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Streszczenie pracy w j. polskim 

 

Głównym celem przeprowadzonych badań było zbadanie potencjału rozwiązań z 

obszaru syntezy i analizy w skali nano, do zastosowań  biomedycznych. Część pracy 

dotycząca syntezy  opiera się na otrzymywaniu i funkcjonalizacji superparamagnetycznych 

nanocząstek tlenku żelaza (SPION), ocenie ich właściwości biologicznych oraz 

wykorzystaniu do tworzenia cząstek wirusopodobnych (VLP) z magnetycznym rdzeniem. 

Część analityczna pracy oparta jest na nanoindentacji ludzkiej chrząstki stawu kolanowego 

objętej chorobą zwyrodnieniową stawów. Zaprezentowane wyniki podkreślają wysoki 

potencjał nanotechnologii w biomedycynie, wskazując jednocześnie pewne przeszkody na 

drodze do jej powszechnego zastosowania. 

Pierwsza praca wchodząca w skład głównego osiągnięcia naukowego dotyczyła 

ewaluacji in vitro superparamagnetycznych nanocząstek tlenku żelaza 

funkcjonalizowanych diheksadecylofosoforanem (SPION-DHP). Otrzymane wyniki ukazują 

wysoki stopień biokompatybilności otrzymanych nanocząstek, czyniąc je obiecującym 

materiałem do zastosowań biomedycznych. 

Druga praca wchodząca w skład głównego osiągnięcia naukowego dotyczyła 

tworzenia cząstek wirusopodobych z magnetycznym rdzeniem na bazie białka 

rdzeniowego wirusa zapalenia wątroby typu B oraz funkcjonalizowanych nanocząstek 

tlenku żelaza. W tym celu wykorzystano opisany w pierwszej pracy diheksadecylofosforan  

oraz inny związek funkcjonalizujący. Przeprowadzone badania pozwoliły na efektywne 

otrzymywanie cząstek wirusopodobnych z magnetycznym rdzeniem, stanowiąc istotny 

wkład w ten obszar nauki. 

Trzecia praca  wchodząca w skład głównego osiągnięcia naukowego dotyczyła 

analizy właściwości mechanicznych ludzkiej chrząstki stawowej pacjentów z chorobą  

poddanych zabiegowi całkowitej alloplastyki stawu kolanowego, oraz korelacji 

otrzymanych wyników ze stanem klinicznym pacjentów. Badanie zostało przeprowadzone 

na próbie 75 pacjentów. Otrzymane wyniki ukazują potencjał nanoindentacji do 

zastosowań w badaniach dotyczących progresji chorób degeneracyjnych powierzchni 

stawowych.  

Podsumowując, prace wchodzące w skład głównego osiągnięcia naukowego 

dotyczą metod syntezy i analizy w skali nano do zastosowań w obszarach biomedycznych.    
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1. General goals of the thesis 

 

The main goal of the presented research was to investigate the potential of 

nanoscale synthesis and analysis for biomedical applications. The synthetic part of the 

thesis is based on the synthesis and functionalization of superparamagnetic iron oxide 

nanoparticles (SPIONs), evaluation of their biological properties, and their utilization for 

the creation of virus-like particles (VLPs) with magnetic core. The analytical part of the 

thesis is based on the nanoindentation of human osteoarthritic knee joint cartilage. The 

conducted research highlights the yet untapped potential of nanotechnology in 

biomedicine while pinpointing certain hurdles on its way to widespread adoption.  

 

2. Specific goals of particular core scientific achievements 
 

 In the first core scientific achievement, the aim was to conduct an in vitro 

evaluation of DHP-functionalized superparamagnetic iron oxide nanoparticles  

(SPION-DHP). The study included synthesis and functionalization of SPION-DHP, followed 

by a set of biological experiments aiming to evaluate biocompatibility of the obtained 

nanoparticles. The study included following biological analyses: cytotoxicity and 

proliferation assays, reactive oxygen species assay, SPIONs uptake analysis (via iron 

staining and ICP-MS), gene expression analysis. A set of the following genes was selected 

for the RT-qPCR analysis: alkaline phosphatase (ALPL); ferritin light chain (FTL); 

serine/threonine protein phosphatase 2A (PP2A); protein tyrosine phosphatase 

nonreceptor type 11 (PTPN11); transferrin receptor 1 (TFRC). The experiments were 

conducted on SW1353 (human chondrosarcoma) and TCam-2 (human seminoma) cancer 

derived cell lines.  

In the second core scientific achievement, the goal was to obtain virus-like 

particles with a magnetic core composed of Hepatitis B virus core protein (HBc) and 

functionalized SPIONs. As the coating compound`s length and charge are crucial for the 

assembly efficacy and stability of the resulting VLPs, two compounds were selected for 

functionalization: 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy-

(polyethyleneglycol)-2000]  and DHP. The HBc protein was obtained via agroinfection of 

Nicotiana benthamiana with pEAQ-HBc plasmid. The VLP assembly was evaluated with 

transmission electron microscopy and functionality testing (ELISA).  
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In the third core scientific achievement, a nanoindentation study was conducted 

on cartilage samples obtained from osteoarthritic patients subjected to the total knee 

replacement procedure. The main objective of this work was to investigate the correlation 

between patients` clinical state and the mechanical properties of the resected knee 

cartilage. This study has been conducted on a sample of 75 patients.  The cartilage samples 

from both high weight bearing (HWB) and low weight bearing (LWB) femoral condyles 

were collected and subsequently analyzed via nanoindentation. There was no prior 

scientific data regarding the optimal sample preparation methodology, what is crucial for 

obtaining reliable data. The sample has to remain stable during the measurement, while 

maintaining high level of hydration, corresponding to physiological conditions. 

Additionally, the fixative should not interfere with mechanical properties of the sample. 

The evaluated mechanical properties were correlated with patients` clinical data and 

subjected to statistical analysis, providing insight into the progression of  osteoarthritis. 

In summary, the core scientific achievement is based on the application of 

nanotechnology in biomedicine, spanning from synthetic to analytical perspectives. The 

undertaken research encompasses a broad range of topics with a common denominator 

of “nanotechnology in biomedicine”.  
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3. Scientific resume 

 

After finishing education at the High School of the Insurgents of Greater Poland in 

Środa Wielkopolska, 09.2008, I started studying at the Medical-Vocational School in 

Poznań as a pharmacy technician, which I completed on 06.2010. Then, on 10.2010,  

I started the first degree studies at the Medical University of Karol Marcinkowski in Poznań 

in the field of Medical Biotechnology. I completed my BA thesis entitled "Impact of ionic 

liquid [CC] [MCPA] on apoptosis of A2780 cell lines derived from ovarian cancer" at the 

Department and Cell Biology Department under the supervision of dr Anna Szczerba in 

07.2013. Then,  I started my II degree studies on 10.2013 at the Faculty of Biology of the 

University of Adam Mickiewicz University in Poznań, majoring in Biotechnology - studies 

in English. I completed my master's thesis entitled "Radiobiological effects of ionizing 

radiation on embryoid bodies" at the Laboratory of Radiobiology, Greater Poland Cancer 

Centre in Poznań, under the supervision of dr hab. Wiktoria Suchorska. During my work,  

I received an internal grant of the same title, financed by the Greater Poland Cancer 

Centre. 20.08 - 02.08.2014 I took part in the intensive Erasmus program "PLASMAG - 

Plasmonic and Magnetic Nanomaterials. Erasmus Intensive Program Freie University 

Berlin, Germany." I received my master's degree in biotechnology on 09.2015. After 

completing my second degree studies, on 07.2015, I started working as a researcher in 

the MAESTRO project titled "Targeted magnetic core viral shell particles" under the 

supervision of prof. Michał Giersig. After the project`s completion in 04.2017, I became  

a Ph.D. student in the OPUS project by prof. Giersig, titled "Synthesis, toxicological and 

functional studies on multi-walled carbon nanotubes as a scaffold for tissue engineering 

techniques in articular cartilage repair". In parallel, 09.2017 I started Ph.D. studies at the 

Faculty of Chemistry at the University of Adam Mickiewicz in Poznań in the "ChemInter" 

course, implemented under the project POWR.03.02.00-00-I026/16. 

I have been cooperating with prof. Jakub D. Rybka since 2015, which resulted in a 

jointly prepared grant application for the LIDER titled "MeniScaff 3D - 3D bioprinted 

carbon nanotube-enhanced scaffolds for stimulated chondrogenic differentiation of 

mesenchymal stem cells for meniscus regeneration", which obtained funding of  

1 199 906 PLN, and in which I am employed since 11.2018 as the main co-investigator. In 

2019, I took part in a summer school organized by Summer School Utrecht entitled "3D 
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Printing and Biofabrication". In the period from 01/08/2019 to 01/02/2020, I undertook  

a six-month internship at The Institute of Cancer Research, London, UK, under the 

supervision of prof. dr hab. Gabriela Kramer-Marek in the Preclinical Molecular Imaging 

team. During the internship, my research topics concerned the use of functionalized 

carbon nanotubes for near-infrared photoimmunotherapy in the treatment of 

glioblastoma multiforme. 

In February 2020, together with prof. Rybka and the team, we decided to engage 

in the fight against the SARS-CoV-2 pandemic. As a result, we have co-authored  

a successful grant application titled “Development and verification of the new COVID-19 

Immunodiagnostic Tool” funded by NCBiR under the “Single-name hospitals” call, 

acquiring 2 652 000 PLN. Since January 2021, I work in the project as a researcher. The 

results obtained during the first quarter allowed for patent application titled “Hybrid 

nanoparticles binding antibodies, the method of their production and use for binding 

specific anti-SARS-CoV-2 antibodies”. The ongoing work has been directed toward 

expanding the technology into other use cases.  

The initiative has resulted in the creation of a research team composed of the 

Faculty of Biology at Adam Mickiewicz University (AMU), the Center for Advanced 

Technology at AMU, the Institute of Molecular Biology and Biotechnology at Poznań 

University of Medical Sciences (PUMS), and private companies: Cofactor and RobTech. 

The team is chaired by the Deputy Director of the AMU Center for Advanced Technologies, 

prof. Jakub D. Rybka. 

The research initiated with the LIDER project resulted in a cooperation with the 

Foundation of Research and Science Development (FRSD) and the Medical University of 

Warsaw (MUW). Jointly with the FRSD and the MUW we have successfully applied for 

funding under TECHMATSTRATEG (NCBiR) call, with a grant proposal titled “Development 

of bioinks for 3D bioprinting based on chemically modified porcine dECM, enriched with 

recombinant hybrid proteins, nanomaterials and synthetic polymers”. The project 

acquired funding of 22 444 594 PLN. Currently, I work in the project as a Senior Bioprinting 

Specialist.  

Adopting the term coined by the renowned French economist Frédéric Bastiat, my 

work can be divided into "That Which is Seen and That Which is Not Seen." The visible part 

being publications and conferences track record, while invisible being filed grant 
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applications. During my Ph.D. studies, I have co-authored more than fifteen grant 

applications, including such proposals as, e.g. LIDER, OPUS, POIR, TECHMATSTRATEG, 

MINIATURA,  FirstTeam, from all major national agencies NCN, NCBiR, FNP, ABM, 

acquiring 26 296 500 PLN in total.  

During my scientific journey, I have often undertaken new research topics, which 

always has resulted in broadening my scientific horizons. The wide range of subjects is 

reflected in the scope of my scientific achievements and ongoing research endeavors. 

Multidisciplinarity of research is one of the main currents of modern science, promoted 

by the most prestigious academic centers in the world. Presumably, quoting 

Shakespeare's Hamlet: "there is a method in my madness," and the scientific path  

I choose to tread will lead to a holistic understanding of the Nature, rather than a chaotic 

and superficial experience of many subjects.  

Time will tell.  

 

4. Introduction 

 

Nanotechnology is a rapidly developing field of multidisciplinary science, 

combining such fields as, e.g., chemistry, physics, biology. This work is focused on the 

synthesis and analysis at the nanoscale, on the example of virus-like particles (VLPs) with 

magnetic core and nanoindentation. 

The biomedical applications of superparamagnetic iron oxide nanoparticles 

(SPIONs) is a topic that gained wide attention. Exceptional magnetic properties, high 

biocompatibility, precise size/shape control, and flexible surface modifications have led 

to many suitable solutions in magnetic hyperthermia, targeted drug delivery, magnetic 

resonance imaging (MRI) contrast, bioseparation, antimicrobial properties. Magnetic 

particle imaging (MPI) has recently emerged as a non-invasive imaging technique, based 

on SPIONs, which provides quantitative data rather than acting as an MRI contrasting 

agent. MPI can be utilized for cell tracking, tissue perfusion, and MPI-guided hyperthermia 

[1]. Iron oxide nanoparticles can also be effectively used as theranostic agents, combining 

targeted drug delivery, magnetic imaging, and local hyperthermia or thermal ablation [2]. 

SPIONs were also successfully used as photocatalyst and adsorbent in wastewater 

treatment [3]. In general, SPIONs can be viewed as multi-purpose particles, with 
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exceptional biocompatibility and outstanding functional design flexibility. The synthetic 

routes for SPIONs can be divided into two broad categories: top-down approach, and 

bottom-up approach.  

The top-down approach focuses on a mechanical disruption of the bulk material 

through grinding and milling techniques. The milling can be divided into dry, and wet 

milling methods. A significant shortcoming of dry milling stems from a phenomenon 

known as “cold-welding”, in which the particles fuse together, forming larger aggregates. 

In this method, only sub-micrometer particles can be obtained [4]. Interestingly, an 

improved method of mechanical disruption called high-energy ball milling (HEBM) was 

shown to produce iron particles in 2-4 nm range [5]. To overcome the cold-welding effect 

without the need for increased kinetic energy, a wet milling method can be used. In this 

method, a water with or without surfactant is added to the milling jar, decreasing the 

surface energy of the particles, thus inhibiting the cold-welding. Using this method, 30 nm 

iron oxide nanoparticles were obtained [6]. Despite being environmentally friendly due to 

the lack of required solvents and chemicals, top-down approach of nanoparticles 

synthesis suffers from an inherent drawback of high polydispersity. Unfortunately, high 

levels of polydispersity disqualify nanoparticles from in vivo usage, as it directly affects 

various aspects of ADME (Adsorption, Metabolism, Elimination), making its` physiological 

faith unpredictable [7].  

In turn, the bottom-up approach provides more controllable size distribution and 

also enables design of the surface properties via functionalization. There are several 

approaches to bottom-up synthesis including, but not limited to: co-precipitation, sol-gel 

reaction, sonochemical synthesis, hydrothermal synthesis, microemulsion reaction, 

thermal decomposition.  

The thermal decomposition is not the most simplistic one, however, provides the 

highest degree of monodisperisty, colloidal stability, and scalability. In brief, the reaction 

of thermal decomposition of iron (III) acetylacetonate is performed under inert gas 

conditions (N2, Ar), in an organic solvent (e.g. 1-octadecene), in the presence of 

surfactant(s) (e.g. oleic acid, oleylamine).  The molar ratio between the Fe(acac)3 and the 

surfactants is used to determine the size and shape of the resulting particles. Other factors 

such as time-at-temperature, solvent type, or gas flow rate may also affect the 

morphology of the SPIONs and have to be taken into consideration [8]. The main drawback 
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of this approach is the necessity for further functionalization as the resulted SPIONs are 

water insoluble. However, in my opinion the pros heavily outweigh cones, and therefore 

thermal decomposition was selected for the SPIONs synthesis.  

