2006; van Doorn & Woltering 2008; Bagniewska-Zadworna
et al. 2014). During the senescence of Hibiscus syriacus, the
petals become bluish because of an increased flavonoid to
anthocyanin ratio, and this effect was reinforced by changes in
cell sap pH (Kim et al. 1989). Similar results were obtained for
the ageing of rose petals (Rosa hybrida L.), in which high pH
levels caused a structural modification in anthocyanin pig-
ments, resulting in their blue colour (Schmitzer et al. 2010). A
change in pigmentation during senescence can also be observed
in senescent fine roots. The colour of these organs changes
from white to light brown, dark brown and finally black.
Experiments with 2,3,5-triphenyl tetrazolium chloride and flu-
orescein diacetate have confirmed that a correlation exists
between colour change and root shrivelling as cell viability

Table 1. Examples of up-regulated genes during senescence of plant ephemeral organs.

group of senescence-regulated genes example of genes organ species references

Genes involved in protein degradation Cysteine proteases Petals Alstroemeria pelegrina Wagstaff et al. 2002

Hemerocallis hybrid Valpuesta et al. 1995

Petunia hybrida Jones et al. 1995

Narcissus pseudonarcissus Hunter et al. 2002

Leaves Arabidopsis thaliana Guo et al. 2004;

Hensel et al. 1993

Zea mays Smart et al. 1995

Brassica napus Buchanan-Wollaston & Ainsworth 1997

Populus tremula Bhalerao et al. 2003

Serine proteases Petals Narcissus pseudonarcissus Hunter et al. 2002

Leaves Petroselinum crispum Jiang et al. 1999

Aspartic proteases Petals Alstroemeria pelegrina Breeze et al. 2004

Hemerocallis hybrid Panavas et al. 1999

Leaves Brassica napus Buchanan-Wollaston & Ainsworth 1997

Genes involved in phospholipids and

fatty acids degradation

Allene oxide synthetase Petals Hemerocallis hybrid Panavas et al. 1999

Petunia hybrida Xu et al. 2006

Lipases Petals Dianthus caryophyllus Hoeberichts et al. 2007

Leaves Arabidopsis thaliana Guo et al. 2004

Acyl-CoA dehydrogenase Petals Iris x hollandica van Doorn et al. 2003

Acyl-CoA oxidase Petals Dianthus caryophyllus Hoeberichts et al. 2007

Phalaenopsis orchids Do & Huang 1997

Phospholipase D Leaves Ricinus communis Ryu & Wang 1995

Lipooxygenases Leaves Arabidopsis thaliana Guo et al. 2004

Genes involved in nucleic acids

degradation

BFN1 Leaves Arabidopsis thaliana Matallana-Ramirez et al. 2013

NUC1 Petals Petunia hybrida Langston et al. 2005

Autophagy related genes ATG18 Leaves Arabidopsis thaliana Xiong et al. 2005

ATG7, ATG8a, ATG 8e, ATG9 Leaves Arabidopsis thaliana van der Graaff et al. 2006

ATG8 Petals Ipomoea nil Shibuya et al. 2009

Genes involved in remobilisation Glutamine synthetase Petals Alstroemeria pelegrina Breeze et al. 2004

Leaves Oryza sativa Kamachi et al. 1991

Arabidopsis thaliana Bernhard & Matile 1994

Leaves Lycopersicon esculentum Mill. P�erez-Rodr�ıguez & Valpuesta 1996

Trancriptional factor NAC family Petals Narcissus pseudonarcissus Hunter et al. 2002

Dianthus caryophyllus Hoeberichts et al. 2007

Leaves Arabidopsis thaliana Guo et al. 2004

WRKY family Leaves Arabidopsis thaliana Hinderhofer & Zentgraf 2001

Panicum virgatum Rinerson et al. 2015

Petals Gardenia jasmonoides Tsanakas et al. 2014
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decreases (Fig. 1, Table S1; Comas et al. 2000; Bagniewska-Zad-
worna et al. 2014).
Aside from morphological changes such as colour changes in

senescent plant organs, several other observations are related to
this process, including the loss of water from ageing tissues, the
leakage of ions, the generation of reactive oxygen species
(ROS), an increase in membrane fluidity and lipid peroxida-
tion (Tripathi & Tuteja 2007). The last two indicators are asso-
ciated with the increased activity of lipid-degrading enzymes
such as phospholipase D, phosphatidic acid phosphatase, lytic
acyl hydrolase and lipoxygenase (Thompson et al. 1998, 2000).
Similarly, the activity of enzymes involved in the hydrolysis of
proteins to amino acids also increases (Lim & Nam 2007).
Transcriptomic studies of leaf senescence in Arabidopsis thali-
ana have indicated that the expression of many enzymes
involved in protein degradation is affected; among these
enzymes, cysteine protease is most frequently implicated (Guo
et al. 2004). The level of total RNA in leaves decreases rapidly
during the initial phase of senescence as a consequence of
increased RNase activity, as chloroplastic and cytoplasmic
rRNA are degraded first (Wagstaff et al. 2003; Yamada et al.
2006a,b; Lim & Nam 2007). To control all the mechanisms that
regulate the senescence process, both the nucleus and mito-
chondria remain fully active until the late stages (Quirino et al.
2000). This activity enables gene expression to continue and
fulfils the constant demand for energy production for remobili-
sation and other processes. However, during the final stage of
the senescence of leaves and petals, the nuclei also undergo
changes, such as chromatin condensation and, ultimately, the
degradation of nuclear DNA (nDNA) (Fig. 1, Table S1; Koł-
jek et al. 2007; Lim & Nam 2007; Shibuya et al. 2013). One of
the most characteristic signs of leaf senescence is internucleoso-
mal DNA fragmentation as visualized by the terminal deoxynu-
cleotidyl transferase dUTP nick end labelling (TUNEL)
reaction or by nDNA laddering (Yen & Yang 1998; Lee & Chen
2002). Similar results have been obtained during petal senes-
cence in the same species of flowers (Gladiolus hybrida and
Pisum sativum; Orz�aez & Granell 1997; Yamada et al. 2003).
However, other studies have yielded inconclusive evidence and
have shown that nDNA fragmentation is not always a good
indicator of petal senescence: in Petunia hybrida, Ipomoea nil,
Argyranthemum frutescens and Alstroemeria pelegrina, DNA
laddering is not observed (Wagstaff et al. 2003; Yamada et al.
2006a,b).
The main process that involves the rearrangement of subcel-

lular membranes is the sequestration of cargo, which is later
delivered to vacuoles where the segregated material becomes
degraded (Levine & Klionsky 2004). Autophagy can play a dual
role, corresponding to the induction and execution stages of
PCD (Minina et al. 2014), and can also be activated as pro-sur-
vival and pro-death processes; this phenomenon is most
important not only in degradation but also in recovery during
senescence. There are three types of autophagy in plants:
micro-, macro- and megaautophagy. During the course of
microautophagy, a small portion of the cytoplasm is trapped in
a vacuole due to tonoplast invagination. This portion of cyto-
plasm becomes part of an intervacuolar vesicle called an autop-
hagic body. After the vesicular membrane is digested, the
contents of the vesicle are released into the vacuolar sap and
degraded (Fig. 2; van Doorn & Woltering 2005). Macroau-
tophagy involves the formation of double-membrane vesicles

in the cytoplasm called autophagosomes. These transport larger
protoplast fragments to the vacuole to be degraded by hydroly-
tic enzymes (Fig. 2; van Doorn & Woltering 2005). Megaau-
tophagy involves the intense production of hydrolytic enzymes
and their accumulation in the enlarging vacuole. The ultimate
steps in this type of autophagy include tonoplast rupture, the
release of hydrolytic enzymes and protoplast degradation (van
Doorn & Papini 2013). In cells undergoing PCD, more than
one type of autophagy can be observed at the same time (van
Doorn & Woltering 2005; Bagniewska-Zadworna et al. 2012).
Microscopy research of senescent leaves, petals and fine roots
has confirmed the role of autophagy in protoplast degradation
during senescence (Fig. 1, Table S1). Ultrastructural studies
performed on senescent petals of Ipomoea purpurea (Matile &
Winkenbach 1971) and Dianthus caryophyllus (Smith et al.
1992) have indicated the presence of numerous vesicles con-
taining residues of cytoplasmic structures in vacuoles. Similar
symptoms of vacuolar cell death were observed during an anal-
ysis of senescence processes in the fine roots of Populus tri-
chocarpa (Bagniewska-Zadworna et al. 2014). These vesicles
might have been formed during the course of micro- and/or
macroautophagy. A unique type of macroautophagy can be
observed in leaves during chloroplast degradation. The cyto-
plasm of ageing parenchymal cells can accommodate specific
autophagosomes (Ishida et al. 2014). Given that these struc-
tures contain rubisco, they are called rubisco-containing bodies
(RCBs). The RCBs are similar to autophagosomes and have
double membranes that seem to be derived from the chloro-
plast envelope. These membranes fuse with the tonoplast and
then are degraded by hydrolytic enzymes (Fig. 2; Ishida et al.
2014). The last recognisable stage of cellular senescence in
leaves (Lim et al. 2007), petals (van Doorn & Woltering 2008)
and fine roots (Bagniewska-Zadworna et al. 2014) is protoplast
degradation via megaautophagy, during which the tonoplast is
ruptured and the cell structures are eliminated by vacuolar
hydrolytic enzymes.

Senescence is also characterised by substantial changes in
gene expression (Fig. 2, Table 1). Genes that are up-regulated
during the process are termed senescence-associated genes
(SAGs), whereas genes that are down-regulated are defined as
senescence down-regulated genes (SDGs; Noh & Amasino
1999; Simeonova & Mostowska 2001; Ay et al. 2014). The regu-
lation of gene expression during the senescence of petals and
leaves has been studied by analysing the transcriptomes and by
profiling studies. These studies have revealed a massive repro-
gramming of gene expression (Buchanan-Wollaston 1997; Guo
et al. 2004; van der Graaff et al. 2006; van Doorn & Woltering
2008; Tsanakas et al. 2014). The senescence of leaves and petals
involves the same set of genes, and these genes can be classified
into different subcategories: genes associated with the autop-
hagy process; genes associated with the degradation of macro-
molecules (proteins, nucleic acids and lipids); genes involved
in the remobilisation process; and genes that code for tran-
scription factors (Table 1). Although the major pathways have
been revealed during recent years, the direct incorporation of
various molecular data into a broader framework is an impor-
tant long-term goal.

As we attempt to scale regulatory pathways to different plant
organs, we must understand the scaling relationships between
particular regulators and the senescence of individual ephem-
eral organs. This area is still underappreciated.
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HORMONAL REGULATION OF SENESCENCE

Phytohormones are among the most important regulators that
control senescence (Tripathi & Tuteja 2007; Sarwat et al. 2013;
Zhang & Zhou 2013; Khan et al. 2014). Studies carried out on
leaves and petals have confirmed the important role of phyto-
hormones in the regulation of senescence in those organs
(Fig. 3, Table 2). Moreover, some of these phytohormones [e.g.
ethylene, jasmonic acid (JA) and abscisic acid (ABA)] can pro-
mote senescence, whereas others [e.g. cytokinins (CKs)] can
suppress it (Table 2; Tripathi & Tuteja 2007; Sarwat et al. 2013;
Zhang & Zhou 2013; Khan et al. 2014). Despite many studies,
the molecular mechanisms that underline the relationships
between phytohormones and senescence have not been fully
elucidated.

Cytokinins

The CKs play an important role in the regulation of many cel-
lular processes, including senescence. In leaves and petals, CKs
are considered negative regulators of senescence (Table 2). The
first indications of this were observed during the 1970s when
Sabater & Rodriguez (1978) demonstrated that decreasing
levels of CKs were correlated with the loss of green colour in
leaves. This phenomenon was confirmed in many subsequent
studies. Several studies have been performed involving the

application of exogenous CKs, introduction of genetic modifi-
cations to increase the endogenous levels of CKs or modifica-
tion of the signalling pathways of CKs. These studies have
confirmed the role of CKs as endogenous negative regulators
during the senescence of leaves and petals (Fig. 3). Despite a
well-documented relationship between the total level of CKs
and the rate of senescence, the molecular mechanisms by which
this regulation occurs are not well understood. Experiments on
transgenic plants, e.g. Nicotiana tabacum (Gan & Amasino
1995) and Petunia x hybrida (Chang et al. 2003), provided a
breakthrough that partly explained the regulation of senescence
by CKs. The plants were transformed with the isopentenyl
transferase (IPT) gene from Agrobacterium tumefaciens. The
IPT gene encodes one of the enzymes involved in the biosyn-
thesis of CKs. To avoid developmental abnormalities associated
with the increased expression of this gene, the expression of
IPT was under the control of the senescence-specific SAG12
promoter. Under such control, increased CKs synthesis occurs
only at the beginning of senescence. These experiments showed
that the leaves of the transgenic plants remain green longer and
that the senescence of leaves and petals is delayed. Other exper-
iments have indicated that, during the senescence of cotton
leaves, CKs can regulate the transcription of many genes associ-
ated with various metabolic pathways, such as flavonoid syn-
thesis, the metabolism of arginine and proline, the glyoxal cycle
and RNA degradation (Zhao et al. 2013). Disturbance in the

Fig. 2. Main processes that regulate leaf senescence. Multiple layers of the regulation of senescence are illustrated: micro- and macroautophagy, remobiliza-

tion, ROS production and changes in gene expression. Senescence is presented as an adjustable complex process in which a plurality of processes are mutually

complementary and regulate each other. Note: the figure is not drawn to scale. This figure was prepared based on the following reports: Avila-Ospina et al.

(2014), Ishida et al. (2014) and Liu et al. (2008). GDH, glutamate dehydrogenase; ROS, reactive oxygen species; RCBs, rubisco-containing bodies.
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Table 2. Role of different regulators in plant organ senescence.

Phytohormone/regulator Regulation Effect

Cytokinins (CKs) � • Endogenous CK levels declined during senescence (LS) (Lim et al. 2007)

• Reducing the level of CKs correlates with a decrease in the level of chloro-
phyll (LS) (Sabater & Rodriguez 1978)

• Exogenous application of CKs delayed senescence (LS, PS) (Mayak &
Halevy 1970; Hwang et al. 2012)

• Transcription of genes involved in CK biosynthesis and signalling is
repressed (LS)(Buchanan-Wollaston et al. 2005)

• Expression of CK oxidase, an enzyme involved in CK degradation is
induced (LS) (Buchanan-Wollaston et al. 2005)

Auxins (IAA) � • Decrease expression of genes from SAG family after exogenous applications
of IAA (LS) (Sarwat et al. 2013)

+ • Abundance of free, bioactive IAA increased twofold (LS) (Lim et al. 2007)

• Increased expression of genes involved in the biosynthesis of auxins (TSA1,
AO1, NIT13) (LS) (Hou et al. 2013)

• Increased level of gene SAUR 36, which is a positive regulator of senescence
process (LS) (Hou et al. 2013)

Ethylene + • Decrease expression of the gene encoding the ACC (LS) (Khan et al. 2014)

• Increase expression of genes encoding proteins involved in the biosynthesis
of ethylene (PS) (ten Have & Woltering 1997)

• Influence of EIN2 protein on gene ore1 transcription which affects the
increase in the expression of multiple genes of the family SAG (LS) (Kim
et al. 2009)

Abscisic acid (ABA) + • Exogenous application of ABA promotes senescence (LS, LP) (Wilkinson
et al. 1997; Lim et al. 2007)

• Genes involved in the key steps of ABA biosynthesis and signalling are up-
regulated during senescence (LS) (Buchanan-Wollaston et al. 2005)

• Increase the level of ABA during the first symptoms of senescence (PS)
(Hunter et al. 2002)

• Regulation of gene expression of the SAG family by ABA (LS) (Zhang et al.
2012)

Jasmonic (JA) + • Induced expression of a number of key enzymes involved in the degrada-
tion of chlorophyll (LS) (Reinbothe et al. 2009)

• Regulation of ACC level by JA (LS) (Porat et al. 1995)

• Increase expression of genes encoding proteins involved in the biosynthesis
of JA (LS)(Seltmann et al. 2010a)

• Repression and degradation of rubisco activase by JA (LS)(Shan et al.
2011)

Polyamines (PAs) + • PA accumulation upon senescence is linked to up-regulation of PA biosyn-
thesis gene and consequently to increase in the corresponding enzymatic
activities.

• Transcript levels and corresponding activation of PA catabolic enzymes
increase also during senescence.

• Putrescine conjugate accumulation in the senescing leaf (LS) (Sobieszczuk-
Nowicka et al. 2016)

• Spermidine and spermine production, their transport into the apoplast,
where they produce H2O2 and diaminopropane, both of which can partici-
pate in senescence-dependent degradation processes (LS) (Sobieszczuk-
Nowicka et al. 2016).

• Dark-induced leaf senescence corresponds to a wide contribution of PAs
within chloroplast: inhibition of photosynthesis, cell death, chloroplast-to-
gerontoplast conversion and chloroplasts disintegration, where PAs can be
transported or synthesised de novo (LS)(Sobieszczuk-Nowicka et al. 2015)

• Arabidopsis polyamine back-conversion oxidase mutants deficient in the
conversion of spermine to spermidine have delayed entry into dark-
induced leaf senescence (LS) (Sequera-Mutiozabal et al. 2016).

• Treatment with exogenous spermine is effective in delaying the progression
of senescence (PS) (Bagni & Tassoni 2006).

(continued)
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expression of these genes leads to a reduction in antioxidants
and ethylene and also carries the risk of degradation of RNA,
lipids and proteins. All these factors promote the senescence of
plant organs (Zhao et al. 2013). Studies using transgenic plants
have also demonstrated that CKs can delay leaf senescence via
the control of invertase activity (Balibrea et al. 2004). Invertase
catalyses the hydrolysis of sucrose to glucose and fructose. This
reaction enables the conversion of sucrose from phloem cells to

hexose molecules, which are transported to other plant cells.
Transgenic plants with increased biosynthesis of CKs show
increased invertase activity. However, if invertase activity is
inhibited, the effect of CKs on delaying senescence is eradi-
cated. This phenomenon suggests that CKs inhibit expression
of the invertase inhibitor. Consequently, CKs delay leaf senes-
cence by affecting both invertase activity and the accumulation
of hexose molecules, thus inducing plant organs to become

Table 2. (Continued)

Phytohormone/regulator Regulation Effect

SUGARS + • High level of sugar was reported in petals showing visible symptoms of
senescence (PS) (van Doorn 2004)

• Overexpression of HXK1 gene accelerates senescence (LS) (Dai et al. 1999)

• In hexokinase-1 gin2-1 mutant indicated delayed senescence (LS) (Moore
et al. 2003)

• Accumulation of sugars can block CKs effect (LS) (Wingler et al. 1998)
_ • Application of sugar to cut flowers delayed visible symptoms of senescence

(PS) (van Doorn 2004)

• After sugar feeding protein degradation and SAG genes expression are
delayed (PS) (Eason et al. 1997)

• Decrease of glucose content delaying senescence (LS) (Balibrea et al. 2004)

• Sugars rapidly decreased the amount of transcript SAG12 (LS) (Noh &
Amasino 1999)

LS, leaf senescence; PS, petal senescence, (�), inhibit senescence; (+), promote senescence.

Fig. 3. Signalling pathways leading to the onset of leaf senescence. Note: green arrows indicate positive regulation and red bars show negative regulatory

roles. This figure was prepared based on the following reports: Khan et al. (2014) and Wingler et al. (1998, 2006). ABA, abscisic acid; CKs, cytokinins; EIN2,

Ethylene Insensitive 2; IAA, indole-3-acetic acid; JA, jasmonic acid; PAs, polyamines; SAGs, senescence-associated genes; TCPs, teosinte branched/cycloidea/

PCF transcription factors.
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sugar sinks instead of initiating the remobilisation of sugars,
which is associated with senescence. This mechanism relies on
a combination of signalling pathways that both regulate ageing
and are controlled by phytohormones and sugars (Zwack &
Rashotte 2013); however, progress in drawing these connec-
tions has been slow.

Auxins

The role of auxins in senescence is widely debated, as these
phytohormones can both stimulate and inhibit senescence.
The hypothesis that auxins promote senescence originates
from studies on senescent leaves. These studies have shown
increased expression of key genes involved in the biosynthe-
sis of auxins, including tryptophan synthase (TSA1), indole-
3-acetic acid (IAA) oxidase (AO1) and nitrilase (NIT1-3),
leading to increases in the total pool of auxins (van der
Graaff et al. 2006). Furthermore, Hou et al. (2013) indicated
that auxins are regulators of the SAUR36 gene, which is
highly up-regulated in senescing leaves (Fig. 3). Loss of
SAUR36 function results in delayed senescence, but
increased expression of SAUR36 leads to premature leaf
senescence. In contrast, several studies have suggested that
auxins are negative regulators of senescence and have
demonstrated that exogenous application of auxins down-
regulates some SAG genes (Fig. 3; Noh & Amasino 1999;
Hong et al. 2000; Jones et al. 2010; Kim et al. 2011). How
auxins affect petal senescence is not well understood. Stud-
ies performed on cut flowers have indicated that exogenous
application of IAA stimulates ethylene production, wilting
and the senescence of some ethylene-sensitive flowers (Van
Staden 1995). Numerous studies have investigated the
involvement of auxins in the regulation of senescence,
focusing on understanding the role of auxin response factor
2 (ARF2) during this process. The protein ARF2 is a tran-
scription factor that binds to auxin-responsive elements in
the promoters of auxin-regulated genes (Lim et al. 2010).
Studies performed on arf2 mutants of A. thaliana have indi-
cated that ARF2 is necessary for various auxin-mediated
developmental processes such as increased growth of aerial
organs and increased seed size due to extra cell division,
inhibition of floral bud opening, abscission of floral organs
and delays in silique ripening during flowering and leaf
senescence (Ellis et al. 2005; Okushima et al. 2005; Schruff
et al. 2006). This involvement of ARF2 has been confirmed
by microarray analyses, showing that ARF2 expression is
increased in senescent leaves during developmental and
dark-induced senescence (Buchanan-Wollaston et al. 2005;
Ellis et al. 2005; Lim et al. 2010). Furthermore, the expres-
sion of other auxin response factor genes (ARF7 and
ARF19) is also induced during senescence (Ellis et al. 2005;
Okushima et al. 2005). However, mutation of these genes
does not affect the phenotype of senescent leaves but does
increase the effect caused by mutations in the ARF2 gene,
delaying the senescence process (Ellis et al. 2005). In sum-
mary, despite the availability of vast amounts of informa-
tion concerning the regulation of senescence by auxin, the
role of this phytohormone appears to be complex and
requires further investigation. Indeed, accurate estimation of
specific auxin roles in the promotion or inhibition of senes-
cence continues to be a serious unresolved problem.

Ethylene

Numerous studies carried out on plant organs (leaves and
flower petals) have shown an important role of ethylene in the
promotion of the senescence process. Much of the available
information concerning this regulation originates from studies
with genetic mutants (etr1-1, ein2-1 and ein1-1) that exhibit
disturbances in the ethylene-signalling pathway. These mutants
are characterised by the delayed expression of senescence mark-
ers, including SAG1, SAG2 and SAG12, and the resultant
delayed onset of leaf senescence (Grbi�c & Bleecker 1995).
Molecular studies have subsequently shown that the EIN2 pro-
tein regulates the transcription of the ORE1 gene, which
encodes a transcription factor required to initiate the expres-
sion of genes associated with senescence, such as SAG. In
young plant organs, the amount of mRNA encoding ORE1 is
regulated by microRNA (miR)-164. During senescence, the
level of mir-164 decreases, positively affecting the expression of
ORE1 and the progression of senescence (Fig. 3; Kim et al.
2009). However, molecular studies have shown that plants con-
tinuously overproducing ethylene age in a similar manner to
wild-type plants. This phenomenon indicates that, in addition
to ethylene, other factors might play a crucial role in the senes-
cence process (Lim et al. 2007).

