
Adam Mickiewicz University

in Poznan

Faculty of Mathematics and Computer

Science

Przemysªaw Sokoªowski

Design and Analysis of Cryptographic

Hash Functions

A thesis for the degree of

�Doktor nauk matematycznych w zakresie informatyki�

prof. dr hab. Jerzy Jaworski

� supervisor at Adam Mickiewicz University

Pozna« 2016

Uniwersytet im. Adama Mickiewicza

w Poznaniu

Wydziaª Matematyki i Informatyki

Przemysªaw Sokoªowski

Projektowanie i analiza

kryptogra�cznych funkcji haszuj¡cych

Rozprawa doktorska

napisana pod kierunkiem

prof. dra hab. Jerzego Jaworskiego

� promotor na Uniwersytecie im. Adama Mickiewicza

prof. Józefa Pieprzyka

� promotor na Macquarie University

dra Rona Steinfelda

� promotor pomocniczy na Macquarie University

Pozna« 2016

Streszczenie

Kryptogra�czna funkcja haszuj¡ca jest odwzorowaniem z przestrzeni ªa«cuchów

binarnych dowolnej dªugo±ci w zbiór ªa«cuchów binarnych okre±lonej dªugo±ci.

Speªnia ona dodatkowe zaªo»enia bezpiecze«stwa gwarantuj¡ce, »e nie spowoduje

osªabienia algorytmu kryptogra�cznego, w którym zostanie u»yta. Przykªado-

wymi zastosowaniami kryptogra�cznych funkcji haszuj¡cych s¡ podpisy cyfrowe

oraz kody uwierzytelniania wiadomo±ci. W rozprawie analizowane s¡ kryptogra-

�czne funkcje haszuj¡ce oraz omówione s¡ gªówne zasady tworzenia bezpiecznych

kryptogra�cznych funkcji haszuj¡cych.

Badamy zagadnienie konstruowania funkcji haszuj¡cych przy pomocy szyfrów

blokowych oraz wªasno±ci innych konstrukcji u»ywanych do budowania funkcji

kompresji. Pokazujemy jak zbudowa¢ rozró»niacze ró»nicowe z kluczem jawnym

dla mCrypton, Hierocrypt-3, SAFER++ oraz Square. Nasz atak na SAFER++

jest pierwszym przykªadem ataku �rebound� ze standardowymi ró»nicami. Pokazu-

jemy ograniczenie dolne na zªo»ono±¢ wyszukiwania pary ró»nicowej dla ±cie»ki

skróconych ró»nic w permutacji losowej, co pokazuje efektywno±¢ zaproponowa-

nych rozró»niaczy. Wyniki naszej analizy ±wiadcz¡ o tym, »e szyfry blokowe u»y-

wane do budowy funkcji haszuj¡cych, powinny by¢ równie» analizowane pod k¡tem

kryptoanalizy z kluczem jawnym, w celu utrudnienia wyszukiwania kolizji.

Analizujemy funkcje haszuj¡ce oparte na szyfrze IDEA w kilku trybach. Demon-

strujemy praktyczne algorytmy wyszukiwania kolizji i sªabych kolizji wykorzystu-

j¡c sªabe klucze IDEA oraz now¡ wªasno±¢ tego szyfru. Pokazujemy, »e u»ycie

szyfru, uwa»anego za bezpieczny w modelu z niejawnym kluczem, powinno by¢

dokªadnie przeanalizowane w przypadku rozmaitych trybów konstrukcji funkcji

haszuj¡cych.

i

Streszczenie

Rozwijamy badania wykorzystuj¡ce analiz¦ rotacyjn¡. Pokazujemy w jaki spo-

sób rozszerzy¢ jej zastosowanie w przypadku najcz¦±ciej wykorzystywanych ope-

racji takich jak: odejmowanie, przesuni¦cia, funkcje Boolowskie na ªa«cuchach

bitów, wielokrotne dodawania i odejmowania. W szczególno±ci podajemy wzory

na prawdopodobie«stwo zachowania wªasno±ci rotacyjnej w przypadku wielokrot-

nych dodawa« i odejmowa«. Rozpatrujemy S-funkcje oraz ich zastosowania w kon-

tek±cie analizy rotacyjnej. Nasze wyniki stosujemy do analizy BMW i SIMD.

Proponujemy równie» now¡ analiz¦ przesuni¦¢ i stosujemy j¡ do Shabal.

Wprowadzamy ªa«cuchy dodawa« w kontek±cie analizy rotacyjnej. Pokazujemy,

»e zaªo»enia obowi¡zuj¡ce dla szyfrów Markowa nie zawsze mog¡ by¢ u»ywane

i przypadku analizy rotacyjnej prawdopodobie«stwo zachowania rotacji zale»y

nie tylko od ilo±ci dodawa« ale równie» od ich poªo»enia w konstrukcji ARX. Po-

dajemy dokªadne wzory dla tych prawdopodobie«stw, które stosujemy w analizie

BLAKE2, Skein i SIMD.

ii

Abstract

A cryptographic hash function is a mechanism producing a �xed-length output

of a message of arbitrary length. It full�ls a collection of security requirements

guaranteeing that a hash function does not introduce any weakness into the system

to which it is applied. The example applications of cryptographic hash functions

include digital signatures and message authenti�cation codes. This thesis analyzes

cryptographic hash functions and studies the design principles in the construction

of secure cryptographic hash functions.

We investigate the problem of building hash functions from block ciphers and

the security properties of di�erent structures used to design compression func-

tions. We show that we can build open-key di�erential distinguishers for Crypton,

Hierocrypt-3, SAFER++ and Square. We know that our attack on SAFER++ is

the �rst rebound attack with standard di�erentials. To demonstrate the e�ciency

of proposed distinguishers, we provide formal proof of a lower bound for �nding

a di�erential pair that follows a truncated di�erential in the case of a random

permutation. Our analysis shows that block ciphers used as the underlying prim-

itive should also be analyzed in the open-key model to prevent possible collision

attacks.

We analyze the IDEA-based hash functions in a variety of cipher modes. We

present practical complexity collision search attacks and preimage attacks, where

we exploit a null weak-key and a new non-trivial property of IDEA. We prove

that even if a cipher is considered secure in the secret-key model, one has to be

very careful when using it as a building block in the hashing modes.

We investigate the recent rotational analysis. We show how to extend the rota-

tional analysis to subtractions, shifts, bit-wise Boolean functions, multi additions

iii

Abstract

and multi subtractions. In particular, we develop formulae for calculation of prob-

abilities of preserving the rotation property for multiple modular additions and

subtractions. We examine S-functions and its application to the rotational anal-

ysis. The �ndings are applied to BMW and SIMD. We also propose a new shift

distinguisher and apply it to Shabal.

Finally, we introduce chained additions in context of the rotational analysis.

We argue that Markov chain assumtion does not always hold and rotational prob-

ability of an ARX primitive depends not only on the number of modular additions

but also on their positions. We present an explicit formulae for the probability of

such chained additions. The �ndings are applied to BLAKE2, Skein and SIMD.

iv

Contents

Streszczenie i

Abstract iii

Acknowledgments ix

Declaration xi

1. Introduction 1

1.1. Cryptographic Hash Function Properties 1

1.2. Classi�cation of Hash Functions . 3

1.3. Hash Functions Applications . 4

1.4. Cryptanalysis . 7

1.4.1. Generic Analysis . 7

1.4.2. Algorithm Speci�c Analysis 8

1.5. Secure Hash Standards . 10

1.6. Thesis structure . 12

2. Cryptographic Hash Functions 15

2.1. Introduction to Cryptographic Hash Functions 15

2.2. Designing Hash Functions . 17

2.3. Block Ciphers in Hash Function Modes of Operation 22

2.4. Security Notation for Cryptographic Hash Functions 24

2.5. Methods of Hash Functions Analysis 25

2.5.1. Generic Attacks . 25

2.5.2. Di�erential Analysis . 27

v

Contents

2.5.3. Rotational Analysis . 34

2.5.4. Shift Analysis . 38

2.5.5. T-functions and S-functions 38

3. Open Key Di�erential Analysis for Block Ciphers 41

3.1. Impact of Block Cipher Known Key Di�erential Trails on Hash

Modes . 42

3.2. Lower Bound on Complexity of Di�erential Distinguisher for Ran-

dom Permutations . 45

3.3. Di�erential Trails for Speci�c Block Ciphers 48

3.3.1. Crypton, Hierocrypt-3 and Square 49

3.3.2. SAFER++ . 53

3.3.3. Feistel Ciphers . 55

3.4. Summary . 57

4. IDEA in Various Hashing Modes 59

4.1. The IDEA block cipher . 60

4.2. Weak-keys for IDEA . 62

4.2.1. Analysis of the Internal Functions 62

4.2.2. Weak-keys Classes . 63

4.2.3. The null Weak-key . 64

4.3. Simple Collision Attacks . 66

4.4. Improved Collision Attacks . 68

4.4.1. Exploiting the Almost Half-Involution 68

4.4.2. Improving Collision Attacks 71

4.5. Preimage Attacks . 74

4.6. Summary . 77

5. Analysis of Addition-Rotation-XOR Designs 79

5.1. Rotational Properties of Multi Additions and Subtractions 81

5.2. Rotational Pairs with Corrections 86

5.2.1. De�nition of Problem . 87

vi

Contents

5.2.2. Calculation of Probabilities of Rotational Pairs with Cor-

rections for Addition . 90

5.3. Rotational Analysis of BMW-512 93

5.3.1. Rotational Properties of Some BMW-512 Transforms 93

5.3.2. Analysis of BMWv1-512 . 94

5.4. Lower Complexity Attack on the Full BMWv1 100

5.4.1. Analysis of Modi�ed Version of BMWv2-512 101

5.5. Rotational Analysis of SIMD-512 103

5.5.1. Analysis of the Feistel of SIMD 105

5.5.2. Analysis of Round-reduced Linearized SIMD 106

5.5.3. Analysis of Round-reduced SIMD 107

5.6. Shift Distinguishers on Shabal . 109

5.7. Summary . 112

6. Rotational Cryptanalysis and Chained Modular Additions 115

6.1. Chained Modular Additions . 116

6.2. Applications . 124

6.2.1. Application to Rotational Cryptanalysis of BLAKE2 125

6.2.2. Application to Rotational Cryptanalysis of Skein 127

6.2.3. Application to Rotational Cryptanalysis of SIMD-512 . . . 129

6.3. Summary . 130

7. Conclusions 133

7.1. Contributions . 134

7.2. Design Guidelines . 136

7.3. Open Problems and Future Research Directions 137

A. Proofs of Rotational Analysis Lemmas 139

B. mCrypton 141

B.1. Nonlinear Substitution γ . 142

B.2. Column-Wise Bit Permutation π 142

B.3. Column-To-Row Transposition τ 143

vii

Contents

B.4. Key Addition σ . 143

B.5. Altered Key Schedule . 143

B.6. Encryption . 144

Bibliography 159

viii

Acknowledgments

I would like to express my gratitude to my supervisors. Prof. Josef Pieprzyk

for his knowledge and wisdom which he is always keen to share. His guidance

and care have been priceless to me and I am forever indebted to him. Next I

would like to thank Prof. Jerzy Jaworski, who inspired me to start research in

the �eld of cryptology and has been my guide ever since. I am also grateful to

Dr Ron Steinfeld for his encouragement and suggestions for improvements during

my studies.

The completion of this thesis could not have been achieved without collabora-

tion with Ivica Nikoli¢, Lei Wei and Thomas Peyrin. Their fresh look on analyzed

problems and many discussions were an inspiration for my research.

I would like to thank my parents Maria and Stanisªaw for their unconditional

support and understanding throughout my PhD candidature. Finally, I would

like to express my gratitude to my wife Urszula, for her love and faith in me.

My research was supported by Macquarie University via a Cotutelle Macquarie

University Research Scholarship.

ix

Declaration

This thesis is submitted in ful�lment of the requirements of the degree of �Dok-

tor nauk matematycznych w zakresie informatyki� at AdamMickiewicz University.

This thesis (without chapter 6) was submitted at Macquarie University for the

degree of Doctor of Philosophy in 2012 as part of Cotutelle agreement between

Adam Mickiewicz University and Macquarie University. It was published under

the title Contributions to Cryptanalysis: Design and Analysis of Cryptographic

Hash Functions [115] in 2013. This thesis represents my original work and con-

tributions. I certify that to the best of my knowledge, all sources and assistance

received in the preparation of this thesis have been acknowledged.

Przemysªaw Szczepan Sokoªowski

xi

1. Introduction

A cryptographic hash function is a transformation that maps an arbitrary length

input, called the �message�, into a �xed-length output, the �message digest�. It is

designed to be easily computable and has to achieve certain security properties,

e.g.: preimage resistance, second preimage resistance, and collision resistance.

Cryptographic hash functions are crucial parts of many cryptographic algo-

rithms like digital signatures, message authentication algorithms and commitment

protocols to name a few. For example, digital signatures can be of a �xed length

no matter how long the signed messages are. This is normally done by signing

the message digest (of a �xed length) instead of signing the whole message. Note

that �nding two messages that have the same digest immediately allows an ad-

versary to replace the message with its colliding sibling as the receiver making it

impossible to determine which of the two colliding messages is genuine.

1.1. Cryptographic Hash Function Properties

As previously mentioned, the fundamental properties of the cryptographic hash

functions are:

1. preimage resistance � given digest d = H(M) for a message M , it is com-

putationally di�cult to �nd any message that gives the digest,

2. second preimage resistance � given messageM , it is computationally di�cult

to �nd a di�erent message M ′ that gives the same digest, i.e. a message M ′

such that H(M) = H(M ′),

3. collision resistance � it is computationally di�cult to �nd two di�erent mes-

sages M,M ′ that give the same digest, i.e. for two messages M and M ′,

1

1. Introduction

H(M) = H(M ′),

where H is the hash function that takes a message M of arbitrary length and

produces a �xed length digest (formal de�nition of the three properties is pro-

vided in Section 2.1). Computational di�culty means that an attack is infeasible

to be conducted due to computational restrictions of available hardware. In the

above cases it is assumed that the asymptotic lower bound for the intractability is

O(2n), O(2n), O(2
n
2) hash operations for the n-bit digest, respectively. In practice,

for �xed-sized digest hash functions it is assumed that the asymptotic bounds are

instantiated to 2n, 2n and 2
n
2 calculations of a hash function, respectively. For ex-

ample, SHA-0 is a hash function with 160-bit digest and is expected to withstand

any collision search attack with complexity less than 280 hash calculations. How-

ever, the attack presented in [124] reveals collisions for SHA-0 with complexity

239 hash operations, which breaks the collision resistance of the function.

Another set of properties required from cryptographic hash functions is collec-

tively called �pseudorandomness�. In particular the SHA-3 call [41] speci�es that

the future SHA-3 algorithm should support:

• construction of deterministic Pseudo Random Function (PRF) with use of

HMAC,

• randomized hashing.

In the �rst case a PRF obtained from HMAC must be resistant to any distinguish-

ing attack with complexity less than 2
n
2 and signi�cantly smaller than preimage

attack. On the other hand the randomized hashing schema should withstand an

attack de�ned in the challenge-response manner, that is the adversary should be

unable to obtain a second message M ′ and an additional parameter r′ for cho-

sen M and random r that applied to the schema produce the same hash value.

Finally, it is also required that a hash function do not reveal any nonrandom

properties or fail any statistical test.

2

1.2. Classi�cation of Hash Functions

1.2. Classi�cation of Hash Functions

In general hash functions can be divided into two main categories:

1. keyed hash functions, referred to as Message Authentication Codes (MAC),

2. unkeyed hash functions, referred to as Modi�cation Detection Codes (MDC).

Informally, the class of keyed hash functions (see [101] for a formal de�nition)

is de�ned as a family of hash functions HK indexed by a secret key K with an

additional property called the computation-resistance � given any set of pairs

(Mi, HK(Mi)) for some i ∈ N∪ {0} it is computationally di�cult to �nd HK(M)

for any M /∈ {Mi : i ∈ N∪0} even if HK(M) ∈ {HK(Mi) : i ∈ N∪0}. Their main

purpose is to provide mechanisms for authenticity and integrity check. That is to

say that only parties sharing the same secret key can verify if the message was

altered and if the MAC was generated with the correct secret key.

The second class � Modi�cation Detection Codes � is a class of unkeyed hash

functions, which in contrast to MAC has only one parameter � message input. Its

main purpose is to produce �unique� hash value for any message, which provides

mechanisms for data integrity checks.

It is also possible to produce a MAC from an unkeyed hash function. An exam-

ple of such construction is HMAC (short for Hash-based Message Authentication

Code) which incorporates secret key K in calculations of MAC forM by following

formula:

HMAC(K,M) = H((K ⊕ opad)||H((K ⊕ ipad)||M))

whereH is unkeyed hash function and opad, ipad are constants (for details see [77]).

The MDC class can be further divided into following subclasses:

• One-Way Hash Functions (OWHF),

• Collision Resistant Hash Functions (CRHF).

A OWHF is a hash function that ful�lls two security requirements: preimage

resistance and second preimage resistance. Some applications of OWHF are mes-

sage integrity validation, authentication or password veri�cation. A CRHF is on

3

1. Introduction

the other hand a hash function that is collision resistant and second preimage

resistant.

1.3. Hash Functions Applications

The main application of hash functions is to generate �unique� and �xed length

sequence of data for a given input. Cryptographic hashing is used in many appli-

cations such as:

• digital signatures,

• integrity checking,

• message authentication codes,

• commitments,

• password storage,

• encryption algorithms,

• software protection.

Digital signatures. Digital signature algorithms based on asymmetric cryp-

tosystems are computationally ine�cient in case of long messages. In order to

improve their performance and make signatures of a �xed length no matter how

long the signed messages, cryptographic hash functions are used to produce a hash

digest for the message, which is then signed. Verifying a signature is done for the

digest of the message. Note that �nding two messages that have the same digest

immediately allows an adversary to replace the message with its colliding sibling

as the receiver has no way to determine which of the two colliding messages is

genuine. Hence, security of such digital signatures largely depends on security of

used cryptographic hash function.

Integrity checking. Hash functions are also applied to verifying the integrity

of data sent over error prone communication channel. The sender calculates a

hash value for a message and then sends a sequence of data to a receiver. At the

4

1.3. Hash Functions Applications

same time, the message digest is sent over another channel which is reliable, so

that the receiver can compare the digest with hash value of the received message.

If the hash values are the same we might be assured that the message was not

altered during communication. However, note that if �nding another message

with the same digest as the hash value of the original is easy, an adversary is able

to manipulate with the last sent in the communication channel and receiver can

be tricked.

Message authentication codes. In order to authenticate a message keyed

hash functions can be utilized. The possible schema of message authentication is

similar to the one for integrity checking. The di�erence is in the secret key pro-

vided by the sender in the hash value calculations. Assuming that cryptographic

hash function is MAC, the receiver, who knows the secret used, can identify

whether the message has been altered or if it was sent by the authorized sender.

If the digest of received message under the secret key is di�erent to the digest

accompanying the message, the last one was changed or generated with di�erent

key. Of course digital signatures can also be used for message authentication but

hash functions have advantage over them in having a much lower complexity to

necessary calculations.

Commitments. Another application of cryptographic hash functions are com-

mitment protocols. For example consider such a simple protocol described as

follows (see [56]):

Alice is in possession of some initially secret information. Let it be the sentence

�The answer to the fundamental question is: YES!�. She does not want to reveal

it to Bob at this moment, but she will need to prove in the future that she had

already known this sentence. So Alice hashes concatenation of a randomly chosen

pad and her secret, showing to Bob only the computed digest. Then Bob knows

nothing except the digest of Alice's secret. When the right time comes, Alice can

prove that she had known the secret sentence by providing the random pad she

used earlier. Bob can verify Alice's veracity by comparing the digest he received

at �rst with recomputed hash value of the concatenation of the random string and

the revealed secret.

5

1. Introduction

If we assume that the hash function used in the protocol is preimage resistant,

Bob is not able to e�ciently guess Alice's secret information. Even though Bob

cannot deceive Alice, she can �prove� she knew another secret, if she is able to

�nd for it di�erent random pad for which the digest of their concatenation is

identical to the �rst hash value. However, if the hash function used in the schema

is collision resistant the trick becomes computationally infeasible. Unfortunately

the schema does not provide adequate security for Alice, because Bob can still

distinguish between possible secrets (for more details see [56] where the example

is discussed in more detail).

Password storage. Password authentication mechanism for controlling access

to IT resources is one more application of cryptographic hash functions. For

instance operating systems like Windows or Unix are storing hash values of users'

passwords. In order to authenticate to the IT system a user has to provide a secret

password, which hash value is then compared to one stored in the database. The

user is granted access if both hash values are equal. The main reason for storing

hash values of passwords and not exact passwords is to guarantee that access

is granted only to authorized users even if an adversary controls the database.

Hence, we require that hash functions be preimage resistant, so that stored hashes

can not be easily inverted.

Encryption algorithms. Hash functions can also be used as building blocks

of ciphers. For instance they can be used as nonlinear blocks within a cipher, for

instance as F-function in Feistel network designs. Another way to utilize a hash

function in encryption is to use it as a key generator from secret password. The

hash value of the password is forwarded from key input to the cipher in order to

execute cipher or decipher procedure.

Software protection. Protecting software from third party modi�cation, e.g.

viruses, or restricting execution of authenticated programs can also be achieved

with use of cryptographic hash functions. The simplest way to achieve the �rst

goal is to generate an hash digest of the program and distribute it with program.

However, this solution does not protect from forging another hash digest for mod-

i�ed program. A remedy is a digital signature for the hash value of the program.

6

1.4. Cryptanalysis

An example of such a mechanism is Microsoft Authenticate present in Windows

family of operating systems.

1.4. Cryptanalysis

Analysis of any cryptographic primitive can be divided into two main streams:

• generic � independent on algorithm,

• algorithm speci�c.

1.4.1. Generic Analysis

The generic approach does not depend on the internal structure of the subject

of analysis, which is treated as a black-box with input and output interface. The

attacker might only provide input data, which might be altered depending on

the observed results of black-box calculations. Hence, their general assumption is

the pseudo-randomness of the analyzed hash function. We can select three main

attack strategies of generic attacks on hash functions:

• brute force attack,

• birthday attack,

• meet-in-the-middle attack,

which will be brie�y presented below while more details can be found in Sec-

tion 2.5.

Brute Force Attack

The brute force attack is the simplest one of the three and the most expensive.

In the attack, the attacker tries all possible input values until the expected output

has been generated. For example, brute force preimage search attack needs to

check on average 2n−1 values before the right message is found.

7

1. Introduction

Birthday Attack

The second method is fundamental to analysis of cryptographic hash functions,

especially by �nding collisions. The birthday attack (described in [127]) and its

altered version, the generalized birthday attack (see [51]) are improvements on

the brute force attack. The complexity of the birthday attack (in the case of

hash function which produces n-bit digest, its asymptotic complexity is O(2
n
2))

provides an upper bound for the security of any cryptographic hash function

against collision search attacker.

Meet-in-the-Middle Attack

The meet-in-the-middle strategy applies to iterated designs but also to one that

can be divided into two independent parts. For instance, let fk = gk2 ◦ hk1 be a

such function, where k1 and k2 are independent parts of some parameter k. The

general idea of this kind of attacks is to pick random k1 and k2 and compute h(x)

and g−1(y) for challenge pair (x, y). Due to independence of h and g the match

is found with the birthday bound complexity.

1.4.2. Algorithm Speci�c Analysis

The second group of cryptographic tools are design dependent. They exploit

internal structure of analyzed algorithm in order to detect its unwanted properties.

We list some but not all attacks in the group:

• di�erential attack,

• rebound attack,

• linear attack,

• random graph theory attack,

• distinguishing attack.

8

1.4. Cryptanalysis

Di�erential Analysis

In recent years it has also become obvious that di�erential analysis, originated

by cryptanalysis of symmetric ciphers (see for details [18]), is also applicable in

the case of cryptographic hash functions like MD4, MD5, SHA�0, SHA�1, etc.

(see [97, 121, 122, 124]). Generally this method is based on �nding a correlation

between the di�erences (XOR or modular) in input and output of a cipher or a

cryptographic hash function. In the case of hash functions the di�erence in output

should be equal to zero to produce a full collision or di�er slightly to obtain a so

called near-collision.

Rebound Attack

Further improvements of di�erential paths is possible due to an application of

the meet-in-the-middle approach. By merging two di�erential paths with use of

available degrees of freedom, longer paths are produced. The example of such an

approach is the rebound attack proposed by Mendel et al. in [100], which resulted

in attacks on cryptographic hash functions like: Grøstl, Whirlpool, ECHO, etc.

(see [99, 100]) and also allowed better cryptanalysis of AES e.g. [50].

Linear Analysis

A very interesting method of breaking hash functions is one based on approxi-

mating the internal states of the cryptographic hash function. This method also

has its origin also in cipher analysis e.g. [96] and is similar to di�erential anal-

ysis. For example, [31] a linear attack was presented based on �nding solutions

of a system of non linear equations describing internal states of the LASH hash

function (described in [10]).

Random Graph Theory Attacks

More sophisticated methods of collision search are ρ− and λ−Pollard (ρ−Pollard

method is described in [7, 113, 117] and λ−Pollard in [118, 120]). The methods are

based on the structure of a random mapping directed graph (digraph), while mak-

9

1. Introduction

ing the assumption of a uniform distribution of the image of the cryptographic

hash function f , i.e. for any uniformly distributed input its image under the

function is also uniformly distributed. Basically both require �nding two distinct

points in the same connected component on the function digraph such that there

is no directed path between either of them.

Distinguishing Attacks

The above-mentioned assumption is also extended to the case where inputs

to the function might be somehow related, e.g. the input distribution is not

necessarily uniform. In this case so called distinguishing attacks are considered,

see for example [75, 103], where a variety of properties are tested for instance:

q-multicollisions [21], preservation of rotations [64], etc. A distinguisher plays a

central role in the attack, which is basically a probabilistic algorithm interacting

with two oracles: one that simulates an analyzed primitive and the other simulates

an ideal primitive, for example random permutation. The aim of the distinguisher

is to decide which of the two is the analyzed primitive, based on queries provided

to the oracles. The attack is considered to be successful if the number of queries

required to make a correct decision is below a well de�ned level.

1.5. Secure Hash Standards

The �rst standard of secure hashing [45] was adopted by the United States

National Institute of Standards and Technology (NIST) in 1993. It is commonly

referred to as SHA-0 (SHA stands for Secure Hash Algorithm). The SHA-0 hash-

ing was based on the MD4 and MD5 algorithms that were designed by Ron Rivest.

Unlike its predecessors MD4 and MD5 that produce 128-bit message digest, SHA-

0 generates longer 160-bit digest. A few years after the adoption as the standard

NIST replaced it with a new standard so called SHA-1 [46], what might suggest

that some weaknesses of SHA-0 were discovered. It is interesting to see that the

only di�erence between SHA-0 and SHA-1 is the rotation of bits in the message

scheduling algorithm. The justi�cation of the change in design was published 3

10

1.5. Secure Hash Standards

years later in 1998 [29] together with the security analysis showing that the rota-

tion operation signi�cantly increased the complexity of the attacks. At the same

time the output of the European RACE Integrity Primitives Evaluation project

was RIPEMD, another example of the large MD family. Improvements in the

cryptanalysis of hash functions was the driving force behind modi�cations of the

proposed algorithms. For instance 128-bit RIPEMD was upgraded to its 160-bit

version.

In 2002, NIST proposed a new hash standard called SHA-2 [47]. SHA-2 which is

in fact a family of hash functions indexed by the required length of the digest. The

lengths are 224, 256, 384 and 512 bits. The situation has dramatically changed

in 2004, when a group of researchers under the leadership of Professor Wang

published a collection of papers (see [122�124]) in which most of the members of

the MD family were broken. Apart from MD4 and MD5, the casualties included

SHA-1. The Wang's group showed in [122] that in SHA-1, the collisions can

be found in 269 steps which is much faster than the expected complexity of the

birthday attack that is 280 steps.

The need for new standard and novel approach for constructing cryptographic

hash functions is re�ected in the Secure Hash Algorithm 3 (SHA-3) competition.

It was originated by NIST in 2007 [41] not only to develop a new standard of

secure hashing but also to stimulate the international community of cryptologists

to �nd better a way of estimating a security level of cryptographic hash functions.

The competition is organized in a similar way to the Advanced Encryption Stan-

dard selection process, where submissions are revised in a public forum by the

cryptographic community. The process has been divided into three phases Round

1, Round 2 and the �nal being Round 3, with an October 31, 2008 submission

deadline the competition started in December 2008. Of the 64 submissions 54 of

them were publicly known, 14 of them advanced to Round 2 and only 5 advanced

through to the �nal round: BLAKE, Grøstl, JH, Keccak and Skein. The winner -

Keccak - of the process was announced in October 2012.

Note that many attacks on hash functions are �theoretical� as they require ex-

tensive amount of steps for practical analysis. However, as time goes by, the

11

1. Introduction

computers become faster and there is a continual upgrading in the attacking al-

gorithms. Consequently, the developed attacks tend to be more and more e�cient

and at some point of time, many theoretical attacks become practical. Develop-

ment of quantum computers is another factor that can change the analytical tools

accessible to adversaries. So far it is not known if quantum computing is feasible.

Nevertheless we know that some �classically� intractable problems (such as factor-

ization) can be solved in polynomial time on a quantum computer. An example of

a �quantum� attack on CubeHash, one of SHA-3 submissions, exploiting quantum

algorithm for searching database has been presented in [87].

1.6. Thesis structure

Chapter 2 consists of introductory information on cryptographic hash functions.

We start by formalizing the framework used, followed by describing the cipher-

based modes of hashing. Next we present selected methods of hash functions

and block ciphers analysis like di�erential and truncated di�erential analysis. In

particular we de�ne open-key distinguishers for block ciphers and present some

techniques for di�erential trail construction. Then rotational analysis is discussed

and its variant � shift analysis.

In Chapter 3 we investigate the di�erential properties of block ciphers in hash

function modes of operation. First we show the impact of di�erential trails for

block ciphers on collision attacks for various hash function constructions based

on block ciphers. Further, we prove the lower bound for �nding a pair that

follows some truncated di�erential trails in case of a random permutation. As far

as we know this is the �rst formal proof of the bound. Then we present open-

key di�erential distinguishers for some well known round-reduced block ciphers:

Crypton, Hierocrypt-3, SAFER++, Square and generic n-bit Feistel cipher. Our

rebound distinguishers substantially improve number of attacked rounds by means

of key bits manipulation. The results presented in this chapter were published

in [109].

In Chapter 4 we present practical complexity attacks on IDEA-based hash func-

12

1.6. Thesis structure

tions in variety of cipher modes of hashing used, where we exploit null weak-key

and new non-trivial property of IDEA, that we called almost half-involution. The

attacks are another example showing that application of block ciphers in modes of

hashing requires more caution in comparison to their analysis in secret key model.

The results presented in this chapter were published in [125].

In Chapter 5 we extend the application of rotational distinguishers to classes

of primitives that besides additions, rotations and XORs, may have subtractions,

shifts, bit-wise Boolean functions and a combination of multi additions and multi

subtractions. We use a concept of rotational analysis with corrections and provide

formal framework for calculating accompanying probabilities. This allows us to

launch rotational attacks on the compression functions of a SHA-3 candidates:

BMW and SIMD. We also introduce a new form of attack � shift cryptanalysis,

and apply it to the permutation of round 1,2 Shabal. The results presented in

this chapter were published in [110].

In Chapter 6 we show how rotational probability of an ARX primitive depends

not only on the number of modular additions but also on their positions in case the

Markov chain assumption is not ful�lled. We present an explicit formula for the

probability of such chained additions and show that the rotational probability

of ARX should be computed as the product of the rotational probabilities of

modular addition chains. We revisit rotational attacks against BLAKE2 [55] and the

compression function of Skein. We also provide more rigorous analysis of SIMD

presented in Chapter 5. The results presented in this chapter were published

in [65].

Finally, we conclude the thesis with some design guidelines for constructing hash

functions and propose possible research directions in the �eld of cryptographic

hash functions.

13

2. Cryptographic Hash Functions

This chapter is an introduction to the cryptographic hash function theory. First

we give the de�nition of hash functions and provide a collection of security proper-

ties required from them. Next, we brie�y discuss various applications of hashing.

Further we provide the notations used in this thesis. This is followed by a study of

di�erent approaches in designing cryptographic hashing. This section concludes

with an overview of attacks against hash functions. We start from di�erential

analysis and its variant truncated di�erential analysis, then we discuss rotational

analysis, followed by its modi�cation � the so-called shift analysis. Finally we

also recall T-function and S-function representation of Addition-Rotation-XOR

designs.

2.1. Introduction to Cryptographic Hash Functions

Cryptographic hash functions are indispensable for an e�cient digital signature.

They provide a �xed-length digest for messages of arbitrary lengths (from very

short to very long). Instead of a message, the signature is then generated for the

message digest. This obviously also has some security implications. An adversary

who would like to forge a signature may try to �nd two messages that are hashed

to the same digest (we say that the messages collide). Note that the signature

produced in this way is going to pass the veri�cation for the colliding messages.

For more formal de�nition of cryptographic hash function, we follow Menezes et

al. [101] and introduce the notation {0, 1}∗ =
∞⋃
i=1
{0, 1}i, that is {0, 1}∗ is a set of

non-empty bit-sequences of any bit-length.

De�nition 2.1. A hash function F : {0, 1}∗ → {0, 1}n is a function that ful�lls

15

2. Cryptographic Hash Functions

at least the two following requirements:

1. for an arbitrary length input x ∈ {0, 1}∗ the image y under F is of �xed

bit-size n,

2. for given F and input x, F (x) is �easily� computable.

The two properties are referred to as compression and ease of computation

respectively (see De�nition 9.1 in [101]). However, the �rst term is somewhat

misleading. While hash function compresses messages that are longer than the

digest, it �expands� messages that are very short.

A cryptographic hash function is a hash function that is designed to achieve

certain security properties. The collection of required security properties includes:

1. preimage resistance,

2. second preimage resistance,

3. collision resistance.

They are de�ned as follows:

De�nition 2.2. A hash function F : {0, 1}∗ → {0, 1}n is called:

1. preimage resistant � if given hash value H of some unknown message,

it is computationally �hard� to �nd such a message M whose hash value is

equal to H, i.e. F (M) = H,

2. second preimage resistant � if given one message M1 it is �hard� to �nd

other M2, M1 6= M2 such that hash values of both M1 and M2 are equal,

i.e. F (M1) = F (M2),

3. collision resistant � if it is �hard� to �nd di�erent messages M1 and M2

(M1 6= M2) such that hash values of both are equal, i.e. F (M1) = F (M2).

Remark 1. Collision resistant hash function is also second preimage resistant.

However, collision resistance does not imply preimage resistance. What is more

preimage resistance does not imply second preimage resistance and reverse impli-

cation does not hold either.

16

2.2. Designing Hash Functions

The �hardness� in the De�nition 2.2, which might as well be replaced with

�computational infeasibility� like in [101] can be understood in many ways. The

two most common interpretations are in terms of:

• asymptotic complexity,

• static complexity.

In the �rst case the di�culty of a particular problem is de�ned for an in�nite

family of functions indexed by digest length n. The problem is considered �easy�

if there is a polynomially bounded in time and size algorithm that solves it for

in�nitely many instances. On the other hand it is �hard� if fraction of solved

instances tends to 0 for any polynomially bounded algorithm. The obvious limi-

tation of this approach is that the results obtained in this model are asymptotic

for n→∞ and apply to in�nite families of hash functions.

The second approach is derived from the so called concrete security (see for

instance [23]), which is also based on some family of functions i.e. F = {F : K×

M→ {0, 1}n}, where K is the space of indexes, M is the space of messages. The

central element of this model is a probabilistic algorithm called adversary, which

interacts with randomly chosen functions from F. The strength of primitive is then

obtained by calculating the probability that the adversary �nds, for example, a

collision in the hash function (the security bound on collision �nding adversaries is

2−
n
2). However, in practical applications we are dealing with one speci�c design

what leads to slight abuse of the notation. For example, an upper bound for

collision search attacks on 256-bit hash function is 2128.

2.2. Designing Hash Functions

There are variety of di�erent approaches for constructing a hash function. The

most common design strategies are:

1. Merkle and Damgard construction,

2. wide-pipe (double pipe) construction,

17

2. Cryptographic Hash Functions

3. fast wide-pipe construction,

4. Merkle tree,

5. sponge construction.

Merkle-Damgård Construction. The �rst and probably the most common

approach for building cryptographic hash functions is the chaining of the so called

compression functions together. This approach is used in both SHA-1 and SHA-2.

The compression function has �xed size domain, range of size smaller than the

prior and is easily computable. A more formal de�nition is as follows:

De�nition 2.3. A compression function f : {0, 1}n×{0, 1}k → {0, 1}n is a trans-

formation that maps �xed length input (x, y) where x ∈ {0, 1}n is called the �previ-

ous chaining value�, and y ∈ {0, 1}k is called the �message block�, into �xed-length

output, the �next chaining value� z ∈ {0, 1}n, such that z = f(x, y).

