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Dipole and quadrupole polarizabilities and shielding factors of beryllium
from exponentially correlated Gaussian functions
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Dynamic dipole and quadrupole polarizabilities as well as shielding factors of the beryllium atom in the
ground state were computed at real frequencies by using the variation-perturbation method. The zeroth- and the
first-order wave functions were expanded in many-electron basis of exponentially correlated Gaussian func-
tions. The 1600-term expansion of the unperturbed wave function yielded the ground-state energy accurate to
1 cm 1 The first-order wave functions were expanded in very large b&&80 and 4400 termsThe
nonlinear parameters of the first-order correction functions were optimized with respect to both the static and
dynamic polarizabilities, and with respect to the excited-state energies. The procedure employed ensures a high
accuracy of determination of dynamic properties in a wide range of frequencies and correct positions of the
transition poles. Test calculations, performed on He and Li, confirmed the ability of this method to obtain the
atomic properties with very high accuracy. The final values of the static properties of Be wereeﬁa?,E551
and 300.962a3E,]1 for the dipole and quadrupole polarizabilities, respectively, and 1.4769 for the quadrupole
shielding factor. The convergence of the atomic properties with the size of the expansion of both the zeroth-
and first-order functions was checked. Thanks to very high accuracy of the unperturbed wave function and the
efficient method of construction of the first-order wave functions, the dynamic polarizability results presented
in this work are of benchmark quality. As a by-product of this project, a set of the most accurate upper bounds
to the energies of P and 'D states of Be was obtained.
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[. INTRODUCTION the change in the field and field gradient, respectively, expe-
rienced by the nucleus, resulting from the electron cloud
One of the most important aspects of our knowledge ofshielding (y,>0) or antishielding f, <0) [7]. Although the

many-electron systems is the ability to predict their behaviophysical nature of the shielding factors slightly differs from
in external fields. Particular attention of theoreticians isthat of polarizabilities, they are mathematically closely
drawn to the polarizabilities, which can be relatively easilycoupled and in this work they are studied together.
modeled mathematically and are involved in a variety of For the beryl!ium atom the val_ues of these properties have
physical phenomena. These response properties are oftét been experimentally determined yet and we have to rely
linked to the optical properties of matter, scattering processe®” the theoretical pred|c_:t|ons. In cases like this, it is cruual_
or interatomic interactions. In particular, the frequency—to have an access to reliable reference values. The aim of this
dependent polarizabilities enter the formulas defining secong
refractive virial coefficient, Verdet constant, van der Waals
coefficients, refractive index, etc. A growing interest in the

accurate knowledge Qf polarizal:_uility of ato_mic gases Is O_b'level. Additionally, good description of the outer, energeti-
s_erved. Such theo_ret|cally predlcte_d pOIa”Zab'“tY' if suffi- cally less important, region of the electron density distribu-
ciently accurate, might serve to calibrate measuring appargjon'is indispensable. These requirements are met by very

tus for various experiment$1,2] and to independently fexiple, explicitly correlated wave functions employed in
estimate fundamental constants of physics and chemistiyis paper.

[3-6].

The dipole polarizability of an atomm(;) corresponds to a
dipole moment induced in the atom interacting with an ex-
ternal electric field ;). Similarly, quadrupole polarizability The dipole and quadrupole polarizabilities appear as ex-
(ay) is related to a quadrupole moment induced by an exterpansion coefficients in the expression for the energy change
nal electric field gradientR,). There are two other quanti- caused by an electric field and electric field gradif8it
ties closely related to the polarizabilities, namely, the dipoleFormally, the polarizability is defined as a second derivative
(1) and quadrupole+s,) shielding factors. They give a pic- of the perturbation-dependent enef@y
ture of dipole and quadrupole moments induced in the elec-

tudy was to supply such benchmark values of the dynamic
ipole and quadrupole polarizabilities and shielding factors.
For an accurate description of polarizability, the electron cor-
relation has to be taken into consideration at a very high

IIl. METHOD

tron charge distribution by pertinent nuclear moments. Alter- ?E(Fy)
natively, y; and y, can be treated as parameters describing )=~ ? 2.9
A F,—0
*Electronic address: komasa@man.poznan.pl and can be related to the second-order perturbation energy by
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ay=—2E®?, (2.2)

In the notation incorporated hereinafters= 1 for dipole and
A =2 for quadrupole properties.
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ficientsc(") of the expansion of the first-order function de-
pend on the light frequency; is a 3n-element vector of
electron position coordinates angl represents spin vari-
ables. The tilde ove is used to distinguish between the

We shall work in the nonrelativistic infinite nuclear mass exact wave function and its approximation.

framework. The mass polarization and the relativistic correc-

As the many-electron basis functiong, the exponen-

tions [5,6,10 to the dipole polarizability are the subject of tially correlated GaussiafECG) functions of Singef16] are
our current study and will be presented separately. Themployed:
atomic units are employed throughout this paper. In particu-

lar, =1 and the electron mase=1 are assumedy; and
a, are expressed in units efajE,,! ande?ajE,,*, respec-

tively, and the energy is expressed in the Hartree energ

(Ey). Both v, and y, are dimensionless.
If the total wave function¥, =¥ +F, w{N+... (as-

sumed real and normalizedatisfies the Hellmann-Feynman
theorem[11-13, then«a, and y, can be expressed conve-

niently as single integrall4]:

n
al=—2f «Ir(f)(E yi)\If(O)dT, (2.3
=1
n
Of2:_4J \P(zl)(z yizi)q’(o)dT, (24)
=1
n y
n=-2 f \P&”(E —;)Wdr, (2.5
i=1r;
n yz
y2=—4f \P(zl)( '—5')«1f<0>d7. (2.6)
=1 r;

The Hellmann-Feynman theorem allowsto be determined
a priori. For ann-electron atom with a nucleus of charge
(14,19,

Y11= (2.7

N| =

For this fact,y; was recommended as a useful tool for as-
sessment of the quality of approximated wave functions in

volved in Egs.(2.3) and(2.5).

