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Dipole and quadrupole polarizabilities and shielding factors of beryllium
from exponentially correlated Gaussian functions
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Quantum Chemistry Group, Department of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan´, Poland

~Received 25 July 2001; published 14 December 2001!

Dynamic dipole and quadrupole polarizabilities as well as shielding factors of the beryllium atom in the
ground state were computed at real frequencies by using the variation-perturbation method. The zeroth- and the
first-order wave functions were expanded in many-electron basis of exponentially correlated Gaussian func-
tions. The 1600-term expansion of the unperturbed wave function yielded the ground-state energy accurate to
1 cm21. The first-order wave functions were expanded in very large bases~4800 and 4400 terms!. The
nonlinear parameters of the first-order correction functions were optimized with respect to both the static and
dynamic polarizabilities, and with respect to the excited-state energies. The procedure employed ensures a high
accuracy of determination of dynamic properties in a wide range of frequencies and correct positions of the
transition poles. Test calculations, performed on He and Li, confirmed the ability of this method to obtain the
atomic properties with very high accuracy. The final values of the static properties of Be were 37.755e2a0

2EH
21

and 300.96e2a0
4EH

21 for the dipole and quadrupole polarizabilities, respectively, and 1.4769 for the quadrupole
shielding factor. The convergence of the atomic properties with the size of the expansion of both the zeroth-
and first-order functions was checked. Thanks to very high accuracy of the unperturbed wave function and the
efficient method of construction of the first-order wave functions, the dynamic polarizability results presented
in this work are of benchmark quality. As a by-product of this project, a set of the most accurate upper bounds
to the energies of1P and 1D states of Be was obtained.

DOI: 10.1103/PhysRevA.65.012506 PACS number~s!: 32.10.Dk, 31.25.2v
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I. INTRODUCTION

One of the most important aspects of our knowledge
many-electron systems is the ability to predict their behav
in external fields. Particular attention of theoreticians
drawn to the polarizabilities, which can be relatively eas
modeled mathematically and are involved in a variety
physical phenomena. These response properties are
linked to the optical properties of matter, scattering proces
or interatomic interactions. In particular, the frequenc
dependent polarizabilities enter the formulas defining sec
refractive virial coefficient, Verdet constant, van der Wa
coefficients, refractive index, etc. A growing interest in t
accurate knowledge of polarizability of atomic gases is
served. Such theoretically predicted polarizability, if suf
ciently accurate, might serve to calibrate measuring app
tus for various experiments@1,2# and to independently
estimate fundamental constants of physics and chem
@3–6#.

The dipole polarizability of an atom (a1) corresponds to a
dipole moment induced in the atom interacting with an e
ternal electric field (F1). Similarly, quadrupole polarizability
(a2) is related to a quadrupole moment induced by an ex
nal electric field gradient (F2). There are two other quanti
ties closely related to the polarizabilities, namely, the dip
(g1) and quadrupole (g2) shielding factors. They give a pic
ture of dipole and quadrupole moments induced in the e
tron charge distribution by pertinent nuclear moments. Alt
natively, g1 andg2 can be treated as parameters describ
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1050-2947/2001/65~1!/012506~11!/$20.00 65 0125
f
r

s

f
ten
es
-
d

s

-

a-

ry

-

r-

e

c-
-
g

the change in the field and field gradient, respectively, ex
rienced by the nucleus, resulting from the electron clo
shielding (gl.0) or antishielding (gl,0) @7#. Although the
physical nature of the shielding factors slightly differs fro
that of polarizabilities, they are mathematically close
coupled and in this work they are studied together.

For the beryllium atom the values of these properties h
not been experimentally determined yet and we have to
on the theoretical predictions. In cases like this, it is cruc
to have an access to reliable reference values. The aim of
study was to supply such benchmark values of the dyna
dipole and quadrupole polarizabilities and shielding facto
For an accurate description of polarizability, the electron c
relation has to be taken into consideration at a very h
level. Additionally, good description of the outer, energe
cally less important, region of the electron density distrib
tion is indispensable. These requirements are met by v
flexible, explicitly correlated wave functions employed
this paper.

II. METHOD

The dipole and quadrupole polarizabilities appear as
pansion coefficients in the expression for the energy cha
caused by an electric field and electric field gradient@8#.
Formally, the polarizability is defined as a second derivat
of the perturbation-dependent energy@9#

al52S ]2E~Fl!

]Fl
2 D

Fl→0

~2.1!

and can be related to the second-order perturbation energ
©2001 The American Physical Society06-1
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al522El
(2) . ~2.2!

In the notation incorporated hereinafter,l51 for dipole and
l52 for quadrupole properties.

We shall work in the nonrelativistic infinite nuclear ma
framework. The mass polarization and the relativistic corr
tions @5,6,10# to the dipole polarizability are the subject o
our current study and will be presented separately. T
atomic units are employed throughout this paper. In parti
lar, \51 and the electron massm51 are assumed,a1 and
a2 are expressed in units ofe2a0

2EH
21 ande2a0

4EH
21 , respec-

tively, and the energy is expressed in the Hartree ene
(EH). Both g1 andg2 are dimensionless.

If the total wave functionCl5C (0)1FlCl
(1)1••• ~as-

sumed real and normalized! satisfies the Hellmann-Feynma
theorem@11–13#, thenal and gl can be expressed conve
niently as single integrals@14#:

a1522E C1
(1)S (

i 51

n

yi DC (0)dt, ~2.3!

a2524E C2
(1)S (

i 51

n

yizi DC (0)dt, ~2.4!

g1522E C1
(1)S (

i 51

n
yi

r i
3D C (0)dt, ~2.5!

g2524E C2
(1)S (

i 51

n
yizi

r i
5 D C (0)dt. ~2.6!

The Hellmann-Feynman theorem allowsg1 to be determined
a priori. For ann-electron atom with a nucleus of chargeZ
@14,15#,

g15
n

Z
. ~2.7!