A cryptographic compression function also has to ful�ll similar like crypto-

graphic hash function security requirements. An example of such an approach is

the Merkle-Damgård construction of cryptographic hash function which can be

de�ned as follows (compare the Figure 2.1):

De�nition 2.4. Let h0 = IV where IV, so called �initial vector�, is a constant

value from {0, 1}n. Let M ∈ {0, 1}∗ be a message for which hash value is com-

puted, |M | is its bit-length and |M | is multiplicity of k. M is represented as a

concatenation of message blocks m0,m1, . . . ,ml where each block has length k and

l = |M |/k. In addition there is de�ned additional block ml+1 which consists of

k-bit-representation of |M |. The Merkle-Damgård construction is then de�ned as

F (M) = hl+1, where hi = f(hi−1,mi−1) for i ≥ 1.

The Merkle-Damgård (MD) construction guarantees that when the underlying

compression function is collision resistant, the resulting hash function is also col-

lision resistant. However, the method has some drawbacks, which were presented

in Joux's multicollision attack (see [60]) that demonstrates better than generic

attacks �nding multicollisions. A possible alternative to the MD construction is

18

2.2. Designing Hash Functions

Figure 2.1.: Merkle-Damgård construction of a hash function.

HAsh Iterative FrAmework (HAIFA) proposed in [13]. In this construction each

compression depends on additional parameters: salt and number of already hashed

bits. The compression function is then de�ned as f : {0, 1}n+m+s+b → {0, 1}n and

each invocation of f is expressed as hi = f(hi−1,mi−1,#bits, salt), where #bits

is number of already processed bits of message at step i.

Wide Pipe Construction. This is an extension of Merkle-Damgård con-

struction proposed in [94]. The construction aims at a complexity increase of

internal collision search of the hash function by making the size of the chaining

value larger in comparison to the hash digest. Figure 2.2 shows an example of

double pipe design. The chaining value consists of two blocks (hi, h
′
i) and it is the

input to the next execution of compression function f . The �nal transformation

f ′ is the transforming of the last double-chaining value into single block digest.

Figure 2.2.: Double pipe construction of a hash function.

Fast Wide Pipe Construction. This mode of operation is a variant of

wide pipe design and was �rst presented in [107]. The underlying function f has

only one chaining block input (apart from message block input), while it outputs

two chaining value blocks (hi, h
′
i). Next invocation of f takes as the input next

message block mi+1 and hi ⊕ h′i−1, that is (hi+1, h
′
i) = f(hi ⊕ hi−1,m). In a

19

2. Cryptographic Hash Functions

similar way to wide pipe design the last invocation of f ′ outputs �nal digest value

of one chaining block size. The advantage of this approach is a speed up by at

most factor 2 in comparison to the double pipe construction.

Figure 2.3.: Fast widepipe construction of a hash function. The • symbol repre-
sents XOR operation.

Merkle Tree Construction. The construction was �rst proposed by Merkle [102]

in order to solve problem of signing multiple messages e�ciently. The idea be-

hind this design strategy is to build a binary tree with message blocks as leaves

and traverse the three layer by layer to the root by compressing two lower nodes

(compare the Figure 2.4). This approach allows straightforward paralellization

and improvement in speed of hashing.

Figure 2.4.: Merkle tree construction of a hash function for 4-block message.

Sponge Construction. This iterative construction (presented in [12]), in

contrast to previously presented constructions which used compression functions,

20

2.2. Designing Hash Functions

is based on �xed length permutation π. The internal state of the sponge function

presented in the Figure 2.5 is of size b = k + c bits. The �rst l + 1 invocations of

π are called absorbing phase when consecutive message blocks are XORed with

the �rst r bits of the previous chaining value and the whole state is transformed

through π. After this phase the so called squeezing phase follows. This phase

consists of a required number of π invocations, when for each invocation �rst r

output bits of the state are returned as hash value block.

Figure 2.5.: Sponge construction of a hash function. The •represents XOR oper-
ation.

Constructions of Compression Functions. There are three main ap-

proaches for constructing compression functions for hash functions, that is:

1. dedicated designs,

2. block cipher based designs,

3. intractable-problem based designs.

The functions in the �rst class are built mainly in order to achieve high per-

formance in hardware and software with minimal utilization of resources. The

group is represented by a large MD-family, which includes functions like MD4,

MD5, SHA-0, SHA-1, etc. Thanks to the focus it puts on the performance it is

probably the most popular approach for designing hash functions. The drawback

of this approach is the lack of �proof of security�. The security is heuristic and it

is argued by showing that the hash function is secure against all known attacks.

It can be seen on the example of evolution of MD family that new designs were

build in order to �x some �design weaknesses�, but does not give mathematical

explanation for introduced changes.

21

2. Cryptographic Hash Functions

The second approach in the hashing design is based on block ciphers. The

strong point of this approach is the fact that the block ciphers are the oldest

and most scrutinized cryptographic primitives. In order to transform a cipher

hash modes of operation were proposed to construct compression functions (more

details can be found in Section 2.3). Due to small size of internal block of a cipher

compared to size of the output digest of a hash function, except of �simple� modes

there were also proposed double length modes, which produce digest of twice the

block size. This approaches weakness is that security properties of block ciphers

are not in general aligned well with the properties expected from secure hashing.

In the case of block ciphers it is assumed that the encryption/decryption key is

secret in classical security models. At the same time hash functions give much

more freedom to the attacker, who can control key input to underlying block

cipher and better exploit internal structure of the algorithm.

The last approach uses a (believed) intractable mathematical problem to de-

sign a hash function. The selling point of these constructions is a mathematical

proof that demonstrates how an algorithm that breaks a hash function property

can be used to solve e�ciently the underlying (assumed to be intractable) prob-

lem. An example of such construction is the VSH hashing [32] that is based on

intractability of �nding nontrivial modular square roots of very smooth numbers

modulo n-bit composite, There is, however, a drawback of this approach. All

known constructions are much slower than other constructions. Nevertheless, it

seems that this approach is getting more and more attention and the e�ciency

issue may be addressed by using di�erent intractability assumptions.

2.3. Block Ciphers in Hash Function Modes of

Operation

Block ciphers play an important role in symmetric cryptography providing the

basic tool for encryption. They are the oldest and most scrutinized cryptographic

tool. Consequently, they are the most trusted cryptographic algorithms that are

often used as the underlying tool to construct other cryptographic algorithms.

22

2.3. Block Ciphers in Hash Function Modes of Operation

One such application of block ciphers is for building compression functions for

the hash functions.

Single-Block Hash Modes. There are many constructions (also called hash

function modes) for turning a block cipher into a compression function. Probably

the most popular is the well-known Davies-Meyer mode (mode 5 in Table 2.1).

Preneel et al. in [114] have considered all possible modes that can be de�ned for a

single application of n-bit block cipher in order to produce an n-bit compression

function. They have found that there are 12 modes that are resistant against

generic attacks (see 5 in Table 2.1). Later these �ndings have been formally

proven in [23].

Table 2.1.: The table lists all provably secure hash function modes. The numbers
are from [23].

mode
(�)

h′
mode
(�)

h′
mode
(�)

h′

1 Eh(m)⊕m 5 Em(h)⊕ h 9 Eh⊕m(m)⊕m
2 Eh(h⊕m)⊕ h⊕m 6 Em(h⊕m)⊕ h⊕m 10 Eh⊕m(h)⊕ h
3 Eh(m)⊕ h⊕m 7 Em(h)⊕ h⊕m 11 Eh⊕m(m)⊕ h
4 Eh(h⊕m)⊕m 8 Em(h⊕m)⊕ h 12 Eh⊕m(h)⊕m

Double-Block Hash Modes. To make hash functions and compression func-

tions resistant against the birthday-paradox attack, it is better to use double-block

modes. This approach allows to square the complexity of the birthday attack in

comparison to the attack on single application of primitive. Basic double-block

modes have been proposed in [25, 59, 81, 84, 112] (Table 2.2 lists them all). In the

�rst column A-DM, T-DM, Hirose and MDC-2 are abbreviations of Abrest DM,

Tandem DM, Hirose's Double-Block-Length and Modi�cation Detection Code 2,

respectively (see [81] for the �rst two, [59] for the third and [25] for the last).

In case of Peyrin et al.(II) [112] Ei are some independent functions built from

the cipher, for example Ei(x, y, z) = Ex‖y(z ⊕ i) ⊕ z. For MJH-Double [84] f is

involution with no �xed points and d is a natural number, d 6= 1.

(paragraph split) Note that the Tandem-DM mode has been proven to be col-

lision resistant in [48], while a weakness in MDC-2 was found in [74]. The MJH-

Double mode is described in [84].

23

2. Cryptographic Hash Functions

Table 2.2.: The table lists double-block hash modes presented in [25, 59, 81, 84,
112].

mode (h′, g′)

A-DM
h′ = Eg,m(h)⊕ h
g′ = Em,h(ḡ)⊕ g

T-DM
h′ = Eg,m(h)⊕ h

g′ = Em,Eg,m(h)(g)⊕ g

Hirose
h′ = Eh‖m(g ⊕ c)⊕ g ⊕ c

g′ = Eh‖m(g)⊕ g

MDC-2
h′ = (Eh(m)⊕m)L ‖ (Eg(m)⊕m)R

g′ = (Eg(m)⊕m)L ‖ (Eh(m)⊕m)R

Peyrin et al.(II)
h′ = E1(h, g,m1)⊕ E2(h, g,m2)⊕ E3(h,m1,m2)
g′ = E3(h,m1,m2)⊕ E4(h, g,m1)⊕ E5(g,m1,m2)

MHJ-Double
h′ = Em2‖g(h⊕m1)⊕ h⊕m1

g′ = d · [Em2‖g(f(h⊕m1))⊕ f(h⊕m1)]⊕ h

2.4. Security Notation for Cryptographic Hash

Functions

Ideal Ciphers vs. Hash Functions. Proofs of security of the above modes

are performed under the assumption that the underlying block cipher is ideal.

However, this assumption is not satis�ed if the cipher is used to build hash func-

tions. Note that the ideal cipher is related to the concept of pseudo-random

permutation, where the adversary does not know the cryptographic key. Roughly

speaking, for the unknown key, the permutation of the cipher is chosen at random.

Clearly, the cryptanalyst in case of compression functions based on block ciphers

has a much easier task as the block cipher is no longer a random permutation. The

adversary fully controls the key input and can therefore select the permutation.

A known-key model [75] was proposed in order to bridge the gap between

analysis of the two primitives. The model assumes that the attacker knows the

encryption key and the aim is to distinguish the cipher from a random permutation

on a message space by querying the primitive with messages constructed in a way

to detect unwanted property. A good candidate for such a property would be one

that can be easily checked and achieved in case of speci�c cipher while hardly

detectable in case of random primitive. In general, these known-key attacks are

not regarded as problematic when the block cipher is used in a classical �secret

24

2.5. Methods of Hash Functions Analysis

key� setting. Moreover, it is rare that such threats are extended to attacks on the

compression function.

What di�ers these two approaches is that unlike the secret-key model, where

the complexity of an attack is usually bounded by the size of the key space (i.e.

2k for a k-bit key), the attacks in the open-key model are bounded by the size

of the state space (i.e. 2n for an n-bit state). Therefore, some of the published

attacks in the secret-key model (precisely, the attacks with a complexity higher

than 2n) become worse than simple generic attacks, when applied in the open-key

model.

2.5. Methods of Hash Functions Analysis

The analysis of cryptographic hash functions can be divided into two main

categories. The �rst are generic attacks which are applicable to any design and are

independent on the internal structure of the function. In this case the analyzed

algorithm is considered as a black-box primitive for which input and output is

speci�ed. The internal behavior is not relevant in this context. On the other

hand we can lift the previous assumption about black-box behavior of analyzed

function and exploit internal structure of it, which is of course known to the

attacker. These kind of attacks are no more applicable to any design, but are

largely dependent on the algorithm.

2.5.1. Generic Attacks

Generic attacks are applicable to any primitive for which the internal structure

is not known to the attacker. The primitive is treated as a black-box with input

and output that can be provided and observed, respectively. The general assump-

tion of these kind of attacks is the pseudo-randomness of the analyzed primitive,

so in our case a block cipher or a hash function. We will describe in more detail

two following generic attacks:

• brute force attack,

• birthday attack.

25

2. Cryptographic Hash Functions

Brute Force Attack. This is the naïve method of breaking a cryptographic

hash function by �nding preimages for a given target hash value. The attacker

is challenged with the hash value and its aim is to �nd a message that has the

same digest. The complexity of this attack for a function on {0, 1}n is 2n−1. The

illustration of the problem is following example:

Let assume that we are challenged with some date, let it be the 2nd day of a

year. How many people have to be in a room in order to �nd at least one born

on the same day of a year with probability of at least 0.5? We only distinguish

birth dates by the number of a day in a year, so for instance people born on the

1st of January 1888 and the 1st of January 1999 are born on the same day of a

year. For simplicity in the example we are not considering leap years. Hence, we

assume a year has 365 days.

When we calculate the probability for the event of �nding a person born on

the 2nd day of a year we calculate it, that it is equal to 1 − (364
365)k where k is

the number of additional people in the room. Elementary calculations show that

k > 252.65, that is at least 253 people are required in order to achieve the goal.

If we generalize the problem to a hash function with range {0, 1}n we obtain that

at least 2n−1 elements have to be checked in order to obtain required preimage

with probability of at least 0.5.

Birthday Attack. The birthday attack on the other hand can be used in

collisions search attacks for a hash function with a complexity signi�cantly smaller,

that is 2
n
2 . The birthday paradox is de�ned as follows:

How many people have to be in the room in order to �nd at least two of them

born on the same day of a year with probability of at least 0.5? At �rst glance

it might seem that the answer to the question is the same as before. This is

partially true, the earlier number of occupants of the room will guarantee �nding

the required pair. However, we can do it much better. In the �rst case the

day is �xed while in the later with each considered person the size of the set of

possible dates of birth for �nding a match/collision has increased. Hence, the

success probability should be much higher with each new considered person. The

other di�erence we can detect immediately (and is going to be more visible in the

26

2.5. Methods of Hash Functions Analysis

following part) is that the �rst probability is increasing linearly with each person,

because we consider their date of birth separately, while in the second case we are

dealing with pairs of people what increases the number of possible success events

in quadratic manner. When we calculate the exact probability we discover it is

equal to 1 − 364
365 · · . . . ·

365−k+1
365 and tedious calculation show that k > 22.49. In

this case only 23 people are needed in the room to �nd a collision in comparison

to the 253 in the earlier case. When we generalize the example to a hash function

on {0, 1}n we obtain that at least 2
n
2 elements have to be checked.

In the following sections we present examples of algorithm speci�c attacks. We

start with a de�nition of open-key distinguishers for block ciphers and description

of some techniques for di�erential trail construction. Next rotational analysis and

shift analysis is presented. The chapter ends with de�nition of T-functions which

have application in analysis of Addition-Rotation-XOR designs.

2.5.2. Di�erential Analysis

The di�erential analysis was introduced by Biham and Shamir in [17] and suc-

cessfully used for the DES analysis. The idea is to follow the propagation of

a di�erence in the state of the cipher throughout consecutive rounds. When the

input-output di�erences can be predicted with a su�ciently high probability, than

the cipher can be distinguished from a pseudo-random permutation. This concept

can trivially be adjusted for the case, where the adversary knows/controls the key

of the cipher (open-key di�erential distinguishers). The goal of adversary in this

case would be to �nd an input-output pair of di�erences for the cipher that can

be predicted with a probability higher than in a random permutation.

A natural consequence of constructions presented in Section 2.3 is that block

ciphers methods of cryptanalysis are also applicable for attacking hash functions.

The di�erential analysis is one of best known tools for cipher analysis and it has

also been successfully applied for hash functions analysis, �rst examples are [29,

124]. What is more the discussion in Section 2.4 clearly shows that available

degrees of freedom make di�erential attack much stronger tool in hash function

context.

27

2. Cryptographic Hash Functions

In this Section we �rst recall notation and basic di�erential attack technique.

Next we describe some techniques for design of di�erential trails for block ciphers.

Then we de�ne open-key distinguishers for block ciphers and in particular open-

key di�erential distinguishers.

Di�erential Analysis. We will focus our analysis on substitution-permutation

(SP) block ciphers. Each round of such ciphers consists of two types of transfor-

mations:

• a non-linear layer of S-boxes (S),

• a linear-di�usion layer (LD).

The non-linear layer operates on bytes, i.e. the inputs to the S-boxes are bytes

of the state. The linear-di�usion layer may apply di�erent transformations such

as multiplications of the columns/rows of the state matrix by a �xed di�usion

matrix, transpositions of rows/columns, rotations of elements of the state matrix,

subkey additions, and others.

Di�erential trails for ciphers are given as a sequence of input-output word dif-

ferences of each transformation of the state. Since SP ciphers are usually byte-

oriented, these trails can be given as a sequence of active bytes, i.e. bytes that

have di�erences. Depending on the properties of the S-box layer and the linear-

di�usion layer, the adversary can built two types of trails.

The �rst type is a standard di�erential trail, where the exact values of the input-

output di�erences for each layer and for each round of the trail are �xed. The

probability of these trails depends on the di�erential properties of the S-boxes,

i.e. the probability that a given input di�erence to the S-box will produce a given

output di�erence. Note that when these di�erences are �xed, then the trail in the

linear-di�usion layer holds with a probability 1.

The second type is a truncated di�erential trail (proposed in [72]). In this trail

only the position of the active bytes is important, while the actual di�erence val-

ues are ignored. Since, the S-box operates on a single byte, it means it cannot

change an active byte to a non-active and vice-versa. Hence the adversary concen-

trates only on the linear-di�usion layer and �nds the probability of a particular

28

2.5. Methods of Hash Functions Analysis

con�guration of input-output active bytes.

Markov Ciphers. For a chosen plaintext di�erence α, the ciphertext di�er-

ence can be found by propagating the plaintext di�erence through the encryption

function of the cipher. Most ciphers are iterated, i.e. their encryption func-

tion consists of repetitive application of some (possibly weak) non-linear round

function f = S ◦ LD such that Y = f(X,Ki), where X is a state at the be-

ginning of the round, Ki is a key used in the round i, i = 1, . . . , r and Y is an

output state. The evolution of di�erences generated after each round is called

a di�erential characteristic and can be represented by the following sequence

α = ∆Y (0),∆Y (1), . . . ,∆Y (r − 1), β = ∆Y (r), where ∆Y (i) is the di�erence

at the output of the ith round and β is called ciphertext di�erence.

The e�ciency of di�erential cryptanalysis is tightly related to the probability

of di�erentials (di�erential characteristics) � the higher the probability the lower

the complexity. Lai and Massey [80] put a focus on the probability of di�eren-

tial characteristics and study conditions for di�erential characteristics to form a

Markov chain. Note that a sequence of discrete random variables v0, . . . , vr is a

Markov chain if, for 0 ≤ i < r,

Pr(vi+1 = βi+1|vi = βi, vi−1 = βi−1, . . . , v0 = β0) = Pr(vi+1 = βi+1|vi = βi).

They introduce the notion of Markov cipher as follows.

De�nition 2.5. An iterated cipher with round function Y = f(X,K) is a Markov

cipher if for all choices of α 6= 0, β 6= 0,

Pr(∆Y = β|∆X = α,X = γ)

is independent of γ when the round key K is uniformly random.

Their main result is described by the following theorem.

Theorem 2.1 ([80]). If an r-round iterated cipher is a Markov cipher and the

r round subkeys are independent and uniformly random, then the sequence of

di�erences ∆Y (0),∆Y (1), . . . ,∆Y (r) is a Markov chain.

29

2. Cryptographic Hash Functions

In other words, the probability of di�erential characteristics is a product of the

probabilities of the single-round characteristics (as they form a Markov chain),

as long as the probabilities of the single-round characteristics do not depend on

the value of the input state, where round keys are independent and uniformly at

random (if the cipher is Markov).

Techniques for Di�erential Trail Constructions. Amajor improvement in

the analysis of SP cryptographic algorithms was the introduction of the rebound

attack [100]. The idea is as follows. If we assume that the adversary controls the

input to the S-boxes in round i (Si), then any input-output di�erence to this layer

can be obtained for free (simple table lookups). More speci�cally only half of the

input-output di�erences are possible, but for each of them there are two di�erent

input values and that is why on average this is true. In other words, when ∆1,∆2

are �xed di�erences, then it is easy to �nd X such that S(X⊕∆1)⊕S(X) = ∆2.

In two consecutive middle rounds (round i and i + 1) the adversary �rst �xes

both the input di�erences ∆′i of the LDi layer in the i-th round, and the output

di�erences ∆′2 of the LDi+1 layer of the (i + 1)-th round. Then he goes forward

through the LDi layer and backwards through the LDi+1 layer. He ends up with

fully determined di�erences ∆1 and ∆2, since the layers are linear. In between

there is only one S-box (Si) layer (composed of a number of S-boxes), which can

be passed for free when the adversary �xes the values, i.e. when he �nds the

proper solutions for X of the above equation. Therefore, at the beginning of

the i-th round, and at the end of the (i + 1)-th round, not only the di�erences,

but now also the values have been �xed. The rounds that precede and follow

the two middle rounds are passed with probability p1 × p2 dependent on the LD

transformation. Compare simple example in Figure 2.6. The example cipher block

consists of 16 bytes which are transformed with LD and S layers � each round

starts with LD followed by S layer. The trail consists of 4 rounds from i − 1 to

i + 2. Darkened square represents nonzero di�erence while not �lled one � zero,

so for example ∆′1 is a di�erence with non-zero values only in the �rst column.

Because key addition is not exploited for simplicity it is omitted in the Figure.

The technique of the rebound attack was improved with the Super-Sbox crypt-

30

2.5. Methods of Hash Functions Analysis

Figure 2.6.: Example of the application of the rebound attack to a substitution-
permutation block cipher.

analysis [37, 50, 82]. When the round di�usion is incomplete then two layers of

S-boxes can be passed for free using a precomputed lookup tables. The idea is

similar to the one of the original rebound attack, but bigger lookup tables are

used.

The key can be used to gain an additional degree of freedom, which in return

can lead to more S-box layers passed for free. When the adversary controls the

key, then the rebound attack can be extended to one or two additional rounds,

depending on the size of the key. The subkey (round key) is XOR-ed in each

round of the cipher. The �rst S-box layer can be passed for free using the previous

rebound technique (by �xing not only the di�erence, but the exact values as well).

The second S-box layer can be passed for free as well if the adversary controls

the input values to this layer by solving the appropriate equations. These values

can be manipulated with the subkey, i.e. the adversary can choose a proper

subkey such that the inputs to the S-box layer can be of arbitrary value (yet,

their di�erence is �xed). Hence, the adversary can pass the second S-box layer

for free if he controls the subkey of this round.

Figure 2.7.: Example of application of the rebound attack to a substitution-
permutation block cipher in chosen-key model.

Let us explain the idea with an example (see Figure 2.7). The cipher block

31

2. Cryptographic Hash Functions

consists of 16 bytes which are transformed with LD and S layers � each round

starts with LD followed by S layer. The trail consists of 2 rounds i and i+1. Key

addition operation is marked with AK. Let ∆1 → ∆2 → ∆3 be an arbitrary two-

round di�erential trail. First the adversary �nds (with the rebound attack) a pair

of states that satis�es the di�erential trail of the i-th round, i.e. he �nds a pair

(A,A ⊕ ∆1) that produces (B,B ⊕ ∆2) on the output. Then independently, he

�nds a pair of states for the (i+1)-th round, i.e. he �nds (C,C⊕∆2) that produces

the output (D,D⊕∆3). In the last step he has to �x a proper subkey ki+1 for the

(i+ 1)-th round key addition operation AKi+1, which will connect the output of

the �rst round and the input of the second round. To do so, the adversary �xes

ki+1 = B ⊕ C, and as the result he obtains a pair of states (A⊕ ki, A⊕ ki ⊕∆1)

that satisfy the two round di�erential trail.

Similarly, the adversary can pass more S-box layers when he controls the sub-

keys of these layers. An obvious requirement for the subkeys of these additional

rounds is that they need to be independent. Otherwise, a change in a subkey

in one round will change the value of a subkey in another round, which might

lead to incorrect input values for the S-box layer of this second round. A second

requirement is an invertible key schedule. Since the adversary controls the values

of the subkeys of some middle rounds, he has to be able to produce the values

of the subkeys of the rounds that precede and follow these rounds, hence he has

to �nd the master key from the �xed subkeys. It is important to note that this

technique requires a negligible memory.

Building the Di�erential Trails. For each of the techniques discussed above,

the adversary �rst builds a trail that may have a plenty of active S-boxes in some

middle rounds and a few at the ends of the trail. Then, a pair of values that follows

the di�erential trail only in these middle rounds is found with complexity 1. The

rest of the rounds, before and after the middle rounds, are found probabilistically

since the adversary has no degree of freedom left.

In the case of byte oriented ciphers, �nding the optimal di�erential trails with

no di�erence in the key can be done automatically. Hence, in case of block ciphers

of block size of b bytes the search space is reduced to only 216 possible starting

32

2.5. Methods of Hash Functions Analysis

values.

Some of the ciphers are based on the so-called wide trail strategy [36], and pro-

vide an e�cient method for estimating the probability of the best round-reduced

standard di�erential trails. These estimates are based on the di�erential proper-

ties of the S-boxes and the di�usion properties of the LD layers, which are often

maximum distance separable mappings.

Open-key Distinguishers for Block Ciphers. A distinguisher is one of the

weakest cryptographic attacks that can be launched against a secret-key cipher.

In this attack, there are two oracles: one that simulates the cipher for which the

cryptographic key has been chosen at random and the other simulates a truly

random permutation. The adversary can query both oracles and their task is

to decide which oracle is the cipher (or random permutation). The attack is

considered to be successful if the number of queries required to make a correct

decision is below a well de�ned level.

The idea of open-key distinguishers was introduced by Knudsen and Rijmen

in [75] for analysis of AES and a class of Feistel ciphers. They examined the secu-

rity of these block ciphers in a model where the adversary knows the key. Later,

the same approach was used in the attack on 8-round reduced AES-128 [50] and

for analysis of Rijndael with large blocks [103], where the authors de�ned a new

security notion for a known-key cipher. The idea of chosen-key distinguishers was

introduced in the attack on the full-round AES-256 [21]. This time the adversary

is assumed to have a full control over the key. A chosen-key attack was launched

on 8-round reduced AES-128 in [22]. When we assume that the adversary controls

only di�erences in the key, a chosen-key attack is called a related-key attack.

Both the known-key and chosen-key distinguishers are collectively known open-

key distinguishers. The adversary has the knowledge of the key or even can choose

a value of the key. To succeed, the adversary has to discover some property

of the attacked cipher that holds with a probability higher than for a random

permutation.

Open-key Di�erential Distinguishers. Di�erential distinguishers in the

open-key model are de�ned in similar way as in the secret-key model. However,

33

2. Cryptographic Hash Functions

their main application is for hash function analysis, because in secret key setting

the known-key attacks are not regarded as a threat. The adversary builds a

di�erential trail (∆P ,∆K)→ ∆2 for the block cipher EK(P). In other words, he

�nds a pair of plaintexts (P1,P2) and a pair of keys (K1,K2), together known as a

di�erential pair, such that P1⊕P2 = ∆P ,K1⊕K2 = ∆K and EK1(P1)⊕EK2(P2) =

∆2. In fact the adversary can build many pairs of plaintexts and keys. The pair

(∆P ,∆K) is the input di�erence, while ∆2 is the output di�erence. At least one

of ∆P and ∆K has to be non-zero. For example, the trails given in [22, 50, 103]

have di�erences only in the plaintext, while the trail from [21] has di�erences in

both the key and the plaintext.

2.5.3. Rotational Analysis

Rotational distinguishers exploit the fact that some transformations produce

rotated outputs for rotated inputs. In case of rotational analysis, opposed to

di�erential analysis where propagation of the di�erence x ⊕ y is tracked, the

adversary is analyzing propagation of a rotational pair (x, x≪r). The technique

was �rst introduced in [11, 73, 116] while it was formally proposed in [64].

A cyclic rotation on n bits to the left by r bits (0 < r < n) of a given binary

string a = (a0, . . . , an−1) is de�ned as:

a≪r= (a�r)⊕ (a�(n−r)),

that is

a≪r= (ar, . . . , an−1, a0, . . . , ar−1),

where� and� are left and right bit shifts, respectively. In the same manner we

can de�ne a cyclic rotation on n to the right by r bits:

a≫r= (a�(n−r))⊕ (a�r),

that is

a≫r= (an−r, . . . , an−1, a0, . . . , an−r−1).

34

2.5. Methods of Hash Functions Analysis

The hash functions we consider in dissertation, besides the ARX operations, use

subtractions, shifts, bit-wise Boolean functions, multi additions and a combination

of multi additions and multi subtractions. The following lemmas characterize the

probability that a given transformation may preserve the rotational property. The

proofs of the lemmas are presented in Appendix A.

Lemma 2.1 (Addition and Subtraction [38]). Given a pair of n-bit words x, y

and a positive integer r, then

Pr((x ? y)≪r= x≪r ? y≪r) =
1

4
(1 + 2r−n + 2−r + 2−n),

where ? ∈ {+,−}.

Lemma 2.2 (Shifts [64]). Given an n-bit word x and two positive integers r, s,

then

Pr((x�s)≪r= (x≪r)�s) = 2−2t,

Pr((x�s)≪r= (x≪r)�s) = 2−2t,

where t = min(r, s, n− r, n− s).

Lemma 2.3 (Boolean function [64]). Given a bit-wise Boolean function f ∈

{∧,∨,¬}, then

Pr(f(x)≪r= f(x≪r)) = 1,

where x is a n-bit word and r is some positive integer.

Lemma 2.4 (Multiplication [110]). Given a pair of n-bit words x, y and positive

integers r, s, then

Pr(x≪r · y≪s= (x · y)≪(r+s)) ≥ 2−2(r+s).

A pair (X,X ≪r) for X ∈ {0, 1}m×n where X = (X1, . . . , Xm) is called a

rotational pair with rotational amount r, where X≪r is understood as element-

35

2. Cryptographic Hash Functions

wise rotation of X, that is:

X≪r= (X1 ≪r, . . . , Xm≪r).

Given a transformation F : {0, 1}n → {0, 1}n and a rotational pair of inputs

(X1, X1 ≪r), X1 ∈ {0, 1}n we say that F preserves the rotational property if the

equality

F (X1)≪r= F (X1 ≪r)

is ful�lled. Hence, F preserves rotational property if for (X,X≪r), pair (F (X1), F (X1 ≪r

)) is rotational. A system Φ(X) : {0, 1}m×n → {0, 1}k×n that consists of the trans-

formations F1, . . . , Fk : {0, 1}m×n → {0, 1}n, i.e. Φ = (F1, . . . , Fk), preserves the

rotational property if it produces a rotational output pair for a rotational input

pair.

We would like to address two important issues in rotational analysis:

• in case of the di�erential analysis, the adversary may introduce di�erences

on a part of the input, while in the rotational analysis, all the input pairs

of words have to be rotational.

• there are only a few transformations that preserve the rotational property

for any input pair and in majority of cases, for an arbitrary input X, the

condition F (X)≪r= F (X≪r) holds with a probability pF .

The probability pF is further called a rotational probability of F and it depends

on the integer r. If we assume that the outputs of the transformations are inde-

pendent, then a system Φ composed of transformations F1, . . . , Fk preserves the

rotational property with the probability pΦ = pF1 ·pF2 ·. . .·pFk
. Therefore, in order

to �nd the probability that a system preserves the rotational property, one only

has to �nd the probabilities that each instance of the underlying transformations

preserves this property. For a random system with n-bit output, the probability

that a rotational input will produce rotational output is 2−n. Therefore, if a sys-

tem Φ with n-bit output, has a rotational probability pΦ > 2−n, then this system

can be distinguished from a random system.

36

2.5. Methods of Hash Functions Analysis

It is important highlight that the above reasoning is true under the assumption

that an ARX system is Markov cipher and round keys are chosen independently

and uniformly at random. Note that as in di�erential cryptanalysis, if round keys

are not used in every round, then randomness (required by the Markov chain) must

come from the state words, which are updated by the three operations of ARX.

Rotations and XORs have rotational probability of 1 and thus are independent of

the inputs. The case of modular addition is di�erent. Rotational probability of

modular addition is as determined by Lemma 2.1 as long as inputs are random.

The output of modular addition is biased when an input pair is rotational. That

is if (x + y) ≪ r = x≪ r + y ≪ r and r > 0, then the value z = x + y is

biased. If the output of modular addition is taken as input to another addition,

then rotational probability of the second addition may not follow Lemma 2.1.

A pair of n-bit words (X,Y) can be fully rotational, i.e. X≪r ⊕Y = 0, or only

on t bits, i.e. hw(X≪r ⊕Y) = n− t, where hw is the hamming weight function.

Basically, we require the output pairs of all internal transformations to be fully

rotational. We make an exception for the last transformation, where it is enough

to have t rotational output bits as they can be used to build a distinguisher.

For some transformation, instead of taking rotational input pairs, it is better to

introduce correction by XOR-ing some low hamming weight word to the second

input, i.e. instead of (X,X≪r), we take (X,X≪r ⊕δ). IfX is input to another

transformation, then the correction most likely has to be canceled (often by XOR-

ing the same correction to some other input). Otherwise, a non-rotational input

pair may signi�cantly decrease the probability of rotational output pair for the

second transformation.

Since most of the transformations preserve the rotational property only with

some probability, we can observe errors in the cases when the property does

not hold. A rotational error eF of the transformation F is de�ned as eF =

F (X) ≪r −F (X ≪r). Depending on the actual value of X, di�erent values

for the rotational error may be produced. The errors may cancel each other as

well. For example, let the output pairs of two distinct transformations have the

same rotational errors, but with opposite sign, i.e. F1(X) ≪r −F1(X ≪r) =

37

2. Cryptographic Hash Functions

e, F2(Y)≪r −F2(Y ≪r) = −e. If the outputs of F1, F2 are inputs to addition,

then the output pair of addition will be rotational (with the rotational probability

of addition), since (F1(X) + F2(Y))≪r= F1(X)≪r +F2(X)≪r= F1(X≪r

) + e+ F2(Y ≪r)− e = F1(X≪r) + F2(Y ≪r).

2.5.4. Shift Analysis

In line with the rotational analysis, a similar yet distinct form of attack, which

we call a shift analysis, is available. Whereas in rotational analysis the adver-

sary follows the propagation of the rotational pair (x, x≪r), in shift analysis he

follows the pair (x, x �s) or (x, x �s), where s is the shift amount. There is a

signi�cant di�erence in the shift probabilities of various transformations depend-

ing if the adversary considers shifts to the left or to the right. For our purposes

we will consider shifts to the left, i.e. the shift pair is de�ned as (x, x�s). In this

case, when the analyzed primitive lacks addition of constants, the shift analysis

might be more e�cient (has a higher probability) than the rotational analysis.

This comes from the fact that the rotational and shift probabilities for certain

transformations are not equal. For example, rotations and modular additions

have di�erent rotational and shift (to the left) probabilities.

2.5.5. T-functions and S-functions

T-functions (see [69�71]), which is short for triangular functions, are very com-

mon building blocks in cryptography. The most popular examples of such func-

tions are XOR and modular addition. T-functions are characterized by the fact

that their output at position k depends only on the input positions k-th and lower.

The formal de�nition of T-function is:

De�nition 2.6. ([39]) A function f : {0, 1}m×n → {0, 1}l×n is called a T-function

if the k-th column of the output [f(x)]k−1 depends only on the �rst k columns of

38

2.5. Methods of Hash Functions Analysis

the input [x]k−1, . . . , [x]0 where:



[x]0

[x]1
...

[x]n−1



T

→



f0([x]0)

f1([x]0, [x]1)

...

fn−1([x]0, . . . , [x]n−1)



T

.

Except for the mentioned XOR and modulo addition, the condition from the

above de�nition is also met by all bit-wise Boolean functions and modulo multipli-

cation of integers. What is more, composition of T-functions is also a T-function.

It has been shown in [106] that triangular property of hash function design might

facilitate its cryptanalysis.

When we consider for instance an additional modulo 2n, we can observe in-

teresting property of this particular T-function. The k-th column of output can

be calculated only based on k-th input column and knowledge of carry from the

(k − 1)-th column. In general the group of T-functions can be de�ned as follows:

De�nition 2.7. ([39]) A T-function is called w-narrow function if there are

mappings: α1 : {0, 1}m → {0, 1}w and αk : {0, 1}m+w → {0, 1}w for k = 2, . . . , n−

1, auxiliary variables: a1 = α1([x]0) and ak = αk([x]k−1, ak−1) for k = 2, . . . , n−1

such that f can be written as:



[x]0

[x]1
...

[x]n−1



T

→



f0([x]0)

f1([x]1, a1)

...

fn−1([x]n−1, an−1)



T

.

The smallest w such that some f is w-narrow is called the narrowness of f .