Several studies have focused on the influence of ethylene on
the wilting and senescence of flower petals. The results of these
analyses showed that the examined flower species could be
divided into two groups with respect to senescence: an ethy-
lene-dependent group (Petunia, Arabidopsis and Ipomoea) and
an ethylene-independent group (Alstroemeria, Iris and Sander-
sonia; Woltering & van Doorn 1988). In the first group, ethy-
lene is the major factor that determines the time of senescence
and is a major regulator of this process. In the second group,
the senescence of petals does not depend on ethylene, but
despite many studies, the regulation of senescence in these
plants is not yet fully understood (Shibuya et al. 2013). In ethy-
lene-dependent flowers, senescence is accompanied by a surge
in ethylene production (O’Neill 1997), which is associated with
increased expression of 1-aminocyclopropane-l-carboxylic acid
(ACC; van Doorn & Woltering 2008). Moreover, the promo-
tive role of ethylene has been confirmed in studies performed
on transgenic flowers (Petunia hybrida and Dianthus caryophyl-
lus). These plants are characterised by the presence of a muta-
tion in the ethylene receptor gene. In agreement with the
dysfunction of the ethylene signalling pathway, petal senes-
cence is delayed in these plants (Wilkinson et al. 1997; Bovy
et al. 1999; Shaw et al. 2002).

Abscisic acid

Abscisic acid is also involved in the control of senescence, and
similar to ethylene, ABA is a positive regulator of the senes-
cence process. Application of exogenous ABA accelerates senes-
cence in leaves (Lim et al. 2007) and flower petals (Wilkinson
et al. 1997). Studies carried out on A. thaliana have shown that
in senescent leaves there is a significant increase in the expres-
sion of genes that encode enzymes involved in the biosynthesis
of ABA (Buchanan-Wollaston et al. 2005). Moreover, ABA reg-
ulates the expression of SAG genes, including SAG113 (Fig. 3;
Zhang et al. 2012). This gene encodes a protein that belongs to
the phosphatase PP2C family and is located in the Golgi
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apparatus. Induced overexpression of the SAG113 gene results
in reduced stomatal sensitivity to ABA and thus increased
water loss by the cell, leading to premature leaf senescence
(Zhang et al. 2012). In plants insensitive to ethylene, ABA is
the primary hormone regulator of flower petal senescence.
Exogenous application of ABA prematurely up-regulates events
that occur during natural senescence, such as the loss of differ-
ential membrane permeability, increases in lipid peroxidation
and the induction of proteinase and RNase activities (Panavas
et al. 1998). Studies performed on Iris and Hemerocallis hybrids
have confirmed the role of ABA in the positive regulation of
petal senescence (Zhong & Ciafr�e 2011). Exogenous application
of ABA stimulates the appearance of morphological, biochemi-
cal and molecular changes that are typical for the natural senes-
cence of Iris petals, such as increased total protease activity,
phospholipid degradation and the up-regulation of RNase and
UBQ-E2 gene expression. However, ABA inhibits the expan-
sion of flag petals, even during the opening stage (Zhong &
Ciafr�e 2011).

Jasmonic acid

Many studies have indicated that JA is a positive regulator of
the senescence process. However, the involvement of this phy-
tohormone in the regulation is not as evident as previously
thought (Taylor & Whitelaw 2001; Seltmann et al. 2010a,b).
The first report on the role of jasmonates in senescence origi-
nated from the observation that an isolated compound from
wormwood (Artemisia absinthium) causes the rapid loss of
chlorophyll in oats (Avena sativa). This compound was identi-
fied as methyl jasmonate (MeJa), a volatile derivative of JA
(Ueda & Kato 1980). The same effect has also been observed
during the natural senescence process in A. thaliana, in which
senescent leaves, compared with non-senescent leaves, are char-
acterised by four-fold higher levels of jasmonates (He et al.
2002). Elevated levels of JA are associated with the increased
expression of genes encoding proteins involved in the biosyn-
thesis of JA (Seltmann et al. 2010a). Indirectly, the high levels
of JA that occur during senescence are also associated with the
activity of miR-319, which regulates the teosinte branched/cy-
cloidea/PCF (TCP) transcription factors. These factors control
expression of the LOX2 gene, which encodes a key enzyme
involved in the biosynthesis of JA (Fig. 2; Schommer et al.
2008). The exogenous application of MeJA causes increased
expression of SAG genes such as SEN4 and SEN5, which stimu-
late leaf senescence (Park et al. 1998; Xiao et al. 2004; Shan
et al. 2011). The hormone JA also has a stimulating effect on
petal senescence. Application of MeJA hastens senescence in
Petunia hybrida, Dendrobium and Phalaenopsis, presumably by
elevating ACC and thereby stimulating ethylene production
(Porat et al. 1993, 1995). However, some authors think that JA
does not play an important role in the senescence process or
could even be a by-product of this process. Moreover, many
studies have suggested that JA is a secondary by-product of the
breakdown of macromolecules, explaining why the level of JA
increases during senescence (Seltmann et al. 2010a).

REGULATION OF SENESCENCE BY POLYAMINES

Numerous studies have linked polyamines (PAs) to the regula-
tion of plant cell senescence. Major PAs in plants include

putrescine (Put), spermidine (Spd) and spermine (Spm). These
PAs have been implicated in the prolonged survival of excised
organs or senescing organs in vivo, namely, leaves, flowers and
fruits (Cai et al. 2015). However, contradictions exist concern-
ing whether PA levels increase or decrease during senescence
(Cai et al. 2015).
The biosynthesis, catabolism, conjugation, interconversion

and transport of PAs contribute to PA homeostasis
(reviewed in Moschou & Roubelakis-Angelakis 2013;
Sobieszczuk-Nowicka 2017). Transformations between indi-
vidual PAs might contribute to responses to environmental
changes, and this phenomenon has been highlighted in
senescing barley leaves (Sobieszczuk-Nowicka et al. 2016).
The accumulation of PAs upon senescence is linked to the
up-regulated expression of genes involved in the biosynthesis
of PAs and, consequently, to increases in the corresponding
enzymatic activities. Transcript levels and activation of the
PA catabolic enzymes diamine oxidase (DAO) and PA oxi-
dase (PAO) increase during developmental and dark-induced
senescence; therefore, these enzymes are considered impor-
tant components of senescence-related mechanisms (Ioanni-
dis et al. 2014; Sobieszczuk-Nowicka et al. 2016). Inhibiting
PAO activity substantially increases levels of Spd and Spm,
which decrease during senescence. This phenomenon is
expected, but remarkably, the increase also slows down the
senescence-associated loss of chlorophyll. As such, Arabidop-
sis PA back-conversion oxidase mutants, in which the con-
version of Spm to Spd does not occur, show delayed
initiation of dark-induced senescence (Sequera-Mutiozabal
et al. 2016). In these mutants, delayed leaf senescence is
associated with higher levels of Spm and nitric oxide,
together with reduced production of ROS. Taken together,
these data suggest that Spm is a signalling metabolite that
provides protection against stress via metabolic conversions
that involve modifications to the ascorbate/dehydroascorbate
redox state, changes in sugar and nitrogen metabolism,
cross-talk with ethylene biosynthesis and modulation of the
mitochondrial electron transport chain (Sequera-Mutiozabal
et al. 2016).
In senescent leaves, Put dominates within the free PA frac-

tion and initially accumulates to high levels before decreasing.
This decrease in free Put is accompanied by the formation of
Put conjugates (Sobieszczuk-Nowicka et al. 2016). The senes-
cence-dependent flow of remobilised nitrogen and carbon
might contribute to PA conjugation. The sensing of PAs as
organic nitrogen by plant cells and PA stimulation of nitrogen
molecule turnover has been discussed previously (Mattoo et al.
2006, 2010).
Another interesting facet of PA metabolism is the

involvement of a DAO-mediated Put oxidation process
during the production of c-aminobutyric acid (GABA).
Microarray-based profiling of the expression of the gluta-
mate decarboxylase gene suggests that synthesis of GABA
from glutamate is gradually suppressed in dark-induced
senescing leaves (Sobieszczuk-Nowicka et al. 2016). Oxida-
tion of Put could contribute to the alternative source of
GABA and possibly also to signalling pathways. As
described above, hormone regulation of plant senescence
involves ethylene. In this regard, PAs seem to act as anti-
senescence regulators by inhibiting ethylene, and conversely,
ethylene inhibits the biosynthesis of PAs (Fig. 2; Anwar
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et al. 2015 and references therein). A possible temporal
relationship between PAs and ethylene during plant devel-
opment has been presented, wherein competition for S-ade-
nosylmethionine (SAM), which is an early precursor of
both PAs and ethylene, has been discussed (Fluhr & Mat-
too 1996; Cassol & Mattoo 2003; Harpaz-Saad et al. 2012).
In addition, the simultaneous biosynthesis of PAs and
ethylene, first presented in studies on tomato fruit (Mehta
et al. 2002), is corroborated by studies on dark-induced
leaf senescence in barley (Sobieszczuk-Nowicka et al. 2016).
The metabolism of PA during senescence is linked to many

intracellular metabolic pathways, including signalling mole-
cules and metabolites that are associated with cellular responses
to environmental changes (Sobieszczuk-Nowicka 2017). The
findings indicate that the internal pool of PAs undergoes regu-
lation in senescing leaves. More information is becoming avail-
able on how PA metabolism is linked to physiological changes
that ultimately lead to cell death and the nature of changes in
the levels of free, conjugated and bound forms of PAs. Pro-
cesses that are interlinked with an increase or decrease in PA
titre during senescence and the ability of plants to control
senescence in relation to their ability to metabolise PAs are
slowly being elucidated.
Flower petal senescence and death are other highly regulated

developmental phases controlled by PAs (Lee et al. 1997; Ser-
afini-Fracassini et al. 2002; Bagni & Tassoni 2006; Della Mea
et al. 2007a). PA modulation of flower senescence has been
studied in model species that are differentially sensitive to ethy-
lene, including carnation, Nicotiana and Gerbera. Aliphatic PAs
share with ethylene the common precursor SAM. In ‘ethylene-
sensitive’ carnation flowers, treatment with exogenous Spd
effectively delayed the progression of senescence; this delay was
accompanied by a marked increase in free Spd and Put, sug-
gesting that the PA could then bind and stabilise essential
molecules (e.g. DNA fragmentation was delayed) of the corolla
cells (Bagni & Tassoni 2006). PAs were also found conjugated
to proteins, as reported in Nicotiana by Serafini-Fracassini
et al. (2002). This system represents a good flower corolla
model, and the senescence and death have been studied in
planta or in flowers excised at different growth stages (Serafini-
Fracassini et al. 2002; Della Mea et al. 2007a,b). To evaluate the
anti-senescence effects of PAs, detached Nicotiana flowers were
treated with exogenous Spm and with silver thiosulphate (an
inhibitor of ethylene action); the treated flowers showed
delayed senescence, slowed DNA fragmentation and vacuole
damage, and prolonged chloroplast viability, together with vis-
ible preservation of chlorophyll content (Serafini-Fracassini
et al. 2002). Spm taken up was also converted back to Put and
Spd; both were found either in free or TCA-soluble form. In
Nicotiana, these conjugates are mainly hydroxycinnamoyl
derivatives, which are known to increase during flowering
(Martin-Tanguy et al. 1996). However, no evidence has been
reported regarding their involvement in senescence.

REGULATION OF SENESCENCE BY SUGARS

The role of carbohydrates in the regulation of plant organ senes-
cence remains debatable. Abundant evidence indicates that car-
bohydrates can induce and inhibit the senescence process in
leaves and petals (van Doorn 2008, 2004). During leaf senes-
cence, the rate of photosynthesis decreases, which suggests that a

low carbohydrate content induces senescence (Thimann et al.
1977; Quirino et al. 2000). Confirmation of this claim originates
from experiments performed in the 1970s in which segments of
oat leaves were floated on a solution of glucose or sucrose in the
dark. It was demonstrated that yellowing was inhibited in the
infiltrated segments of leaves because of the continued presence
of sugars in leaf tissues (Thimann et al. 1977). Grbi�c & Bleecker
(1995) reported a positive correlation between low carbohydrate
content in leaves and increased production of ethylene, which is
a senescence-inducing phytohormone.

Carbohydrates also have a crucial impact on the regulation
of senescence-related gene expression. The SAG12 gene, which
encodes a cysteine protease, is expressed during late leaf senes-
cence. Paul & Pellny (2003) determined that late SAGs such as
SAG12 are repressed by sugar, whereas early SAGs are induced
by sugar. Noh & Amasino (1999) indicated that sugars rapidly
reduce the amount of SAG12 transcripts in Arabidopsis. During
petal senescence, new evidence was found indicating that sugar
starvation can stimulate this process. In general, the exposure
of cut flowers to sugars delays the visible symptoms of senes-
cence (van Doorn 2004). Changes in ultrastructure and gene
expression during petal senescence are similar to those in
sugar-starved organs. Studies performed on Sandersonia auran-
tiaca have shown that after petals are fed with sugar, protein
degradation and the expression of several genes related to
senescence are delayed (Eason et al. 1997). Carbohydrates also
constitute an important factor controlling senescence in roots.
One of the hypotheses for the regulation of root lifespan
assumes that depletion of starch due to its use during root for-
mation and cellular respiration determines root viability
(Adams 2014).

However, some authors claim that carbohydrates both
stimulate senescence and provide opposing evidence to that
described previously. In poplar, the level of soluble carbo-
hydrates is significantly lower in brown or dead roots than
in white fine roots (Kosola et al. 2002). One of the argu-
ments that supports this hypothesis is the occurrence of
high levels of carbohydrates found in leaf tissues at the
beginning of senescence (Quirino et al. 2001; Stessman et al.
2002; Diaz et al. 2005; Pourtau et al. 2006; Wingler et al.
2006; Ag€uera et al. 2010). It is also unknown why sugars
accumulate while photosynthetic activity decreases. This
issue has not been fully explained. One probable explana-
tion is that the accumulation of non-structural carbohy-
drates is associated with both the hydrolysis of starch
present in the cells and the loss of the structural and func-
tional integrity of cellular membranes, resulting in the
intensified catabolism of membrane lipids and the forma-
tion of sugars during the course of gluconeogenesis. Experi-
ments in which wheat (Feller & Fischer 1994) and barley
(Parrott et al. 2005) phloem export was prevented by gird-
ling treatments at the base of the leaves have shown that
the accumulation of sugar is associated with earlier leaf yel-
lowing and (in barley) increased protease activity. High
levels of carbohydrates were also reported in petals that
showed visible signs of senescence, which suggests a senes-
cence-inducing role of sugars (van Doorn 2004).

Many experiments related to the regulation of senescence by
sugars have been performed on A. thaliana. Leaf senescence of
growing plants can be stimulated in the presence of 2% glucose
in combination with low concentrations of nitrogen (Pourtau
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et al. 2006; Wingler et al. 2006). The most important evidence
about the role of sugar signalling in the regulation of senes-
cence comes from genetic studies. Moore et al. (2003) have
demonstrated that the Arabidopsis hexokinase-1 mutant gin2-1
experiences delayed senescence. In contrast, overexpression of
the HXK1 gene accelerates senescence (Dai et al. 1999). Hexok-
inase-1 is a sugar sensor that is involved in sugar signalling
during senescence; hexoses do not accumulate in the senescing
leaves of the mutant. Compared with wild-type plants, plants
in which HXK1 is overexpressed accumulate higher concentra-
tions of hexoses. Additional evidence supporting the hypothe-
sis that the accumulation of sugar is one of the factors that
induces senescence comes from changes in gene expression that
occur in the sugar-accumulating pho3 mutant (Lloyd &
Zakhleniuk 2004). Many genes whose expression increases dur-
ing developmental senescence are also induced in the pho3
mutant.

Successful understanding of the cooperation between dif-
ferent regulators, explanation of how sugar induces senes-
cence and the interaction between phytohormones and
sugar signalling are crucial. Balibrea et al. (2004) showed
that CKs could induce extracellular invertase activity, which
increases the use of sugar and, surprisingly, reduces the
accumulation of glucose, resulting in delayed senescence.
However, according to Wingler et al. (1998), the accumula-
tion of sugars during senescence can block the effects of
CKs, especially under low-light conditions, and this block-
age can induce senescence. Nevertheless, we must be aware
that the accumulation of sugar might be a consequence of
only age-dependent changes in metabolism and is not
directly involved in the regulation of leaf senescence. Sub-
stantial efforts should be made to synthesise existing infor-
mation regarding senescence regulation by sugars to
determine which of these dual roles is more crucial.

SUMMARY, PERSPECTIVES AND RECOMMENDATIONS

In summary, the regulation of senescence involves a com-
plicated network of dependencies. It is not possible to dis-
tinguish one leading trail. Senescence is regulated by a
number of different processes that are also complementary
to each other. For this reason, a large network of mutual
regulation occurs wherein all these processes acting together
lead to the death of organs. As such, it is interesting how
many similarities in the senescence process occur between
various ephemeral organs that perform completely different
functions and are characterized by completely different
structures. The senescence processes of plant organs are
quite similar, and similarities are seen both at the physio-
logical and molecular levels. Leaves and petals are charac-
terised by many similarities during senescence at the
morphological, physiological and molecular levels. In the
case of senescence of fine roots, no molecular studies exist
to confirm a common mechanism of this process. However,
taking into account the conducted cytological analyses, sim-
ilar changes within the fine roots could possibly be dis-
cerned.

Despite studies in previous decades providing valuable
information about plant hormones/regulators involved in
signalling or regulatory pathways during individual plant

organ senescence, a broader framework of this process as a
universal route for every ephemeral organ and/or the whole
plant is less well founded. We propose a few priorities and
goals to help guide future research on both senescence and
its regulatory pathways. Outstanding tasks that should pro-
vide new insight into the universality of senescence include
the following issues:
1 Unlike that concerning aboveground leaf and petal traits,

there is a lack of information on fine root senescence mech-
anisms and regulatory pathways.

2 Joint assessments of plant hormone/regulator crosstalk, as
well as the identification of receptors and other upstream
signalling components, are needed.

3 Long-term and complex studies at multiple time points of
the senescence of long-lived species that develop organs
with limited lifespan are indispensable.

4 Better scaling of plant senescence requires a holistic research
approach and explanation of why many exceptions, if they
occur, do not fit the expected patterns.
In conclusion, senescence as an evolutionarily acquired

developmental strategy is a complex and complicated process
that leads to death, is prolonged and maintains its own dynam-
ics. Given that senescence is a key process that enables the valu-
able remobilisation of nutrients from senescent organs/tissues,
it is surprising that the physiological mechanisms that regulate
senescence are still poorly understood. This poor understand-
ing is due to the difficulty in distinguishing one main mecha-
nism that is responsible for the regulation of senescence or a
single precisely defined pathway for every organ among the
above- and belowground parts of the plant. In contrast, versa-
tility and universality of this process exist regardless of the
organ or species analysed. Given that the wide range of ques-
tions to which regulatory pathways of senescence can be
applied, identifying which individual symptoms are most cru-
cial is challenging and perhaps not always meaningful. The
involvement of regulators of plant growth and sugars in senes-
cence enables this process to be initiated and to progress at a
beneficial time for the function of the entire organism. We pos-
tulate that several processes that are interdependent and com-
plement each other are involved, and that this involvement
results in a large regulatory network that ensures the appropri-
ate course of the senescence process. Therefore, despite the
development of molecular biology methods, the composite
study of this process is not straightforward, and many ques-
tions remain unanswered, which makes senescence an impor-
tant subject for further research.

ACKNOWLEDGEMENTS

This work was supported by grants no. 2012/07/E/NZ9/00194
from the National Science Centre, Poland, to ABZ and no.
2016/23/N/NZ3/00073 from the National Science Centre,
Poland, to NW.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the
supporting information tab for this article:
Table S1. Supplement to Fig. 1, with detailed information

not included in the schema.

Plant Biology 20 (2018) 167–181 © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands 177

Wojciechowska, Sobieszczuk-Nowicka & Bagniewska-Zadworna Regulation of plant organ senescence



REFERENCES

Adams T.S. (2014) The controls and constraints of

fine-root lifespan. PhD thesis, Pennsylvania State

University, Intercollege Graduate Degree Program in

Ecology, USA.

Ag€uera E., Cabello P., de la Haba P. (2010) Induction

of leaf senescence by low nitrogen nutrition in sun-

flower (Helianthus annuus) plants. Physiologia Plan-

tarum, 138, 256–267.

Anwar R., Mattoo A., Handa A. (2015) Polyamine

interactions with plant hormones: crosstalk at sev-

eral levels. In: Kusano T., Suzuki H. (Eds), Polyami-

nes a Universal Molecular Nexus for Growth, Survival

and Specialized Metabolism. Springer, Tokyo, Japan,

pp 267–303.

Arrom L., Munn�e-Bosch S. (2010) Tocopherol compo-

sition in flower organs of Lilium and its variations

during natural and artificial senescence. Plant

Science, 179, 289–295.

Avice J.C., Etienne P. (2014) Leaf senescence and nitro-

gen remobilization efficiency in oilseed rape (Bras-

sica napus L.). Journal of Experimental Botany, 65,

3813–3824.

Avila-Ospina L., Moison M., Yoshimoto K., Masclaux-

Daubresse C. (2014) Autophagy, plant senescence,

and nutrient recycling. Journal of Experimental Bot-

any, 65, 3799–3811.

Ay N., Janack B., Humbeck K. (2014) Epigenetic con-

trol of plant senescence and linked processes. Journal

of Experimental Botany, 65, 3875–3887.

Bagni N., Tassoni A. (2006) The role of polyamines

in relation to flower senescence. In: Teixeira da

Silva JA (Ed), Floriculture, Ornamental and Plant

Biotechnology. Global Science Books, Isleworth,

UK, pp 88–95.

Bagniewska-Zadworna A., Arasimowicz-Jelonek M.

(2016) The mystery of underground death: Cell

death in roots during ontogeny and in response to

environmental factors. Plant Biology, 18, 171–184.

Bagniewska-Zadworna A., Byczyk J., Eissenstat D.M.,

Oleksyn J., Zadworny M. (2012) Avoiding transport

bottlenecks in an expanding root system: xylem ves-

sel development in fibrous and pioneer roots under

field conditions. American Journal of Botany, 99,

1417–1426.

Bagniewska-Zadworna A., Stelmasik A., Minicka J.

(2014) From birth to death – Populus trichocarpa

fibrous roots functional anatomy. Biologia Plan-

tarum, 58, 551–560.

Balibrea M.E., Gonzalez Garcia M.-C., Fatima T.,

Ehneß R., Lee T.K., Proels R., Tanner W., Roitsch T.

(2004) Extracellular invertase is an essential compo-

nent of cytokinin-mediated delay of senescence. The

Plant Cell, 16, 1276–1287.

Barlow P.W. (1982) Cell death – an integral plant of

plant development. In: Jackson MB, Grout B,

Mackenzie IA, (Eds), Growth Regulators in Plant

Senescence. Vol. 8. British Plant Growth Regulator

Group Monograph, Wantage, UK, pp 27–45.

Beers E.P. (1997) Programmed cell death during plant

growth and development. Cell Death & Differentia-

tion, 4, 649–661.

Bieleski R.L. (1995) Onset of phloem export from

senescent petals of Daylily. Plant Physiology, 109,

557–565.

Bernhard W.R., Matile P. (1994) Differential expres-

sion of glutamine synthetase genes during the senes-

cence of Arabidopsis thaliana rosette leaves. Plant

Science, 98, 7–14.

Bhalerao R., Keskitalo J., Sterky F., Erlandsson R.,

Bj€orkbacka H., Jonsson Birve S., Karlsson J., Garde-

str€om P., Gustafsson P., Lundeberg J., Jansson S.

(2003) Gene expression in autumn leaves. Plant

Physiology, 131, 430–442.

Bovy A.G., Angenent G.C., Dons H.J.M., van Altvorst

A.C. (1999) Heterologous expression of the Ara-

bidopsis etr1-1 allele inhibits the senescence of carna-

tion flowers. Molecular Breeding, 5, 301–308.

Breeze E., Wagstaff C., Harrison E., Bramke I., Rogers

H., Stead A., Thomas B., Buchanan-Wollaston V.

(2004) Gene expression patterns to define stages of

post-harvest senescence in Alstroemeria petals. Plant

Biotechnology Journal, 2, 155–168.

