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Abstract 
 The Kołos-Wolniewicz (KW) wave functions are well known in quantum 
chemistry. In this work we study a possibility of generalization of KW functions 
towards greater flexibility and compactness. We report on a new approach to evaluation 
of integrals which allows numerical integration to be avoided. Some preliminary results 
illustrating an acceleration in energy convergence are reported. 
 
Introduction 
 Nowadays quantum chemistry enables extremely accurate prediction of energy 
and other properties of small atomic and molecular systems. Such accurate results can 
serve as reference values for other less sophisticated theoretical models or for 
verification of experimental output. Wave functions employed in such precise 
calculations are designed to properly describe correlation of the movement of electrons. 
Such functions often contain an explicit interelectron distance variable r12 and are called 
explicitly correlated wave functions. Among them the two-electron James-Coolidge 
(JC) and Kołos-Wolniewicz wave functions are the most famous as they supplied 
benchmark results for many decades [1].  

In 1933 James and Coolidge [2] applied their wave function to hydrogen 
molecule. Their ansatz can be written as 
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with basis functions expressed in elliptic coordinates 
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In equation (2) ξi , ηi  are the coordinates of the i-th electron, r12 and R are interelectron 
and internuclear distance, respectively. The basis functions differ from each other by a 
set of integer powers ki, li, mi, ni, and µi whereas the exponential parameter α is 
common to all the basis functions. Using thirteen such basis functions (K=13) James 
and Coolidge achieved energy accurate to within 1 millihartree. In 1960s Kołos and 
Wolniewicz [3] modified the JC function (2) adding a term which accounts for a proper 
asymptotic behavior of the function 
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where s determines gerade or ungerade symmetry of the state. Simultaneously, they 
increased the number of exponential parameters of the wave function to four: 

ββαα and,, .                   (4) 
In the new approach described here we increase the flexibility of the wave 

function by assigning each basis function ψi its own set of four parameters: 
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iiii and ββαα ,, .                       (5) 
In such a multiple basis the total number of the nonlinear parameters to be determined 
variationaly increases to 4K, where K is the number of the basis functions. Additionally, 
we relax the limitation on the integer powers ki and li  and we let them become real 
nonnegative numbers which fulfill the following condition 
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In this extended approach the powers ki and li can be optimized together with 
parameters (5) and the total number of variational parameters increases to 6K.  
 The wave functions described above are employed as trial functions in 
variational method of solving the electronic Schrödinger equation Ψ=Ψ EĤ  with the 
clamped nuclei Hamiltonian 
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During the optimization of the wave function the energy is computed many thousands 
of times. It is therefore crucial that the evaluation of matrix elements is as fast as 
possible. In the past, some of the integrals composing the matrix elements were 
evaluated numerically. In our approach all the needed integrals are expressed in terms of 
elementary or special functions or in terms of series with a controlled convergence. The 
most important of them are described shortly below. 

 
Elementary integrals 

The overlap and Hamiltonian matrix elements can be written down in terms of 
several types of basic integrals. The first type involves the Legendre’s second type 
function Qn(x) [4] and can be evaluated using an iterative formula 
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The elementary integrals appearing on the right hand side of Eq. (8) read 
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where γ is the Euler’s constant and Ei is the exponential-integral function [5] defined as 
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In equation (8) there is a difference of similar values, which may be a source of 
numerical precision loss. To eliminate these potential errors we applied multiple 
precision modules by D. H. Bailey [6] and R. Brent [7].  

Another way of solving integral (8) leads trough an integral representation of the 
Legendre function  

( ) ( )
( )∫

−
++ −

−
=

1

1
1

2

1 .1
2

1 dt
tx
txQ n

n

nn
             (15) 

The integrals appearing then can be expressed by means of a converging series 
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In this case no multiple precision routines are needed but computation time slightly 
increases. 
 In the old implementation of the KW method the following two-dimensional 
integral, containing the Legendre’s first type function Pn(y) 
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was evaluated by means of numerical quadratures. We have found that it can be 
evaluated analytically in terms of Eq. (8). 

Second type of elementary integrals are given in Eqs. (18) and (19) 
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where 1F2(a;b,c;x) is the hypergeometric function [4,5] and Γ(x) is the Euler’s Gamma 
function [4,5]. In the case of real powers of hi, subject to condition (6), a generalization 
of the integrals (18) and (19) is needed. Although it introduces complex valued matrix 
elements, no serious obstacles in evaluating them has been found. 

Another type of the basic integrals, displayed in Eqs. (20)-(23), can be computed 
using the Bessel functions [4,5] 
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Integration by parts gives 
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and leads to the following recursive formula: 
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Results of the computations 
 
The integrals, the eigenvalue algorithm, and the optimization suite were coded in a new 
Fortran program. The linear parameters ci were found by Choleski decomposition 
procedure. The nonlinear parameters were optimized using Powell algorithm [8]. 
Preliminary computations were performed for two small basis sets. First we optimized a 
4-parameter wave function. Then, such a function was reoptimized with the relaxed 4K 
parameters, and finally, the optimization was performed with all 6K nonlinear 
parameters involved. The results, placed in Table I, show the potential power of 
reducing the energy error by an order of magnitude in comparison with the classic KW 
approach.  
 
Table I. Born-Oppenheimer energy (in hartree) of the ground state hydrogen molecule 
at the equilibrium geometry (R=1.4 bohr). The energy errora is given in parentheses in 
units of microhartree. K is the wave function expansion length. 

Number of nonlinear parameters K 4 4K 6K 
5b -1.173 777 85 (697.86) -1.174 264 18 (211.53) -1.174 408 03 (67.68)
22c -1.174 434 11   (41.60) -1.174 473 50     (2.21) -1.174 474 77   (0.94)
a The error is estimated with respect to -1.174.475.714.0 hartree computed by 

W. Cencek and J. Rychlewski, cited in [1]. 
b Basis set definition (µ mk nl): 0 00 00, 0 00 02, 0 01 01, 1 00 00, 0 00 10. 
c Basis set definition (µ mk nl): 0 00 00, 0 00 02, 0 01 01, 1 00 00, 0 00 10, 0 10 10,  
                       1 00 10, 2 00 00, 0 00 30, 0 10 02, 0 01 11, 1 00 20, 1 00 02, 1 10 10,  
                       2 00 10, 0 00 22, 0 20 02, 0 02 02, 0 11 11, 1 01 11, 2 01 01, 0 01 13. 
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