A. The ansatz

There are three different functions involved in the formu-
las (2.3 —(2.6). ¥'(© is the unperturbed or zeroth-order wave
function of the atom®¥{") and (" are the first-order cor-
rection functions resulting from the dipole and quadrupole

W(1) = A ex = (r=s)A(r—s9 ], (2.9

%ith s, restricted to zero—the natural choice for the position
of the nucleus. The remaining nonlinear parameters are or-
ganized in the form of positive definite symmetrix n ma-
trices Ai. T superscript means a vector transposition. The
preexponential factorAmk=1 for the unperturbed wave
function, A, =ym, for ¥, and A, =y1zq, for T8y,

and z; are the Cartesian components of ilile electron po-
sition vector. Such a choice of the basis functions ensures
respectivelyS,P, andD symmetry of the atomic wave func-
tions. Them, subscript labels the electrons. An experience
has shown that the restriction of, to a single electron leads

to erroneous convergence. In this work, all possible values
1=my=n were used and spread out uniformly over all basis
functions. Their presence makes possible using only a single
spin function without loss of completeness.

The ECG wave functions have been proved to work very
well for few-electron systems yielding in many cases the best
variational energies available in the literature; H7-19,
HeH", Hy [18], H; [20,21], He, , LiH [22], He, [23,24],
HeHHe" [25], Be[26,27], e"LiH [28]. Also many accurate
expectation values of beryllium atom in position and mo-
mentum space come from the ECG calculatif®4,29,30Q.

In the present paper, we extend this list by energies of a few
lowest excited states and the second-order properties of Be.

B. Variation-perturbation method

For the harmonic, monochromatic perturbation of an an-
gular frequencyw, the stationary-state first-order functions
are represented HB1]

vt =v®(nexd —i(EQ— w)t]
+vM(nexd —i(E@+w)t]. (2.10

The plusandminuscomponents&lfgli) , can be obtained from

perturbation, respectively. In this paper, all three function§he so(lolit!on of the first-order perturbation equatiéassum-
are expressed in the form of antisymmetrized linear combilnd ¥*~ is known

nations ofn-electron basis functiong/{’ (x=0 or 1),
K (©)

V(0= A Ensuge) 2 ], 29

where E, su(0) is an n-electron spin function(e.g.,
Es000)=aBap—PaaB—aBPBa+ BaBa for the four-

(HO—EO+ )T =— O, w©, (2.1
where H(® and E(®) are the unperturbed Hamiltonian and
energy, respectively, an@; =3"_,y; for the dipole and),
=3"1yiz; for the quadrupole polarizability. Equations
(2.11) can be solved variationally, i.e., by minimization of

electron singlet stajeand where, in general, the linear coef- the Hylleraas functiondl32,33,
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HamiltonianH(® in the basis of the perturbation correction

wave functionW (" of the appropriate symmetry. As men-

tioned above, it is a common practice to optimize this basis

+2f v O, wOdr, (2.12  set with respect to the static polarizability, not the energies
E,. As a consequence, the (0) values are recovered with

j[qulg]:f WHHO—EO+ )¥Mdr

with respect to the parameters of the first-order function.re"’ISOnabIe accuracy but when the frequency qleparts from
ero the accuracy of the,(w) curve drops rapidly and,

\Ifg\ll determined in this way enter the pertinent expression§ » e .
for —% and y,. , Egs.(2.3—(2.6). Finally, the frequency- additionally, the positions of the poles appear too high on the

dependent polarizabilities and shielding factors are obtaineff€duency scale. Examples of such a tendency can be found

from a, (@)= a, . (»)+a, (o) and a similar equation for €ven in the most accurate calculations employing explicitly
Y (). correlated wave functions89—44.

As shown by, e.g., Kolker and Michell84], when\lf(kl) is The procedure described below, based on the variational-

expanded in the complete set of the unperturbed Hamiltolly Of both the energy and the polarizability, allows this de-
nian’s eigenfunction& one arrives at the Spectra| representggency to be eliminated. It relies on the observation that if
tion of a, (). From this point of view, the first-order wave We merge a basis set of the lengd”’, whose nonlinear
function involves an infinite number of excited states, includ-parameters were optimized with respect to the static polariz-
ing the continuum, so that it is not a trivial task to generateability, with a basis set of the lengtk! , optimized with
such a wave function with an accuracy comparable to thosgespect to the energy of théh eigenvalue of an appropriate
a_\ttainable for the l_mperturbed systems even if the wave funcsymmetry, then the resulting basis set of the ${Ze= K(xl)

tion includes explicitly the electron correlation factor. + KI)\ gives a)\(KE)Bax(Kg\l)) and simultaneousI)E,(K)'f)

In the past, many accurate results were obtained Within, g 1y j ¢ 'the combined basis set deteriorates neither the

the yanauon-perturbauon appro.ach in connection with thepolarizability nor the excited state energy obtained from the
epr|C|tIy correlated wave functions. For example, Gloverseparate basis sets. In this way we can generate a basis set
and Weinhold35] employed the Hylleraas-type wave func- that combines the advantages of its components and yields

tions in their work d_evoted to rigorous lower and UPPET0th accurate static polarizability and the position of the
bounds to the dynamic polarizability of two-electron atoms.pole

Sims and Rumblg36] used this type of wave function in the In general, the first-order correction wave function can be