In [28, 86, 105] the w-narrow functions are referred as S-functions which is

short for state functions. The auxiliary variables ai from the De�nition 2.7 are

called there states. Leurent provides also freely available tool for analysis ARX

primitives with use of S-function toolkit accompanying [86].

39

3. Open Key Di�erential Analysis for

Block Ciphers

In this chapter, we study the security of hash functions based on block ciphers

with respect to di�erential attack. The study applies open-key di�erential distin-

guishers. For 16 hash function modes based (see Tables 2.1 and 2.2) on block-

ciphers, we determine which collision �nding attack variants (collisions, pseudo

collisions, semi-free start collisions, or free start collisions) are feasible, assuming

that the adversary is given a speci�c di�erential trail for the underlying block

cipher in the open-key model. We target all Preneel-Govaerts-Vandewalle (PGV)

single-block-length compression modes, as well as four double-block-length modes.

We examine several well known block ciphers (Crypton, Hierocrypt-3, SAFER++,

Square, and generic Feistel ciphers) and for each of them, we present new known-

key and chosen-key di�erential distinguishers. Our distinguishers use the rebound

attack [100] as a starting point, but we obtain substantial improvements in the

number of attacked rounds by exploiting some cipher-speci�c properties that al-

low us to manipulate bits of the subkeys (a similar technique was used in the

context of analysing the Whirlpool function [82]). In the chosen-key model, for

substitution-permutation (SP) ciphers, we obtain an explicit formula for the num-

ber of additional rounds that can be attacked for free, when the cipher has an

invertible key schedule.

To show the e�ciency of our distinguishers, we give proof of a lower bound

on the complexity of di�erential distinguishers in the case of a black-box random

permutation. Although this bound has been used for a while (mainly as an upper

bound, e.g. in [50] it is called a limited-birthday distinguisher), as far as we know,

41

3. Open Key Di�erential Analysis for Block Ciphers

it has never been formally proved.

Organization. The chapter is organized as follows. In Section 3.1, we present

our �ndings about the impact of block cipher di�erential trails on the security of

hash function modes. Section 3.2 contains our lower bound on the complexity of

di�erential distinguishers for black-box random permutations. In Section 3.3, we

present our cipher speci�c known-key and chosen-key di�erential distinguishers

for various block ciphers. Section 3.4 concludes the chapter.

3.1. Impact of Block Cipher Known Key Di�erential

Trails on Hash Modes

The most popular design of cryptographic hash is based on iterative use of a

compression function. This construction is also known as the Merkle-Damgård

(MD) structure. Early compression functions used block ciphers as the main

building block. Assume that we have a single instance of a block cipher EK(P)

and wish to design a compression function that takes a 2n-bit input (h,m) and

outputs a n-bit string f(h,m). This problem has been investigated in [23, 114]

and it has been shown that there are 12 structures (modes) that are secure. An

example of one such structure is the well-known Davies-Meyer (DM) mode that

is de�ned as f(h,m) = Em(h)⊕h, where h and m are the chaining value and the

message, respectively.

In this work, we consider four types of collision attacks against the compression

functions:

1. Collisions - for a �xed chaining value h0, the adversary tries to �nd two

distinct messages m1,m2 such that f(h0,m1) = f(h0,m2).

2. Pseudo collisions - for a messagem, the adversary wishes to �nd two distinct

chaining values h1, h2 such that f(h1,m) = f(h2,m).

3. Semi-free start collisions - the adversary attempts to �nd two distinct mes-

sages m1,m2 and a chaining value h such that f(h,m1) = f(h,m2).

42

3.1. Impact of Block Cipher Known Key Di�erential Trails on Hash Modes

4. Free start collisions - the adversary tries to �nd two distinct chaining values

h1, h2, and two distinct messages m1,m2 such that f(h1,m1) = f(h2,m2).

We investigate the resistance of compression functions based on block ciphers

against the attacks described above. We assume that the adversary can build a

di�erential trail for the cipher with di�erences not only for the plaintext, or for

the key, but also for both the plaintext and the key. For example, for the DM

compression function, this means that the adversary can �nd a pair of chaining

values (h1, h2) and a pair of messages (m1,m2) (possibly in one of the pairs the

two values are equal) such that h1 ⊕ h2 = ∆h,m1 ⊕m2 = ∆m and f(h1,m1) ⊕

f(h2,m2) = ∆h⊕∆2. Hence, when the adversary can build some trail, i.e. when

he cannot control the exact values of the di�erences ∆h,∆2, then he can �nd a

di�erential distinguisher for the DM compression function. On the other hand,

when the adversary can build a speci�c trail for the cipher with a di�erence in

the plaintext (h is the plaintext input to the cipher), such that ∆h ⊕ ∆2 = 0,

then he can �nd: 1) free-start collisions, if ∆m,∆h 6= 0, 2) pseudo-collisions, if

∆m = 0,∆h 6= 0, 3) collisions or semi-free start collisions, if ∆m 6= 0,∆h = ∆2 = 0

(note that this implies that there are key collisions in the cipher since in DM, the

message is the key).

The same approach can be applied to the other 11 modes. We try to �nd all

possible collision attacks under the assumption that the adversary can control

the relation between the input and the output di�erences of a trail in the cipher.

Our �ndings are presented in Table 3.1. The �rst column consists of numbers

from [23]. The entries in the plaintext columns, key, plaintext and key show the

best collision attacks for the modes when there is di�erence only in the plaintext,

only in the key or both in the plaintext and key, respectively. The abbreviations

C, PC, SFSC, FSC stand for collision, pseudo-collision, semi-free start collision,

free start collision, respectively.

Often the block size of a cipher is too small to be secure in the compression

mode. Hence, there is a class of compression functions, also called double-block-

length ones, whose output size is two times bigger than the block size of the

43

3. Open Key Di�erential Analysis for Block Ciphers

Table 3.1.: Summary of �ndings for single block modes.

mode
(�)

h′ plaintext key
plaintext
and key

1 Eh(m)⊕m C, SFSC PCa FSC

2 Eh(h⊕m)⊕ h⊕m C, SFSC PC PC, FSC

3 Eh(m)⊕ h⊕m C, SFSC PC FSC

4 Eh(h⊕m)⊕m C, SFSC PC PC, FSC

5 Em(h)⊕ h PC Ca, SFSCa FSC

6 Em(h⊕m)⊕ h⊕m PC FSC C, SFSC, FSC

7 Em(h)⊕ h⊕m PC C, SFSC FSC

8 Em(h⊕m)⊕ h PC FSC C, SFSC, FSC

9 Eh⊕m(m)⊕m FSC PCa C, SFSC, FSC

10 Eh⊕m(h)⊕ h FSC Ca, SFSCa PC, FSC

11 Eh⊕m(m)⊕ h FSC PC C, SFSC, FSC

12 Eh⊕m(h)⊕m FSC C, SFSC C, PC, FSC

aWhen key collisions exist in the cipher.

underlying cipher. We investigate the security of such functions proposed by Lai-

Massey in [81], Hirose in [59] and Bracht et al. in [25]. Our results are presented

in Table 3.2. In the �rst column A-DM, T-DM and Hirose are abbreviations of

Abrest DM, Tandem DM and Hirose's Double-Block-Length, respectively. The

abbreviations C, PC, SFSC, FSC stand for collision, pseudo-collision, semi-free

start collision, free start collision, respectively.

Table 3.2.: Summary of �ndings for double block modes.

mode (h′, g′) plaintext key
plaintext
and key

A-DM
h′ = Eg,m(h)⊕ h
g′ = Em,h(ḡ)⊕ g FSC C, SFSC PC, FSC

T-DM
h′ = Eg,m(h)⊕ h

g′ = Em,Eg,m(h)(g)⊕ g FSC C, SFSC PC, FSC

MDC-2
h′ = (Eh(m)⊕m)L ‖ (Eg(m)⊕m)R

g′ = (Eg(m)⊕m)L ‖ (Eh(m)⊕m)R
C, SFSC PCa FSC

Hirose
h′ = Eh‖m(g ⊕ c)⊕ g ⊕ c

g′ = Eh‖m(g)⊕ g PC
C, PC,

SFSC, FSC
PC, FSC

aWhen key collisions exist in the cipher.

Although we have analyzed the collision resistance of the above modes, the

di�erential trails for the underlying ciphers in the open-key model can be used as

a standalone cryptanalytical result for the compression functions.

44

3.2. Lower Bound on Complexity of Di�erential Distinguisher for Random Permutations

3.2. Lower Bound on Complexity of Di�erential

Distinguisher for Random Permutations

In this section we present a lower bound on the complexity of di�erential dis-

tinguishers for a black-box random permutation. This allows us to make a fair

comparison of our cipher-speci�c distinguisher complexities in Section 2.5.2 to the

best possible black-box distinguisher. Although a similar upper bound has been

used before (see, e.g. [50]), our result proves that it is indeed close to the best

possible. To our knowledge, such a lower bound has not been published before,

and may be of independent interest.

When the key is �xed, a block cipher becomes a permutation. An open-key

di�erential distinguisher with no di�erence in the key is valid if the complexity

of �nding a di�erential pair is less than the complexity of �nding such pair in a

random permutation. When the input and output di�erences are fully �xed, in

n-bit random permutation the complexity of �nding a di�erential pair is 2n, hence

any di�erential distinguisher with a probability higher than 2−n is valid. When

the input di�erence is �xed, and the output di�erence can take values from a set

of the cardinality 2c, then for a random permutation, a di�erential pair can be

found after performing 2n−c encryptions. The general case when both the input

and the output di�erences are taken from sets of �xed cardinalities, is discussed

in the following lemma.

Lemma 3.1 ([109]). Let DI , DO denote subsets of {0, 1}n, which are closed under

⊕, i.e. x⊕ y ∈ DI (respectively DO) for x, y ∈ DI (resp. DO). For any attacker

making queries to a random n-bit permutation π and its inverse π−1, the com-

plexity (measured in expected number of oracle queries) of �nding a pair of inputs

(x, y), where x⊕ y ∈ DI , |DI | = 2cI , such that π(x)⊕ π(y) ∈ DO, |DO| = 2cO , is

lower bounded as Q ≥ min(2
n
2
−2, 2n−(cI+cO)−3).

Proof. Since DI and DO are closed under ⊕, we may partition {0, 1}n into input

sets A1, . . . , AN , where each |Ai| = |DI | = 2cI , N = 2n

|DI | = 2n−cI , such that

x ⊕ y ∈ DI for x, y ∈ Ai for i = 1, . . . , N . Similarly, we have a partition into

45

3. Open Key Di�erential Analysis for Block Ciphers

output sets B1, . . . , BM where |Bj | = |DO| = 2cO , M = 2n

|DO| = 2n−cO for all

j = 1, . . . ,M .

Let us de�ne the following game G0: attacker A has an access to a random

permutation oracle π : {0, 1}n → {0, 1}n and its inverse π−1, making a total of q

queries to these oracles.

In the following games Gk (k = 0, 1, 2), let Ek be the following event: A �nds

x 6= y with x, y ∈ Ai and π(x), π(y) ∈ Bj for some i, j while interacting with

game Gk.

We show below the following upper bound:

Pr(E0) ≤ q2

2n
+

q

2n−(cO+cI)
. (3.1)

Before we explain the formal proof, we remark that the intuition for this result is

as follows. The �rst term q2

2n is the upper bound on the collision probability error

due to the fact that we simplify the problem by replacing the random permutation

π with a random function. The last term arises because at each query to π (resp.

π−1) which is in some input set Ai (resp. output set Bj) there are at most 2cI

points in Ai whose image under π is already de�ned (resp. at most 2cO points in

Bj whose image under π−1 is already de�ned), thus occupying at most 2cI out of

the 2n−cO output sets (resp. at most 2cO out of the 2n−cI input sets).

We �rst show that (3.1) implies the claimed expected complexity bound. In

game G0, let T denote the random variable de�ned as the number of oracle queries

until the event E0 occurs. We lower bound the expected value Q = E(T) as

follows. Let p(q) denote the right hand side of (3.1), and let q∗ be such that

p(q∗) = 1
2 . Since Pr(T ≤ q) ≤ p(q), we have

Q ≥
∑
q>q∗

Pr(T = q) · q ≥ q∗ · Pr(T > q∗) ≥ q∗

2
. (3.2)

Now, for i ∈ {1, 2}, let qi denote the value of q such that the ith term on the

right hand side of (3.1) is equal to 1
4 . Since there are 2 terms in (3.1), we may

take min(q1, q2) as lower bound for q∗. Since q1 = 2
n
2
−1 and q2 = 2n−(cI+cO)−2,

46

3.2. Lower Bound on Complexity of Di�erential Distinguisher for Random Permutations

the claimed lower bound on Q follows.

It still remains to prove (3.1). We will do this by building a chain of games,

starting with G0, which are similar until bad is set (for further details of this

methodology see for example [9]).

First de�ne a game G1 to be similar to G0 except that the permutation π

is replaced by a relation P ⊂ {0, 1}n × {0, 1}n that is injective and functional,

but not necessary de�ned in the whole domain. According to naming convention

in [9] relation P is called partial permutation, whereas injectivity and functional

conditions together are named �permutation constraint�. Initially P is empty

and through execution of G1 its values are being sampled randomly with respect

to �permutation constraint�. Whenever P (x) (resp. P−1(y)) is needed �rst it

is checked if P (resp. P−1) is de�ned on x (resp. y). If this is the case then

appropriate value is returned, otherwise P (x) (resp. P−1(y)) is sampled uniformly

at random from img(P) (resp. img(P−1)), where img(P) is complement of image

of P . Because the sampling is the same as in the Game G0, we have

Pr(E0) = Pr(E1). (3.3)

Next we de�ne game G2 which is the same as G1 except �permutation con-

straint� for P does not need to be ful�lled. That means the values P (x) (resp.

P−1(y)) are sampled at random from {0, 1}n, but the game stops immediately

when the �permutation constraint� is not satis�ed. Unless the �permutation con-

straint� is violated by the occurrence of a collision between a new output value

returned by P and a previous output value of P or input value queried to P−1

(resp. a collision between a new output value returned by P−1 and an previous

output value of P−1 or input value queried to P), the games G1 and G2 proceed

identically. Since at each query there are at most q previous P (resp. P−1) output

values already de�ned, we have

|Pr(E2)− Pr(E1)| ≤ q2

2n
. (3.4)

47

3. Open Key Di�erential Analysis for Block Ciphers

At this stage we stop building chain of games and we upper bound the proba-

bility Pr(E2) directly. We claim that

Pr(E2) ≤ q

2n−(cO+cI)
. (3.5)

Let x denote the qth query of the attacker, de�ne the following variables for

i = 1, . . . , N and j = 1, . . . ,M :

• aFi = number of P oracle queries made so far which are in Ai,

• aRi = number of P−1 oracle answers given so far which fell in Ai,

• bFj = number of P−1 oracle queries made so far which are in Bj ,

• bRj = number of P oracle answers given so far which fell in Bj .

Suppose that x is a query to P and that x ∈ Ai for some i. We have so far aFi +aRi

points in Ai whose Bj sets are already de�ned. Hence the event E2 will occur

only if the uniformly random (in {0, 1}n) answer of P falls in one of those output

sets, so it will happen in this query with probability ≤ aFi +aRi
M ≤ |DI |

M = 1
2n−(cI+cO) ,

using aFi + aRi ≤ |DI | (since the game has not stopped so far). Similarly, if x is

a query to P−1 and x ∈ Bj for some j, then E2 will occur in this query with

probability ≤ bFj +bRj
N ≤ |DO|

N = 1
2n−(cI+cO) . It follows that E2 occurs among the

�rst q queries with probability bounded by (3.5), as claimed. This completes the

proof of the Lemma.

3.3. Di�erential Trails for Speci�c Block Ciphers

We have searched for di�erential trails in the following ciphers: Crypton, Hierocrypt-

3, SAFER++, and Square. Especially, we have tried to build standard and/or

truncated trails, which can be used in a rebound-type attack. For some of the ci-

phers, the probabilities for both the standard and the truncated di�erential trails

to be higher than in a random permutation. In this case, only the trails (which

are usually truncated) with higher probability are presented.

48

3.3. Di�erential Trails for Speci�c Block Ciphers

The trails for the chosen-key distinguishers were built upon the trails for the

known-key distinguishers by increasing the number of the full active middle rounds

which can be covered for free when a proper subkey is �xed. When n-bit key is

used, with an invertible key schedule that produces s-bit subkeys, then the chosen-

key distinguisher has bns c more rounds than the known-key distinguisher.

3.3.1. Crypton, Hierocrypt-3 and Square

Crypton [91], Hierocrypt-3 [33], and Square [35] are 128-bit SP block ciphers

and have a various number of internal rounds depending on the length of the key.

The best published attacks in the secret-key model are on 8 rounds of Crypton [68],

3-3.5 rounds of Hierocrypt-3 [8], and 8 rounds of Square [76].

The internal state of each cipher can be seen as 4× 4 matrix of bytes, while a

round consists of three types of transformations of the state:

1. byte-wise application of a non-linear S-box,

2. matrix-wise linear-di�usion (LD) layer that applies di�erent linear trans-

formations of various bytes of the matrix to introduce a su�cient di�usion

among the bytes of the state,

3. subkey addition � a simple XOR of the round key to the matrix.

A round of Crypton consists of an S-box layer γ, LD layer composed of two trans-

forms π and τ , and subkey addition σ. Hierocrypt-3 has six round transforms:

two S-box layers [S], two LD layers [MDSL] and [MDSH], and two subkey ad-

ditions [AK]. A round of Square consists of four transforms: S-box layer γ, LD

layer with two transforms θ and π, and a subkey addition σ. It is important to

notice that all three ciphers have a non-linear, but invertible, key schedule. The

256-bit key versions of Crypton and Hierocrypt-3, have a key schedule such that

each two consecutive 128-bit subkeys are independent.

For each cipher, we can build 7-round truncated di�erential trails (7 S-box

layer trail in case of Hierocrypt), that have a full active state in the middle

round, but only a few active S-boxes in the rest of the 3+3 rounds (S-box layers

49

3. Open Key Di�erential Analysis for Block Ciphers

of Hierocrypt). These trails can be used to construct known-key distinguishers

on 7 rounds of the ciphers, based on the rebound technique. Since the ciphers

have invertible key schedules, we can increase the number of attacked rounds by

switching from the known-key to the chosen-key attacks and using the degrees

of freedom of the subkeys. Hence, we can construct a chosen-key di�erential

distinguisher on 8 rounds of Crypton with 128-bit keys, and 9 rounds of Crypton

with 256-bit keys (the additional round comes from extra 128-bit freedom of

the key; the chosen-key has b256
128c = 2 more rounds than the known-key, see

Section 2.5.2). For Hierocrypt-3, the result is a chosen-key distinguisher on 8 S-

box layers = 4 rounds for 128-bit keys, and on 9 S-box layers=4.5 rounds for 256-

bit keys. Square only supports 128-bit keys, hence the chosen-key distinguisher

works on 8 rounds, which is indeed the total number of rounds of this cipher.

The trails used in the chosen-key distinguishers for 9, 4.5 and 8 rounds of

Crypton, Hierocrypt-3, and Square, respectively, are given in the Figure 3.1, the

Figure 3.2 and the Figure 3.3, respectively.

Figure 3.1.: Truncated di�erential trail for 9 rounds of Crypton for chosen-key
distinguisher and 256-bit key.

Figure 3.2.: Truncated di�erential trail for 4.5 rounds of Hierocrypt for chosen-key
distinguisher and 256-bit key.

50

3.3. Di�erential Trails for Speci�c Block Ciphers

Figure 3.3.: Truncated di�erential trail for 8 rounds of Square for chosen-key dis-
tinguisher (σ′ = σ(θ(k0))).

Since the middle full-active state round(s) are covered by the rebound attack

and by �xing the subkeys used in these rounds, we can assume that the probability

of the trails in these rounds is 1. Hence, we count only the probability of the rest of

the rounds. In each of the three trails, we have twice 2−24 � that is the probability

that the linear-di�usion transformation will turn four active bytes into one active

byte. The probability of the trail in the rest of the layers is 1. Therefore, to

�nd pairs of plaintexts and ciphertexts that will follow the truncated di�erential

trails, one has to start with 248 pairs of states that pass the middle rounds (each

pair can be build with negligible complexity). Out of 248 pairs, 224 will produce

four-to-one active byte in the �rst half of the trail, leading to a plaintext di�erence

as the one in the trail. Out of these 224, one will produce four-to-one active in the

second half of the trail and a ciphertext di�erence as the one in the trail. Now, let

us try to compare our complexity of 248 encryptions to the complexity in a case

of a random permutation. By Lemma 3.1, to �nd this complexity we have to �nd

the cardinalities of the plaintext and the ciphertext di�erences in the truncated

trails. Although some of the plaintext/ciphertext di�erences in the trails have

full active states, they are obtained by a linear transformation of some state with

a four active bytes. Hence the cardinalities in all cases are 24·8 = 232, and the

complexity of producing a pair for a random permutation, that follows the trails,

is at least min(2
128
2
−2, 2128−(32+32)−3) = 261 encryptions.

To test the correctness of our results, we have constructed a chosen-key distin-

guisher on mCrypton [92], which has the same design as Crypton, but instead of

bytes (8-bit words), it works with nibbles (4-bit words), and uses a non-invertible

key schedule. The above distinguishers for Crypton can easily be applied to a

51

3. Open Key Di�erential Analysis for Block Ciphers

modi�ed version of mCrypton with a (invertible) key schedule identical to the one

of Crypton. The chosen-key distinguisher for 9 rounds of this modi�ed mCrypton

was implemented on a PC, and a di�erential pair was found, an example of which

is presented in the Figure 3.4. The columns in the table represent: i - round

number, A[i] - value of the state in round i, D[i] - di�erence between two states

in round i, Dγ [i] - di�erence between two states after γ in round i, Dπ◦γ [i] - di�er-

ence between two states after π ◦ γ in round i, Dτ◦π◦γ [i] - di�erence between two

states after τ ◦ π ◦ γ in round i, K[i] - subkey in round i. The trail was obtained

for K = 679ff202d5834e529d9cf7013a4d8218.

i A[i] D[i] Dγ [i] Dπ◦γ [i] Dτ◦π◦γ [i] K[i]

1

0 1 d 3

7 7 0 1

1 b 6 5

e a 3 b

6 1 b 9

e 7 1 f

4 b b 3

c f 4 5

c 0 0 0

c 0 0 0

8 0 0 0

4 0 0 0

c 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

c 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

9 8 2 2

e 6 1 5

a 7 a 2

d d 3 4

2

1 1 a c

9 1 3 7

5 9 d 2

e 7 1 4

c 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

9 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

8 0 0 0

9 0 0 0

9 0 0 0

1 0 0 0

8 9 9 1

0 0 0 0

0 0 0 0

0 0 0 0

e 0 8 d

c a 4 2

a 5 4 1

2 b c 7

3

7 9 5 2

c a 2 8

6 a 3 d

6 8 a 0

8 9 9 1

0 0 0 0

0 0 0 0

0 0 0 0

9 a f d

0 0 0 0

0 0 0 0

0 0 0 0

8 8 b 5

9 a 7 c

9 2 e d

1 a d 9

8 9 9 1

8 a 2 a

b 7 e d

5 c d 9

3 5 3 4

b 8 b 0

c 8 1 9

e 2 9 a

4

6 c b 1

a d 6 f

f 9 b 8

1 6 8 2

8 9 9 1

8 a 2 a

b 7 e d

5 c d 9

d 5 4 b

5 e 9 3

1 1 4 2

d b 2 4

d 4 5 1

1 e a d

1 1 f c

9 a b e

d 1 1 9

4 e 1 a

5 a f b

1 d c e

5 9 5 7

c e d 2

f 3 6 0

d b 2 4

5

8 6 f 0

e 0 d 0

0 0 7 0

0 d 0 7

d 1 1 9

4 e 1 a

5 a f b

1 d c e

1 6 a 7

b c 4 8

e 9 b 4

2 2 9 5

1 f d a

e e 6 b

c 1 4 d

5 1 3 2

1 e c 5

f e 1 1

d 6 4 3

a b d 2

3 d 5 0

3 8 e a

5 4 4 0

b f 1 7

6

0 0 0 5

0 0 6 6

0 0 0 0

7 2 3 0

1 e c 5

f e 1 1

d 6 4 3

a b d 2

e 8 2 7

c a 6 e

a 2 6 d

6 a 4 b

e a 6 f

0 0 0 0

0 0 0 0

0 0 0 0

e 0 0 0

a 0 0 0

6 0 0 0

f 0 0 0

9 e 0 c

8 a e a

b 0 4 6

b f b 1

7

d e 7 f

b 7 3 7

0 d 4 d

3 3 0 2

e 0 0 0

a 0 0 0

6 0 0 0

f 0 0 0

e 0 0 0

c 0 0 0

a 0 0 0

6 0 0 0

e 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

e 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3 e 4 0

1 7 8 d

1 f 6 c

5 e 4 7

8

1 b 5 0

f 0 e c

1 7 1 2

9 2 4 7

e 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

6 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

6 0 0 0

4 0 0 0

2 0 0 0

6 0 0 0

6 4 2 6

0 0 0 0

0 0 0 0

0 0 0 0

9 8 c 2

d a b 9

4 0 a 9

5 0 a 7

9

7 7 3 d

e e e d

0 0 2 a

b b c 0

6 4 2 6

0 0 0 0

0 0 0 0

0 0 0 0

f 9 c c

0 0 0 0

0 0 0 0

0 0 0 0

e 9 8 4

d 9 4 c

b 1 c c

7 8 c 8

e d b 7

9 9 1 8

8 4 c c

4 c c 8

3 3 3 4

e 6 8 0

6 b 9 2

5 b 9 9

10

8 5 d 0

9 0 2 6

9 e 5 2

5 e a 9

e d b 7

9 9 1 8

8 4 c c

4 c c 8

7 2 9 9

a 8 d d

1 c f e

6 2 7 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 3 c 3

8 2 0 9

8 8 3 a

8 c 1 e

Figure 3.4.: Example of di�erential pair for mCrypton.

The detailed description of modi�ed version of mCrypton can be found in Ap-

52

3.3. Di�erential Trails for Speci�c Block Ciphers

pendix B.

3.3.2. SAFER++

SAFER++ [95] is a 128-bit SP block cipher. The version with 128-bit key

has 7 rounds and the best published attack works for 5.5 rounds [19]. A round

of SAFER++ consists of: 1) a byte-wise subkey addition, 2) a byte-wise S-box

layer, 3) a byte-wise subkey addition, and 4) a state-wise linear-di�usion layer in

the form of four 4-PHT. The subkey additions are modular and XOR, and two

di�erent S-boxes are used. After the last round, there is an extra subkey addition.

The key schedule is linear.

When the subkeys are �xed, then the S-box layer can be merged with the subkey

additions to form another S-box layer, with the same input and output size. In

other words, the subkey addition together with S-box and the subkey addition

can be seen simply as some S-box (since the bytes of the subkeys are di�erent,

the S-boxes are also di�erent). Hence, we can assume that a round of the cipher

is composed of an S-box layer and a linear-di�usion layer, and all the additions

in the cipher are modular.

Our automatic search for the best round-reduced standard di�erentials has

found that there exist only two three-round trails with 10 active S-boxes (the rest

of the trails have more than 10 active S-boxes). The �rst trail has 4,2,4 while the

second has 2,3, and 5 active S-boxes in the �rst, the second, and the third round,

respectively. We have used two 4-2-4 trails in our standard di�erential attack (see

Figure 3.5 and Figure 3.6 for detail values of di�erentials).

We attack 6.5 rounds of SAFER++, which is the full cipher, except for the �rst

round, where the three transforms: subkey addition, S-box and subkey addition,

are missing. As far as we know this is the �rst rebound attack with standard

di�erentials. Therefore, we will describe it in more details.

First, to cancel the e�ects of the last extra subkey addition, we �x the MSB of

the bytes 1, 3, 9, 12, 13, 14, 15, 16 of the last subkey to zero, while the values

for the other bits of the subkey are randomly chosen. Then, from the mentioned

subkey, we �nd the value of the master key, and the values for all remaining

53

3. Open Key Di�erential Analysis for Block Ciphers

Figure 3.5.: Standard di�erential trail for 6.5 rounds of SAFER++ for the chosen-
key distinguisher and 128-bit key. The �rst round is without the S-box
layers, crossed square represents �xed 8-bit di�erence.

subkeys. Now we are ready to start the rebound attack.

We assign di�erences to the bytes 2, 3, 5, 13 (and no di�erence to other bytes)

of the state before the linear layer in round 3. The di�erences should be such that

after the linear layer all bytes are active (this holds for almost any assigned value).

Similarly, we assign di�erences to bytes 2, 4, 9, 12 of the state after the linear

layer in round 4, go backwards through the linear layer and obtain a full active

state. In between the top and the bottom active states, there is only the S-box

layer, hence we match the di�erences through this layer, i.e. we �x the values of

the bytes such that all the input di�erences produce all the output di�erences.

Since the values of the full state have been �xed, the rest of the rounds are passed

probabilistically. There are 2, 4, 4, 2, 4 active S-boxes (16 in total) in the rounds

2, 3, 5, 6, 7, respectively.

If we assume that the di�erential propagation through all of the S-boxes occurs

with the probability 2−7 then the complexity of the whole attack is 27·16 = 2112

encryptions. Note that for a �xed key, we have 264 starting values for the rebound

attack. We can choose di�erent keys (such that the last subkey has the MSB of

the mentioned above bytes �xed to zero) to get the necessary number of starting

pairs for the di�erential attack. Since the input and output di�erences of the

di�erential pair are fully �xed, such a pair in a random permutation can be found

with 2128 encryptions.

54

3.3. Di�erential Trails for Speci�c Block Ciphers

Figure 3.6.: Standard di�erential trail for 6.5 rounds of SAFER++ for chosen-key
distinguisher and 128-bit key. The �rst round is without the S-box
layers, * represents any non-zero 8-bit di�erence.

F

k1

A B

F

k3

E G

F

k2

CD

L R

Figure 3.7.: Chosen-key distinguisher for 3-round Feistel ciphers.

3.3.3. Feistel Ciphers

Feistel ciphers with a SP round function can have a number of rounds covered

for free in the known and chosen-key di�erential attacks. When the key is known,

the S-box layers of two consecutive rounds can be attacked independently since

the round function uses only half of the input. For a given two-round di�erential,

�rst a pair of input states that satisfy the di�erential of the �rst round function

is �xed, and then a pair of states of the second round function. Therefore, in an

known-key attack, any di�erential trail can be extended by two additional rounds

(this should not be confused with the distinguishers on 7-round Feistel ciphers

proposed in [75]).

55

3. Open Key Di�erential Analysis for Block Ciphers

Assume that the adversary can control the key in a Feistel cipher. As the size

of the input to the round function and the size of the round key are (usually) half

as big as in the SP ciphers, the number of rounds that can be attacked for free

is twice as big as for the SP ciphers. Let us examine the possibility of obtaining

a pair of states for a three-round di�erential. Let n-bit Feistel cipher has an

invertible key schedule that generates n
2 -bit subkeys. To �nd a pair of states that

follows some three-round di�erential:

(∆L
1 ,∆

R
1)→ (∆L

2 ,∆
R
2)→ (∆L

3 ,∆
R
3)→ (∆L

4 ,∆
R
4)

(the pair of states is (L,R), (L ⊕ ∆L
1 , R ⊕ ∆R

1)), the adversary builds, as in the

rebound attack, three pairs of states, separately for each round, that satisfy the

one-round di�erentials, i.e. he �nds the values A,C,E, such that

F (A)⊕ F (A⊕∆L
1) = ∆R

1 ⊕∆L
2 ,

F (C)⊕ F (C ⊕∆L
2) = ∆R

2 ⊕∆L
3 ,

F (E)⊕ F (E ⊕∆L
3) = ∆R

3 ⊕∆L
4 .

Let F (A) = B,F (C) = D,F (E) = G. Then, in order to connect these three

one-round di�erentials, the following conditions for the subkeys k1, k2, k3 apply:

L⊕ k1 = A,

R⊕B ⊕ k2 = C,

L⊕D ⊕ k3 = E.

From the �rst and the third equation, we get the relation k1 ⊕ k3 = A ⊕D ⊕ E

(note that the adversary does not control the values of A,D,E because they are

�xed by the rebound attack). To satisfy this relation, the keys k1, k3 have to

be independent (or be linearly dependent � but this is not common for ciphers).

Once this is satis�ed, the solution (L,R, k1, k2, k3) for the system can be found

in linear time. Hence in general, the master key has to be at least 3n
2 -bit long.

56

3.4. Summary

A similar analysis applies to cases when a higher number of rounds has to be

covered for free. The only di�erence is that the resulting system has more equa-

tions. When r rounds are �xed, the system has r equation and r + 2 unknowns:

L,R, k1, . . . , kr. In order to �nd the solution in linear time, for any invertible key

schedule, the subkeys have to be independent. Hence, to attack an additional r

rounds of a n-bit Feistel cipher the key has to be at least rn
2 -bit long.

3.4. Summary

We have examined the application of the di�erential trails in analysis of ciphers

that are used for compression function constructions. We have considered both

the known-key and chosen-key models. We have especially analyzed the collision

resistance of all compression functions based on single block ciphers as well as the

four known double-block compression functions, when speci�c di�erential trails

for the underlying ciphers can be built. Furthermore, we have presented di�eren-

tial distinguishers for Crypton, Hierocrypt-3, SAFER++, and Square. For these

ciphers, we have shown that when the attack model is switched from secret-key

to open-key, the number of rounds that can be attacked increases. We have also

given as well a formal proof of lower bound of constructing pair that follow a

truncated trail in the case of a random permutation. Our results are summarized

in Table 3.3. The �Encryptions� column gives the expected number of encryp-

tions in the case of a SP cipher, while the �Lower bound� column � the expected

number of encryptions required in the case of a random permutation. In case of

n-bit Feistel cipher r is a number of covered rounds, and 2c is the complexity of

some di�erential attack.

The area of open-key distinguishers is largely unexplored. Finding similar dis-

tinguishers based on related-key di�erentials remains an open problem.

57

3. Open Key Di�erential Analysis for Block Ciphers

Table 3.3.: Summary of attacks on the ciphers examined in the chapter.
Cipher Distinguisher Rounds Encryptions Lower bound Reference

Crypton Known-key 7 248 261 Section 3.3.1
Chosen-key 9 248 261 Section 3.3.1

Hierocrypt-3 Known-key 3.5 248 261 Section 3.3.1
Chosen-key 4.5 248 261 Section 3.3.1

SAFER++ Known-key 6.5 2120 2128 Section 3.3.2
Chosen-key 6.5 2112 2128 Section 3.3.2

Square Known-key 7 248 261 Section 3.3.1
Chosen-key 8 248 261 Section 3.3.1

n-bit Feistel Di�erential attack r 2c

with k-bit key Known-key r + 2 2c Section 3.3.3

Chosen-key r + b2k
n c 2c Section 3.3.3

58

4. IDEA in Various Hashing Modes

A potential candidate for hashing is the 64-bit block cipher the International

Data Encryption Algorithm (IDEA) [78, 79] that uses 128-bit keys. While a single-

block hashing mode would only provide a 64-bit hash output, insu�cient for most

of today's security applications, a double-block length construction (DBL) would

allow 128-bit hash outputs which can be appropriate in some applications. As

IDEA handles double-length keys, more �exibility in the constructions is possi-

ble. In fact, the well known Abreast-DM and Tandem-DM modes were especally

created to perform hashing with IDEA (see page 2 and Section 6 of [78] and

Table 2.2). These modes were later studied in much details [48, 49, 83, 85],

but the security they provide when instantiated with IDEA remains a 20-year-old

open question. In classical �secret key� setting, IDEA has already been studied a

lot [6, 14�16, 20, 30, 34, 40, 57] and is still considered as a secure cipher despite

its age and despite the current best attack [16]. The attack requires 263 data (half

the codebook) and 2114 computations to recover the secret key for IDEA reduced

to 7.5 rounds over a total of 8.5. The attack on the full cipher from [16] is very

marginal with 2126.8 computations and the one from [63] requires 2126 computa-

tions and 252 chosen plaintexts. One can also cite the work of [20], that exposes a

weak-key class of size 264. Note also that a �rst step towards analysis of IDEA in

hashing mode was done in [62] where a 3-round chosen-key attack is described and

in [30] where the authors show how to �nd a free-start near collision (a free-start

collision de�ned in Section 3.1 for which only a subset of the output collides) when

IDEA is plugged into the Hirose DBL mode [30] (and also a free-start collision if

the internal constant c is controlled by the attacker).

In this chapter, we study the security of the IDEA block cipher [78, 79] when

59

4. IDEA in Various Hashing Modes

plugged into various block cipher based compression function constructions, such

as the classical Davies-Meyer mode (refermode 5 in Table 2.1), also DBL construc-

tions such as Hirose, Abreast-DM, Tandem-DM, Peyrin et al.(II) or MJH-Double,

listed in Table 2.2. Even if this cipher is still considered as secure in the classical

�secret key� setting, its security remains an open problem in the hashing mode.