As described above, SPIONs are an excellent choice for biomedical applications, 

and under this assumption, were selected for the core magnetic material for VLPs 

creation. The requirement of water solubility, highly negative surface charge, low 

production cost, and a straightforward functionalization route pinpointed several 

candidate coating compounds, from which dihexadecyl phosphate (DHP) was selected for 

SPIONs functionalization. Our previously published [NSA 5],  successful utilization of DHP-

coated SPIONs for VLPs creation has sparked our interest in detailing its biocompatibility, 

which has led to the publication listed as the first core scientific achievement [CSA 1]. 

Virus-like particles are constructs composed of viral 

proteins with an ordered structure (Fig. 1). Due to their 

native ability to self-assemble, structural proteins of the 

capsid are most commonly used for the VLPs creation. 

Importantly, VLPs are devoid of viral genetic material and, 

therefore, do not pose the risk of infection. Homo-

multimeric construction of a capsid's subunits allows for 

relative ease of modification through standard techniques 

of protein engineering. A high degree of epitope ordering 

translates into high immunogenicity, which is particularly important for vaccines. 

Currently, there are several vaccines available on the market, developed based on VLP 

technology: Cervarix, Gardasil against HPV (human papillomavirus), Sci-B-Vac against HBV 

(hepatitis B virus) or Mosquirix against malaria [9]. Additionally, there is an ongoing 

development focused on multivalent vaccines, capable of presenting several antigens, 

characteristic of different viruses. For example, a vaccine prototype has been developed 

against Zika, Chikungunya, Yellow Fever, and Japanese Encephalitis, which share a 

common vector of infection – a mosquito [10]. Due to a high tissue specificity 

characteristic for viruses, VLPs can also be applied in targeted drug delivery [11]. For VLPs 

production, standard protein expression systems can be utilized, e.g., e.coli, yeasts, 

insects, plants, or mammalian cell lines [12]. 

Figure 1. Schematic 
representation of a virus-like 
particle with magnetic core. 
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The primary mechanism driving viral self-assembly is an electrostatic interaction 

between positively charged inward part of capsid subunits and negatively charged nucleic 

acid. This property allows for a substitution of the genetic material with other negatively 

charged functional constituents while maintaining the capacity for self-assembly. In silico 

simulations revealed a high complexity of the kinetics involved in this process. It was 

demonstrated that the introduction of a core in size commensurate with the inner 

diameter of a capsid, may facilitate the assembly and improve the overall stability of VLPs 

[13,14]. Additionally, the introduction of a core particle may provide extended 

functionality. In the second core scientific achievement [CSA 2], Hepatitis B virus core 

protein (HBc), and DHP functionalized iron oxide nanoparticles were used to create virus-

like particles with a magnetic core.  

Nanotechnology in biomedicine extends beyond the search of novel nanomaterials 

and synthetic routes, encompassing an equally promising field of analyses at the nano 

scale. The analytical aspect of this work is focused on the nanoindentation of human 

cartilage tissue. In general, indentation tests are performed to assess the mechanical 

properties of a sample and can be conducted at different scales (macro, micro, nano). 

Regardless of the scale, they are based on the same principle.  A hard tip with defined 

mechanical properties is pushed into the sample. The load applied on the tip is gradually 

increased until reaching a previously specified value. The probe penetrates the sample to 

a specified depth and is subsequently removed from the material. During the whole 

process, the load applied and the displacement of the probe are recorded, resulting in a 

load-displacement curve (Fig. 2).  

 

Lo
ad

, 𝑃
 

Dispacement, ℎ 

𝑃𝑚𝑎𝑥  

Figure 2. Load-displacement curve. 
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From the load-displacement curve, the mechanical properties of a sample can be 

derived. The hardness of a sample can be defined as relative resistance of the material's 

surface to penetration by a harder body. In order to calculate the hardness (𝐻), an exact 

geometry of the probe has to be specified as it is defined as the maximum load (𝑃𝑚𝑎𝑥), 

divided by the residual indentation area (𝐴𝑟), according to the formula: 

 

𝐻 =
𝑃𝑚𝑎𝑥

𝐴𝑟
 

𝐻 – hardness 
𝑃𝑚𝑎𝑥  – maximum load 
𝐴𝑟 – residual indentation area 
 

Another mechanical property that can be derived from the indentation technique 

is the Young's modulus, describing the stiffness of a sample. A solid material subjected to 

uniaxial loading (i.e., compression or extension) undergoes elastic deformation. As a 

result, the stress-strain curve can be obtained. The relationship between stress and strain 

in a linear elasticity regime describes the Young's modulus, summarized by the formula:  

 

𝐸 =
𝜎

𝜀
 

 𝐸 – Young's modulus 

 𝜎 – the uniaxial stress, or force per unit surface  

            𝜀 – the strain or proportional deformation 

The SI unit for the Young's modulus is the pascal (Pa), Pa = kg · m−1 · s−2.  

Indenter Tip 

Load Actuator 

Displacement Sensor 

Sample Holder 
X, Y Stage 

Figure 3. Schematic representation of a nanoindenter. 
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In nanoindentation, a modified version of the equation is used – the reduced 

Young's modulus, which includes the mechanical properties of the tip. The modulus is 

derived from the slope of the unloading phase of the load-displacement curve. 

Nanoindentation was developed to measure the hardness of materials at low volumes 

(Fig. 3). Most commonly, load actuators are based on magnetic coils, electrostatic force 

generators, or piezoelectric elements [15]. The displacement sensor can be capacitance 

or inductance based. An increasingly growing body of research indicates the relevance of 

tissue mechanics in disease progression, tissue remodeling, and regeneration. The main 

challenge in applying nanoindentation for testing biological materials stems from their 

complex and often hierarchical structure. In the case of layered materials, indentation 

depth is crucial for assessing the mechanical properties of a specific layer. Additionally, 

hydration of a sample has been shown to have a significant effect on its mechanical 

properties [16].  

Biological samples are inherently non-homogenous, and therefore, establishing an 

exact thickness of a layer is a significant limitation of this method. Nanoindentation has 

been successfully used in the determination of the mechanical properties of such tissues 

as cortical bone, enamel, thoracic aorta, brain, or eye [17–21]. While hard tissues are 

relatively easy to analyze, soft tissues pose a significant challenge, due to viscoelastic 

properties and adhesion. The nanoindentation can be performed in quasi-static mode 

(slow loading phase, allowing for the system to retain internal equilibrium) or continuous 

stiffness measurement (CSM) mode. In CSM mode, an additional oscillatory load signal 

with a small amplitude and high frequency is applied throughout the whole loading phase. 

The main advantage of CSM over quasi-static mode is the ability to obtain hardness and 

elastic modulus throughout the whole loading phase, which is especially important for 

inhomogeneous and layered samples. In the third core scientific achievement [CSA 3],  

nanoindentation has been utilized to determine the mechanical properties of human 

cartilage, harvested from femoral condyles of patients diagnosed with osteoarthritis.  

The study was performed to define the relations between mechanical properties of the 

diseased cartilage and a clinical image of the patients after total knee replacement 

procedure.   
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5. Core achievements commentaries 

 

 

Bioevaluation of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized 

with dihexadecyl phosphate (DHP). 

 

The aim of this work was to evaluate the biological 

properties of DHP-coated SPIONs. DHP functionalization 

provides SPIONs with negative surface charge and 

hydrophilic properties, which we have successfully utilized in 

our previous research regarding VLPs with magnetic core 

[NSA 5] (Fig. 4). My role in this work was multifaceted and 

included co-conceptualization of the experiments, synthesis, 

and functionalization of superparamagnetic iron oxide nanoparticles, sample preparation 

for inductively coupled plasma mass spectrometry analysis (ICP-MS), cytotoxicity study, 

data analysis, and manuscript preparation. The SPIONs were synthesized via thermal 

decomposition of iron (III) acetylacetonate Fe(acac)3 with oleic acid as the surfactant. This 

method provides monodisperse SPIONs coated with oleic acid residues. The 

functionalization step with DHP is performed via phase transition approach. Briefly, DHP 

and SPIONs suspended in chloroform are mixed with hexane (organic phase). 

Subsequently, water is added, and the whole mixture is placed in a sonicating bath for 

several hours. As a result, DHP-coated SPIONs migrate into the water phase and can be 

easily extracted and purified for further use (Fig. 5). To obtain the precise measurement 

of the nanoparticles concentration, thermogravimetric analysis (TGA) was utilized. In 

short, a 20 µl sample was heated in the range of 20-150°C under nitrogen flow, to the 

point of the lowest mass. The density was calculated according to the formula 

 𝑝 =  
𝑚

𝑉
. The obtained SPION-DHP nanoparticles were administered to TCam-2 (human 

testicular seminoma) and SW1353 (human chondrosarcoma) cell lines. Proliferation and 

cytotoxicity assay was performed with commercially available CellTiter-Glo 2.0 assay 

(Promega). The assay determines the number of viable cells in culture by quantifying ATP, 

which indicates the presence of metabolically active cells. Luminescence readout is 

directly proportional to the number of viable cells in culture. The proliferation and 

Figure 4. Schematic 
representation of DHP-coated 

SPIONs. 
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cytotoxicity were assessed 24h after SPION-DHP administration. Due to the inability to 

assess the cellular iron concentration via Prussian blue reaction, ICP-MS analysis was 

implemented. The method allowed for the quantitative determination of the 

nanoparticles uptake. The sample preparation requires freezing at -80°C, thawing and lysis 

with 10% SDS (sodium dodecyl sulfate), secondary freeze-thawing, sonication bath, and 

finally, dissolution in 65% nitric acid at 80°C. The samples were subsequently diluted  

ten-fold in DI water and used for measurement. Iron content was determined based on 

the standard curve prepared with a multielement standard solution for ICP-MS in the 1, 

10, 100, 1000 ppb range. 

In summary, this work was first to provide a detailed description of SPIONs 

functionalization with DHP and delve into the biological properties of the obtained 

nanoparticles. SPION-DHP nanoparticles did not reveal significant cytotoxicity in the range 

of tested concentrations, in selected cell lines. This preliminary investigation indicated 

that DHP-coated SPIONs may be safely utilized for biomedical applications. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. A-E - sequential steps of SPIONs functionalization with DHP. F - structure of DHP 
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Assembly and Characterization of HBc Derived Virus-like Particles with 

 Magnetic Core. 

 

The aim of this work was to utilize the hepatitis 

B virus core protein (HBc) to create virus-like particles 

(VLPs) with a magnetic core. My role in this project was 

co-conceptualization of the experiments, synthesis, 

and functionalization of superparamagnetic iron oxide 

nanoparticles, data analysis, and manuscript 

preparation. In this work, SPIONs were synthesized in the same way as described above. 

For the functionalization purposes, two compounds were used: 1,2-Distearoyl-sn-glycero-

3-phosphoethanolamine-N-[carboxy-(polyethyleneglycol)-2000] (ammonium salt) (PL-

PEG-COOH) and dihexadecyl phosphate (DHP). The mechanism of functionalization in 

both cases relies on hydrophobic interactions between alkyl chains of oleic acid residues 

present on the surface of SPIONs and alkyl chains of the compounds used. The DHP 

functionalization methodology is presented above. PL-PEG-COOH was performed as 

follows. PL-PEG-COOH was dissolved in chloroform and mixed with chloroform suspension 

of SPIONs. The mix was placed briefly in the sonicating bath, and the chloroform was 

subsequently evaporated. The obtained waxy solid was heated for 1 min in an 80°C water 

bath, and DI water was added, forming SPION-PL-PEG-COOH (SPION-PEG) nanoparticles. 

The solution was washed with chloroform to remove unbound PL-PEG-COOH, filtered, and 

subjected to further analysis.  The concentration of both functionalized nanoparticles was 

assessed with TGA accordingly to the procedure described above. Both functionalizations 

resulted in negatively-charged nanoparticles, which is crucial for electrostatically-driven 

assembly of VLPs.  

This work demonstrated the effects of ligands on the assembly of HBV derived 

virus-like particles with a magnetic core. In both cases, the successful creation of the VLPs 

was achieved (Fig. 6). The article expands on the magnetic core parameters governing the 

process of electrostatic self-assembly and furthers the knowledge on HBV based VLP 

systems. Considering the growing interest in utilizing VLP platforms for vaccine 

development, this research is relevant not only from the standpoint of basic but also 

applied science. 

Figure 6. HBc-derived VLPs with 
functionalizaed SPIONs as the 

magnetic core. 
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Osteoarthritis Severely Decreases the Elasticity and Hardness of Knee Joint Cartilage: A 

Nanoindentation Study. 

 

The aim of this work was to evaluate the elasticity and 

hardness of the knee joint cartilage derived from patients 

diagnosed with osteoarthritis and subjected to a total knee 

replacement procedure. My role in this project was co-

conceptualization of the experiments, developing  

a methodology for sample preparation for nanoindentation, 

conducting nanoindentation experiments, data analysis, and manuscript preparation.  

Nanoindentation is a highly precise measurement. Therefore sample preparation is 

essential for obtaining reliable data. Harvesting tissue samples from osteoarthritic 

cartilage for nanoindentation study is not a trivial matter. The damage may span from 

several osteophytes and slightly worn-out cartilage to a complete lack of cartilage tissue. 

Additionally, the variation between knee joint sizes hinders the selection of the 

same regions. A sample has to be horizontally and firmly placed in a holder. In the case of 

articular cartilage, which is highly hydrated tissue, ensuring water conditions for the whole 

measurement (ca. 3h) is a prerequisite. Taking all of the above into consideration, the 

acrylic resin was chosen for sample preparation.  After fixation, samples were rehydrated  

Figure 7. Berkovich 
indentation tip model. 

Hardness (MPa) 

Dispmacement Into Surface (nm) 

Figure 8. An example of hardenss measurement. Colors represent separate indentations of one sample.  
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at RT with phosphate buffer saline (PBS) and subjected to nanoindentation analysis. The 

indentation tests were conducted on a nanoindenter Agilent G200 with a DCMII head 

fitted with a Berkovich-type indenter tip (Fig. 7). The tip was calibrated before each 

measurement on quartz crystal (Young's modulus E = 74 GPa).  

The measurements were performed in CSM mode. The indentation depth was set 

at 10 µm at a strain rate of [1/s] the Poisson's ratio of 0,4. For each sample, 12 indents 

were performed in a 3 × 4 matrix with 200 μm X,Y indent separation. The hardness and 

mean elastic modulus were obtained from the 5.0–8.0 μm indentation depth range, which 

was established experimentally (Fig. 8, 9).  

This work is one of the first studies of the nanomechanical properties of weight-

bearing and non-weight-bearing articular cartilage at different stages of osteoarthritis 

conducted at this scale.  The results provide insight into the mechanical behavior of the 

cartilage at different stages of osteoarthritis in correlation to the patients' ages, which is 

essential from the clinical perspective. It has also highlighted the limitations of this 

approach and provided practical guidelines to mitigate some of them. 

 

 

 

 

Modulus (MPa) 

Dispmacement Into Surface (nm) 

Figure 9. An example of modulus  measurement. Colors represent separate indentations of one sample.  
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6. Summary and perspectives 

 

In regard to the core scientific achievements, to following conclusions can be 

drawn:  

 

[CSA 1] Bioevaluation of superparamagnetic iron oxide nanoparticles (SPIONs) 

functionalized with dihexadecyl phosphate (DHP). 

 

1. DHP-coated SPIONs did not reveal significant cytotoxicity in the range of tested 

concentrations. 

2. SPION-DHP were successfully internalized by the cells, without eliciting significant 

alterations in gene expression profile of the selected genes. 

3. Due to unknow reasons, iron staining is not compatible methodology for DHP-

SPION detection. 