Buchanan-Wollaston V. (1997) The molecular biology

of leaf senescence. Journal of Experimental Botany,

48, 181–199.

Buchanan-Wollaston V., Ainsworth C. (1997) Leaf

senescence in Brassica napus: cloning of senescence

related genes by subtractive hybridisation. Plant

Molecular Biology, 33, 821–834.

Buchanan-Wollaston V., Page T., Harrison E., Breeze

E., Lim P.O., Nam H.G., Lin J.-F., Wu S.-H.,

Swidzinski J., Ishizaki K., Leaver C.J. (2005) Com-

parative transcriptome analysis reveals significant

differences in gene expression and signalling

pathways between developmental and dark/starva-

tion-induced senescence in Arabidopsis. The Plant

Journal, 42, 567–585.

Caccia R., Delledonne M., Levine A., De Pace C., Maz-

zucato A. (2001) Apoptosis-like DNA fragmentation

in leaves and floral organs precedes their develop-

mental senescence. Plant Biosystems, 135, 183–189.

Cai G., Sobieszczuk-Nowicka E., Aloisi I., Fattorini L.,

Serafini-Fracassini D., Del Duca S. (2015) Polyami-

nes are common players in different facets of plant

programmed cell death. Amino Acids, 47, 27–44.

Carri�on C.A., Costa M.L., Mart�ınez D.E., Mohr C.,

Humbeck K., Guiamet J.J. (2013) In vivo inhibition

of cysteine proteases provides evidence for the

involvement of “senescence-associated vacuoles” in

chloroplast protein degradation during dark-

induced senescence of tobacco leaves. Journal of

Experimental Botany, 64, 4967–4980.

Cassol T., Mattoo A.K. (2003) Do polyamines and

ethylene interact to regulate plant growth, develop-

ment and senescence? In: Nath P., Mattoo A.,

Ranade S. R., Weil J. H. (Eds), Molecular Insights in

Plant Biology. Science Publishers, Enfield, NH, USA,

pp 121–132.

Chang H., Jones M.L., Banowetz G.M., Clark D.G.

(2003) Overproduction of cytokinins in Petunia

flowers transformed with PSAG12-IPT delays corolla

senescence and decreases sensitivity to ethylene.

Plant Physiology, 132, 2174–2183.

Comas L.H., Eissenstat D.M., Lakso A.N. (2000)

Assessing root death and root system dynamics in a

study of grape canopy pruning. New Phytologist,

147, 171–178.

Criado M.V., Roberts I.N., Echeverria M., Barneix A.J.

(2007) Plant growth regulators and induction of leaf

senescence in nitrogen-deprived wheat plants. Jour-

nal of Plant Growth Regulation, 26, 301–307.

Dai N., Schaffer A., Petreikov M., Shahak Y., Giller Y.,

Ratner K., Levine A., Granot D. (1999) Overexpres-

sion of Arabidopsis hexokinase in tomato plants

inhibits growth, reduces photosynthesis, and induces

rapid senescence. The Plant Cell, 11, 1253–1266.

Della Mea M., Serafini-Fracassini D., Del Duca S.

(2007a) Programmed cell death: similarities and dif-

ferences in animals and plants. A Flower Paradigm.

Amino Acids, 33, 395–404.

Della Mea M., De Filippis F., Genovesi V., Serafini-Fra-

cassini D., Del Duca S. (2007b) The acropetal wave

of developmental cell death (DCD) of tobacco cor-

olla is preceded by activation of transglutaminase in

different cell compartments. Plant Physiology, 144,

1211–1222.

Diaz C., Purdy S., Christ A., Morot-Gaudry J.F., Win-

gler A., Masclaux-Daubresse C. (2005) Characteriza-

tion of new markers to determine the extent and

variability of leaf senescence in Arabidopsis thaliana:

a metabolic profiling approach. Plant Physiology,

138, 898–908.
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Abstract

Background: Senescence, despite its destructive character, is a process that is precisely-regulated. The control of

senescence is required to achieve remobilization of resources, a principle aspect of senescence. Remobilization allows

plants to recapture valuable resources that would otherwise be lost to the environment with the senescing organ.

Autophagy is one of the critical processes that is switched on during senescence. This evolutionarily conserved process

plays dual, antagonistic roles. On the one hand, it counteracts instantaneous cell death and allows the process of

remobilization to be set in motion, while on the other hand, it participates in the degradation of cellular components.

Autophagy has been demonstrated to occur in many plant species during the senescence of leaves and flower petals.

Little is known, however, about the senescence process in other ephemeral organs, such as fine roots, whose lifespan

is also relatively short. We hypothesized that, like the case of seasonal leaf senescence, autophagy also plays a role in

the senescence of fine roots, and that both processes are synchronized in their timing.

Results: We evaluated which morphological and cytological symptoms are universal or unique in the senescence of

fine roots and leaves. The results of our study confirmed that autophagy plays a key role in the senescence of fine

roots, and is associated also with the process of cellular components degradation. In both organs, structures related to

autophagy were observed, such as autophagic bodies and autophagosomes. The role of autophagy in the senescence

of these plant organs was further confirmed by an analysis of ATG gene expression and protein detection.

Conclusions: The present study is the first one to examine molecular mechanisms associated with the senescence of

fine roots, and provide evidence that can be used to determine whether senescence of fine roots can be treated as

another example of developmentally programmed cell death (dPCD). Our results indicate that there is a strong

similarity between the senescence of fine roots and other ephemeral organs, suggesting that this process occurs by

the same autophagy-related mechanisms in all plant ephemeral organs.

Keywords: Autophagy, ATG genes, ATG8 protein, Senescence, Leaves, Fine roots

Background
Senescence, as the final, inevitable stage of development

before death, can occur in a select group of cells, tissues,

organs, or even an entire plant. Seasonal senescence of

organs is an adaptation that allows plants to adapt to a

yearly change in environmental conditions. Regardless of

the reason, senescence is a precisely regulated process

that follows well-defined steps, clearly reflected by dis-

tinct physiological, cytological, and transcriptomic

events [1, 2]. The precise control of senescence is neces-

sary to allow the process of remobilization to occur,

which is the main goal of prolonged senescence instead

of rapid death [3]. During senescence, the degradation of

cellular components is accelerated. The remobilization

process allows those degraded components, that are still

valuable for plants, to be transformed into forms that

can be transported in the phloem and relocated to other

parts of the plant e.g. to developing seeds or other
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storage organs [4–8]. There is also a body of evidence

which demonstrates that autophagy plays a significant

role in nutrient recycling during the senescence of plant

organs [9–12].

Autophagy is an evolutionarily conserved, intracellular

pathway in eukaryotic cells for the massive degradation

of cytoplasmic components in a lytic compartment

within cells [13]. It is responsible for the turnover of

cytoplasm [14], scavenging of unnecessary cellular com-

ponents [15], formation of some tissues [16–18], and bi-

otic [19–23] and abiotic stress responses [24–28]. Thus,

autophagy helps to preserve cell homeostasis. Micro-

scopic observations of cells can distinguish three types

of autophagy: micro-, macro-, and mega-autophagy [12,

29, 30]. During microautophagy, a small fragment of se-

questered cytoplasmic constituents is incorporated into

the vacuole by invagination of the tonoplast membrane

[14, 31]. In macroautophagy, cellular material, or even

entire organelles, intended for degradation are encapsu-

lated in double-membrane vesicles called autophago-

somes which are then transported to the vacuole. After

fusion of the autophagosome and tonoplast membranes,

the cytoplasmic cargo, contained a single membrane

vesicle structure (autophagic body) is delivered into the

vacuolar lumen [31]. Mega-autophagy, the third type of

autophagy, begins with an intensive synthesis of hydro-

lytic enzymes, which results in enlarged vacuoles and in-

creased tonoplast permeability. Finally, when the

tonoplast is ruptured, the protoplast of the cell becomes

acidified which leads to cell death [31].

The first evidence that autophagy plays a significant role

in the controlled senescence of plant organs came from

microscopic studies of senescing leaves of Triticum

aestivum. Wittenbach et al. [32] observed that whole

chloroplasts were present in the central vacuole which was

filled with lytic hydrolases. In senescing petals of Ipomoea

purpurea [33] and Dianthus caryophyllus [34], numerous

vesicles containing fragments of degraded protoplast were

observed. Similarly, in senescing fine roots of Populus

trichocarpa, numerous autophagy-related structures have

been observed [29]. As molecular tools developed, a

plethora of mechanisms associated with autophagy were re-

ported. In genetic screens of Saccharomyces cerevisiae for

autophagy-defective yeast mutants, a number of ATG (Au-

TophaGy) genes required for autophagy were identified as

being indispensable for the formation of autophagosomes

during macroautophagy [13, 35]. The ATG genes and their

protein products are also highly conserved in plants [14] and

their occurrence and activity have been described in detail in

Arabidopsis [36–38], rice [39], and maize [40]. The central

core of autophagy machinery, which is necessary for autop-

hagosome assembly, consists of 18 ATG proteins. These pro-

teins can be divided into four groups based on their

function: (1) the ATG1 protein kinase complex, which is

necessary for induction and coordination of autophagy; (2)

the PI3 kinase complex that is involved in the recruitment of

the ATG18–ATG2 complex to PI3P in the autophagic mem-

brane through an interaction between ATG18 and PI3P (3)

the ATG9 complex which plays a role in delivering lipids to

the pre-autophagosomal structure, and (4) two

ubiquitination-like systems involved in elongation and en-

closure steps during autophagosome formation (ATG12,

ATG8) [41]. Analyses of gene expression indicated a signifi-

cant increase in the expression of ATG genes during the sen-

escence of leaves and flower petals [12, 42–44]. A significant

role of autophagy in the senescence process was also con-

firmed in studies utilizing Arabidopsismutants that displayed

early and fast leaf senescence phenotypes [9]. In that study,

the authors also indicated an intriguing role for autophagy in

the remobilization process. The atg mutants are character-

ized by hypersensitivity to nitrogen, reduced seed production,

and inhibition in the formation of Rubisco-containing bodies

(RCB) [9]. Similar to leaves and flower petals, most fine

roots, in contrast to pioneer roots, are short-lived [45]. Des-

pite all the information that has been forthcoming on senes-

cence, autophagy, and remobilization in leaves and flower

petals, a similar level of understanding of the process of sen-

escence in fine roots is lacking.

The most recent classification scheme classifies fine roots

as first, second, and third order roots with a diameter <

2 mm [46]. They are characterized by a lack of secondary

structure, the frequent presence of mycorrhizae, and a high

surface to weight ratio [46]. These properties make them

efficient in the absorption of water and minerals from the

soil [47]. Fine roots, similar to leaves and flower petals, sen-

esce and die after performing crucial functions that support

plant growth and development. Root senescence and death

have received a great deal of research interest over many

years due to the importance of roots as a component of soil

biomass and their effect on biological processes in forest

ecosystems. The annual biomass production of fine roots is

equal to or greater than the biomass of leaves, thus, the

senescence and death of fine roots represent an important

aspect of the cycling of chemical elements [48, 49].

In the present study, focus was placed on developing a

more complete understanding of the process of fine root

senescence relative to the same process in leaves. Despite the

number of published root studies, few overall generalizations

pertaining to the senescence process in roots have been

established. This is perhaps principally because no concep-

tual framework exists for how root lifespan is constrained

and controlled by cell or tissue physiology and genetics.

While some theories to explain the control of fine root life-

span have been forwarded, very little data is available to

evaluate these theories. Although this knowledge is crucial,

obtaining high-quality data on this subject can be difficult

and problematic. In the present study, we hypothesize that

autophagy is an integral aspect of the senescence process in
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fine roots, as it is in seasonal leaf senescence, and that both

processes are synchronized in their timing. We have con-

ducted a significant amount of research to determine which

morphological and cytological symptoms of root and leaf

senescence are characteristic and either universal or unique

to each organ. A molecular analysis of fine root senescence

was also conducted, which provides the first evidence to

support the premise that the senescence of fine roots can be

seen as another example of developmentally programmed

cell death (dPCD).

Results

Structure of senescing fine roots and leaves of P.

trichocarpa

Fine roots and leaves were systematically monitored during

the growing season to detect the first visible/measurable

symptoms of senescence. Therefore, several morphological,

anatomical, and cytological features were identified. Chloro-

phyll levels were also measured in leaves (Fig. 1). After an

analysis we classified the material studied into six groups

and these groups were used as experimental variants in

other studies. The six classified groups were designated as:

green leaves - control (LC); two stages of senescing leaves -

yellowing leaves (LS1) and yellow leaves (LS2); white fine

roots - control (RC); and two stages of senescing roots -

light brown roots (RS1) and dark brown roots (RS2).

Morphological symptoms of senescence and cell viability

in senescing organs

The pigmentation of both fine roots and leaves changed as

the senescence process progressed (Fig. 2a-c; Fig. 3a-c).

Fine roots changed in color from white to light brown to

dark brown or black. A significant shrinkage in dark brown

and black roots was also observed (Fig. 2b, c, h, i). Color

changes in leaves were associated with decreases in chloro-

phyll content (Fig. 1; Fig. 3a-c). A viability assay was

conducted to determine if the changes in color were asso-

ciated with a loss of cell viability in leaves and fine root tis-

sues. A fluorescent signal was observed in the majority of

cells of white fine roots (RC) and green leaves (LC) (Fig.

2d; Fig. 3d); indicating a high level of cell viability. The

number of cells with a fluorescent signal in the light brown

roots (RS1) and yellowing leaves (LS1), however, decreased

relative to the signal levels in control samples (Fig. 2e;

Fig. 3e). Lastly, the fluorescent signal in dark brown roots

(RS2) and yellow leaves (LS2) was very low and was not

present in many of the analyzed sections of tissues (Fig. 2f;

Fig. 3f).

Anatomical characteristics of senescence

An anatomical analysis using light microscopy was con-

ducted to identify anatomical changes that were character-

istic of the senescence process in two organs (leaves and

fine roots). Pronounced, progressive changes were ob-

served in fine roots. At the beginning of the growing sea-

son, fine roots (RC) were white and their morphology was

round and regular (Fig. 2g). Internally, their cells had the

appearance of features reflective of full turgor without any

evidence of damage. The layer of cortical parenchyma

cells was characterized by the presence of a large number

of cells (Fig. 4a) without any evident signs of senescence.

In the next two sampling periods (October and Novem-

ber), an increasing number of senescing roots were har-

vested. The most apparent characteristic in senescing fine

roots (RS1 and RS2) were changes in their shape. Due to

the occurrence of folded cell walls in cortical parenchyma

cells, the morphological shape of the fine roots was not

consistently round and regular, as had been observed in

the RC root samples (Fig. 2h, i). This was confirmed by

diameter measurements where a statistically significant

decrease was apparent in RS1 and RS2 fine roots, relative

to RC fine roots (Fig. 4b). Furthermore, many of fine roots

collected at the RS2 stage were already dead and their

overall structure was completely destroyed (Fig. 2i).

In contrast to fine roots, anatomical symptoms of senes-

cence in leaves were not as readily evident (Fig. 3g-i). Signifi-

cant changes in the shape of mesophyll cells were not

observed, but the number of mesophyll cells was significantly

lower relative to the control leaves (Fig. 3g-i). Measurements

did not show statistically significant differences in the width

of palisade mesophyll, however, a decrease in the leaf width

occurred during the senescence process (Fig. 4c, d).

Cytological analyses of senescing fine roots and leaves

Based on the morphological and anatomical observations

made of senescing leaf and fine root organs, cytological ana-

lyses focused on the cortical parenchyma cells of fine roots

(Fig. 5) and the palisade and spongy mesophyll cells in

leaves (Fig. 6). Cortical parenchyma cells in white, fine roots

(RC) exhibited a regular shape with thin cell walls (Fig. 5a).

Fig. 1 Changes in chlorophyll level in leaves during the

growing season
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Fig. 2 Senescence-related changes in fine roots (a-c – changes in morphology; d-f – changes in cell viability; g-i – changes in anatomy). Bars, 50 μm

Fig. 3 Senescence-related changes in leaves (a-c – changes in morphology; d-f – changes in cell viability; g-i – changes in anatomy). Bars, 100 μm
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A centrally located vacuole occupied most of the entire cell.

The cytoplasm with its organelles was present as a thin

band along the periphery of the cell wall (Fig. 5b). Tannins

were observed in vacuoles of several cortical parenchyma

cells, usually in close vicinity of the tonoplast (Fig. 5c). In

contrast, evidence of senescence was readily observed in

light brown (RS1) and dark brown (RS2) fine roots. The

majority of cortical parenchyma cells in RS1 fine roots ex-

hibited structures related to autophagy (Fig. 5d-f). Vesicles

with cytoplasmic residues were observed in numerous cells.

Those structures were similar to the vesicles present in cells

undergoing microautophagy (Fig. 5d, e). Moreover, in RS2

cortical parenchyma cells, autophagic bodies inside vacuoles

were also detected (Fig. 5g). Furthermore, the cell shape in

the majority of RS2 cortical cells was more irregular than

the oval shape of cells that were observed in RC and RS1

samples (Fig. 5h, i). Notably, cell walls were folded and the

tonoplast was ruptured in cells that appeared to be in the

last stage of senescence before dying. Furthermore, numer-

ous microorganisms were observed in the external cortex of

RS2 fine root samples (Fig. 5i).

Many changes in leaf ultrastructure related to the senes-

cence process were also visible (Fig. 6). Control cells from

LC were characterized by the presence of plenty organ-

elles (mitochondria, endoplasmic reticulum and chloro-

plasts) with a normal appearance. Moreover, a significant

number of starch granules were observed in both palisade

(Fig. 6a) and spongy mesophyll (Fig. 6b) cells. In contrast,

the appearance of the majority of the cells from yellowing

leaves (LS1) was distinctly different (Fig. 6d-f). Among the

different organelles, the first and most rapid alterations in

response to senescence were observed in chloroplasts

where the internal structure was greatly modified (Fig.

6d). Ultrastructural analysis revealed the disintegration of

thylakoids, with a concomitant massive formation of plas-

toglobules that were mostly located between the thyla-

koids within the senescing chloroplasts (Fig. 6d).

Moreover, spherical bodies separating themselves from

chloroplasts were observed in several cells, including

Rubisco-containing bodies (RCB) (Fig. 6e). Furthermore,

several different autophagy-related structures were ob-

served in the cytoplasm, including autophagic bodies in

the vacuole lumen (Fig. 6d) and autophagosomes (Fig. 6e).

Evidence of the formation of these structures was also ob-

served, seen as the joining of several tubules and vesicles

(Fig. 6f). Many cells in yellow leaves (LS2) exhibited more

advanced senescence-related changes (Fig. 6g-i). The

structure of chloroplasts was more visibly altered, an in-

creasing number and size of plastoglobules were observed

(Fig. 6g), as well as more distended thylakoids. Ruptured

tonoplasts were observed in several cells, which resulted

in the degradation of all cellular structures due to the

acidification of the cytoplasm that occurred once the

tonoplast was ruptured (Fig. 6h, i).

Fig. 4 Changes in the structure of fine roots and leaves in relationship to the senescence process. a – Number of cortical parenchyma cells per

section of fine roots. b – Changes in the diameter of roots and the stele during senescence. c – Width of the palisade mesophyll in leaves of

P. trichocarpa. d – Width of the leaf lamina in P. trichocarpa. Bars sharing the same letter are not significantly different (P = 0,05). Values represent

the mean ± SE (standard error)

Wojciechowska et al. BMC Plant Biology          (2018) 18:260 Page 5 of 16



Expression of ATG genes during senescence

The analysis of ATG genes expression revealed significant

differences in gene expression between control and senes-

cing leaf and fine root tissues (LC vs LS and RC vs RS).

The expression of ATG7, ATG8c, ATG8d, ATG8g, ATG8h,

ATG11, and ATG18 were examined (Fig.7; Fig. 8). Statisti-

cally significant changes in the expression of majority

ATG8 genes (ATG8c, ATG8d, ATG8g) were observed in

fine roots (Fig. 7). Expression of all of these genes in-

creased at the first stage (RS1) of senescence and then de-

creased in the second stage (RS2) of senescence (Fig. 7).

In contrast, a slightly different pattern of expression was

observed in leaf tissues. In contrast to roots, the expres-

sion of all of the examined ATG genes was upregulated in

leaf tissues in both stages (LS1 and LS2) of senescence

(Fig. 8). The largest increase in expression level was ob-

served in the second stage (LS2) of senescence.

Distribution and localization of ATG8 protein

Based on the significantly increased expression of ATG

genes in both roots and leaves, the amount and

localization of ATG8 protein, which is necessary for ap-

propriate autophagosome formation, was examined by

immunoblot (Western blot) and immunolocalization

analyses. ATG8 protein can be detected either as a

protein conjugated to phosphatidylethanolamine (PE) on

an autophagosomal membrane or as a free protein with-

out PE. The level of ATG8 protein in both fine roots

and leaves changed over the course of the growing sea-

son (Fig. 9a; Fig. 10a). Results indicated that the amount

of ATG8 protein exhibited a similar pattern to changes

in ATG8 gene expression.

The level of ATG8 was relatively low in viable, white

roots (RC) (Fig. 9a). ATG8 was located mainly in xylem

tissues or cells of the rhizodermis (Fig. 9b-d). A significant

increase in the level of ATG8 was observed in the first

stage (RS1) of senescence when fine roots appeared

brownish (Fig. 9a). Both forms of ATG8 (free and conju-

gated to PE) were detected. ATG8 was localized in the

majority of cortex parenchyma cells and in xylem tissues

(Fig. 9e-g). ATG8 was detected in the cytoplasm, near the

cell wall, or more concentrated in spherical bodies (Fig.

9e-g, arrows). Subsequently, when roots became dark

brown (RS2), a slight decrease in the level of ATG8 was

observed in fine root tissues. ATG8 conjugated to PE was

the main form observed in RS2 fine root cells. The level of

free protein was clearly lower in RS2 than in RS1 fine root

cells (Fig. 9a). The localization of the conjugated and free

protein did not appear to significantly change between the

RS1 and RS2 stages of senescence (Fig. 9h-j).

Fig. 5 Changes in ultrastructure of cortical parenchyma cells in fine roots during the course of senescence. a-c - white fine roots - control (RC);

d-i - two stages of senescing roots - light brown roots (RS1, d-f) and dark brown roots (RS2, g-i). Abbreviations: V vacuole, ER endoplasmic

reticulum, M mitochondria, T tannins, Mi microorganism. Arrows indicate autophagy-related structures. Bars, 0,5 μm

Wojciechowska et al. BMC Plant Biology          (2018) 18:260 Page 6 of 16



Fig. 6 Changes in ultrastructure of palisade and spongy mesophyll leaf cells during the course of senescence. a-c - green leaves - control (LC);

d-i - two stages of senescing leaves - yellowing leaves (LS1, d-f) and yellow leaves (LS2, g-i) Abbreviations: V vacuole, S starch, M mitochondria,

RCB Rubisco containing bodies, G gerontoplast, Ch chloroplast. Arrows indicate autophagy-related structures. Bars, 1 μm

Fig. 7 Relative expression of ATG genes in fine roots (RC – root control, RS1 –first stage of root senescence, RS2 –second stage of root senescence) of

Populus trichocarpa. Bars sharing the same letter are not significantly different (P = 0,05). Values represent the mean ± SE (standard error)

Wojciechowska et al. BMC Plant Biology          (2018) 18:260 Page 7 of 16



The level of the free form of ATG8, as well as the form

in which ATG8 is conjugated to PE, was very low in green

leaf (LC) tissues (Fig. 10a). A positive localization signal

was mainly observed within the vascular bundle in xylem

cells (Fig. 10b, c). In palisade and spongy mesophyll cells,

ATG8 was localized in several cells but the signal level

was relatively low (Fig. 10b-e). The level of ATG8 notice-

ably increased in yellowing leaves (LS1) and was mainly

the form in which ATG8 is conjugated to PE (Fig. 10a).