For this fact,g1 was recommended as a useful tool for a
sessment of the quality of approximated wave functions
volved in Eqs.~2.3! and ~2.5!.

A. The ansatz

There are three different functions involved in the form
las ~2.3!–~2.6!. C (0) is the unperturbed or zeroth-order wa
function of the atom;C1

(1) and C2
(1) are the first-order cor-

rection functions resulting from the dipole and quadrup
perturbation, respectively. In this paper, all three functio
are expressed in the form of antisymmetrized linear com
nations ofn-electron basis functions,ck

(k) (k50 or 1!,

C̃ (k)~r ,s!5ÂS Jn,S,MS
~s!(

k51

K(k)

ck
(k)ck

(k)~r !D , ~2.8!

where Jn,S,MS
(s) is an n-electron spin function~e.g.,

J4,0,0(s)5abab2baab2abba1baba for the four-
electron singlet state!, and where, in general, the linear coe
01250
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ficients ck
(1) of the expansion of the first-order function d

pend on the light frequency;r is a 3n-element vector of
electron position coordinates ands representsn spin vari-
ables. The tilde overC is used to distinguish between th
exact wave function and its approximation.

As the many-electron basis functionsck , the exponen-
tially correlated Gaussian~ECG! functions of Singer@16# are
employed:

ck~r !5Lmk
exp@2~r2sk!Ak~r2sk!

T#, ~2.9!

with sk restricted to zero—the natural choice for the positi
of the nucleus. The remaining nonlinear parameters are
ganized in the form of positive definite symmetricn3n ma-
trices Ak . T superscript means a vector transposition. T
preexponential factorLmk

51 for the unperturbed wave

function, Lmk
5ymk

for C̃1
(1), andLmk

5y1zmk
for C̃2

(1) ,yi ,

and zi are the Cartesian components of thei th electron po-
sition vector. Such a choice of the basis functions ensu
respectivelyS,P, andD symmetry of the atomic wave func
tions. Themk subscript labels the electrons. An experien
has shown that the restriction ofmk to a single electron lead
to erroneous convergence. In this work, all possible val
1<mk<n were used and spread out uniformly over all ba
functions. Their presence makes possible using only a sin
spin function without loss of completeness.

The ECG wave functions have been proved to work v
well for few-electron systems yielding in many cases the b
variational energies available in the literature: H2 @17–19#,
HeH1, H3

1 @18#, H3 @20,21#, He2
1 , LiH @22#, He2 @23,24#,

HeHHe1 @25#, Be @26,27#, e1LiH @28#. Also many accurate
expectation values of beryllium atom in position and m
mentum space come from the ECG calculations@24,29,30#.
In the present paper, we extend this list by energies of a
lowest excited states and the second-order properties of

B. Variation-perturbation method

For the harmonic, monochromatic perturbation of an a
gular frequencyv, the stationary-state first-order function
are represented by@31#

Cl
(1)~r ,t !5Cl1

(1) ~r !exp@2 i ~E(0)2v!t#

1Cl2
(1) ~r !exp@2 i ~E(0)1v!t#. ~2.10!

Theplusandminuscomponents,Cl6
(1) , can be obtained from

the solution of the first-order perturbation equations~assum-
ing C (0) is known!

~H (0)2E(0)6v!Cl6
(1) 52ÔlC (0), ~2.11!

where H (0) and E(0) are the unperturbed Hamiltonian an
energy, respectively, andÔ15( i 51

n yi for the dipole andÔ2

5( i 51
n yizi for the quadrupole polarizability. Equation

~2.11! can be solved variationally, i.e., by minimization o
the Hylleraas functional@32,33#,
6-2
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J @Cl6
(1) #5E Cl6

(1) ~H (0)2E(0)6v!Cl6
(1)dt

12E Cl6
(1)ÔlC (0)dt, ~2.12!

with respect to the parameters of the first-order functi
Cl6

(1) determined in this way enter the pertinent expressi
for al6 and gl6 , Eqs.~2.3!–~2.6!. Finally, the frequency-
dependent polarizabilities and shielding factors are obtai
from al(v)5al1(v)1al2(v) and a similar equation fo
gl(v).

As shown by, e.g., Kolker and Michels@34#, whenCl
(1) is

expanded in the complete set of the unperturbed Ham
nian’s eigenfunctions, one arrives at the spectral represe
tion of al(v). From this point of view, the first-order wav
function involves an infinite number of excited states, inclu
ing the continuum, so that it is not a trivial task to gener
such a wave function with an accuracy comparable to th
attainable for the unperturbed systems even if the wave fu
tion includes explicitly the electron correlation factor.

In the past, many accurate results were obtained wi
the variation-perturbation approach in connection with
explicitly correlated wave functions. For example, Glov
and Weinhold@35# employed the Hylleraas-type wave fun
tions in their work devoted to rigorous lower and upp
bounds to the dynamic polarizability of two-electron atom
Sims and Rumble@36# used this type of wave function in th
variation-perturbation calculations of static polarizability
four-electron atoms. The Kołos-Wolniewicz wave functio
was applied to both static@37,38# and dynamic@39–44# di-
pole polarizability of H2 in the ground and excited states.
principle,Cl

(1) should be optimized for each frequency sep
rately. So far, however, only the wave functions with op
mized linear parameters have been reported in literature.
ceptionally, simple adjustments of the nonlinear parame
with respect to the static polarizability have been perform
@35#. Only very recently, Cenceket al. @6# fully optimized
first- and second-order ECG wave functions of He but a
with respect to the static properties. In the present pa
much more flexibility was added to both the method and
wave functions, as the nonlinear parameters ofC̃l

(1) were
optimized with respect to the static and dynamic polariza
ities and also with respect to the lowest excitation energ
The optimization algorithm was similar to that applied to t
unperturbed wave function@26#, but the goal function was
eitheral(v) or the excited-state energy. The nonlinear op
mization, although time consuming, was crucial for obta
ing accurate results. More about our optimization sche
can be found in Refs.@20,24,26,45#.