4. SPION-DHP nanoparticles are a promising tool for biomedical applications. 

 

[CSA 2] Assembly and Characterization of HBc Derived Virus-like Particles with 

  Magnetic Core. 

 

1. Both dihexadecyl phosphate and 1,2-distearoyl-sn-glycero-3- 

phosphoethanolamine-N-[carboxy-(polyethylene glycol)-2000] can be successfully 

used as functionalizing agents for the creation of HBc derived VLPs with magnetic 

core. 

2. The obtained VLPs retained its ability to bind specific antibodies.  

3. SPION-DHP displayed higher effectiveness in driving VLPs self-assembly.  

4. The study provided meaningful insights into design and preparation of VLPs with 

magnetic core.  
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[CSA 3] Osteoarthritis Severely Decreases the Elasticity and Hardness of Knee Joint 

Cartilage: A Nanoindentation Study. 

 

1. Nanoindentation requires careful experimental design including probe`s 

geometry, indentation depth, region of sample collection, and sample preparation 

methodology to provide reliable data. 

2. Age and disease progression significantly affects mechanical properties of the 

chondral tissue.  

3. In combination with biochemical analysis, nanoindentation may provide deeper 

understating of degenerative processes driving the progression of osteoarthritis. 

 

The common denominator for the works presented is nanotechnology in 

biomedicine. Both synthesis and analysis at the nanoscale regime require careful design 

and execution of experimental techniques. Despite many research initiatives devoted to 

nanotechnology, there is still a missing link between basic science and widespread 

adoption. Hopefully, my work will further the understanding of nanotechnology and 

facilitate its broad adoption in biomedicine.  

My current research is devoted to the application of nanotechnology in 3D 

bioprinting, which is an exciting technology allowing for precise layer-by-layer deposition 

of cells and biomaterials. 3D bioprinting opens an avenue for novel tissue engineering 

approaches, aiming at tissue reconstruction or regeneration. It may also be utilized for the 

creation of spatially refined tissue or disease models. The goal of utilizing nanotechnology 

in 3D bioprinting is to create optimal conditions for cellular growth, proliferation, and 

differentiation. My yet unpublished results focus on creating polycaprolactone reinforced 

with carbon nanotubes, which can be utilized as a strengthening scaffold for tissue 

constructs. Preliminary data indicate that at a particular concentration of carbon 

nanotubes, cell adhesion is significantly facilitated while maintaining excellent printability. 

Regarding VLPs, my current work is focused on utilizing SARS-CoV-2 epitopes for 

specific binding of anty-SARS-CoV-2 antibodies for immunodiagnostic purposes. As 

mentioned previously,  It has resulted in patent application titled “Hybrid nanoparticles 

binding antibodies, the method of their production and use for binding specific anti-SARS-

CoV-2 antibodies” [NCA 9]. 
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My current involvement in thematically different research projects allows me to 

continue the exploration of various STEM field related topics, while utilizing and building 

upon the knowledge I have gathered so far.  
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phosphate (DHp)
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Superparamagnetic iron oxide nanoparticles (Spions) have been investigated for wide variety of 
applications. their unique properties render them highly applicable as MRi contrast agents, in magnetic 
hyperthermia or targeted drug delivery. SPIONs surface properties affect a whole array of parameters 
such as: solubility, toxicity, stability, biodistribution etc. Therefore, progress in the field of SPIONs 
surface functionalization is crucial for further development of therapeutic or diagnostic agents. in this 
study, Spions were synthesized by thermal decomposition of iron (iii) acetylacetonate fe(acac)3 and 
functionalized with dihexadecyl phosphate (DHp) via phase transfer. Bioactivity of the Spion-DHp 
was assessed on SW1353 and TCam-2 cancer derived cell lines. The following test were conducted: 
cytotoxicity and proliferation assay, reactive oxygen species (RoS) assay, Spions uptake (via iron 
Staining and icp-MS), expression analysis of the following genes: alkaline phosphatase (ALPL); ferritin 
light chain (FTL); serine/threonine protein phosphatase 2A (PP2A); protein tyrosine phosphatase non-
receptor type 11 (PTPN11); transferrin receptor 1 (TFRC) via Rt-qpcR. Spion-DHp nanoparticles were 
successfully obtained and did not reveal significant cytotoxicity in the range of tested concentrations. 
ROS generation was elevated, however not correlated with the concentrations. Gene expression profile 
was slightly altered only in SW1353 cells.

Utilization of superparamagnetic iron oxide naoparticles (SPIONs) spans from diagnostics, imaging and mag-
netic separation to targeted drug delivery and magnetic hyperthermia1–4. This chemically inert and biocompat-
ible material provides a great platform for biomedical applications. The polydispersity level is a crucial factor 
affecting many properties of SPIONs such as e.g. magnetic properties, biodistribution, cytotoxicity5. The most 
robust methods of SPIONs synthesis, providing highly monodisperse particles at large quantities, rely on ther-
mal decomposition of organic salts. The drawback of these methods is the need to utilize surfactants during 
the synthesis, which are indispensable for a proper particle formation. Consequently, the surface of as-obtained 
SPIONs is covered with hydrophobic moieties and requires  subsequent functionalization. This step does not only 
provide hydrophilic properties, necessary for many biological applications, but also allows for fine tuning of such 
properties as e.g. surface charge, hydrodynamic radius, colloidal stability etc. which in turn affect their overall 
performance. Numerous studies have demonstrated different types of ligands used for iron oxide nanoparticles` 
functionalization. Some of them include: poly(ethylene glycol)(PEG), poly(vinyl pyrrolidone)(PVP), poly(vi-
nyl alcohol) (PVA), poly(lactic-co-glycolic acid) (PLGA), dextran, gelatin, starch, alginate, chitosan, albumin, 
casein, polydopamine, dendrimers and many more6–17. However, there is scarcity of data regarding function-
alization exposing phosphate group. From the standpoint of bioactivity and biodistribution, physicochemical 
properties of nanoparticles play a crucial role in protein corona formation. Upon exposition to biological fluids, 
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such parameters as e.g. size, surface curvature, surface charge, hydrodynamic diameter or functional groups, 
govern the affinity of certain proteins to the nanoparticles‘ surface18. Moreover, differences in the protein corona 
composition have been demonstrated to correlate with SPIONs biodistribution in vivo19. The aim of this study is 
to provide a detailed protocol for SPIONs functionalization with dihexadecyl phosphate (DHP) and broad bio-
logical assessment of its interactions with human cells. The following biological analyses of the SPION-DHP were 
performed: proliferation/viability assay, iron content measurements, reactive oxygen species (ROS) generation, 
gene expression profile including: alkaline phosphatase (ALPL); ferritin light chain (FTL); serine/threonine pro-
tein phosphatase 2A (PP2A); protein tyrosine phosphatase non-receptor type 11 (PTPN11); transferrin receptor 
1 (TFRC).

Results
Dihexadecyl (DHp) functionalization. The surface of as synthesized nanoparticles is covered in oleic acid 
residues, with hydrophobic chain directed outward, into the solution. To obtain solubility in water, 15.6 ± 0.9 nm 
superparamagnetic iron oxide nanoparticles (Fig. S1) were functionalized with DHP surfactant, containing two 
hydrophobic chains and hydrophilic phosphate group. Functionalization is achieved through hydrophobic inter-
actions of DHP and oleic acid alkyl chains. In the first step, DHP is dissolved in hexane and mixed with chlo-
roform solution of iron oxide nanoparticles (Fig. 1A). In the next step, water is added and the solution is mixed 
until water phase becomes turbid. This stage of DHP phase transfer from hexane to water was crucial to success-
ful functionalization (Fig. 1B). Post synthesis, solution was uniformly light brown with layer of foam at the top 
(Fig. 1C). 12 h incubation after synthesis allows for phase separation and removal of the unbound DHP located at 
the boundary between water and hexane and partially dispersed in hexane (Fig. 1D). After magnetic separation 
and filtration, sample was redispersed in water and subjected to analyses (Fig. 1E). In order to confirm that the 
functionalization was successful, FT-IR analysis was performed (Fig. 2). The concentration of SPION-DHP was 
measured with TGA, described in material and methods. In our previous studies, hydrodynamic radius (via 
dynamic light scattering – DLS) and ζ-potential of DHP coated SPIONs was assessed20. In the study: ζ-poten-
tial = −44.0 ± 3.4 mV and hydrodynamic diameter = 53.75 ± 1.93 nm.

FT-IR analysis confirmed the presence of DHP on the surface of SPIONs. SPION-DHP clearly shows band 
patterns corresponding to all constituents (Table 1). Bands at 3000–2800 cm−1 relate to CH2 and CH3 groups of 
oleic acid and DHP. The signal between 1700–1600 cm−1 stems from O=P-H group characteristic for DHP. The 
wide peak at 1415–1085 cm−1 is the most prominent signal derived from P=O groups21,22. The signal at around 
600 cm−1 corresponds to Fe-O bonds23.

Figure 1. Steps of SPIONs functionalization with DHP. (A) Upper phase: hexane, DHP, iron oxide 
nanoparticles. Lower phase: water. (B) Solution after phase transfer of DHP from hexane to water. (C) Solution 
after functionalization. (D) 12 h after functionalization. (E) Functionalized iron oxide nanoparticles after 
purification. (F) molecular structure of dihexadecyl phosphate (DHP).

Figure 2. Fourier Transform Infrared Spectroscopy analysis.
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Viability/proliferation analysis. Cell viability/proliferation assay indicates very low cytotoxicity in the 
range of tested concentration (Fig. 3). At the highest concentration of SPION-DHP (0.125 mg/mL) the viability of 
TCam-2 was 90 ± 2%; SW1353 98 ± 10%, normalized for the cells without nanoparticles.

iron staining. Prussian blue-based staining was performed to assess the cellular internalization of 
SPION-DHP. However, no staining was detected for both cell types. For comparison, SPION-DMSA nanoparti-
cles were administered (ζ = −49,3 mV24). In this case, blue stain was observed, indicating internalization of the 
nanoparticles (Fig. 4). In order to establish if DHP coated nanoparticles were not internalized or if they can’t be 
detected with Prussian blue staining, 0.1 mg/mL of both SPION-DHP and SPION-DMSA were suspended in 
PBS, and subjected to the reaction (Fig. 5). No reaction was detected for SPION-DHP, indicating Prussian blue 
staining incompatible for the assessment of cellular iron concentration for DHP funcionalized SPIONs. To con-
firm the internalization of SPION-DHP, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis was 
performed instead (Fig. 6). The method was developed and described in our previous study24. For TCam-2 cells, 
the highest intracellular iron concentration (316 ± 18 ppb) was detected at 0.025 mg/mL of SPION-DHP. For 
SW1353, the highest concentration (215 ± 15 ppb) of intracellular iron was detected for the highest concentration 
of SPION-DHP, 0.1 mg/mL.

icp-MS iron concentration analysis. Reactive oxygen species (ROS) generation. ROS generation was 
assessed using fluorogenic probes DCFDA/H2DCFDA (Fig. 7). Although slight, statistically significant increase 
was observed for both TCam-2 and SW1353 after SPION-DHP administration, it was not correlated with the 
increase of concentration.

Gene expression analysis. The following genes where selected for gene expression analysis: transferrin receptor 
1 (TFRC); ferritin light chain (FTL); alkaline phosphatase (ALPL); serine/threonine protein phosphatase 2A 
(PP2A); protein tyrosine phosphatase non-receptor type 11 (PTPN11).

Transferrin receptor (TFRC; CD71). Iron metabolism is crucial for various biochemical processes, providing 
normal functioning of cells and organs of the human body. Due to its involvement is such processes as e.g. the for-
mation of heme- and iron-containing proteins participating in oxygen transport, energy metabolism, DNA syn-
thesis etc., it requires precise control over its intracellular concentration25,26. Transferrin receptor is a membrane 

Absorption [cm−1] Group

3000–2800 CH2, CH3

1760 C=O, carboxylic acid

1690 C=C, isolated

1740–1600 O=P-OH

1415–1085 P=O

1260–1000 C-O

1040–909 P-O

600 Fe-O

Table 1. Fourier Transform Infrared Spectroscopy spectra characterization.

Figure 3. CellTiter-Glo 2.0 assay. One-way ANOVA statistical analysis was used to calculate the significance 
of the data, α = 0.05. 24 h after seeding, SPION-DHP at different concentrations were added and incubated for 
24 h. Asterisks indicate statistically significant differences in comparison to control group (***P ≤ 0.05).
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glycoprotein, which can import iron by binding a plasma glycoprotein, transferrin (TF). TF is the serum protein 
with two specific Fe3+-binding sites.

At the pH = 7.4, TFRC binds iron-bearing TF, either monoferric or diferric. Subsequently, TF/TFRC assem-
bly is internalized and transferred to endosome, where at the pH = 5.6, iron ions are released27. TFRC gene was 
chosen to investigate if there is a biologically significant iron ions leakage from SPIONs present in cell culture.

Ferritin is an intracellular protein, governing the storage and release of iron ions. Under aerobic conditions, 
ferritin promotes oxidation of the Fe(III) ions, which are subsequently stored in a form of aggregates. Human 
ferritin is composed of two subunit types: light chains and heavy chains. The expression of ferritin light chain 
(FTL) is strictly related to bioavailability of Fe(II) ions28. This gene was chosen due to reported increase of ferritin 
expression after iron oxide nanoparticles administration, which is caused by their gradual degradation, followed 
by the increased availability of iron ions29,30.

Alkaline Phosphatase (ALP; EC: 3.1.3.1) is an abundant glycoprotein bound to the cellular membranes, acting 
as a potent catalyst of phosphate monoesters hydrolysis at basic pH. The alkaline phosphatases (ALPs) of mam-
mals belong to the category of metalloenzymes. ALPs active site contains two Zn2+ and one Mg2+ ions, required 
for enzymatic activity31. This gene was chosen on the assumption of interaction between phosphate group from 
DHP and alkaline phosphate. Despite DHP being phosphate diester, its intracellular hydrolysis could potentially 
provide the substrate for enzymatic reaction. ALP is encoded by the ALPL gene.

Figure 4. Prussian blue staining was performed for quantitative evaluation of the SPIONs uptake using the 
Iron Staining Kit (Sigma Aldrich, MO, USA). TCam-2 and SW1353cells were seeded at density of 50,000 and 
100,000 cells (respectively) per well on 12-well plate. After 24 h incubation the SPION-DHP and SPION-DMSA 
were applied to cells in complete growth medium to final concentration of 0.1 mg/mL. Prussian blue staining 
was performed 24 h after iron oxide nanoparticles administration.

Figure 5. SPION-DHP and SPION-DMSA in Prussian blue reaction. (A) SPION-DHP (left) and SPION-
DMSA (right) at 0.1 mg/mL concentration in PBS. (B) SPION-DHP (left) and SPION-DMSA (right) after 
10 minutes incubation in Potassium Ferrocyanide and Hydrochloric Acid Solution (IRON STAIN Solution, 
Sigma Aldrich, MO, USA). Ionic iron of DMSA-NP reacted with acid ferrocyanide producing a blue color.
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Protein Phosphatase 2A (PP2A; EC: 3.1.3.16) is a crucial and widely expressed serine threonine phosphatase, 
responsible for the regulation of many cellular processes through the mechanism of dephosphorylation32. PP2A is 
crucial in such processes as e.g.: signal transduction, glycolysis, lipid metabolism, DNA replication, cell prolifer-
ation, transcription and translation, cell mobility and apoptosis33. Natively, protein phosphatases nucleophilically 
attack and dephosphorylate three types of amino acids: tyrosine (Tyr), threonine (Thr) and serine (Ser)34. This 
gene was chosen to establish whether DHP can be a potential target for PP2A catalytic activity.