Depending on the IDEA-based hash construction, we show that an attacker can

�nd free-start collisions instantaneously, preimages or semi-free-start collisions

practically. For some modes, we describe a method to compute collisions for the

whole hash function.

Organization. This chapter is organized as follows. In Section 4.1, we provide

description of IDEA block cipher. Next we discuss some properties of the cipher in

Section 4.2, in particluar we present a novel and non-trivial almost half-involution

property for IDEA. In Section 4.3 we demonstrate collisions attacks on a variety of

hashing modes and in the following, Section 4.4, we exploit almost half-involution

in order to improve previous attacks. Section 4.5 is summarizing our preimage

attacks obtained with use of T-function framework. Section 4.6 summarizes the

chapter.

4.1. The IDEA block cipher

The International Data Encryption Algorithm (IDEA) is a 64-bit block cipher

handling 128-bit keys and designed by Lai and Massey [78, 79] in 1990. While

its use is reducing in recent years, it remains deployed in practice and has not

been broken yet despite its advanced age. It has a very simple design, performing

8.5 rounds composed of only 16-bit wide XOR, additions and multiplications.

More precisely, one round is composed of three layers: �rst the key addition layer

(denoted KA), a multiplication-addition layer (denoted MA) and a middle words

switching layer (denoted S). For the eighth round, the switching is omitted.

Let Xi represent the 64-bit internal state of IDEA before application of the i-th

round and we can view it as four 16-bit subwords Xi = (Xi
1, X

i
2, X

i
3, X

i
4), with

1 ≤ i ≤ 9. Also, Y i = (Y i
1 , Y

i
2 , Y

i
3 , Y

i
4) will stand for the intermediate internal

60

4.1. The IDEA block cipher

state value of IDEA during the i-th round, right between the KA and the MA

layers. We denote by ⊕ the bit-wise XOR operation, by � the addition modulo

216 and by � the multiplication modulo 216 +1, where the value 0 is considered as

216 and vice-versa. Finally, Zi = (Zi1, Z
i
2, Z

i
3, Z

i
4, Z

i
5, Z

i
6) represents the six 16-bit

subkeys used during the i-th round (only the �rst four subkeys for the last half

round).

The KA layer simply incorporates four subkeys:

Y i
1 = Xi

1 � Zi1, Y i
2 = Xi

2 � Z
i
2, Y i

3 = Xi
3 � Z

i
3, Y i

4 = Xi
4 � Zi4.

The MA layer �rst computes B = Zi6 � ((Y i
2 ⊕ Y i

4) � (Zi5 � (Y i
1 ⊕ Y i

3))) and

A = B � (Zi5 � (Y i
1 ⊕ Y i

3)). Then, after application of the S layer we have:

Xi+1
1 = Y i

1 ⊕B, Xi+1
2 = Y i

3 ⊕B, Xi+1
3 = Y i

2 ⊕A, Xi+1
4 = Y i

4 ⊕A.

All the subkeys are simply determined by choosing consecutive bits in the 128-

bit master key according to the Table 4.1.

i-th round Z
(i)
1 Z

(i)
2 Z

(i)
3 Z

(i)
4 Z

(i)
5 Z

(i)
6

1 0-15 16-31 32-47 48-63 64-79 80-95
2 96-111 112-127 25-40 41-56 57-72 73-88
3 89-104 105-120 121-8 9-24 50-65 66-81
4 82-97 98-113 114-1 2-17 18-33 34-49
5 75-90 91-106 107-122 123-10 11-26 27-42
6 43-58 59-74 100-115 116-3 4-19 20-35
7 36-51 52-67 68-83 84-99 125-12 13-28
8 29-44 45-60 61-76 77-92 93-108 109-124
OT 22-37 38-53 54-69 70-85 −− −−

Table 4.1.: Key bits used for subkeys Z
(i)
j in the i-th round of IDEA

Finally, ciphering the plaintext P with IDEA to obtain the ciphertext C is

de�ned as: C = KA ◦ S ◦ {S ◦MA ◦ KA}8(P). Figure 4.1 provides a schematic

view of one round of IDEA.

Currently, the best cryptanalysis work published on IDEA [16] can reach 7.5

rounds with 263 data (half the codebook) and 2114 computations. Concerning

weak-keys, the current biggest weak-key class contains 264 elements and has been

61

4. IDEA in Various Hashing Modes

ju

j

jj

ju
ju

j

6

KA

6

?

MA

Zi1

? ?

�

�

-

-

?

?

?

?
-�

-�

-

?
�
?

�

-

Zi6

Zi5

??? ?

- ��-
? ? ? ?

Xi
3 Xi

4Xi
2Xi

1

Zi4Zi3Zi2

Y i
1 Y i

2 Y i
3 Y i

4

Xi+1
1 Xi+1

2 Xi+1
3 Xi+1

4

?

j j

ju

6

?

S

rrr r

rr

Figure 4.1.: One round of IDEA

published in [20].

4.2. Weak-keys for IDEA

Weak-keys for IDEA have already been studied in details [20, 34, 57], but what

we are looking for is slightly di�erent. Indeed, for block cipher cryptanalysis, since

the attacker cannot control the key input, he looks for the biggest possible class

of weak-keys, so as to get the highest possible probability that a weak-key will

indeed be chosen. In the case of compression function cryptanalysis, the key input

is fully known or even controlled by the attacker. The goal is therefore not to

�nd the biggest possible class of weak-keys, but to �nd the weakest possible key.

As we will show for IDEA, even if only one weak-key is found, its weakness might

directly lead to successful attacks on the whole compression or hash function.

4.2.1. Analysis of the Internal Functions

When looking at the internal round function of IDEA, one might wonder what

a weak-key would be. In IDEA, the most annoying functions for the cryptanalyst

62

4.2. Weak-keys for IDEA

are clearly the multiplications in Z216+1. Indeed, these operations are strongly

non-linear and provide good di�usion between di�erent bit positions. On the

contrary, XOR operations are linear and do not provide any di�usion between

bit positions, while the additions in Z216 can be easily approximated linearly. On

the other hand, the di�usion between the bit positions only happens through the

carry. Moreover, XOR and additions are even weaker in IDEA since no rotations

are present, comparing with Addition-Rotation-XOR (ARX) designs. Here the

rotation is done through the multiplications in Z216+1 and our goal is therefore to

avoid them.

When adding (a+b) mod 216, we can avoid any di�usion by forcing one operand

to 0. When multiplying (a�b) = (a·b) mod 216 + 1, the good di�usion will happen

especially when (a · b) ≥ 216 +1. An easy way to avoid this is to �x one of the two

operands to 1. In that case, we have (a � 1) = (a · 1) mod 216 + 1 = a mod 216.

As already stated in [34], a good choice is also 0, since

(a� 0) mod 216 = ((a · 216) mod (216 + 1)) mod 216

= (((a · 216 + a) + (216 + 1)− a) mod (216 + 1)) mod 216

= (0 + 216 + 1− a) mod 216 = 1− a mod 216

= 2 + (216 − 1− a) mod 216 = (2 + a) mod 216

and the multiplication is reduced to only a complement and an addition with a

constant.

4.2.2. Weak-keys Classes

Due to the fact that the operand 0 is very weak for both multiplications and

additions, Daemen et al. [34] generated a class of weak-keys. The �rst obvious

candidate is the null key (all bits set to zero), which will force all the subkeys

to zero as well. As a consequence, all subkeys additions can be simply removed

and all subkeys multiplications can be replaced by a complement (or XOR with

0xffff) and an addition with value 2. At this point, all the operations in IDEA

with null key are either XOR or additions. Therefore, by inserting di�erences only

63

4. IDEA in Various Hashing Modes

into the Most Signi�cant Bit (MSB) of the four 16-bit plaintext input words, the

attacker is ensured that the MSB of the four output words will be the only one

to contain a di�erence. Even better, the mapping from an MSB input di�erence

pattern to an MSB output di�erence pattern is completely deterministic (it is

linear since no carry is propagated on the MSB). Such a property is largely suf-

�cient to consider the null key as being weak. This reasoning can be generalized

by observing that the attacker does not necessarily need all subkeys to be null,

but only the ones that are multiplied to an internal word which contains a MSB

di�erence. Since the MSB di�erential paths are quite sparse, many of the null

constraints on the subkeys are relaxed and one �nally gets 235 weak-keys.

4.2.3. The null Weak-key

We have shown that the null key is particularly weak for hash function utiliza-

tion. Even if other keys belong to a weak-key class, they do not present the same

special properties as the null key.

Almost half-involution. When using the null key, we remark that all subkeys

will be null as well. Then, all rounds layers will be the same and we will write KA0

and MA0 the KA and MA layers with null subkeys. A nice practical feature of

IDEA is that the decryption is done using the very same algorithm as encryption,

but with di�erent subkeys. The decryption subkeys for the MA layer are the same

as the encryption ones since the MA layer is an involution (i.e. MA=MA−1). The

decryption subkeys for the KA layer are the respective multiplicative and additive

inverses of the encryption subkeys. However, note that the null subkey is both its

own multiplicative and additive inverse and the KA layer becomes an involution

as well (i.e. KA0=KA
−1
0). To summarize, using the null key, we are ensured that

KA0=KA
−1
0 and MA0=MA−1

0 . Note that we trivially have S=S−1.

Now, since the KA layer and S layer commute, IDEA with the null key can be

64

4.2. Weak-keys for IDEA

rewritten as

C = KA0 ◦ S ◦ {S ◦MA0 ◦KA0}8(P)

= KA0 ◦ S ◦ {S ◦MA0 ◦KA0}3 ◦ S ◦MA0 ◦KA0 ◦ {S ◦MA0 ◦KA0}4(P)

= KA0 ◦MA0 ◦ {S ◦KA0 ◦MA0}3︸ ︷︷ ︸
σ−1

◦KA0 ◦ S︸ ︷︷ ︸
θ

◦ {MA0 ◦KA0 ◦ S}3 ◦MA0 ◦KA0︸ ︷︷ ︸
σ

(P)

which eventually gives C = σ−1 ◦ θ ◦ σ(P). One can check that since KA0, MA0

and S are involutions, the operation denoted by σ−1 is indeed the inverse of the

one denoted by σ. Thus, using the notation

P
σ−1

−→ U
θ−→ V

σ−→ C

where U and V are internal state values, we have

P
σ←− U θ−→ V

σ−→ C.

We will use this almost half-involution1 property in Section 4.4 to �nd free-start

collisions and even hash function collisions for some IDEA-based constructions.

T-function. When using the null key, we have already provided evidence

that all operations remaining are either XOR or additions. These operations

are triangular functions [69] (or T-functions) in the sense that any output bit

at position i only depends on the input bits located at a position i or lower. A

composition of T-functions is itself a T-function, therefore the whole permutation

de�ned by IDEA with the null key is a T-function. As shown in [106], this property

might be very dangerous in a hash function design. In Section 4.5 we will explain

how to exploit this weakness and compute preimages by guessing the input words

bit layer by bit layer.

1The name �almost half-involution� was coined due to almost symmetric transformation U → P
and U → C through σ and σ ◦ θ, respectively, which di�er with additional composition with

θ.

65

4. IDEA in Various Hashing Modes

4.3. Simple Collision Attacks

As shown by Daemen et al. [34], when using the null key for the encryption

process of IDEA, di�erences inserted uniquely on the MSB of the four 16-bit in-

put plaintext words will lead to di�erences on the MSB of the four 16-bit output

ciphertext words. Moreover, since this di�erence mapping is linear (the di�er-

ence on the carry is not propagated further than the MSB), all possible di�er-

ential characteristics have a di�erential probability 1. For example, we denote

by δMSB = 0x8000 the 16-bit word with di�erence only on the MSB and by

∆MSB = (δMSB, δMSB, δMSB, δMSB) the 64-bit di�erence composed of 4 words

with di�erence δMSB. Then, ∆MSB propagates to itself with probability 1 through

one round of IDEA, or through its last half-round. Therefore, we have with prob-

ability 1

∆MSB

IDEAK=0

−−−−−−−−−→ ∆MSB.

Note that instead of using δMSB only, one can generalize the input di�erence

space and obtain other very good di�erential paths for the encryption of IDEA

with the null key. However, we are omitting this generalization here since the

methods described in forthcoming sections provide much better attacks.

Davies-Meyer. Finding a free-start collision on Davies-Meyer mode instan-

tiated with IDEA is very easy. Since the di�erence ∆MSB is mapped to itself

through the IDEA encryption process with the null key, the attacker only has to

pick M = 0. Then, any value of CV with di�erence ∆MSB applied to it will

lead to a collision with probability 1. An example of such a free-start colision is

presented in Table 4.2.

Table 4.2.: An example of free-start collision in Davies-Mayer mode instantiated
with IDEA.
CVi M CVi+1 = H(CVi,M)

0x9efc 0x14ef 0x85d6 0xc557
0x0000 0x0000 0x0000 0x0000

0x0000 0x0000 0x0000 0x0000
0x7f11 0x83f1 0x7617 0x8af3

0x1efc 0x94ef 0x05d6 0x4557
0x0000 0x0000 0x0000 0x0000

0x0000 0x0000 0x0000 0x0000
0x7f11 0x83f1 0x7617 0x8af3

Hirose. If we apply the method used for the Davies-Meyer mode to the Hi-

66

4.3. Simple Collision Attacks

rose mode, it will prove to be an e�cient step if we want to �nd free-start col-

lisions. The attacker �xes CV 2 = 0 and M = 0 so as to force the null key

to both encryptions. Then, any value of CV 1 with a di�erence ∆MSB applied

to it will lead to a collision with probability 1, since ∆MSB will appear on the

plaintext input of both encryptions with the null key. An example of such a

free-start collision is presented in Table 4.3, where used as constant c the �rst 64

output bits of the SHA-2 computation of the string �IDEA�: SHA-2(”IDEA”) =

”9f8c7b26cde59ca3dacc74ec7afda737ac1d15aa5239206416f79019 dbd7ec37” that

is c = 0x9f8c 0x7b26 0xcde5 0x9ca3.

Table 4.3.: An example of free-start collision in Hirose mode instantiated with
IDEA.

CV 1i CV 2i M CV 1i+1 CV 2i+1

0x93e8 0x4d86

0x45a5 0xa829

0x0000 0x0000

0x0000 0x0000

0x0000 0x0000 0x0000 0x0000

0x0000 0x0000 0x0000 0x0000

0x2101 0x23c9

0xde42 0xdc96

0x0009 0x0401

0x3d38 0x3934

0x13e8 0xcd86

0xc5a5 0x2829

0x0000 0x0000

0x0000 0x0000

0x0000 0x0000 0x0000 0x0000

0x0000 0x0000 0x0000 0x0000

0x2101 0x23c9

0xde42 0xdc96

0x0009 0x0401

0x3d38 0x3934

Abreast-DM. This technique seems impossible to apply to the Abreast-DM

mode since forcing a di�erence ∆MSB on any of the two encryptions plaintext

input will imply a di�erence inserted in the key input of the other encryption

block. Therefore, one cannot use ∆MSB di�erence on plaintext input with null

key in both encryption blocks. Even if the attacker tries to attack only one

encryption block with this method, the other block will not be controlled and he

will have to deal with random di�erences on its output. These random di�erences

cannot be dealt with some birthday technique because �xing all inputs of one

encryption block will �x all inputs of the other one as well.

Tandem-DM. This technique seems impossible to apply to the Tandem-DM

mode for the exact same reasons as for Abreast-DM.

Peyrin et al.(II). We have to separate in two groups the possible instances

of this construction, obtained by permuting the position of the three inputs of

each internal function fi. If all compression function inputs CV 1, CV 2, M1 and

M2 appear in at least one of the IDEA key inputs of any fi internal function,

then the attack will not apply. Indeed, since all inputs will be involved at least

once, the attacker will necessarily have to insert a di�erence in at least one IDEA

67

4. IDEA in Various Hashing Modes

key input and he will not be able to use the di�erential path with probability 1.

Note that these instances would be avoided in practice because they would lead to

more frequent re-keying and therefore reduce the overall performance of the hash

function. If this condition is not met, then we can apply the following free-start

collision attack. Let X ∈ {CV 1, CV 2,M1,M2} denote the input that is missing

in all the IDEA key inputs of the compression function. The attacker simply �xes

the di�erence ∆MSB on X (one can give any value to X) and all other inputs

are set to 0 in order to get the null key in every internal IDEA. The attacker ends

up with several Davies-Meyer in parallel, with either no di�erence at all, or with

the null key and ∆MSB as plaintext input di�erence. Thus, he obtains a collision

with probability 1. If X 6∈ {CV 1, CV 2}, then this attack �nds semi-free-start

collisions.

MJH-Double. The MJH-Double mode prevents this simple attack since even

if we �x CV 2 = 0 and M2 = 0 in order to get the null key in both encryptions, it

is hard to force the di�erence ∆MSB on both their plaintext inputs. Indeed, the

f operation will randomize the di�erence and in order for the attack to run, we

would require ∆MSB
f−→ ∆MSB which is unlikely to happen.

4.4. Improved Collision Attacks

In this section, using the almost half-involution property with the null key, we

will show how to get the same di�erence on the input and on the output of the

IDEA ciphering process with good probability. Then, we will use this weakness to

derive our collision attacks, for any number of rounds.

4.4.1. Exploiting the Almost Half-Involution

We have already shown in Section 4.2 that when the key is null, the IDEA

encryption process can be rewritten as

P
σ←− U θ−→ V

σ−→ C

where σ = {MA0 ◦KA0 ◦ S}3 ◦MA0 ◦KA0 and θ = KA0 ◦ S.

68

4.4. Improved Collision Attacks

We denote ∆U the XOR di�erence between two 64-bit internal state values U

and U ′, i.e ∆U = U ⊕ U ′, and δUi represents the 16-bit di�erence on the i-th

word of ∆U , that is ∆U = (δU1, δU2, δU3, δU4). Let us consider two random

64-bit internal state values U and U ′ such that δU2 = δU3 and we denote this

16-bit di�erence δM . For truly random values U and U ′, this condition happens

with probability 2−16. One can check that applying θ on U and U ′ to obtain V

and V ′ respectively will lead to δV2 = δV3 = δM since layer S only switches the

two middle words and layer KA0 has no e�ect on them (addition of null subkeys).

Let δL and δR represent the di�erence on δU1 and δU4 respectively, i.e. ∆U

= (δL, δM , δM , δR). Applying function θ to U and U ′, we would like the same

di�erences to appear on internal state V and V ′: ∆V = (δL, δM , δM , δR). The

previous condition with probability 2−16 already ensures the two middle di�er-

ences being the same δM . Concerning di�erences δL and δR, they will both be

una�ected by layer S, but they might be modi�ed through layer KA0 that applies

a multiplication with the null subkey. Therefore, we need to study the probability

that a random di�erence δ is mapped to itself through a multiplication by the

null subkey.

Let a be randomly choosen and a′ = a ⊕ δ. The condition we expect can be

translated into the following equation

δ = a⊕ a′ = (a� 0)⊕ (a′ � 0).

Since the � operation is equivalent to a complement (or XOR with 0xffff) and

an addition with value 2, we can rewrite

δ = ((a⊕ 0xffff) + 2)⊕ ((a′ ⊕ 0xffff) + 2)

δ = ((a⊕ 0xffff) + 2)⊕ ((a⊕ δ ⊕ 0xffff) + 2)

δ = (b+ 2)⊕ ((b⊕ δ) + 2)

δ ⊕ (b+ 2) = (b⊕ δ) + 2

where b = a ⊕ 0xffff. One can check that the least signi�cant bit condition of

69

4. IDEA in Various Hashing Modes

this equation is always ful�lled.

If the second least signi�cant bit of b is 0 (probability 1/2), then (b+ 2) = b⊕2

and the equation is ful�lled if and only if the second least signi�cant bit of (b⊕ δ)

is also 0 (probability 1/2). On the whole, this situation happens with probability

1/4.

If the second least signi�cant bit of b is 1 (probability 1/2), then we will have

a carry propagating and we require the second least signi�cant bit of (b ⊕ δ) to

be also 1 (probability 1/2). If the third least signi�cant bit of b is 0 (probability

1/2), then (b + 2) = b ⊕ 6 and the equation is ful�lled if and only if the third

least signi�cant bit of (b ⊕ δ) is also 0 (probability 1/2). Overall, this situation

happens with probability (1/4)2.

Continuing this reasoning for all the bits layers, we will obtain that the success

probability is equal to
14∑
i=1

(1/4)i = 2−1.585.

Hence, we have Pr[(δL, δM , δM , δR)
θ−→ (δL, δM , δM , δR)] = 2−3.17.

At this point, we proved that for randomly chosen internal state values U and

U ′, we will observe with probability 2−19.17 the same di�erence on U and V , i.e.

∆U = ∆V .

One can see that computing backwards from internal states U to P or forth

from V to C, the function σ is applied. Our �nal goal is to have the same

di�erence on P and C. However, this seems unlikely to happen since U and V

have di�erent values, the forward and backward computations of σ should be

completely unrelated, even with the same input di�erence. Yet, this reasoning

does not take into account the fact that while U and V have distinct values, they

are far from being independent: V = θ(U) with θ being a very light function.

Moreover, we remarked that almost each time that we got the same di�erence

on P and C, the same di�erences were observed as well in all rounds of the

forward and backward σ computations (the round success probability increasing

with the number of rounds already processed). Because all the rounds are not

independent and because U and V are strongly related, it is very di�cult to

70

4.4. Improved Collision Attacks

theoretically compute the probability of observing the same di�erence on P and

C and hence we will leave this as an open question. Therefore, we have measured

it by choosing random values of U , δL, δM , δR, computing V = θ(U), and checking

for collisions on the di�erence of P and C. The probability obtained was 2−16.26 for

about 228 tests (note that this probability somehow contains the 2−3.17 probability

computed previously, but we cannot separate them because the two events are

not independent).

To conclude, the probability that two randomly chosen internal state values U

and U ′ will give the same di�erence on P and C is equal to 2−16−16.26 = 2−32.26

(instead of 2−64 expected for a random function). In other words, using the

birthday paradox, one can �nd such a pair with about 216.13 computations.

Interestingly, we have observed that most of the pairs ful�lling the di�erential

path for the full IDEA will also be valid for a strengthened version of the cipher

with any number of additional rounds. Since the subkeys are always null, the

strengthening of the cipher would mean that σ = {MA0 ◦KA0 ◦ S}t ◦MA0 ◦KA0

for any t > 3. We checked that the probability that two randomly chosen internal

state values U and U ′ give the same di�erence on P and C tends to 2−32.54 when t

tends to in�nite. Thus, similarily to the method presented in the previous section,

the attacks using this almost half-involution property will work for any number

of rounds.

4.4.2. Improving Collision Attacks

Davies-Meyer. The �rst obvious application of having the same di�erence in

P and C is the collision search on Davies-Mayer mode, where the feed-forward

will cancel the two di�erences in the output. The attack �nds collisions for the

whole hash function and the procedure is very simple: we start from the IV and

add random di�erences in the �rst message block M0. This will cause random

di�erences in the �rst chaining variable CV1, so we can avoid controling IV, like in

our free-start collision from Section 4.3, because the almost half-involution prop-

erty can be applied to any random di�erence in CV1. For the second message

block M1, we will set all its bits 0 (M1 = 0), forcing the internal IDEA compu-

71

4. IDEA in Various Hashing Modes

tation to use the null key. Since we estimated in the previous section that using

the null key a random pair of inputs has a probability 2−32.26 to give the same

input/output di�erence, one can use the birthday paradox to generate a collision

on CV2 with only 216.13 distinct message blocks M0. An example of such a col-

lision is presented in Table 4.4, where we used as the initial value IV the �rst

64 output bits of the SHA-2 computation of the string �IDEA�: SHA-2(”IDEA”) =

”9f8c7b26cde59ca3dacc74ec7afda737ac1d15aa5239206416f79019dbd7ec37” that

is IV1 = 0x9f8c, IV2 = 0x7b26, IV3 = 0xcde5, IV4 = 0x9ca3. Note that �nding

semi-free-start collisions with this technique is impossible since we would have to

insert di�erences in the message input, which forbids the use of the null key in

the internal cipher.

Table 4.4.: An example of collision in Davies-Meyer mode instantiated with IDEA,
obtained with almost half involution technique.
M1i CV 1i = H(IV,M1i) CV 2i = H(CV 1i, 0)

0xdacc 0xdacc 0xdacc 0xdacc

0xdacc 0xdacc 0xcadc 0x0282
0xb782 0x4583 0x83b6 0x0bef 0xdffd 0x3ffd 0x8e7d 0x6e7d

0xdacc 0xdacc 0xdacc 0xdacc

0xdacc 0xdacc 0xcade 0x1a3f
0x1ce2 0x8553 0xe656 0x4387 0xdffd 0x3ffd 0x8e7d 0x6e7d

Hirose. We have already shown how to �nd free-start collisions for the Hirose

mode. However, �nding semi-free-start collisions with this technique is impossible

since we would have to insert di�erences in the message input, which forbids the

use of the null key in the internal cipher. Also, concerning hash collisions, it

seems hard as well because forcing the null key during iteration i requires us to

obtain a chaining variable CV 2i−1 = 0 during the previous iteration. This half-

preimage already costs the same complexity as a generic collision search on the

entire compression function.

Abreast-DM. One can derive a free-start collision attack for the Abreast-DM

compression function using this technique. The attacker �rst �xes CV 1 = 0 and

M = 0. Then, he builds a set of 248.13 distinct values CV 2 and checks if a pair

of this set leads to a collision. The probability that a pair leads to a collision on

the �rst (top) branch is 2−32.26 (since the internal cipher on this part has the null

key), and 2−64 on the other half. Overall, using the birthday paradox on the set of

72

4.4. Improved Collision Attacks

248.13 values CV 2 is su�cient to have a good chance of achieving a collision. Note

that �nding a semi-free-start collision for the compression function or a collision

for the hash function seems impossible with this method, for the same reasons as

the Hirose mode.

Tandem-DM. The situation of Tandem-DM is absolutely identical to the

Abreast-DM one: one can �nd free-start collisions for compression function using

this technique. The attacker �rst �xes CV 1 = 0 and M = 0. Then, he builds a

set of 248.13 distinct values CV 2 and checks if a pair of this set leads to a collision.

The probability that a pair leads to a collision on the �rst (top) branch is 2−32.26

(since the internal cipher on this part has the null key), and 2−64 on the other

half. Overall, using the birthday paradox on the set of 248.13 values CV 2 is su�-

cient to have a good chance to obtain a collision. Again, �nding a semi-free-start

collision for the compression function or a collision for the hash function seems

impossible with this method, for the same reasons as the Hirose mode.

Peyrin et al.(II). We showed in previous section how to �nd (semi)-free-start

collisions with probability 1 for a certain subset of Peyrin et al.(II) constructions,

but here we provide attacks on a bigger subset. If all compression function inputs

CV 1, CV 2, M1 and M2 appear in at least one of the IDEA key inputs of f1, f2,

f3 (left side) and in at least one of the IDEA key inputs of f3, f4, f5 (right side),

then the attack will not apply. Indeed, for both the left and the right side of the

compression function, the attacker will necessarily have to insert a di�erence in

at least one key input (since all inputs will be involved) and he will not be able

to use the null key completely. Note that these instances would be avoided in

practice because they would lead to more frequent rekeying and therefore they

would reduce the overall performance of the hash function. However, if this

condition is not met, then we can apply the following free-start collision attack.

Let X ∈ {CV 1, CV 2,M1,M2} denote the input that is missing in all the IDEA

key inputs of f1, f2, f3 (wlog the reasoning is the same with f3, f4, f5). The

attacker �rst �xes all inputs but X to 0 in order to get the null key in every

internal IDEA on the left side. Then he chooses 248.13 random values for X and

checks among them if any pair collides on the whole compression function output.

73

4. IDEA in Various Hashing Modes

Since he has a probability 2−32.26 to get a collision on the left side and 2−64 on the

right side, using a birthday search the attacker �nds a solution with complexity

248.13. Again, ifX 6∈ {CV 1, CV 2}, then this attack �nds semi-free-start collisions.

However, �nding a collision for the hash function seems impossible with this

method, because at least one of the chaining variable inputs CV 1 and CV 2 will

be present as key input for one of the IDEA internal emcryption. Setting this word

to 0 is equivalent to a half-preimage that already costs the same complexity as a

generic collision search on the entire hash function.

MJH-Double. One can derive a semi-free-start collision attack on the MJH-

Double compression function instantiated with IDEA. The attacker �rst �xes CV 2 =

0 andM2 = 0 and this will force the null key in both encryptions. Now he chooses

a random value for CV 1 (note that actually this value could be �xed by the chal-

lenger) and builds a set of 232.26 values M1. In this con�guration, it is easy to

see that one will have random di�erences on the plaintext inputs to both encryp-

tions. Since the null key is used for both, we have a probability 2−64.52 that a

pair of M1 will lead to a collision after the feed-forward of both encryptions (on

the output of the bottom block and just before the application of g on the top

block). Therefore, with the birthday technique, one can �nd such a pair with only

232.26 computations. Note that while this pair will directly lead to a collision on

the bottom CV 1 output, the di�erence on M1 is injected twice before computing

the top CV 2 output. Two times of the same di�erence will cancel themselves

out and we will eventually get a full semi-free-start collision. Note that it seems

hard to extend this attack to a hash collision since the attacker would require to

force the incoming chaining variable CV 2 to be equal to 0 and this half-preimage

already costs the same complexity as a generic collision search on the entire hash

function.

4.5. Preimage Attacks

We showed in Section 4.2 that if used with the null key, the whole permutation

de�ned by IDEA is a T-function. Since any output bit at position i only depends

74

4.5. Preimage Attacks

on the input bits located at a position i or lower, we reuse the idea of preimage

attack for hash functions based on T-functions [106] where the preimage is com-

puted bit layer by bit layer, starting from the LSB. However, here our situation is

di�erent than the functions studied in [106] since we do not have any truncation

or reduction of the internal state at the end of the process.

We denote by p the probability that given a random challenge, our algorithm

outputs a preimage for this challenge. We denote by s the average number of

preimage solutions that the algorithm will output, given that at least one is found.

The average number of solutions outputted by our algorithm is then A = s ·p. For

an n-bit ideal compression function, a generic attack restricted to C computations

can generate A = C · 2−n solutions on average. Thus, we can consider that a

preimage attack is found if we exhibit an algorithm that outperforms this generic

complexity.

Davies-Meyer. Since the key is �xed to 0 and since the plaintext and ci-

phertext sizes are the same, we trivially have that A = 1. We measured2 that

p = 2−17.50, thus we directly deduce that s = A/p = 217.5. A straightforward im-

plementation is a recursive depth �rst search, attacking the T-function by bit layer

from the LSB to the MSB of the 16-bit state words. Wrong candidates at lower

layers are discarded thanks to an early-abort strategy. On average, the amount of

IDEA encryptions required to �nd all the possible preimages (if at least one can be

found) can be estimated as C ' 16 ·24 ·s = 225.5, since we have 16 bit layers, each

having 4 bits of input, and on average the number of candidates in one layer is s.

This is a very conservative estimation since only p = 2−17.50 of the challenges on

average will eventually lead to a solution and the early-abort strategy will make

the actual search of very low complexity. Ideally, with C = 225.5 computations al-

lowed, an attacker should only be able to generate A = 225.5−64 = 2−38.5 solutions

on average for an ideal 64-bit compression function.

We have provided an example of a preimage in Table 4.5. Since a random 64-bit

challenge has preimage(s) with a probability p, we show the preimage of a chal-

lenge which we are sure at least one preimage exists (similar to a second-preimage

2from 231 random challenges, we measured that p = 2−17.50 and s = 217.74.

75

4. IDEA in Various Hashing Modes

search). In order to get the challenge, we use as input the �rst 64 output bits of the

SHA-2 computation of the string �IDEA�, and provide one of the preimages found:

SHA-2(”IDEA”) = ”9f8c7b26cde59ca3dacc74ec7afda737ac1d15aa5239206416f79019dbd7ec37”

and the challenge is CVi+1 = H(0x9f8c7b26cde59ca3, 0) = 0x20ad1fc924e61ba2.

Table 4.5.: An example of preimage for Davies-Meyer mode instantiated with
IDEA.

CVi+1 = H(CVi,M) M CVi

0x20ad 0x1fc9 0x24e6 0x1ba2
0x0000 0x0000 0x0000 0x0000

0x0000 0x0000 0x0000 0x0000
0x1860 0x002e 0x2d82 0x0200

The CVi in Table 4.5 is one preimage out of 223.585 for CVi+1, the search takes

225.486 IDEA encryptions, and the average cost per preimage is around 21.9.

Hirose. We can reuse the attack on Davies-Meyer, but only one of the two

branches will be controlled, with the other behaving randomly. First, �nd a preim-

age for the �rst branch (with probability 2−17.5) and then use the 217.5 solutions

on average to also match the second branch (with probability 217.5−64 = 2−46.5).

Therefore, our preimage search algorithm have parameters p = 2−17.5−46.5 = 2−64

and s = 1, while the average number of preimage solutions found is A = 2−64.

The complexity of the search is equivalent to the Davies-Meyer case, C = 225.5.

For an attacker using at most 225.5 computations on an ideal 128-bit compression

function, the average number of solutions he could �nd is only 2−102.5.

Abreast-DM. Similarly to Hirose, by setting for example M = CV 1 = 0, one

can attack one branch bit layer by bit layer while the other branch will behave

randomly. The complexity analysis is identical to Hirose's case.

Tandem-DM. Similarly to Hirose, by setting M = CV 1 = 0, one can attack

one branch bit layer by bit layer while the other branch will behave randomly.

The complexity analysis is identical to Hirose's case.

Peyrin et al.(II). If all compression function inputs CV 1, CV 2, M1 and M2

appear in at least one of the IDEA key inputs of f1, f2, f3 (left side) and in at

least one of the IDEA key inputs of f3, f4, f5 (right side), then the attack will

not apply (because the attacker will not be able to use the null key completely).

Otherwise, similarly to Hirose, by setting all IDEA keys to 0 on one side, one can

76

4.6. Summary

attack it bit layer by bit layer while the other side will behave randomly. The

complexity analysis is identical to Hirose's case.

MJH-Double. The attacker �rst �xes M2 = CV 2 = 0 so as to get the null

key for both IDEA encryptions. Then, similarly to the Davies-Meyer case, he �nds

a preimage with probability p = 2−17.5 for one of the two sides and this de�nes the

value of M1⊕CV 1. In order to get the preimage on the second side as well, the

attacker only has to modify the value ofM1 accordingly. If a solution is found on

the �rst side, the attacker therefore gets s = 217.5 preimages. On average, he �nds

A = 1 solutions and the complexity is again 225.5 computations. For an attacker

using at most 225.5 computations on an ideal 128-bit compression function, the

average number of solutions he should �nd is only 2−102.5.

4.6. Summary

Table 4.6.: Summary of results for block cipher to compression function modes
when instantiated with IDEA.

mode
hash compression function

hash
function

output free-start semi-free-start preimage attack collision
size collision attack collision attack complexity (s, p) attack

Davies-Meyer [101] 64 21 225.5 (217.5, 2−17.5) 216.13

Hirose [58, 59] 128 21 225.5 (1, 2−64)

Abreast-DM [78, 81] 128 248.13 225.5 (1, 2−64)

Tandem-DM [78, 81] 128 248.13 225.5 (1, 2−64)

Peyrin et al.(II) [112] 128 21 / 248.131 21 / 248.131 225.5 (1, 2−64)1

MJH-Double [84] 128 232.26 232.26 225.5 (217.5, 2−17.5)

In this chapter, we have shown collision and preimage attacks for several single

and double-length block cipher based compression function constructions when

instantiated with the block cipher IDEA. Namely, we have analyzed all known

double-key schemes such as Davies-Meyer, Hirose, Abreast-DM, Tandem-DM,

Peyrin et al. (II) and MJH-Double. While most of these constructions are con-

jectured or proved to be secure in the ideal cipher model, we showed that their

security is very weak when instantiated with the block cipher IDEA, which remains

considered as secure in the secret key model. In particular, our answer is the neg-

ative to the 20-year-old standing open question concerning the security of the

Abreast-DM and Tandem-DM instantiated with IDEA. All our practical attacks

77

4. IDEA in Various Hashing Modes

have been implemented and they can work for any number of IDEA rounds. Our

results indicate that one has to be very careful when hashing with a block cipher

that presents any weakness when the key is known or controlled by the attacker.

Also, since we extensively use the presence of weak-keys for IDEA extensively,

it would be interesting to look at the security of hash functions based on block

ciphers for which some key sets are known to be weaker than others.

In Table 4.6 we have depicted our results for the block cipher to compression

function modes considered in this chapter when instantiated with IDEA. We did

not include MDC-2 as it does not provide ideal collision resistance. The preimage

complexity results �nd s preimages on average with a certain probability p, for

a total average of A = s · p solutions. The results for Peyrin et al.(II) construc-

tion, marked with a *, depend on the instance considered (see relevant parts of

Sections 4.3, 4.4 and 4.5 for more details).