The signal was localized in epidermal cells, as well as the

spongy and palisade mesophyll (Fig. 10f-i). ATG8 protein

was mostly localized in spherical bodies (Fig. 10h, i, arrow)

which were located in proximity to the cell wall. A signifi-

cant level of localization also occurred in xylem vessels

(Fig. 10f). A notable increase in the ATG8 level was ob-

served in yellow leaves (LS2) (Fig. 10a). Microscopic ana-

lysis also revealed a strong localization of ATG protein in

most cells (Fig. 10j-n). ATG8 protein was localized in cells

of the epidermis, spongy and palisade mesophyll, and in

xylem vessels. The distribution of ATG8 was similar in

both the LS1 and LS2 stages of senescence, where it was

concentrated in spherical bodies (Fig. 10j, m, n, arrow) but

also dispersed in the cytoplasm (Fig. 10j-n).

Discussion

In this work, we emphasize the universality of senescence,

which occurs in all ephemeral organs, and further indicate

that regardless of the organ being examined, some aspects

of senescence are common to all aging processes. Despite

copious research conducted on programmed cell death in

plants, a detailed understanding of the mechanisms

underlying autophagy, which occurs during the senes-

cence of all organs and tissues, is still insufficient. A key

question is whether common mechanisms can be identi-

fied that are responsible for senescence in different plant

organs? While the very precisely controlled death of spe-

cific cells during early development has been well de-

scribed, the process of senescence in plants is well

described only for leaves, fruits, and flower petals. Al-

though senescence also occurs in below ground plant or-

gans, this process is barely understood in root systems

due to the difficulty in harvesting of roots. In spite of, or

perhaps because of, these limitations, the present study

compared the natural senescence process that occurs in

two different plant organs: leaves and fine roots. We were

interested to determine whether organs that serve com-

pletely different functions and possess a completely differ-

ent structure undergo senescence in a similar manner.

Morphological, anatomical, cytological, and molecular

characteristics were used to analyze this question.

Utilizing the FDA viability tests, both fine roots and

leaves were confirmed to undergo a gradual decrease in

cell viability, along with morphological symptoms of sen-

escence. Moreover, the decrease in viability observed in

leaves and fine roots was synchronized in its timing, in-

dicating that senescence in these two organs is induced

by the seasonal change in environmental conditions.

Our results are consistent with those obtained by Comas

Fig. 8 Relative expression of ATG genes in leaves (LC – leaf control, LS1 –first stage of leaf senescence, LS2 – second stage of leaf senescence) of

Populus trichocarpa. Bars sharing the same letter are not significantly different (P = 0,05). Values represent the mean ± SE (standard error)
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et al. [50] and Bagniewska–Zadworna et al. [29], who in-

vestigated the senescence of roots in Vitis labruscana

and Populus trichocarpa, respectively. These studies also

observed a progressive decrease in cell viability during the

senescence process. The morphological features that were

observed in our study were associated with a change in

the pigmentation of the senescing organs and a shrinkage

of the entire organ. Indeed, the first noticeable similarity

in the senescence of fine roots and leaves was a change in

color. The change in leaf color, which results from the

degradation of chlorophyll, has been often described in

numerous plant species, including Glycine max and Ara-

bidopsis thaliana [51], Chenopodium quinoa [52], Gossy-

pium hirsutum [53]. Chlorophyll degradation during leaf

senescence exposes carotenoids [54], and is the cause of

the change in leaf color that occurs in autumn in decidu-

ous trees. The color change of flower petals, another

ephemeral organ, has also been documented in several

plant species from different plant families, including Ipo-

moea nil [55, 56], Nicotiana mutabilis [57], Antirrhinum

majus [58], Argyranthemum frutescens [58], and Petunia

hybrida [59]. The senescing petals of Hibiscus syriacus

become blueish when the ratio of flavonoids and anthocy-

anins changes and alters the pH of the cytoplasm [60].

Another morphological characteristic that occurs uni-

versally during the senescence of every ephemeral organ

is shrinking and/or wilting [2]. In the present study,

shrinkage was evident during the senescence of most

fine roots of Populus trichocarpa in the second stage

(RS2) of senescence. This observation is similar to the

reports in earlier root studies [29, 50]. In contrast, a de-

crease was observed in the width of the leaf blades of

Populus trichocarpa during leaf senescence. This may

have been related to a loss in cell turgor, which makes

the leaves appear withered.

A common sequence of events during the senescence of

fine roots and leaves was also observed at an ultrastruc-

tural level. In both organs, the shape of cells became ir-

regular and altered during the senescence process, which

was in sharp contrast to the regular outline of cell shape

observed at the beginning of the growth season. It is

plausible that the change in cell shape may have been in-

duced by an impairment of the cytoskeleton [61]. Early

degradation of the lattice formed by cortical microtubules

Fig. 9 ATG8 protein levels (a) and the immunolocalization of ATG8 protein (b-j) in fine roots (RC – root control, RS1 – first stage of root

senescence, RS2 – second stage of root senescence) during the growing season. Bars, 50 μm
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was reported to occur during both natural and

dark-induced senescence of Arabidopsis leaves [61]. The

expression of genes related to the cytoskeleton, such as α-,

β-, and γ-tubulins, were also reported to be repressed dur-

ing leaf senescence [42].

Another common feature of the senescence process

appears to be the occurrence of autophagy, which has

been observed to occur at the beginning of senescence,

evidenced by the accumulation of a large number of ves-

icles in senescing cells. These vesicles most likely formed

through micro and/or macroautophagy, as evidenced by

their localization and appearance, which indicated

vesicle formation. The formation of multiple vesicles by

the fusion of several tubules was evidence of macroauto-

phagy according to van Doorn and Papini [62]. Spherical

bodies separated from chloroplast, and remaining

Rubisco-containing bodies (RCB) were also observed in

leaf cells in the present study. RCB bodies are

double-membrane vesicles which contain chloroplast

proteins such as Rubisco and Gln synthetase [63, 64].

The presence of numerous double membraned vesicles

was also observed in senescing petals of Ipomoea pur-

purea [33] and Dianthus caryophyllus [34]. These

observations indicate that autophagy plays an important

functional role during the senescence of all ephemeral

organs, where it is equally responsible for degradation of

cellular components and the selective recycling and re-

mobilization of chemical constituents.

Autophagy is a universal mechanism in cells that is re-

sponsible for the degradation of aberrant proteins and

damaged organelles so that cellular homeostasis is main-

tained [65, 66]. Autophagy is typically accompanied by the

process of programmed cell death (PCD). This relationship

has been confirmed during various developmental events

in plants, such as xylogenesis [67], anther development

[16], tapetum degradation [16], and the hypersensitive re-

sponse (HR) [21]. Similar mechanisms may regulate cell

death during the senescence of leaves and flower petals

[43, 55, 64, 68, 69]. A significant knowledge gap still exists,

however, regarding the presence of autophagy in the senes-

cence of fine roots and details of its functional role.

Similar to the senescence process in leaves and petals, au-

tophagy in fine roots is also involved in the disintegration of

membranes, and delivering unwanted cytoplasmic material,

such as targeted proteins, carbohydrates, and lipids, to vacu-

oles for breakdown; thus replenishing the supply of nutrients

Fig. 10 ATG8 protein levels (a) and the immunolocalization of ATG8 protein (b-n) in leaves (LC – leaf control, LS1 – first stage of leaf senescence,

LS2 – second stage of leaf senescence) during the growing season. (Abbreviations: Xm xylem vessels, PM palisade mesophyll, SM spongy palisade,

E epidermis). Bars, 25 μm
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needed for normal cell function. Therefore, autophagy often

plays a dual antagonistic role as executioner and as a medi-

ating, dilatory factor in senescence. Ultrastructural studies

performed on senescing leaves and fine roots of P. tricho-

carpa in the present study provided many general observa-

tions. Many autophagy-related structures were observed in

the cytoplasm and vacuole lumens of both leaf and fine root

cells. To provide evidence supporting the origin of these ves-

icles and their association with autophagy in both organs,

ATG gene expression and ATG protein levels were analyzed.

The expression of the selected ATG genes increased in both

leaf and fine root tissues during senescence. The highest in-

crease in expression among the analyzed genes was ob-

served for ATG8 genes. ATG8, is a ubiquitin-like peptide tag

which is necessary for formation of autophagosomes and is

responsible for regulating their size [13, 70, 71]. ATG8 is

conjugated to phosphatidylethanolamine (PE) on an autop-

hagosomal membrane by a bond between the

carboxyl-terminal glycine (Gly) of ATG8 and PE [12]. In

various studies, ATG8 and its homologs (LC3 in mammals)

was used as a reliable marker for the induction and progres-

sion of autophagy. Several ATG8 genes have been identified

in the plants [72]. The expression of ATG8 genes observed

in the present study in senescing organs (leaves and fine

roots) of P. trichocarpa was slightly different in the two or-

gans. In leaves, ATG8c and ATG8h exhibited the highest

level of expression, while ATG8g was the most upregulated

in fine roots. Tissue-specific expression of ATG8 genes has

also been observed in Arabidopsis [72]. During developmen-

tal and dark-induced senescence, ATG8 expression has been

reported to increase in leaves of Arabidopsis thaliana [42]

and Hordeum vulgare [44], as well as in senescing petals of

Petunia hybrida and Impomea nil [12, 65]. The involvement

of autophagy in senescing fine roots was convincingly con-

firmed in our study by protein analysis, which indicated that

the level of ATG8 protein significantly increased in senes-

cing roots. ATG8 protein was localized in the cytoplasm

and highly concentrated in specific, membrane bound struc-

tures. A similar observation was reported by Thompson

et al. [72], who detected ATG8 fused with GFP in hypocotyl

cells of young seedlings during N starvation.

Only a few studies can be identified where meaningful

evidence of the dual role of autophagy during the senes-

cence of plant organs has been provided. Although the

dual role of autophagy as both a pro-survival and

pro-death process was recently discussed [41], most stud-

ies have only focused on its role in the process of degrad-

ation. In the 1980s, electron microscopy provided visual

evidence of chloroplast degradation and the presence of

degraded chloroplast components in vacuoles [32]. Later,

Ishida et al. [63] reported the accumulation of small bod-

ies, which were designated as Rubisco containing bodies

(RCB) based on their composition, in senescing leaves of

Triticum aestivum. Plants constitutively expressing

stroma-targeted GFP demonstrated that the accumulation

of the GFP signal was localized in the vacuolar lumen of

cells treated with concanamycin A, a drug that inhibits

the degradation of autophagic bodies in the vacuole. Inter-

estingly, RCB bodies were not observed in the cells of atg5

mutants, suggesting that the autophagy-dependent

process is responsible for the degradation of chloroplasts.

A similar result was obtained with Arabidopsis mutants,

atg4a, atg4b-1, which exhibit autophagy disorders and

where RCB bodies were also not detected [73]. Degrad-

ation of chloroplasts by autophagy was unequivocally con-

firmed in studies where co-expressed stroma-targeted RFP

and ATG8 fused with GFP colocalized in the vacuole of

leaves [63, 74]. Autophagy plays the role of an executioner

in the last stage of senescence process when increased

permeability and eventual rupturing of the tonoplast

membrane; resulting in the release of hydrolytic enzymes

which cannibalize the protoplast and cause cell death [66].

Rupture of the tonoplast membrane represents the

point-of-no-return and the described sequence of events

has been observed in senescing leaves [75], flower petals

[33], and fine roots [29].

Much less attention has been paid to the role of select-

ive autophagy in the remobilization process [9–11].

Additionally, knowledge concerning the mechanisms

and function of autophagy in nutrient availability and re-

cycling in plants is less advanced for roots than it is for

leaves. The first evidence for the role of autophagy in re-

mobilization was provided in studies of Arabidopsis leaf

senescence [9]. Genetic and molecular analyses utilizing

mutants with impaired ATG genes help to document the

biological function of autophagy in remobilization. Using

wild-type (WT) and atg mutants of A. thaliana treated

with 15NO3
−, the level of 15 N was evaluated. Results

indicated that remobilization was significantly lower in

the atg mutants than in WT plants [9]. Interesting re-

sults regarding the relationship between autophagy and

remobilization during senescence came from a study of

maize atg12 mutants [11]. This study demonstrated that

15 N remobilization to seeds was altered in atg12

autophagy-defective mutants. Surprisingly, the relocation

of nitrogen to newly-formed leaves was greater in the

atg12 autophagy-defective mutants as compared to WT.

Remobilization of nutrients is also observed during the

senescence of flower petals. Quantitative analysis of ni-

trogen in Petunia hybrida flowers demonstrated that the

level of N changed before and after pollination-induced

senescence in the examined parts of a flower. Nitrogen

content decreased in petals and increased in the ovaries

of pollinated flowers [12].

The role of autophagy in remobilization is also essen-

tial in fine roots. Fine roots are characterized by a short

lifespan which typically does not exceed two years [76,

77]. In Populus, the life-span of fine roots is usually
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< 95 days [78]. Considering that the biomass of fine

roots is equal to or greater than the biomass of leaves,

remobilization is an important subject when discussing

the cycling and recycling of chemical elements [48, 49].

Our current study indicated that the autophagy machin-

ery is present and active in senescing fine roots, and sug-

gests that substantial amounts of the elements stored in

fine roots are remobilized to other parts of the plant.

How large a portion is released to the soil may be also

regulated by autophagy. Identifying the reason and

underlying mechanism for the induction of autophagy

and its biological function during the time period prior

to the final death of fine roots will require additional

studies.

Conclusion
The senescence of plant organs, despite its destructive char-

acter, is a genetically controlled process that follows a

well-defined sequence of events and is regulated by mul-

tiple pathways [2]. Cell viability is also essential for the initi-

ation and progression of cell senescence. As long as a cell is

viable, autophagic processes can be utilized to continue the

process of degradation and remobilization in a controlled

manner without crossing the point-of-no return and the

final result, cell death. Our study comparing the senescence

process in fine roots and leaves, helps to establish a cohe-

sive model of the process of senescence in ephemeral or-

gans. The combination of current and long-established

information, clearly indicates that autophagy is a multifa-

ceted system that plays a role in both the degradation of

unwanted, unneeded cellular material, and the remobiliza-

tion of valuable nutrients. How autophagy regulates cell

survival and death however, is still not well understood and

should be a priority for future research.

Methods

Plant material and growth conditions

All experiments were performed on fine roots and leaves

of Populus trichocarpa (Torr. & Gray) growing at an ex-

perimental field site at the Institute of Dendrology,

Polish Academy of Sciences in Kórnik (52°14′40″N and

17°06′27″E).

Seeds were obtained from the FLORPAK Młynki Seeds

Store, Poland. Seedlings were initially grown in a plant

growth chamber (Conviron GR96) at 18 °C day/14 °C night

and a 16 h day/8 h night photoperiod. After 3 months,

plants were transferred into rhizotrons. The rhizotrons

(50x30cm) were constructed of two transparent polycar-

bonate plates held 3 cm apart by thick-walled plastic tubing

to provide sufficient growing space. The rhizotrons were

placed in an underground chamber. They combine the con-

trolled conditions of laboratory experiments with the ad-

vantages of a natural field setting. Waterlogging was

avoided by providing a drainage hole in the bottom of each

rhizotron. This permitted soil aeration and drainage of ex-

cess water. An automated system was used for the watering

of individual plants. Plants were grown in rhizotrons con-

sisting of clear-walled chambers filled with natural soil that

allow shoots to grow above the soil surface. Rhizotrons

were installed in a semi-open, foil greenhouse, to prevent

flooding and heat stress. The rhizotrons provide the ability

to collect root growth measurements over time without dis-

turbing aboveground plant growth and without the need

for destructive sampling of roots until deemed necessary

based on the experimental design.

Senescent leaves were identified based on chlorophyll

measurements (Fig. 1) and senescent roots were identi-

fied based on symptoms as defined by Comas et al. [50].

Additional data obtained on anatomy, cytology and a

viability test were also taken into account when inter-

preting the collected data.

Samples were collected three times during a growth sea-

son. The first collection was considered as a control and

was collected in early summer (July 7–15) when leaves

and the root system were fully developed and functional.

Control leaf samples were designated as LC and control

fine root samples were designated as RC. The second

group of leaf and root samples were harvested in early au-

tumn (October 1–7) when chlorophyll levels in leaves had

decreased by approximately 40% (Fig. 1) and when fine

roots had changed in color from white to brown. The first

stage of leaf senescence was designated as LS1 and the

first stage of fine root senescence was designated as RS1.

The third group of samples were harvested in the middle

of autumn (November 2–9) when chlorophyll levels in

leaves decreased by approximately 65% (Fig. 1) and fine

roots were dark brown or black color. The second stage of

leaf senescence was designated as LS2 and the second

stage of fine root senescence was designated as RS2.

Morphological studies

Photographic documentation of leaves was collected along

with chlorophyll measurements to better illustrate the rela-

tionship between the two parameters during the senescence

process. Chlorophyll levels were measured several times

during the growth season using a CCM-200 plus Chloro-

phyll Content Meter (Opti-Sciences). Changes in the

morphology of fine roots were examined several times dur-

ing the growth season. This was done by removing the rhi-

zotrons from the chamber and taking photos of the root

systems, and immediately returning them back into the

chamber. The same 30 plants were analyzed each time.

Viability test using a fluorescein diacetate (FDA) staining

assay

The viability of cells in fine roots and leaves was assessed

with fluorescein diacetate (FDA)(Sigma). After harvesting,

fine roots and leaves were cut into 35 μm thick
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cross-sections using a Leica VT1200S vibratome (Leica

Biosystems, Nussloch, Germany). The sections were trans-

ferred to 100 μl of a diluted stock solution of FDA (stock

solution 5 mg FDA in 1 ml of acetone, stock solution di-

luted 1:250 in Phosphate-buffered saline (PBS) (Sigma).

After a 15 min incubation period at room temperature

(RT), sections were rinsed three times in PBS buffer.

Fluorescence was only observed in live cells due the con-

version of non-fluorescent fluorescein diacetate into fluor-

escein. Fluorescence was induced by exposure to a

wavelength of 470 nm (blue excitation and green fluores-

cence) under an Axioscope A1 microscope (Zeiss, Jena,

Germany). Fluorescence images were digitally captured.

Anatomical studies

The harvested samples of fine roots and leaves were im-

mediately fixed in a mix 2% (v/v) glutaraldehyde (pH 6.8;

Polysciences, Warrington, USA) and 2% (v/v) formalde-

hyde (pH 6.8; Polysciences, Warrington, USA). After an

overnight incubation in fixative solution, the samples

were rinsed three times with a cacodylate buffer

(0.05 M; pH 6.8; Polysciences) and then dehydrated in a

graded ethanol series (10–100%, v/v). Subsequently, the

samples were incubated in a series of ethanol:Technovit

7100 resin mixture (Heraeus Kulzer, Wehrheim,

Germany) with ratios of 3:1, 1:1, 1:3, and finally in pure

Technovit 7100 resin. Cross-sections were cut with a

Leica RM2265 Fully Automated Rotary microtome (Lei-

ca-Reichert, Bensheim, Germany) at a thickness of

10 μm. The cross-sections were stained with 1% (m/v)

aniline blue and examined under a light microscope

(Axioscope A1, Carl Zeiss, Jena, Germany).

Cytological studies

For cytological studies, the fragments of fine roots and

leaves were fixed in 2% (v/v) glutaraldehyde (pH 6.8;

Polysciences, Warrington, USA) and 2% formaldehyde

(v/v) (pH 6.8; Polysciences, Warrington, USA) at 4 °C

overnight. Subsequently, the samples were rinsed three

times with a cacodylate buffer (0.05 M; pH 6.8, Poly-

sciences) and postfixed in 1% (v/v) osmium tetroxide

(Polysciences) at RT for 2 h. The double fixed material

was counterstained for 1 h with 2% uranyl acetate

(Polysciences) and embedded in low viscosity resin

using the method described by Zenkteler and Bag-

niewska Zadworna [79]. Ultrathin sections (70 nm)

were cut on a Leica EM UC7 (Leica-Reichert, Ben-

sheim, Germany) ultramicrotome using a diamond

knife and cut sections were collected on formvar-

coated copper grids. The sections were stained with

uranyl acetate and lead citrate, and examined with a

Hitachi HT7700 transmission electron microscope

(Hitachi, Tokyo, Japan) operating at an accelerating

voltage of 80 kV.

Protein extraction, gel electrophoresis, and western blot

analysis

Total protein was extracted from the collected samples

according to the method described by Szuba et al. [80],

which is based on phenol extraction. After extraction,

proteins were solubilized in a buffer containing 7 M

urea, 2 M thiourea, 40 mM dithiothreitol (DTT), 0.5%

carrier ampholytes, and 4% CHAPS. Protein concentra-

tion was measured with a 2-D Quant Kit (GE Health-

care, Piscataway, USA). Proteins were separated by

SDS-PAGE on 12% polyacrylamide gels, with an equal

amount of protein (20 μg) in each lane. The western blot

analysis was performed according to the method de-

scribed by Kalemba and Litkowiec [81]. A primary anti-

body - anti-ATG8 (Agrisera) was diluted 1:1000. The

presence of reactive protein was visualized on a mem-

brane using an alkaline phosphate substrate (5-bro-

mo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium)

(Sigma Aldrich, St. Louis, USA).

RT-qPCR analysis of gene expression

RNA isolation was performed with a Ribospin Plant kit

(GeneAll Biotechnology Co., Ltd., Korea) according to

the manufacturer’s recommendations. RNA was sus-

pended in nuclease free water and stored at − 80 °C.

cDNA synthesis was performed using a High Capacity

cDNA Reverse Transcription kit (Applied Biosystems,

Thermo Fisher Scientific Inc., USA) following the proto-

col supplied by the manufacturer. Reverse transcription

– quantitative PCR (RT-qPCR) was carried out using a

SYBR Green Master Mix kit (Applied Biosystems,

Thermo Fisher Scientific Inc., USA). All analyses of gene

expression by RT-qPCR utilized three technical repli-

cates from three biological replicates of each experimen-

tal variant. Analyses were conducted in 96-well plates in

a CFX96 Touch Real-Time PCR Detection System

(Bio-Rad Laboratories, Inc., USA) utilizing the following

amplification program: denaturation by a hot start at

95 °C for 10 min, followed by 40 cycles of a two-step

program (denaturation at 95 °C for 15 s and annealing/

extension at 60 °C for 1 min). Primers used in this study

were designed using Primer3 software (The Whitehead

Institute for Biomedical Research, Cambridge, MD,

USA). The sequences of the primer pairs are listed in

Table 1. Several reference genes (such as: GADPH, Actin,

18S rRNA, ß-Tubulin, PKFE, EF1a, NADH, and Ubiqui-

tin) were utilized. ß-Tubulin, GAPDH, and Ubiquitin

were selected as housekeeping genes and for

normalization of expression values because they exhib-

ited the lowest sample to sample variation and high

stable expression in all samples types and time points.
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Data analyses were performed according to the method

described by Bagniewska-Zadworna and Stelmasik [82].

The average cycle threshold (Ct) values of the reference

genes were subtracted from the corresponding Ct value

of each gene to obtain a ∆Ct value, and the relative ex-

pression levels were calculated using the ∆∆Ct method.

Immunodetection of ATG8 using a tyramide signal

amplification (TSA) assay

A tyramide signal amplification (TSA) technique was

used to assess the localization of ATG8 protein due to

its high level of sensitivity. The TSA technique is ap-

proximately 1,000× more sensitive than the standard

protocol for immunolocalization.

Pieces of fine roots and leaves were fixed in 2% (v/v)

glutaraldehyde (pH 6.8; Polysciences, Warrington, USA)

and 2% (v/v) formaldehyde (pH 6.8; Polysciences,

Warrington, USA) for 12 h and then rinsed three times in

1xPBS (Sigma) buffer. Immunolocalization in leaf samples

utilized 32 μm thick sections, which were obtained using a

Leica VT 1200S (Leica Biosystems, Nussloch, Germany)

vibratome. Fine root samples were dehydrated in a graded

ethanol series (10–100%) and then infiltrated and embed-

ded in Paraplast Extra (melting point – 57.8 °C; Sigma, St

Louis, MO, USA). Fine root sections (20 μm) were ob-

tained using a Leica RM2265 (Leica Biosystems, Nussloch,

Germany) microtome.