;/arlatllo n-tperturtbatlon_lf:r?ICllila*tlon\sNor static poIanzafb 'I'Q:. of constructed by merging many basis sets, each optimized with
our-electron atoms. € RoioS-WWolniewicz wave TUnction yige et goal functions. In the present paper, the nonlinear

was applied to both stati87,38 and dynamid 39—44 di- . L~ .
pole polarizability of B in the ground and excited states. In Parameters of the final .expansmn*bﬁ) were generated in
principle,\lf(xl) should be optimized for each frequency Sepa_s_everal sepa_\rate optimization steps_ and the IeKﬁtIc_nf the
rately. So far, however, only the wave functions with opti- final €xpansion was a sum of (t[\)e sizes of ,the basis sets em-
mized linear parameters have been reported in literature. EXloyed in these steps<; =K (w;) + 2K, . In the first
ceptionally, simple adjustments of the nonlinear parameter§foup of steps, the nonlinear parameters were optimized
with respect to the static polarizability have been performeg/ariationally with respect to the polarizability by using the
[35]. Only very recently, Cencekt al. [6] fully optimized  Hylleraas functional, Eq(2.12, at selected frequencias;

first- and second-order ECG wave functions of He but alsd] =0.1,...). Thesize of the basis sets optimized in these
with respect to the static properties. In the present papefteps was labele{"(w;) with explicit dependence on the
much more flexibility was added to both the method and thdrequency in order to emphasize that the optimization was

wave functions. as the nonlinear parameters{l'/tﬂ) were Pperformed not only for the static polarizability but also at
optimized with respect to the static and dynamic polarizabil-S°Me frequencies from the range<@;<E;—E, (in this

ities and also with respect to the lowest excitation energied@n9€ the Hylleraas variational principle is valiil]). The

The optimization algorithm was similar to that applied to theS€cond group of the steps generateskheterm expansions
unperturbed wave functiof26], but the goal function was with nonlinear variational parameters optimum with respect
either a, (w) or the excited-state energy. The nonlinear opti-t0 the energy_of théth root o_f the Hamiltonian diagonalized
mization, although time consuming, was crucial for obtain-With the function of appropriate symmetry=1 for P states

ing accurate results. More about our optimization schem®’ A=2 for states oD symmetry. The final basis set of the
can be found in Refd20,24,26,4% sizeK; obtained in the above procedure was not optimized

any further. Optimization of this basis would improve the
selected goal quantity but deteriorate the rest of the features
) ) ~ of the @, (w) function.

At the absorption frequency the dynamic polarizabilities  The final basis set constructed in this way has the follow-
poles appear at the frequencies=E —Eo (1=1,2,...), yields improved polarizabilities and excited-state energies
whereE, is the unperturbed state energy obtained fff  without the time-consuming optimization of large basis sets.
and is assumed to be known with very high accur&gyare (i) As the final basis set contains the basis functions of sev-
consecutive eigenvalues obtained by diagonalization of theral excited states, it ensures that the subsequent poles of the

C. Construction of the first-order wave function
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TABLE |. Results of the test calculations. " " " " " " e
0.04 L
Property Reference Basis size Value
He T 0.02
E(1 lS) Exact[46] —2.903724 377034119598 3 “‘?
ECG 600 —2.903724 377022 Nﬁ
a4(0) Exact[5] 1.383192 174 453) ;_ I
ECG 1270 1.383192 154 2
v1(0) Exact 1.0000000 % 002}
ECG 1270 0.9999999
E(2'P) Exact[47] —2.123 843086 498 094(5)
ECG 1270 —2.1238430856 004
ay(0)  Exact[48] 2.445083 1002) 07T 02 03 04 05 06 07 08
ECG 1800 2.445083 016 ho/Ey
v2(0) Exact N/A — C -
ECG 1800 0.407 6810 FIG. 1. Projection of the ECG dynamic dipole polarizability of

He (+) on the area allowed by the Glover-Weinhold rigorous

E(3'D) Exact[47] ~2.055620 732852 246(6) bounds(solid lineg [35] at frequencies up to the first excitation
ECG 1800  —2.05562073238 o, 1p— 0779 881 291
E(4'D) Exact[47] —2.031279846 178 687(7)
ECG 1800  —2.031279817 tained using the variation-perturbation method from the ECG
Li wave functions are confronted with the other most accurate
E(22S) Exact[49] —7.478 060 323 650 3(71) energies available in the Ilteratur_e and with the polarizability
ECG 1536 74780603143 value:s computed with the practically exact Hylleraas wave
#,(0)  Exact[48] 164.1112) functions by using the sum over state proced&d6-51.
ECG 3700 16411171 For the present calculations, the unperturbed ground-state
) wave function of He was taken from the work of Cencek and
71(0) Exact 1.00000 Kutzelnigg [17]. The 600-term ECG expansion gives the
, ECG 3700 0.99973 ground-state energy with 2210~ 1?E,, of error.
E(2°P) Exact[49] —7.410156 531 763(42) The dipole polarizability first-order expansion was as-
, ECG 3700 —7.410156 22 sembled from 660-ternar,(0)-optimized ECG wave func-
E@GP)  [51] —7.33714902 tion and 610-term ECG basis optimized with respect {®2
ECG 3700 —7.3371490322 state energy. The size of the final basis set Kf&s 1270 and
E(4%P)  [51] —7.31188330 a,(0)=1.383192 154 obtained in this procedure differs
ECG 3700 —7.311864 from the exact valud5,6] in ninth significant figure. The
ap(0)  Exact[48] 1423.2665) dipole shielding factor differs from unity by less than 10
ECG 2800  1423.282 The 2'P state energy computed in the final basis set is only
¥2(0) Exact N/A 1 nanoHartree in error. The first pole of the dynamic polar-
ECG 2800 0.7385 izability curve is locatedwith the same error as the eneygy
E(32D) Exact[50] —7.335523 541 10(43) at w,1p=0.779881291.
ECG 2800 —7.335519 The dynamic dipole polarizability of He was confronted
E(4?D) [51] —7.311184 77 with the rigorous upper and lower bounds given by Glover
ECG 2800 —7.31040 and Weinhold[35] for frequencies up to the second reso-