C. Construction of the first-order wave function

At the absorption frequency the dynamic polarizabiliti
exhibit discontinuities or poles. In practical calculations t
poles appear at the frequenciesv l5El2E0 ( l 51,2, . . . ),
whereE0 is the unperturbed state energy obtained fromC̃ (0)

and is assumed to be known with very high accuracy.El are
consecutive eigenvalues obtained by diagonalization of
01250
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HamiltonianH (0) in the basis of the perturbation correctio

wave functionC̃l
(1) of the appropriate symmetry. As men

tioned above, it is a common practice to optimize this ba
set with respect to the static polarizability, not the energ
El . As a consequence, theal(0) values are recovered wit
reasonable accuracy but when the frequency departs f
zero the accuracy of theal(v) curve drops rapidly and
additionally, the positions of the poles appear too high on
frequency scale. Examples of such a tendency can be fo
even in the most accurate calculations employing explic
correlated wave functions@39–44#.

The procedure described below, based on the variatio
ity of both the energy and the polarizability, allows this d
ficiency to be eliminated. It relies on the observation tha
we merge a basis set of the lengthKl

(1) , whose nonlinear
parameters were optimized with respect to the static pola
ability, with a basis set of the lengthKl

l , optimized with
respect to the energy of thel th eigenvalue of an appropriat
symmetry, then the resulting basis set of the sizeKl

F5Kl
(1)

1Kl
l gives al(Kl

F)>al(Kl
(1)) and simultaneouslyEl(Kl

F)
<El(Kl

l ), i.e., the combined basis set deteriorates neither
polarizability nor the excited state energy obtained from
separate basis sets. In this way we can generate a bas
that combines the advantages of its components and yi
both accurate static polarizability and the position of t
pole.

In general, the first-order correction wave function can
constructed by merging many basis sets, each optimized
different goal functions. In the present paper, the nonlin
parameters of the final expansion ofC̃l

(1) were generated in
several separate optimization steps and the lengthKl

F of the
final expansion was a sum of the sizes of the basis sets
ployed in these steps:Kl

F5( jKl
(1)(v j )1( lKl

l . In the first
group of steps, the nonlinear parameters were optimi
variationally with respect to the polarizability by using th
Hylleraas functional, Eq.~2.12!, at selected frequenciesv j
( j 50,1, . . . ). Thesize of the basis sets optimized in the
steps was labeledKl

(1)(v j ) with explicit dependence on th
frequency in order to emphasize that the optimization w
performed not only for the static polarizability but also
some frequencies from the range 0,v j,E12E0 ~in this
range the Hylleraas variational principle is valid@31#!. The
second group of the steps generates theKl

l -term expansions
with nonlinear variational parameters optimum with resp
to the energy of thel th root of the Hamiltonian diagonalize
with the function of appropriate symmetry:l51 for P states
or l52 for states ofD symmetry. The final basis set of th
sizeKl

F obtained in the above procedure was not optimiz
any further. Optimization of this basis would improve th
selected goal quantity but deteriorate the rest of the feat
of the al(v) function.

The final basis set constructed in this way has the follo
ing advantages over the basis generated in a single step.~i! It
yields improved polarizabilities and excited-state energ
without the time-consuming optimization of large basis se
~ii ! As the final basis set contains the basis functions of s
eral excited states, it ensures that the subsequent poles o
6-3
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JACEK KOMASA PHYSICAL REVIEW A 65 012506
al(v) curves are extremely accurate—their positions co
spond to the excitation energies of the states obtained f
theKl

F-term expansions, i.e., are only a fraction of milliHa
tree in error.~iii ! Forcing the correct position of the pole
and optimization atv.0 ensures that the high accuracy
al is preserved in a wide range of frequencies.

III. RESULTS AND DISCUSSION

A. Test calculations

The approach described in Sec. II C was tested on hel
and lithium atoms, for which exact values of energies a
polarizabilities are available from the literature. In Table
appropriate variational energies and static polarizabilities

TABLE I. Results of the test calculations.

Property Reference Basis size Value

He
E(1 1S) Exact @46# 22.903 724 377 034 119 598

ECG 600 22.903 724 377 022
a1(0) Exact@5# 1.383 192 174 455~1!

ECG 1270 1.383 192 154
g1(0) Exact 1.0000000

ECG 1270 0.9999999
E(2 1P) Exact @47# 22.123 843 086 498 094(5)

ECG 1270 22.123 843 085 6
a2(0) Exact@48# 2.445 083 101~2!

ECG 1800 2.445 083 016
g2(0) Exact N/A

ECG 1800 0.407 681 0
E(3 1D) Exact @47# 22.055 620 732 852 246(6)

ECG 1800 22.055 620 732 38
E(4 1D) Exact @47# 22.031 279 846 178 687(7)

ECG 1800 22.031 279 817

Li
E(2 2S) Exact @49# 27.478 060 323 650 3(71)

ECG 1536 27.478 060 314 3
a1(0) Exact@48# 164.111~2!

ECG 3700 164.11171
g1(0) Exact 1.00000

ECG 3700 0.99973
E(2 2P) Exact @49# 27.410 156 531 763(42)

ECG 3700 27.410 156 22
E(3 2P) @51# 27.337 149 02

ECG 3700 27.337 149 032 2
E(4 2P) @51# 27.311 883 30

ECG 3700 27.311 864
a2(0) Exact@48# 1423.266~5!

ECG 2800 1423.282
g2(0) Exact N/A

ECG 2800 0.7385
E(3 2D) Exact @50# 27.335 523 541 10(43)

ECG 2800 27.335 519
E(4 2D) @51# 27.311 184 77

ECG 2800 27.310 40
01250
-
m

m
d
,
-

tained using the variation-perturbation method from the E
wave functions are confronted with the other most accur
energies available in the literature and with the polarizabi
values computed with the practically exact Hylleraas wa
functions by using the sum over state procedure@5,46–51#.