Protein Tyrosine Phosphatase non-receptor Type 11 (PTPN11; EC 3.1.3.48). The product of PTPN11 gene, 
Src homology region 2 domain-containing phosphatase-2 (SHP-2), is ubiquitously expressed among tissues. 
SHP2 regulates both physiological and pathological processes including cell survival, migration and proliferation 
through the positive (signal-enhancing) and/or negative (signal-inhibiting) regulation of signaling pathways. 
The main SHP2 signaling routes involve phosphatidylinositol 3-kinase (PI3K)-AKT, Ras-Raf-mitogen-activated 
kinase (MAPK) and Janus tyrosine kinase (JAK)/signal transducer and activator of transcription (STAT) in 
response to cytokine, hormonal, and growth factor stimulation or genomic damage in a cell-specific manner35,36. 
This gene was chosen to assess if DHP covered SPION can act as a substrate for SHP2 enzymatic activity.

TCam-2. SW1353. No statistically significant changes in all tested genes were observed after administration 
of 0.1 mg/mL SPION-DHP to TCam-2 cells (Fig. 8). Statistically significant changes in gene expression were 
observed for ALPL, FTL and PTPN11 in SW1353 cells (Fig. 9).

Figure 6. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis. One-way ANOVA statistical 
analysis was used to calculate the significance of the data, α = 0.05. 24 h after seeding, SPION-DHP at different 
concentrations were added and incubated for 24 h. Asterisks indicate statistically significant differences in 
comparison to control group (***P ≤ 0.05).

Figure 7. Reactive Oxygen Species (ROS) test. ROS production in SPION-DHP treated cells was investigated 
using fluorogenic probes DCFDA/H2DCFDA - Cellular ROS Assay Kit One-way ANOVA statistical analysis 
was used to calculate the significance of the data, α = 0.05. 24 h after seeding, SPION-DHP at different 
concentrations were added and incubated for 24 h. Asterisks indicate statistically significant differences in 
comparison to control group (***P ≤ 0.05).
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Discussion
The functionalization of SPIONs with DHP is a straightforward process, yielding a stable colloidal suspension of 
SPION-DHP nanoparticles. In our previous studies, these particles were successfully used to create virus-like par-
ticles with magnetic cores20,37. Viability/proliferation assay revealed very low toxicity up to 0.125 mg/mL concen-
tration for TCam-2 and SW1353 cells (Fig. 3). Iron concentration assay via Prussian blue staining revealed that 
SPION-DHP nanoparticles are resistant to the staining and cannot be detected with this method (Figs. 4 and 5).  
In comparison, SPION-DMSA nanoparticles were easily recognized with this method. The exact mechanism 
underlying resistance of SPION-DHP staining against Prussian blue has not been identified. Presumably, 

Figure 8. Expression analysis of selected genes in TCam-2 cells treated with SPIONs and wild type. Relative 
expression level was calculated using the 2−ΔCp formula. The data are presented as mean relative expression 
level ± SD. TCam-2 cells were treated with 0.1 mg/mL SPIONs; WT- wild type, non-labeled cells; ALPL- 
alkaline phosphatase; FTL- ferritin light chain; PP2A-serine/threonine protein phosphatase 2A; PTPN11- 
protein tyrosine phosphatase, non-receptor type 11; TFRC- transferrin receptor 1.

Figure 9. Expression analysis of selected genes in SW1353 cells treated with SPIONs and wild type. Relative 
expression level was calculated using the 2−ΔCp formula. The data are presented as mean relative expression 
level ± SD. Asterisk indicate statistical significance (*P < 0.05). SW1353 cells were treated with 0.1 mg/mL 
SPIONs; WT- wild type, non-labeled cells; ALPL- alkaline phosphatase; FTL- ferritin light chain, PP2A-serine/
threonine protein phosphatase 2A; PTPN11- protein tyrosine phosphatase, non-receptor type 11; TFRC- 
transferrin receptor 1.
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DHP coating prevents SPIONs from being dissolved with HCl, which results in lack of iron ions required for 
Prussian blue reaction. To assess the internalization of SPION-DHP via intracellular iron concentration meas-
urement, ICP-MS was used (Fig. 6). In both cases, intracellular iron concentration increased after SPION-DHP 
administration. For TCam-2, statistically significant increase was observed for all concentrations at maximum 
of 316 ± 18 ppb for 0.025 mg/mL (188 ± 7 ppb for control). For SW1353, statistically significant increase was 
observed for 0.05 mg/mL (200 ± 16 ppb) and 0.1 mg/mL (215 ± 15 ppb), in comparison to control (152 ± 5 ppb). 
This data indicates, that SPION-DHP were successfully internalized by both cell types. Non-linear increase in 
intracellular iron concentration in TCam-2 cells could be explained if SPION-DHP internalization occurs by 
receptor-mediated endocytosis. In this case, receptor depletion would inhibit further internalization of the nan-
oparticles. It has been demonstrated that SPIONs can be internalized by several endocytic uptake pathways, 
such as phagocytosis, caveolae-dependent endocytosis, clathrin-dependent endocytosis or macropinocytosis38. 
Therefore, cell-type dependent efficiency in SPION-DHP internalization could be assumed. Iron oxide nanopar-
ticles have been shown to facilitate redox reactions (as the reactant or catalyst) resulting in generation of reactive 
oxygen species. Iron species participate in homogenous Fenton, Fenton-like and Haber-Weiss reactions. Products 
of these reactions such as superoxide radicals, hydroxyl radicals, or ferryl-oxo complexes are highly reactive in 
cellular environment, and are capable of exerting severe cellular damage. Additionally, it has been demonstrated 
that iron oxides can initiate heterogeneous redox reactions at the water/solid interfaces, increasing the probability 
of ROS-related toxicity39,40. Although elevated ROS levels were detected after administration of SPION-DHP to 
TCam-2 and SW1353 cells, they were not dependent on the concentrations administered (Fig. 7). The observed 
increase in ROS generation did not have a negative impact on short-term proliferation/viability of the cells. 
Gene expression analysis revealed discrepancies between cell lines (Figs. 8 and 9). There were no statistically 
significant changes in gene expression for all genes tested, after administration of 0.1 mg/mL SPOION-DHP in 
TCam-2 cells. The same concentration elicited increased expression of ALPL, FTL and PTPN11 genes in SW1353 
cells. The lack of increase in transferrin receptor suggests that the nanoparticles in culture medium remained 
intact and did not release significant amounts of iron ions. Slight increase in transferrin light chain expression 
was observed in SW1353 cells. This may indicate a partial release of iron ions from SPION-DHP nanoparti-
cles. Alkaline phosphatase expression in SW1353 was significantly elevated. However, the lack of the increase 
in TCam-2 cells indicates that the elevated expression was not a result of DHP hydrolysis, providing substrate 
for the enzymatic reaction, but rather a complex response for SPION-DHP administration. Protein Tyrosine 
Phosphatase non-receptor Type 11 expression was also slightly increased in case of SW1353 cells. Similarly to 
ALP, its involvement in many cellular processes suggests a complex cellular response to the nanoparticles admin-
istration rather than a direct interaction with their surface or disintegration products. Biological evaluation of 
DHP coated SPIONs indicates their low, however cell-type dependent cytotoxicity. TCam-2 cells appeared as 
more resilient in comparison to SW1353 cells. In regard to protein corona formation, existing studies suggest 
that upon exposition to biological fluids SPION-DHP nanoparticles would display affinity mainly for albumin 
and retain its negative surface charge. It has been demonstrated, that regardless of the zeta potential (positive, 
neutral, negative), polyvinyl acid- or dextran-coated SPIONs, showed negative zeta potential after exposition 
to PBS + serum solution41. However, to elucidate effects of DHP coating on protein corona formation, further 
studies are required.

Summary. This study presents a ready-to-use protocol for iron oxide nanoparticles functionalization with 
dihexadecyl phosphate. SPION-DHP nanoparticles did not reveal significant cytotoxicity in the range of tested 
concentrations. ROS generation was elevated, however not correlated to the concentrations. Gene expression 
profile was slightly altered only in SW1353 cells. In summary, this preliminary investigation indicates that 
SPION-DHP hold a great potential for biological applications.

Materials and Methods
Materials. Oleic acid (technical grade 90%), Iron (III) acetylacetonate (97%), Dihexadecyl phosphate, 1-octa-
decene (90%), 2-butanol (95,5%), Sodium dodecyl sulfate (99%), Paraformaldehyde (95%) were purchased from 
Sigma-Aldrich (Sigma-Aldrich, MO, USA). Toluene (99,5%), n-Hexane (99%) and Chloroform (98,5%) were 
purchased from Avantor (Avantor, Gliwice, Poland) were used as received. Water was purified by Hydrolab HLP5 
instrument (0.09 µS/cm).

Synthesis of superparamagnetic iron oxide nanoparticles (Spions). Spherical iron oxide nano-
particles were synthesized via thermal decomposition of iron (III)acetylacetonate Fe(acac)3. This method has 
been described in our previous works20,42 Briefly, 6 mmol of Fe(acac)3 and 18 mmol of oleic acid were dissolved in 
40 mL of 1-octadecene. The reaction was performed with continuous stirring and nitrogen flow. Temperature of 
the solution was increased to 220 °C and maintained for 1 h. Subsequently, the temperature was increased further 
to 320 °C and maintained for 1 h. After the synthesis, the solution was left to cool down to ambient temperature 
and 200 mL of washing solution (3:1 v/v of 2-butanol and toluene) was added. The obtained mixture was placed 
on a neodymium magnet and left overnight to allow nanoparticles to precipitate. Supernatant was discarded and 
replaced with fresh washing solution. Sonicating bath was used to resuspend nanoparticles. The washing step 
was performed thrice. In the final step, nanoparticles were suspended in 20 mL of chloroform. Concentration of 
the nanoparticles was estimated by dried sample weighing. Size of the particles was analyzed using ImageJ 1.8 
Software. 100 particles were analyzed. Mean diameter = 15.6 ± 0.9 nm.

transmission electron microscopy (teM). 10 µl of sample was placed on carbon coated copper grid. The 
excess was removed with blotting paper. Sample was visualized with Hitachi TEM HT7700 microscope. Images 
were analyzed with ImageJ software.
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functionalization with dihexadecyl phosphate (DHp). DHP functionalization was performed in 
accordance to our previously described method20,42. 10.0 mg of dihexadecyl phosphate were added to 20 mL of 
hexane and dissolved with heat-assisted magnetic stirring (75 °C, ca. 10 min). After DHP dissolution, a chloro-
form solution containing 10.0 mg of synthesized iron oxide nanoparticles coated with oleic acid was added. The 
mixture was shortly sonicated and 80 mL of water were added. Subsequently, the obtained two-phase solution was 
briefly vortexed and sonicated until the water phase became turbid. In the next step, the solution was placed in a 
sonicating bath for 3–4 h with no temperature control. After the functionalization, the solution was left overnight 
to allow for phase separation. The bottom phase was collected and placed near neodymium magnet for 24 h to 
separate functionalized nanoparticles from the solution. The obtained precipitate was collected, suspended in 
2 mL of miliQ water and filtered through 0.22 μm pores. Concentration of the SPION-DHP nanoparticles was 
measured via thermogravimetric analysis described below.

Functionalization with meso-2,3-dimercaptosuccinic acid (DMSA). Ligand exchange procedure 
was performed to exchange the capping ligand from oleic acid to meso-2,3-dimercaptosuccinic acid (DMSA). 
This method has been described in our previous work24. In the first step, 50 mg of DMSA was dissolved in 15 mL 
dimethylsulfoxide (DMSO) and 100 mg of nanoparticles were diluted in 15 mL of chloroform. Solutions were 
mixed together and 50 μL of triethylamine was added as the catalyst. Reaction was carried out at 60 °C for 6 hours 
(shaken vigorously) in a horizontal shaker. Nanoparticles were washed with ethanol, collected with neodym-
ium magnet. The procedure was repeated until the supernatant was transparent, and eventually nanoparticles 
were resuspended in 20 mL of ethanol. Then, the second step of reaction was carried out. Obtained solution was 
mixed with 50 mg of DMSA dissolved in 15 mL of DMSO and 50 μL of triethylamine was added. The reaction 
conditions were the same as in the first step. Washing procedure was also similar, except that ultrapure water 
was used instead of ethanol. Finally, nanoparticles were resuspended in 10 mL of ultrapure water. For the use in 
in vitro tests, particles were sterile filtered with cellulose acetate syringe filters of two sizes: 0.45 μm and 0.2 μm, 
respectively.

fourier-transform infrared spectroscopy (ft-iR). The analysis was performed on Bruker FT-IR IFS 
66/s spectrometer. The samples were formed into KBr tablets and analyzed in the 4000–400 cm−1 range.

concentration measurement via thermogravimetric analysis (tGA). Thermogravimetric analysis 
was performed to measure concentrations of the functionalized SPIONs. This method was performed in accord-
ance to our, previously established, protocol20 The analysis was performed on TGA 4000 System (Perkin Elmer 
apparatus, Waltham, MA, USA). Briefly, a 20 μL sample was taken for measurement. Each sample was measured 
in triplicate. The sample was heated from 20 to 150 °C at 10 °C/min in nitrogen atmosphere. The lowest mass 
was taken as fully dried sample and used for further calculations (Fig. S2). The obtained mass was normalized 
for 20 mg of the initial sample mass. The mean of three measurements was calculated. Density was derived from 
weighing 5 × 15 μL of the sample and dividing the mean mass by volume.

cell culture. SW1353 cells (ATCC® HTB-94™) were cultured in DMEM F12 with Lf-glutamine medium 
(Lonza, Switzerland), 10% FBS (Sigma Aldrich, MO, USA) and 1% penicillin-streptomycin-amphotericin 
B (Lonza, Switzerland). TCam-2 cells (kindly gifted from Dr Riko Kitazawa, Department of Diagnostic 
Pathology, Ehime University Hospital, Matsuyama, Japan) were cultured in RPMI 1640 GlutaMax 
medium (Gibco, Thermo Fisher Scientific, MA, USA), 10% HyClone FBS (GE Healthcare, IL, USA) and 1% 
penicillin-streptomycin-amphotericin B (Lonza, Switzerland). All in vitro cultures were carried out at 37 °C and 
5% CO2.

inductively coupled plasma mass spectrometry (icp-MS) analysis. ICP-MS was applied for quanti-
tative determination of superparamagnetic iron oxide nanoparticles (SPIONs) uptake. The analysis was performed 
on the NexION 300D ICP-MS, Perkin Elmer. SW1353 and TCam-2 cells were seeded at density 6 × 104/cm2  
and 2 × 104/cm2, respectively and cultured for 24 h. Next, the SPIONs were added in culture media to final con-
centration of 0.1 mg/mL, 0.05 mg/mL, 0.025 mg/mL and 0.0125 mg/mL. The untreated cells were indicated as a 
control. After 24 h incubation SW1353 and TCam-2 cells (4 × 105 cells) were collected, washed twice with PBS 
and cell pellets were frozen at −80 °C. Before the analysis, cells were thawed and lysed in 100 μL of 10% SDS. 
Then, the cell lysates were frozen for 24 h, thawed and placed in sonicating bath for 1 h. 25 µL of cell lysates 
(1 × 105 cells) were dissolved in 125 µL of 65% nitric acid and shaken at 80 °C for 2 h to remove organic com-
pounds. As-prepared samples were diluted 10 folds in DI water and taken for the measurement. Iron content was 
determined based on the standard curve prepared with a multi element standard solution for ICP-MS in the 1, 
10, 100, 1000 ppb range.