nance. Though none of the componentsidf) was opti-
a,(w) curves are extremely accurate—their positions correMized atw>0, thea,(w) curve fits perfectly those bounds.
spond to the excitation energies of the states obtained frorhigures 1 and 2 show two curves Ecl:vonstructed frolrp Glover
the K -term expansions, i.e., are only a fraction of milliHar- andav Weinhold's  data: a; (w) —~a} (“’e)“; and  a(w)

tree in error.(iii) Forcing the correct position of the poles — @1 (@), compared with thea,(w)—a;(w), curve ob-
and optimization at>0 ensures that the high accuracy of t&ineéd in this work. The “ub” and “Ib” superscripts mean

a, is preserved in a wide range of frequencies. the rigorous .upper.and, respectively, lower bound curve, and
“av” is an arithmetic average of them.
IIl. RESULTS AND DISCUSSION For the quadrupole polarizabilitﬁ'(zl) was built of three
. 600-term ECG basis sets: one set optimized with respect to
A. Test calculations a,(0) and two sets with respect to'B and 4'D state en-

The approach described in Sec. Il C was tested on heliurgirgies. The final 1800-term expansion recovei@g0)
and lithium atoms, for which exact values of energies and= 2.445083 016 with a relative error o310 2. The poles
polarizabilities are available from the literature. In Table I, of the a,(w) function are located a3 1,=0.848 103 644
appropriate variational energies and static polarizabilities oband w,15,=0.872444 5 with all quoted figures being exact.
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0.8 . B. Convergence of the static properties of beryllium
06l In principle, the Hylleraas functional yields polarizabil-
ities that are lower bounds to the exact values. However, the
T 04r computed polarizabilities would represent rigorous lower
2 0af bounds only if an exact¥(® was used in solving the
“u variation-perturbation equations. It is known that the Hyller-
§ or . 1 aas functional2.12) is very sensitive to the quality of the
3 oal | unperturbed wave function. The leading errorsaip are of
= al the second order in the error &%), but only of the first
o | order in the error of? (%) [35,56. Therefore, particular effort
06} 1 was put on the construction of the wave function describing
the unperturbed atom.
Vo o8 08T 0k 083 088 085 The unperturbed beryllium atom wave functions were
hoo/Ey generated variationally for many expansion lengtk$?

=50, ...,1600. The wave functions witK(©)<1200 were
exactly those of Ref.26]. The only new wave function with
K(®=1600 vyields the nonrelativistic energy of
o _ —14.667 355536E,, which is the lowest variational en-
The quadrupole shielding factor,(0)=0.4076810 is the ergy of the ground-state beryllium to date. The estimated
most accurate estimation of th|S quantity in “terature. PreVi'error of the energy iS |ess than 1 Clln Weinho|d presented
ous estimations ofy,(0) come from late fifties: 0.4247],  the formula[57] for the rigorous lower bound to polarizabil-
0.416[52], and 0.41353]. ity even when both wave functions are only approximate.
In the case of lithium atomW(® was chosen as 1536- This formula becomes equivalent to the Hylleraas result in

term ECG expansion of Cenceo4], which yields the the limit S—1, where S=(¥ | ¥ () The value ofS a

: —9 ~
grolémd-sbtat(_e energyé?wnh an error of X30 b E'&' he Measure of quality o (9, can be estimated using the Eck-
_ our basis sets symmet.ry Wgr(i combined to getF € art's [58] or the Weinberger'$59] inequality. For the 1600-
final 3700-term ECG expansion dF{": 1200-term basis term ECG wave function, the first one yieldS
optimized with respect to «;(0), one 1300-term  =>0.9999910, the second—stronger criterion—S
2?P-optimized basis set, and two 600-term basis sets opti=0.9999920. Even the Weinberger's bound is known to
mized with respect to the energy of théB and 4°P states.  give too weak an estimatidi60], and the true overlap is stil
The final fjlpole polarizabilitya;(0)=164.11171 agrees . |oser to unity. Very high accuracy of the® applied in the
perfectly with Yanet al. result 164.111(2)48] (see Table)l  fing| calculations allows the error originating from the unper-
The dipole shielding factor is equal to 0.999 73. The excitay;,(ped wave function to be minimized and in practice the

tion _energy  to ZP state is 0.0679048, with 3 variationality of the functiona{2.12) is preserved with good
X107 E, of error. For the next two excitedP states no precision.

exact calculations are available in literature. The most accu- Table Il illustrates the influence of the choice (% on

I F.i | . 2
rate to date are those by Pestka and [51]. For 3°P the static properties evaluated with well-optimized 1200-

state the present ECG calculations give the variational UPPSErm first-order wave function. For the smallest expansions

bound to the energy that is 0.QE, lower than the energy . o ; . :
. . . . the dipole polarizability decreases with the growing basis
cited in Ref.[51]. For the 4°P state their energy is by _. o e (0)_ : -
20uEy lower that the ECG energy. The appropriate positionsS'Ze' Only beginning witfk *'= 100 it converges monotoni

. N O cally to the final value yielding five stable digits. It is seen
S)f t?e_d(;ploéz g(c))larlzablllty poles ar@32p=0.1409113 and .+ a1(0) obtained even with the smallest® differs from
42p=U. .

i ith¢ (0) = 0 -
For the calculation of the quadrupole properties a 1000Ehat obtained wittk 1600 by less than 0.25%. The quad

term a,(0)-optimized basis was combined with 1200-termrupOIe polarizability behaves more regularly and grows

2y i PN . monotonically in the whole range #f(*) displayed in Table
3 2D-optimized and 600-term ZD-optimized basis sets. The Il, yielding four converged figures. Although, far,(0) the

final 2800-term¥§!) gave a,(0)=1423.282 compared t0 convergence is slightly slower than in the dipole case, al-

1423.266(5¢°agEy, * obtained by Yaret al. [48]. For un-  readyK(®=150 yields a,(0) within 1% of that obtained
known reasons these two results differ by more or less thregith K(® = 1600.