For the present calculations, the unperturbed ground-s
wave function of He was taken from the work of Cencek a
Kutzelnigg @17#. The 600-term ECG expansion gives th
ground-state energy with 12310212EH of error.

The dipole polarizability first-order expansion was a
sembled from 660-terma1(0)-optimized ECG wave func-
tion and 610-term ECG basis optimized with respect to 21P
state energy. The size of the final basis set wasK1

F51270 and
a1(0)51.383 192 154 obtained in this procedure diffe
from the exact value@5,6# in ninth significant figure. The
dipole shielding factor differs from unity by less than 1027.
The 21P state energy computed in the final basis set is o
1 nanoHartree in error. The first pole of the dynamic pol
izability curve is located~with the same error as the energ!
at v2 1P50.779 881 291.

The dynamic dipole polarizability of He was confronte
with the rigorous upper and lower bounds given by Glov
and Weinhold@35# for frequencies up to the second res
nance. Though none of the components ofC̃1

(1) was opti-
mized atv.0, thea1(v) curve fits perfectly those bounds
Figures 1 and 2 show two curves constructed from Glo
and Weinhold’s data: a1

ub(v)2a1
av(v), and a1

lb(v)
2a1

av(v), compared with thea1(v)2a1
av(v), curve ob-

tained in this work. The ‘‘ub’’ and ‘‘lb’’ superscripts mean
the rigorous upper and, respectively, lower bound curve,
‘‘av’’ is an arithmetic average of them.

For the quadrupole polarizability,C̃2
(1) was built of three

600-term ECG basis sets: one set optimized with respec
a2(0) and two sets with respect to 31D and 41D state en-
ergies. The final 1800-term expansion recovereda2(0)
52.445 083 016 with a relative error of 331028. The poles
of the a2(v) function are located atv3 1D50.848 103 644
andv4 1D50.872 444 5 with all quoted figures being exa

FIG. 1. Projection of the ECG dynamic dipole polarizability
He (1) on the area allowed by the Glover-Weinhold rigoro
bounds~solid lines! @35# at frequencies up to the first excitatio
v2 1P50.779 881 291.
6-4
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The quadrupole shielding factorg2(0)50.407 681 0 is the
most accurate estimation of this quantity in literature. Pre
ous estimations ofg2(0) come from late fifties: 0.424@7#,
0.416@52#, and 0.413@53#.

In the case of lithium atom,C̃ (0) was chosen as 1536
term ECG expansion of Cencek@54#, which yields the
ground-state energy with an error of 9.331029 EH .

Four basis sets ofP symmetry were combined to get th
final 3700-term ECG expansion ofC̃1

(1) : 1200-term basis
optimized with respect to a1(0), one 1300-term
2 2P-optimized basis set, and two 600-term basis sets o
mized with respect to the energy of the 32P and 42P states.
The final dipole polarizabilitya1(0)5164.111 71 agrees
perfectly with Yanet al. result 164.111(2)@48# ~see Table I!.
The dipole shielding factor is equal to 0.999 73. The exc
tion energy to 22P state is 0.06 7904 1EH with 3
31027 EH of error. For the next two excited2P states no
exact calculations are available in literature. The most ac
rate to date are those by Pestka and Woz´nicki @51#. For 32P
state the present ECG calculations give the variational up
bound to the energy that is 0.01mEH lower than the energy
cited in Ref. @51#. For the 42P state their energy is by
20mEH lower that the ECG energy. The appropriate positio
of the dipole polarizability poles arev3 2P50.140 911 3 and
v4 2P50.166 20.

For the calculation of the quadrupole properties a 10
term a2(0)-optimized basis was combined with 1200-te
3 2D-optimized and 600-term 42D-optimized basis sets. Th
final 2800-termC̃2

(1) gave a2(0)51423.282 compared to
1423.266(5)e2a0

4EH
21 obtained by Yanet al. @48#. For un-

known reasons these two results differ by more or less th
times their estimated error bar. The value ofg2(0)50.7385,
which can be compared with 0.7156 estimated by Mahap
and Rao@55#.

Encouragingly the high accuracy of the test results s
ports the assertion that the above-described method of
struction of C̃l

(1) from the ECG functions has a potenti
capability of yielding accurate results also for larger syste
including beryllium atom.

FIG. 2. As in Fig. 1 but at frequencies between the first a
second excitationv3 1P50.848 596 1.
01250
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B. Convergence of the static properties of beryllium

In principle, the Hylleraas functional yields polarizabi
ities that are lower bounds to the exact values. However,
computed polarizabilities would represent rigorous low
bounds only if an exactC (0) was used in solving the
variation-perturbation equations. It is known that the Hylle
aas functional~2.12! is very sensitive to the quality of the
unperturbed wave function. The leading errors inal are of

the second order in the error ofC̃6
(1) , but only of the first

order in the error ofC̃ (0) @35,56#. Therefore, particular effort
was put on the construction of the wave function describ
the unperturbed atom.

The unperturbed beryllium atom wave functions we
generated variationally for many expansion lengths,K (0)

550, . . .,1600. The wave functions withK (0)<1200 were
exactly those of Ref.@26#. The only new wave function with
K (0)51600 yields the nonrelativistic energy of
214.667 355 536EH , which is the lowest variational en
ergy of the ground-state beryllium to date. The estima
error of the energy is less than 1 cm21. Weinhold presented
the formula@57# for the rigorous lower bound to polarizabi
ity even when both wave functions are only approxima
This formula becomes equivalent to the Hylleraas resul
the limit S→1, whereS5^C̃ (0)uC (0)&. The value ofS, a
measure of quality ofC̃ (0), can be estimated using the Ec
art’s @58# or the Weinberger’s@59# inequality. For the 1600-
term ECG wave function, the first one yieldsS
>0.999 991 0, the second—stronger criterion—S
>0.999 992 0. Even the Weinberger’s bound is known
give too weak an estimation@60#, and the true overlap is stil
closer to unity. Very high accuracy of theC̃ (0) applied in the
final calculations allows the error originating from the unpe
turbed wave function to be minimized and in practice t
variationality of the functional~2.12! is preserved with good
precision.