Spions cellular uptake labeling. Prussian blue staining was performed for quantitative evaluation the 
SPIONs uptake using the Iron Staining Kit (Sigma Aldrich, MO, USA). SW1353 and TCam-2 cells were seeding 
at density of 1 × 105and 5 × 104 cells (respectively) per well on 12-well plate containing microscope cover glasses. 
After 24 h incubation the SPION-DHP and SPION-DMSA were applied to cells in complete growth medium 
to final concentration 0.1 mg/mL, 4 wells per group (respectively). SW1353 and TCam-2 cells with no SPIONs 
added were used as a control. Prussian blue staining was performed 24 h after iron oxide nanoparticles adminis-
tration. Cells were washed with PBS and fixed with 4% paraformaldehyde solution in PBS. Subsequently, Prussian 
blue staining was performed according to the manufacturer’s protocol. In the last step, the cover glasses were 
mounted onto slide glasses with gelatin solution. SW1353 and TCam-2 cells were visualized with Leica DMi8 
microscope.
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proliferation and cytotoxicity assay. To determine the cytotoxicity of SPIONs and their impact on cells 
proliferation the CellTiter-Glo 2.0 assay (Promega, WI, USA) was performed according to the manufacturer’s 
protocol. TCam-2 cells were seeded at density of 2 × 104 cells per well on 96-well microplate (Falcon white/
clear bottom plate, Corning, NY, USA), 8 wells per group. After 24 h of culture the SPIONs were applied to 
cells in growth medium to final concentration 0.125 mg/mL, 0.1 mg/mL, 0.075 mg/mL, 0.05 mg/mL, 0.025 mg/
mL, 0.0125 mg/mL and 0.00625 mg/mL. Potential cytotoxicity of SPIONs was tested after 24 h of incubation. 
CellTiter-Glo Reagent was added in an equal volume (100 µl) to each well. The luminescence was recorded using 
Tecan Infinite M200 Pro. The SPIONs untreated cells were indicated as a control. Furthermore, the background 
luminescence was determined in wells containing medium without cells.

Gene expression analysis. Expression analysis of alkaline phosphatase (ALPL); ferritin light chain (FTL); 
serine/threonine protein phosphatase 2 A (PP2A); protein tyrosine phosphatase non-receptor type 11 (PTPN11); 
transferrin receptor 1 (TFRC) genes was evaluated by quantitative reverse-transcription PCR (RT-qPCR). Total 
RNA from wild type and 0.1 mg/mL SPIONs treated SW1353 and TCam-2 cells was isolated using RNeasy 
Mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. The quality and quantity of RNA 
was estimated by spectrophotometric measurements (NanoDrop ND1000, Thermo Scientific, MA, USA) and 
1% agarose gel electrophoresis. 500 ng of RNA was used in RT reaction performed with QuantiTect Reverse 
Transcription kit (Qiagen, Hilden, Germany). qPCR was evaluated using 2 µl of diluted 1:10 cDNA samples, 1x 
Hot FIREPol EvaGreen qPCR Mix (Solis, BioDyne, Tartu, Estonia) and 150 nM forward, reverse primers in a 
total volume of 20 µl. The primer sequences were obtained from the University of California Santa Cruz Genome 
Browser on Human Genome hg19 assembly (https://genome.ucsc.edu/), Primer Bank (https://pga.mgh.harvard.
edu/primerbank/) or were designed (Table 2). PCR reactions were run on BioRad CFX96 Real Time PCR instru-
ment (BioRad Laboratories, CA, USA). The thermal cycling conditions were an initial polymerase activation at 
92 °C for 12 minutes, followed by 40 cycles of denaturation at 95 °C for 15 seconds, annealing at 60 °C for 20 sec-
onds and extension at 72 °C for 20 seconds. The melt curve protocol followed with 15 seconds at 95 °C and then 
5 seconds each at 0.5 °C increment from 65 °C to 95 °C. The gene expression analysis was evaluated in three exper-
iments. All reactions were run in triplicate. Gene expression data were normalized to ACTB (β-actin) house-
keeping gene. Mean cycle threshold (Ct) values were estimated with BioRad CFX Manager 3.1 software. Relative 
expression levels were calculated using the 2−ΔCt formula.

Reactive oxygen species (RoS) test. ROS production in SPIONs treated cells was investigated using 
fluorogenic probes DCFDA/H2DCFDA - Cellular ROS Assay Kit (Abcam, UK), according to the manufactur-
er’s protocol. TCam-2 and SW1353 were seeded at density of 2 × 104 cells and 3 × 104 (respectively) per well on 
96-well microplate (Falcon white/clear bottom plate, Corning, NY, USA), 8 wells per group. After 24 h incubation, 
the SPIONs were applied to cells in the complete growth medium to final concentration 0.1 mg/mL, 0.05 mg/mL, 
0.025 mg/mL and 0.0125 mg/mL. SW1353 and TCam-2 cells were treated with SPIONs and incubated for 24 h. 
Subsequently, cells were washed with 1X buffer and stained with 100 µl of 25 µM DCFDA in 1X Buffer for 45 min. 
at 37 °C. After the incubation, cells were washed with 1X Buffer. The fluorescence was measured using Tecan 
Infinite M200 Pro microplate reader at excitation/emission = 485/535 nm, multiple reads per well (3 × 3 matrix), 
in a fluorescence top reading mode.

Statistical analysis. Statistical analysis was performed using GraphPad Prism 8 (GraphPad Software Inc., 
CA, USA). Statistical significance of the differences between means of gene expressions was determined with the 
unpaired t-test. P values < 0.05 were considered statistically significant. In other experiments, one-way ANOVA 
statistical analysis was used to calculate the significance of the data, α = 0.05.

Received: 19 September 2019; Accepted: 24 January 2020;
Published: xx xx xxxx

Gene Primer Sequence
Amplicon 
size (bp) Reference

ACTB
Forward CTTCCTGGGCATGGAGTCC

112 Designed
Reverse ATCTTGATCTTCATTGTGCTG

ALPL
Forward GCTCCAGGGATAAAGCAGGT

122 UCSC Genome 
BrowserReverse CGCCAGTACTTGGGGTCTTT

FTL
Forward CAGCCTGGTCAATTTGTACCT

114 Primer Bank
Reverse GCCAATTCGCGGAAGAAGTG

PP2A
Forward TTGGTGTCTAGAGCTCACCAGC

125 UCSC Genome 
BrowserReverse TCCATGATTGCAGCTTGGTT

PTPN11
Forward CTGGTGTGGAGGCAGAAAAC

125 UCSC Genome 
BrowserReverse GTGGGTGACAGCTCCATTTC

TFRC
Forward ACCATTGTCATATACCCGGTTCA

219 Primer Bank
Reverse CAATAGCCCAAGTAGCCAATCAT

Table 2. Primer sequences used in RT-qPCR.
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Abstract: Core-virus like particles (VLPs) assembly is a kinetically complex cascade of interactions
between viral proteins, nanoparticle’s surface and an ionic environment. Despite many in silico
simulations regarding this process, there is still a lack of experimental data. The main goal of this
study was to investigate the capsid protein of hepatitis B virus (HBc) assembly into virus-like particles
with superparamagnetic iron oxide nanoparticles (SPIONs) as a magnetic core in relation to their
characteristics. The native form of HBc was obtained via agroinfection of Nicotiana benthamiana
with pEAQ-HBc plasmid. SPIONs of diameter of 15 nm were synthesized and functionalized
with two ligands, providing variety in ζ-potential and hydrodynamic diameter. The antigenic
potential of the assembled core-VLPs was assessed with enzyme-linked immunosorbent assay
(ELISA). Morphology of SPIONs and core-VLPs was evaluated via transmission electron microscopy
(TEM). The most successful core-VLPs assembly was obtained for SPIONs functionalized with
dihexadecyl phosphate (DHP) at SPIONs/HBc ratio of 0.2/0.05 mg/mL. ELISA results indicate
significant decrease of antigenicity concomitant with core-VLPs assembly. In summary, this study
provides an experimental assessment of the crucial parameters guiding SPION-HBc VLPs assembly
and evaluates the antigenicity of the obtained structures.

Keywords: virus-like particles; VLPs; hepatitis B virus capsid protein; HBc; viral self-assembly;
magnetic core; HBcAg

1. Introduction

Virus-like particles (VLPs) are non-infectious and non-replicating supramolecular assemblies
composed of single or multiple viral proteins, which closely resemble native virions [1]. VLPs display
a unique set of immunological characteristics that render them highly potent for vaccine development
such as: nanometer range size, multivalent and highly repetitive surface geometry, the ability to elicit
both innate and adaptive immune response [2]. Due to favorable surface morphology and a wide range
of possible modifications, VLPs have been successfully used as a platform for multivalent vaccine
creation [3–5]. Several VLP-based vaccines are currently commercially available (e.g., Cervarix®,
Gardasil®, Sci-B-Vac™, Mosquirix™) with more undergoing clinical trials [6]. VLPs’ applicability
is not limited to their immunogenic properties. Some of the use cases include: highly selective and
sensitive nanobiosensor for troponin I detection, light-harvesting VLPs for use in photovoltavic or
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photocatalytic devices, nanofiber-like VLPs for tissue regenerating materials, nanocontainers and
nanoreactors [7–11].

Hepatitis B virus (HBV) is an enveloped, icosahedral, cDNA virus that belongs to the
Hepadnaviridae family. The virion has a diameter of 42 nm and is composed of a lipid envelope with
hepatitis B virus surface antigen (HBsAg) and inner nucleocapsid consisting of hepatitis B virus capsid
protein—HBc (named also HB core antigen, HBcAg) [12]. HBc consists of 183–185 amino acids of
which 149 N-terminal amino acids form an assembly domain and 34 amino acids form C-terminal
arginine-rich domain (CTAD) required for the packaging of nucleic acid [13]. HBc is a homodimeric
protein that has the ability to self-assemble into icosahedral and fenestrated T = 4 (120 dimers) and T = 3
(90 dimers) capsids with respective outer diameter of 34 and 30 nm [14]. T = 4 capsid is a dominant
product of a wild type HBc in vitro self-assembly (~95%) [15]. HBc capsid is highly immunogenic and
has been shown to induce both B- and T-cell response [16].

Superparamagnetic iron oxide nanoparticles (SPIONs) exhibit properties, such as high magnetic
susceptibility, high saturation magnetization and low toxicity [17–19]. Due to the aforementioned
properties, high-yield synthesis methods and a wide array of available surface modifications, SPIONs
can be utilized in: magnetic bioseparation, magnetic hyperthermia, targeted drug delivery, in
diagnostics as magnetic resonance imaging (MRI) contrast agents, etc. [20–23].

Introduction of SPIONs as the core of VLPs has been performed successfully with several viral
proteins of different origin [24–26]. Magnetic core adds a multitude of advantageous properties.
It allows for post-assembly magnetic bioseparation, which may be crucial for large scale production [27].
It also improves cellular uptake and magnetic relaxivities resulting in higher resolution MRI images,
which combined with in vivo tracking may provide essential data regarding VLPs biodistribution [28].
Functionalized core can act as a substitute for native nucleic acid, and therefore, govern the process
of protein recruitment and organization during self-assembly. Rational core design can be used to
facilitate the assembly and enhance such parameters as, e.g., physicochemical stability, mechanical
elasticity, capacity to withstand desiccation and long-term storage. On the other hand, HBc VLPs have
been shown to be potent epitope carriers [3,29].

In the study by Shen et al., HBc was genetically engineered into a truncated version, deprived of 34
C-terminal amino acids responsible for nucleic acid packaging. The removed part was replaced by six
consecutive histidine residues (His-tag). Fe3O4 nanoparticles functionalized with nickel-nitrilotriacetic
acid (nickel-NTA) chelate were used as the core. The VLPs assembly was driven by the affinity of
histidine tags to the nickel-NTA chelate [28]. This study prompted us to investigate whether native
HBc VLPs assembly can be successful, without resorting to genetic engineering of HBc protein.

The main objective of this study was to investigate whether provided SPION surface modification
is sufficient for SPION-HBc assembly. Even though HBc subunits exhibit an ability to assemble in
the absence of genetic material, electrostatic interactions between positively charged CTAD of the
capsid and negatively charged nucleic acid have a major influence on the assembly process [30].
Therefore, to mimic native electrostatic interactions, negatively charged ligands were chosen for
SPIONs functionalization: dihexadecyl phosphate (DHP) and PL-PEG-COOH. Both compounds were
successfully used in our previous study regarding the influence of ligand charge and length on the
assembly of Brome mosaic virus derived virus-like particles with magnetic core [31].

2. Materials and Methods

2.1. Reagents

Oleic acid (technical grade 90%), Iron (III) acetylacetonate (97%), Sodium chloride (99%),
Dihexadecyl phosphate (90%), 1-Octadecene (90%), 2-Butanol (95.5%), Trizma®hydrochloride (99%),
Calcium chloride (97%), Magnesium sulfate (99.5%), Glycine (99%), Glycerol (99%), Urea (98%),
2-(N-Morpholino)ethanesulfonic acid (99%), Sucrose (99.5%), Sigma-Aldrich (Poznan, Poland). Toluene
(99.5%), n-Hexane (99%), Chloroform (98.5%) and Hydrochloric acid (30–35%), Avantor (Gliwice,
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Poland). 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy-(polyethyleneglycol)-2000]
(ammonium salt) (PL-PEG-COOH, 2000 Da PEG (99%), Avanti, Alabaster, AL, USA).
Snakeskin®Dialysis Tubing, 10K MWCO, 22 mm, Thermo Fisher Scientific (Waltham, MA, USA).
All chemicals were used as received. Water was purified with Hydrolab HLP5 instrument (0.09 µS/cm,
Straszyn, Poland).

2.2. Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Synthesis

Spherical iron oxide nanoparticles were synthesized via thermal decomposition of iron (III)
acetylacetonate Fe(acac)3 [32]. Briefly, 6 mmol of Fe(acac)3 and 18 mmol of oleic acid were dissolved
in 40 mL of 1-octadecene. The reaction was performed with continuous stirring and nitrogen flow.
Temperature of the solution was increased to 220 ◦C and maintained for 1 h. Subsequently, the
temperature was increased further to 320 ◦C and maintained for 1 h. After synthesis, the solution was
left to cool down to ambient temperature and 200 mL of washing solution (3:1 v/v of 2-butanol and
toluene) was added. The obtained mixture was placed on a neodymium magnet and left overnight
to allow nanoparticles to precipitate. Supernatant was discarded and replaced with fresh washing
solution. Sonicating bath was used to resuspend nanoparticles. The washing step was performed
thrice. In the final step, nanoparticles were suspended in 20 mL of chloroform. Concentration of the
nanoparticles was estimated by dried sample weighing.

2.3. SPIONs Functionalization

PL-PEG-COOH functionalization was performed as per a method published elsewhere [24], with
minor modifications. Briefly, 3.0 mg of PL-PEG-COOH were added to 5 mL of 1.0 mg/mL SPIONs
chloroform solution. The sample was briefly sonicated in a sonic bath and left open for chloroform
evaporation. The obtained waxy solid was heated for 1 min in an 80 ◦C water bath. The following
step was adding 5 mL of miliQ water and vortexing the sample to enhance micelles formation.
Subsequently, the sample was washed thrice with chloroform to remove unbound PL-PEG-COOH.
Finally, water phase containing functionalized SPIONs was collected and filtered through 0.22 µm
pores. Concentration of the SPION-PEG nanoparticles was measured via thermogravimetric analysis
described below.