For immunolocalization, the material was incubated in

3% hydrogen peroxide solution for 1 h at RT to quench

endogenous peroxidase activity. Subsequently, the mater-

ial was rinsed three times in 0,01 M PBS buffer and

blocked with 2% bovine serum albumin (BSA, Sigma) for

20 min. A primary ATG8 rabbit antibody (Agrisera) was

used for immunolocalization of ATG8 proteins. The pri-

mary antibody was diluted 1:1000 in 0.2% BSA (Sigma)

and the sectioned material was incubated with the primary

antibody at 6 °C overnight. The material was rinsed five

times in PBS buffer and then incubated with

poly-HRP-conjugated secondary antibody (Thermo Fisher

Scientific Inc., USA, attached to TSA Super Boost kit) for

1 h at 36 °C. The antibodies were rinsed from the samples

five times with PBS and then the samples were exposed to

a working solution of tyramide for 8 min at RT. The work-

ing solution of tyramide was prepared according to the

manufacturer’s directions (Thermo Fisher Scientific Inc.,

USA). The reactions were arrested by the addition of

100 μl of a stop reagent (Thermo Fisher Scientific Inc.,

USA). After rinsing in PBS buffer, the sectioned samples

were mounted in Prolong Gold (Life Technologies). Re-

sults of the immunolocalization assay were recorded with

a Leica TCS SP5 confocal microscope (Leica Biosystems,

Nussloch, Germany). Negative control reactions produced

an undetectably low signal compared with the standard

reactions (Additional file 1, Figure S1).

Statistical analysis

Statistical analyses (ANOVA and Tukey’s test) were per-

formed using Statistica 12.0 software (StatSoft Poland

Inc., Tulsa, OH, USA).

Additional file

Additional file 1: Figure S1. Comparison of ATG8 immunolocalization

reactions with a negative control. Figure. 1a, b – The localization of ATG8

in senescence leaf. Fig. 1c, d – The negative control reaction performed

omiting the primary antibody. (TIF 42774 kb)
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Table 1 List of primer sequences used for RT-qPCR analyses

Gene Primer Sequences

ATG7 F - 5’-GGAATCGAATTCCTGCTTCA-3’
R - 5’-TGTCTCATCATCCCAGTCCA-3’

ATG8c F - 5’-TGCCTGTGTTACGGATCTTG-3’
R - 5’-ACCCCAAATGTGTTCTCACC-3’

ATG8d F – 5’-GCCAACAGTGAGATCAGCAG-3’
R – 5’-GGGACTTTGTGAGGTGTGCT-3’

ATG8g F - 5’-CGTTGCCTCAAACAGCAAGT -3’
R – 5’-AGAAAGGATGATACAGCTTAGCCA-3’

ATG8h F - 5’-TAGAGAGGTGGTTGGGTGCT-3’
R – 5’-CCTGCTTCTGACCCTTCTTG-3’

ATG11 F- 5’- AGAGCTGCTTGACAAGTACCCA-3’
R- 5’-CTTTCCTTGTTTGCCTGCTTCT-3’

ATG18 F - 5’-GACAATGACGAGCCAGGATT-3’
R – 5’- AGAGTTCGAGTGGCTGGAGA-3’

ß-TUBULIN F – 5’-TTCTCCTGAACATGGCAGTG-3’
R - 5’-CCACACAACGTGAAATCCAG-3’

GAPDH F - 5’-CAATGAATGGGGCTACAGGT-3’
R – 5’-CATGAATCAGCTGCACATCC-3’

UBIQUITIN F - 5’-AGGAACGCGTTGAGGAGAAG -3’
R – 5’-TATAABCAAAAACCGCCCCTG -3’

F forward primer, R reverse primer
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Abstract: Plant senescence is a highly regulated process that allows nutrients to be mobilized from

dying tissues to other organs. Despite that senescence has been extensively studied in leaves, the

senescence of ephemeral organs located underground is still poorly understood, especially in the

context of phytohormone engagement. The present study focused on filling this knowledge gap by

examining the roles of abscisic acid (ABA) and jasmonate in the regulation of senescence of fine,

absorptive roots and leaves of Populus trichocarpa. Immunohistochemical (IHC), chromatographic,

and molecular methods were utilized to achieve this objective. A transcriptomic analysis identified

significant changes in gene expression that were associated with the metabolism and signal

transduction of phytohormones, especially ABA and jasmonate. The increased level of these

phytohormones during senescence was detected in both organs and was confirmed by IHC. Based on

the obtained data, we suggest that phytohormonal regulation of senescence in roots and leaves is

organ-specific. We have shown that the regulation of ABA and JA metabolism is tightly regulated

during senescence processes in both leaves and roots. The results were discussed with respect to the

role of ABA in cold tolerance and the role of JA in resistance to pathogens.

Keywords: senescence; phytohormones; abscisic acid; jasmonate; absorptive roots; leaf senescence;

microarrays analyses

1. Introduction

Senescence is a coordinated series of events that begins at a cellular level and then broadens to

whole tissues, organs, and in monocarpic plants, the whole organism [1]. In crops, this process usually

overlaps with the reproductive phase and might influence reducing crop yield when it is induced

prematurely or/and under unfavorable environmental conditions [2]. The onset of senescence may be

related to age [3,4] or can be stimulated by internal factors, such as reactive oxygen species (ROS) or

changes in phytohormone level, as well as external factors such as photoperiod, temperature, nutrient

deficiency, or shading [5–8]. While the process of senescence appears to be outwardly destructive,

the fact that it is a highly regulated process allows plants to relocate a significant portion of valuable

nutrients from senescing organs to other tissues so that they can be re-utilized rather than lost [9,10].

One of the most characteristic features of senescence is an increase of catabolic metabolic reactions in

relation to anabolic ones [11]. This shift leads to the degradation of individual organelles and eventually
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the rupture of the tonoplast, protoplast acidification, and cell death [8,12–14]. Chloroplasts, which

contain approximately 80% of total leaf nitrogen, are one of the first organelles to be degraded [15,16].

Massive degradation of chloroplast proteins as well as other macromolecules initiates the main goal of

senescence: remobilization [17]. Contrary to chloroplasts, the nucleus, which is essential to coordinate

senescence progression by gene transcription, and mitochondria, which supply energy, remain

unharmed up to the last stages of senescence [18,19]. Several studies have indicated that abscisic acid

(ABA) [7,20], jasmonic acid (JA) [21,22], ethylene (ET) [23–25], and salicylic acid (SA) [26,27] promoted

senescence in leaves and flower petals before they were ceased, while cytokinins (CKs) [28,29] delayed

this process. This has been confirmed by the analysis of phytohormone levels during senescence,

as well as by molecular studies in which the expression of genes related to the biosynthesis of

phytohormones was found to increase in senescing organs [30]. The expression of a wide range of genes

is also modulated during senescence. Specifically, genes that are up-regulated during senescence are

termed Senescence-Associated Genes (SAGs), while genes that are down-regulated are called Senescence

down-regulated genes (SDGs) [31]. Functional analyses have revealed that among SAGs are those

genes encoding proteolytic enzymes, ATG proteins, nitrogen-metabolizing enzymes, and several

transcriptional factors (TFs) such NAC or MYB [17,32]. In contrast, SDGs encode proteins related to

photosynthesis or oxidative enzymes, such as catalase [33].

Programmed cell death (PCD) is a cellular process that is often associated with senescence, and

such relation was confirmed for leaves and flower petals [8,14,34]. Recent studies have provided

evidence that PCD is also involved in the senescence of fine roots [12,13]. Fine, absorptive roots

constitute an important component of soil biomass and play a significant role in biogeochemical

cycling in forest ecosystems [35,36]. Based on recent studies, it is apparent that fine roots, with a

diameter < 2 mm, should not be considered as a homogeneous entity because they include both

absorptive and transport roots. The first two to three root orders are classified as absorptive, fine

roots. These roots are characterized by high absorption and respiration rates, and they are often

colonized by mycorrhizae [13,35–38]. The life span of fine roots is species-specific and may range from

a few weeks to as long as two years [39,40]. However, the average life span of fine roots in Populus is

typically < 95 days. New insights on root senescence suggest that it is not a passive process but rather

is genetically regulated [12,13]. Similar to flower petals and leaves, changes in morphology (color

changes, wilting/shrinkage) and cytology (tonoplast rupture, changes in cell shape) occur, including the

activation of autophagy. Despite this cursory information, a comprehensive outlook on the senescence

of underground organs is still lacking. Considering the total biomass of fine, absorptive roots, a better

understanding of senescence and death in these organs is essential to understanding chemical element

circulation in forest ecosystems.

In the present study, we report on significant changes that occur in gene expression during the

senescence of leaves and fine, absorptive roots in Populus trichocarpa. We focused on checking which

changes accompanied senescence of two organs that play completely different roles in plant physiology

and metabolism, and they also exist under completely different growth conditions. Comparison of

these two organs was conducted to determine if the senescence process, despite significant differences

in structures among others related to the presence of a photosynthetic apparatus in leaves, followed the

same or independent pathways. The results obtained from transcriptomic and physiological analyses

as well as microscopic localization provided new information that ABA and JA may contribute to

senescence processes in leaves and fine roots and confirmed that the senescence of fine, absorptive

roots should be classified as another example of PCD. We suggest that the senescence of both studied

organs is a hormonally regulated process, but this regulation in both organs is different, which indicates

organ-specific hormonal regulation.
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2. Results

2.1. Changes in Gene Expression During the Senescence of Leaves and Roots

Before carrying out the analyses, morphological and anatomical characteristics of the plant

material were performed, as described previously [13]. In addition, basic physiological parameters

for leaf senescence, such as chlorophyll level, were examined, and the ratio of fresh mass (FW) / dry

mass (DW) was calculated (Supplementary Figure S1A). On this basis, sampling moments related

to control variants and senescence stages were estimated. The main senescence-related feature that

was taken into account was the change of color. For leaves, it was associated with a decrease in the

chlorophyll level (Supplementary Figure S1B); for roots, in addition to color change, shrinkage was also

included. The microarray analyses were conducted at three time points for each organ and included

viable organs without any symptoms of senescence (LC, RC) as well as early (RS1, LS1) and advanced

stages of senescence (RS2, LS2) (Figure 1).
advanced stages of senescence (RS2, LS2) (Figure 1). 

Figure 1. Stages of leaves (A–C) and fine, absorptive roots (D–F) selected for analyses based on 

≥

Figure 1. Stages of leaves (A–C) and fine, absorptive roots (D–F) selected for analyses based on

morphological and anatomical changes observed during the vegetative season.
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Microarray analyses revealed significant changes in gene expression during the course of

senescence of roots and leaves.

In roots, a total of 1898 differentially expressed genes (DEGs) were identified (One-way ANOVA

corrected p-value cut-off = 0.001, post-hoc Tukey HSD and Benjamini–Hochberg correction, fold change

≥ 2) in the three stages of senescence that were analyzed. Most of the DEGs exhibited down-regulation

in the early and late stages of senescence. A total of 924 DEGs were down-regulated in RS1 and 1169 in

RS2. In contrast 556 DEGs were up-regulated in RS1 and 692 in RS2 (Figure 2A).

Figure 2. Transcriptomic analysis of fine, absorptive roots and leaves during senescence. (AFigure 2. Transcriptomic analysis of fine, absorptive roots and leaves during senescence. (A) Venn

diagrams showing the expression pattern of 1898 statistically significant differentially expressed genes

(DEGs) in fine roots at two time points during senescence and the overlap in expression among them.

(B) Venn diagrams showing the expression pattern of 1348 statistically significant genes in leaves at

two time points during senescence and the overlap in expression among them. (C) Venn diagram

showing the expression pattern of DEGs in roots and leaves at two time points during senescence and

the common genes for both organs.

Most DEGs were either down- or up-regulated in both RS1 and RS2 stages (Figure 2A); however,

there was a significant number of DEGs that either decreased or increased in their expression only

in the final stage (RS2) of senescence. A total of 1500 DEGs were annotated, and 101 clusters and 77

functional categories were identified using the DAVID database [41,42]. The majority of the annotated

genes encoded proteins located in extracellular regions (35 genes), the cytosol (34 genes), cell wall

(31 genes), or plant-type cell wall (22 genes), or as an integral component of the plasma membrane

(27 genes) (Supplementary Figure S2A). Gene Ontology (GO) enrichment analysis revealed that the

most abundant categories were carbohydrate metabolic process (33 genes), ROS, and oxidative stress

(response to oxidative stress, 15 genes; hydrogen peroxide catabolic process, 14 genes), cell wall (cell

wall organization, 15 genes; plant-type cell wall organization, 14 genes; pectin catabolic process, 14
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genes; xyloglucan metabolic process, 8 genes; cell wall biogenesis, 8 genes; cellulose catabolic process,

5 genes; xylan biosynthetic process, 4 genes; S-adenosylmethionine biosynthetic process, 3 genes;

S-adenosylmethionine cycle, 2 genes), and microtubules (microtubule-based movement, 18 genes;

microtubule-based process, 11 genes) (Supplementary Figure S2B). Notably, many genes (90) associated

with phytohormones were also identified (Figure 3A).

 

Figure 3. Number of up- and down-regulated phytohormone-related genes in roots (A) and leaves 

≥

Figure 3. Number of up- and down-regulated phytohormone-related genes in roots (A) and leaves

(B). Abbreviations: ABA, abscisic acid; JA, jasmonic acid; ET, ethylene; CKs, cytokinins; BRs,

brassinosteroids; SA, salicylic acid; GA, gibberellic acid.

In leaves, a total of 1348 DEGs (One-way ANOVA corrected p-value cut-off = 0.005, post-hoc

Tukey HSD and Benjamini–Hochberg correction, fold change ≥ 2) were identified over the course of the

senescence process. The majority of the DEGs were up-regulated, 798 in LS1 and 1025 in LS2 stage, while

170 DEGs were down-regulated in LS1 and 303 in LS2 (Figure 2B). Of all DEG, only a small group of

genes have been identified as common to both organs (Figure 2C). A total of 1063 DEGs were annotated,

and 63 clusters and 42 functional categories were identified using the DAVID database [41,42]. Most of

the annotated DEGs encoded proteins assigned, among others, to the nucleus (114 genes), cytoplasm

(81 genes), and intracellular (27 genes) categories (Supplementary Figure S3A). GO enrichment analysis

revealed that the most abundant enriched categories were those related to DNA-templated transcription

(40 genes), protein degradation (proteasome-mediated ubiquitin-dependent protein catabolic process,

15 genes; protein ubiquitination involved in ubiquitin-dependent protein catabolic process, 13 genes;

ubiquitin-dependent protein catabolic process, 8 genes), signaling (intracellular signal transduction,

11 genes; small GTPase-mediated signal transduction, 9 genes; Wnt signaling pathway, 4 genes),

vesicle-mediated transport (8 genes), endocytosis (4 genes), as well as a plethora of categories related

to phytohormones (77 genes) (Figure 3B, Supplementary Figure S3B).
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2.2. Genes Associated with Phytohormones

Genes associated with phytohormone pathways were identified among the DEGs of both organs

using Gene Ontology (GO) within the Biological Process (BP) category. These included genes related

to abscisic acid (ABA), jasmonic acid (JA), brassinosteroids (BRs), cytokinins (CKs), auxin (IAA),

ethylene (ET), gibberellin (GA), and salicylic acid (SA) (Figure 4A–D, Supplementary Figures S4 and

S5). Further analyses focused on genes related to ABA and JA in both organs since the microarray

analysis indicated significant changes in the expression of ABA- and JA-related genes and because

these two phytohormones are known as positive regulators of leaf senescence.

 

Figure 4. Changes in the expression of phytohormone-related genes in roots (A,B) and leaves (C,D

(

Figure 4. Changes in the expression of phytohormone-related genes in roots (A,B) and leaves (C,D)

during senescence. (A,C) Heatmap illustrating the expression profiles of ABA-related genes. (B,D)

Heatmaps illustrating the expression profiles of JA-related genes. Abbreviations: ABA, abscisic acid;

JA, jasmonic acid; FC, fold change.
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2.2.1. ABA-Related Genes

In roots, genes associated with ABA belonged to three subcategories within the GO BP, with

“response to ABA” containing the greatest number of DEGs (Figure 4A). A total of 28 genes fell

into this subcategory of BP, among which 12 were up-regulated in RS1 and 10 in RS2 (Figure 3A,

Figure 4A; Supplementary Table S1). Concomitantly, 16 genes in this subcategory were down-regulated

in RS1 and 18 in the RS2 stage of senescence. Among the identified up-regulated DEGs were genes

encoding proteins related to stress response, including cold stress—WCOR413 (POPTR_0004s15610) and

COR413IM1 (POPTR_0001s34410)—or oxidative stress—the precursors of ferritin (POPTR_0008s07270,

POPTR_0010s19190). The down-regulated DEGs included several genes encoding aquaporin-related

proteins (POPTR_0008s04430, POPTR_0010s22950, POPTR_0004s18240, POPTR_0009s01940). Several

DEGs encoding proteins involved in signaling such as kinases (POPTR_0017s02820, POPTR_0001s23030,

POPTR_0010s00490) or phosphatase (POPTR_0010s20720) were also found to be down-regulated

(Supplementary Table S1).

In leaves, genes associated with ABA were placed in six subcategories of GO BP. Similar

to fine roots, the GO BP subcategory “response to ABA” contained the largest number of DEGs;

however, “ABA-activated signaling pathway” was also significantly represented (Figure 4B).

Among the 33 ABA-related DEGs, 25 were up-regulated and 8 were down-regulated during both

stages (LS1 and LS2) of senescence (Figure 3B; Figure 4C). Among the genes up-regulated by

senescence were genes encoding transcription factors (TFs), e.g., MYB (PtrMYB168 POPTR_0019s11090,

POPTR_0013s1136), bZIP (POPTR_0014s02810), and NAC (NAC034 POPTR_0005s20240, NAC052

POPTR_0003s16490). Up-regulated expression was also observed for genes related to carbohydrate

metabolism (POPTR_0001s23090, POPTR_0001s23060), lipid metabolism (POPTR_0001s14290),

as well as genes associated with the protein degradation process (POPTR_0004s17940,

POPTR_0012s09300, POPTR_0005s27480). Notably, genes encoding proteins associated with ABA signal

transduction, such as phosphatase 2C (POPTR_002s00880, POPTR_001s25200, POPTR_0010s20720) or

kinases—SNF1-related protein kinase KIN10 (POPTR_0004s11500) and calcium-dependent protein

kinase 1 (POPTR_0019s00630)—were also observed. Similar to the situation in fine, absorptive roots,

down-regulation of DEGs encoding an aquaporin-related protein (POPTR_0009s13890) and a precursor

of ferritin (POPTR_0010s19190) were also observed (Supplementary Table S2).

2.2.2. JA-Related Genes

In roots, genes associated with JA were placed in three subcategories of GO BP, with “response

to JA” and “JA-mediated signaling pathway” being the subcategories containing the greatest

number of DEGs (Figure 4B). A total of 14 DEGs, among which 6 were up-regulated and 8

were down-regulated, were identified in both stages of root senescence (Figure 3B; Figure 4B).

Increased expression of DEGs was identified for genes encoding MYB TF (POPTR_0001s19070),

SWI/SNF complex-related (POPTR_0017s01140), ERECTA-like protein (POPTR_0004s16110), and

mitochondrial import inner membrane translocase subunit Tim17/Tim22/Tim23 family protein

(POPTR_0001s24670). Down-regulated DEGs included, among others, those related to flavonoid

metabolism (POPTR_0014s14200, POPTR_0003s11900, POPTR_0001s14310, POPTR_0001s08410) and

lipid metabolism (POPTR_0001s15530) (Supplementary Table S1).

In leaves, DEGs associated with JA were placed in the same three categories as the DEGs for fine

roots. However, in the case of leaves, the subcategory of GO BP “JA biosynthetic pathway” contained

the second greatest number of DEGs (Figure 4D). A total of 12 genes were identified, 8 and 7 of which

were up-regulated in the LS1 and LS2 stages, respectively (Figure 3B; Figure 4D). Concomitantly, 4

DEGs were down-regulated in LS1 and 5 in LS2. The greatest increase in expression was observed for

DEGs encoding transcriptional factors, such as an ethylene-responsive transcription factor RAP2-3

(POPTR_0010s00900), TBF1 (POPTR_0001s24840), and MYBs (PtrMYB180 POPTR_0013s11360 and

PtrMYB168 POPTR_0019s11090). In addition, increased expression was observed for a gene similar to

JAZ1, which encodes a jasmonate ZIM-domain protein (POPTR_0006s14160) (Supplementary Table S2).
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These results indicate that the process of senescence in both leaves and fine, absorptive roots is not

a passive process but rather a genetically regulated process that is accompanied by significant changes

in gene expression, including a large group of genes associated with phytohormone synthesis and

signaling pathways.

2.3. ABA, JA, and MeJA Levels During Senescence

Based on microarray analyses and literature data about the role of ABA and JA during leaf

senescence, further analyses were carried out for these two phytohormones in order to check whether

organs with different functions used similar mechanisms or affected the metabolism of these compounds

to the progression of senescence process.

Quantitative analyses of ABA, jasmonic acid (JA), and methyl jasmonate (MeJA) revealed

significant differences in the concentration of these phytohormones during the senescence of leaves

and fine absorptive roots (Figure 5, Figure 6). The results of changing the phytohormone concentration

were statistically significant (p < 0.05) (Supplementary Table S3). The level of ABA in roots increased

during senescence, with the highest level observed in the second stage of senescence (RS2) (Figure 5A).

In contrast, the highest level of ABA in leaves was observed in LS1, when leaves were yellowing

(Figure 5B).

 

Figure 5. Quantitative analysis of abscisic acid (ABA) levels in fine absorptive roots (A) and lea

 

Figure 5. Quantitative analysis of abscisic acid (ABA) levels in fine absorptive roots (A) and leaves (B)

during senescence. Means designated by different letters indicate statistically significant differences

according to ANOVA and Tukey’s post hoc test (p < 0.05). Values represent the mean ± SE (standard

error).

Quantitative analyses of jasmonates (JA and MeJA) were also conducted. The concentration of

both JA and MeJA in both organs increased during senescence, with the highest levels observed in the

second stage of senescence (LS2, RS2) (Figure 6A,B). All of the observed changes in jasmonate levels

were statistically significant at a p-value < 0.05.
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Figure 6. Quantitative analysis of jasmonic acid (JA) and methyl jasmonate (MeJA) levels in fine

absorptive roots (A) and leaves (B) during senescence. Means designated by different letters indicate

statistically significant differences according to ANOVA and Tukey’s post hoc test (p < 0.05). Values

represent the mean ± SE (standard error).

2.4. Immunolocalization of ABA and JA During Senescence

Based on the significantly increased concentrations of ABA and jasmonate in both leaves and fine,

absorptive roots in the different stages of senescence, immunohistochemical detection of ABA and JA

was conducted to determine their cellular and tissue distribution.

2.4.1. ABA Localization

In roots, ABA was localized in the rhizodermis, cortical parenchyma cells, and vascular tissue

(mainly in xylem) of control, viable roots (RC) (Figure 7A,B). A signal for ABA was detected in the

peripheral cytoplasm of cortical parenchyma cells, which had a large central vacuole (Figure 7A,B;

arrows). In the first stage of root senescence (RS1), the ABA signal was observed in the same tissues

as in RC, but the cellular distribution was different in cortical parenchyma cells. In this case, the

signal was not only concentrated in of the peripheral cytoplasm, but it was also evident in the vacuole

(Figure 7C,D; arrowheads). The majority of cortical parenchyma cells were folded and irregular in

shape in RS2, which made determining the precise distribution of ABA in these cells problematic.

Nevertheless, an intense fluorescent signal was detected in the folded cortical parenchyma cells, as

well as in xylem tracheary elements (Figure 7E,F).