Table II illustrates the influence of the choice ofC̃ (0) on
the static properties evaluated with well-optimized 120
term first-order wave function. For the smallest expansio
the dipole polarizability decreases with the growing ba
size. Only beginning withK (0)5100 it converges monotoni
cally to the final value yielding five stable digits. It is see
thata1(0) obtained even with the smallestK (0) differs from
that obtained withK (0)51600 by less than 0.25%. The qua
rupole polarizability behaves more regularly and gro
monotonically in the whole range ofK (0) displayed in Table
II, yielding four converged figures. Although, fora2(0) the
convergence is slightly slower than in the dipole case,
ready K (0)5150 yieldsa2(0) within 1% of that obtained
with K (0)51600.

The value ofg1(0), which for the neutral Be atom is
known a priori to be equal 1, was evaluated using exac
the same zeroth- and first-order wave function asa1. Devia-
tions of the computedg1(0) from unity can be seen as
rough measure of quality of the pair of wave functions
volved in the computations. From Table II, we see that
ginning with K (0)5300, g1(0) grows monotonically to-
wards 1. Less regular is the behavior ofg2(0) which

d
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TABLE II. Influence of the quality of the zeroth-order wave function on the static polarizabilities
shielding factors.Kl

(1)51200 andE(0) of Eqs.~2.11! from the second column.

K (0) E(0)/EH a1(0) g1(0) a2(0) g2(0)

50 214.665 053 934 37.6897 1.01489 289.192 1.5402
75 214.666 444 767 37.6771 1.00131 292.822 1.5215
100 214.666 892 196 37.6675 0.99827 295.517 1.5145
150 214.667 185 772 37.7023 0.99550 298.084 1.5121
200 214.667 271 965 37.7304 0.99732 299.480 1.5136
300 214.667 315 415 37.7328 0.99714 299.855 1.4868
400 214.667 335 167 37.7382 0.99730 300.205 1.5011
600 214.667 350 195 37.7508 0.99806 300.771 1.4903
800 214.667 353 781 37.7530 0.99873 300.888 1.4871
1200 214.667 355 022 37.7535 0.99911 300.923 1.4883
1600 214.667 355 536 37.7536 0.99911 300.932 1.4875
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oscillates around the final value in order to stabilize fo
significant figures.

A similar analysis of the convergence was performed
C̃l

(1) . Table III contains the polarizabilities and shieldin
factors computed with a series of the first-order wave fu
tions with successively doubled expansions. In their opti
zation, as theC̃ (0), the 1600-term ECG wave function wa
employed. The first-order wave functions of increasing
pansion sizeKl

(1) were optimized with respect toal(0) in-
dependently of each other. The static properties conve
with the C̃l

(1) expansion length slower than it was observ

for C̃ (0). The last doubling of theKl
(1) changesa1(0) by

0.02% anda2(0) by 0.06%. In contrast toC̃ (0) the smallest
C̃l

(1) expansions give results far from the final ones.
In the convergence analysis presented above, the ze

and first-order basis sets were of similar sizes. The ap
ently slower convergence ofal with Kl

(1) than with K (0)

indicates that to saturate the functional space ofCl
(1) still

longer expansions have to be used. We emphasize here
C̃l

(1) were not optimized with respect togl . Both shielding

factors were obtained with theC̃l
(1) optimized with respect

to al alone and this justifies some irregularities in thegl

convergence. Nevertheless, a relative accuracy better
0.1% was achieved for bothg1 andg2. The 1600-term ECG
wave function employed to approximateC (0), though very
accurate, is not strictly exact. Therefore, the polarizabi
results presented here are not rigorously variational. The

TABLE III. Convergence of the static properties with the expa
sion size (Kl

(1)) of the first-order wave function.K (0)51600 and
E(0)5214.667 355 536EH .

Kl
(1) a1(0) g1(0) a2(0) g2(0)

75 37.0952 0.88401 283.173 1.8015
150 37.5774 0.96364 294.890 1.3384
300 37.7154 0.98844 299.691 1.2607
600 37.7462 0.99688 300.760 1.4184
1200 37.7536 0.99911 300.932 1.4875
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sible errors, however, manifest themselves only at furt
significant figures, which was illustrated by the test resu
presented in Sec. III A and the above convergence analy

C. Construction of the final first-order wave functions
of beryllium

In all the individual al optimizations and in the
final calculations reported in this section, the best availa

1600-term wave function was employed asC̃ (0) and
the corresponding unperturbed-state energyE(0)5
214.667 355 536EH was assumed.

The final first-order wave function ofP symmetry with
K1

F54800 was constructed according to the prescript
given in Sec. II C. It was assembled from two polarizabilit
optimized and three energy-optimized basis sets
the following sizes: K1

(1)(0)51200@a1(0)537.7536#,

K1
(1)(0.19)51200@a1(0.19)5912.976#, K1

2 1P51200, K1
3 1P

5600, K1
4 1P5600. The partial and the final results of th

P-state energy spectrum are compared directly in Table
In the square brackets, the polarizabilities obtained in
particular optimizations are quoted for comparison with p
tinent final values listed in Table VI. This comparison giv
an idea on the gain obtained when moving from t
El-optimized wave function to the final wave function. F
example, the energy of the 22P state decreased b
2.331026EH when computed with the final wave functio
compared to the original 1200-term energy-optimized wa
function @27#. This improvement is much larger for th
higher, less carefully optimized states~see Table IV!.

The basis set forC̃2
(1)(K2

F54400) was assembled from
the following partial basis sets: 1200-terma2(0)-optimized
@a2(0)5300.932#, 600-terma2(0.25)-optimized@a2(0.25)
52857.01#, 1200-term E3 1D-optimized, 600-termE4 1D-
optimized, and 800-termE5 1D-optimized. The excited-state
energies resulting from these and the final basis sets
listed in Table IV.