DHP functionalization was performed as per a method published elsewhere [31], with minor
modifications. Briefly, 10.0 mg of dihexadecyl phosphate were added to 20 mL of hexane and dissolved
with heat-assisted magnetic stirring (75 ◦C, ca. 10 min). After DHP dissolution, a chloroform solution
containing 10.0 mg of synthesized iron oxide nanoparticles coated with oleic acid was added. The
mixture was shortly sonicated and 80 mL of water were added. Subsequently, the obtained two phase
solution was briefly vortexed and sonicated until the water phase became turbid. In the next step,
the solution was placed in a sonicating bath for 3–4 h with no temperature control exercised. After
functionalization, the solution was left overnight to allow for phase separation. The Bobtom phase
was collected and placed near neodymium magnet for 24 h to separate functionalized nanoparticles
from the solution. The obtained precipitate was collected, suspended in 2 mL of miliQ water and
filtered through 0.22 µm pores. Concentration of the SPION-DHP nanoparticles was measured via
thermogravimetric analysis described below.

2.4. Concentration Measurement via Thermogravimetric Analysis

Thermogravimetric analysis was performed to measure concentrations of the functionalized
SPIONs. The analysis was performed on TGA 4000 System (Perkin Elmer apparatus, Waltham, MA,
USA). Briefly, a 20 µL sample was taken for measurement. Each sample was measured in triplicate. The
sample was heated from 20 to 150 ◦C at 10 ◦C/min in nitrogen atmosphere. The lowest mass was taken
as fully dried sample and used for further calculations. The obtained mass was normalized for 20 mg
of the initial sample mass. The mean of three measurements was calculated. Density was derived from
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weighing 5 × 15 µL of the sample and dividing the mean mass by volume. Final concentrations were:
SPION-DHP = 3.52 mg/mL and SPION-PEG = 3.81 mg/mL.

2.5. HBc Production and Preparation

HBc was produced in plants via a transient expression system based on agroinfiltration. HBc
expression vector was constructed on the basis of pEAQ-HT plasmid, developed by Peyret and
Lomonossoff [33]. The coding sequence of HBcAg of 552 bp in length derived from HBV subtype adw4
(GenBank: Z35717), was cloned into the vector Age I and Xho I restriction sites using sites Age I and
compatible ends of Sal I, respectively, introduced by PCR using the following primers:

Forward: AACCGGTATGGACATTGACCCTTATAAAGAATTTG
Reverse: TGTCGACTGCAGTTAACATTGAGATTCCCGAGATTGAG

Complete vector pEAQ-HBc was introduced into Agrobacterium tumefaciens EHA105 and LBA4404
strains via electroporation.

Agroinfection was performed with Agrobacterium strains grown overnight on selective liquid
LB medium supplemented with kanamycin (50 mg/l) and used to infiltrate leaves of 5–7 week-old
Nicotiana benthamiana plants, cultivated in growth chamber under 5–6 klx light intensity, 16/8 h
photoperiod and at a 22/16 ◦C temperature regime. Agrobacterium cells were centrifuged at 2000 g for
3 min at 4 ◦C and resuspended in MES buffer (10 mM 2-(N-morpholino)ethanesulphonic acid, 10 mM
MgSO4, pH 5.7) to optical density at a 600 nm wavelength (OD600) 0.6 or 0.1 for infiltration by syringe
or exsiccator, respectively. Agrobacterium suspension, 0.5 mL per leaf, was injected with a syringe
into the bottom side of the leaves. Alternatively, whole plants were inverted and immersed in 2 L of
Agrobacterium suspension in exsiccator (Lab Companion VDP-25G, Seoul, Korea). Pump (AGA Labor
PL2, Poznań, Poland) was then applied to reach underpressure (−0.08 MPa) for approximately 1 min.
The vacuum was released and applied again to ensure infiltration of the whole leaves. After 10 days
following the agroinfiltration concentration of HBc in plant tissue reached approximately 1 mg/g of
fresh weight (data not shown). HBc was then extracted and partially purified using sucrose density
gradient as described previously [33]. The concentration of HBc directly after purification was fixed to
0.1 mg/mL. Prior to SPION encapsulation, HBc was diluted twice in a disassembly buffer.

2.6. SPION-HBc Preparation

VLPs were prepared in line with a slightly modified procedure described elsewhere [28].
HBc dissociation: 300 µL of 0.1 mg/mL HBc were diluted with 300 µL of denaturant solution

(5 M urea, 300 mM NaCl, 100 mM tris-HCl) and incubated at 25 ◦C for 3h.
SPION-HBc assembly: The solution of dissociated HBc was divided into 100 µL aliquots (HBc

conc. 0.05 mg/mL). To each aliquot, functionalized SPIONs were added to a final concentration of
0.5, 1.0 and 2.0 mg/mL. Obtained solutions were dialyzed twice against 400 mL of assembly buffer
(150 mM NaCl, 10 mM CaCl2, 1% w/v glycine, 10% v/v glycerol, 50 mM tris-HCl, pH = 8) for 24 h at
4 ◦C.

2.7. VLPs Antigenicity

Antigenicity of HBc VLPs was assessed via enzyme-linked immunosorbent assay (ELISA). HBc
assembled with functionalized SPION-PEG and SPION-DHP at different concentrations (mg/mL) in
comparison to the standard protein (recombined in E. coli, Cat No. R8A120, Meridian Life Science Inc.,
Memphis, TN, USA). Antigenicity defined as absorbance at 405 nm of two-fold dilution series of VLPs
(from 1:160 to 1:81,920) and standard protein (from 0.5 to 0.004 µg/mL).

2.8. Statistical Analysis

Results of SPION-HBc formation were analyzed using a two-way ANOVA followed by a Duncan
test; differences were considered significant at p ≤ 0.05. Statistical analysis was performed using the
Statistica 8.0 statistical software package (StatSoft Inc., Tulsa, OK, USA).
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2.9. Characterization Methods

Transmission electron microscopy (TEM) images were acquired with Hitachi TEM HT7700
microscope (Tokyo, Japan). Grids were made of copper coated with a carbon film, mesh 300. Samples
were prepared by placing 15 µL drop on the grid and draining the excess solution with blotting paper
and left for 15 min. to dry. Subsequently, samples were negatively stained with 10 µL of 2% uranyl
acetate. Particle size analysis was performed with free ImageJ software version 1.51w (NIH, Bethesda,
MD, USA).

Dynamic light scattering (DLS) and ζ-potential measurements were performed on Malvern Zetasizer
Nano ZS90 (Worcestershire, UK) in a Folded Capillary Zeta Cell DTS1070. Prior to measurement, samples
were briefly sonicated, diluted to optimal concentration and filtered with a 0.2 µm syringe filter (Merck
Millipore, Burlington, MA, USA). Measurements were repeated in triplicate.

ELISA was performed on the assembled HBc VLPs, with or without SPION core. The assay was
performed in line with a procedure described previously [34]. MaxiSorp (NUNC) 96-well microplate
was coated overnight at 4 ◦C with of HBc-specific mAb (0.5 mg/mL) (Cat. No. C31190 M, Meridian
Life Science Inc., Memphis, TN, USA) in carbonate buffer pH 9.6. Each step following the coating was
preceded by three washes with PBST buffer (phosphate buffered saline with additional 0.05% v/v
Tween20, Sigma, Saint Louis, MO, USA). The coated wells were blocked for 1 h with 5% (w/v) fat-free
milk/PBS, followed by incubation with 100 µL of antibody solution for 1 h at 25 ◦C. The samples were
added to the PBS-filled wells and two-fold serially diluted. HBc produced in E. coli (Cat. No. R8A120,
Meridian Life Science) was used as the reference. Rabbit polyclonal PBST antibody specific to HBc (Cat.
No. LS-C67451/18649, Life Span Biosciences, Seattle, VA, USA) 0.125 mg/mL and goat anti-rabbit
whole-molecule polyclonal antibody AP-conjugated (Sigma) 1:10,000 dilutions were premixed and
added as the primary and secondary antibody. Finally, the substrate for alkaline phosphatase (pNPP,
Sigma) was added and the reaction was developed at 25 ◦C for at least 30 min. The absorbance was
measured at 405 nm using a microplate reader (Model 680, Bio-Rad, Hercules, CA, USA).

3. Results

3.1. SPIONs Synthesis and Functionalization

Monodispersed superparamagnetic iron oxide nanoparticles (SPIONs) of 15 nm diameter were
synthesized via thermal decomposition of iron (III) acetylacetonate Fe(acac)3 (Figure S1). The approximate
diameter of the HBc VLP internal cavity is 25 nm for the T = 4 particles and 21 nm for the T = 3 [14].
Therefore, both structures provide sufficient marginal space to accommodate the ligands. In order to obtain
negative surface charge, SPIONs were functionalized with short and long chain ligands: dihexadecyl
phosphate (DHP) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy-(polyethylene
glycol)-2000] (PL-PEG-COOH) (Figure 1a,b). Functionalized SPIONs will be denoted as SPION-DHP and
SPION-PEG, respectively.

DHP functionalization was performed according to our previously described method [31].
PL-PEG-COOH functionalization was achieved by a slightly modified protocol by Huan et al. [24].
Both SPION-DHP and SPION-PEG were analyzed via ζ-potential and dynamic light scattering (DLS)
measurements (Table 1). In both cases, functionalization is driven by hydrophobic interactions between
oleic acid residues present on the surface of as-obtained SPIONs and alkyl chains of the ligands. More
detailed characterization of both functionalizations can be found in our previous work [31].

Despite rather small differences in surface charge, hydrodynamic radius differs substantially.
Counterintuitively, long-chain PEG ligand provided smaller hydrodynamic radius than DHP, which
may be partially caused by differences in ζ-potential. Another plausible explanation is the interplay of
surface charge and multilayered micelle structure formation.
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functionalization. (a) dihexadecyl phosphate (DHP); (b) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-
N-[carboxy-(polyethylene glycol)-2000] (PL-PEG-COOH).

Table 1. ζ-potential and hydrodynamic radius of the functionalized superparamagnetic iron oxide
nanoparticles (SPIONs) obtained by dynamic light scattering (DLS) (Figures S2 and S3).

SPION-DHP SPION-PEG

ζ-potential −44.0 ± 3.4 mV −37.3 ± 2.9 mV
Hydrodynamic diameter 53.75 ± 1.93 nm 29.69 ± 1.57 nm

3.2. VLPs-SPION Assembly

The assembly rates and core encapsidation efficiency are strictly dependent on surface charge
density, capsid protein concentration and core/capsid protein stoichiometric ratio [35]. Therefore, HBc
concentration was fixed at 0.05 mg/mL while SPIONs concentrations were varied between: 0.05, 0.1
and 0.2 mg/mL. It is important to note that due to differences in ligands’ molecular weight and probable
differences in functionalization densities, equal w/v concentrations of SPION-PEG and SPION-DHP
do not represent the same amount of particles in the solution. The most successful core-VLP assembly
was obtained at following concentrations: 0.2 mg/mL SPION-DHP and 0.05 mg/mL SPION-PEG
(Figure 2a,b).

TEM images were used to measure the diameter of the assembled VLPs. Mean diameter of
SPION-DHP-HBc was 28.4 ± 1.2 nm while SPION-PEG-HBc mean diameter was 29.9 ± 1.5 nm
(Table 2). The obtained measurements indicate that in both cases capsids assembled into T = 3
symmetry (native size of T = 3 capsid is 30 nm). Nonetheless, to assess the VLPs symmetry with
certainty, crystallographic studies would be required. The obtained results are concordant with
thermodynamic studies of nanospheres encapsulated in virus capsids reveling, in that core surface
charge and its radius determine the size of the capsid formed around the nanoparticle [36]. In this case,
despite T = 4 symmetry being a predominant form of in vitro HBc self-assembly (~95%), introduction
of SPION-DHP and SPION-PEG facilitated assembly into a smaller, presumably T = 3 form. This
may suggest that negative surface charge density was high enough to drive the assembly into less
energetically-favorable capsid morphology. Studying TEM images, SPION-DHP assembly displayed
higher efficiency than SPION-PEG and resulted in minority of empty capsids and unassembled
cores. In comparison, SPION-PEG assembly produced a multitude of empty capsids along with
unassembled cores.

Table 2. VLPs diameter measurements obtained from transmission electron microscopy (TEM) images.
Measured with ImageJ software.

SPION-DHP-HBc SPION-PEG-HBc

Diameter 28.4 ± 1.2 nm 29.9 ± 1.5 nm
Number of measured VLPs 41 19
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cores, negatively stained with 2% uranyl acetate. (a) SPION-DHP-HBc VLPs obtained at 0.2 mg/mL
of SPION-DHP and 0.05 mg/mL of HBc; (b) SPION-PEG-HBc VLPs obtained at 0.05 mg/mL of
SPION-PEG and 0.05 mg/mL of HBcAg.

3.3. VLPs ELISA

Antigenicity of the obtained VLPs was assessed via ELISA (Figures 3 and S4). Despite unvaried
HBc protein concentrations, for all VLPs variants decreased signals of HBc detection in comparison
to control (initial HBc used) were observed, as well as some significant differences in signals among
VLPs variants were found. All concentrations of SPION-PEG displayed a decrease in signal intensity;
however, the differences between 0.05 and 0.1 mg/mL concentrations were not statistically significant.
Additionally, in comparison to analogous variants of SPION-DHP. For SPION-PEG, the highest
observed amount of core-VLPs was found at 0.05 mg/mL (Figure 2B), which also resulted in decreased
signal intensity, although insignificantly different from other SPION-PEG concentrations. Finally,
among all variants of SPION-HBc VLPs, the significantly lowest signal, 61.6% of HBc was recorded
for 0.2 mg/mL SPION-DHP, the same concentration at which the highest number of core-VLPs was
observed. The obtained results indicate that core introduction into HBc derived VLPs may decrease
antigenicity. This phenomenon could be explained by the proclivity of HBcAg to assemble into smaller
T = 3 capsids in the presence of the SPIONs, which in turn results in higher antigen density on the
VLPs surface and competitive binding of antibodies. A study by Wu et al. has shown that the amount
of antibodies bound to the capsid depends on its morphology and is significantly decreased for T = 3
capsids [37]. Moreover, steric hindrance has been proven to be a crucial factor for antibody binding to
surface antigens [38,39]. These results provide a great starting point for further investigations of the
relationship between core properties, capsid morphology, antigenicity and biological activity of the
HBc derived VLPs.

45



Nanomaterials 2019, 9, 155 8 of 11
Nanomaterials 2018, 8, x FOR PEER REVIEW  8 of 11 

 

 
Figure 3. a) HBc re-assembly on SPIONs functionalized with DHP or PEG in different concentrations 
(mg/ml) in comparison to the initial preparation of plant-derived antigen (100%). Statistically 
significant differences marked by a letter indexes; b) Scheme of enzyme-linked immunosorbent assay 
(ELISA) test used for assay of VLP-assembled HBc and SPION-HBc VLPs. AP—alkaline phosphatase. 