In leaves, the highest intensity of ABA signal in green, control leaves (LC) was detected in vascular

bundles (Figure 8A–C; arrowheads). A weak signal was also observed in epidermal cells (Figure 8A,B),

as well as in a few mesophyll cells (mainly in the palisade layer) (Figure 8C). Chloroplasts were readily

defined due to the strong autofluorescence emitted by chlorophyll (Figure 8A–C). ABA in yellowing

leaves (LS1) was detected in the majority of palisade and spongy mesophyll cells (Figure 8D–F). The

signal was localized in the cytoplasm of these cells and sometimes in spherical spots inside the vacuole

(Figure 8F, arrow). Chlorophyll autofluorescence was still visible (Figure 8D–F), whereas it decreased

significantly in the second stage of senescence (LS2) (Figure 8G–I). The distribution of the ABA signal in

LS2 leaf tissues, however, was different than it was in LS1; the signal was detected as different-shaped

spots in the majority of mesophyll cells (Figure 8G–I, arrowheads).
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Figure 7. Immunolocalization of ABA (green fluorescence) during senescence process of fine

( )

Figure 7. Immunolocalization of ABA (green fluorescence) during senescence process of fine, absorptive

roots. (A,B) Root control (RC); (C,D) The first stage of root senescence (RS1); (E,F) The second stage

of root senescence (RS2). Autofluorescence (red) of the cell wall was registered in order to visualize

the cell/organ shape. Abbreviations: R, rhizodermis; C, parenchyma cortex cells; Ct, cytoplasm; Ph,

phloem, X, xylem. Scale bars = 50 µm.

 

Figure 8. Immunodetection of ABA (green fluorescence) and red autofluorescence of chlorophyll 
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Figure 8. Immunodetection of ABA (green fluorescence) and red autofluorescence of chlorophyll

during leaf senescence. (A–C) Leaves control (LC); (D–F) The first stage of leaf senescence (LS1); (G–I),

The second stage of leaf senescence (LS2). Abbreviations: VB, vascular bundle; PM, palisade mesophyll;

SM, spongy mesophyll; E – epidermis. Scale bars = 50 µm.
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2.4.2. JA Localization

In roots, the JA signal in viable, control roots (RC) was concentrated mainly in phloem cells

(Figure 9A,B). The JA signal was also detected in several cortical cells (Figure 9A,B). In the first stage

of root senescence (RS1), the pattern of the JA signal was quite different; the JA was detected in the

majority of cortical parenchyma cells, but in contrast to the signal in RC samples, the JA signal was

observed throughout the cell rather than just in the peripheral cytoplasm of cells with large vacuoles

(Figure 9C,D; arrowheads). In the second stage of senescence (RS2), the anatomical structure of roots

was greatly degraded by the senescence process; however, the intensity of the signal was still very

high and localized mainly in the folded cortical parenchyma cells (Figure 9E,F) as well as in phloem

cells (Figure 9E).

Figure 9. Immunolocalization of JA (green fluorescence) in fine, absorptive roots during senescence. Figure 9. Immunolocalization of JA (green fluorescence) in fine, absorptive roots during senescence.

(A,B), Root control (RC); (C,D) The first stage of root senescence (RS1); (E,F) The second stage of root

senescence (RS2). Autofluorescence (red) of the cell wall was recorded to visualize the cell and/or organ

shape. Abbreviations: R, rhizodermis; C, parenchyma cortex cells; Ph, phloem; X, xylem. Scale bars =

50 µm.

In leaves, the JA signal in green, control leaves was weak and was detected in cells within the

vascular bundle (Figure 10A–C), the epidermis (Figure 10A), and a few mesophyll cells (Figure 10C).

In mesophyll cells, JA was localized mainly in close proximity to chloroplasts (Figure 10C, arrow).

In yellowing leaves (LS1), the JA signal was observed in the majority of cells (Figure 10C–E). The

distribution of the signal in mesophyll cells, however, was different than in the LC stage. In addition to

areas near the chloroplast, the signal appeared to be distributed throughout the cytoplasm (Figure 10D,F;

arrowheads). Notably, an intense signal was still visible in the cells within the vascular bundles

(Figure 10E). In the second stage of leaf senescence (LS2), JA was detected in the same tissues as in

LS1, but the pattern of localization was different. In this case, the JA signal was observed as spherical

spots within palisade mesophyll cells (Figure 10G,H, arrows) or it was concentrated in the peripheral

cytoplasm against the cell wall of some cells (Figure 10I). As in the previous stage, the JA signal was
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still observed within cells of the vascular bundles (Figure 10G). Chlorophyll autofluorescence was very

low in the LS2 stage of leaf senescence (Figure 10G–I).

Negative control reactions had an undetectably low signal relative to the standard reactions

(Supplementary Figure S6). The results obtained for ABA and JA indicated that these phytohormones

might play an important role in the senescence process in both leaves and fine, absorptive roots. This

was indicated by changes in the expression of many genes associated with ABA and JA, as well as

quantitative analyses of phytohormone concentrations. In addition, the localization of the studied

phytohormones showed that signal distribution accumulated in tissues with visible signs of senescence

(shape changes, lowering of the chlorophyll autofluorescence level).

 

Figure 10. Immunodetection of JA (green fluorescence) and red autofluorescence of chloroplasts in Figure 10. Immunodetection of JA (green fluorescence) and red autofluorescence of chloroplasts in

leaves during senescence. (A–C) Leaves control (LC); (D–F) The first stage of leaf senescence (LS1);

(G–I), The second stage of leaf senescence (LS2). Abbreviations: VB, vascular bundle; PM, palisade

mesophyll; SM, spongy mesophyll; E, epidermis. Scale bars = 50 µm.

3. Discussion

Over the past decade, extensive genetic, molecular, and physiological studies have revealed

the intricate network controlling the process of senescence. The majority of studies have focused

on elucidating the senescence process in leaves, which are a fundamental site for capturing energy

through photosynthesis [1,19,43]. The onset of leaf senescence is definitely easier to monitor than in

the case of the belowground organ. Moreover, in chloroplasts there is a large pool of nitrogen stored;

therefore, these organs represent an ideal model to study nutrient remobilization, which is one of the

critical aspects of senescence [9,17,44]. Much less attention has been focused on other organs. Recent

studies have drawn attention, however, on the senescence of other ephemeral organs, such as fine,

absorptive roots [12]. The senescence process in fine roots has many similarities to leaf senescence,
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among which ultrastructural changes and/or the activation of autophagy-related mechanisms that

have been emphasized [13]. Fine, absorptive roots also possess a high concentration of nitrogen, which,

along with their large total biomass, provide an interesting model for studying the remobilization of

nutrients [45]. There is still, however, a lack of information pertaining to the senescence process of

underground organs, especially at the physiological and molecular levels.

In the present study, details regarding the genetic and phytohormonal regulation of the senescence

of roots have been presented, along with a comparison of the senescence process in leaves vs. fine

absorptive roots. Microarray data indicated that the senescence process of both of the studied organs

is accompanied by significant changes in gene expression. GO classification of the DEGs revealed a

plethora of genes associated with phytohormones. Previous studies have documented the importance

of plant hormones in the regulation of leaf senescence [8,26,30]. Phytohormones can either act as

inhibitors or accelerators of senescence. Many of the identified DEGs were those related to ABA.

This phytohormone, in addition to its significant role in developmental processes or responses to

environmental stresses [46–49], is also a well-known positive regulator of plant organ senescence [7,20].

The relationship between ABA and leaf age has been known for a long time. In fact, an increase in the

level of ABA in yellowing leaves was first noted in the 1980s [50]. In addition to the effect of increasing

levels of endogenous ABA [51–54], exogenous application of ABA has also been shown to accelerate

the yellowing of leaves [53,55]. In the present study, a higher level of endogenous ABA in yellowing

leaves of Populus trichocarpa was also observed. However, the same relationship was observed in

senescing roots. Therefore, based on previous studies of leaves and flower petals [56–58], and the

results observed in the present study, we suggest that the ABA similarly as in other ephemeral organs

might also contribute to senescence process in fine roots.

Since ABA also plays a role in several physiological processes in non-senescing organs, it was

not surprising that ABA was also detected in viable fine roots and leaves. The immunohistochemical

detection of ABA in non-senescent organs, however, was mainly localized to the vascular tissue. The

vascular localization may have been associated with ABA transport, which can be transported in

both xylem (from roots to shoots) and phloem (from leaves to roots) [59]. An accumulation of ABA

was observed in both the peripheral cytoplasm and central vacuole of cortical parenchyma cells of

senescing roots. Earlier, such localization in mesophyll cells has also been described in Arabidopsis

where an abscisic acid glucosyl ester (ABA-GE) was stored in the vacuole, and in response to abiotic

stress, ABA-GE can be rapidly converted to the free form of ABA using vacuolar b-glucosidases [60].

In our study, vacuolar localization was not clearly visible in leaves where the ABA signal was primarily

detected in the cytoplasm of cells. In the latter stage of senescence (RS2), the structure of cortical

parenchyma cells in roots was highly disrupted, making the determination of ABA localization

difficult. Nonetheless, a strong signal was observed in the vascular cylinder and within folded cortical

parenchyma cells. In contrast, a much lower signal was observed in leaves in the latter stage of

senescence (LS2), where the signal appeared as small spherical spots in the cytoplasm of both palisade

and spongy mesophyll cells. In LS2, chlorophyll autofluorescence was barely visible, suggesting that

the majority of these organelles had been degraded. These observations are in agreement with recent

findings on the role of ABA in chlorophagy [61,62]. In that study, the stromule number increased

in response to an ABA treatment, whereas treatment with a specific inhibitor of ABA synthesis

prevented the formation of stromules by mannitol [61]. Moreover, it has been suggested that proteins

belonging to kinase family (SnRK2, CK2), which are activated by the ABA signaling pathway, might

participate in phosphorylation of chloroplast membrane proteins or the ATG proteins and activate

chlorophagy [62,63].

The analysis of gene expression during senescence, especially ABA-related gene expression, did

not reveal many similarities between leaves and fine roots. In fact, the majority of the DEGs were

organ-specific. A previous comparative transcriptomic analysis of senescing flower petals and leaves

also noted a lack of similarity in the transcriptome of these two organs [64]. In the present study,

up-regulated DEGs encoding transcriptional factors (TFs) related to ABA, such as MYB, bZIP, and



Int. J. Mol. Sci. 2020, 21, 2042 14 of 23

NAC, were identified in senescing leaves. Similar results were reported in a transcriptomic analysis of

senescing leaves of other species, further confirming that senescence is highly regulated by multifold

networks [11,65–68]. The up-regulation of TFs, especially NAC family TFs, during organ senescence has

also been documented in numerous crop species [16]. The NAC factor AtNAP has been demonstrated

to play a crucial role in the integration of abscisic acid (ABA) signaling and leaf senescence. AtNAP

binds to the promoter of phosphatase 2C (PP2C) family genes and activates their expression. One of

those PP2C genes encodes a SAG113 protein, which inhibits stomatal closure and, thus, promotes

water loss and accelerates leaf senescence [69]. We also detected three genes in senescing leaves of

Populus encoding phosphatase 2C proteins that are associated with ABA, among which two were

up-regulated. Collectively, the data suggested that the PP2C identified in our transcriptome analysis

could be involved in the ABA-dependent regulation of leaf senescence.

Among the up-regulated DEGs related to ABA that were identified in senescing roots, two genes

were associated with cold acclimation: COR413 and COR314. The up-regulation of these genes can

be induced by both environmental conditions (low temperature) and ABA [70]. COR proteins have

been implicated in increasing plant tolerance to low temperature by affecting the metabolism of fatty

acids, sugars, and purines. In age-related developmental senescence, preparation for cold may be

one of the factors that induces the senescence of fine roots and the up-regulation of genes to enable

the acquisition of increased low-temperature tolerance. Cold tolerance would enable the organs (fine

roots) to complete the process of senescence and remobilize their nutrients to storage organs rather

than just die outright due to low temperatures. Down-regulated genes related to ABA were also

identified in both leaves and fine roots, including a gene encoding a PIP aquaporin, which plays a

key role in radial water transport in roots and leaves and maintains water homeostasis during the

plant response to environmental stress [71]. The expression of aquaporin genes is regulated by a

variety of factors, including the concentration of ABA. Jang et al. [72] demonstrated that the expression

of the majority of studied PIP genes was up-regulated in response to ABA treatment, while several

PIP genes were down-regulated in response to cold treatment. Throughout the course of our study,

plants were exposed to decreasing temperatures that typically occur in autumn and may generally

cause a decrease of pressure and reduced sap flow [73]. It is plausible that these conditions may have

induced the down-regulation of genes encoding aquaporins, despite the presence of a high level of

ABA. Our results indicate that ABA content is tightly regulated during senescence in leaves and roots,

possibly at the transcriptional level, and its accumulation may contribute to senescence processes in

both organs. We suggest that ABA may increase cold tolerance in fine roots, while it acts as a signal

molecule in leaves. As a result, it likely induces the expression of a variety of TFs that contribute to the

coordination of several physiological processes, such as the regulation of water loss via the regulation

of stomatal aperture.

In addition to ABA-related genes, numerous JA-related genes were also identified in our microarray

analyses. JA not only plays a role in the adaptation of plants to biotic and abiotic stresses and the

regulation of several developmental events (root inhibition, anthocyanin accumulation, trichome

initiation, male fertility, etc.). It also plays a role in the positive regulation of senescence [21,22,74–76].

The first report documenting that jasmonate affects senescence was the observation that treatment

with methyl jasmonate (MeJA) resulted in a rapid loss of chlorophyll [77]. Although this observation

was made a considerable time ago, the molecular mechanisms underlying leaf ageing are still not fully

understood. Similar to Arabidopsis [22], a significant increase in JA and MeJA levels was observed in

senescing leaves of P. trichocarpa. The impact of JA on senescence of other ephemeral organs, however,

is not so clear. Exogenous application of JA to flower petals of Phalaenopsis promoted senescence [78].

In contrast, endogenous levels of JA did not increase during the senescence of Lilium flower petals [79],

and JA levels decreased while MeJA levels increased in senescing cotyledons of Ipomoea nil [80].

There are still insufficient data to confirm the promotive role of JA in root senescence; however, our

results indicating variations of JA and MeJA content in senescent roots of Populus suggest that these

phytohormones can be a metabolic signature of senescence. The localization of JA in viable organs
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was concentrated primarily in the vascular bundle and might be due to several factors other than

senescence, such as the synthesis of JA [81], modulations of the level of transfer cell wall ingrowths

in the phloem [82], or JA transport [83]. The highest JA signal in senescing roots was observed in

the cortical parenchyma cells, in which significant changes associated with senescence, such as the

presence of autophagic-related structures and changes in cell shape, were already observed in RS1 [13].

Ultrastructural analyses also revealed the presence of microorganisms inside cells during the latter

stages of senescence (RS2) [12,13]. Thus, the high concentration of JA in senescent roots may have

been related to protecting these organs from pathogens, allowing the progress of senescence and, more

importantly, nutrient remobilization instead of rapid death. Jasmonates have been reported to induce

defense responses against microorganisms that cause plant diseases [84–86]. In this regard, fad3–2,

fad7–2, and fad8 mutants in Arabidopsis, in which JA accumulation is disrupted, exhibited roots that

were more susceptible to root rot caused by a fungal root pathogen than the roots of wild-type plants.

Notably, exogenous application of MeJA reduced this effect [85].

As found with ABA-related DEGs, the microarray analysis conducted in the present study did

not identify JA-related DEGs that were common to both leaves and fine roots. In fact, there was a

distinct lack of a significant number of JA-related DEGs in fine roots related to the course of senescence.

Increased expression of a gene encoding an ERECTA protein, which functions in the regulation of

immune responses and resistance to pathogens, however, was documented [87,88]. Collectively,

these results, along with a previous report [12], appear to indicate that JA is not directly involved

in the senescence process in roots. JA, however, may indirectly affect senescence by modulating the

resistance response to pathogens that would prevent the rapid death of roots due to pathogen invasion.

Consequently, this would allow sufficient time for root cells to complete the senescence processes in

a prescribed manner, including remobilization, autophagy, etc. The expression of genes encoding

MYB TFs was noted in both leaves and roots. MYB TFs are a large family of proteins that are a crucial

element in regulatory networks controlling plant development, metabolism, and responses to biotic

and abiotic stresses [89]. The up-regulation of several MYB proteins was documented in senescing

leaves of Arabidopsis [90] and Solanum [91]. MYB TFs are also involved in the jasmonate signaling

cascade by interacting with JAZ proteins [76,92], which are known as repressors of JA-responsive

genes. The function of JAZ proteins in leaf senescence and the regulation of cell death during host and

non-host interactions, however, has also been postulated [93,94]. Our results indicate that jasmonate

might play an important role in the direct or indirect regulation of senescence in both leaves and roots;

however, similar to ABA, the regulatory effect differs in the two organs. We suggest that jasmonate

might be involved in the response to biotic stress in senescing roots, while its role in leaves seems to

be more complex and overlap with the regulation of several other processes through the influence

of jasmonate on activation of TFs. However, confirmation of the exact role of JA in the senescence of

plant organs requires further research.

Summarizing, the senescence of plant organs involves an intricate network of episodes that,

despite considerable research, still remains insufficiently understood. Particularly enigmatic is the

senescence of underground ephemeral plant organs. Thus, in the current study we primarily focused

on examining the senescence process in fine absorptive roots. We also sought to determine if the

underlying mechanism regulating senescence was universal for all plant organs by comparing the

senescence of fine roots with leaf senescence. Our results indicated that the senescence of both

organs was accompanied by significant changes in gene expression. Many of the identified DEGs

in both organs were associated with a variety of phytohormones. The quantitative analyses of the

senescing organs also revealed that the levels of ABA, JA, and MeJA increased in both leaves and roots

during senescence. Despite these similarities, however, our analysis of phytohormone-related genes

indicated that the function of ABA and jasmonates may differ in the two organs during senescence.

We suggest that phytohormones in roots do not directly regulate the progression of senescence but

rather act indirectly by regulating other processes such as cold acclimatization (ABA) and resistance to

soil microorganisms (JA). Although these regulatory processes are not directly associated with the



Int. J. Mol. Sci. 2020, 21, 2042 16 of 23

progression of senescence, they are essential to prevent premature cell death and allow senescence

and the processes associated with it (such as remobilization) to occur in a prescribed manner rather

than be terminated by premature cell death. In contrast, ABA and JA appear to have a direct role in

the regulation of leaf senescence. Our study suggests that the regulatory effect of phytohormones on

senescence is organ-specific. The exact mechanism regulating the senescence of leaves, and especially

fine, absorptive roots, is still not well understood and should be a topic of future research.

4. Materials and Methods

4.1. Plant Material and Growth Conditions

All experiments were performed on Populus trichocarpa (Torr. & A. Gray ex Hook.). Seeds were

germinated on 1% agar. Seedlings (about 1–2 cm in length) were planted in soil in a seed-starting

system. Plants were grown in a growth chamber (Conviron GR96) at 18 ◦C day/14 °C night temperature

and a 16 h day/8 h night photoperiod. After two months, plants were transferred to rhizotrons as

described in Wojciechowska et al. [95]. The material for the study was sampled during the first

vegetative season at three time points based on morphological markers of senescence. For leaves,

senescence-related stages were distinguished based on chlorophyll content. Chlorophyll measurements

have been performed using a CCM-200 plus Chlorophyll Content Meter (Opti-Sciences, Hudson, NH,

USA) in two places for one leaf (on both sides of each leaf blade analyzed). Such measurements

were performed for 30 plants each time, throughout the vegetative season. The average result for

green leaves (LC) was defined as 100% chlorophyll content. In yellowing leaves (LS1), material was

collected in which the chlorophyll content dropped about 40%, and for yellow leaves (LS2) about

60% (Supplementary Figure S1B). For roots, senescence-related stages were also distinguished based

on changing their color. Moreover, a viability test, as well as anatomical and cytological analyses,

confirmed that color change was associated with the senescence process. The senescence-related stages

have been broadly described in Wojciechowska et al. [13] and are presented in Figure 1.

4.2. Microarray Analysis

Total RNA was extracted from three biological replicates of leaves and roots using an RNeasy

Plant Mini kit (Qiagen, Germantown, MD, USA). RNA quantity and quality were assessed using a

NanoDrop1000 (Thermo Fisher Scientific Inc., Waltham, MA, USA). cDNA synthesis and microarray

hybridization to an Affymetrix GeneChip Poplar Genome Array (A-AFFY-131) were performed

according to the provided Affymetrix protocol. A complete microarray dataset was submitted to

the Gene Expression Omnibus database (accession number GSE143559). The raw image data from

a total of three A-AFFY-131 arrays were normalized with Robust Multi-Array Average (RMA). The

normalized data were statistically analyzed using GeneSpringGX7 13.1 (Agilent Technologies Inc.,

Santa Clara, CA, USA) software. Data were subjected to a one-way ANOVA with a corrected p-value

cut-off = 0.05 and a Benjamini–Hochberg correction. DEGs were annotated using Phytozome JGI

database, BLAST, Ensembl Genome, and KAGIANA. Heatmaps were generated using MATLAB

(The MathWorks Inc., Natick, MA, USA). The Venn diagram of DEGs was drawn by VENNY2.1

(https://bioinfogp.cnb.csic.es/tools/venny/).

4.3. Measurement of Endogenous Abscisic acid (ABA) and Jasmonates (JA and MeJA)

GC-MS was used to determine the concentrations of endogenous ABA, JA, and MeJA. Material

for phytohormone concentration measurement was collected from nine plants, and measurements

were performed in three technical replicates. After the plant material (~0.5 g) was homogenized,

ABA and jasmonate levels were measured using the optimized protocols described by Wilmowicz et

al. [96,97]. GC-MS-SIM was performed by monitoring m/z 134, 162, and 190 for measuring endogenous

ABA and 138, 166, and 194 for [6-2H3] ABA according to the method described by Vine et al. [98].

GC/MS-selected ion monitoring was used to measure jasmonates by monitoring m/z 193, 195, 224, and

https://bioinfogp.cnb.csic.es/tools/venny/
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226. Statistical analyses (ANOVA with a corrected p-value = 0.05 and Tukey’s post-hoc test) were

performed using Statistica 12.0 software (StatSoft Poland Inc., Tulsa, OH, USA).

4.4. Immunolocalization of JA and ABA

Samples of roots and leaves were fixed in 3% (v/v) N-(3-dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (EDAC) for 2h and a mixture of 2% glutaraldehyde (pH 6.8;

Polysciences, Warrington, USA) and 2% (v/v) formaldehyde (pH 6.8; Polysciences, Warrington,

USA) for 12 h at 4 ◦C. The fixative was then discarded, and the samples were rinsed three times

in 1x PBS (phosphate-buffered saline) (Sigma, St Louis, MO, USA) buffer. Leaf samples (5 × 5mm)

were sectioned (30 µm) using a vibratome Leica VT 1200S (Leica Biosystems, Nussloch, Germany),

while root samples were dehydrated in a graded ethanol series (10%–100%) and then infiltrated and

embedded in Paraplast Extra (melting point, 57.8 ◦C; Sigma, St Louis, MO, USA). Root samples were

sectioned (20 µm) using a Leica RM2265 (Leica Biosystems, Nussloch, Germany) rotary microtome.

JA was localized using primary anti-JA rabbit antibodies (Agrisera, Sweden, catalogue number AS11

1799) at a 1:500 dilution. ABA was detected using a primary, anti-ABA rabbit antibody (Agrisera,

Sweden, catalogue number AS09 446) at a 1:500 dilution. Immunolocalization assays were performed

as described by Wojciechowska et al. [13]. Results of the localization were viewed and recorded with

a Leica TCS SP5 confocal microscope (Leica Biosystems, Nussloch, Germany) using the following

lasers: 405 diode-emitting light at a wavelength of 405 to observe chlorophyll fluorescence (in leaves)

or cell wall fluorescence (in roots to observe the shape of the cells) and an argon laser-emitting light

at a wavelength of 488 to observe fluorescence of Alexa 488 (ABA, JA). Negative control reactions

consisting of samples processed without exposure to the primary antibodies were utilized for both

ABA and JA (Supplementary Figure S6).