In the case of the dynamic polarizability, the gain from t
methodology applied here is well illustrated by the followin
example. The dipole polarizability atv50.19 obtained from

-
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the a1(0)-optimized wave function is ca. 906e2a0
2EH

21 and
from thea1(0.19)-optimized wave function of the same si
it is by 7e2a0

2EH
21 larger, whereas the final first-order wav

function improves further this value by four units. The ga
observed in the quadrupole polarizability is even more p
nounced:a2(0.25) increases from 2667e2a0

4EH
21 by 190

units when moving from thea2(0)- to a2(0.25)-optimized
function, and by another 64e2a0

4EH
21 in the final calculations.

At this point some comment on the nonstatic polarizab
ity optimization is relevant. The values ofal(v) are arith-
metic sums of theplus and minus components~Sec. II B!

computed from two separate first-order corrections,C̃l6
(1) .

For a fixedl,C̃l1
(1) andC̃l2

(1) are expanded in the same bas
but, because they are solutions to two different equatio
Eqs. ~2.11!, they differ in the linear expansion coefficient
The al1(v) functions vary slowly withv and exhibit no
poles. Theal2 components are responsible for large var
tions in the polarizability value and for the presence of
poles. The nonstatic optimization was performed with
spect to the latter component at a frequency slightly sma
than the first resonance energy. This ensures correct valu
the dynamic polarizability curve at frequencies far from ze

As a by-product of this work, upper bounds to the en
gies of several excitedP and D states of beryllium were
obtained. These are the lowest variational energies know
date. Table IV collects the energies of three lowest state
both symmetries calculated with the final basis sets. For
sake of comparison, the energies obtained in the partic

TABLE IV. 1P and 1D state energies of Be from the ECG wav
function. Excitation energies computed with respect to the grou
state energy214.667 360EH @26#. The atom-based Rydberg con
stantR5109 730.64 cm21 was used to convert the excitation ene
gies fromEH to cm21 .

Excitation energy
Basis size Energy/EH EH cm21

2s2p2 1P
K1

(1)51200 214.473 442 02 0.193918 42557
K1

F54800 214.473 444 33 0.193916 42557~42565.35!a

2s3p3 1P
K1

(1)5600 214.393 049 78 0.274310 60200
K1

F54800 214.393 113 93 0.274246 60186~60187.34!a

2s4p4 1P
K1

(1)5600 214.361 761 67 0.305598 67067
K1

F54800 214.361 789 21 0.305571 67061~67034.70!a

2p23 1D
K2

(1)51200 214.408 181 1 0.25917 56879
K2

F54400 214.408 192 3 0.25916 56876~56882.43!a

2s3d4 1D
K2

(1)5600 214.373 338 4 0.29402 64525
K2

F54400 214.373 563 1 0.29379 64476~64428.31!a

2s4d5 1D
K2

(1)5800 214.348 847 8 0.31851 69901
K2

F54400 214.349 253 2 0.31811 69812~68780.86!a

aExperimental data from Ref.@61#.
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state optimization are also given. They illustrate the ene
gain resulting from the methodology employed here. T
accuracy of these energies can be estimated by a compa
of the excitation energies presented also in this table with
experimental lines available from NIST Atomic Spectra D
tabase@61#. Note, however, that the theoretical values do n
include relativistic or mass polarization effects.

D. Comparison of the static properties with literature data

A multitude of calculations of the static dipole polarizab
ity of Be have been reported. Many of them were perform
using methods incorporating electron correlation. An ext
sive listing of such results could be created from tables
Refs. @36,62–64#. Most of the numerical values fits in th
~36;39! interval. On the basis of the present ECG low
bound equal to 37.755e2a0

2EH
21 , a large part of them could

be ruled out. Table V contains only selected results, obtai
by correlated methods, which do not differ much from t
present prediction, even when they are not above the E
lower bound.

Some papers deserve separate comments. Sims
Rumble @36# applied the Weinhold’s rigorous lower-boun
procedure to beryllium atom. According to the present st
dards, however, their wave functions were of low qual
~their C̃ (0) and C̃1

(1) gaveE2 1S andE2 1P energies with er-

-
TABLE V. Comparison of the static polarizabilities with th

selected literature data computed at the correlated level.

a1 Method Reference

37.063.4 CI Kolker and Michels@34#

36.561.7 MCSCF Stevens and Billingsley,@68#

36.660.8 VP Sims and Rumble@36#

37.84 PNO-CEPA Werner and Meyer@69#

37.59 VP CI Figariet al. @66#

37.69 CI Müller et al. @70#

37.64 MCTDHF Graham and Yeager@71#

37.360.7 MPPT~4! Maroulis and Thakkar@63#

37.70 CCSDT-1a Urbanet al. @72#

37.53 FCI Koch and Harrison@73#

37.62 MCHF Themelis and Nicolaides@74#

37.7360.05 CC-R12 Tunega, Noga and Klopper@65#

37.6 TDGI Bégué, Merawa and Pouchan@62#

37.67 CCSD~T! Papadopoulos and Sadlej@75#

37.9 QCISD~T! Leung and Breckenridge@76#

37.755 ECG This work

a2

301.813.5 CEPA Reinsch and Meyer@77#

299.4 VP CI Figari, Musso and Magnasco@66#

298.862.6 MPPT~4! Maroulis and Thakkar@63#

313.4 MPPT~2! Thakkar@67#

301.8 MPPT~3! Thakkar@67#

298.8 CCD Thakkar@67#

285.6 TDGI Bégué, Merawa and Pouchan@62#

300.96 ECG This work
6-7
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rors of 81031026 and 98031026EH , respectively!, and the
lower bound 35.75e2a0

2EH
21 was too low to be of discrimi-

nating quality. Sims and Rumble obtained alsoa1(0) from
the variation-perturbation calculation. But the error bars
signed to their result 36.660.8 were too narrow to reach th
ECG lower bound.