78

5. Analysis of Addition-Rotation-XOR

Designs

Rotational analysis is a relatively new type of attack. The technique was men-

tioned and applied in [11, 73, 116]. A formal treatment of rotational analysis is

given in [64]. Note that in the di�erential analysis, for a pair of inputs (x, y),

the adversary follows the propagation of the di�erence x⊕ y. In contrast, in the

rotational analysis, the adversary examines the propagation of a rotational pair of

inputs (x, x≪r). Khovratovich and Nikoli¢ in [64] have analyzed the primitives

composed of only three operations: addition, rotation, XOR (ARX). For these

primitives, they prove that the probability that a rotational pair of inputs will

produce a rotational pair of outputs depends on the number of additions only.

We extend the application of rotational analysis to primitives that have trans-

formations other than ARX. In particular, we provide the rotational probabilities

of subtraction, shifts, Boolean functions and combination of additions and sub-

tractions. As an example of usage we will apply the rotational analysis to two

versions of Blue Midnight Wish 512 (abbreviated to BMW-512) 1st submitted to

SHA-3 competition and 2nd tweaked by the designers in round 2 of the competi-

tion, and two versions of SIMD-512, 1st round [89] and 2nd round [90] tweaked by

its designers. We �nd that round 1 BMW-512 [52] is susceptible to the rotational

analysis. Also, the 2nd round BMW-512 [53], with a slightly altered constant,

can be attacked using this method. For SIMD-512, we present various rotational

distinguishers on round-reduced original and modi�ed versions.

Rotational analysis with corrections exploits fact that composition of considered

transformations produce some rotational error, which might be cancelled with

79

5. Analysis of Addition-Rotation-XOR Designs

use of additional constants � corrections. The method has been simultaneously

applied by Khovratovich et al. in [66] for Skein analysis where XOR corrections

were considered. We apply XOR corrections in our analysis and provide formal

framework for calculating exact rotational probabilities in this scenario.

We also present a new type of distinguishers � shift distinguishers. Here the

adversary examines the propagation of a shift pair (x, x�s) or (x, x�s), where

�s,�s is shift to the left and right on s bits. Interestingly, although the rotational

and shift analysis are very similar, for particular transformations the probabilities

they preserve the rotational and shift property are di�erent. We apply the shift

analysis to the permutation used in the round 1,2 SHA-3 candidate Shabal and

we obtain a shift distinguisher for this permutation.

Our distinguishers are for the compression functions only, and they do not

contradict the security claims for the whole hash functions.

Organization. The chapter is organized as follows. In Section 5.1 we will in-

troduce new results on rotational properties of multi additions and multi subtrac-

tions. In Section 5.2 we will extend rotational analysis to the case when XOR

corrections are introduced and present how the S-function toolkit can be utilized

to obtain exact probabilities. Section 5.3 contains our rotational distinguishers

for the �rst submission of BMW and a modi�ed version of tweaked BMW in the

second round. In Section 5.5 we will present rotational distinguishers for modi�ed

SIMD-512 reduced to 24 rounds, with linearized key schedule, and for SIMD-512

reduced to 12 rounds. The distinguishers do not depend on the tweak introduced

in the 2nd round submission. In Section 5.6 we will present our new kind of dis-

tinguisher based on a shift analysis which impact is presented on the example of

Shabal. Section 5.7 concludes the chapter.

80

5.1. Rotational Properties of Multi Additions and Subtractions

5.1. Rotational Properties of Multi Additions and

Subtractions

Some basic facts on rotational analysis have been already presented in 2.5.3.

Now let us focus on multi additions and multi subtractions.

Additions and subtractions are basic blocks in many cryptographic hash func-

tions. We call addition of k integers x1, . . . , xk multi additions and in case of

subtraction � multi subtraction. We are interested in calculating probability that

multi additions are preserving rotational property, that is:

Pr((x1+. . .+xk)≪r= x1 ≪r+. . .+xk≪r)

and that combination of multi additions and subtractions is preserving rotational

property:

Pr((x1+. . .+xk−y1−. . .−yl)≪r= x1 ≪r+. . .+xk≪r−y1 ≪r−. . .−yl≪r)

where y1, . . . , yl are integers.

The common approach to approximate the �rst probability is to estimate the

lower bound in case of k summands (that is k−1 additions) under the assumption

of independence of each operation and calculate it as the product of appropriate

probabilities. For instance, in case of rotational amount 1 and 64-bit numbers

calculation of lower bound for rotational property would be based on rotational

probability of one addition, which is equal to 2−1.41. If calculated this way the

lower bound is 2−1.41·(k−1) and, for example for 2 additions, it equals to 2−2.82,

whereas the value obtained with a computer simulation is 2−2.58 (the same result

is calculated with the next described methodology). This shows how distant the

bound from the exact value of the probability might be. Next, we will present

the formulas for rotational probabilities of multi additions and subtractions.

81

5. Analysis of Addition-Rotation-XOR Designs

For that purpose let de�ne Nk(i, t) such that:

Nk(i, t) =

b i
t+1
c∑

j=0

(−1)j
(
k

j

)(
i− j(t+ 1) + k − 1

i− j(t+ 1)

)
. (5.1)

Then the following lemmas hold.

Lemma 5.1 (Multi additions [110]). Given n-bit words x1, . . . , xk and a positive

integer r, then

Pr((x1 + . . .+ xk)≪r= x1 ≪r + . . .+ xk≪r) =

=
1

2nk

b k−1
2n−r c∑
j=0

Nk+1(j2n + 2r − 1, 2r − 1) ·
b k−1

2r
c∑

j=0

Nk+1(j2n + 2n−r − 1, 2n−r − 1).

Multi additions. Let each xi be represented as a concatenation of two numbers

ai, bi, i.e. xi = ai||bi, where bit-length of ai and bi is r and n − r respectively.

That is the r most signi�cant bits of xi is ai and the rest n − r last signi�cant

bits is bi. Then the equation

(x1 + . . .+ xk)≪r= x1 ≪r + . . .+ xk≪r (5.2)

can be rewritten as (a1||b1 + . . .+ ak||bk)≪r= (a1||b1)≪r + . . .+ (ak||bk)≪r,

and because (ai||bi)≪r= bi||ai, hence, Equation (5.2) is equivalent to:

(a1||b1 + . . .+ ak||bk)≪r= b1||a1 + . . .+ bk||ak. (5.3)

The sum on the left a1||b1 + . . . + ak||bk can be rewritten as (a1 + . . . + ak +

Cb1,...,bk)||(b1 + . . . + bk), where Cb1,...,bk is the carry from the sum b1 + . . . + bk.

Similar relation holds for b1||a1+. . . bk||ak, i.e. b1+. . .+bk+Ca1,...,ak ||a1+. . .+ak,

where Ca1,...,ak is the carry from the sum a1 + . . . + ak. Applying the above

equations to the Equation (5.3), we obtain:

b1 + . . .+ bk||a1 + . . .+ ak + Cb1,...,bk = b1 + . . .+ bk + Ca1,...,ak ||a1 + . . .+ ak,

82

5.1. Rotational Properties of Multi Additions and Subtractions

that holds when

b1 + . . .+ bk ≡ b1 + . . .+ bk + Ca1,...,ak (mod 2n−r),

a1 + . . .+ ak + Cb1,...,bk ≡ a1 + . . .+ ak (mod 2r),

that is when Ca1,...,ak ≡ 0 (mod 2n−r) and Cb1,...,bk ≡ 0 (mod 2r). These two

conditions can be further rewritten as:

a1 + . . .+ ak ∈
b k−1
2n−r c⋃
j=0

[j2n, j2n + 2r − 1], b1 + . . .+ bk ∈
b k−1

2r
c⋃

j=0

[j2n, j2n + 2n−r − 1].

Then the initial probability can be now expressed as:

Pr((x1 + . . .+ xk)≪r= x1 ≪r + . . .+ xk≪r) =

= Pr(a1 + . . .+ ak ∈
b k−1
2n−r c⋃
j=0

[j2n, j2n + 2r − 1])·

· Pr(b1 + . . .+ bk ∈
b k−1

2r
c⋃

j=0

[j2n, j2n + 2n−r − 1]) =

=

b k−1
2n−r c∑
j=0

Pr(a1 + . . .+ ak ∈ [j2n, j2n + 2r − 1])·

·
b k−1

2r
c∑

j=0

Pr(b1 + . . .+ bk ∈ [j2n, j2n + 2n−r − 1]) =

=

b k−1
2n−r c∑
j=0

j2n+2r−1∑
i=j2n

Pr(a1 + . . .+ ak = i) ·
b k−1

2r
c∑

j=0

j2n+2n−r−1∑
i=j2n

Pr(b1 + . . .+ bk = i),

where ai ∈ [0, 2r − 1] and bi ∈ [0, 2n−r − 1].

Let us notice that Nk(i, t) = #{(z1, . . . , zk) ∈ [0, t]k : z1 + . . . + zk = i}, hence

83

5. Analysis of Addition-Rotation-XOR Designs

Pr(z1 + . . .+ zk = i) = Nk(i,t)
(t+1)k

, and we get:

Pr((x1 + . . .+ xk)≪r= x1 ≪r + . . .+ xk≪r) =

=

b k−1
2n−r c∑
j=0

j2n+2r−1∑
i=j2n

Nk(i, 2
r − 1)

2rk
·
b k−1

2r
c∑

j=0

j2n+2n−r−1∑
i=j2n

Nk(i, 2
n−r − 1)

2(n−r)k =

=
1

2nk

b k−1
2n−r c∑
j=0

Nk+1(j2n + 2r − 1, 2r − 1) ·
b k−1

2r
c∑

j=0

Nk+1(j2n + 2n−r − 1, 2n−r − 1),

where at the last stage, we use the recursion Nk+1(i, t) =
t∑

j=0
Nk(i − j, t), and

precisely, derived from it recursion Nk+1(t+ T, t) =
t+T∑
i=T

Nk(i, t) for some T .

At this point we would like to discuss the case of multi additions and subtrac-

tions. The approach for calculating the rotational probability of k − 1 additions

and l subtractions that assumes it is equal to the rotational probability of k+ l−1

additions, evaluates only the lower bound on the exact probability. For instance in

case of one addition and one subtraction, rotational amount 1 and 32-bit numbers,

a computer simulation (veri�ed by the next lemma) shows that the probability

is approximately equal to 2−1.58, which is a much better result comparing to the

heuristic 2−2.58 (rotational probability of two additions).

Lemma 5.2 (Multi additions and subtractions [110]). Given n-bit words x1, . . . , xk,

y1, . . . , yl and a positive integer r, then

Pr((x1+. . .+xk−y1−. . .−yl)≪r= x1 ≪r+. . .+xk≪r−y1 ≪r−. . .−yl≪r) =

=
1

2n(k+l)

b k−1
2n−r c∑

j=−d l
2n−r e

Nk+l+1(j2n+(l+1)(2r−1), 2r−1) ·
b k−1

2r
c∑

j=−d l
2r
e

Nk+l+1(j2n+(l+1)(2n−r−1), 2n−r−1).

Multi additions and subtractions. This proof is parallel to the previous one, so we

will only provide a sketch of it.

Let xi = ai||bi and yi = ak+i||bk+i then

(x1 + . . .+xk−y1− . . .−yl)≪r= x1 ≪r + . . .+xk≪r −y1 ≪r − . . .−yl≪r

84

5.1. Rotational Properties of Multi Additions and Subtractions

can be transformed to

b1 + . . .+ bk − bk+1 − . . .− bk+l||a1 + . . .+ ak − ak+1 − . . .− ak+l + C ′b1,...,bk+l
=

= b1 + . . .+ bk − bk+1 − . . .− bk+l + C ′a1,...,ak+l
||a1 + . . .+ ak − ak+1 − . . .− ak+l,

(5.4)

where C ′b1,...,bk+l
is the carry from b1 + . . .+ bk − bk+1 − . . .− bk+l, and C

′
a1,...,ak+l

from a1 + . . . + ak − ak+1 − . . . − ak+l, however this time negative carries are

possible. The above Equation (5.4) is equivalent to conditions: C ′a1,...,ak+l
≡ 0

(mod 2n−r) and C ′b1,...,bk+l
≡ 0 (mod 2r) that can be rewritten as:

a1 + . . .− ak+l ∈
b k−1
2n−r c⋃

j=−d l
2n−r e

[j2n, j2n + 2r − 1],

b1 + . . .− bk+l ∈
b k−1

2r
c⋃

j=−d l
2r
e

[j2n, j2n + 2n−r − 1].

Then the initial probability can be expressed as:

Pr((x1+. . .+xk−y1−. . .−yl)≪r= x1 ≪r+. . .+xk≪r−y1 ≪r−. . .−yl≪r) =

=

b k−1
2n−r c∑

j=−d l
2n−r e

j2n+2r−1∑
i=j2n

Pr(a1+. . .−ak+l = i) ·
b k−1

2r
c∑

j=−d l
2r
e

j2n+2n−r−1∑
i=j2n

Pr(b1+. . .−bk+l = i),

where ai ∈ [0, 2r − 1] and bi ∈ [0, 2n−r − 1]. Let us now

Nk,l(i, t) = #{(z1, . . . , zk, zk+1, . . . , zk+l) ∈ [0, t]k+l : z1+. . .+zk−zk+1−. . .−zk+l = i},

85

5. Analysis of Addition-Rotation-XOR Designs

for 1 ≤ k, 0 ≤ l, then of course we have Nk,l(i, t) = Nk+l(i+ tl, t) and

Pr((x1+. . .+xk−y1−. . .−yl)≪r= x1 ≪r+. . .+xk≪r−y1 ≪r−. . .−yl≪r) =

=

b k−1
2n−r c∑

j=−d l
2n−r e

j2n+2r−1∑
i=j2n

Nk,l(i, 2
r − 1)

2r(k+l)
·
b k−1

2r
c∑

j=−d l
2r
e

j2n+2n−r−1∑
i=j2n

Nk,l(i, 2
n−r − 1)

2(n−r)(k+l)
=

=
1

2n(k+l)

b k−1
2n−r c∑

j=−d l
2n−r e

j2n+2r−1∑
i=j2n

Nk+l(i+ l(2r − 1), 2r − 1)·

·
b k−1

2r
c∑

j=−d l
2r
e

j2n+2n−r−1∑
i=j2n

Nk+l(i+ l(2n−r − 1), 2n−r − 1) =

=
1

2n(k+l)

b k−1
2n−r c∑

j=−d l
2n−r e

Nk+l+1(j2n + (l + 1)(2r − 1), 2r − 1)·

·
b k−1

2r
c∑

j=−d l
2r
e

Nk+l+1(j2n + (l + 1)(2n−r − 1), 2n−r − 1).

Note that the probabilities in Lemmas 5.1,5.2 are e�ciently computable in time

polynomial in k + l, n.

5.2. Rotational Pairs with Corrections

In the general scenario, we assume that the rotational pair is of the type

(a, a ≪r). Although this approach is very e�ective in case of composition of

transformations as discussed before (e.g. additions), it might produce worse esti-

mates when an analyzed design includes some operations in�uenced by constants.

For instance in case of a nonzero constant addition, the resulting rotational prob-

ability is decreased for rotational pair (a, a≪r). However, we can insert a correc-

tion, i.e. we can analyze the pair (a, a≪r ⊕α), where α is the correction for the

pair (note that the initial rotational pair can be seen as a pair with a correction

equal to zero). This approach results in better rotational probabilities compared

to the previous one, compare the next examples.

86

5.2. Rotational Pairs with Corrections

For a transformation F (x, y) with �xed rotational input pairs with corrections

(a, a≪r ⊕α) and (b, b≪r ⊕β) the correction of the output pair is de�ned as:

γ = F (a, b)≪r ⊕F (a≪r ⊕α, b≪r ⊕β).

Depending on the rotational probability of the function F (x, y) this correction

can possibly take di�erent values for di�erent pairs (a, b) and �xed corrections α

and β.

For the rotational pairs with corrections, the rotational probabilities of XOR

and rotation do not change � they are still equal to 1. Let (a, a≪r ⊕α), (b, b≪r

⊕β) be two rotational pairs with corrections. For the correction c of XOR we have:

γ = (a⊕ b)≪r ⊕(a≪r ⊕α⊕ b≪r ⊕β) = α⊕ β

Hence, the XOR of two pairs with corrections α, β produces another pair with a

correction α⊕ β with a probability 1.

Similarly, for the correction of rotations we have:

a≪r≪r2 ⊕(a≪r ⊕α)≪r2= α≪r2 ,

i.e. the output composes a rotational pair with a correction α≪r2 with proba-

bility 1.

Finally, let us see the impact of an addition.

5.2.1. De�nition of Problem

For the correction γ of addition a+b we have to study the following expression:

γ = (a+ b)≪r ⊕[(a≪r ⊕α) + (b≪r ⊕β)]. (5.5)

It might be tempting to analyze this case as follows: if we assume that (a+b)≪r=

a≪r +b≪r (which holds with the rotational probability of one addition), and

87

5. Analysis of Addition-Rotation-XOR Designs

introduce the annotation a′ = a≪r, b
′ = b≪r, we get:

γ = (a′ + b′)⊕ [(a′ ⊕ α) + (b′ ⊕ β)]

Hence, the problem of �nding the correction, as well as its probability, will be

reduced to the problem of �nding the di�erential property of the addition (which

has been solved in [93]). However, it can be easily checked that for instance:

Pr(0x7 = (a+ b)⊕ [(a⊕ 0x1) + (b⊕ 0x6)]) · Pr((a+ b)≪r= a′ + b′) =

= 2−3 · 2−1.41 = 2−4.41

Pr(0x7 = (a′ + b′)⊕ [(a′ ⊕ 0x1) + (b′ ⊕ 0x6)]) = 2−3.42

for rotational amount r = 1, which shows incorrectness of such an approach. The

reason why we would obtain a wrong probability is caused by some rotational pairs

(a, a ≪r) and (b, b ≪r), that do not ful�ll the �rst assumption, but produce

solutions to Equation 5.5. Of course there might occur the opposite situation,

there would be much less solutions to the equation. Hence, the estimation cannot

serve either as upper or lower bound on required probability.

To solve this problem we will apply the S-functions methodology described

in [28, 105]. A state function (abbreviation: S-function) is a function of k bits

x0
i , . . . , x

k−1
i and a state Si, for i = 0, . . . , n−1, that outputs bit yi and next state

value Si+1, that is:

f(x0
i , . . . , x

k−1
i , Si) = (yi, Si+1),

which is in consequence equivalent to some transformation of k n-bit words

x0, . . . , xn−1 and a sequence of states {Si}i=0,...,n−1 into an n-bit word y.

In order to represent our problem with use of S-function we can express Equa-

tion (5.5) in bit-wise manner. Let

γ = G⊕ (A+B),

88

5.2. Rotational Pairs with Corrections

where G = (a+ b)≪r, A = a≪r ⊕α,B = b≪r ⊕β, then

Gi+r = ai ⊕ bi ⊕ s1
i , (5.6)

Ai+r = ai ⊕ αi+r, (5.7)

Bi+r = bi ⊕ βi+r, (5.8)

γi+r = Gi+r ⊕Ai+r ⊕Bi+r ⊕ s2
i+r, (5.9)

where state Si consists of values of two carries from (i−1)-th bit position of a+ b

and (i+r−1)-th bit position of A+B, respectively. That is Si = (s1
i , s

2
i+r), where

s1
i = Cai−1,bi−1,s1i−1), s

2
i+r = CAi+r−1,Bi+r−1,s2i+r−1

and the initial state S0 = (s1
0, s

2
r)

is de�ned in the following way:

s1
0 = 0, (5.10)

s2
r = CAr−1,Br−1,s2r−1

, (5.11)

where Cx,y,z is the carry from the sum x+y+ z. The S-function de�ned by (5.6)-

(5.11) updates the state S in the following way:

f(ai, bi, αi+r, βi+r, Si) = (γi+r, Si+1) for 0 ≤ i < n.

In order to compute the state S0 the value of s2
r−1 is required. In a similar way

as in [28] we will iterate over two possible values of s2
r−1 and at the step i = n− 1

of computations we are going to discard the states that do not match the chosen

value s2
r−1. Moreover, the state Sn−r has to be treated in a di�erent way, because

the carry s2
n−r−1 (the carry from addition of two most signi�cant bits of A and

B) has to be omitted, so that the following conditions are ful�lled:

s1
n−r = Can−r−1,bn−r−1,s1n−r−1

,

s2
0 = 0.

89

5. Analysis of Addition-Rotation-XOR Designs

Figure 5.1.: A subgraph Si ∪Si+1 for αi+r = βi+r = γi+r = 0, αi+r+1 = βi+r+1 =
1, γi+r+1 = 1.

Let

rotr(α, β → γ) = Pr(γ = (a≪r +b≪r)⊕ [(a≪r ⊕α) + (b≪r ⊕β)])

where a and b are random n-bit variables.

5.2.2. Calculation of Probabilities of Rotational Pairs with

Corrections for Addition

The problem of evaluating the probability rotr(α, β → γ) can be reduced to

enumeration of paths in a special n-partite graph. The graph is composed of

bipartite subgraphs Si = (Vi∪Vi+1, Ei) whose vertices Vi and Vi+1 are all possible

values for states Si and Si+1, respectively. The set of edges Ei represents possible

transformations of state Si into Si+1 in accordance to relations (5.6)-(5.11) for

speci�c values of correction bits αi+r, βi+r, γi+r. An edge of Ei is labeled with

values for ai and bi that produce appropriate values of Si+1 from Si. For instance

a subgraph Si∪Si+1 for αi+r = βi+r = γi+r = 0, αi+r+1 = βi+r+1 = 1, γi+r+1 = 0

is shown in Fig. 5.1. For 8 possible bipartite subgraphs we have constructed their

adjacency matrices (compare matrices in case of xdp+ in [105]):

A000 =


3 0 0 1
0 0 0 0
0 0 0 0
1 0 0 3

 , A100 = A010 = A001 =


0 1 1 0
0 2 0 0
0 0 2 0
0 1 1 0

 ,

90

5.2. Rotational Pairs with Corrections

A110 = A101 = A011 =


2 0 0 0
1 0 0 1
1 0 0 1
0 0 0 2

 , A111 =


0 0 0 0
0 3 1 0
0 1 3 0
0 0 0 0

 ,
where matrices are indexed with concatenation of i-th bits of α, β, γ, that

is αi||βi||γi. Let w(i) = [αi||βi||γi], L0 = (1, 0, 1, 0), L1 = (0, 1, 0, 1), C0 =

(1, 0, 0, 0)T , C1 = (0, 1, 0, 0)T and

R =


1 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0

 .
Following the reasoning from Section 5. in [28] we conclude that

rotr(α, β → γ) = 4−n
∑
j=0,1

LjAw(n−1) · · ·Aw(n−r)RAw(n−r−1) · · ·Aw(0)Cj . (5.12)

Let us verify the formula in case j = 0 (j = 1 is shown in a similar way). The

number of paths in n-partite graph constructed in the above-mentioned way from

bipartite graphs Sw(i) can be calculated with the use of adjacency matrices Aw(i)

in the following way:

(1, 1, 1, 1) ·Aw(n−1) · · ·Aw(0) · (1, 1, 1, 1)T .

In our case for j = 0 vectors C0 and L0 restrict considered paths to the ones

starting from the vertex (0, 0) from V0 and ending at vertex (0, 0) or (1, 0) from

Vn−1, that corresponds to the guess s2
r = 0. Finally the matrix R is an adjacency

matrix for an arti�cially added bipartite subgraph, which links each vertex (v1, v2)

for v1, v2 ∈ {0, 1} with vertex (v1, 0), that simulates cancellation of the carry from

the most signi�cant bit of A+B.

The following lemma is analogue to Theorem 1. in [28] and can be proven in a

similar way.

Lemma 5.3 ([110]). Let P0 be a set of all paths from (s1
0, s

2
0) = (0, 0) to any

of two vertices (s1
n−1, s

2
n−1) ∈ {(0, 0), (1, 0)} and P1 be a set of all paths from

(s1
0, s

2
0) = (0, 1) to any of two vertices (s1

n−1, s
2
n−1) ∈ {(0, 1), (1, 1)}. Then there

91

5. Analysis of Addition-Rotation-XOR Designs

is exactly one path in P0 ∪ P1 for every pair (a, b) that ful�lls (5.5).

The straightforward consequence of Lemma 5.3 is formula (5.12) for calculating

probability rotr(α, β → γ).

The rotational pairs with corrections are useful when analysing constructions

that have some type of constant additions/XORs since this class is closed under

addition of any constants, whereas the class of pairs without corrections is closed

only if the constants are rotational.

When XOR of a constant K is used, the correction takes the form

γ = (a⊕K)≪r ⊕a≪r ⊕α⊕K = K ⊕K≪r ⊕α

with a probability 1.

When the constant K is added (modularly), we have:

γ = (a+K)≪r ⊕[(a≪r ⊕α) +K] (5.13)

and this part can be dealt with in a similar manner as in case of XOR corrections.

The S-function for Equation (5.13)

(γi+r, Si+1) = g(ai, bi, αi+r, βi+r, Si) for 0 ≤ i < n.

is de�ned by system of equations:

Hi+r = ai ⊕Ki ⊕ s1
i ,

Ai+r = ai ⊕ αi+r,

γi+r = Hi+r ⊕Ai+r ⊕Ki ⊕ s2
i+r,

s1
i = Cai−1,Ki−1,s1i−1

,

s2
i+r = CAi+r−1+Ki−1+s2i+r−1

,

for A = a ≪r ⊕α,H = (a + K) ≪r (Equation (5.13) has then form γ =

H ⊕ (A+K)).

The corrections in rotational attacks play the role of di�erences in di�erential

92

5.3. Rotational Analysis of BMW-512

attacks. To �nd the rotational probability of an ARX primitive, one only has to

concentrate on the additions in the primitive. The rotational probabilities of these

additions depend on the corrections in the rotational pairs. To launch a rotational

attack, one has to �nd optimal corrections such that the total probability of all

corrections is high.

5.3. Rotational Analysis of BMW-512

In this section we will present rotational distinguishers for the compression

functions of the submitted to the SHA-3 competition [108] BMW-512 [52], fur-

ther denoted as BMWv1, and for the second, tweaked by the designers, version of

BMW-512 [53], denoted as BMWv2. Thomsen in [119] described pseudo-collision

and pseudo-preimage attacks on BMWv1. Recently, practical di�erential distin-

guishers on BMWv2 were presented in [3, 54]. Our attack on BMWv1 is for the

original design, while the attack on BMWv2 is for a modi�ed version of the com-

pression function, where one byte of the constant used in the internal function f1

has been altered.

5.3.1. Rotational Properties of Some BMW-512 Transforms

The rotational probabilities of the shifts si in BMW, presented in Table 5.1,

can be found by the method used to prove Lemmas 2.2-2.4.

Table 5.1.: Rotational probabilities of the functions si used in BMW

Function De�nition Prob. log2
s0(x) SHR1(x)⊕ SHL3(x)⊕ROTL4(x)⊕ROTL19(x) -4
s1(x) SHR1(x)⊕ SHL2(x)⊕ROTL8(x)⊕ROTL23(x) -4
s2(x) SHR2(x)⊕ SHL1(x)⊕ROTL12(x)⊕ROTL25(x) -4
s3(x) SHR2(x)⊕ SHL2(x)⊕ROTL15(x)⊕ROTL29(x) -4
s4(x) SHR1(x)⊕ x -2
s5(x) SHR2(x)⊕ x -4

Remark The rotational probabilities of the di�erent shifts to the left and to

the right of XH in f2 of BMW are computed simply as 2−4 or 2−2 (the rotation

amount is 2, see Lemma 2.2). A more careful analysis shows that indeed the

93

5. Analysis of Addition-Rotation-XOR Designs

rotational probability of all 8 shifts of XH is 2−14 instead of 2−30 used in the

attacks.

For any rotation amount, the rotational probability of addition is not lower

than 2−2, while the probabilities of XOR and rotation are 1 (see [64]). Further

in our analysis, the rotation amount will be �xed to 1 or 2. For these cases, the

rotational probability of addition is 2−1.41 and 2−1.68 respectively in case of 64-bit

numbers.

5.3.2. Analysis of BMWv1-512

BMWv1 takes two 1024-bit inputs: the message M and the chaining value H

and produces an 1024-bit output. The compression function is constructed using

three functions f0, f1 and f2. Next, we will give a short description of each func-

tion fi. A complete speci�cation of the functions can be found in [52]. All words

in BMW-512 are 64-bit long. Assume that the message is M = (M0, . . . ,M15)

and the chaining value is H = (H0, . . . ,H15).

The f0 function takes as its input the pair: message M and chaining value H

and produces an output (Q0, . . . , Q15) as follows.

1. First intermediate words W0, . . . ,W15 are obtained as a bijective transfor-

mation of M ⊕H de�ned below as

Wj = (Mj1 ⊕Hj1) ? (Mj2 ⊕Hj2) ? (Mj3 ⊕Hj3) ∗ (Mj4 ⊕Hj4) ? (Mj5 ⊕Hj5),

where ? ∈ {+,−}, j = 0, . . . , 15 and j1, j2, . . . , j5 ∈ {0, . . . , 15}.

2. The words Wi undergo a bijective transformation and the output of f0 are

produced, i.e. Qj = sj(Wj), where sj(x), j = 0, . . . , 15, are XORs of shifts

and rotations of x (see Table 5.1).

The f1 function takes the following pair as its input: message M and output

of f0, and produces words (Q16, . . . , Q31) on its output. For j = 16, 17, Qj are

de�ned as:

Qj = expand1(j) = s1(Qj−16) + . . .+ s0(Qj−1) +AddElement(j − 16),

94

5.3. Rotational Analysis of BMW-512

while for j = 18, . . . , 31, they are de�ned as:

Qj = expand2(j) = Qj−16 + . . .+ s5(Qj−1) +AddElement(j − 16),

where sk(x) are the same functions as in f0, and AddElement(j) = Mj +Mj+3−

Mj+10 + Kj+16. The constants Kj are obtained from the initial constant C =

0x0555555555555555 by multiplication, i.e. Kj = j · C.

The last function (the f2 one) produces 16 words of the new chaining value.

As its input, it takes message M and (Q0, . . . , Q31) (the outputs of f0, f1). First,

it produces the words XL = Q16 ⊕ . . .⊕Q23 and XH = XL⊕Q24 ⊕ . . .⊕Q31.

Then, the �rst 8 words (out of 16) of the new chaining value are de�ned as1:

Hj = (SHLij (XH)⊕ SHRkj (Qj+16)⊕Mj) + (XL⊕Qj+24 ⊕Qj),

where j = 0, . . . , 7 and SHLk, SHRk are shifts to left and right by k bits.

We will build a rotational distinguisher for BMWv1 such that the input pairs

of chaining values and message words will compose a rotational pair, but with

some corrections. The output pairs of f0 and f1 will be rotational for all 1024

bits, while the output pairs of f2 will be rotational for at least 384 bits.

Analysis of f1. We will start from f1 because this is the only function that

applies additions of constants. Note that in general, we cannot create a rotational

pair for constants since their values are �xed. To overcome this technical di�culty,

either constant has to be rotational, i.e. Kj = Kj ≪r, or the errors from the

constants have to be canceled with some other errors. In our attack, we will use

the fact that the constants are almost rotational, and we will use small errors,

coming from other words, to make the outputs fully rotational. Recall that the

outputs Qj , j = 16, . . . , 31 of f1 are de�ned as2 Qj = AddElement(j − 16) +

s1(Qj−16) + . . . + s0(Qj−1). Let Tj = s1(Qj−16) + . . . + s0(Qj−1) and T̃j =

s1(Qj−16 ≪r) + . . . + s0(Qj−1 ≪r). To obtain rotational outputs Qj , we have

1We will use only these 8 words in our attack. Therefore we omit the de�nition of the next 8

words.
2The case when expand2(j) is used can be analyzed similarly.

95

5. Analysis of Addition-Rotation-XOR Designs

to �nd an input message pair (M, M̃)) for the following system of 16 equations:

[Mj +Mj+3−Mj+10 +Kj+16 +Tj+16]≪r= M̃j +M̃j+3−M̃j+10 +Kj+16 + T̃j+16,

(5.14)

j = 0, . . . , 15. If we take into account the distributive properties of addition and

rotation, then with some probability (that will be estimated later) this system

can be rewritten as:

Mj≪r +Mj+3 ≪r −Mj+10 ≪r +Kj+16 ≪r +Tj+16 ≪r=

= M̃j + M̃j+3 − M̃j+10 +Kj+16 + T̃j+16.

(5.15)

If we denote M
′
j = Mj≪r −M̃j , then we will obtain the following system:

M
′
j +M

′
j+3 −M

′
j+10 = Kj+16 −Kj+16 ≪r +T̃j+16 − Tj+16 ≪r, (5.16)

for j = 0, . . . , 15. When the amount of rotation equals 2, then the words Kj+16−

Kj+16 ≪2, j = 0, . . . , 15 have zeroes in all bytes except for the �rst and the last

(the exact values are given in Table 5.2).

Table 5.2.: Rotational properties of the constants of f1 in BMWv1 and BMWv2
BMWv1 BMWv2

i Ki Ki≪2 Ki −Ki≪2 Ki Ki≪2 Ki −Ki≪2

16 5555...5550 5555...5541 0000...000f 5555...5550 5555...5541 0000...000f

17 5aaa...aaa5 6aaa...aa95 f000...0010 aaaa...aaa5 aaaa...aa96 0000...000f

18 5fff...fffa 7fff...ffe9 e000...0011 ffff...fffa ffff...ffeb 0000...000f

19 6555...554f 9555...553d d000...0012 5555...554f 5555...553d 0000...0012

20 6aaa...aaa4 aaaa...aa91 c000...0013 aaaa...aaa4 aaaa...aa92 0000...0012

21 6fff...fff9 bfff...ffe5 b000...0014 ffff...fff9 ffff...ffe7 0000...0012

22 7555...554e d555...5539 a000...0015 5555...554e 5555...5539 0000...0015

23 7aaa...aaa3 eaaa...aa8d 9000...0016 aaaa...aaa3 aaaa...aa8e 0000...0015

24 7fff...fff8 ffff...ffe1 8000...0017 ffff...fff8 ffff...ffe3 0000...0015

25 8555...554d 1555...5536 7000...0017 5555...554d 5555...5535 0000...0018

26 8aaa...aaa2 2aaa...aa8a 6000...0018 aaaa...aaa2 aaaa...aa8a 0000...0018

27 8fff...fff7 3fff...ffde 5000...0019 ffff...fff7 ffff...ffdf 0000...0018

28 9555...554c 5555...5532 4000...001a 5555...554c 5555...5531 0000...001b

29 9aaa...aaa1 6aaa...aa86 3000...001b aaaa...aaa1 aaaa...aa86 0000...001b

30 9fff...fff6 7fff...ffda 2000...001c ffff...fff6 ffff...ffdb 0000...001b

31 a555...554b 9555...552e 1000...001d 5555...554b 5555...552d 0000...001e

On the other hand, for randomQj , j = 0, . . . , 15, the di�erence T̃j+16−Tj+16 ≪2

takes the values 0x16, 0x17 with probability 2−8.4 when expand1(j) is applied, and

2−5.6 when expand2(j) is applied (this result is obtained experimentally, with 227

96

5.3. Rotational Analysis of BMW-512

trials). Hence, we can assume that the constant terms of System (5.16), have only

two non-zero bytes � the �rst (MSB) and the last (LSB). For speci�c values of

these terms (di�erent values can be obtained since T̃j+16 − Tj+16 ≪2 takes two

values, and there are 16 equations, therefore one can get 216 systems), the words

M
′
j of the solution also have only two non-zero bytes, i.e. M

′
j can be represented

asM
′
j = msbj ·256 + lsbj , where msbj , lsbj < 256. The exact values of these bytes

are given in Table 5.3.

Table 5.3.: Constant terms and solutions for the systems in f1 of BMWv1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T̃j+16 − Tj+16≪2 16 16 16 16 16 16 16 16 17 16 16 16 16 17 16 17

LSB of Rj
a

25 26 27 28 29 2a 2b 2c 2e 2d 2e 2f 30 32 32 34

MSB of Rj
a

00 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01

msbj 59 18 e7 76 c5 d4 93 52 21 d0 cf ce ad fc 0b ea

lsbj 28 28 29 29 30 32 31 28 25 22 2c 32 34 32 2f 2d

aRj = Kj+16 −Kj+16 ≪2 +T̃j+16 − Tj+16 ≪2

Once we have M
′
j , we can �nd the message pair. We choose the message words

Mj , M̃j such that M̃j = Mj ≪2 ⊕δj (rotational with corrections δj). Since all

M
′
j were �xed by the system, we get the following equations:

Mj≪2 −Mj≪2 ⊕δj = msbj · 256 + lsbj , j = 0, . . . , 15. (5.17)

We would like to �nd many solutions (that we will use later) for this system. To

do that, we will �x the MSB of Mj≪2 and δj to msbj and the LSB to lsbj , i.e.