4. Discussion 

Core-VLPs assembly, here SPION-HBc, is a kinetically complex cascade of interactions between 
viral proteins, nanoparticle surface and an ionic environment. In silico modeling predicts that core 
introduction provides a plethora of advantages such as increased assembly rates and efficiency over 
wider set of conditions, stimulation of the assembly below critical subunit concentration (CSC), 
possibility of templating VLPs morphology. Nonetheless, computational modeling results are not 
always confirmed in experimental studies. For example, the predicted increase of assembly efficiency 
driven by the increase of surface charge density has been overestimated in comparison to 
experimental data [35]. Moreover, simulations predominantly assume cores geometry perfectly 
commensurate with capsid interior. In our case, functionalized 15 nm SPIONs were not perfectly 
fitted into the capsid, which could elicit the existence of kinetic traps, not predicted by the 
computational studies [40]. The most successful core assembly was achieved at a 0.2/0.05 mg/ml 
core/protein ratio with SPION-DHP. Slightly lower ζ-potential concomitant with larger 
hydrodynamic diameter in comparison to SPION-PEG might indicate that surface charge density was 
higher in case of SPION-DHP. SPION-PEG assembly at 0.05/0.05 mg/ml core/protein ratio resulted 
in partially successful core assembly along with multitude of empty capsids and unassembled cores. 
This result indicates that one or several assembly parameters were suboptimal; however, due to the 
complexity of the process, we are unable to pinpoint the exact cause of lower efficiency. It is possible 
that interactions between less negatively charged SPION-PEG and positively charged domains of the 
HBc were insufficient to win competition over subunit-subunit attraction, resulting in the empty 
capsids. Additionally, it is important to note that the ligands used differed in length which could also 
affect assembly kinetics. In both cases, core introduction resulted in slightly smaller VLPs diameters 
even for T = 3 capsid morphology, which could be attributed to more compact HBc dimer-dimer 
spacing resulted from strong electrostatic core-HBc dimer interactions. This thesis stands in 
agreement with our experimental data showing smaller core-VLPs diameters for lower values of the 
core’s ζ-potential (Table 2). VLPs morphology driven antigenicity is a crucial aspect determining its 
potential application, especially in the area of vaccinology. In that respect, our study demonstrated 
successful assembly together with substantially retained HBc antigenicity, although decreased in 
comparison to native HBc protein preparation containing mainly T = 4 capsids (Figure 3). This may 
indicate competitive binding of antibodies and/or steric clashes due to increased antigen surface 
density, stemming from the decreased VLPs diameter. Crucially, for many medical applications such 
as cell- or tissue-specific targeting, decreased immunogenicity of core antigen may be desirable. 
Nonetheless, this theory requires more in depth experimental investigation to be confirmed. Surface 
charge density is one of the most important parameters guiding core assembly. However, it is not 
easily measureable by standard lab equipment, which impedes rational design of physicochemical 

Figure 3. (a) HBc re-assembly on SPIONs functionalized with DHP or PEG in different concentrations
(mg/mL) in comparison to the initial preparation of plant-derived antigen (100%). Statistically
significant differences marked by a letter indexes; (b) Scheme of enzyme-linked immunosorbent assay
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4. Discussion

Core-VLPs assembly, here SPION-HBc, is a kinetically complex cascade of interactions between
viral proteins, nanoparticle surface and an ionic environment. In silico modeling predicts that core
introduction provides a plethora of advantages such as increased assembly rates and efficiency over
wider set of conditions, stimulation of the assembly below critical subunit concentration (CSC),
possibility of templating VLPs morphology. Nonetheless, computational modeling results are not
always confirmed in experimental studies. For example, the predicted increase of assembly efficiency
driven by the increase of surface charge density has been overestimated in comparison to experimental
data [35]. Moreover, simulations predominantly assume cores geometry perfectly commensurate
with capsid interior. In our case, functionalized 15 nm SPIONs were not perfectly fitted into
the capsid, which could elicit the existence of kinetic traps, not predicted by the computational
studies [40]. The most successful core assembly was achieved at a 0.2/0.05 mg/mL core/protein
ratio with SPION-DHP. Slightly lower ζ-potential concomitant with larger hydrodynamic diameter in
comparison to SPION-PEG might indicate that surface charge density was higher in case of SPION-DHP.
SPION-PEG assembly at 0.05/0.05 mg/mL core/protein ratio resulted in partially successful core
assembly along with multitude of empty capsids and unassembled cores. This result indicates that
one or several assembly parameters were suboptimal; however, due to the complexity of the process,
we are unable to pinpoint the exact cause of lower efficiency. It is possible that interactions between
less negatively charged SPION-PEG and positively charged domains of the HBc were insufficient to
win competition over subunit-subunit attraction, resulting in the empty capsids. Additionally, it is
important to note that the ligands used differed in length which could also affect assembly kinetics.
In both cases, core introduction resulted in slightly smaller VLPs diameters even for T = 3 capsid
morphology, which could be attributed to more compact HBc dimer-dimer spacing resulted from
strong electrostatic core-HBc dimer interactions. This thesis stands in agreement with our experimental
data showing smaller core-VLPs diameters for lower values of the core’s ζ-potential (Table 2). VLPs
morphology driven antigenicity is a crucial aspect determining its potential application, especially
in the area of vaccinology. In that respect, our study demonstrated successful assembly together
with substantially retained HBc antigenicity, although decreased in comparison to native HBc protein
preparation containing mainly T = 4 capsids (Figure 3). This may indicate competitive binding of
antibodies and/or steric clashes due to increased antigen surface density, stemming from the decreased
VLPs diameter. Crucially, for many medical applications such as cell- or tissue-specific targeting,
decreased immunogenicity of core antigen may be desirable. Nonetheless, this theory requires more in
depth experimental investigation to be confirmed. Surface charge density is one of the most important
parameters guiding core assembly. However, it is not easily measureable by standard lab equipment,

46



Nanomaterials 2019, 9, 155 9 of 11

which impedes rational design of physicochemical properties of the core. Therefore, we propose
the use of ζ-potential and hydrodynamic diameter, as two parameters encompassing surface charge
density. This approach would simplify and unify core’s surface electrostatic characterization, providing
more accessible tool for core-VLPs design.

5. Conclusions

This study provides an experimental assessment of the crucial parameters guiding SPION-HBc
VLPs assembly and evaluates antigenicity of the obtained structures. The presented results highlight
potential directions for further studies regarding the mechanism guiding HBc VLPs assembly with
metallic cores as well as their antigenic properties.
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Abstract: The nanoindentation method was applied to determine the elastic modulus and hardness 
of knee articular cartilage. Cartilage samples from both high weight bearing (HWB) and low weight 
bearing (LWB) femoral condyles were collected from patients diagnosed with osteoarthritis (OA). 
The mean elastic modulus of HWB cartilage was 4.46 ± 4.44 MPa in comparison to that of the LWB 
region (9.81 ± 8.88 MPa, p < 0.001). Similarly, the hardness was significantly lower in HWB tissue 
(0.317 ± 0.397 MPa) than in LWB cartilage (0.455 ± 0.434 MPa, p < 0.001). When adjusted to patients’ 
ages, the mean elastic modulus and hardness were both significantly lower in the age group over 
70 years (p < 0.001). A statistically significant difference in mechanical parameters was also found in 
grade 3 and 4 OA. This study provides an insight into the nanomechanical properties of the knee 
articular cartilage and provides a starting point for personalized cartilage grafts that are compatible 
with the mechanical properties of the native tissue.  

Keywords: articular cartilage; osteoarthritis; elastic modulus; mechanical properties; 
nanoindentation 

 

1. Introduction 

Articular cartilage (AC) is a highly specialized weight-bearing tissue that provides low friction 
during joint articulation. Due to its unique biomechanical functions, AC is mainly avascular, aneural, 
and alymphatic in structure and is capable of withstanding intensive cyclic loading and shear stress. 
The molecular composition of the AC perfectly reflects its physiological functions. It is composed of 
70–80% water, 15% collagens (predominantly type II collagen), 9% aggrecan, and 3% chondrocytes. 
The cartilage matrix composition varies depending on the cartilage zone (i.e., tangential, transitional, 
radial, and calcified). Besides type II collagen, AC contains minute amounts of other types of collagen: 
III, VI, IX, XI, XII, and XIV [1]. Aggrecan is the main proteoglycan comprising two types of 
glycosaminoglycans (GAGs): chondroitin sulphate and keratin sulphate. GAGs are highly 
polyanionic and can bind up to 50 times their weight in water. This mechanism endows AC with its 
tensile strength, stiffness, and elasticity. The presence of structured collagen fibers and proteoglycans 
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reduces the friction of the articular surface and provides high resistance to mechanical stress, 
ensuring painless movement in the joints [2].  

AC damage may occur either as a result of biological factors (e.g., imbalanced expression of 
cytokines) or mechanical factors [3]. Its avascular structure and low cellular content render AC 
incapable of efficient self-renewal [4,5]. Mechanical damage or progressing degradation results in 
numerous morphological, biochemical, and biophysical changes in cartilage structure [6]. Gradual 
deterioration is also a hallmark of osteoarthritis (OA) [7]. Cartilage erosion is thought to be caused 
by sustained imbalance between catabolic and anabolic processes. Increased activity of enzymes such 
as, e.g., matrix metalloproteinases (MMPs) contributes to extracellular matrix (ECM) breakdown. The 
erosion begins with the truncation of essential components such as collagens and aggrecans [8]. Due 
to proteoglycan loss, the most superficial cartilage zone (tangential) becomes fibrillated. The 
progression of matrix degradation results in increased water content and disruption of the collagen 
network, which, in turn, deteriorates the mechanical properties of the tissue and initiates the 
compensational synthesis of type II collagen [9]. Further alterations increase cartilage vulnerability 
to mechanical loads and lead to secondary changes such as subchondral bone sclerosis or osteophyte 
formation [10]. While the morphological and histological features of OA are well established, the 
underlying molecular mechanisms are still not completely understood. The mechanical 
characterization at the nano scale may provide important cues toward unraveling the molecular 
complexity of the disease.  

Nanoindentation has been developed primarily for the nanomechanical characterization of non-
biological surfaces. Paradoxically, limitations of this method stem from its high precision and 
accuracy. Pronounced heterogeneity of the biological surfaces’ topography renders the utilization of 
this method quite challenging. Nonetheless, if applied properly, the method offers unmatched 
accuracy and provides a deep insight into the nanomechanical properties of a given tissue. Although 
other clinical indentation devices exist, they lack the sensitivity to expose local and distinct changes 
in the mechanical features of the AC [11]. 

A study by Stolz et al. inspired us to investigate the potential use of nanoindentation to reveal 
the discrete changes at the nanoscale occurring during the course of OA [12]. The majority of studies 
regarding the mechanical properties of AC have been based on intact (healthy) tissue [13–16]. Only a 
few experimental studies so far have characterized the properties of degenerated tissue [17–21]. Nia 
et al. investigated a murine femur cartilage elastic modulus and showed that aggrecan depletion led 
to a significant decrease in the elastic modulus from 2.0 MPa to around 0.4 MPa [17]. Furthermore, 
Doyran et al. observed, that in a murine post-traumatic model of OA, changes in cartilage mechanical 
properties markedly preceded the histological signs of the disease and were detectable at 1 week [22]. 
Interestingly, when the decrease in the elastic modulus was tested for the case of human osteoarthritic 
cartilage, it was not correlated with the disease progression [17]. Other studies indicated both an 
increase and decrease in cartilage elasticity during the course of OA [23,24]. It has been shown that 
the elastic modulus varies depending on the depth of the indent; therefore, each zone displays 
slightly different mechanical properties [16]. Similarly, different regions of the knee joint are exposed 
to different magnitudes of forces. Based on those differences, two types of regions could be 
distinguished—low weight bearing (LWB) and high weight bearing (HWB). Due to higher exposure 
to mechanical stress, the HWB region is more prone to the development of OA. 

Regarding cartilage repair techniques, the difference between the mechanical properties of the 
LWB and HWB regions could eventually impact the outcome of AC repair. Differences in the 
mechanical characteristics between the tissue and a graft may impair its integration. Therefore, 
whether cell-loaded or cell-free, grafts and scaffolds should represent appropriate mechanical 
features to support the loading of the joint surfaces and thus easily integrate with the surrounding 
tissue. 

Currently, there are no comprehensive studies on the mechanical properties of high weight 
bearing and low weight bearing articular cartilage at different stages of OA. This study describes the 
mechanical features of articular cartilage in terms of the hardness and elastic modulus. A novel 
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implementation of the nanoindentation technique provides an insight into the biomechanical 
properties of osteoarthritic cartilage. 

2. Materials and Methods  

2.1. Samples Collection 

Samples of AC were harvested from 75 patients diagnosed with OA undergoing a total knee 
replacement procedure at the Department of Orthopedics and Traumatology, Poznan University of 
Medical Sciences. All subjects gave their informed consent for inclusion before they participated in 
the study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol 
was approved by the Ethics Committee of Poznan University of Medical Sciences (permission No. 
1016/16), and written consent from each patient was obtained. 

The OA was diagnosed according to the American College of Rheumatology (ACR) criteria. The 
exclusion conditions included the presence of rheumatoid arthritis, osteotomy, and post-traumatic 
osteoarthritis. The radiological stage of the disease was evaluated according to the Kellgren–
Lawrence (K-L) scale. The AC specimens were taken from both the medial and the lateral femoral 
condyle of each patient. Regarding the joint axial deformation (varus or valgus) and tissue 
morphology, samples were then marked as HWB or LWB (Figure 1).  

 

Figure 1. Graphical description of the experiment design: (a) indication of locations chosen for sample 
harvesting; (b) sample prepared for measurement; (c) nanoindenter used in the study; (d), (e) 
exemplary data obtained from the measurements. 

2.2. Nanoindentation Measurements 

The cartilage was cut with a surgical blade to obtain samples of at least 3.0 mm × 3.0 mm of flat 
surface. For the nanoindentation measurement, the AC samples were fixed in acrylic resin (Form 
Plast, Zhermapol®, Warsaw, Poland) to dedicated holders, with the superficial layer facing the 
indenter. After fixation, samples were rehydrated at RT with phosphate buffer saline (PBS) for 15 
min. Before analysis, the excess PBS was poured onto the samples to prevent drying during 
measurement. The indentation tests were conducted on a nanoindenter Agilent G200 with a DCMII 
head (Agilent Technologies, Inc., Santa Clara, CA, USA) fitted with a Berkovich-type indenter tip 
(Figure 2). The area function was calculated according the formula 

a) b) c) 

d) e) 
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𝐴(ℎ ) =  𝑚 + ℎ + 𝑚 + ℎ + 𝑚 + ℎ + ⋯ + 𝑚 + ℎ ( )  (1) 

where the nominal value was m0 = 24.5. 
The tip was calibrated before each sample measurement on quartz crystal (Young`s modulus E 

= 74 GPa). The measurements were performed in CSM mode (Continuous Stiffness Measurement). 
Indentations were performed at a depth of up to 10 µm with a strain rate of 1 [1/s] and a Poisson’s 
ratio of 0.4. In order to calculate the Hardness and Elasticity modulus, determination of the elastic 
stiffness of the contact is required. Typically, it is derived from the slope of the load–displacement 
curve during the unload segment [25]. However, this calculation only gives the results for the 
maximum penetration depth. In our experimental setup, due to the continuous stiffness 
measurement technique (CSM), the measurement of the elastic stiffness of the contact (and thus the 
hardness and elasticity modulus) was obtained continuously during the loading. In CSM 
measurements, the additional harmonic force (with the amplitude in the range of nanometers) is 
added to the nominally increasing load. The displacement response of the indenter at this harmonic 
frequency can be analyzed in terms of the displacement amplitude, phase angle, and excitation 
amplitude. Solving the response equations (described elsewhere [26]) results in the determination of 
the elastic stiffness of the contact as a continuous function of the depth. 