FIG. 2. As in Fig. 1 but at frequencies between the first and
second excitatiow; 1p=0.848 596 1.

times their estimated error bar. The value;g{0)=0.7385, The value ofy,(0), which for the neutral Be atom is
which can be compared with 0.7156 estimated by Mahapatrﬁnown a priori to be equa] 1, was evaluated using exact|y
and Rag55]. the same zeroth- and first-order wave functionvasDevia-

Encouragingly the high accuracy of the test results suptions of the computedy,(0) from unity can be seen as a
ports the assertion that the above-described method of Corﬁough measure of qua“ty of the pair of wave functions in-

struction offI‘fil) from the ECG functions has a potential volved in the computations. From Table Il, we see that be-
capability of yielding accurate results also for larger systemgjinning with K(©=300, y,;(0) grows monotonically to-
including beryllium atom. wards 1. Less regular is the behavior ¢%(0) which
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TABLE II. Influence of the quality of the zeroth-order wave function on the static polarizabilities and
shielding factorsk {")=1200 ande® of Egs.(2.11) from the second column.

K(© E(O)IEH @1(0) ¥1(0) a,(0) ¥2(0)

50 —14.665 053 934 37.6897 1.01489 289.192 1.5402
75 —14.666 444 767 37.6771 1.00131 292.822 1.5215
100 —14.666 892 196 37.6675 0.99827 295.517 1.5145
150 —14.667 185772 37.7023 0.99550 298.084 1.5121
200 —14.667 271 965 37.7304 0.99732 299.480 1.5136
300 —14.667 315415 37.7328 0.99714 299.855 1.4868
400 —14.667 335 167 37.7382 0.99730 300.205 1.5011
600 —14.667 350 195 37.7508 0.99806 300.771 1.4903
800 —14.667 353781 37.7530 0.99873 300.888 1.4871
1200 —14.667 355022 37.7535 0.99911 300.923 1.4883
1600 —14.667 355536 37.7536 0.99911 300.932 1.4875

oscillates around the final value in order to stabilize foursible errors, however, manifest themselves only at further

significant figures. significant figures, which was illustrated by the test results
A similar analysis of the convergence was performed forpresented in Sec. Il A and the above convergence analysis.

(Y. Table Il contains the polarizabilities and shielding

factors computed with a series of the first-order wave func-  C. Construction of the final first-order wave functions

tions with successively doubled expansions. In their optimi- of beryllium

zation, as theV(?), the 1600-term ECG wave function was In all the individual @, optimizations and in the

employed. The first-order wave functions of increasing x| cajculations reported in this section, the best available

pansion sizeK,™’ were optimized with respect ta,(0) in- . . (0)
dependently of each other. The static properties converg%?oo'term wave function was employed 2 (Oa)lnd
the corresponding unperturbed-state energy'”’=

with the ¥}™’ expansion length slower than it was observed_ 14.667 355 536,, was assumed.

for (. The last doubling of the (" changesa, (0) by The final first-order wave function d? symmetry with
0.02% anda,(0) by 0.06%. In contrast t&(® the smallest K{=4800 was constructed according to the prescription
{i’lg\l) expansions give results far from the final ones. given in Sec. Il C. It was assembled from two polarizability-

In the convergence analysis presented above, the zerotRPtimized and three energy-optimized basis sets of
and first-order basis sets were of similar sizes. The appathe following sizes: K{"(0)=120q «,(0)=37.7534,
ently slower convergence af, with K{} than with K©  K{)(0.19)=120( a,(0.19)=912.976, K2 P=1200, k3P
indicates that to saturate the functional spacelgt’ still  —ggg, K4'P=600. The partial and the final results of the
longer expansions have to be used. We emphasize here thakstate energy spectrum are compared directly in Table V.
WM were not optimized with respect tg, . Both shielding In the square brackets, the polarizabilities obtained in the
factors were obtained with th&{") optimized with respect particular optimizations are quoted for comparison with per-
to a, alone and this justiﬁes some irregu|arities in Hﬂﬁ tinent final values listed in Table VI. This Comparison gives
convergence. Nevertheless, a relative accuracy better tha@h idea on the gain obtained when moving from the
0.1% was achieved for botp, and y,. The 1600-term ECG Ej-optimized wave function to the final wave function. For
wave function employed to approximate©®, though very ~€xample, the energy of the °P state decreased by
accurate, is not strictly exact. Therefore, the polarizability2-3< 10 °Ey when computed with the final wave function
results presented here are not rigorously variational. The po§ompared to the original 1200-term energy-optimized wave

function [27]. This improvement is much larger for the

TABLE Ill. Convergence of the static properties with the expan- higher, less carefully optimized statesee Table IV.

sion size K{!) of the first-order wave functiork(®=1600 and The basis set fol§"(K5=4400) was assembled from
E(®=-14.667 355 536y, . the following partial basis sets: 1200-tews3(0)-optimized

o [ @5(0)=300.933, 600-terma,(0.25)-optimized a,(0.25)
K @1(0) 7(0) 2(0) 7(0)  -2857.01, 1200-term E®'P-optimized, 600-termE* "P-
75 37.0952 0.88401 283.173 1.8015 optimized, and 800-terr&S "°-optimized. The excited-state
150 37.5774 0.96364 294.890 1.3384 energies resulting from these and the final basis sets are
300 37.7154 0.98844 299.691 1.2607 listed in Table IV.
600 37.7462 0.99688 300.760 1.4184 In the case of the dynamic polarizability, the gain from the
1200 37.7536 0.99911 300.932 1.4875 methodology applied here is well illustrated by the following

example. The dipole polarizability at=0.19 obtained from
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TABLE IV. P and!D state energies of Be from the ECG wave ~ TABLE V. Comparison of the static polarizabilities with the
function. Excitation energies computed with respect to the groundselected literature data computed at the correlated level.
state energy-14.667 36&, [26]. The atom-based Rydberg con-
stantR= 109 730.64 cm! was used to convert the excitation ener- a, Method Reference
gies fromE, to cmt .