(Mj ≪2)MSB = (δj)MSB = msbj , (Mj ≪2)LSB = (δj)LSB = lsbj . If we �x the

middle 6 bytes of δj to 0, then the message wordsMj≪2= msbj ·256+Xj ·28+lsbj ,

whereXj < 248, are solutions of (5.17). It is important to notice, that δj have only

two non-zero bytes and therefore the input pairs of message words are rotational

for 6 bytes. Hence, we can easily �nd 216·6·8 = 2768 input rotational pairs of

messages such that if the inputs Q0, . . . , Q15 of f1 are rotational, then the outputs

Q16, . . . , Q31 are rotational as well.

Let us estimate the total probability of obtaining these rotational outputs.

First and foremost, let us �nd the probability that System (5.14) is equivalent

to System (5.15). For one equation the probability (obtained experimentally)

97

5. Analysis of Addition-Rotation-XOR Designs

is 2−3.8 and hence for the whole system it is 2−61. Now, let us concentrate on

the transformations in f1. Since there are 2 applications of expand1(j) and 14

applications of expand2(j), the probability of obtaining the required di�erences

T̃j+16−Tj+16 ≪2 for all 16 outputs is 2−2·8.4−14·5.6 = 2−95.2. Therefore, the total

rotational probability (obtained heuristically) of f1 is 2−61−95.2 = 2−156.2.

Analysis of f0. The function f0 uses the words (Mi ⊕ Hi) as inputs. Since

the message pair is (Mi,Mi≪2 ⊕δi), instead of taking simply rotational inputs

for the chaining values Hi, we will also introduce corrections. To obtain a fully

rotational input for f0 we will take the chaining value pairs (Hi, Hi ≪2 ⊕δi).

Then the input pair for f0 is (Mi ⊕ Hi,Mi ≪2 ⊕δi ⊕ Hi ≪2 ⊕δi) = (Mi ⊕

Hi, (Mi ⊕ Hi) ≪2), hence it is rotational. Now let us �nd the probability that

the outputs Q0, . . . , Q15 are also rotational. These words are produced in two

phases:

1. the words W0, . . . ,W15 are generated as linear combinations of �ve terms of

a type Mi ⊕Hi or −(Mi ⊕Hi),

2. each Qi is obtained from Wi as Qi = si(Wi).

The rotational probabilities of the wordsWi are given in Table 5.4. The theoretical

basis for these numbers is provided by the Lemmas 5.1 ,5.2. Note that since we

consider rotation amount r = 2 and the number of additions and subtractions in

Wi is limited to 4, the counter j of the sums in the lemmas takes only value 0,

hence the formulas for the probabilities can be signi�cantly simpli�ed for these

speci�c values. The total probability of the �rst phase is 2−60.8. To compute the

probability of phase 2 of f0 we only have to �nd the rotational probabilities of

functions si (see Table 5.1). There are 4, 3, 3, 3, 3 applications of s0, s1, s2, s3, s4

respectively. Therefore, the probability of phase 2 is 2−4·4−3·4−3·4−3·4−3·2 = 2−58,

and hence, the total rotational probability of f0 is 2−118.8.

Analysis of f2. Function f2 takes the M message and the words Q0, . . . , Q31

(outputs of f0, f1) as an input, and produces the next chaining value. We can as-

sume the words Q0, . . . , Q31 to be rotational with some probability (the combined

rotational probabilities of f0 and f1). The terms XL and XH are rotational with

98

5.3. Rotational Analysis of BMW-512

Table 5.4.: Rotational probabilities of the words in f0 of BMWv1 and BMWv2

W0 W1 W2 W3 W4 W5 W6 W7

log2 -3.82 -1.68 -3.82 -1.68 -1.68 -1.68 -3.82 -10.01

W8 W9 W10 W11 W12 W13 W14 W15

log2 -3.82 -1.68 -3.82 -3.82 -1.68 -10.01 -3.82 -3.82

probability 1 since they are produced as XORs of rotational words. We require ro-

tational outputs from the shifts ofXH and the shifts ofQj , j = 16, . . . , 23. The ro-

tational probability of all the shifts of XH is 2−4−4−4−2−4−4−4−4 = 2−30, (see Re-

mark in Section 5.3.1), while for the shifts of Qj we pay 2−4−4−4−4−4−4−4 = 2−28

(see Table 5.1). Since the message pair words are rotational in 6 bytes, it follows

that the words SHLjk(XH) ⊕ SHRjl(Qj) ⊕Mj are also rotational in 6 bytes

(all bytes except MSB and LSB). Let Pj = SHLjk(XH)⊕ SHRjl(Qj)⊕Mj and

Rj = XL⊕Qj+24 ⊕Qj . Then the chaining values are de�ned as Hj = Pj + Rj .

Note that Pj is rotational for 6 bytes, and Rj is fully rotational. For the error of

the new chaining value we have (Pj + Rj) ≪2 −[(Pj ≪2 ⊕δj) + Rj ≪2]
2−1.68

=

Pj ≪2 +Rj ≪2 −(Pj ≪2 ⊕δj) − Rj ≪2= Pj ≪2 −(Pj ≪2 ⊕δj), hence the

error can occur in the MSB and LSB only if there are no carries (with probability

2−1) in the LSB. Therefore, for the rotational properties of the �rst 8 chaining

values in 6 bytes we have to pay in total 2−8·(1.68+1). If we take into account

the previous probabilities of the shifts, we will get the total rotational probability

of f2, which is 2−30−28−21.5 = 2−79.5. The output pair is rotational in at least

8 · 6 = 48 bytes, or 384 bits.

The Attack on the Full BMWv1.

The relations between the pairs of input message words and the chaining value

words are fully �xed. For the �rst input, the message words Mj are chosen

randomly, except their MSB and LSB which are �xed as explained above. The

chaining values Hj are chosen randomly as well. Then, the message M̃ and the

chaining value H̃ of the second input are de�ned as M̃j = Mj ≪2 ⊕δj , H̃j =

Hj ≪2 ⊕δj . The probability that such an input pair will produce an output

pair of the chaining values, rotational in 384 bits, is the combined probability

99

5. Analysis of Addition-Rotation-XOR Designs

of f0, f1, f2 which is 2−156.2−118.8−79.5 = 2−354.5. On the other hand, the same

probability for a random function is 2−384, hence BMWv1 can be distinguished

from a random function.

Note that we can obtain non-random properties for the last 8 chaining values

H8, . . . ,H15 as well
3. We only have to take into account the termsROTL(j+1)(Hk)

which are rotational in 6 bytes. Also, the complexity of the whole attack can be

reduced to 2223.5 compression function calls by using more advanced techniques

as explained in the next Section.

5.4. Lower Complexity Attack on the Full BMWv1

Further in this dissertation, we will present an algorithm for �nding the rota-

tional output pair with a lower complexity.

1. Take random values for A0, . . . , A15, where Aj = Mj ⊕Hj and produce the

outputs Q0, . . . , Q15 of f0. Assign Ãj = Aj ≪2 and produce another out-

puts Q̃0, . . . , Q̃15. Check if the pairs (Qj , Q̃j), j = 0, . . . , 15 are rotational.

If they are not, repeat step 1.

2. Fix the MSB i LSB ofMj≪2 to msbj and lsbj , the middle 6 bytes to zero.

Obtain the second message (by rotation and XOR of δi). Produce the �rst

output pair of f1, i.e. (Q16, Q̃16), and check if it is rotational. If not, go to

step 1.

3. Assign random values to the middle 6 bytes of the message words Mj ≪2

(the MSB and LSB are still �xed to the previous values) and obtain the sec-

ond message (by rotation and XOR). Produce the other outputsQ17, . . . , Q31

of f1(M0, . . . ,M15, Q0, . . . , Q15), and the outputs Q̃17, . . . , Q̃31 of f1(M0 ≪2

⊕δ0, . . . ,M15 ≪2 ⊕δ15, Q̃0, . . . , Q̃15). If (Qj , Q̃j), j = 17, . . . , 31, are not

rotational then repeat step 3.

4. Produce the new pair of chaining values � outputs of f2 and check if they

are rotational in the 384 bits. If not, go to step 3.

3We omit the description since we already have an attack.

100

5.4. Lower Complexity Attack on the Full BMWv1

Let us estimate the total complexity of �nding the output pair of rotational chain-

ing values in 384 bits. For passing step 1, we have to try 2118.8 di�erent values

for A0, . . . , A15. Step 2 calls step 1 around 212.2 times: 28.4 to get the proper

di�erence T̃0 − T0 ≪2, and 23.8 times to get equivalence of (5.14) and (5.15)

for j = 16. This is done because: 1) the di�erence T̃16 − T16 ≪2 depends only

on Q0, . . . , Q15, 2) when the amount of rotation is �xed to 2, the equivalence

of system (5.14) and (5.15) depends on the values of the 2 most signi�cant bits

of M0,M3,M10, M̃0, M̃3, M̃10, T16, T̃16 � they are all �xed or depend on the val-

ues of Q0, . . . , Q15. On the hand, by varying the messages words, the values of

Q17, . . . , Q31 can vary, hence we can obtain rotational pairs for these outputs of

f1 by simply taking di�erent message words. As a result, we have to to take

2156.2−12.2 = 2144 di�erent messages to pass step 3. Finally, step 4 calls step 3

around 279.5 times. Hence the total complexity of �nding the rotational pair of

output chaining values equals 2118.8+12.2 + 2144+79.5 ≈ 2223.5 computations.

5.4.1. Analysis of Modi�ed Version of BMWv2-512

The compression function BMWv2 is similar to the one of BMWv1, but a few

tweaks are introduced by the designers. We will only describe the di�erences

between these two functions. The �rst tweak is in f0, where the words Qj are

produced as Qj = sj(Wj) +Hj+1. The second tweak is in f1. Now this function

takes the chaining value H as an additional input. The tweak of f1 is in the

AddElement function, which is de�ned as follows

AddElement(j) = (Mj≪j+1 +Mj+3 ≪j+4 −Mj+10 ≪j+11 +Kj+16)⊕Hj+7.

We attack a modi�ed version of BMWv2, denoted as BMWv2C , where the above

round constants Kj+16 are obtained by multiplying the round indexes (j+ 16) by

the constant C = 0x5555555555555555. In the original version the value of the

constant is C = 0x0555555555555555.

101

5. Analysis of Addition-Rotation-XOR Designs

The Attack on BMWv2C .

We will take a di�erent approach for producing rotational pairs in BMWv2C

although the analysis uses the results of the previous section. The input pairs of

messages and chaining values will be fully rotational, while the output chaining

values will be rotational in the �rst 8 words (512 bits).

Let us �x a random message (M0, . . . ,M15) and a chaining value (H0, . . . ,H15)

for the �rst input of f0, and the pair (M0 ≪2, . . . ,M15 ≪2), (H0 ≪2, . . . ,

H15 ≪2) for the second. Since f0 in BMWv2 di�ers from f0 in BMWv1 only in

the extra additions of Hj in BMWv2, in order to �nd the rotational probability

of f0, we only have to consider these 16 additions. Thus, the probability of the

rotational output pair for f0 is 2−118.8−16·1.68 = 2−145.7.

Now, let us focus on f1. When the constant C is �xed to 0x5555555555555555

then the values of the di�erences Kj+16−Kj+16 ≪2 are only one byte (see Table

5.2).

On the other hand, all of these di�erences (rotational errors of the constants)

can be canceled since both the addition and the rotation are not fully distributive.

For example, for some x, y the following holds (x + y) ≪2= x ≪2 +y ≪2

+1. When more terms are added, these errors can be bigger, i.e. for some

x1, . . . , xk it holds (x1 + . . .+ xk)≪2= x1 ≪2 + . . .+ xk≪2 +e+, where e+ ∈

{1, 2, . . .}. We have found that all di�erences Kj+16−Kj+16 ≪2 can be canceled

with these errors coming from the additions/rotations. When the input pairs of

words Q0, . . . , Q15,M0, . . . ,M15, H0, . . . ,H15 are rotational, then the probabilities

of rotational output pairs for expand1(j), j = 16, 17 and expand2(j), j = 18 . . . , 31

(obtained experimentally) are given in the Table 5.5.

Table 5.5.: Rotational properties of the words in f1 (without the shifts) in BMWv1

Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23

log2 -2.37 -2.38 -3.93 -3.95 -3.97 -3.97 -3.98 -4.00

Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31

log2 -4.00 -4.02 -4.03 -4.03 -4.03 -4.03 -4.03 -4.04

The total probability of obtaining all the 16 rotational outputs from these

transformations, i.e. the rotational probability of f1 is around 2−61.

102

5.5. Rotational Analysis of SIMD-512

Finally, let us analyze f2. We require rotational outputs only for the �rst 8

new chaining values, i.e. H0, . . . ,H7. Similarly as for BMWv1, the probability

can be estimated simply by counting the number of shifts and additions required

for producing these 8 values, i.e. the probability is 2−30−28−8·1.68 = 2−71.5. Note

that now there are no corrections in the message words, hence the 512-bit output

is fully rotational.

For the whole BMWv2C , the probability that rotational inputs of messages and

chaining values will produce rotational outputs in the �rst 8 words is equal to

2−145.7−61−71.5 = 2−278.2. On the other hand, a rotational input in a random

function will produce a rotational output in 8 words (512 bits) with probabil-

ity 2−512. The probability of our distinguishers most likely can be raised most

likely if the message modi�cation technique is applied. Then the �rst phase of f0

(probability 2−61) can be passed for free.

The low attack complexity allows us to launch rotational distinguishers for

the 384-bit version of BMWv2C as well. Note that, increasing the number of

applications of expand1(j) (which is considered to be stronger) from 2 to all 16

does not stop the attack because the rotational probability of expand1(j) is higher

than the one of expand2(j). Also, the probability of rotational output pairs, does

not seems to change signi�cantly, when the order of sj in f0 and f1 is changed.

5.5. Rotational Analysis of SIMD-512

In this section we will present rotational distinguishers for the compression

function of SIMD-512 [89], later revised in [90]. For simplicity, we refer to SIMD-

512 as SIMD for the remainder of this chapter. SIMD passed through to the

second round of the SHA-3 competition [108]. Di�erential distinguishers for the

full round 1 compression function of SIMD were presented in [98]. Recently, a

high probability distinguisher, exploiting the symmetric properties of round 1,2

SIMD has been found [88]. Our rotational distinguishers work for the compression

functions of the both (round) versions of SIMD, hence we will not make distinc-

tions between the two versions. First, we shall launch a rotational distinguisher

103

5. Analysis of Addition-Rotation-XOR Designs

for 24 rounds of the modi�ed version of SIMD, where the message expansion is

linearized. Next, we will present a rotational distinguisher for the original, but

reduced to 12 rounds, compression function.

The general idea of the construction of SIMD is based on a modi�ed Davies-

Meyer construction with a multiple-pipe Feistel-like block cipher and a�ne-code

based on a Reed-Solomon code for message expansion. In each iteration of the

compression function, one message block M of 1024 bits is processed by expand-

ing it in 8192 bits. The expansion is done using an a�ne code that applies the

following three operations: a number theoretic transformation (NTT), a con-

catenated code and a permutation. The expanded message is used as a key for

Feistel-like 32-round block cipher that transforms 32 state words initialized with

XOR-ed message M and chaining value H, and the result is �nally transformed

to 32 words (H ′) with similar Feistel-like 4-round block cipher with H as the key

(hence in total there are 36 rounds).

The three message expansion operations are de�ned in the following way:

1. NTT � a 1024-bit input message block, represented as x = (x0, x1, . . . , x127) ∈

(Z28)128, is mapped into y = (y0, y1, . . . , y255) ∈ (F257)256 and

yi =
127∑
j=0

xjβ
ij + β255i, i = 0, . . . , 255, (5.18)

where β = 41 (β is a 256th root of unity in F257),

2. Concatenated Code � a pair (x, y) ∈ (F257)2 is mapped into word IC(x) +

216IC(y), where IC : F257 → Z216 , and IC(x) = C · x̃, where C takes one of

the two values 185 or 233, and according to the reference implementation [90]

x̃ = x, when x ≤ 128, and x̃ = x− 257, otherwise.

3. Permutation � message words W
(i)
j = Z

(P (i))
j are expended, where Z

(i)
j =

Im(yti , ytj), where m ∈ {185, 233}, ti, tj ∈ [0, 255].

Observation: The expanded message words in the �rst 8 rounds of SIMD are

obtained using the mapping I185 only.

104

5.5. Rotational Analysis of SIMD-512

The main part of one round (out of 36) of the compression function consists

of 8 step functions (pipes) processed in parallel. One step function updates four

32-bit words of state, further denoted as A
(i)
j , B

(i)
j , C

(i)
j , D

(i)
j for j = 0, 1, . . . , 7

and rounds i = 0, 1, . . . , 35 in the following way:

A
(i)
j = (D

(i−1)
j +W

(i−1)
j + φ(i)(A

(i−1)
j , B

(i−1)
j , C

(i−1)
j))≪s(i) +A

(i−1)

p(i)(j)
≪r(i) ,

B
(i)
j = A

(i−1)
j ≪r(i) , C

(i)
j = B

(i−1)
j , D

(i)
j = C

(i−1)
j ,

where φ(i) is either bit-wise MAJ function or bit-wise IF function depending on

the round, p(i) are round dependent permutations, r(i), s(i) are round dependent

rotations amounts and W
(i)
j are expanded message blocks or in the case of the

last four rounds, the old chaining values. For a detailed description of the SIMD

compression function see [90].

In the sequel, �rst we will �nd the rotational probability of the Feistel transfor-

mation, and then we will obtain rotational probabilities for the message expansion.

We will analyze two versions of the message expansion with and without additions

of the constants in the NTT part of the message expansion.

5.5.1. Analysis of the Feistel of SIMD

In the Feistel transformation of SIMD, there are only three di�erent operations,

namely, additions, rotations, and Boolean functions. More importantly, the Feistel

does not apply any constant. To �nd the rotational probability of one round of

the Feistel transformation, we only have to count the number of additions, which

is 24: 8 pipes, each with 3 additions. In the rotational pairs we will use the

rotation amount of 1, hence for each addition we will have the probability 2−1.41.

Therefore, the rotational probability of one round of the Feistel transformation is

2−1.41·3·8 = 2−33.8.

When the expanded message words W
(i)
j , used as a key for the Feistel, equal

zero, then the number of additions per pipe drops from 3 to 2. Therefore, one

round has 16 additions (instead of 24), and the rotational probability of one round

becomes 2−1.41·16 = 2−22.6.

105

5. Analysis of Addition-Rotation-XOR Designs

5.5.2. Analysis of Round-reduced Linearized SIMD

First, we will consider SIMD with linearized message expansion, which can be

achieved by changing the constant β255 in the NTT transformation to 0. This

modi�cation allows us to �x message block m to zero which changes the expanded

message words W
(i)
j also to zeros. In other words, on zero input, all the three

message expansion parts, produce zero output. Also, value 0 is rotational with

respect to any amount (including our target amount of 1).

A rotational distinguisher for this modi�ed version of SIMD works as follows.

The message input in both pairs is �xed to 0, i,e, the message pair (M1,M2) is

(01024, 01024). The chaining value input pair (H1, H2) is simply rotational with

amount 1, i.e. the input pair is (H1, H1 ≪1), where the values of the words

H l
1, l = 0, . . . , 31 of the vector H1 are chosen arbitrarily, and the values of the

words for the second vector H2 are �xed as H l
2 = H l

1 ≪1, l = 0, . . . , 31. Then

the input to the Feistel (M ⊕H) is also rotational. The expanded message words

are all zeroes, therefore the rotational probability of each round except for the

last four (where the input is the chaining value) is 2−22.6. As a result, we can

launch a rotational distinguisher on 20 round-reduced linearized SIMD: the ro-

tational probability of the �rst 16 rounds is 2−22.6·16, and of the last 4 rounds

(the feedforward rounds) is 2−33.8·4, hence the total rotational probability of the

distinguisher is 2−497. On the other hand, in a random function, the probability

that a rotational input will produce rotational output in 1024 bits is 2−1024.

The previous distinguisher can be extended for 4 additional rounds. The �rst

round can be passed for free, i.e. the rotational probability of the �rst round can

be equal to 1, if we �x the values of the most and last signi�cant bits of each

chaining value word4 � this is in line with the message modi�cation techniques.

Three additional rounds can be passed for free, if we take into account that we

can produce output pairs rotational in only 512 bits (instead of all 1024 bits). In

the last 4 (feedforward) rounds, we produce rotational pairs only in the �rst 2 of

these 4 rounds, i.e. A
(k+1)
j , A

(k+2)
j , B

(k+1)
j , B

(k+2)
j , C

(k+1)
j , C

(k+2)
j , D

(k+1)
j , D

(k+2)
j

4The pair is still rotational, only some bits are �xed.

106

5.5. Rotational Analysis of SIMD-512

are rotational. Then, due to the property of the Feistel, C
(k+4)
j = A

(k+2)
j ≪r(k+2) ,

D
(k+4)
j = B

(k+2)
j , hence the words C,D of the last round are rotational. There-

fore, the output pair is rotational in 512 bits. The total probability of the 24

round distinguisher is 20+19·(−22.6)+2·(−33.8)+2·0 = 2−497. The same probability in

a random function is 2−512.

5.5.3. Analysis of Round-reduced SIMD

The designers of SIMD were aware of a potentially dangerous property of the

linear NTT function (see [89] page 8) and intentionally introduced addition of

some powers of β255 in the de�nition of NTT making the message expansion a�ne.

This modi�cation no more allows us to obtain any expanded message words all

equal to 0. However, for the �rst 8 rounds, 128 expanded message words are

constrained by a system of 128 equations in 128 variables (each of them refers to

consecutive 8 bits of input message) and by forcing these 128 words to zero we

obtain a system (see Equations (5.18), where yi = 0 for i = 0, 1, . . . , 127), which

has only one solution in (F257)128 that can be mapped to (Z28)128. The existence

of such a solution allows us to build a distinguisher for 12 rounds of SIMD (8

rounds with words from message expansion and 4 rounds with the chaining value

words).

The expanded message words W
(i)
j are zeroes but the original message words

x0, x1, . . . , x127 are not zeroes. We require the input pair (M l
1 ⊕ H l

1,M
l
2 ⊕ H l

2)

to the Feistel transformation to be rotational, i.e. M l
2 ⊕ H l

2 = (M l
1 ⊕ H l

1) ≪1.

Since we take the same message input in the pair (because this input will produce

expanded message words equal to zero, hence rotational), i.e. M l
1 = M l

2, then

for the pair of chaining values, we will obtain H l
2 = H l

1 ≪1 ⊕(M l
1 ≪1 ⊕M l

1).

Note that now the chaining values are rotational only in 514 bits (out of 1024)

because the sum of the hamming weights of the words M l ≪1 ⊕M l is 510.

After 8 rounds of the Feistel, where W
(i)
j are zeroes, all the intermediate state

words A
(8)
j , B

(8)
j , C

(8)
j , D

(8)
j are rotational with probability 28·(−22.6) = 2−181. In

the ninth round, the inputs W
(i)
j are the chaining values (which are rotational in

107

5. Analysis of Addition-Rotation-XOR Designs

roughly half of the bits). Let us �nd the rotational error e
A

(9)
j

of A
(9)
j (the terms

H1, H2 in the following formulae denote the inputs W
(i)
j in the �rst and in the

second instance of the rotational pair), which is

e
A

(9)
j

= [(D
(8)
j + φ

(9)
j +H1)≪s(9) +A

(8)

p(9)(j)
≪r(9)]≪1 −

− [(D
(8)
j ≪1 +φ

(9)
j ≪1 +H2)≪s(9) +(A

(8)

p(9)(j)
≪1)≪r(9)],

where φ
(9)
j = φ(9)(A

(8)
j , B

(8)
j , C

(8)
j)). With the probability 22·(−1.41) (rotational

probability of two additions), the error can be rewritten as

e
A

(9)
j

= ((D
(8)
j + φ

(9)
j) +H1)≪(s(9)+1) +(A

(8)

p(9)(j)
≪r(9))≪1 −

− [((D
(8)
j + φ

(9)
j)≪1 +H2)≪s(9) +(A

(8)

p(9)(j)
≪1)≪r(9)] =

= ((D
(8)
j + φ

(9)
j) +H1)≪(s(9)+1) −((D

(8)
j + φ

(9)
j)≪1 +H2)≪s(9) .

The rotational probability of addition for any rotation amount is at least 2−2.

Hence, with probability 22·(−2), the error can be rewritten as

e
A

(9)
j

= (D
(8)
j + φ

(9)
j)≪(s(9)+1) +H1 ≪(s(9)+1) −(D

(8)
j + φ

(9)
j)≪(s(9)+1) −

−H2 ≪s(9)= H1 ≪(s(9)+1) −H2 ≪s(9) .

If we take into account that H2 = H1 ≪1 ⊕K (the constant K depends on the

message words), then for the rotational error we will get that e
A

(9)
j

= X−X⊕Kj ,

where X = H1 ≪(s(9)+1), and K
j = (M j

1 ≪1 ⊕M j
1) ≪s(9) . For a random X,

the value of e
A

(9)
j

is Kj with the probability 2−hamming(K
j) � X has to have 1 in

the bits where Kj has 1. Since we control the bits of the chaining value, we can

�x the required bits to 1, and get e
A

(9)
j

= Kj with probability 1. Note that we

have to �x roughly half of the bits of the chaining value but we still have enough

freedom (in 512 bits) to launch an attack. As the result, in a single pipe, the

probability that e
A

(9)
j

= Kj is 22·(−1.41)+2·(−2) = 2−6.8.

The values of new chaining words D
(12)
j are de�ned as D

(12)
j = A

(9)
j ≪r(9) . Let

(D
(12)
j , D̃

(12)
j) be the output pair of words, obtained with a rotational input pair

108

5.6. Shift Distinguishers on Shabal

speci�ed as above. Then in all 8 pipes

(D
(12)
j ≫r(9))≪1 −(D̃

(12)
j ≫r(9)) = e

A
(9)
j

= Kj

with probability 2−181−6.8·8 = 2−236. The same property in a random function

holds with probability 2−256 (eight 32-bit words).

5.6. Shift Distinguishers on Shabal

Shabal [26] is a hash function submitted to the SHA-3 competition and it

passed to the second round. There are various published distinguishers on the

permutation of Shabal [2, 4, 73, 111] and among them is a rotational distinguisher

proposed by Van Assche in [1].

The compression function of Shabal is based on a keyed permutation PM,C(A,B),

where B,C,M ∈ {0, 1}lm , A ∈ {0, 1}la (recommended values for the parameters

are lm = 512, la = 384). The inputs can be seen as arrays Ai, Bj , Cj ,Mj , i =

0, . . . , 11, j = 0, . . . , 15 of 32-bit words. The permutation P outputs the new val-

ues of Ai, Bi and is de�ned as:

for i = 0 to 15 do

Bi ← Bi≪17

end for

for j = 0 to p− 1 do

for i = 0 to 15 do

Ai+16j mod r ← U(Ai+16j mod r ⊕ C8−i mod 16 ⊕ V(Ai−1+16j mod r≪15))

Ai+16j mod r ← Ai+16j mod r ⊕Mi

Ai+16j mod r ← Ai+16j mod r ⊕Bi+13 mod 16 ⊕ (Bi+9 mod 16 ∧Bi+6 mod 16)

Bi ← Bi≪1 ⊕Ai+16j mod r

end for

end for

for j = 0 to 35 do

Aj mod r ← Aj mod r + Cj+3 mod 16

109

5. Analysis of Addition-Rotation-XOR Designs

end for

where U(x) = 3x, V(x) = 5x and the recommended values for the parameters are

(r,p) = (12, 3).

The following lemmas specify the shift probabilities of the transforms used in

P.

Lemma 5.4 ([110]). Given n-bit words x, y and positive integers r, s, then

Pr((x+ y)�s= x�s +y �s) = 1,

Pr((x⊕ y)�s= x�s ⊕y �s) = 1,

Pr(U(x�s) = U(x)�s)) = 1,

Pr(V(x�s) = V(x)�s)) = 1,

Pr((x ∧ ȳ)�s= (x�s) ∧ y �s) = 1,

Pr((x≪r)�s= (x�s)≪r) = 2−2t,

where t = min(r, s, n− r, n− s).

Lemma 5.5 (Updates of Bi [110]). Given n-bit words x, y, then

Pr((x≪1 ⊕y)�1= ((x�1)≪1 ⊕y �1)) = 2−2.

The proofs for the lemmas are analogous to the ones for rotational property.

Lemma 5.6 (Multiplication [110]). Given a pair of n-bit words x, y and positive

integers r, s, then

Pr(x�r · y �s= (x · y)�(r+s)) = 1.

Let us consider that each n-bit word z can be represented as a concatenation of

two words a, b, i.e. z = a||b, where a are the s most signi�cant bits of z, and b the

n− s least signi�cant bits of z. Let x = a1||b1, y = a2||b2 be such a representation

110

5.6. Shift Distinguishers on Shabal

of x, y. With Cu,v we denote the carry from u+ v. Then for addition we have:

(x+ y)�s= (a1||b1 + a2||b2)�s= (a1 + a2 + Cb1,b2 ||b1 + b2)�s= b1 + b2|| 0 . . . 0︸ ︷︷ ︸
s

,

x�s +y �s= (a1||b1)�s +(a2||b2)�s= b1|| 0 . . . 0︸ ︷︷ ︸
s

+b2|| 0 . . . 0︸ ︷︷ ︸
s

= b1 + b2|| 0 . . . 0︸ ︷︷ ︸
s

.

A similar reasoning can be applied to XOR as well. Let now x = x12n−r +x2 and

y = y12n−s + y2, then

x�r · y �s ≡ x2y22r+s (mod 2n),

(x · y)�r+s = (x1y122n−r−s + x1y22n−r + x2y12n−s + x2y2)�r+s≡ x2y22r+s (mod 2n),

that proves x�r · y �s≡ (x · y)�r+s (mod 2n).

Let us now provide a proof for U (the proof for V is analogous).

U(x)�s= (3x)�s= (2x+ x)�s= (2x)�s +x�s= x�s+1 +x�s,

U(x�s) = 3(x�s) = 2(x�s) + x�s= x�s+1 +x�s .

For the function x ∧ ȳ:

(x ∧ ȳ)�s = (x�s) ∧ (y �s) = (a1||b1 �s) ∧ (a2||b2 �s) = b1|| 0 . . . 0︸ ︷︷ ︸
s

∧b̄2|| 0 . . . 0︸ ︷︷ ︸
s

=

= b1 ∧ b̄2|| 0 . . . 0︸ ︷︷ ︸
s

,

(x�s ∧y �s) = ((a1||b1)�s ∧(a2||b2)�s = b1|| 0 . . . 0︸ ︷︷ ︸
s

∧b̄2|| 1 . . . 1︸ ︷︷ ︸
s

= b1 ∧ b̄2|| 0 . . . 0︸ ︷︷ ︸
s

.

For the proof of the shift probability of rotation compare proof of rotational

probability of shift. Finally, let us prove the Lemma 5.5, i.e. let �nd the shift

probability (with s = 1) of the function f(x, y) = x≪1 ⊕ȳ. We assume that

111

5. Analysis of Addition-Rotation-XOR Designs

x = xn−1xn−2 . . . x0, y = yn−1yn−2 . . . y0, where xi, yi are bits.

f(x, y)�1 = (x≪1 ⊕ȳ)�1= (x≪1)�1 ⊕ȳ �1=

= (xn−2 . . . x0xn−1)�1 ⊕yn−2 . . . y1y00 =

= xn−3 . . . x0xn−10⊕ ȳn−2 . . . ȳ1ȳ00,

f(x�1, y �1) = (x�1)≪1 ⊕y �1 =

= (xn−2 . . . x00)≪1 ⊕yn−2 . . . y1y00 =

= xn−3 . . . x00xn−2 ⊕ ȳn−2 . . . ȳ1ȳ01.

Therefore f(x, y) �1= f(x �1, y �1) ⇐⇒ xn−1 = 0 and xn−2 = 1, hence the

probability is 2−2.

From the lemmas we can see that among all the transformations in P it is

only the rotation and the update function for Bi that have a probability less

than 1 and therefore to �nd the shift probability of the whole P, i.e. to �nd the

probability that P(A,B,C,M)�s= P(A�s, B �s, C �s,M �s) for a random

A,B,C,M , we only have to count the number of rotations and updates of Bi

used in P . Their number is 16 + 3 · 16 + 3 · 16 = 112. Therefore, if we �x the

shift amount s to 1, then the shift probability of one rotation and update of Bi

is 2−2, and we obtain a shift distinguisher for the whole P with a probability

2−2·112 = 2−224. If we manipulate the exact values of the inputs Bi we can pass

the beginning 16 rotations (with r = 17)) and the 16 rotations in the updates

of Bi (with r = 1) of the �rst round, i.e. j = 0. Then the total probability of

the shift distinguisher will drop to 2−160. Furthermore, we can as well control

the input values of Ci and pass for free the rotations in V (with r = 15) in the

�rst round. In this case, the total probability of our shift distinguisher will equal

2−128.

5.7. Summary

The invention of the rotational analysis has created a new avenue in cryptanal-

ysis and has invigorated the evaluation process of the SHA-3 competition. How-

112

5.7. Summary

Table 5.6.: Summary of distinguishers for BMW and Shabal.

Compression Function Distinguisher Complexity Reference

BMWv1 di�erential 1 [54]

BMWv1 rotational 2223.5 Section 5.4

BMWv2 di�erential 219 [3]

BMWv2 rotational 2278.2 Section 5.4.1

Shabal di�erential 1 [2]

Shabal di�erential 1 [73]

Shabal di�erential 2 [4]

Shabal di�erential 221 [111]

Shabal shift 2128 Section 5.6

Shabal rotational 2159 [1]

SIMD symmetric 1 [24]

SIMD di�erential 2398 [126]

SIMD rotational 2236 Section 5.5.3

SIMD rotational 2497 Section 5.5.2

ever, the theory and the application of the rotational analysis and distinguishers

is largely unexplored. In this thesis, we have made a step towards extending

the area of applying the rotational analysis to primitives that besides ARX, may

have subtractions, shifts, Boolean functions and a combination of additions and

subtractions. We have derived the rotational probabilities from these operations.

Our �ndings have allowed us to launch attacks on the modi�ed and original com-

pression functions of BMW-512 and SIMD-512 which were in the second round

of the SHA-3 competition. Furthermore, we have proposed a new type of attack,

a shift analysis. We have found distinguishers based on the shift analysis for the

permutation of the Shabal hash function.

Our distinguishers do not contradict the security claims of all of the hash func-

tions. Our �ndings demonstrate that some parts of the analyzed designs exhibit

non random behavior which might be exploited to mount successful attack on full

versions of them.

113

6. Rotational Cryptanalysis and

Chained Modular Additions

The Markov chain assumption does not always hold for rotational analysis

of cryptographic algorithms based on ARX. Rotational probability of an ARX

primitive depends not only on the number of modular additions but also on their

positions. In general, the more modular additions are chained (output of the

previous additions is the input of the next), the smaller the probability.

Chained modular additions are used in ARX hash functions such as BLAKE2 [5]

and Skein [42, 43]. Both functions have been successfully attacked using rota-

tional cryptanalysis (in fact, rotational cryptanalysis was o�cially introduced as a

method of analysis on an instance of Skein [64]). The success can be attributed to

the lack of constants or to the use of (almost rotational) constants in the designs.

We correct the claimed complexity of rotational attacks against BLAKE2 [55]. Our

analysis suggests that, due to the aforementioned chains of modular additions,

the rotational attacks are applicable only to 7 rounds of BLAKE2 instead of the

claimed full 12 rounds in [55]. We also provide analysis of the compression func-

tion of Skein. Note, in [64] it is shown that the compression function reduced to

42 rounds is vulnerable to rotational attacks, and further, the attack was extended

in [66, 67] to include a rebound part, but the rotational part of the attack is still

on 42 rounds. We show that due to the structure of addition chains in Skein, the

rotational attacks on a version of Skein without any subkey additions, works for

24-28 rounds only (depending on the rotation amount).

The correctness of the results presented in this thesis has been experimentally

veri�ed on ARX primitives with di�erent state sizes and di�erent numbers of

115

6. Rotational Cryptanalysis and Chained Modular Additions

rounds.

Organization. The chapter is organized as follows. In Section 6.1 we will in-

troduce new results on rotational properties of multi additions and multi sub-

tractions. In Section 6.2 we will apply rotational analysis of chained modular

additions to BLAKE2, Skein and SIMD. Section 6.3 concludes the chapter.

6.1. Chained Modular Additions

It is claimed in [64] that rotational probabilities of an ARX primitive could be

found by multiplying individual rotational probabilities of all the transformations

used in the primitive. As ARX is composed of three distinct operations only,

the rotational probabilities of addition, rotation and XOR can be computed. As

modular addition only has rotational probability less than one, it is concluded

that the theorem given below holds.

Theorem 6.1 ([64]). Let q be the number of modular additions in an ARX primi-

tive (that has an arbitrary number of rotations and XORs). Then rotational prob-

ability of the ARX primitive is pq+, where p+ is rotational probability of modular

addition (which depends on the rotation parameter r and the word size n).

