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We present studies of the atomic limit of the extended Hubbard model with pair hopping for
arbitrary electron density and arbitrary chemical potential. The Hamiltonian consists of (i) the
e�ective on-site interaction U and (ii) the intersite charge exchange term I, determining the hop-
ping of electron pairs between nearest-neighbour sites. In the analysis of the phase diagrams and
thermodynamic properties of this model we treat the intersite interactions within the mean-�eld
approximation. In this report we focus on metastable phases and determine their ranges of oc-
currence. Our investigations in the absence of the external magnetic �eld show that the system
analysed exhibits tricritical behaviour. Two metastable phases (superconducting and nonordered)
can exist inside the regions of the phase separated state stability and a �rst-order transition occurs
between these metastable phases.
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71.10.Fd � Lattice fermion models (Hubbard model, etc.),
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71.10.Hf � Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems
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I. INTRODUCTION

The superconductivity (SS) with very short coherence
length and the phase separation (PS) phenomenon in-
volving SS states are very current topics (for a review see
[1�5] and references therein). It is worthwhile to mention
that metastable and unstable states have been found in
many physical systems experimentally and theoretically.
In our work we will study a model which directly per-

tains to that problem. The e�ective Hamiltonian consid-
ered has the following form:

Ĥ = U
∑
i

n̂i↑n̂i↓ − 2I
∑
〈i,j〉

ρ̂+i ρ̂
−
j

− µ
∑
i

n̂i −B
∑
i

ŝzi , (1)

where n̂i =
∑
σ n̂iσ, n̂iσ = ĉ+iσ ĉiσ, ρ̂

+
i = (ρ̂−i )† = ĉ+i↑ĉ

+
i↓.

B = gµBHz is external magnetic �eld and ŝzi =
(1/2)(n̂i↑− n̂i↓) is z-component of the total spin at i site.∑
〈i,j〉 indicates the sum over nearest-neighbour sites i

and j independently. ĉ+iσ (ĉiσ) denotes the creation (an-
nihilation) operator of an electron with spin σ =↑, ↓ at
the site i, which satis�es canonical anticommutation re-
lations:

{ĉiσ, ĉ+jσ′} = δijδσσ′ , {ĉiσ, ĉjσ′} = {ĉ+iσ, ĉ
+
jσ′} = 0,
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where δij is the Kronecker delta. µ is the chemical po-
tential, connected with the concentration of electrons by
the formula:

n =
1

N

∑
i

〈n̂i〉,

with 0 ≤ n ≤ 2 and N is the total number of lattice sites.
I0 = zI, where z is a number of the nearest-neighbour
sites and 〈Â〉 indicates the average value of the operator
Â in the grand canonical ensemble.
Model (1) exhibits (in the absence of the �eld con-

jugated with the superconducting (SS) order parameter
∆ = 1

N

∑
i〈ρ̂−〉) a symmetry between I > 0 (s-pairing)

and I < 0 (η-pairing, ηS, ∆ηS = 1
N

∑
i exp (i ~Q · ~Ri)〈ρ̂−i 〉,

~Q being half of the smallest reciprocal lattice vector)
cases. Thus, we restrict ourselves to the I > 0 case only.
In the presence of �nite single electron hopping tij 6= 0
the symmetry is broken in the general case [6, 7, 9�11].
Model (1) has been intensively analysed for B = 0

[2, 12�16] as well as for B 6= 0 [3, 15] (in particular, in the
context of the phase separation [2, 3]). In the analysis we
have adopted a variational approach (VA), which treats
the on-site interaction term (U) exactly and the inter-
site interaction (I) within the mean-�eld approximation
(MFA). One obtains two equations for n and ∆, which
are solved self-consistently. Explicit forms of equations
for the energy and other thermodynamical properties are
derived in Refs. [2, 3, 15]. Condition ∆ 6= 0 is in the
superconducting (SS) phase, whereas in the nonordered
(NO) phase ∆ = 0. For �xed n, the model can exhibit
also the phase separation (PS) which is a state with two
coexisting domains (SS and NO) with di�erent electron
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concentration, n− and n+. The free energy of the PS
state can be derived in standard way, using Maxwell's
construction (e.g. [2, 3, 17�19]). It is important to �nd
all homogeneous solutions at which grand canonical po-
tential ω (free energy f) has the local minimum with
respect to ∆ if system is considered for �xed µ (or n).
We say that the solution (of the set of two self-