37.0+3.4 Cl Kolker and Michelg34]
Excitation energy 36.5-1.7 MCSCF  Stevens and Billingsle8]
Basis size Energy, = cmt 36.6-0.8 VP Sims and RumblE86]
37.84 PNO-CEPA Werner and Meygs9]
2s2p2'P 37.59 VP Cl  Figariet al.[66]
K{N=1200 —14.47344202 0.193918 42557 37.69 cl Miller et al. [70]
Ki=4800  —14.47344433 0.193916 425542565.35° 37.64 MCTDHF  Graham and Yeagt]
2s3p3'P 37.3+0.7 MPPT4) Maroulis and Thakkaf63]
K{N=600  —14.39304978 0.274310 60200 37.70 CCSDT-1a  Urbast al.[72]
KT=4800  —14.39311393 0.274246 601860187.34 37.53 ECl Koch and Harrisofv3]
2s4p4a’p 37.62 MCHF  Themelis and Nicolaid¢#4]
K{"=600  —14.36176167 0.305598 67067 37.73-0.05 CC-R12  Tunega, Noga and Kloppéb]
KE: 4800 —14.36178921 0.305571 67065703470a 37.6 TDGI B’@ué Merawa and PouchdrﬁZ]
2p*3'D 37.67 CCSDT)  Papadopoulos and Sad[g5]
K{N=1200 —14.4081811  0.25917 56879 379 QCISOT) Leung and Breckenridg76]
K5=4400 —14.4081923  0.25916 56876%6882.43 37.755 ECG This work
2s3d4 1D
K{Y=600  —14.3733384  0.29402 64525 @2
K5=4400 —14.3735631 0.29379 6447®4428.3)2 301.8+3.5 CEPA Reinsch and Mey§r7]
2s4d5'D 299.4 VP CI Figari, Musso and Magnasi&s]
KP=800 ~ —14.3488478  0.31851 69901 298.8:2.6 MPPT4) Maroulis and Thakkaf63]
K5=4400 —14.3492532  0.31811 6981(%8780.86% 313.4 MPPT2)  Thakkar[67]
- 301.8 MPPT3) Thakkar[67]
8Experimental data from Ref61]. 208.8 ccb Thakkaf67]
285.6 TDGI Beue Merawa and Pouchdi62]
the «;(0)-optimized wave function is ca. 96%3E,* and  300.96 ECG This work

from the «1(0.19)-optimized wave function of the same size
it is by 7e?a3E, " larger, whereas the final first-order wave
function improves further this value by four units. The gain State optimization are also given. They illustrate the energy
observed in the quadrupole polarizability is even more progain resulting from the methodology employed here. The
nounced: ,(0.25) increases from 2667ajE,* by 190 accuracy of these energies can be estimated by a comparison
units when moving from ther,(0)- to a,(0.25)-optimized ~ Of the excitation energies presented also in this table with the
function, and by another @&agEgl in the final calculations. €xperimental lines available from NIST At(_)m|c Spectra Da-

At this point some comment on the nonstatic polarizabil-t2Pasé61]. Note, however, that the theoretical values do not
ity optimization is relevant. The values of, (w) are arith- include relativistic or mass polarization effects.

metic sums of theplus and minus componentsSec. 11 B

computed from two separate first-order correcti 3 1:) . D. Comparison of the static properties with literature data

For a fixed\, 7)) and¥ (") are expanded in the same basis A multitude of calculations of the static dipole polarizabil-
but, because they are solutions to two different equationdty of Be have been reported. Many of them were performed
Egs. (2.11), they differ in the linear expansion coefficients. USing methods incorporating electron correlation. An exten-
The a, . (w) functions vary slowly withw and exhibit no ~ Sive listing of such results could be created from tables in
poles. Thea, . components are responsible for large varia-Refs.[36,62-64. Most of the numerical values fits in the
tions in the polarizability value and for the presence of the(36;39 interval. On thezba5|s of the present ECG lower
poles. The nonstatic optimization was performed with re-bound equal to 37.7%5a5E,,*, a large part of them could
spect to the latter component at a frequency slightly smallePe ruled out. Table V contains only selected results, obtained
than the first resonance energy. This ensures correct values @y correlated methods, which do not differ much from the
the dynamic polarizability curve at frequencies far from zero.present prediction, even when they are not above the ECG
As a by-product of this work, upper bounds to the enerJower bound.
gies of several excite® and D states of beryllium were Some papers deserve separate comments. Sims and
obtained. These are the lowest variational energies known tgumble[36] applied the Weinhold's rigorous lower-bound
date. Table IV collects the energies of three lowest states dirocedure to beryllium atom. According to the present stan-
both symmetries calculated with the final basis sets. For théards, however, their wave functions were of low quality
sake of comparison, the energies obtained in the particulatheir & and¥{" gaveE2'S andE2 P energies with er-
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TABLE VI. Dynamic dipole and quadrupole polarizabilities and 800
shielding factors of beryllium atom at selected frequencies
K®=1600, KF=4800,  K5=4400, and E©= 600 -
—14.667 355 536, .

400 |
ay(w)/ az(w)/ Tz
o faEyt n(e) o @Byt y(0) &g 200r .
X .