In other words, to �nd rotational probability of ARX, one has to count the num-

ber of additions q only. If pq+ > 2−m, where m is the state size, then the primitive

is susceptible to rotational cryptanalysis. Theorem 6.1 is true under the assump-

tion that an ARX cipher is Markov and round keys are chosen independently and

uniformly at random. Note that as in di�erential cryptanalysis, if round keys are

not used in every round, then randomness (required by the Markov chain) must

come from the state words, which are updated by the three operations of ARX.

Rotations and XORs have rotational probability of 1 and thus are independent of

the inputs. The case of modular addition is di�erent. Rotational probability of

modular addition is as determined by Lemma 2.1 as long as inputs are random.

The output of modular addition is biased when an input pair is rotational. That

is if (x + y)≪r= x≪r +y≪r and r > 0, then the value z = x + y is biased.

116

6.1. Chained Modular Additions

a b

k

u w

d

a b

k

u w

d

r
r

Figure 6.1.: Two ARX primitives with equal number of additions but di�erent
rotational probabilities.

If the output of modular addition is taken as input to another addition, then

rotational probability of the second addition may not follow Lemma 2.1 although

Theorem 6.1 states that this should be irrelevant.

To illustrate the issue, let us focus on two toy ARX primitives given in Fig. 6.1.

Each of them has three inputs a, b, k, two outputs u and w, and uses two modular

additions. If the rotation amount r equals 1 and the word size is 64 bits, then

by Lemma 2.1, rotational probability of modular addition is 2−1.415 and thus by

Theorem 6.1, rotational probability of both of the primitives should be 2−2.83.

Note that for rotation amount of 1, rotational probability of modular addition

strongly depends on the values of the most signi�cant bits of the inputs. More

precisely, the sum of the most signi�cant bits of the inputs should not be larger

than 1.

In the ARX construction on the left of Fig. 6.1, the two modular additions are

chained, i.e. the output of the �rst is the input to the second. The most signi�cant

bit of the word d = a + b, when (a + b) ≪1= a≪1 +b≪1, is biased towards

1. Therefore, the second modular addition u = k + d has rotational probability

smaller than the one given by Lemma 2.1. As the result, Theorem 6.1 fails to give

the correct probability.

In the ARX on the right of Fig. 6.1, the two modular additions are separated by

rotation. In this case, although the most signi�cant bit of d is still biased towards

1, the rotation moves this bit to a di�erent position, where the mentioned bias

is negligible for the computation of the rotational probability. Furthermore, the

117

6. Rotational Cryptanalysis and Chained Modular Additions

least signi�cant bit of d≪r becomes a completely random bit and thus the second

modular addition d≪r +k has probability given by Lemma 2.1. Therefore, in

this case, Theorem 6.1 works as expected.

These two examples suggest that rotational probability of ARX cannot be com-

puted simply by counting the number of modular additions. Instead, one has to

investigate the relative positions of modular additions, i.e. if they are chained

or separated by rotations. In fact, the longer the chain of modular additions,

the lower the rotational probability for each consecutive addition. The rotational

probability of chained modular additions is given by the following lemma.

Lemma 6.1 (Chained modular additions [65]). Let x1, . . . , xk be n-bit words

chosen at random and let r be a positive integer such that 0 < r < n. Then

Pr([(x1 + x2)≪r= x1 ≪r +x2 ≪r]∧

∧[(x1 + x2 + x3)≪r= x1 ≪r +x2 ≪r +x3 ≪r]∧

∧ . . .

∧[(x1 + . . .+ xk)≪r= x1 ≪r + . . .+ xk≪r]) =

=
1

2nk

(
k + 2r − 1

2r − 1

)(
k + 2n−r − 1

2n−r − 1

)

Proof. First we consider the rotational probability of addition of l terms:

(x1 + x2 + . . .+ xl)≪r= x1 ≪r +x2 ≪r + . . .+ xl≪r . (6.1)

Each of the n-bit words xi can be seen as a concatenation of two words: r-bit

word ai and (n − r)-bit word bi, that is, xi = ai‖bi, |ai| = r, |bi| = n − r. Then

(6.1) becomes:

(a1‖b1 + . . .+ al‖bl)≪r= (a1‖b1)≪r + . . . (al‖bl)≪r . (6.2)

The terms (ai‖bi) ≪r in the right side of (6.2), after the rotation on r bits,

118

6.1. Chained Modular Additions

become (ai‖bi)≪r= bi‖ai, thus (6.2) can be rewritten as:

(a1‖b1 + . . .+ al‖bl)≪r= b1‖a1 + . . . bl‖al. (6.3)

The sum a1||b1 + . . .+al‖bl in the left side of (6.3) can be expressed as (a1 + . . .+

al +Cb1,...,bl)‖(b1 + . . .+ bl), where Cb1,...,bk is the carry from the sum b1 + . . .+ bl.

Similarly, the sum in the right side of (6.3) can be expressed as (b1 + . . . + bl +

Ca1,...,al)‖(a1 + . . .+ al). Therefore, after the rotation of the left sum, we obtain:

(b1+. . .+bl)‖(a1+. . .+al+Cb1,...,bl) = (b1+. . .+bl+Ca1,...,al)‖(a1+. . .+al). (6.4)

If we take into account the size of the words ai and bi, from (6.4) we get:

b1 + . . .+ bl ≡ b1 + . . .+ bl + Ca1,...,al (mod 2n−r),

a1 + . . .+ al + Cb1,...,bl ≡ a1 + . . . al (mod 2r),

that is:

Ca1,...al ≡ 0 (mod 2n−r), Cb1,...,bl ≡ 0 (mod 2r). (6.5)

As a result 6.1 is equivalent to 6.5 for any values of ai, bi, i = 1, . . . , l.

The probability of chained modular additions given in the Lemma is therefore

equal to the probability of the following system:

Ca1,a2 ≡ 0 (mod 2n−r), Cb1,b2 ≡ 0 (mod 2r)

Ca1,a2,a3 ≡ 0 (mod 2n−r), Cb1,b2,b3 ≡ 0 (mod 2r)

. . .

Ca1,...ak ≡ 0 (mod 2n−r), Cb1,...,bk ≡ 0 (mod 2r).

Further we will show that the whole system is equivalent to

Ca1,...ak = 0, Cb1,...,bk = 0. (6.6)

To do so, we show, by induction on k, that the system of congruences on the

119

6. Rotational Cryptanalysis and Chained Modular Additions

left-hand side above, i.e. Ca1,...,ai ≡ 0 (mod 2n−r) for all 2 ≤ i ≤ k is equivalent

to the equation Ca1,...,ak = 0. The same sequence of reasoning applies to the right

hand side of the above system to show that Cb1,...,bi ≡ 0 (mod 2r) for all 2 ≤ i ≤ k

is equivalent to the equation Cb1,...bk = 0.

First we deal with the easier reverse direction of the equivalence. Indeed, if

Ca1,...ak = ba1+...+ak
2r c = 0 and hence a1 + . . . + ak < 2r, it follows (by positivity

of the ai's) that a1 + . . . ai < 2r and hence Ca1,...,ai = 0 and also Ca1,...,ai ≡ 0

(mod 2n−r) for all 2 ≤ i ≤ k, as required for the reverse direction.

We now prove the forward direction of the equivalence by induction on k. For

the induction base case, we take k = 2. The congruence Ca1,a2 ≡ 0 (mod 2n−r)

is equivalent to Ca1,a2 = t · 2n−r for some non-negative integer t. As the carry of

addition of two words cannot be larger than 1, it means that Ca1,a2 ∈ {0, 1}. If

the carry is 1, then from 1 = t · 2n−r it follows that t = 1 and 2n−r = 1. However,

r < n and thus 2n−r > 1. Therefore, the carry Ca1,a2 can only equal zero, and

thus Ca1,a2 ≡ 0 (mod 2n−r) is equivalent to Ca1,a2 = 0, proving the induction

base case k = 2.

For the induction step, suppose that for some k ≥ 2 the congruence system

Ca1,...,ai ≡ 0 (mod 2n−r) for all 2 ≤ i ≤ k implies the equation Ca1,...ak = 0. We

show that the congruence system Ca1,...,ai ≡ 0 (mod 2n−r) for all 2 ≤ i ≤ k + 1

implies the equation Ca1,...ak+1
= 0. Indeed, by the induction hypothesis, we have

that the �rst k congruences of the system imply that Ca1,...,ak = 0 and hence

a1 + . . . + ak < 2r, whereas ak+1 < 2r, so a1 + . . . ak+1 < 2r + 2r = 2 · 2r

and thus Ca1,...,ak+1
= ba1+...+ak+1

2r c ∈ {0, 1}. Then, similarly as in the base case

above, the congruence Ca1,...,ak+1
≡ 0 (mod 2n−r) and the fact that r < n imply

that the value of the carry Ca1,...,ak+1
must be zero, which completes the proof

of the induction step. As a result, we have reduced the whole system to the two

equations given in (6.6).

Finally, let us �nd the probability that (6.6) holds, when ai, bi, i = 1 . . . , k are

120

6.1. Chained Modular Additions

random r-bit and (n− r)-bit words, respectively. Namely, we are looking at

Pr(a1 + . . .+ ak < 2r ∧ 0 ≤ ai < 2r ∧ 0 ≤ i ≤ k)· (6.7)

· Pr(b1 + . . . bk < 2n−r ∧ 0 ≤ bi < 2n−r ∧ 0 ≤ i ≤ k) (6.8)

Note that

Pr(a1 + . . .+ ak < 2r ∧ 0 ≤ ai < 2r ∧ 0 ≤ i ≤ k) = (6.9)

=

2r−1∑
j=0

Pr(a1 + . . . ak = j ∧ 0 ≤ ai < 2r, 0 ≤ i ≤ k). (6.10)

Furthermore, the terms in the right side of (6.9) can be evaluated according to

well known combinatorial formula

#{z1 + . . .+ zk = j ∧ 0 ≤ zi, 0 ≤ i ≤ k} =

(
j + k − 1

j

)
. (6.11)

Note that in (6.11), the condition 0 ≤ zi can be replaced with 0 ≤ zi < t when

t > j, as the number of tuples does not increase when zi ≥ t for some i (the sum

is then larger than j). Therefore

Pr(z1 + . . .+ zk = j ∧ 0 ≤ zi < t ∧ t > j ∧ 0 ≤ i ≤ k) =

(
j + k − 1

j

)
t−k (6.12)

and (6.7) can be expressed as:

Pr(a1 + . . .+ ak < 2r ∧ 0 ≤ ai < 2r ∧ 0 ≤ i ≤ k)·

· Pr(b1 + . . . bk < 2n−r ∧ 0 ≤ bi < 2n−r ∧ 0 ≤ i ≤ k) =

=

2r−1∑
j=0

(
j + k − 1

j

)
2−rk ·

2n−r−1∑
j=0

(
j + k − 1

j

)
2−(n−r)k =

=
1

2nk

2r−1∑
j=0

(
j + k − 1

j

)
·

2n−r−1∑
j=0

(
j + k − 1

j

)

121

6. Rotational Cryptanalysis and Chained Modular Additions

Finally, we use the binomial coe�cient formula (for m,n ∈ N)

m∑
j=0

(
n+ j

j

)
=

(
n+m+ 1

m

)
.

and we conclude the proof

Pr([(x1 + x2)≪r= x1 ≪r +x2 ≪r]∧

∧[(x1 + x2 + x3)≪r= x1 ≪r +x2 ≪r +x3 ≪r]∧

∧ . . .

∧[(x1 + . . .+ xk)≪r= x1 ≪r + . . .+ xk≪r]) =

1

2nk

2r−1∑
j=0

(
j + k − 1

j

)
·

2n−r−1∑
j=0

(
j + k − 1

j

)
=

=
1

2nk

(
k + 2r − 1

2r − 1

)(
k + 2n−r − 1

2n−r − 1

)
.

From the above lemma, we obtain the following important result, which forms

the basis for our analysis.

Fact 1. Chained modular additions do NOT form a Markov chain with respect

to rotational di�erences. Rotational probabilities of chained modular additions

cannot be computed as product of probabilities of the individual modular additions.

We used GNU Multiple Precision Floating-Point Reliably library (GNU

MPFR) to compute rotational probabilities of chained modular additions accord-

ing to the results of Lemma 6.1. Probabilities for 32-bit and 64-bit words, rotation

parameters of 1 and 2 and precision of 10000 digits are given in Table 6.1. For

instance, when the rotation parameter is 1 and there are 25 chained modular addi-

tions, probability that outputs of these 25 additions are rotational is 2−109.6. This

is to be compared to the claim of Theorem 6.1, which predicts that probability is

2−1.415·25 ≈ 2−35.4. We note that we have also computed the rotational probabil-

ities when the rotation amount is greater than 2. The discrepancy is present as

well, and it has the tendency to grow � the closer the rotation amount to n/2, the

122

6.1. Chained Modular Additions

Table 6.1.: The comparison of the rotational probabilities (log2) of chained mod-
ular additions of 32-bit and 64-bit words given by Theorem 2 of [64],
and by our Lemma 6.1.

rotation amount : 1

of additions 1 2 3 4 5 6 7 8

Theorem 2 [64] −1.4 −2.8 −4.2 −5.7 −7.1 −8.5 −9.9 −11.3

Lemma 6.1 −1.4 −3.6 −6.3 −9.3 −12.7 −16.3 −20.1 −24.1

of additions 9 10 11 12 13 14 15 16

Theorem 2 [64] −12.7 −14.1 −15.6 −17.0 −18.4 −19.8 −21.2 −22.6

Lemma 6.1 −28.3 −32.7 −37.1 −41.7 −46.4 −51.3 −56.2 −61.2

of additions 17 18 19 20 21 22 23 24

Theorem 2 [64] −24.1 −25.5 −26.9 −28.3 −29.7 −31.1 −32.5 −34.0

Lemma 6.1 −66.3 −71.4 −76.7 −82.0 −87.4 −92.9 −98.4 −104.0

of additions 25 26 27 28 29 30 31 32

Theorem 2 [64] −35.4 −36.8 −38.2 −39.6 −41.0 −42.4 −43.9 −45.3

Lemma 6.1 −109.6 −115.3 −121.1 −126.9 −132.8 −138.7 −144.6 −150.6

rotation amount : 2

of additions 1 2 3 4 5 6 7 8

Theorem 2 [64] −1.7 −3.4 −5.0 −6.7 −8.4 −10.1 −11.7 −13.4

Lemma 6.1 −1.7 −4.3 −7.5 −11.1 −15.1 −19.4 −23.9 −28.7

of additions 9 10 11 12 13 14 15 16

Theorem 2 [64] −15.1 −16.8 −18.4 −20.1 −21.8 −23.5 −25.1 −26.8

Lemma 6.1 −33.6 −38.7 −44.0 −49.4 −54.9 −60.6 −66.3 −72.2

of additions 17 18 19 20 21 22 23 24

Theorem 2 [64] −28.5 −30.2 −31.8 −33.5 −35.2 −36.9 −38.5 −40.2

Lemma 6.1 −78.1 −84.2 −90.3 −96.5 −102.8 −109.1 −115.5 −122.0

of additions 25 26 27 28 29 30 31 32

Theorem 2 [64] −41.9 −43.6 −45.3 −46.9 −48.6 −50.3 −52.0 −53.6

Lemma 6.1 −128.5 −135.1 −141.8 −148.5 −155.3 −162.1 −169.0 −175.9

larger the discrepancy between the claims of Theorem 6.1 and of our Lemma 6.1.

Note that Lemma 6.1 is used when outputs of all chained additions need to be

rotational. This is an important requirement as in ARX, outputs of intermediate

modular additions are used as inputs to other operations and are assumed to be

rotational. For instance, in Fig. 6.1, we need d to be rotational, as further it is

used in computing the value of w. In contrast, if only the �nal output of mul-

tiple modular additions needs to be rotational, then the rotational probability is

computed under di�erent formula (due to space constrains, we omit the formula).

123

6. Rotational Cryptanalysis and Chained Modular Additions

a b

k

u w

r

r

a b

k

u w

r

r

Figure 6.2.: Two ARX primitives with di�erent incorporations of the subkeys: in
the ARX on the left the subkey is modularly added hence does not
break the chain of modular additions, while in the ARX on the right
the subkey is XORed to the state, thus it breaks the chain.

Above it is assumed that only rotations can break the chain of modular addi-

tions. We point out that XORs also break such chains as long as the second term

of the XOR is a random value. In practice, for ARX algorithms, the chains are

broken by both XORs and rotations. Moreover, due to the possibility of XOR to

break chains of modular additions, rotational probability of ARX primitives highly

depends on the way round keys are incorporated into the state, i.e. it is important

if round keys are modularly added or XORed to the state. To illustrate this, let us

focus on Fig. 6.2. We have two ARX primitives, each with two modular additions.

The di�erence is that in the ARX on the left of the �gure, the round key is mod-

ularly added to the state while in the ARX on the right, the round key is XORed

to the state. We can see from the �gure that in the left ARX the round key does

not break the chain of modular additions, while in the right ARX it does. Hence

for the left ARX, we have to use Lemma 6.1 to compute the rotational probability

and thus it is much lower.

6.2. Applications

Lemma 6.1 suggests that the rotational probability of ARX can be computed

more accurately if we take into account not only the number of additions used in

ARX but also their positions. We cluster the additions into chains and calculate

the rotational probability as follows:

124

6.2. Applications

1. Find all chains of modular additions (including the ones that are composed

of a single additions) in the ARX primitive.

2. For each chain, compute the rotational probability according to Lemma 6.1.

3. For the entire primitive, calculate the rotational probability as the product

of rotational probabilities of chains.

Consider an example of application of the above algorithm to the case of the

ARX primitives given in Fig. 6.1. Our task is to �nd rotational probabilities of

these two primitives when the rotation parameter is 1 (and the word size is 64

bits). The ARX scheme on the left of Fig. 6.1 has only one chain of two modular

additions. Therefore, according to Table 6.1, the rotational probability of this

chain is 2−3.6. On the other hand, the ARX on the right of Fig. 6.1, has two

chains composed of a single modular addition and thus the rotational probability

of this scheme is 2−1.4 · 2−1.4 = 2−2.8.

Now we are ready to revisit the existing rotational attacks on the ARX primi-

tives functions.

6.2.1. Application to Rotational Cryptanalysis of BLAKE2

BLAKE2 [5] is a hash function, which supports 256 and 512-bit outputs. Further

on we analyze the version with 512-bit output only but we note that similar

analysis applies to the other version too. The compression function of BLAKE2 is

based on a permutation P (V,M), where V is a state of sixteen 64-bit words vi, and

M is a message input also composed of sixteen words mi. The function P consists

of 12 identical rounds and each round uses 8 applications of the sub-primitive

Gi(a, b, c, d) = G(a, b, c, d,mf(i),mg(i)), where f(i) g(i) implement a permutation

on a set of 16 message words. The primitive G is �rst applied column-wise to

4 columns, and then diagonal-wise. The column and diagonal steps are de�ned,

respectively, as:

G0(v0, v4, v8, v12), G1(v1, v5, v9, v13), G2(v2, v6, v10, v14), G3(v3, v7, v11, v15),

G4(v0, v5, v10, v15), G5(v1, v6, v11, v12), G(v2, v7, v8, v13), G7(v3, v4, v9, v14).

125

6. Rotational Cryptanalysis and Chained Modular Additions

The function G(a, b, c, d,m1,m2) itself works as follows:

1 : a← a+ b+mi 5 : a← a+ b+mj

2 : d← (d⊕ a)≫32 6 : d← (d⊕ a)≫16

3 : c← c+ d 7 : c← c+ d

4 : b← (b⊕ c)≫24 8 : b← (b⊕ c)≫63

Figure 6.3.: The 8 chains (denoted in red) of 4 modular additions in one round of
the permutation of BLAKE2.

Rotational cryptanalysis of the BLAKE2 permutation [55] uses the rotational pa-

rameter equal to 1 (in order to increase the probability) and thus rotational prob-

ability of addition is around 2−1.4. Further, it is noted that the function G has 6

modular additions thus the expected rotational probability of G is 2−1.4·6 = 2−8.4.

The authors also note that the experimental results show that rotational proba-

bility is slightly lower or around 2−9.1. They took this as rotational probability

of one application of G and because the whole permutation has 12 rounds, each

with 8 calls to G, they conclude that rotational probability of the permutation

126

6.2. Applications

used in the compression function of BLAKE2 is 2−9.1·12·8 = 2−873.6. Since this

permutation works for 1024 bits, a rotational distinguisher is claimed for the full

12-round permutation.

Our rigorous analysis demonstrates that the actual probability would be far

lower due to chaining of modular additions, so the conclusion mentioned above

is incorrect. Without the loss of generality, we set all the message words to 0, as

this yields the rotational pair of messages delivering the highest rotational proba-

bility. Then identify all chained modular additions. Fig. 6.3 shows a round of the

permutation, where one can see exactly 8 chains of 4 modular additions each. We

can assume the non-chaining inputs of modular additions are independent since

they always go through rotations. Therefore, Lemma 6.1 can be applied. Note

that the 8 chains of modular additions continue through the next rounds, totaling

4R additions in each chain over R rounds. Consequently, a 7-round permutation

(with 8 chains of 28 modular additions each) has rotational probability equal to

(2−126.9)8 = 2−1015.2 when the rotation amount equal to 1 (see Table 6.1). Taking

more rounds would result in the rotational probability smaller than 2−1024. In-

deed, Table 6.1 gives the probability of 2−132.8 for 29 chained modular additions

smaller or equal to 2−1062.4. Hence, a rotational distinguisher for the permutation

of BLAKE2 works for up to 7 rounds only, which is smaller than 12 rounds claimed

in [55].

6.2.2. Application to Rotational Cryptanalysis of Skein

Skein [44] is a hash function proposed for the NIST SHA-3 competition, which

reached the �nal round of the competition. At each round the authors proposed

some tweaks to the previous version. Here we consider two such versions Skein

v1 [42] and Skein v2 [43] and refer to them as Skein, as the attacks [64, 67]

target them both. In order to stop rotational attacks, the designers changed the

key schedule in v3.

We consider the version of Skein with a 512-bit internal state, which we denote

by Skein-512. The same analysis applies to other versions. The compression

function of Skein-512 is based on the block cipher Three�sh, which is a 72-round

127

6. Rotational Cryptanalysis and Chained Modular Additions

ARX scheme with 512-bit state seen as eight 64-bit words. Each round applies 4

parallel MIX functions (Fig. 6.4), and subkeys (message words) are added every 4

rounds. Subkeys are a bit-wise linear function of the master key, the tweak value

(not to be confused with the submission tweak), and a round counter.

k0 k1 k2 k3 k4 k5 k6 k7
counter

MIX

Figure 6.4.: Four rounds of Three�sh followed by a subkey addition. In total,
Three�sh uses 18 such four rounds. The rounds use di�erent rotation
amounts.

Skein (and the underlying Three�sh) was used as a testbed for rotational crypt-

analysis [64] due to the rotation-invariant constant 0x555...555 used in the key

schedule and a low-weight counter. By setting the rotational amount to 2, 42

rounds were attacked in [64]. Then the attack was combined with the rebound

method and extended to 55 rounds in [67]. To deal with the round counter, the

authors had to drop the requirement of having rotational property preserved af-

ter each round. Instead, using so called rotational errors and corrections, they

128

6.2. Applications

introduced a disturbance in the internal state and later corrected it in the manner

similar to the local collision concept.

The authors also noticed the di�erence between the theoretical rotational prob-

abilities (Lemma 2.1) and experimental values. To cope with this problem, they

used the experimental value for the 2-round span where the rotational property

is required, and a separate value for the local collision part around the subkey

injection. Their experiments are well matched with Table 6.1 and thus are not

questioned.

We do not attempt to do rigorous analysis of the corrections method, as it

would involve a much more tedious process of taking all constraints and counter

properties into account. Instead, we show that a simpli�ed version of the per-

mutation, where all subkeys and counters are set to 0, has far lower rotational

probability than expected by Theorem 6.1.

It is easy to see 4 parallel addition chains on Fig. 6.4, which cover state words

S[0], S[2], S[4], S[6], with one addition per chain per round. We note that the

inputs to these additions coming from the other state words undergo rotations

and thus can be considered independent. Therefore, for R rounds of Three�sh

we get 4 chains with R modular additions each. Since there are no constants,

we can set the rotation amount to 1 as the most bene�cial for the attacker. Ta-

ble 6.1 clearly implies that a chain of length 28 has rotational probability smaller

or equal to (2−126.9). Therefore, 4 chains over 28 rounds yield the rotational

probability around 2−508. Setting the rotation parameter to 2 (as in the previous

cryptanalyses of Skein) would reduce the number of attacked rounds to 24 (as

(2−122.0)4 = 2−488). For comparison, [67] claims 55-round rotational distinguisher

on Skein (with all subkeys and constants included), but with the use of rotational

corrections. We cannot disprove these results as our formulas do not apply to the

case when rotational corrections are used.

6.2.3. Application to Rotational Cryptanalysis of SIMD-512

We revisit analysis of SIMD-512 presented in Section 5.5. Based on Markov

chain assumption we have derived following probabilities on the rotational prob-

129

6. Rotational Cryptanalysis and Chained Modular Additions

ability of one round of SIMD Feistel transformation: for non-zero message words

W
(i)
j the probability is 2−1.41·3·8 = 2−33.8 and for zero message words W

(i)
j the

probability is 2−1.41·2·8 = 2−22.6. However, if we analyze locations of modular

additions in round functions we can identify 2 and 3 modular addition chains

depending on values of W
(i)
j and used function Φ, see on Fig. 6.5. Function Φ(i)

is equivalent to IF for i = 0, .., 3 and MAJ for i = 4, .., 7. We have experimentally

observed that Φ = IF breaks addition chain if result of modular addition is in-

put to the �rst attribute of the function. On the other hand Φ = MAJ does not

interrupt addition chain. Hence, when we analyze rounds with W
(i)
j = 0 we still

can simply count number of additions as any possible addition chain is broken by

Φ = IF or a rotation for the �rst 3.5 round functions. The remaining 0.5 of the

3rd round function is incorporated in the �rst 8 2-addition chains. Next we can

identify 24 2-addition chains for 3.5 round functions with Φ = MAJ and last 0.5

has 8 single additions. Overall rotational probability for 8 rounds of SIMD-512 is

2−1.4·2·8·3−1.4·8−3.6·8·4−1.4·8 = 2−204.8 and 16 2−409.6. In case of the 4 feedforward

rounds we have Φ = IF that break addition chains but this timeW
(i)
j are no more

zeros and instead of separated additions we have 2 addition chains. Hence, the

rotational probability of one such round is 2−3.6·8−1.4·8 = 2−40 that gives 2−160

for the 4 feedforward rounds. Overall rotational probability of the 20-round dis-

tinguisher is 2−569.6, while for random function rotational output in 1024 would

occur with probability 2−1024.

The new analysis shows that the rotational distinguisher for compression func-

tion of SIMD-512 works with higher complexity than claimed in Section 5.5.

6.3. Summary

We have shown that the rotational probability of ARX depends not only on

the number of modular additions, but also on how they are connected. The

rotational probability of a chain of modular additions cannot be computed as a

product of probabilities of the individual additions. This is because the Markov

cipher assumption, used implicitly for computing the probability in such a way,

130

6.3. Summary

Figure 6.5.: The �rst two round functions out of 36 of SIMD-512 compression
function. The rounds use di�erent rotation amounts r, s and di�erent
function Φ.

does not hold. Therefore, the chain of additions cannot be a Markov chain with

respect to rotational analysis, and thus its probability is lower and is de�ned by

Lemma 6.1. Our analysis also suggests that the way the subkeys are incorporated

131

6. Rotational Cryptanalysis and Chained Modular Additions

into the cipher can in�uence the rotational probability not only because modular

added subkeys simply increase the total number of additions, but because XORed

subkeys can break the addition chains and thus can increase the probability.

We have investigated the application of rotational cryptanalysis only to ARX,

but we note that our methodology can be used for analysis of rotational attacks

on other primitives as well. For instance, the Markov cipher assumption used in

the recent rotational attacks on Keccak [104] is valid as in each round of Keccak,

there is a very strong di�usion, and, moreover, each of the 25 words goes through

a rotation. Therefore the rotational probability in the attacks on Keccak [104]

is correct. On the other hand, the assumption used the rotational analysis of

NORX [61] is clearly not valid as the di�usion in the rounds of NORX does not

introduce su�cient entropy at the inputs of the non-linear operations. Hence, the

probability of the rotational analysis of NORX [61] is miscalculated.

To summarize, the rotational probability of a cryptographic primitive not nec-

essarily equals to the product of the rotational probabilities of the individual

operations used in the primitive. Such shortcut in the estimation of probability

gives neither upper nor lower bound on the actual probability. The estimation

can be used only after con�rming that the Markov assumption applies to the

primitive. Otherwise, the rotational probability must be computed ad-hoc.

132

7. Conclusions

The study presented in this thesis has covered only a small part of wide subjects

of design and analysis of cryptographic hash functions. We have discussed security

of available hashing modes applied to block ciphers and illustrated our results with

examples of attacks on instances of such constructions. Our results do not only

have application in hash function analysis but have also improved some of the

attacks on block ciphers: Crypton, Hierocrypt-3, IDEA, SAFER++ and Square

in the open-key model. We have extended application of rotational distinguishers

to larger class of primitives besides additions, rotations and XORs. Our �ndings

have allowed to mount rotational attacks on two round 2 SHA-3 candidates: BMW

and SIMD, one �nal round SHA-3 candidate: Skein and BLAKE2 next version of

other �nal round SHA-3 candidate BLAKE. We have proposed a new kind of shift

distinguisher and applied it to SHA-3 candidate: Shabal. The theoretical results

we have obtained for: random permutations in terms of di�erential propagation

and multi additions/subtractions in case of rotational analysis have demonstrated

the beauty of mathematics applied to cryptanalysis of hash functions and block

ciphers.

The SHA-3 competition concluded in 2012 and Keccak has been selected as

a successful winner out of �ve �nal candidates: BLAKE, Grøstl, JH, Keccak or

Skein. However, it is not the only output of the Secure Hash Standard compe-

tition. The 4-year selection process has enthused the international cryptographic

community to search for better ways of estimating security level of cryptographic

hash functions. New attacks have been devised and new �unwanted� properties

of cryptographic primitives have been discovered. Without a doubt, the new

SHA-3 attracts more attention from the research community, which will bring

133

7. Conclusions

more interesting cryptanalytic results and maybe answers to above questions.

7.1. Contributions

In Chapter 3, we investigated the problem of building hash functions from block

ciphers and have discussed the results for commonly used modes of designing

compression functions. We have considered both the known-key and chosen-key

models. Speci�cally, we have analyzed the collision resistance of compression

functions based on single block ciphers as well as the double-block compression

functions, when speci�c di�erential trails for the underlying ciphers can be built.

We have shown that we can build open-key di�erential distinguishers for some

well known block ciphers: Crypton, Hierocrypt-3, SAFER++ and Square. As far

as we know, the attack on SAFER++ is the �rst rebound attack with standard

di�erentials. For these ciphers, we have shown that when the attack model is

switched from secret-key to open-key, the number of rounds that can be attacked

increases. In order to demonstrate e�ciency of proposed distinguishers, we have

provided formal proof of a lower bound for �nding a di�erential pair that follows

some truncated di�erential in case of a random permutation. Our hash analysis

has shown that block ciphers used as underlying primitives in considered modes

should be analyzed also in the open-key model in order to prevent possible collision

attacks.

In Chapter 4, we studied the security of the IDEA block cipher when applied

to following block cipher hashing modes: Davies-Meyer, Hirose, Abreast-DM,

Tandem-DM, Peyrin et al.(II) and MJH-Double. We have shown free-start-

collision and preimage attacks for all the modes and semi-free start collisions at-

tacks for Peyrin et al.(II) and MJH-Double modes. Finally, we have constructed

collision search attack for the whole hash function in Davies-Meyer mode. We

have exploited weak-keys of IDEA, in particular we have used the fact that the

key 0 in IDEA is extremely weak, actually rendering the whole encryption process

to a T-function, already known as dangerous for building a hash function [106].

All our attacks were based on weak-keys utilization, but in contrary to the secret

134

7.1. Contributions

key model where the goal of the attacker is to exhibit the biggest weak-key class

possible, in the hashing mode the goal is to �nd and exploit the weakest of all

keys. While weak-keys are already known to be dangerous for block cipher-based

hash functions, our method used a novel and non-trivial almost half-involution

property for IDEA. We have found that even strengthened versions of the cipher

with any number of rounds can be attacked with about the same complexities.

Our analysis has once again demonstrated in a similar way as in Chapter 3 that

even if this cipher is considered secure in the secret-key model, its security remains

an open problem in a hashing mode. In particular, one should strictly avoid the

use of a block cipher for which weak-keys exist, even if only a single weak-key is

known.

In Chapter 5, we investigated recently proposed rotational analysis and rota-

tional distinguishers. Our �ndings allowed to extend rotational analysis (applied

to additions, rotations and XORs) to wider range of primitives, that is: subtrac-

tions, shifts, Boolean functions and combination of additions and subtractions.

We have derived the rotational probabilities from these operations. In particular

we have presented exact formulas for calculation of rotational probability for multi

additions and multi subtractions. We have also applied S-function framework for

rotational analysis with corrections and provided an algorithmic way to calculate

exact probabilities for �xed corrections. We have applied our �ndings to rota-

tional analysis of compression functions of SHA-3 candidates: BMW and SIMD.

We have found that round 1 BMW [52] is susceptible to the rotational analysis.

Also, the round 2 BMW [53], with a slightly altered constant, can be attacked

using this method. For SIMD, we have presented various rotational distinguishers

on round-reduced original and modi�ed versions. We have also proposed new shift

distinguisher and applied it to the permutation of the SHA-3 candidate Shabal.

In Chapter 6 we shown that the Markov chain assumtion in case of rotational

analysis does not always hold. Even though number of additions play a crutial role

in rotational analysis of ARX primitive, their positions a�ect owerall rotational

probability as well. With increasing number of chained modular additions, the

rotational probability of such system decreases. Hence rotational attack might

135

7. Conclusions

become ine�ective.

We have derived an explicit formula for the probability of such chained additions

and shown that the rotational probability of ARX should be computed as the

product of the rotational probabilities of modular addition chains.

What is more the way the round keys are incorporated into the state, plays

a crucial role in calculation of the rotational probability. When round keys are

XORed to the state, they might break modular addition chains and thus increase

the probability. On the other hand, if they are merged using modular addition,

the rotational probability of ARX may be reduced.

We have applied our �ndings to revisit rotational analysis of compression func-

tions of SHA-3 candidates: BLAKE2, SIMD and Skein. We have shown rotational

distinguisher for: the permutation of BLAKE2 works for up to 7 rounds instead of

12 claimed in [55], modi�ed compression function SIMD - up to 24 rounds with

higher complexity than claimed in Chapter 5.5.

We have found that round 1 BMW [52] is susceptible to the rotational analysis.

Also, the round 2 BMW [53], with a slightly altered constant, can be attacked

using this method. For SIMD, we have presented various rotational distinguishers

on round-reduced original and modi�ed versions. We have also proposed new shift

distinguisher and applied it to the permutation of the SHA-3 candidate Shabal.

The invention of rotational analysis has created a new avenue in cryptanalysis

and has invigorated the evaluation process of the SHA-3 competition. However,

the theory and application of rotational analysis and distinguishers is largely

unexplored. Even though our analysis did not provide best attacks on analyzed

functions: BLAKE2, BMW, SIMD, Shabal, Skein, we have improved the rotational

framework and have shown possible ways of its further development.

7.2. Design Guidelines

Our analysis has demonstrated many successful attacks on a variety of block

ciphers in hashing modes and three SHA-3 candidates. The results were exploiting

�weaknesses� of analyzed primitives and might be wrongly considered as negative.

136

7.3. Open Problems and Future Research Directions

However, they are in a sense warning signs for designers of new constructions.

The tools applied to cryptanalysis in the thesis, that is: di�erential distinguishers,

rotational distinguishers, almost half-involution property, T/S-functions, etc. can

be as well used for testing of hash function security margin. Of course such an

approach will not replace mathematical proof, but might detect �aws in new

designs and grow designer con�dence in a chosen strategy.

What is important, our �ndings introduced in Chapter 3 and Chapter 4 demon-

strate that block ciphers applied in hashing modes do not only have to be secure

in the secret-key model but should as well be analyzed in the open-key model. In

particular, one should strictly avoid block ciphers for which any weak-key exists

for compression function construction.

Our rotational analysis of BMW and SIMD, and shift analysis of Shabal in

Chapter 5 and Chapter 6 proved to be e�ective to some extent, even though

the preservation of rotational/shift pairs does not seem to be probable for such

complicated designs. What we have observed is that �good� constants might

even improve our attacks. In the light of SHA-3 competition requirements, the

observed property of the compression functions is not (pseudo) random. Hence

it might raise some concern, even if it is not clear how the property is extended

to the entire function. On the other hand, the tools we have developed for this

kind of analysis can help determine �bad� for attacker constants and alignment of

internal operations of build primitive.