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/6/2042/s1.
Figure S1: Characteristics of the material used in the study. (A)FW/DW ratio in roots and leaves during senescence.
(B)Changes in chlorophyll content during the growing season. Means designated by different letters indicate
statistically significant differences according to ANOVA and Tukey’s post hoc test (p < 0.05). Values represent
the mean ± SE (standard error); Figure S2: The functional classification based on (A) Gene Ontology Cellular
Compartment (B) Gene Ontology Biological Process during root senescence; Figure S3: The functional classification
based on (A) Gene Ontology Cellular Compartment (B) Gene Ontology Biological Process during leaf senescence;
Figure S4: Heatmaps showing expression profiles of genes associated with (A) Ethylene, (B) Auxin, (C) Cytokinins
(CKs), (D) Brassinosteroids (BRs), Gibberellic acid (GA) during root senescence, Figure S5: Heatmaps showing
expression profiles of genes associated with (A) Ethylene, (B) Auxin, (C) Cytokinins (CKs), (D) Salicylic acid (SA),
Gibberellic acid (GA) during leaf senescence; Figure S6: Representative images of negative control reactions with
omitting primary antibody and reaction with antibodies anti-JA in leaves and fine roots, Table S1: DEGs with
annotations associated with various phytohormones during root senescence; Table S2 DEGs with annotations
associated with various phytohormones during leaf senescence; Table S3: Data related to the quantitative analysis
of phytohormones.
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Abbreviations

ABA Abscisic acid

ATG Autophagy-related genes

CKs Cytokinins

DEG Differentially Expressed Genes

EDAC N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride

FC Fold change

GO Gene Ontology

JA Jasmonic acid

LC leaves control, without any symptoms of senescence

LS1 first stage of leaf senescence

LS2 second stage of leaf senescence;

MeJA Methyl jasmonate

PBS Phosphate-Buffered Saline;

PCD Programmed Cell Death;

RC roots control, without any symptoms of senescence;

ROS Reactive Oxygen Species;

RS1 first stage of fine, absorptive root senescence;

RS2 second stage of fine, absorptive root senescence;

SA Salicylic acid;

SAGs Senescence-Associated Genes;

SDGs Senescence Downregulated Genes;

TFs Transcriptional Factors
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23. Grbić, V.; Bleecker, A.B. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J. 1995, 8,

595–602. [CrossRef]

24. ten Have, A.; Woltering, E.J. Ethylene biosynthetic genes are differentially expressed during carnation

(Dianthus caryophyllus L.) flower senescence. Plant Mol. Biol. 1997, 34, 89–97. [CrossRef] [PubMed]

25. Kim, J.H.; Woo, H.R.; Kim, J.; Lim, P.O.; Lee, I.C.; Choi, S.H.; Hwang, D.; Nam, H.G. Trifurcate feed-forward

regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 2009, 323, 1053–1057.

[CrossRef] [PubMed]

26. Khan, M.; Rozhon, W.; Poppenberger, B. The role of hormones in the aging of plants - a mini-review.

Gerontology 2014, 60, 49–55. [CrossRef] [PubMed]

27. Morris, K.; MacKerness, S.A.; Page, T.; John, C.F.; Murphy, A.M.; Carr, J.P.; Buchanan-Wollaston, V. Salicylic

acid has a role in regulating gene expression during leaf senescence. Plant. J. 2000, 23, 677–685. [CrossRef]

28. Mayak, S.; Halevy, A.H. Cytokinin activity in rose petals and its relation to senescence 1. Plant Physiol. 1970,

46, 497–499. [CrossRef]

29. Hwang, I.; Sheen, J.; Müller, B. Cytokinin signaling networks. Annu. Rev. Plant. Biol. 2012, 63, 353–380.

[CrossRef]

30. Sarwat, M.; Naqvi, A.R.; Ahmad, P.; Ashraf, M.; Akram, N.A. Phytohormones and microRNAs as sensors and

regulators of leaf senescence: assigning macro roles to small molecules. Biotechnol. Adv. 2013, 31, 1153–1171.

[CrossRef]

31. Ay, N.; Janack, B.; Humbeck, K. Epigenetic control of plant senescence and linked processes. J. Exp. Bot.

2014, 65, 3875–3887. [CrossRef]

32. Gepstein, S.; Sabehi, G.; Carp, M.-J.; Hajouj, T.; Nesher, M.F.O.; Yariv, I.; Dor, C.; Bassani, M. Large-scale

identification of leaf senescence-associated genes. Plant. J. 2003, 36, 629–642. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/s41598-017-11615-0
http://www.ncbi.nlm.nih.gov/pubmed/28935979
http://dx.doi.org/10.1007/s10535-014-0433-6
http://dx.doi.org/10.1186/s12870-018-1439-6
http://www.ncbi.nlm.nih.gov/pubmed/30373512
http://dx.doi.org/10.1093/jxb/erm356
http://www.ncbi.nlm.nih.gov/pubmed/18310084
http://dx.doi.org/10.4161/psb.4.6.8877
http://www.ncbi.nlm.nih.gov/pubmed/19816145
http://dx.doi.org/10.3390/plants8100411
http://www.ncbi.nlm.nih.gov/pubmed/31614987
http://dx.doi.org/10.1007/BF03030735
http://dx.doi.org/10.1371/journal.pone.0102012
http://dx.doi.org/10.1016/S1360-1385(00)01655-1
http://dx.doi.org/10.1093/pcp/pcr026
http://dx.doi.org/10.1104/pp.010843
http://dx.doi.org/10.1046/j.1365-313X.1995.8040595.x
http://dx.doi.org/10.1023/A:1005894703444
http://www.ncbi.nlm.nih.gov/pubmed/9177315
http://dx.doi.org/10.1126/science.1166386
http://www.ncbi.nlm.nih.gov/pubmed/19229035
http://dx.doi.org/10.1159/000354334
http://www.ncbi.nlm.nih.gov/pubmed/24135638
http://dx.doi.org/10.1046/j.1365-313x.2000.00836.x
http://dx.doi.org/10.1104/pp.46.4.497
http://dx.doi.org/10.1146/annurev-arplant-042811-105503
http://dx.doi.org/10.1016/j.biotechadv.2013.02.003
http://dx.doi.org/10.1093/jxb/eru132
http://dx.doi.org/10.1046/j.1365-313X.2003.01908.x
http://www.ncbi.nlm.nih.gov/pubmed/14617064


Int. J. Mol. Sci. 2020, 21, 2042 20 of 23

33. Bresson, J.; Bieker, S.; Riester, L.; Doll, J.; Zentgraf, U. A guideline for leaf senescence analyses: from

quantification to physiological and molecular investigations. J. Exp. Bot. 2018, 69, 769–786. [CrossRef]

[PubMed]

34. van Doorn, W.G.; Woltering, E.J. Senescence and programmed cell death: substance or semantics? J. Exp. Bot.

2004, 55, 2147–2153. [CrossRef] [PubMed]

35. McCormack, M.L.; Dickie, I.A.; Eissenstat, D.M.; Fahey, T.J.; Fernandez, C.W.; Guo, D.; Helmisaari, H.-S.;

Hobbie, E.A.; Iversen, C.M.; Jackson, R.B.; et al. Redefining fine roots improves understanding of

below-ground contributions to terrestrial biosphere processes. New Phytol. 2015, 207, 505–518. [CrossRef]

36. Zadworny, M.; McCormack, M.L.; Rawlik, K.; Jagodziński, A.M. Seasonal variation in chemistry, but not
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The remobilization and resorption of plant nutrients is considered as a crucial aspect of the seasonal senescence of

plant organs. In leaves, the mechanisms responsible for the relocation of valuable compounds are well understood while

the related processes in roots are still being debated. Some research indicates that remobilization in roots occurs, while

other studies have not found evidence of this process. Considering that the total biomass of �ne roots is equal to or

greater than that of leaves, clarifying the con�icting reports and ambiguities may provide critical information on the

circulation of chemical elements in forest ecosystems. This study provides new information concerning the basis for

remobilization processes in roots by combining physiological data with gene expression and protein levels. We suggest

that, as in leaves, molecular mechanisms involved in nitrogen (N) resorption are also activated in senescent roots. An

analysis of N concentration indicated that N levels decreased during the senescence of both organs. The decreaseAQ5
was associated with an increase in the expression of a glutamine synthetase (GS) gene and a concomitant elevationAQ6
in the amount of GS—one of the most important enzymes in N metabolism. In addition, signi�cant accumulation of

carbohydrates was observed in �ne roots, which may represent an adaptation to unfavorable weather conditions that

would allow remobilization to occur rather than a rapid death in response to ground frost or cold. Our results provide

new insights into the senescence of plant organs and clarify contentious topics related to the remobilization process in

�ne roots.

Keywords: carbohydrates, �ne roots, glutamine synthetase, nitrogen, Populus trichocarpa, remobilization, seasonal variation.

Introduction

Senescence is the last stage of plant ontogenetic development

and can have a major in�uence on a wide spectrum of

ecological processes, ranging from litter formation to nutrient

cycling. The senescence process is largely mediated by

programmed cell death (PCD), regardless of whether the organs

in question are leaves, roots or petals (van Doorn and Woltering

2004, Sobieszczuk-Nowicka et al. 2018, Wojciechowska

et al. 2018a). The PCD, however, is thought to represent an

adaptation to the intermediate state between living and dead

cells (Thomas et al. 2003). The irreversible senescence that

occurs in leaves is associated with dramatic changes in gene

expression, the degradation of macromolecules and a decrease

in protein synthesis (Liu et al. 2008, Avila-Ospina et al.

2014). The global changes in gene expression vary and are

represented by both increases and decreases in transcript levels.

Mechanisms that regulate the network responsible for proper

management of the degradation and remobilization of cellular
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material during leaf senescence have been identi�ed. Thus,

plant constituents are preserved rather than lost. In order to

maximize resource e�ciency across many growing seasons,

elements (especially nitrogen [N]) are translocated from the

senescing tissues to developing seeds, newly formed leaves

or storage organs (Buchanan-Wollaston and Ainsworth 1997,

Avila-Ospina et al. 2014, 2015).

In plants, the senescence process is coordinated at both a

structural and physiological level that can explicitly link plant

traits to changes in vitality. For example, morphologically, yellow-

ing is commonly associated with leaf senescence. It is directly

related to chlorophyll levels and the conversion of chloroplasts

into gerontoplasts (Avice and Etienne 2014, Sobieszczuk-Now-

icka et al. 2018). Considering that more than 70% of all

leaf proteins are present in chloroplasts, degradation of those

structures is then associated with the release of a large pool of

N (Liu et al. 2008). Hence, changes in chloroplast structure

are highly correlated with the initial stages of senescence,

when mechanisms associated with remobilization are activated.

Increasing evidence suggests that this activation includes the

release of free amino acids during the process of protein

degradation and conversion into ammonia. Due to the toxicity

of that compound, it is rapidly incorporated into glutamate by

the amination of 2-oxoglutarane. This reaction is catalyzed by

glutamate dehydrogenase (GDH) (Liu et al. 2008). Subse-

quently, glutamate is transformed into glutamine, which has the

potential to be mobilized and relocated through the phloem sap.

Glutamine synthetase (GS), one of the most important enzymes

in N metabolism, is involved in this reaction (Liu et al. 2008,

Avila-Ospina et al. 2015). Based on cellular localization, there

are two main isoforms of GS: cytosolic (GS1) and chloroplastic

(GS2) (Zhang et al. 2017). GS1 plays a fundamental role

in glutamine synthesis, which enables the relocalization of N

from senescent tissues to locations where it can be preserved

or utilized (Liu et al. 2008, Castro-Rodríguez et al. 2011,

Zhang et al. 2017). In contrast, GS2 is required for the

reassimilation of ammonia generated during photorespiration

(Mi�in and Habash 2002, Liu et al. 2008, Castro-Rodríguez

et al. 2011, Zhang et al. 2017). Although a well-de�ned

set of steps is involved in N remobilization from leaves, the

pattern, magnitude and factors involved in N remobilization from

roots during senescence are weakly de�ned and supported by

research.

Among all compounds that are relocated and recycled during

senescence, N and carbon (C) (due to the high concentration

in plant tissues) are critically important. There are reports

indicating that starch is degraded and transformed into sucrose,

the main form in which C is transported in plants (Cerasoli

et al. 2004). Despite the importance of carbohydrate redistri-

bution for nutrient conservation, the molecular mechanism of C

translocation from absorptive roots undergoing senescence has

received little attention.

In contrast to the considerable progress that has been made

in elucidating the senescence process in leaves and �ower

petals (Agüera et al. 2010, Shibuya et al. 2011, 2013, 2014,

Shibuya 2012, Avila-Ospina et al. 2015, Springer et al. 2015,

Sobieszczuk-Nowicka et al. 2018), much less attention has

been given to the belowground component of plant biomass.

As the annual biomass production of �ne roots is equal to

or even greater than the biomass of leaves, the senescence

and death of �ne roots is important from the standpoint of

the cycling of chemical elements (Gill and Jackson 2008,

Brassard et al. 2009). Though traditionally de�ned as roots

<2 mm in diameter, it is increasingly recognized that �ne

roots are not a homogeneous entity as they include both

absorptive roots and transport roots (Bagniewska-Zadworna

et al. 2012, 2014, McCormack et al. 2015, Zadworny et al.

2015, Wojciechowska et al. 2018b). The absorptive roots

belong to the �rst two orders of roots, which are characterized

by the highest absorptive capacity, high N concentration and

respiration rate, and often mycorrhizal colonization (Eissenstat

et al. 2000, Pregitzer et al. 2002, McCormack et al. 2015).

Thus, the senescence process of the short-lived absorptive

roots may provide important information for nutrient recycling,

as well as understanding of plant adaptation to autumn and

winter seasons. There is a premise that the death of absorptive

roots may be a passive process where the provision of sugars

and defense compounds is stopped, making the roots an easy

target for pathogens (Yanai and Eissenstat 1997, Eissenstat and

Volder 2005). Our recent studies, however, have indicated that

the senescence and death process in these roots is active and

genetically regulated, and represents another example of PCD

in plants (Bagniewska-Zadworna et al. 2014, Wojciechowska

et al. 2018b). The fact that absorptive roots undergo a genet-

ically regulated death process emphasizes the premise that

their nutrients, which are either limited in the environment or

di�cult to absorb, would be targeted for relocation so that

they can be recycled. No details on the mechanisms associ-

ated with relocation and remobilization of valuable compounds

from senescing absorptive roots are available, and the infor-

mation that does exist is variable or con�icting (Kunkle et al.

2009, Zadworny et al. 2015). Identi�cation of the mechanisms

responsible for the senescence of absorptive roots represents

the �rst step to understanding how roots die and how nutrient

resorption from the entire root system can be incorporated

into the measurement of nutrient turnover at the whole-plant

level.

Therefore, an experiment was designed to analyze the senes-

cence process in leaves and absorptive �ne roots, with particular

emphasis placed on the regulation of nutrient remobilization. We

speci�cally expected that N and C concentrations would decline

with senescence and the same dominant genetic cues (i.e. GS)

would be closely associated with changes of N in both leaf and

root.
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Table 1. Senescence stages of roots and leaves.

Variant Abbreviation Characteristic features

Control leaves LC Green leaves without senescence symptoms

First stage of leaf

senescence

LS1 Yellowing leaves in which chlorophyll level had decreased by ∼40%

Second stage of leaf

senescence

LS2 Yellow leaves in which chlorophyll level had decreased by ∼60%

Control roots RC White roots without senescence symptoms

First stage of root

senescence

RS1 Roots which had changed in color from white to brown

Second stage of root

senescence

RS2 Roots which had changed in color from brown to dark brown or almost black. Shrinkage was also visible

in most �ne roots

Materials and methods

Plant material and growth condition

All experiments were performed on Populus trichocarpa (Torr. &

A. Gray ex Hook.). Seeds, provided by the FLORPAK Młynki Seed

Store, Poland, were placed on 1% agar. After germination, the

seedlings (∼1–2 cm in length) were planted in soil in a seed-

starting system and grown for 2 months in a plant growth cham-

ber (Conviron GR96) at 18 ◦C day/14 ◦C night temperature

and a 16 h day/8 h night photoperiod. The 2-month-old plants

were then removed from the seed-starting system, along with a

clod of dirt in order to prevent injuring the root system, and re-

planted in rhizotrons consisting of underground boxes (50× 30

cm) made from two transparent polycarbonate plates held 3 cm

apart by thick-walled plastic tubing to provide su�cient room

for root growth. The rhizotrons were �lled with soil obtained

from a forest where Populus species naturally grow. The plants

were watered with an automated system. The bottom of each

rhizotron contained a drainage hole to avoid hypoxic, �ooding

conditions and to ensure that the soil was aerated. Rhizotrons

were placed in containers, in a semi-open, greenhouse located

at the Institute of Dendrology, Polish Academy of Sciences, in

Kórnik, Poland (52◦14′40′′N and 17◦06′27′′E).

Leaf and root samples for each biological replicate were

harvested from at least three individual plants. During sampling,

the rhizotron windows were pulled out, opened and then the

harvested roots were divided into individual orders using a steel

scalpel, taking into account that tip-ended roots are �rst order

(Pregitzer et al. 2002). Leaf and root samples were collected

three times during the growing season based on morphological

and anatomical indications of senescence as described by

Wojciechowska et al. (2018b). The senescence stages of leaves

and roots selected for analysis are presented in Table 1.

Quantitative determination of N, C and carbohydrates

The analysis of N, C and carbohydrates was conducted during

the course of the growing season on leaves and the �rst

three root orders. Fine roots were divided into three groups

based on their order (�rst, second—absorptive roots, without

secondary growth, third—transport roots, longer and mostly

AQ7

with secondary structure) immediately after harvesting. Root

order was assigned according to the morphometric approach

where distal roots represent �rst-order roots (Pregitzer et al.

2002). This grouping was used to assess the relocation of

the studied elements from lower to higher order roots. The

material (Table 1) was collected at the same time of day

(morning) to avoid any daily �uctuations in the level of the

studied elements/compounds. The samples were dried at 65
◦C for 3 days and ground to a powder in a Retsch MM 200 mill

(Retsch, Haan, Germany). Quantitative determination of N and C

concentrations was performed using an Elemental Combustion

System CHNS-O 4010 (Costech Instruments, Pioltello/Valencia,

Italy/USA).

Carbohydrate levels were measured as described by Oleksyn

et al. (2000), and the level of soluble carbohydrates and

starch was analyzed. Sugars were extracted from the ground

material with a solution of methanol–chloroform–water. Starch

concentration was measured by converting the starch to glucose

with amyloglucosidase followed by oxidation with a peroxi-

dase–glucose oxidase complex. A UV-1700 Pharma Spec (Shi-

madzu, Kyoto, Japan) spectrophotometer was used to determine

the concentration of soluble carbohydrates (wavelength of

λ = 625 nm) and starch (wavelength of λ = 450 nm). The

concentration of the studied carbohydrates was determined

using glucose standards and is presented as a percentage of

dry mass.

Protein extraction, gel electrophoresis and immunoblots

Protein extraction was performed according to the method

described by Szuba et al. (2013). Proteins were dissolved in a

bu�er containing 7 M urea, 2 M thiourea, 40 mM dithiothreitol,

0.5% carrier ampholytes and 4% CHAPS, and protein concen-

tration was measured with a 2-D Quant kit (GE Healthcare,

Piscataway, NJ, USA). Proteins were separated by SDS-PAGE on

4–20% Mini-PROTEAN TGX precast gels (Bio-Rad Laboratories,

Inc., Grand Junction, CO, USA), with an equal amount of protein

(20 µg) loaded in each lane. Protein transfer from the gel to a

polyvinylidene �uoride (PVDF) membrane was conducted using

Tree Physiology Online at http://www.treephys.oxfordjournals.org
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a Trans-Blot® TurboTM (Bio-Rad). Rabbit, anti-GS antibodies

(AS08 295, Agrisera, Vännäs, Sweden) were used. The GS

antibodies were able to bind to both GS1 and GS2 isoenzymes.

Antibodies were diluted 1:10,000 in 2% skimmed milk powder.

Incubation with primary antibodies was carried out overnight

at 4 ◦C. Antibodies were washed from the PVDF membrane

with phosphate-bu�ered saline (PBS) (Sigma-Aldrich St. Louis,

MO, USA), followed by PBS with Tween-20 (PBST) (Sigma-

Aldrich). Incubation with secondary antibodies was conducted

using antibodies conjugated to horseradish peroxidase, goat,

anti-rabbit (Agrisera) diluted 1:10,000 in 2% skimmed milk

powder. After 1 h incubation with secondary antibodies, the

PVDF membranes were washed in PBS and PBST and then

incubated in Clarity western ECL substrate chemiluminescent

detection reagent (Bio-Rad) for 5 min prior to image acquisition

in a G-BOX CHEMI XR5 (Syngene, Cambridge, UK).

Reverse transcription-quantitative PCR analysis of gene

expression

RNA isolation was performed using leaves and �rst-order

roots. RNA isolation and cDNA synthesis were performed as

described by Wojciechowska et al. (2018b). All of the reverse

transcription-quantitative PCR (RT-qPCR) analyses of gene

expression were conducted utilizing three technical replicates

from each of independent three biological replicates of each

variant. RT-qPCR analyses were conducted in 96-well plates

in a CFX96 Touch Real-Time PCR Detection System (Bio-

Rad) using the following ampli�cation program: denaturation

by a hot start at 95 ◦C for 10 min, followed by 40 cycles

of a two-step program (denaturation at 95 ◦C for 15 s

and annealing/extension at 60 ◦C for 1 min). The DNA

sequences for GS1.1, GS1.2, GS1.3 and GS2 and primer

design were selected based on the sequences reported by

Castro-Rodríguez et al. (2011). Primers for the ampli�cation

of references genes were designed in Primer3 software (TheAQ8
Whitehead Institute for Biomedical Research, Cambridge, MA,

USA). The sequences of the primer pairs used in the RT-qPCR

analyses are listed in Table 2. Glyceraldehyde 3-phosphateAQ9
dehydrogenase (GAPDH), β-TUBULIN and UBIQUITIN were

selected as reference genes as they exhibited the most stable

expression in all sample types and time points. The method

utilized to determine the relative level of expression was

described by Bagniewska-Zadworna and Stelmasik (2015).

Microarray analysis

Total RNA was isolated in triplicate from each sample of

�rst-order roots and from leaves using an RNeasy Plant

Mini kit (Qiagen, Germantown, MD, USA). RNA quantity and

quality were measured using a NanoDrop1000 (ThermoFisher

Scienti�c, Carlsbad, CA, USA). cRNA synthesis and microarray

hybridization to an A�ymetrix GeneChip Poplar Genome

Array (A-AFFY-131) were performed at the Laboratory of

Table 2. Sequence of gene-speci�c primers used in the RT-qPCR

analysis.

Gene Primer

GS1.1 F-5′ATGGTTGTCTGTCAATTTGTTTGCC-3′

R-5′CCAGCAAGAGTTTTATTTAGATTAG-3′

GS1.2 F-5′GGAATTGAGTATTGGAAGATGATGG-3′

R-5′TATGTTCATAAATGATCAACAGCC-3′

GS1.3 F-5′TGGAAACCATAAGAGATCACCACC-3′

R-5′GAAGAGGCAATTCTTGTACCAAG-3′

GS2 F-5′GGAGCATCACTTGGATCTAGATGG -3′

R-5′CAAAACCCAAGAGTAAAAAGGTCC-3′

β-Tubulin F-5′TTCTCCTGAACATGGCAGTG-3′

R-5′CCACACAACGTGAAATCCAG-3′

GAPDH F-5′CAATGAATGGGGCTACAGGT-3′

R-5′CATGAATCAGCTGCACATCC-3′

Ubiquitin F-5′AGGAACGCGTTGAGGAGAAG-3′

R-5′TATAABCAAAAACCGCCCCTG-3′

Microarray Analysis (Institute of Biochemistry and Biophysics

Polish Academy of Science, Warsaw, Poland) according to

the provided A�ymetrix protocol. The normalized data were

statistically analyzed using GeneSpringGX7 13.1 software

(Agilent Technologies, Inc., Santa Cara, CA, USA). Statistical

analysis was performed using a one-way ANOVA with a

corrected P-value cut o� ≤0.05 and a Benjamini Hochberg

correction.