0.01 37.852988 0.999382 0.01 301.3196 1.4790 &
0.02 38.150249  1.002253 0.02  302.4072 1.4855 200}
0.03 38.656440 1.007140 0.03 304.2396 1.4963
0.04 39.388631 1.014205 0.04 306.8470 1.5118
0.05 40.372756 1.023691 0.05 310.2735 1.5322 600 L . . . . J
0.06 41.646046 1.035951 0.06 314.5793 1.5580 0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.07 43.260859 1.051479 0.07 319.8436 1.5897 ho/Ey
0.08 45290698 1.070968 0.08  326.1685  1.6281 F[|G. 3. Dynamic dipole polarizability of Be from ECG calcula-
0.09 47.839844  1.095402 0.09 333.6848 1.6741tions (solid line. The two poles atw=0.193916 andw
0.10 51.059268 1.126204 0.10 342.5598 1.7290=0.274 246, result from the P—21S and 3'P«—2 1S transi-
0.11 55.174019  1.165495 0.11 353.0089 1.7942tions, respectively. For comparison, the time-dependent gauge in-
0.12 60.532939  1.216561 0.12  365.3113 1.8720variant results by Bgueet al.[62] (+) and full configuration in-
0.13 67.705127 1.284761 0.13 379.8335 1.9651teraction results by Koch and Harrispr] (X ) are also presented.
0.14 77.683821 1.379449 0.14 397.0648 2.0773
0.15 92.368950  1.518506 0.15 417.6713 2.2138285.5= @»(0)=<313.4. The ECG value more or less halves
0.16  115.90351 1.740924 0.16 4425833 2.3819this interval so that some of these res|ig,66,67 fall be-
0.17 159.36329  2.150930 0.17  473.1395  2.5925low the ECG lower bound,(0)=300.96.
0.18 265.67376 3.152431 0.18 511.3405 28619 There are no accurate calculations of shielding factors in
0.19 916.76453 9.280019 0.19 560.3198 3.2162literature. The present calculations yiefg(0)=0.9984 with

0.20 625.2886 36995 an error of about 1810™*. This relatively large error is
0.20 —571.44201 —4.721303 0.21 715.6259 4.3923 justified by the fact that the wave functions employed in
021 —20986046 —1.317393 0.22  850.1554  5.458¢ €valuation ofy; have not been optimized with respect to this
0.22 —125.56646 —0522272 0.23 1073.241 72900 duantity and that the electric field operator emphasizes the
0.23 —88.024602 —0.166683 0.24  1521.165 11.103 Sbpace near the nucleus whereas the dipole moment operator

024 —66.761519 0036312 025 2922734  23.459 used inthe optimization o¥ {Y'—the space remote from the

0.25 —52.992792  0.169870 nucleus. o
026 —43.086922 0.269998 0.27-1916.888 —21.399 The static quadrupole shielding factor has been recently
0.27 —33.515341 0.388546 0.28 —781.6915 —12.502 obtained from the quadrupole moment data of helium dimer

029 —171.7518 —13.531 at very short internuclear distancg29]. The presenty,(0)
028 —34.633425 0.317771 =1.4769 confirms the estimated(0)=1.5(1) of Ref[29].

029 —28630317 0.395380 030 —306.1427 —3.1167 There are also other, 40-year old, results¥9(0): 1.24 and

_ . 0.77 by Dalgarno and McNam¢&8], 0.72 by Coheret al.
0.30 24.689391 0.441820 0.31 141.5432—5.8349 [79], and 0.75 by Kelly[80].

0.00 37.754950  0.998434 0.00 300.9589 14769 3 0]
3

-400 |

rors of 810< 10" ® and 980 10" °Ey, , respectively, and the E. Final dynamic polarizabilities and shielding factors

2.2-—1 . —
l:;Ntiir bouuanlg 358';5];;53 vaqusbltg%tl)?;ntgdbaelszzOd)lsfcrgml The recommended dynamic polarizability and shielding
949 - factor curves at frequencies up to the third resonanees (

the variation-perturbation calculation. But the error bars as-

signed to their result 36:60.8 were too narrow to reach the s%s;l)_rﬁredt_:olllectid :S_Tal?le VI and |IIu§tr§1tedh|n I;lgs. 3f
ECG lower bound. and 4. The dipole shielding factor curve mimics the shape o

To date the most accurate prediction of the static polariz—a”(w) and there is no need to dray(w) separately. A

ability «4(0)=37.73:0.05 comes from the calculations by rough _S|m_|lar|ty of ay () a_nd 71(‘”)_ curves .can be under-
Tunegeet al.[65] who used the finite-field technique in com- stood in view of the following relatiof81,82:
bination with the explicitly correlated version of the coupled- w2
cluster methodCC-R12 and a high-quality basis set. The vi(w)= 7a1(w)+ v1(0). (3.0
uncertainty, although narrow, is wide enough to overlap with
the region allowed by the ECG lower bound.

The correlated calculations of the quadrupole static polarThe position of the first pole ofr;(w) (w,1p=0.193916),
izability are less common in literature. Table V shows thatcorresponding to 2P« 21S transition, is merely about
the predictedr,(0) cover a wide range of numerical values, 0.02x 10~ 3E,, in error[27]. This fact in connection with the
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the FCI curve goes several percent below the ECG curve.
The first resonance energy quoted f@3] is ca. 1.4
2 X107 3Ey, above the correct value.
Recently Bgue et al. [62] have calculated the dynamic
200} 410 dipole and quadrupole polarizabilities of the ground and ex-
~ cited 'S states of beryllium by using time-dependent gauge
AN % invariant method TDGI). The poles of the TDGh;(w) ap-
pear at positions higher than those of the resonance frequen-
cies by approximately 210 °E,; and 11x 10 3E,, for the
first and the second resonance, respectively. Up to the first
resonance, their;(w) curve goes below the ECG lower
130 bound with a discrepancy increasing with frequency. In the
. . s . L . second interval of frequencies, the TDGI polarizability lies
000 005 010 015 020 025 30 CU .
ho/Eyy significantly higher than the present one and those calculated
by Koch and Harrison(see Fig. 4. There is no rigorous
FIG. 4. Dynamic quadrupole polarizabilitgolid line, left axis proof that the Hylleraas functional gives the lower bound to
and quadrupole shielding factéotted line, right axisof Be from  the exact polarizability also at frequencies above the first
ECG calculations. 3D—2'S and 4'D+2'S transitions are resonance, however, the convergence of both dipole and
marked atw=0.259 16 andw,15=0.29375, respectively. Addi- quadrupole polarizabilities with increasing quality of the
tionally, results of TDGI calculations af, by Begueet al.[62] are  \yave functions suggests that this is the case. Anyhow, the
shown ast. discrepancy between Baeet al.and ECG results is so large
that their calculations cannot be recognized as more accurate