consistent equations for n and ∆) corresponds to
a metastable phase if it gives a (local) minimum of ω
(or f) with respect to ∆ and the stability condition
∂µ/∂n > 0 (system with �xed n) is ful�lled. Otherwise,
we say that the phase is unstable. A stable (homoge-
neous) phase is a metastable phase with the lowest free
energy (among all metastable phases and phase separated
states).
In the paper we have used the following conven-

tion. A second- (�rst-)order transition is a transition
between homogeneous phases with a (dis-)continuous
change of the order parameter at the transition temper-
ature. A transition between homogeneous phase and PS
state is symbolically named as a �third-order� transition
[2, 3]. At this transition a size of one domain in the
PS state decreases continuously to zero at the transition
temperature. We have also distinguished a �rst-order
transition between metastable phases.
The phase diagrams obtained are symmetric with re-

spect to half-�lling because of the particle-hole symmetry
of the hamiltonian (1) [1�3], so the diagrams will be pre-
sented only in the range µ̄ = µ− U/2 ≤ 0 and 0 ≤ n ≤ 1.
In present report we will focus on the possibility of

the metastable phases occurrence on the phase diagrams
of model (1) in the absence of magnetic �eld (B = 0).
The e�ects of B 6= 0 are rather similar to those of U > 0
[2, 3, 15] and we leave deeper analysis of the B 6= 0 case
to future publications.

II. NUMERICAL RESULTS AND DISCUSSION
(B = 0)

The overall behaviour of the system has been shown
in [2, 3, 15]. The model considered exhibits interesting
multicritical behaviour including tricritical points.
In the range 2 < U/I0 < +∞, only the NO phase is

stable at any T ≥ 0. For on-site attraction U/I0 < 0,
(�local pair� limit) only the second order SS�NO transi-
tions between homogeneous phases occur with increasing
temperature. The transition temperature is maximal for
U → −∞, µ̄ = 0 (n = 1) and it decreases monotonically
with increasing U/I0 and |µ̄|/I0 = |n− 1|.
The most interesting is the range 0 < U/I0 < 2. In this

range there is smooth crossover into the �pair breaking�

limit and the SS�NO transition can also be of a �rst or-
der (for �xed µ̄) and the system exhibits phase separation
(for �xed n). The metastable phases exist in several def-
inite ranges of model parameters as it will be discussed
below.
One should stress that metastable phases can occur

FIG. 1. kBT/I0 vs. U/I0 phase diagram for n = 1 (I0 = zI).
Dotted and solid lines denote �rst- and second-order tran-
sitions between stable phases. Dashed-dotted lines denote
the boundaries of metastable phase occurrence (names of
metastable phases in brackets). T denotes tricritical point.

only at T > 0. At T = 0 one phase (state) can be stable
only. For T = 0 the discontinuous SS�NO transition oc-
curs at U/I0 = (µ̄/I0)2 + 1 (for �xed |µ̄|/I0 < 1) whereas
the continuous SS�NO transition occurs at |µ̄|/I0 = 1
and U/I0 < 2. The PS state stability region is deter-
mined by conditions: U/I0 ≤ 2 and |n− 1|2 ≤ U/I0 − 1
(n 6= 1). At n = 1 (µ̄ = 0) the discontinuous SS�NO
transition occur for U/I0 = 1. The extension (to the
ground state) of the end of the �rst order transition line
between metastable phases (SS and NO) is located at
U/I0 = 1 + |1− n| (for �xed n). The boundaries for the
regions of the metastability of homogeneous phases at
T > 0 near the ground state are: for the NO phase �
U/I0 = 2|µ̄|/I0 and |µ̄|/I0 < 1 (U/I0 = 2|n− 1|, any n);
for the SS phase � U/I0 = 2 and |µ̄|/I0 < 1 (any n).
Notice that for both homogeneous phases the condition
∂µ/∂n ≥ 0 is ful�lled at T = 0 (in particular in the ranges
of the PS state occurrence) � cf. Sec. 3 of [2]. Let us point
out that for T = 0 the discontinuous transition between
two NO phases with |n− 1| = 1 and n = 1 (Mott state)
occurs at U/I0 = 2|µ̄|/I0 and |µ̄|/I0 > 1, but it does not
exist for any T > 0.