Statistical analysis

Statistical relationships were considered signi�cant at P ≤ 0.05.

Root and leaf biochemical traits were log10 transformed to meet

the assumption of normality. However, �gures show the non-

transformed data. In the quantitative analyses of N, C and C:N, as

well as in the analyses of GS gene expression, one-way ANOVA

and Duncan’s post-hoc test were performed using Statistica

12.0 software (StatSoft Poland Inc., Tulsa, OH, USA).

Results

Quantitative assessment of N, C and the C:N ratio

Considering the ambiguous data on N relocation during root

senescence, we determined the N and C concentration [%] to

dispel doubts regarding the relocation of two main elements.

Moreover, to check that remobilization is another universal

feature of senescence, we also performed those and the rest of

the analyses for leaves. Over the course of the growing season,

there was a general decrease in N concentration in both leaves

and the �rst three root orders (Figure 1A and B). In contrast

to N, no signi�cant seasonal or senescence e�ect on the level

of C was observed in either leaves or roots (Figure 1C and D).

However, due to the changes in N, there was a distinct increase

in the C:N ratio in senescing leaves and the �rst three orders of

�ne roots (P ≤ 0.05; Figure 1E and F). Our results demonstrate

that N was relocated during senescence in both studied organs.
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Figure 1. Quantitative analysis of N and C concentrations and the C:N ratio in absorptive roots (A, C, E) and leaves (B, D, F) of P. trichocarpa during
the course of the growing season. (A, B) Quantitative analysis of N concentration [%]; (C, D) quantitative analysis of C concentration [%]; (E, F)
quantitative analysis of the C:N ratio (RC: root control, RS1: �rst stage of root senescence, RS2: second stage of root senescence, LC: leaf control,
LS1: �rst stage of leaf senescence and LS2: second stage of leaf senescence). Bars sharing the same letter are not signi�cantly di�erent (P ≤ 0.05).
Values represent the mean ± standard error (SE).

Expression of genes involved in N remobilization

The e�ect of the senescence processes on the expression of

genes involved in N metabolism was studied by analyzing the

expression of three genes (GS1.1, GS1.2 and GS1.3) encoding

a cytosolic form of GS. In addition, a gene encoding a chloro-

plastic isoform of the GS2 protein was also examined in leaves

Tree Physiology Online at http://www.treephys.oxfordjournals.org
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Figure 2. Analysis of the expression of GS. (A, B) Relative expression of GS in leaves (A) and roots (B) of Populus trichocarpa; (C, D) distribution of
GS in leaves (C) and �ne roots (D) (LC: leaf control, LS1: �rst stage of leaf senescence, LS2: second stage of leaf senescence, RC: root control, RS1:
�rst stage of root senescence and RS2: second stage of root senescence). Bars sharing the same letter are not signi�cantly di�erent (P ≤ 0.05).
Values represent the mean ± SE.

(Figure 2A and C). Results of the RT-qPCR analyses indicated

that leaf senescence induced the expression of GS1.1 and

GS1.3. A statistically signi�cant increase in GS1.1 expression,

relative to non-senescent leaves, was observed only during the

second stage of senescence (LS2: yellow leaves), whereas

GS1.3 was up-regulated in both the �rst (LS1: yellowing leaves)

and second stage of senescence (Figure 2A). GS1.2 exhib-

ited a di�erent pattern of expression than GS1.1 and GS1.3

(Figure 2A). GS2 expression in leaves decreased over the

course of the growing season and senescence (Figure 2A). A

signi�cant increase in GS1.1 expression was observed at the

�rst stage of root senescence (RS1: brown roots), and the

elevated expression was maintained at the second stage of this

process (RS2: dark brown roots with shrinkage) (Figure 2B).

In contrast, the expression of GS1.2 and GS1.3 exhibited the

opposite trend to GS1.1, with the highest level of expression

was observed in non-senescent, control roots (RC: white roots,

without any visible symptoms of senescence) (Figure 2B).

Immunoblot analysis of glutamine synthetase

We have checked also whether the level of GS is increased dur-

ing senescence. Using immunoblots, we detected the changed

content of this protein over the course of the growing season in

both leaves and roots (Figure 2C and D). Two forms of GS were

detected in leaves, cytosolic (GS1, 40 kDa) and chloroplastic

(GS2, 45 kDa). Both isoforms were observed in green leaves,

with the level of GS2 being slightly greater than that of GS1

(Figure 2C). In the LS1 stage of senescence, the level of GS2

signi�cantly decreased while the level of GS1 was only slightly

lower than in the LC stage. In fully yellow leaves (LS2), the

GS2 form was almost undetectable, whereas the level of GS1

increased signi�cantly, relative to the LC stage (Figure 2C). In

contrast, a trend in the level of GS1 increasing was observed

at the �rst stage of root senescence (RS1), relative to non-

senescent, control roots (RC), but its level was signi�cantly lower

at the second stage of senescence (RS2) (Figure 2D). This

experiment together with the GS expression analysis provides

evidence of the presence a similar process involved in the

relocation of N in both examined organs.

Quantitative assessment of carbohydrate levels during the

growing season

We tested whether similar to how N is relocated during senes-

cence, plants also remobilize C from starch and soluble carbohy-

drates in order not to lose those compounds, which may be used

in the future as an energy source. The concentration of starch

decreased signi�cantly in senescing leaves, relative to non-

senescent leaves (Figure 3A). In contrast, the concentration of

starch increased in all examined orders of senescent roots, rela-

tive to non-senescent roots (Figure 3B). In addition, di�erences

in carbohydrate levels were also observed between leaves and

roots. Statistically signi�cant increases in soluble carbohydrate

concentration were observed in the �rst three orders of �ne

roots (Figure 3D), whereas soluble carbohydrate levels were
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Figure 3. Quantitative analysis of carbohydrate levels in leaves (A, C) and in �ne roots (B, D) of P. trichocarpa during the course of the growing
season. (A, B) Quantitative analysis of starch concentration [%]; (C, D) quantitative analysis of the concentration of soluble carbohydrate [%] (LC:
leaf control, LS1: �rst stage of leaf senescence, LS2: second stage of leaf senescence, RC: root control, RS1: �rst stage of root senescence and RS2:
second stage of root senescence). Bars sharing the same letter are not signi�cantly di�erent (P ≤ 0.05). Values represent the mean ± SE.

stable in leaves and no statistically signi�cant changes were

observed during the senescence process (Figure 3C).

Analysis of the expression of genes related to N

remobilization and carbohydrate metabolism

Microarray analyses were performed to assess the expression of

genes related to the process of the remobilization of chemical

elements and nutrients during senescence of leaves and the

�rst-order �ne roots. This was done to identify genes other than

GS1 that are involved in N remobilization. Additionally, due to

the unexpected results obtained in the quantitative assessment

of carbohydrate levels, it was deemed important to charac-

terize the expression of genes involved in sugar metabolism

in senescing leaves and �rst order of �ne roots. Within the

56,055 transcripts present in the microarray, a total of 1348

di�erentially expressed genes (DEGs) were identi�ed during the

senescence process in leaves (one-way ANOVA, P ≤ 0.001,

fold change ≥2). A total of 1898 DEGs were identi�ed in �rst-

order roots during the course of senescence (one-way ANOVA,

P ≤ 0.001, fold change ≥2).

Among this large pool of DEGs, only these involved in N remo-

bilization were subjected to further, in-depth analysis (Figure 4).

In addition to GS1, the expression of which was con�rmed

by RT-qPCR analysis to be signi�cantly increased during leaf

senescence, an additional 20 genes were examined (Figure 4).

Among those 20 selected genes, the majority of them were

associated with amino acid transport (16 genes) and were up-

regulated. A gene encoding GDH was also found to increase

in expression during senescence. In contrast, two genes

encoding glutamate synthetase were down-regulated, an NADH-

dependent glutamate synthetase and a ferredoxin-dependent

glutamate synthetase (Figure 4). In the case of roots, the

number of genes associated with N remobilization was less

pronounced (Figure 4). In addition to GS1, two genes encoding
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Figure 4. Heat map illustrating the fold changes (log2 basis) in the expression of the selected genes associated with N remobilization during leaf
and root senescence.

GDH were identi�ed and both were down-regulated. The

expression of six genes that encode N compound transporters

(amino acid transporters—four genes, ammonium transporter—

one gene and nitrate transporter [NRT]—one gene) were also

examined. Results indicated that a gene encoding a high-a�nity

NRT and another gene encoding an amino acid permease

were both up-regulated, while the others were down-regulated

(Figure 4).

To gain insight into which genes related to carbohydrate

metabolism are di�erent, regulated functional classi�cation of

the DEGs was performed using the database for annotation,

visualization and integrated discovery. The most abundant

gene ontology (GO) categories identi�ed in senescing roots

were those related to carbohydrate metabolic process (GO:

0005975). Thus, genes involved in sugar metabolism during

the senescence of roots and leaves were examined further.

A total of 25 genes related to carbohydrate metabolism were

identi�ed, whose expression changed during leaf senescence.

Among these DEGs, 13 were up-regulated and 12 were

down-regulated (Figure 5). Similarly, the senescence of �rst-

order absorptive roots was associated with the di�erential

expression of 20 genes involved in carbohydrate metabolism.

Among these DEGs, 11 were up-regulated and 9 were

down-regulated (Figure 5). The DEGs could be divided into four
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functional groups in both leaves and roots—starch metabolism,

sucrose metabolism, sugar transporters and hexose metabolism

(Figure 5).

Overall microarray analysis results indicate a large change

in expression of genes associated with the remobilization of

N and carbohydrates. These changes are in agreement with

the quantitative analyses of N and sugars and con�rm the N

relocations and also indicate a di�erent carbohydrates economy.

Discussion

The seasonal death of ephemeral plant organs is generally stud-

ied as a sequence of senescence-associated processes. The

majority of research thus far has concentrated on elucidating

this process in leaves or �ower petals (Pérez-Rodríguez and

Valpuesta 1996, Otegui et al. 2005, Liu et al. 2008, Agüera

et al. 2010, Guiboileau et al. 2012, Shibuya 2012, Avila-Ospina

et al. 2015). As a result, the ultrastructural, physiological and

molecular changes associated with leaf and petal senescence

have been identi�ed and described as being a typical PCD (Yen

and Yang 1998, Quirino et al. 2000, van Doorn and Woltering

2008, Shibuya et al. 2011, Sobieszczuk-Nowicka et al. 2018,

Wojciechowska et al. 2018a). Despite the numerous studies

on senescence that have been reported in the literature, only

a small number of them have focused on the senescence

process in absorptive roots (Bagniewska-Zadworna et al. 2014,

Wojciechowska et al. 2018b).

Given that senescence is characterized by the intensi�cation

of catabolic and a decrease in anabolic processes, questions

regarding the degradation and remobilization of valuable macro-

molecules and nutrients need to be addressed (Guo et al.

2004). Macromolecules are hydrolyzed and reduced to smaller,

more mobile components that can be transported through the

conductive tissue to other parts of the plant, such as devel-

oping seeds (Lemaıˆtre et al. 2008, Guiboileau et al. 2012).

Remobilization mechanisms are activated at the beginning of

the senescence to avoid losing these valuable macromolecules

and their constituent elements. Mechanisms related to recycling

N are well understood in senescent leaves (Liu et al. 2008).

Studies in herbaceous plants (Diaz et al. 2008, Agüera et al.

2010, 2012, Avila-Ospina et al. 2015) have described a

sequence of events associated with remobilization; including

a decrease in chlorophyll, reduction in protein and N levels,

and an increase in GS1 or AS activity. The occurrence of theseAQ10
events suggests that N can be translocated from senescent

tissues through phloem sap to other plant organs (Lemaıˆtre

et al. 2008, Guiboileau et al. 2012); however, the regulation of

N remobilization and transfer in tree roots is poorly understood

and it is possible that the mechanism may be di�erent.

In the present study, we examined and compared factors reg-

ulating the translocation process in both leaves and absorptive

roots of P. trichocarpa. Quantitative analyses showed that in

both organs, concentration of N decreased during senescence.

In leaves, this result is in line with literature, which showed

such a relationship for Arabidopsis thaliana (Diaz et al. 2008),

Hordeum vulgare (Avila-Ospina et al. 2015) and Helianthus

annuus (Agüera et al. 2010, 2012). Remobilization of N in the

absorptive roots of trees is more ambiguous. The quantitative

analysis of N concentration in �ne roots of di�erent species

that has been conducted previously provided contradictory

information. Results of studies performed on the �ne roots of

Quercus robur are in agreement with the results obtained in

the present study, suggesting that remobilization of N from �ne

roots may occur at the end of the growing season (Zadworny

et al. 2015). This premise is supported by the observed

decrease in N concentration in the �rst three orders of �ne

roots with a simultaneous signi�cant increase of N in higher

orders (from the fourth to sixth) of roots. Higher order roots

exhibit a less ephemeral nature and have a longer lifespan than

lower order roots (Xia et al. 2010, Jia et al. 2011, Zadworny

et al. 2015). Nambiar (1987), however, suggested that N

translocation is not a crucial process in trees, while Kunkle

et al. (2009) reported an increase in N levels in dead roots

of Populus tremuloides, Betula alleghaniensis, Acer rubrum and

Acer saccharum, relative to the levels in living roots of these

species. Results obtained by Kunkle et al. (2009) suggest that

the relocation of N during senescence does not occur. However,

their conclusion may arise from the colonization of dead roots

by microorganisms containing high levels of chitin or due to

the existence of signi�cant variability in the classi�cation of

�ne roots (e.g. as all roots with diameter lower than 2 mm),

without dividing them based on their function as transport or

absorptive roots (McCormack et al. 2015). Data may also have

been collected without identifying senescence stages based

on morphological or anatomical factors, as was described by

Wojciechowska et al. (2018b). Considering the total biomass

of �ne, absorptive roots, the lack of active mechanisms related

to N remobilization would result in the loss of a huge amount

of N (Jackson et al. 1997). AQ11
To obtain additional evidence con�rming remobilization AQ12

in studied organ, additional molecular analysis has been

conducted. A genetic analysis performed by Castro-Rodríguez

et al. (2011) identi�ed in Populus three groups of duplicated

genes that encode GS1—GS1.1, GS1.2 and GS1.3—and one

gene encoding GS2. These genes were shown to exhibit

organ-speci�c and seasonal-dependent patterns of expression

(Castro-Rodríguez et al. 2011). In our study, GS1.1 was up-

regulated in both senescent organs—leaves and absorptive

roots. Moreover, in leaves, expression of GS1.3 was also

AQ13increased. According to the literature, those duplicated genes

may be involved in N metabolism, suggested function of GS1.1

is glutamine biosynthesis, whereas the role of protein encoding

by GS1.3 is N remobilization (Castro-Rodríguez et al. 2011).

The other isoform, GS1.2 exhibited their highest expression in

Tree Physiology Online at http://www.treephys.oxfordjournals.org
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Figure 5. Heat map illustrating the fold changes (log2 basis) in the expression of the selected genes associated with carbohydrate metabolism during
leaf and root senescence.
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roots at the beginning of the growth season (RC) that could be

associated with the primary assimilation of N from soil and/or

lignin biosynthesis (Castro-Rodríguez et al. 2011). In addition

to GS1, the chloroplastic isoform of GS (GS2) was principally

expressed in green leaves (LC). This result is consistent with

our previous results, where observed chloroplasts began to

transform into gerontoplasts in the LS1 stage of senescence,

and most of these organelles were in advanced stages of

degradation at the LS2 stage of senescence (Wojciechowska

et al. 2018b). Analyses of gene expression are compatible with

protein analyses where increased GS1 was observed during

senescence both organs. Such results during leaf senescence

were observed in several species; however, for �ne roots, this is

the �rst such documentation, which supports hypothesis about

resorption of N from the most distal senescent absorptive roots

in Populus.

In addition to genes that encode GS1, the microarray analyses

identi�ed the di�erential expression of other genes related to

N metabolism. Among these genes, N compound transporters

constituted a large group, which was identi�ed in both organs.

In leaves, the majority of those genes were up-regulated,

whereas in roots, only two genes encoding N transporters were

characterized by increased expression. This included a gene

that encodes a protein belonging to a large family of high-

a�nity NRT that may play multifunctional roles in nitrate uptake

and transport throughout the plant (Bai et al. 2013). Studies

performed on Arabidopsis indicated that NRT1.7 and NRT2.5

NRTs have contributed to the remobilization of nitrate from the

source leaves to the sink organs (Fan et al. 2009, Lezhneva

et al. 2014, Wu et al. 2014). Moreover, there is a premise that

other NRTsiNRT1.6 and NRT1.5 — that are up-regulated during

leaf senescence may play a role in senescence and they could

also be involved in nitrate and ammonium remobilization (Have

et al. 2017). Given the broad range of roles of NRT, which may

act as either a nitrate sensor, a signal transducer or a transporter,

it is hard to interpret which role it may play in senescent roots,

and this issue requires further analysis. Moreover in leaves, up-

regulation of the gene encoding GDH, which functions in the

transfer of remobilized N, was noticed. A similar �nding was

reported in Arabidopsis and Nicotiana (Bernhard and Matile

1994, Masclaux et al. 2000, Guo et al. 2004, Li et al. 2017).

The mechanisms underlying N translocation in trees are

not well understood. Guiboileau et al. (2012) reported that

autophagy is an essential aspect of the relocation of N from

senescing leaves to developing seeds. Studies with Arabidopsis

mutants double mutants atg + salicylic acid defective lines haveAQ14
demonstrated that plants with impaired autophagy machinery

accumulate N in leaves, especially under low nitrate availability.

In the previous article (Wojciechowska et al. 2018b), we docu-

mented an increase in processes associated with autophagy in

senescing roots and leaves of P. trichocarpa. Up-regulation of

autophagy genes, as well as presence of micro- and macroau-

tophagy, was observed in the same stage of �ne roots senes-

cence as increasing expression of GS1 genes and decreasing

concentration of N. Based on this research, it seems likely that

autophagy may also be involved in N remobilization in both

leaves and roots of P. trichocarpa.

In contrast to N, C concentrations in senescing leaves and

roots remained stable in our study. A slight decrease in C

concentration was observed, however, during leaf senescence

in H. vulgare (Avila-Ospina et al. 2015). A more important

parameter related to the regulation of cellular metabolism during

the senescence of plant organs is the C:N ratio (Chen et al.

2015). Neither C nor N alone, but rather the C:N ratio, plays

a crucial role in several processes in Arabidopsis such as the

regulation of seedling growth, remobilization of storage lipids,

the expression of photosynthetic genes and natural senescence

(Martin et al. 2002). A similar change in the C:N ratio during

the vegetative season was observed in both leaves and roots,

while the C:N ratio increased during senescence. An initiation

of senescence has been reported to be induced by high C and

low N availability in plant tissues (Wingler et al. 1998, Aoyama

et al. 2014).

Signi�cant di�erences between the examined organs were

observed in carbohydrate metabolism during senescence. In

the present study, starch concentration decreased rapidly in

leaves during senescence. A previously reported ultrastructure

analysis also revealed a decreasing number of starch granules

in yellowing leaves of P. trichocarpa (Wojciechowska et al.

2018b). Similarly, senescing leaves of H. annuus (Agüera et al.

2012), Oryza sativa (Muthukumaran and Rao 2013) and A.

thaliana (Diaz et al. 2008) were also characterized by a

decrease in starch levels. Studies of starch degradation suggest

that autophagy may play an important role in the breakdown

of this carbohydrate. Wang et al. (2013) demonstrated that

silencing of ATG genes reduces leaf starch degradation, result-

ing in an excessive accumulation of starch in atg mutants.

These observations support the premise that the increase of

autophagy activity observed in senescing leaves and roots

of P. trichocarpa may play a multifunctional role in degrada- AQ15
tion, N remobilization and starch degradation (Wojciechowska

et al. 2018a, 2018b, Guiboileau et al. 2012, Wand et al.

2013). Microarray analysis in senescent leaves revealed several

genes associated with starch metabolism, which is in line with

quantitative analyses of starch concentration, e.g. signi�cant

up-regulation of the gene encoding a β-amylase, which is

associated with starch degradation (Lin et al. 1988, Kaplan and

Guy 2004). In addition to β-amylase, the down-regulation of

genes encoding starch debranching enzymes and ADP-glucose

pyrophosphorylase was observed, indicating that starch biosyn-

thesis is inhibited or completely stopped during senescence

(Kubo et al. 1999, Ballicora et al. 2004). An inverse relation-

ship is observed in absorptive roots, where the concentration

of starch increased. This was surprising, however, it may be

Tree Physiology Online at http://www.treephys.oxfordjournals.org
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elucidated by the fact that N relocation is dependent on an

adequate supply of carbohydrates to provide energy for active

senescence processes and for the conversion of N to glutamine.

In contrast to leaves, expression of the ADP-glucose pyrophos-

phorylase gene was strongly up-regulated during absorptive

root senescence. Similarly, expressions of genes encoding α-

amylase and the isoamylase N-terminal domain, which regulate

starch degradation, were also increased. In addition to initiating

starch degradation, α-amylases are also involved in abiotic

stress response, such as cold acclimation—a process that

includes an increase in soluble sugars and hexose-phosphates

in the cytosol (Ristic and Ashworth 1993, Hurry et al. 1995). A

large body of research has demonstrated that sugars accumu-

late in cells and tissues to increase osmotic pressure and cold

tolerance (Sasaki et al. 1996, Klemens et al. 2013, Tarkowski

and Van den Ende 2015). An increase in sugar levels could help

to prevent damage to roots by temporarily occurring freezing

temperature conditions (even in fall), and thus extend their life

span, thereby prolonging the senescence process until nutrients

can be transferred to higher root orders. Microarray analyses

also revealed several genes associated with sucrose metabolism

in both organs. The primary mobile sugar in plants—sucrose—is

transported from its source (synthesizing) organs to sink organs

through the phloem, even at times over long distances (Lemoine

2000). Sucrose is known to inhibit the onset of senescence,

which has been documented in Brassica oleracea branches

(Irving and Joyce 1995), Lilium and Dianthus caryophyllus

petals, and Asparagus o�cinalis spears (Hoeberichts et al.

2007, Arrom and Munné-Bosch 2012, Park 2016). During leaf

senescence, several genes involved in the sucrose metabolism

were identi�ed. Sucrose synthetase is involved in the reversible

conversion of sucrose and UDP into fructose and UDP-glucose.

Similar to our results, changes in the expression levels of

genes that encode a sucrose synthetase were also documented

during the senescence of leaves of Nicotiana tabacum (Li et al.

2017). In senescent roots, the sucrose synthetase (SUS1) gene

was down-regulated. A gene encoding a vacuolar invertase,

which is responsible for converting sucrose into glucose and

fructose inside a vacuole, was also down-regulated. However,

the up-regulation of genes encoding sucrose transporters was

observed, as well as the elevated expression of �ve genes

encoding sugar carriers, collectively implying an increase in

sugar relocation. In senescent leaves, the microarray analy-

sis identi�ed �ve genes encoding sugar transporters. Expres-

sion of four of them was up-regulated, which suggests that

sugars are actively translocated out of senescing cells and

tissues.

Conclusion

The senescence of plant organs is a precisely controlled process

that allows plants to relocate valuable nutrients from senescent

organs to other locations rather than lose them to the environ-

ment. The results of the present study provide evidence that in

both leaves and roots, the process of N resorption is activated

during senescence. This premise is supported by the analysis

of N concentration and the molecular analysis of GS levels, a

key enzyme in N remobilization. To our knowledge, this is the

�rst con�rmation that relocation of N during the senescence of

absorptive �ne roots is regulated at the molecular level. Sig-

ni�cant changes in carbohydrate metabolism–gene expression

were observed in both leaves and roots during senescence.

Only in �ne roots, however, was the accumulation of sugars

observed. This may be related to the need to cold acclimate

and increase the tolerance of roots to freezing temperatures, so

that the remobilization of nutrients to higher order roots can be

completed—something that could not occur if the roots died

quickly due to freezing injury. The speci�c mechanisms respon-

sible for the remobilization of nutrients during senescence and

the functional role of carbohydrates during this process are not

well understood and remain a critical priority for future research.
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