- . aye . . ~ l
dynamic-polarizability-optimized component g )_ make  pt rather contaminated by some systematic error. No such
the first branch of thev;(w) curve very accurate—it is pre- discrepancy is observed for,(w).

sumed that at least four significant figures remain correct in - 1o dynamic shielding factors data are very scarce in lit-
the whole mteryal excluding the ngayest nelgh.borhood Of_th%rature. For beryllium the only,(w) curve was calculated
pole. The location of the two remaining poles is less precisey; ihe coupled Hartree-Fock level in 1969 by Kaveeshwar

. . 73 .
but still their errors are much bellowX10"°E,,. An esti- ot 5] [81]. This curve, though starts with the correct static
mation of their accuracy can be based on the comparisof, e grows too fast and has the first pole «at0.175

with the experimental lines collected in Table IV. (compared with the correct value 0.1939).
The first pole ofa,(w), corresponding to 3D—2 'S reso-

nance, appears abs1p=0.25916. The second, ab,1p

=0.293 75, results from 4D« 2 1S transition. The overall F. Dispersion properties of Be

shape of thew,(w) curve is similar toa;(w), i.e., in the ) ) o

intervals between poles it is a monotonically growing func- For small frequencies the .dyn.amlc polarizabilities can be

tion of frequency(Fig. 4). The second and higher branches of "€Presented by a power seriesdr, the so-called Cauchy

a,(w) go from —o to +%. They must, therefore, at some &XPansion,

frequencies cross the, =0 line. Of some interest might be o

the location of the lowest frequency at whieh, vanish ay(w)= 2, S\(—2k—2)w?, (3.2

(wg). Unfortunately, for both polarizabilities, lies very k=0

close to the second resonance pole, so their values are uncer-

tain. For the dipole polarizabilitypg=0.2737, whereas the

second pole lies ab;1p=0.274 25. In the quadrupole case, with the coefficients, identified as the dipole or quadrupole

0p=0.2912 and the second pole appears @jip  oscillator sum rules. A polynomial fit to the data in Table VI

=0.29375. Contrary to the dipole case, the quadrupolén the range 0.&w<=0.10 revealed the following values

shielding factor curve differs in shape from that of polariz-of the first few Cauchy momentgwith the statistical

ability. This difference is particularly well visible in the sec- uncertainty in the last digit S;(—2)=37.755(37.6),

ond and third brancheésee Fig. 4, e.g., there is a local S;(—4)=983.3(945.9), S;(—6)=2.26x10%(1.61x10%,

maximum iny,() at w~0.285. S,(—8)=1.21x10° (1.54x 10°). For the sake of compari-
There are two calculations on the dynamic polarizabilitiesson, values ofS, obtained by Bgue et al. [62] are shown

of Be reported in the literature. For the sake of comparisonn parentheses. Similarlyw,(w) expanded according to

their results are displayed in Figs. 3 and 4. Eq. (3.2 yields the following quadrupole oscillator sums:
Koch and Harrison[73] calculated the frequency- S,(—2)=300.96, S,(—4)=3603.8, S,(—6)=4.66x 10",

dependent dipole polarizability at the full configuration inter- S,(—8)=9.03x 1.

action (FCI) level. Up to the first excitation frequency their ~ The knowledge of the frequency dependence of the dipole

curve is below the present ECG lower bound. At zero fre-polarizability enables an evaluation of other dispersion prop-

quency, the difference between the ECG and their values isrties of hypothetical atomic vapors, like the refractive index

0.3292a§E;1 and it increases with frequency to several unitsor the Verdet constafi0]. The index of refractionn(w), is

nearw=0.165. Also at frequencies above the first resonancéinked with a; by the Lorentz-Lorenz equation

op()e?ay By
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n*~1 4mN_
n?+2 3

(3.3

ay(w),

where the Loschmidt's numberN, =2.6867775(47)

X107 m~3. Typically n~1, and the left-hand side of Eq.

(3.3) can be well approximated b§(n—1) which, in con-

nection with Eq.(3.2), leads to the following frequency de-

pendence of:

n—1=9.44x 10" *+0.0246»°+ 0.5650*+ 30.3w°.
(3.4

Inserting the first few terms of E@3.2) into the formula
for the Verdet constaniexpressed in radagh 1) [83,84],

day(w)

V(w)=Kw do

(3.5

whereK=0.912742 1% 10 yields

V(w)=1.795< 10 *w?+8.251x 10 3w*+ 0.662w°.
(3.6)

Jrgensenet al. [85] computedV(w) for Be using the first

(TDHF) and secondSOPPA order polarization propagator

methods. At small frequencies, the preséffiw) lies be-
tween the TDHF and SOPPA curves.

PHYSICAL REVIEW A 65 012506

IV. SUMMARY

The main advantage of the applied method is its variation-
ality. The lower-bound polarizabilities obtained with the
ECG wave functions allow the quality of the results obtained
with other methods to be assessed. A comparison of the lit-
erature dipole and quadrupole polarizabilities with the lower
bounds presented in this paper reveals that the majority of
the literature data are underestimated.

The high quality of the unperturbed wave function in con-
nection with the method of the construction of the first-order
wave function ensures high accuracy of the polarizabilities
and shielding factors in a wide range of frequencies and pre-
diction of the correct positions of the poles. The results of
these large-scale calculations can be recommended as bench-
marks.

As a by-product of the procedure of constructiorﬁc&fl) ,
new upper-bound energies of several lowest-excited states of
Be and 3°P state of Li were obtained. Alsagy,(0) values of
He and Li are the most accurate to date.
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