To date the most accurate prediction of the static pola
ability a1(0)537.7360.05 comes from the calculations b
Tunegaet al. @65# who used the finite-field technique in com
bination with the explicitly correlated version of the couple
cluster method~CC-R12! and a high-quality basis set. Th
uncertainty, although narrow, is wide enough to overlap w
the region allowed by the ECG lower bound.

The correlated calculations of the quadrupole static po
izability are less common in literature. Table V shows th
the predicteda2(0) cover a wide range of numerical value

TABLE VI. Dynamic dipole and quadrupole polarizabilities an
shielding factors of beryllium atom at selected frequenciesv.
K (0)51600, K1

F54800, K2
F54400, and E(0)5

214.667 355 536EH .

v
a1(v)/

e2a0
2EH

21 g1(v) v
a2(v)/

e2a0
4EH

21 g2(v)

0.00 37.754950 0.998434 0.00 300.9589 1.47
0.01 37.852988 0.999382 0.01 301.3196 1.47
0.02 38.150249 1.002253 0.02 302.4072 1.48
0.03 38.656440 1.007140 0.03 304.2396 1.49
0.04 39.388631 1.014205 0.04 306.8470 1.51
0.05 40.372756 1.023691 0.05 310.2735 1.53
0.06 41.646046 1.035951 0.06 314.5793 1.55
0.07 43.260859 1.051479 0.07 319.8436 1.58
0.08 45.290698 1.070968 0.08 326.1685 1.62
0.09 47.839844 1.095402 0.09 333.6848 1.67
0.10 51.059268 1.126204 0.10 342.5598 1.72
0.11 55.174019 1.165495 0.11 353.0089 1.79
0.12 60.532939 1.216561 0.12 365.3113 1.87
0.13 67.705127 1.284761 0.13 379.8335 1.96
0.14 77.683821 1.379449 0.14 397.0648 2.07
0.15 92.368950 1.518506 0.15 417.6713 2.21
0.16 115.90351 1.740924 0.16 442.5833 2.38
0.17 159.36329 2.150930 0.17 473.1395 2.59
0.18 265.67376 3.152431 0.18 511.3405 2.86
0.19 916.76453 9.280019 0.19 560.3198 3.21

0.20 625.2886 3.6995
0.20 2571.44201 24.721303 0.21 715.6259 4.392
0.21 2209.86046 21.317393 0.22 850.1554 5.458
0.22 2125.56646 20.522272 0.23 1073.241 7.290
0.23 288.024602 20.166683 0.24 1521.165 11.103
0.24 266.761519 0.036312 0.25 2922.734 23.45
0.25 252.992792 0.169870
0.26 243.086922 0.269998 0.2721916.888 221.399
0.27 233.515341 0.388546 0.28 2781.6915 212.502

0.29 2171.7518 213.531
0.28 234.633425 0.317771
0.29 228.630317 0.395380 0.30 2306.1427 23.1167
0.30 224.689391 0.441820 0.31 141.543225.8349
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285.5<a2(0)<313.4. The ECG value more or less halv
this interval so that some of these results@62,66,67# fall be-
low the ECG lower bounda2(0)5300.96.

There are no accurate calculations of shielding factors
literature. The present calculations yieldg1(0)50.9984 with
an error of about 1631024. This relatively large error is
justified by the fact that the wave functions employed
evaluation ofg1 have not been optimized with respect to th
quantity and that the electric field operator emphasizes
space near the nucleus whereas the dipole moment ope
used in the optimization ofC̃1

(1)—the space remote from th
nucleus.

The static quadrupole shielding factor has been rece
obtained from the quadrupole moment data of helium dim
at very short internuclear distances@29#. The presentg2(0)
51.4769 confirms the estimatedg2(0)51.5(1) of Ref.@29#.
There are also other, 40-year old, results forg2(0): 1.24 and
0.77 by Dalgarno and McNamee@78#, 0.72 by Cohenet al.
@79#, and 0.75 by Kelly@80#.

E. Final dynamic polarizabilities and shielding factors

The recommended dynamic polarizability and shieldi
factor curves at frequencies up to the third resonancesv
<0.31) are collected in Table VI and illustrated in Figs.
and 4. The dipole shielding factor curve mimics the shape
al(v) and there is no need to drawg1(v) separately. A
rough similarity ofa1(v) and g1(v) curves can be under
stood in view of the following relation@81,82#:

g1~v!5
v2

Z
a1~v!1g1~0!. ~3.1!

The position of the first pole ofa1(v) (v2 1P50.193 916),
corresponding to 21P←2 1S transition, is merely abou
0.0231023EH in error @27#. This fact in connection with the

FIG. 3. Dynamic dipole polarizability of Be from ECG calcula
tions ~solid line!. The two poles at v50.193 916 and v
50.274 246, result from the 21P←2 1S and 31P←2 1S transi-
tions, respectively. For comparison, the time-dependent gauge
variant results by Be´guéet al. @62# (1) and full configuration in-
teraction results by Koch and Harrison@73# (3) are also presented
6-8
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dynamic-polarizability-optimized component ofC̃1
(1) make

the first branch of thea1(v) curve very accurate—it is pre
sumed that at least four significant figures remain correc
the whole interval excluding the nearest neighborhood of
pole. The location of the two remaining poles is less prec
but still their errors are much bellow 131023EH . An esti-
mation of their accuracy can be based on the compar
with the experimental lines collected in Table IV
The first pole ofa2(v), corresponding to 31D←2 1S reso-
nance, appears atv3 1D50.259 16. The second, atv4 1D
50.293 75, results from 41D←2 1S transition. The overall
shape of thea2(v) curve is similar toa1(v), i.e., in the
intervals between poles it is a monotonically growing fun
tion of frequency~Fig. 4!. The second and higher branches
al(v) go from 2` to 1`. They must, therefore, at som
frequencies cross theal50 line. Of some interest might b
the location of the lowest frequency at whichal vanish
(v0). Unfortunately, for both polarizabilitiesv0 lies very
close to the second resonance pole, so their values are u
tain. For the dipole polarizabilityv0.0.2737, whereas the
second pole lies atv3 1P50.274 25. In the quadrupole cas
v0.0.2912 and the second pole appears atv4 1D
50.293 75. Contrary to the dipole case, the quadrup
shielding factor curve differs in shape from that of polar
ability. This difference is particularly well visible in the sec
ond and third branches~see Fig. 4!, e.g., there is a loca
maximum ing2(v) at v'0.285.