A. The half-�lling (µ̄ = 0, n = 1)

In Fig. 1 we present the phase diagram involving
metastable phases for half-�lling (µ̄ = 0, n = 1). One
can distinguish four ranges of on-site repulsion, in which
a di�erent behaviour can occur:

(i) 0 < U/I0 <
2
3 ln 2 � the second-order SS�NO tran-

sition is present and at low temperatures the NO
phase is metastable;
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FIG. 2. kBT/I0 vs. µ̄/I0 phase diagrams (upper row) and corresponding kBT/I0 vs. n diagrams (lower row) for
U/I0 = 0.4, 0.9, 1.25 (as labelled). Dotted, solid and dashed lines indicate �rst-order, second-order and �third-order� bound-
aries, respectively. Dashed-dotted lines indicate the boundaries of metastable phase occurrence (names of metastable phases in
brackets). T denotes tricritical point.

(ii) 2
3 ln 2 < U/I0 < 0.557 � the �rst-order SS�NO
transition occurs (it takes place in the whole range
2
3 ln 2 < U/I0 < 1). Above this transition temper-
ature the SS phase is metastable, whereas the NO
phase is metastable (close) below the transition
temperature and at low temperatures there is an-
other region where the NO phase is metastable;

(iii) 0.557 < U/I0 < 1 � there is one region of metasta-
bility of the NO phase, which extends from T = 0;

(iv) 1 < U/I0 < 2 � there is no transitions with in-
creasing temperature and only the NO phase is sta-
ble. At su�ciently low temperatures the SS phase
is metastable.

Notice that at n = 1 the VA results for model (1) can
be simply mapped onto these of the U -W model with
W > 0 [18�24]. In such a case the SS phase corresponds
to the charge-ordered phase on the phase diagram [20].
The results from Fig. 1 can be also transformed into
the U -J model [25�27] for n = 1 by generalized U ↔ −U
Shiba's transformation [1, 28, 29]. In such case the SS
phase corresponds to the magnetic phase with simulta-
neous change U → −U on the diagram in Fig. 1.

B. Arbitrary electron concentrations

In this section we present results for arbitrary
concentration n (and arbitrary chemical potential

µ̄ = µ− U/2). A few particular phase diagrams are
shown in Fig. 2. Let us discuss them in the order which
corresponds to the ranges of U/I0 mentioned in Sec. IIA.

(i): 0 < U/I0 <
2
3 ln 2. The phase diagrams for

U/I0 = 0.4 are shown in Figs. 2(a,b). The SS�NO tran-
sition between (stable) homogeneous phases is a contin-
uous one and its temperature decreases monotonically
with increasing U/I0 and |µ̄|/I0 = |n− 1|. Moreover, at
su�ciently low temperatures, there is a region (extending
from half-�lling) of the NO phase metastability.