For each sample, 12 indents were performed in a 3 × 4 matrix with 200 µm x,y indent separation. 
The maximum depth of the indentation was 10.0 µm. The mean elastic modulus and hardness were 
obtained from the 5.0–8.0 µm indentation depth range. Exemplary raw data obtained from the 
measurements can be found in the Supplementary Material section (Figures S1–S6). 

2.3. Histological Analysis 

For histology, representative samples of the HWB articular cartilage of patients with K-L grades 
2–4 were prepared for the experiments. Cartilage was harvested, fixed in 4% paraformaldehyde, 
decalcified in 12% EDTA, and embedded in parafin. Serial 5 µm thick sections were cut and stained 
with Safranin-O/Fast Green (Supplementary Material, Figure S7). 

2.4. Statistical Analysis 

Data were analyzed with Statistica version 13.1 (Tibco Software, Inc., Palo Alto, CA, USA). 
Descriptive statistics are reported as means, standard deviations (SD), medians, and minimum and 
maximum values. The Shapiro–Wilk test was used to assess the normality of distributions in the test 
score. If the data were normally distributed, parametric statistics were used for analyzing the data. 
The significance of the differences between the results of the tested and control sample was calculated 
using a paired t-test or non-parametric Wilcoxon signed-ranks test. The non-parametric Mann–
Whitney test was conducted to compare the mean elastic modulus and hardness in patients divided 
by age and sex. The non-parametric Kruskal–Wallis test was used to analyze the differences between 
the mean elastic modulus and hardness in patients divided by BMI and Kellgren–Lawrence on more 
than two groups. The Dunn’s post hoc test was used to show the difference between the tested 
groups. p-values of less than 0.05 were considered statistically significant. 

3. Results 

The anthropometric characteristics of the patients are summarized in Table 1. The evaluation of 
knee radiographs using the K-L grading system showed no patients graded 0, 16 patients graded 2, 
39 patients graded 3, and 20 patients graded 4.  
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Table 1. Baseline demographics of the patients. 

Variable Mean ± SD median min–max 
Age 

(years) 
68.5 ± 7.5 69.0 52.0–82.0 

Weight 
(kg) 

84.0 ± 14.7 82.0 55.0–118.0 

Height 
(cm) 

163.8 ± 8.7 164.0 146.0–183.0 

BMI 
(kg/m2) 

31.3 ± 5.0 31.0 22.0–46.1 

BMI, body mass index; SD, standard deviation. 

The mean elastic modulus and hardness of HWB cartilage (tested) were significantly lower, 
when compared to that of LWB (control) (Table 2). The relative frequency values of the mean elastic 
modulus and hardness obtained in both groups can be found in the Supplementary Materials section 
(Figure S8 and S9). The difference remained significant when estimated for males and females alone 
(Table 3). For tested samples, values were higher in females, while they were lower in the control 
tissue, when compared to males. However, when testing within the HWB and LWB groups of male 
and female samples, no significant differences were found (Supplementary Material, Table S1: Elastic 
modulus and hardness of HWB and LWB articular cartilage; adjusted to patients’ sex tested within 
the groups).  

Table 2. Elastic modulus and hardness of high weight bearing (HWB) and low weight bearing (LWB) 
articular cartilage. 

 HWB cartilage LWB cartilage  
Variable Mean ± SD median min–max Mean ± SD median min-max p-value 
Elastic 

modulus 
(MPa) 

4.46 ± 4.44 2.90 1.10–24.35 9.81 ± 8.88 7.40 1.10–51.00 <0.001* 

Hardness 
(MPa) 

0.317 ± 0.397 0.190 0.040–2.640 0.455 ± 0.434 0.320 0.060–2.200 <0.001* 

*Wilcoxon signed-rank test. 

Table 3. Elastic modulus and hardness of high weight bearing (HWB) and low weight bearing (LWB) 
articular cartilage adjusted to patients’ sexes. 

   HWB cartilage LWB cartilage  
Variable Sex n Mean ± SD median min–max Mean ± SD median min–max p-value 

Elastic 
modulus 

(MPa) 

Female 57 4.52 ± 4.17 2.94 1.10–19.70 9.54 ± 8.56 7.11 
1.10–
51.00 

<0.001* 

Male 18 4.25 ± 5.34 2.60 1.30–24.35 10.66 ± 10.05 8.30 
1.19–
37.40 

0.002* 

Hardness 
(MPa) 

Female 57 0.309 ± 0.318 0.200 0.040–1.570 0.442 ± 0.424 0.320 
0.060–
2.200 

0.004* 

Male 18 0.343 ± 0.594 0.130 0.070–2.640 0.493 ± 0.478 0.330 
0.060–
2.000 

0.022* 

*Wilcoxon signed-rank test. 

From the data shown in Table 4, it appears that there is a significant decline in the biomechanical 
properties of cartilage with increasing age. When adjusted to age, the mean elastic modulus and 
hardness of articular cartilage were significantly lower in the age group over 70 years (Table 4). These 
trends are shown in Figure 2; Figure 3, which present the combined sample mean and standard 
deviation plotted against the patients’ ages.  
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Table 4. Elastic modulus and hardness of high weight bearing (HWB) and low weight bearing (LWB) 
articular cartilage adjusted to patients’ ages. 

   HWB cartilage LWB cartilage  
Variable Age n Mean ± SD median min–max Mean ± SD median min–max p-value 
Elastic 

modulus 
(MPa) 

<69 39 5.28 ± 5.50 2.94 1.22–24.35 8.24 ± 5.94 7.11 1.10–27.80 0,002* 

>70 36 3.56 ± 2.71 2.83 1.10–15.86 11.51 ± 11.07 8.18 2.13–51.00 <0.001* 

Hardness 
(MPa) 

<69 39 0,371 ± 0.480 0.210 0.070–2.640 0.389 ± 0.372 0.280 0.060–2.00 0.085* 
>70 36 0.259 ± 0.277 0.165 0.040–1.570 0.525 ± 0.489 0.390 0.100–2.100 <0.001* 

*Wilcoxon signed-rank test 

 

Figure 2. Scatter plot of the mean elastic modulus against age: (a) low weight bearing (LWB) sample 
and (b) high weight bearing (HWB) sample. 

 

Figure 3. Scatter plot of hardness against age: (a) low weight bearing (LWB) sample and (b) high 
weight bearing (HWB) sample. 

The evaluation of the biomechanical properties of articular cartilage in patients at different 
stages of OA revealed 2–3-fold lower values for grade 3 and 4 HWB sites in terms of the elastic 
modulus. For hardness, a statistically significant difference was found for grade 3 samples. No 
appreciable differences were found for grade 2 and 4 OA (Table 5). 

 

a) 

a) b) 

b) 
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Table 5. Elastic modulus and hardness of high weight bearing (HWB) and low weight bearing (LWB) 
articular cartilage adjusted to the Kellgren–Lawrence (K-L) osteoarthritis (OA) grading system. 

   HWB cartilage LWB cartilage  

Variable 
K-L 

grade 
n Mean ± SD median min-max Mean ± SD median min-max p-value 

Elastic 
modulus 

(MPa) 

2 16 5.84 ± 5.04 3.76 1.70–18.99 11.32 ± 8.87 8.89 1.10–34.96 0.073 
3 39 3.78 ± 3.53 2.75 1.22–19.70 10.29 ± 9.90 8.13 1.67–51.00 <0.001* 
4 20 4.66 ± 5.42 2.59 1.10–24.35 7.66 ± 6.45 6.86 1.19–32.00 0.008* 

Hardness 
(MPa) 

2 16 0.416 ± 0.438 0.240 0.070–1.570 0.463 ± 0.391 0.370 0.060–1.680 0.772 
3 39 0.248 ± 0.230 0.190 0.050–1.410 0.481 ± 0.462 0.370 0.080–2.200 <0.001* 
4 20 0.375 ± 0.579 0.165 0.040–2.640 0.396 ± 0.426 0.285 0.060–2.000 0.179* 

paired t-test, *Wilcoxon signed-rank test. 

However, no statistically significant differences were found when the biomechanical parameters 
of the cartilage were grouped by patients’ ages, sexes, BMI values, and OA grades and tested within 
the groups and between the groups (Table 6). 

Table 6. Differences between the values of elastic modulus and hardness of high weight bearing 
(HWB) and low weight bearing (LWB) articular cartilage adjusted to age, sex, BMI, and the K-L OA 
grade tested within the groups and between the groups. 

  HWB cartilage LWB cartilage HWB vs. LWB 

  
Elastic 

modulus 
Hardness 

Elastic 
modulus 

Hardness 
Elastic 

modulus 
Hardness 

Age 
<69 

0.311* 0.270* 0.270* 0.127* 0.124* 0.160* 
>70 

Sex 
f 

0.283* 0.208* 0.941* 0.936* 0.519* 0.355* 
m 

BMI 
normal 

0.548** 0.406** 0.742** 0.738** 0.938** 0.991** overweight 
obese 

K-L 
grade 

2 
0.130** 0.365** 0.414** 0.482** 0.523** 0.688** 3 

4 
*Mann–Whitney U test, ** Kruskal–Wallis test. 

Moreover, increasing age and OA grade were not correlated with the decrease of articular 
cartilage mechanical properties when analyzed within the HWB and LWB groups (Supplementary 
Material, Table S2: Correlations between high weight-bearing cartilage (HWB) and low weight-
bearing cartilage (LWB) mechanical parameters and age or OA grade tested within the groups). 

4. Discussion 

Tissue engineering techniques permit an innovative approach to articular cartilage repair. 
However, information about the mechanical properties of human cartilage altered by joint 
degenerative disease is limited. AC is an inhomogeneous tissue, in which mechanical properties 
depend mostly on the ECM composition. Its biomechanical function is related to the water content 
and collagen, proteoglycans, and hyaluronate concentrations and to the interactions between these 
components. Consequently, alterations in the ECM components and disrupted tissue integrity, either 
by injury or disease, result in deterioration of the mechanical strength.  

To our knowledge, this is one of the first studies of the nanomechanical properties of weight-
bearing and non-weight-bearing articular cartilage at different stages of OA conducted at this scale. 
Researchers are consistent in the view that the elastic modulus of articular cartilage lies within the 
range of a few MPa [12,13,17,19,24]. The results of our work are commensurate with the previous 
studies, where the mechanical properties of articular cartilage were measured. Moshtagh et al. 
reported the average elastic modulus of the medial tibia plateau cartilage as being 2.6 ± 1.4 MPa, 
while that of the lateral tibia was reported as being 4.2 ± 2.6 MPa [27]. Antons et al. observed values 
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ranging from 0.020 ± 0.003 MPa in the superficial zone to 6.44 ± 1.02 MPa in the calcified zone of 
human femoral condyle cartilage [16]. Other researchers have presented contradictory results. 
Sergerie et al. showed that ECM stiffness decreases along the cartilage zones of the porcine cartilage 
growth plate, while Park et al. showed that rabbit growth plate stiffness increases across the same 
region [28,29]. Therefore, site-specific properties, local variation, and cartilage sample thickness 
should not be neglected [30–32]. Observed discrepancies in the values of hardness and elastic 
modulus could stem from measuring different cartilage zones, which was unavoidable due to 
inhomogeneous structure of the osteoarthritic cartilage. Moreover, it seems that nanoscale 
indentation with sharp probes picks up the mechanics of individual macromolecules and is reflected 
the elasticity of collagen or aggrecan macromolecules [11,33,34]. Chandran et al. stated that an 
indentation depth of at least 0.6 µm is required to obtain values of matrix elasticity, instead of a rough 
superficial layer [14]. In the study by Antons et al., the thickness of the samples ranged from 1484 ± 
75.23 µm to 3624.4 ± 164.11 µm [16]. In a study by Moshtagh et al., it was observed that each 60 µm 
change in indenter location could result in a 20-fold variation in the measurement [27]. 

Values reported by others, suggest, that our measurements were taken in the deep layers of 
cartilage, rather than in the superficial zone. Additionally, measuring the superficial layer would be 
very challenging, since the samples were harvested from donors diagnosed with OA. In general, 
special care was taken to harvest the samples from precisely the same area of the femoral condyle. 
Nevertheless, the disease stage could influence the accessibility of the tissue, especially from the HWB 
region of the cartilage. Despite some technical difficulties, our study revealed a significant decrease 
in the biomechanical properties of the articular cartilage associated with age and disease progression. 
We observed a 2–3-fold decrease in the elastic modulus and the hardness of cartilage in patients over 
70 years of age. Similarly, a significant deterioration of the parameters was observed in stages 2 to 4 
of OA. Peters et al. also found that increasing age and OA grade were strongly correlated with a 
decrease in cartilage shear modulus (p = 0.003 and p = 0.007, respectively) [20]. Cao et al. noticed that 
the decreased stiffness of the OA cartilage may be caused by increased water content and elevated 
permeability as well as to a decreased proteoglycans content [13]. Nia et al. found that aggrecan 
depletion from a mouse femur led to a significant decrease in the elastic modulus (from approx. 2.0 
to 0.4 MPa). However, the aggrecan depletion was not observed for human cartilage in correlation to 
the progression of OA [17]. 

In spite of the intriguing results, there were several limitations in our study. First of all, a 
biochemical analysis was not performed to elucidate the cartilage composition and its correlation 
with the mechanical properties of the tissue. Another limitation is the lack of an appropriate reference 
material, such as a cartilage sample from a healthy donor, which may have provided comparative 
values of measured parameters and the extent of the impact of OA on the articular cartilage 
biomechanics. This, however, could be done in the future using cadaver cartilage taken from young 
subjects. Moreover, the indenter tip used in this study (Berkovich type) could influence the materials’ 
behavior under indentation. This is related to the size of the indentation region, which is different in 
cases of Berkovich and conical tips [35]. However, for biological samples, a spherical indentation tip 
is more commonly used, due to its more favorable geometry, providing a good alignment between 
the indenter and the material surface [36,37]. 

5. Conclusions 

This study demonstrates the regional mechanical properties of the articular cartilage of the knee 
joint taken from a representative number of OA patients. The results provide insight into the 
mechanical behavior of the cartilage at different stages of OA in correlation to the patients’ ages, 
which is essential from the clinical perspective. Matching the mechanical characteristics of the tissue 
and graft is crucially important for proper integration with the surrounding tissue [38–41]. Currently, 
there are no methods to select an ideal biomaterial-based graft for repairing cartilage lesions. 
Moreover, the repair procedures are mostly performed on the high weight-bearing surface of the 
femoral condyle, thus indicating the importance of assessing the biomechanical properties of 
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surrounding tissue prior to graft implantation. This would significantly raise the chances for 
successful and long-term clinical improvement of the operated patients.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Exemplary 
raw data obtained from the measurements; Figure S2: Exemplary raw data obtained from the measurements; 
Figure S3: Exemplary raw data obtained from the measurements; Figure S4: Exemplary raw data obtained from 
the measurements; Figure S5: Exemplary raw data obtained from the measurements; Figure S6: Exemplary raw 
data obtained from the measurements; Figure S7: Representative histology sections of HWB cartilage (Safranin-
O/Fast Green staining); Figure S8: Relative frequency of mean elastic modulus of: (a) low weight bearing (LWB) 
sample and (b) high weight bearing (HWB) sample; Figure S9: Relative frequency of mean hardness of: (a) low 
weight bearing (LWB) sample and (b) high weight bearing (HWB) sample. Table S1: Elastic modulus and 
hardness of high weight bearing (HWB) and low weight bearing (LWB) articular cartilage; adjusted to patients’ 
sex tested within the groups, Table S2: Correlations between high weight bearing cartilage (HWB) and low 
weight bearing cartilage (LWB) mechanical parameters and age or OA grade tested within the groups. 
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