There are two calculations on the dynamic polarizabilit
of Be reported in the literature. For the sake of comparis
their results are displayed in Figs. 3 and 4.

Koch and Harrison @73# calculated the frequency
dependent dipole polarizability at the full configuration inte
action ~FCI! level. Up to the first excitation frequency the
curve is below the present ECG lower bound. At zero f
quency, the difference between the ECG and their value
0.32e2a0

2EH
21 and it increases with frequency to several un

nearv50.165. Also at frequencies above the first resona

FIG. 4. Dynamic quadrupole polarizability~solid line, left axis!
and quadrupole shielding factor~dotted line, right axis! of Be from
ECG calculations. 31D←2 1S and 41D←21S transitions are
marked atv50.259 16 andv4 1D50.293 75, respectively. Addi-
tionally, results of TDGI calculations ofa2 by Béguéet al. @62# are
shown as1.
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the FCI curve goes several percent below the ECG cu
The first resonance energy quoted in@73# is ca. 1.4
31023EH above the correct value.

Recently Be´gué et al. @62# have calculated the dynami
dipole and quadrupole polarizabilities of the ground and
cited 1S states of beryllium by using time-dependent gau
invariant method~TDGI!. The poles of the TDGIa1(v) ap-
pear at positions higher than those of the resonance freq
cies by approximately 231023EH and 1131023EH for the
first and the second resonance, respectively. Up to the
resonance, theira1(v) curve goes below the ECG lowe
bound with a discrepancy increasing with frequency. In
second interval of frequencies, the TDGI polarizability li
significantly higher than the present one and those calcul
by Koch and Harrison~see Fig. 4!. There is no rigorous
proof that the Hylleraas functional gives the lower bound
the exact polarizability also at frequencies above the fi
resonance, however, the convergence of both dipole
quadrupole polarizabilities with increasing quality of th
wave functions suggests that this is the case. Anyhow,
discrepancy between Be´guéet al.and ECG results is so larg
that their calculations cannot be recognized as more accu
but rather contaminated by some systematic error. No s
discrepancy is observed fora2(v).

The dynamic shielding factors data are very scarce in
erature. For beryllium the onlyg1(v) curve was calculated
at the coupled Hartree-Fock level in 1969 by Kaveeshw
et al. @81#. This curve, though starts with the correct sta
value, grows too fast and has the first pole atv50.175
~compared with the correct value 0.1939).

F. Dispersion properties of Be

For small frequencies the dynamic polarizabilities can
represented by a power series inv2, the so-called Cauchy
expansion,

al~v!5 (
k50

`

Sl~22k22!v2k, ~3.2!

with the coefficientsSl identified as the dipole or quadrupo
oscillator sum rules. A polynomial fit to the data in Table V
in the range 0.0<v<0.10 revealed the following value
of the first few Cauchy moments~with the statistical
uncertainty in the last digit!: S1(22)537.755(37.6),
S1(24)5983.3(945.9), S1(26)52.263104(1.613104),
S1(28)51.213106 (1.543106). For the sake of compari
son, values ofS1 obtained by Be´gué et al. @62# are shown
in parentheses. Similarly,a2(v) expanded according to
Eq. ~3.2! yields the following quadrupole oscillator sum
S2(22)5300.96, S2(24)53603.8, S2(26)54.663104,
S2(28)59.033106.

The knowledge of the frequency dependence of the dip
polarizability enables an evaluation of other dispersion pr
erties of hypothetical atomic vapors, like the refractive ind
or the Verdet constant@10#. The index of refraction,n(v), is
linked with a1 by the Lorentz-Lorenz equation
6-9
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n221

n212
5

4pNL

3
a1~v!, ~3.3!

where the Loschmidt’s numberNL52.686 777 5(47)
31025 m23. Typically n'1, and the left-hand side of Eq
~3.3! can be well approximated by23 (n21) which, in con-
nection with Eq.~3.2!, leads to the following frequency de
pendence ofn:

n2159.443102410.0246v210.565v4130.3v6.
~3.4!

Inserting the first few terms of Eq.~3.2! into the formula
for the Verdet constant~expressed in radea0\21) @83,84#,

V~v!5Kv
da1~v!

dv
, ~3.5!

whereK50.912 742 1331027 yields

V~v!51.79531024v218.25131023v410.6627v6.
~3.6!

Jo”rgensenet al. @85# computedV(v) for Be using the first
~TDHF! and second~SOPPA! order polarization propagato
methods. At small frequencies, the presentV(v) lies be-
tween the TDHF and SOPPA curves.

The numerical values considered above are valid at s
dard temperature and pressure at which beryllium is a s
metal. The temperature dependence ofn(v) andV(v) is not
considered here and it will be therefore difficult to veri
experimentally the above results, but they may be of inte
as a reference in theoretical study.
ch

et

01250
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IV. SUMMARY

The main advantage of the applied method is its variati
ality. The lower-bound polarizabilities obtained with th
ECG wave functions allow the quality of the results obtain
with other methods to be assessed. A comparison of the
erature dipole and quadrupole polarizabilities with the low
bounds presented in this paper reveals that the majority
the literature data are underestimated.

The high quality of the unperturbed wave function in co
nection with the method of the construction of the first-ord
wave function ensures high accuracy of the polarizabilit
and shielding factors in a wide range of frequencies and p
diction of the correct positions of the poles. The results
these large-scale calculations can be recommended as b
marks.

As a by-product of the procedure of construction ofC̃l
(1) ,

new upper-bound energies of several lowest-excited state
Be and 32P state of Li were obtained. Also,g2(0) values of
He and Li are the most accurate to date.
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