(ii)/(iii): 2
3 ln 2 < U/I0 < 1. With the increasing of

U/I0 in the vicinity of n = 1 (µ̄ = 0) the SS�NO transi-
tion changes its order from second order in the �rst order
and the tricritical point T appears on the phase diagram
(cf. Fig. 2(c,d) for U/I0 = 0.9 and Fig. 3). It is quite
obvious that in the neighbourhood of the �rst-order SS�
NO transition (for �xed µ̄) the regions of the metastable
phases occurrence are present (above the transition tem-
perature the SS phase is metastable, whereas below the
transition temperature the NO phase is metastable). The
�rst-order SS�NO transition line (on the diagram for
�xed µ̄) splits into two �third-order� lines (on the diagram
for �xed n) and the PS state is stable at T > 0 in de�nite
range of parameters (between the �third-order� lines, for
n 6= 1). In the region of the PS state occurrence (in which
the PS state has the lowest energy fPS) the �rst-order
transition between two metastable (homogeneous) phases
(SS, NO) exists at T > 0. Above this line the SS phase
has the highest energy (i.e. fSS > fNO > fPS), whereas
below the line the energy of the NO phase is higher than
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FIG. 3. kBT/I0 vs. µ̄/I0 phase diagrams for
U/I0 = 0.55, 0.56 (as labelled). Above the �rst-order
SS�NO boundary a narrow region of the SS phase metasta-
bility is present (not indicated explicitly). Denotations as in
Fig. 1.

the energy of the SS phase (fNO > fSS > fPS). The
line of SS�NO �rst-order transition between metastable
phases ends at n = 1 and T > 0. One metastable phase
(SS or NO) can also exist in the regions of homoge-
neous phases (NO or SS, respectively) stability for �xed
n (where the PS state does not exist), cf. Fig. 2(d).

The only di�erence between cases (ii) and (iii) is that
for U/I0 < 0.557 the separated region of the NO phase
metastability exists also at su�ciently low temperatures.
For U/I0 ≈ 0.557 that region connects with the NO phase
region of metastability at higher temperatures (at half-
�lling, cf. Fig. 1 and Fig. 3).

(iv): 1 < U/I0 < 2. The exemplary phase diagrams for
U/I0 = 1.25 are shown in Figs. 2(e,f). The line of SS�
NO �rst order transition between stable phases (for �xed
µ̄) and metastable phases (for �xed n) ends at T = 0
and µ̄ < 0 (n < 1). The region of the PS state stability
extends from the ground state. The rest of the discussion
is similar to the case (ii)/(iii).

The thermodynamic properties of the model have been
analysed in [2, 3], therefore, we refer the reader to these
publications. In particular, the behaviour of thermo-
dynamic parameters in the PS state (as well as in the
metastable phases) has been widely discussed in Sec. 5
of [2].

III. CONCLUDING REMARKS

The results obtained are important for physics of phase
transitions as they involve the investigation of metastable
phases. They show that the SS phase metastable bound-
ary is not dependent on n and µ̄ for |µ̄| (|1− n|) smaller
than those of T -point and that the (meta-)stable solu-
tions for the SS phase can exist only for temperatures
lower than those of T -point. The SS solution can be
stable or metastable and exists only in regions indicated
on phase diagrams. On the contrary, the NO phase so-
lutions exist at any model parameters and temperature.
Outside the regions where the NO phase is (meta-)stable,
it is unstable. The �rst-order boundaries found in [15]
correspond to transitions between metastable phases.
Notice that the behaviour of metastable phases in

model (1), where two metastable phases (SS, NO) can
exist in the ranges of the PS state stability, is di�erent
than that in model U -W1-W2 [18�21] (with W1 > 0 and
W2 < 0), where the metastable phases cannot exist in
the PS occurrence regions at su�ciently low tempera-
tures (at T = 0 for W2 < 0 ∂µ/∂n < 0 for �xed n in all
homogeneous phases) [18�20].
The on-site U term is the main factor determining the

pair binding energy and the on-site density-density �uc-
tuations in the model [2, 7, 15, 30]. Due to rigorous
treatment of this term within VA our major conclusions
of the paper concerning the behaviour of the model are
reliable for arbitrary U . Moreover, the MFA treatment
of the I term is exact in the limit of in�nite dimensions
and for Iij of in�nite range (Iij = 1

N I for any i, j, I > 0)
[2, 13, 15] (e.g. e�ective long-range Iij interaction de-
rived from the coupling between the wide band electrons
and local pairs [1]).
The interesting problem is the competition and in-

terplay between superconductivity and charge order-
ings (generated by density-density interaction) [18�24] or
magnetism [25�27, 31]. Some preliminary results of such
investigations have been presented in [2, 32�36].
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