7.3. Open Problems and Future Research Directions

The open-key model and its variants, the known-key and the chosen-key models

are still highly researched. Even if the attacks on block ciphers demonstrated in

these models are not considered as a real threat for this primitive, the application

of block ciphers in the construction of compression functions will result in the

designers willing to consider these models seriously. The open problem in this

�eld of analysis is how the gap between the two models: the secret-key and the

open-key can be closed. That is �nding the relation for attacks designed in both

137

7. Conclusions

cases.

The second problem we would like to present is the existence of attacks on

hash functions or block ciphers based on available highly e�cient distinguishers.

For many cryptographic primitives there exist high probability distinguishers, for

example in case of Shabal there are two di�erential distinguishers with probability

1 on its keyed permutation [2, 73]. However, there is no straightforward way to

extend them to any kind of non-distinguishing attack on the whole hash function.

The problem has been researched to some extent, for example designers of Shabal

introduced in their analysis [27] a distinguishing oracle, and demonstrated that

the advantage of an attacker interacting with the oracle equipped with e�ective

distinguisher for compression function is negligible.

Another interesting �eld of research is the application of the S-function frame-

work for rotational analysis with corrections. The obtained results allow to estab-

lish exact probability for �xed corrections. However, �nding optimal con�guration

of input/output corrections in polynomial time is an open problem. An e�cient

algorithm could drastically improve rotational analysis. This is to say that the re-

sults would have an immediate application to di�erential probabilities of modular

addition, and might as well lead to improvements to di�erential characteristics of

ARX designs.

138

A. Proofs of Rotational Analysis

Lemmas

The Lemma 2.1 was proven in [38].

Shifts. We will provide evidence for shifts to the right. The case for shifts to the

left can be proven similarly. Recall that for n-bit word x, rotation is de�ned as

x≪r= (x�r)⊕ (x�(n−r)).

Then,

(x�s)≪r = [(x�s)�r]⊕ [(x�s)�(n−r)],

(x≪r)�s = [(x�r)⊕ (x�(n−r))]�s= [(x�r)�s]⊕ [(x�(n−r))�s]

Hence, we have to �nd the probability that L ≡ (x �s) �r= (x �r) �s≡ R

holds. Let x = xn−1 . . . x0, where xi are bits of x. When s ≥ r, then,

L ≡ (x�s)�r= 0 . . . 0︸ ︷︷ ︸
s−r

xn−1 . . . xs 0 . . . 0︸ ︷︷ ︸
r

,

R ≡ (x�r)�s= 0 . . . 0︸ ︷︷ ︸
s

xn−1−r . . . xs−r

If 0 ≤ r ≤ s ≤ n
2 , then L = R with probability 2−2r: the bits xn−1, . . . , xn−r

(r bits in total) and the bits xs−1, . . . , xs−r (again r bits) have to be zeros, and

r = min(r, s, n− r, n− s).

If 0 ≤ r ≤ n
2 < s ≤ n, then L = R with probability 2−2 min(r,n−s): if r ≤ n− s

then we have an analogous situation as above mentioned, whereas if n − s < r

139

A. Proofs of Rotational Analysis Lemmas

then the bits xn−1, . . . , xn−s (n − s bits in total) and the bits xn−1−r, . . . , xs−r

(n− s bits in total) have to be zeros, and n− s = min(r, s, n− r, n− s).

If n2 < r ≤ s ≤ n, then n− 1− r < n
2 and therefore, the probability that L = R

is 2−2(n−s): the bits xn−1, . . . , xs (total n − s bits) and the bits xn−1−r . . . xs−r

(total n− s bits) have to be zeros, and n− s = min(r, s, n− r, n− s).

Obviously, the case when s < r can be reduced to the above case.

Boolean function. Let x be the n-bit input, i.e. x = xn−1xn−2 . . . x0. Then f(x) =

f(xn−1) . . . f(x0). Therefore, we have f(x≪r) = f(xn−1−r) . . . f(xn−r) = [f(xn−1) . . . f(x0)]≪r=

f(x)≪r.

Multiplication. Let x = x12n−r + x2 and y = y12n−s + y2, then

(x · y)≪r+s = (x1y122n−r−s + x1y22n−r + x2y12n−s + x2y2)≪r+s,

x≪r · y≪s = (x22r + x1) · (y22s + y1) = x2y22r+s + x2y12r + x1y22s + x1y1.

If x1 = 0 and y1 = 0 then the above equations simplify to

(x · y)≪r+s = (x2y2)≪r+s,

x≪r · y≪s = x2y22r+s,

respectively. Because (x2y2) ≪r+s= x2y22r+s with probability 2−r−s, as also

x1 = 0 and y1 = 0 with the same probability, the claimed lower bound is obtained.

140

B. mCrypton

mCrypton is a 64-bit block cipher with three possible key sizes 64-bit, 96-

bit and 128-bit, proposed by Lim and Korkishko [92]. It is compact version

of Crypton [91] intended for resource-constrained hardware implementations. A

round transformation of mCrypton consists of an S-box layer γ, linear di�usion

layer composed of two transforms π and τ and subkey addition σ. The encryption

involves 12 rounds applied to an internal state of the cipher.

The internal state of mCrypton can be represented as 4 × 4 matrix of nib-

bles (4-bit words) aij or alternatively as 4 columns Ac[0], . . . , Ac[3] or 4 rows

Ar[0], . . . , Ar[3], where Ac[i] = (a0i, . . . , a3i)
T and Ar[i] = (ai0, . . . , ai3).

Table B.1.: mCrypton internal state representation:
a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

(a) nibble-wise

Ac[0] Ac[1] Ac[2] Ac[3]

(b) column-wise

Ar[0]

Ar[1]

Ar[2]

Ar[3]

(c) row-wise

The encryption process consists of number of rounds build of four types of

transformations:

1. nonlinear substitution γ (S-box),

2. linear π,

3. linear τ ,

4. key addition σ,

described in more detail in the following sections. The i-th round transformation

ρi is a composition of above, that is ρi = σKi ◦ τ ◦π ◦γ, where Ki is an i-th round

141

B. mCrypton

key obtained with a key schedule. The key schedule described in B.5 is a modi�ed

version of the Crypton key schedule (compare [91]).

B.1. Nonlinear Substitution γ

This is the only nonlinear part of the cipher. It applies combination of four

nonlinear S-boxes γ0, γ1, γ2, γ3 to 16-nibble state presented in Table B.3, where γi

is de�ned in Table B.5.

Table B.3.: mCrypton nonlinear substitution γ

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

→
γ0(a00) γ1(a01) γ2(a02) γ3(a03)

γ1(a10) γ2(a11) γ3(a12) γ0(a13)

γ2(a20) γ3(a21) γ0(a22) γ1(a23)

γ3(a30) γ0(a31) γ1(a32) γ2(a33)

Table B.5.: De�nition of mCrypton S-boxes γ0, . . . , γ3.

0 1 2 3 4 5 6 7 8 9 a b c d e f

γ0 4 f 3 8 d a c 0 b 5 7 e 2 6 1 9

γ1 1 c 7 a 6 d 5 3 f b 2 0 8 4 9 e

γ2 7 e c 2 0 9 d a 3 f 5 8 6 4 b 1

γ3 b 0 a 7 d 6 4 2 c e 3 9 1 5 f 8

B.2. Column-Wise Bit Permutation π

π is a linear transformation of columns Ac[i]. It is de�ned in the following way:

πi(Ac[i]) = (b0i, b1i, b2i, b3i)
T

where each bij is calculated as follows:

bji = ⊕3
k=0(m(i+j+k)mod4 ∧ aik)

where ⊕ and ∧ are bit-wise logical operations XOR and AND, respectively. The

constants used to express bij are: m0 = 11102,m1 = 11012,m2 = 10112,m3 =

01112 represented as binary numbers.

142

B.3. Column-To-Row Transposition τ

B.3. Column-To-Row Transposition τ

This is also a linear transformation of mCrypton state, which realizes transpo-

sition of the state, that is i-th column is transformed to i-th row.

Table B.6.: mCrypton column-to-row transposition τ

Ac[0] Ac[1] Ac[2] Ac[3] →
Ac[0]T

Ac[1]T

Ac[2]T

Ac[3]T

B.4. Key Addition σ

Let Ki = (Ki[0],Ki[1],Ki[2],Ki[3]) be 64-bit i-th round key, each Ki[j] consists

of 4 nibbles. Key addition σKi is a row-wise state transformation that XORs j-th

row with j-th element of Ki, that is Ki[j].

Table B.8.: mCrypton key addition σ

Ar[0]

Ar[1]

Ar[2]

Ar[3]

→
Ar[0]⊕Ki[0]

Ar[1]⊕Ki[1]

Ar[2]⊕Ki[2]

Ar[3]⊕Ki[3]

B.5. Altered Key Schedule

The altered key schedule adopted from Crypton is de�ned in the following way:

Let K be a 128-bit encryption key and K = k0 . . . k31 where each ki is four-bit

nibble for i = 0, . . . , 31. At �rst two temporal values U and V are derived from K

so that U [i] = k8ik8i+2k8i+4k8i+6 and V [i] = k8i+1k8i+3k8i+5k8i+7 for i = 0, 1, 2, 3.

Next for U ′ = γ(U) and V ′ = γ(V) the eight expanded keys are evaluated as:

E[i] =
⊕
j 6=i

U ′[j] E[i+ 4] =
⊕
j 6=i

V ′[j]

for i = 0, 1, 2, 3 with use of which the 13 subkeys for each encryption round are

generated according to the following procedure:

143

B. mCrypton

1. for the �rst and the second round:

K0[i] = E[i]⊕ C[0]⊕MCi K1 = E[i+ 4]⊕ C[1]⊕MCi

for i = 0, 1, 2, 3,

2. for the remaining eleven rounds (r = 2, . . . , 12) two steps are executed

alternatively:

a) for r even:

{E[0], E[1], E[2], E[3]} ← {E[1]�12, E[2]�8, E[3]�b3, E[0]�b3},

Kr[i] = E[i]⊕ C[r]⊕MCi,

b) for r odd:

{E[4], E[5], E[6], E[7]} ← {E[7]�b1, E[4]�b1, E[3]�4, E[0]�8},

Kr[i] = E[i+ 4]⊕ C[r]⊕MCi,

for i = 0, 1, 2, 3,

where C[0] = 0xf53a, C[k] = C[k−1]+0xf372 mod 216 for k = 1, . . . , 12,MC0 =

0xacac,MCk = MC�b1
k−1 for i = 0, . . . , 3 and �ba represents bit-left-rotation by a

bits within each four-bit nibble.

B.6. Encryption

The encryption procedure E takes as an input: 64-bit plaintext P and 128-bit

secret key K. The key is expanded to 13 round keys K0, . . . ,K12 with use of key

schedule described in Section B.5. The encryption function EK for given K is

de�ned as follows:

EK = φ ◦ ρ12 ◦ · · · ◦ ρ1 ◦ σK0

144

B.6. Encryption

where i-th round function ρi is de�ned as:

ρi = σKi ◦ τ ◦ π ◦ γ.

The last part of encryption process the φ function is a linear transformation and

φ = τ ◦ π ◦ τ .

145

Bibliography

[1] Gilles Van Assche. A rotational distinguisher on Shabal's keyed permutation

and its impact on the security proofs. Available online at http://gva.

noekeon.org/papers/ShabalRotation.pdf, 2010.

[2] Jean-Philippe Aumasson. On the pseudorandomness of Shabal's keyed per-

mutation. Available online at http://131002.net/data/papers/Aum09.

pdf, 2009.

[3] Jean-Philippe Aumasson. Practical distinguisher for the compression func-

tion of Blue Midnight Wish. Available online at http://131002.net/data/

papers/Aum10.pdf, 2010.

[4] Jean-Philippe Aumasson, Atefeh Mashatan, and Willi Meier. More on Sha-

bal's permutation. OFFICIAL COMMENT, 2009.

[5] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O'Hearn, and Chris-

tian Winnerlein. BLAKE2: Simpler, Smaller, Fast as MD5 LNCS 7954,

2013, pp. 119�135.

[6] Eyüp Serdar Ayaz and Ali Aydin Selçuk. Improved DST Cryptanalysis of

IDEA. LNCS 4356, 2006, pp. 1�14.

[7] Eric Bach. Toward A Theory of Pollard's Rho Method. Inf. Comput., 90,

1991, pp. 139�155.

[8] Paulo S. L. M. Barreto, Vincent Rijmen, Jorge Nakahara Jr., Bart Preneel,

Joos Vandewalle, and Hae Yong Kim. Improved SQUARE Attacks against

Reduced-Round HIEROCRYPT. LNCS 2355, 2002, pp. 165�173.

147

http://gva.noekeon.org/papers/ShabalRotation.pdf
http://gva.noekeon.org/papers/ShabalRotation.pdf
http://131002.net/data/papers/Aum09.pdf
http://131002.net/data/papers/Aum09.pdf
http://131002.net/data/papers/Aum10.pdf
http://131002.net/data/papers/Aum10.pdf

Bibliography

[9] Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and

a Framework for Code-Based Game-Playing Proofs. LNCS 4004, 2006, pp.

409�426.

[10] K. Bentahar, D. Page, J.H. Silverman, M.-J.O. Saarinen, and N.P. Smart.

LASH. Second Cryptographic Hash Workshop, 2006.

[11] Daniel J. Bernstein. Salsa20. Technical Report 2005/025. In eSTREAM,

ECRYPT Stream Cipher Project (2005), http: // cr. yp. to/ snuffle.

html , 2005.

[12] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On

the Indi�erentiability of the Sponge Construction. LNCS 4965, 2008, pp.

181�197.

[13] Eli Biham and Orr Dunkelman. A Framework for Iterative Hash Functions

- HAIFA. IACR Cryptology ePrint Archive, Report 2007/278, 2007.

[14] Eli Biham, Orr Dunkelman, and Nathan Keller. New Cryptanalytic Results

on IDEA. LNCS 4284, 2006, pp. 412�427.

[15] Eli Biham, Orr Dunkelman, and Nathan Keller. A New Attack on 6-Round

IDEA. LNCS 4593, 2007, pp. 211�224.

[16] Eli Biham, Orr Dunkelman, Nathan Keller, and Adi Shamir. New Data-

E�cient Attacks on Reduced-Round IDEA. IACR Cryptology ePrint

Archive, Report 2011/417, 2011.

[17] Eli Biham and Adi Shamir. Di�erential Cryptanalysis of DES-like Cryp-

tosystems. LNCS 537, 1990, pp. 2�21.

[18] Eli Biham and Adi Shamir. Di�erential Cryptanalysis of DES-like Cryp-

tosystems. Journal of Cryptology, 4, 1991, pp. 3�72.

[19] Alex Biryukov, Christophe De Cannière, and Gustaf Dellkrantz. Cryptanal-

ysis of SAFER++. LNCS 2729, 2003, pp. 195�211.

148

http://cr.yp.to/snuffle.html
http://cr.yp.to/snuffle.html

Bibliography

[20] Alex Biryukov, Jorge Nakahara Jr., Bart Preneel, and Joos Vandewalle.

New Weak-Key Classes of IDEA. LNCS 2513, 2002, pp. 315�326.

[21] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikoli¢. Distinguisher and

Related-Key Attack on the Full AES-256. LNCS 5677, 2009, pp. 231�249.

[22] Alex Biryukov and Ivica Nikoli¢. A New Security Analysis of AES-128.

CRYPTO 2009 rump session, 2009.

[23] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis

of the Block-Cipher-Based Hash-Function Constructions from PGV. LNCS

2442, 2002, pp. 320�335.

[24] Charles Bouillaguet, Pierre-Alain Fouque, and Gaëtan Leurent. Security

analysis of SIMD. LNCS 6544, 2011, pp. 351�368.

[25] Bruno O. Brachtl, Don Coppersmith, Myrna M. Hyden, Stephen M. Matyas

Jr, Carl H. W. Meyer, Jonathan Oseas, Shaiy Pilpel, and Michael Schilling.

Data authentication using modi�cation detection codes based on a public

one way encryption function. US Patent no. 4,908,861. Assigned to IBM.

Filed August 28, 1987, March 13, 1990.

[26] Emmanuel Bresson, Anne Canteaut, Benoît Chevallier-Mames, Christophe

Clavier, Thomas Fuhr, Aline Gouget, Thomas Icart, Jean-François Mis-

arsky, Marìa Naya-Plasencia, Pascal Paillier, Thomas Pornin, Jean-René

Reinhard, Céline Thuillet, and Marion Videau. Shabal, a Submission to

NIST's Cryptographic Hash Algorithm Competition. Submission to NIST,

2008.

[27] Emmanuel Bresson, Anne Canteaut, Benoît Chevallier-Mames, Christophe

Clavier, Thomas Fuhr, Aline Gouget, Thomas Icart, Jean-François Mis-

arsky, Marìa Naya-Plasencia, Pascal Paillier, Thomas Pornin, Jean-René

Reinhard, Céline Thuillet, and Marion Videau. Indi�erentiability with Dis-

tinguishers: Why Shabal Does Not Require Ideal Ciphers. IACR Cryptology

ePrint Archive, Report 2009/199, 2009.

149

Bibliography

[28] Christophe De Cannière, Nicky Mouha, Vesselin Velichkov, and Bart Pre-

neel. The Additive Di�erential Probability of ARX, 2011. LNCS 6733,

2011, pp. 342�358.

[29] Florent Chabaud and Antoine Joux. Di�erential Collisions in SHA-0. LNCS

1462, 1998, pp. 56�71.

[30] Donghoon Chang. Near-Collision Attack and Collision-Attack on Double

Block Length Compression Functions based on the Block Cipher IDEA.

IACR Cryptology ePrint Archive, Report 2006/478, 2006.

[31] Scott Contini, Krystian Matusiewicz, Ron Steinfeld, Josef Pieprzyk, Jian

Guo, San Ling, and Huaxiong Wang. Cryptanalysis of LASH. LNCS 5086,

2008, pp. 207-223.

[32] Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. VSH, an E�cient and

Provable Collision-Resistant Hash Function. LNCS 4004, 2006, pp. 165�

182.

[33] Toshiba Corporation. Speci�cation of Hierocrypt-3. submitted to the First

Open NESSIE Workshop, 13-14 November,Leuven, Belgium 2000.

[34] Joan Daemen, René Govaerts, and Joos Vandewalle. Weak Keys for IDEA.

LNCS 773, 1994, pp. 224�231.

[35] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher

Square. LNCS 1267, 1997, pp. 149�165.

[36] Joan Daemen and Vincent Rijmen. The Wide Trail Design Strategy. LNCS

2260, 2001, pp. 222�238.

[37] Joan Daemen and Vincent Rijmen. Understanding Two-Round Di�erentials

in AES. LNCS 4116, 2006, pp. 78�94.

[38] Magnus Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD

thesis, Ruhr-Universität Bochum, May 2005.

[39] Magnus Daum. Narrow T-Functions. LNCS 3557, 2005, pp. 50�67.

150

Bibliography

[40] Hüseyin Demirci, Ali Aydin Selçuk, and Erkan Türe. A New Meet-in-the-

Middle Attack on the IDEA Block Cipher. LNCS 3006, 2004, pp. 117�129.

[41] Federal Register. Federal Register / Vol. 72, No. 212. Government Printing

O�ce, 2007.

[42] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,

Tadayoshi Kohono, Jon Callas, and Jesse Walker. The Skein Hash Function

Family. Submission to NIST (Round 1), 2008. Available online at http:

//www.skein-hash.info/sites/default/files/skein1.1.pdf.

[43] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,

Tadayoshi Kohono, Jon Callas, and Jesse Walker. The Skein Hash Function

Family. Submission to NIST (Round 2), 2009. Available online at http:

//www.skein-hash.info/sites/default/files/skein1.2.pdf.

[44] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,

Tadayoshi Kohono, Jon Callas, and Jesse Walker. The Skein Hash Function

Family. In Citeseer, 2010.

[45] FIPS PUB 180. SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC

MODULES, 1993.

[46] FIPS PUB 180-1. SECURITY REQUIREMENTS FOR CRYPTO-

GRAPHIC MODULES, 1995.

[47] FIPS PUB 180-2. SECURITY REQUIREMENTS FOR CRYPTO-

GRAPHIC MODULES, 2001.

[48] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. On the Security of

Tandem-DM. LNCS 5665, 2009, pp. 84�103.

[49] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Security of Cyclic

Double Block Length Hash Functions including Abreast-DM. IACR Cryp-

tology ePrint Archive, Report 2009/261, 2009.

151

http://www.skein-hash.info/sites/default/files/skein1.1.pdf
http://www.skein-hash.info/sites/default/files/skein1.1.pdf
http://www.skein-hash.info/sites/default/files/skein1.2.pdf
http://www.skein-hash.info/sites/default/files/skein1.2.pdf

Bibliography

[50] Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Improved

Attacks for AES-Like Permutations. LNCS 6147, 2010, pp. 365�383.

[51] M. Girault and M. Campana. A generalized birthday attack. Lecture Notes

in Computer Science on Advances in Cryptology-EUROCRYPT'88, 1988,

pp. 129�156.

[52] Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog, Mohamed El-

Hadedy, Jørn Amundsen, and Stig Frode Mjølsnes. Cryptographic Hash

Function BLUE MIDNIGHT WISH. Submission to NIST (Round 1),

2008. Available online at http://people.item.ntnu.no/~danilog/Hash/

BMW/Supporting_Documentation/BlueMidnightWishDocumentation.pdf.

[53] Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog, Mohamed

El-Hadedy, Jørn Amundsen, and Stig Frode Mjølsnes. Cryptographic

Hash Function BLUE MIDNIGHT WISH. Submission to NIST

(Round 2), 2009. Available online at http://people.item.ntnu.

no/~danilog/Hash/BMW-SecondRound/Supporting_Documentation/

BlueMidnightWishDocumentation.pdf.

[54] Jian Guo and Søren S. Thomsen. Distinguishers for the Com-

pression Function of Blue Midnight Wish with Probability 1, 2010.

Available online at http://www2.mat.dtu.dk/people/S.Thomsen/bmw/

bmw-distinguishers.pdf.

[55] Jian Guo, Pierre Karpman, Ivica Nikoli¢, Lei Wang, and Shuang Wu. Anal-

ysis of BLAKE2. LNCS 8366, 2014, pp. 402�423.

[56] Shai Halevi and Silvio Micali. Practical and Provably-Secure Commitment

Schemes from Collision-Free Hashing. LNCS 1109, 1996, pp. 201�215.

[57] Philip Hawkes. Di�erential-Linear Weak Key Classes of IDEA. In EURO-

CRYPT, pp. 112�126, 1998.

[58] Shoichi Hirose. Provably Secure Double-Block-Length Hash Functions in a

Black-Box Model. LNCS 3506, 2004, pp. 330�342.

152

http://people.item.ntnu.no/~danilog/Hash/BMW/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://people.item.ntnu.no/~danilog/Hash/BMW/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://www2.mat.dtu.dk/people/S.Thomsen/bmw/bmw-distinguishers.pdf
http://www2.mat.dtu.dk/people/S.Thomsen/bmw/bmw-distinguishers.pdf

Bibliography

[59] Shoichi Hirose. Some Plausible Constructions of Double-Block-Length Hash

Functions. LNCS 4047, 2006, pp. 210�225.

[60] Antoine Joux. Multicollisions in Iterated Hash Functions. Application to

Cascaded Constructions. LNCS 3152, 2004, pp. 306�316.

[61] Philipp Jovanovic, Samuel Neves, and Jean-Philippe Aumasson, Analysis of

NORX: Investigating Di�erential and Rotational Properties. LNCS 8895,

2014, pp. 306�324.

[62] John Kelsey, Bruce Schneier, and David Wagner. Key-Schedule Crypto-

analysis of IDEA, G-DES, GOST, SAFER, and Triple-DES. LNCS 1109,

1996, pp. 237�251.

[63] Dmitry Khovratovich, Gaëtan Leurent, and Christian Rechberger. Narrow-

Bicliques: Cryptanalysis of Full IDEA. LNCS 7237, 2012, pp. 392�410.

[64] Dmitry Khovratovich and Ivica Nikoli¢. Rotational Cryptanalysis of ARX.

LNCS 6147, 2010, pp. 333�346.

[65] Dmitry Khovratovich, Ivica Nikoli¢, Josef Pieprzyk, Przemysªaw Sokoªowski

and Ron Steinfeld. Rotational Cryptanalysis of ARX Revisited. LNCS

9054, 2015, pp. 519�539.

[66] Dmitry Khovratovich, Ivica Nikoli¢, and Christian Rechberger. Rotational

Rebound Attacks on Reduced Skein. LNCS 6477, 2010, pp. 1�19.

[67] Dmitry Khovratovich, Ivica Nikoli¢, and Christian Rechberger. Rotational

Rebound Attacks on Reduced Skein. Journal of Cryptology, 27, 2014, pp.

452�479.

[68] Jongsung Kim, Seokhie Hong, Sangjin Lee, Jung Hwan Song, and Hyungjin

Yang. Truncated Di�erential Attacks on 8-Round CRYPTON. LNCS 2971,

2003, pp. 446�456.

[69] Alexander Klimov and Adi Shamir. Cryptographic Applications of T-

Functions. LNCS 3006, 2004, pp. 248�261.

153

Bibliography

[70] Alexander Klimov and Adi Shamir. New Cryptographic Primitives Based

on Multiword T-Functions. LNCS 2005, 2004, pp. 1�15.

[71] Alexander Klimov and Adi Shamir. New Applications of T-Functions in

Block Ciphers and Hash Functions. LNCS 3557, 2005, pp. 18�31.

[72] Lars R. Knudsen. Truncated and Higher Order Di�erentials. LNCS 1008,

1994, pp. 196�211.

[73] Lars R. Knudsen, Krystian Matusiewicz, and Søren S. Thomsen. Obser-

vations on the Shabal keyed permutation. OFFICIAL COMMENT, 2009.

Available online at http://www.mat.dtu.dk/people/S.Thomsen/shabal/

shabal.pdf.

[74] Lars R. Knudsen, Florian Mendel, Christian Rechberger, and Søren S.

Thomsen. Cryptanalysis of MDC-2. LNCS 5479, 2009, pp. 106�120.

[75] Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some

Block Ciphers. LNCS 4833, 2007, pp. 315�324.

[76] Bonwook Koo, Yongjin Yeom, and Junghwan Song. Related-Key

Boomerang Attack on Block Cipher SQUARE. IACR Cryptology ePrint

Archive, Report 2010/073, 2010.

[77] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Mes-

sage Authentication. RFC 2104 (Informational), February 1997.

[78] Xuejia Lai. On the Design and Security of Block Ciphers. Hartung-Gorre

Verlag, Konstanz, 1992.

[79] Xuejia Lai and James L. Massey. A Proposal for a New Block Encryption

Standard. In EUROCRYPT, 1990, pp. 389�404.

[80] Xuejia Lai and James L. Massey. Markov Ciphers and Di�erentail Crypt-

analysis. In EUROCRYPT, 1991, pp. 17�38.

[81] Xuejia Lai and James L. Massey. Hash Function Based on Block Ciphers.

LNCS 658, 1992, pp. 55�70.

154

http://www.mat.dtu.dk/people/S.Thomsen/shabal/shabal.pdf
http://www.mat.dtu.dk/people/S.Thomsen/shabal/shabal.pdf

Bibliography

[82] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rij-

men, and Martin Schlä�er. Rebound Distinguishers: Results on the Full

Whirlpool Compression Function. LNCS 5912, 2009, pp. 126�143.

[83] Jooyoung Lee and Daesung Kwon. The Security of Abreast-DM in the Ideal

Cipher Model. IACR Cryptology ePrint Archive, Report 2009/225, 2009.

[84] Jooyoung Lee and Martijn Stam. MJH: A Faster Alternative to MDC-2.

LNCS 6558, 2011, pp. 213�236.

[85] Jooyoung Lee, Martijn Stam, and John P. Steinberger. The Collision Se-

curity of Tandem-DM in the Ideal Cipher Model. LNCS 6841, 2011, pp.

561�577.

[86] Gaëtan Leurent. Analysis of Di�erential Attacks in ARX Constructions.

LNCS 7658, 2012, pp. 226�243.

[87] Gaëtan Leurent. Quantum Preimage and Collision Attacks on CubeHash.

IACR Cryptology ePrint Archive, Report 2010/506, 2010.

[88] Gaëtan Leurent. Symmetric Distinguishers on SIMD, 2010. Presented at

the rump session of ECRYPT2 retreat, Paris.

[89] Gaëtan Leurent, Charles Bouillaguet, and Pierre-Alain Fouque. SIMD Is a

Message Digest. Submission to NIST (Round 1), 2008.

[90] Gaëtan Leurent, Charles Bouillaguet, and Pierre-Alain Fouque. SIMD Is a

Message Digest. Submission to NIST (Round 2), 2009.

[91] Chae Hoon Lim. A Revised Version of Crypton - Crypton V1.0. LNCS

1636, 1999, pp. 31�45.

[92] Chae Hoon Lim and Tymur Korkishko. mCrypton - A Lightweight Block

Cipher for Security of Low-Cost RFID Tags and Sensors. LNCS 3786, 2005,

pp. 243�258.

[93] Helger Lipmaa and Shiho Moriai. E�cient Algorithms for Computing Dif-

ferential Properties of Addition. LNCS 2355, 2002, pp. 336�350.

155

Bibliography

[94] Stefan Lucks. Design Principles for Iterated Hash Functions. IACR Cryp-

tology ePrint Archive, Report 2004/253, 2004.

[95] James Massey, Gurgen Khachatrian, and Melsik Kuregian. Nomination

of SAFER++ as Candidate Algorithm for the New European Schemes for

Signatures, Integrity, and Encryption (NESSIE). First Open NESSIE Work-

shop, November, 2000.

[96] Mitsuru Matsui. Linear Cryptoanalysis Method for DES Cipher. LNCS

765, 1993, pp. 386�397.

[97] Krystian Matusiewicz and Josef Pieprzyk. Finding Good Di�erential Pat-

terns for Attacks on SHA-1. LNCS 3969, 2005, pp. 164�177.

[98] Florian Mendel and Tomislav Nad. A Distinguisher for the Compression

Function of SIMD-512. LNCS 5922, 2009, pp. 219�232.

[99] Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schläf-

fer. Improved Cryptanalysis of the Reduced Grøstl Compression Function,

ECHO Permutation and AES Block Cipher. LNCS 5867, 2009, pp. 16-35.

[100] Florian Mendel, Christian Rechberger, Martin Schlä�er, and Søren S.

Thomsen. The Rebound Attack: Cryptanalysis of Reduced Whirlpool and

Grøstl. LNCS 5665, 2009, pp. 260�276.

[101] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook

of Applied Cryptography. CRC Press, 1996.

[102] Ralph C. Merkle. A certi�ed digital signature. LNCS 435, 1989, pp. 218�

238.

[103] Marine Minier, Raphael C.-W. Phan, and Benjamin Pousse. Distinguishers

for Ciphers and Known Key Attack against Rijndael with Large Blocks.

LNCS 5580, 2009, pp. 60�76.

[104] Pawel Morawiecki, Josef Pieprzyk, and Marian Srebrny. Rotational Crypt-

156

Bibliography

analysis of Round-Reduced Keccak. In Fast Software Encryption, 2013, pp.

241�262

[105] Nicky Mouha, Vesselin Velichkov, Christophe De Cannière, and Bart Pre-

neel. The di�erential analysis of S-functions. LNCS 6544, 2011, pp. 36�56.

[106] Frédéric Muller and Thomas Peyrin. Cryptanalysis of T-Function-Based

Hash Functions. LNCS 4296, 2006, pp. 267�285.

[107] Mridul Nandi and Souradyuti Paul. Speeding Up the Wide-Pipe: Secure

and Fast Hashing. LNCS 6498, 2010, pp. 144�162.

[108] National Institute of Standards and Technology. Cryptographic Hash Al-

gorithm Competition. http://csrc.nist.gov/groups/ST/hash/sha-3/

index.html.

[109] Ivica Nikoli¢, Josef Pieprzyk, Przemysªaw Sokoªowski and Ron Steinfeld.

Known and Chosen Key Di�erential Distinguishers for Block Ciphers. LNCS

6829, 2011, pp. 29�48.

[110] Ivica Nikoli¢, Josef Pieprzyk, Przemysªaw Sokoªowski and Ron Ste-

infeld. Rotational Cryptanalysis of (Modi�ed) Versions of BMW

and SIMD. Available online at https://cryptolux.org/mediawiki/

uploads/0/07/Rotational_distinguishers_%28Nikolic%2C_Pieprzyk%

2C_Sokolowski%2C_Steinfeld%29.pdf

[111] Peter Novotney. Distinguisher for Shabal's Permutation Function. IACR

Cryptology ePrint Archive, Report 2010/398, 2010.

[112] Thomas Peyrin, Henri Gilbert, Frédéric Muller, and Matthew J. B. Rob-

shaw. Combining Compression Functions and Block Cipher-Based Hash

Functions. LNCS 4284, 2006, pp. 315�331.

[113] J.M. Pollard. Monte Carlo Methods for Index Computation mod p. Math-

ematics of Computation, 32, 1978, pp. 918�924.

157

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
https://cryptolux.org/mediawiki/uploads/0/07/Rotational_distinguishers_%28Nikolic%2C_Pieprzyk%2C_Sokolowski%2C_Steinfeld%29.pdf
https://cryptolux.org/mediawiki/uploads/0/07/Rotational_distinguishers_%28Nikolic%2C_Pieprzyk%2C_Sokolowski%2C_Steinfeld%29.pdf
https://cryptolux.org/mediawiki/uploads/0/07/Rotational_distinguishers_%28Nikolic%2C_Pieprzyk%2C_Sokolowski%2C_Steinfeld%29.pdf

Bibliography

[114] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based

on Block Ciphers: A Synthetic Approach. LNCS 773, 1994, pp. 368�378.

[115] Przemysªaw Sokoªowski. Contributions to Cryptanalysis: Design and Anal-

ysis of Cryptographic Hash Functions. PhD thesis, Macquarie University,

2013. Available online at http://hdl.handle.net/1959.14/307348

[116] François-Xavier Standaert, Gilles Piret, Neil Gershenfeld, and Jean-Jacques

Quisquater. SEA: A Scalable Encryption Algorithm for Small Embedded

Applications. LNCS 3928, 2006, pp. 222�236.

[117] E. Teske. On random walks for Pollard's Rho method. Math. Comput., 70,

2001, pp. 809�825.

[118] E. Teske. Computing discrete logarithms with the parallelized kangaroo

method. Discrete Appl. Math., 130, 2003, pp. 61�82.

[119] Søren S. Thomsen. Pseudo-cryptanalysis of Blue Midnight Wish,

2009. Available online at http://www.mat.dtu.dk/people/S.Thomsen/

bmw/bmw-pseudo.pdf.

[120] Paul C. van Oorschot and Michael J. Wiener. Parallel Collision Search with

Cryptanalytic Applications. Journal of Cryptology, 12, 1999, pp. 1�28.

[121] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for

Hash Functions MD4, MD5, HAVAL-128 and RIPEMD. IACR Cryptology

ePrint Archive, Report 2004/199, 2004.

[122] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the

Full SHA-1. LNCS 3621, 2005, pp. 17�36.

[123] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Func-

tions. LNCS 3494, 2005, pp. 19�35.

[124] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. E�cient Collision Search

Attacks on SHA-0. LNCS 3621, 2005, pp. 1�16.

158

http://hdl.handle.net/1959.14/307348
http://www.mat.dtu.dk/people/S.Thomsen/bmw/bmw-pseudo.pdf
http://www.mat.dtu.dk/people/S.Thomsen/bmw/bmw-pseudo.pdf

Bibliography

[125] Lei Wei, Thomas Peyrin, Przemysªaw Sokoªowski, San Ling, Josef Pieprzyk

and Huaxiong Wang. On the (In)Security of IDEA in Various Hashing

Modes, LNCS 7549, 2012, pp. 163�179.

[126] Hongbo Yu and Xiaoyun Wang. Cryptanalysis of the Compression Function

of SIMD. LNCS 6812, 2011, pp. 157�171.

[127] G. Yuval. How to swindle Rabin. Cryptologia, 3, 1979, pp. 187�190.

159

	Streszczenie
	Abstract
	Acknowledgments
	Declaration
	Introduction
	Cryptographic Hash Function Properties
	Classification of Hash Functions
	Hash Functions Applications
	Cryptanalysis
	Generic Analysis
	Algorithm Specific Analysis

	Secure Hash Standards
	Thesis structure

	Cryptographic Hash Functions
	Introduction to Cryptographic Hash Functions
	Designing Hash Functions
	Block Ciphers in Hash Function Modes of Operation
	Security Notation for Cryptographic Hash Functions
	Methods of Hash Functions Analysis
	Generic Attacks
	Differential Analysis
	Rotational Analysis
	Shift Analysis
	T-functions and S-functions

	Open Key Differential Analysis for Block Ciphers
	Impact of Block Cipher Known Key Differential Trails on Hash Modes
	Lower Bound on Complexity of Differential Distinguisher for Random Permutations
	Differential Trails for Specific Block Ciphers
	Crypton, Hierocrypt-3 and Square
	SAFER++
	Feistel Ciphers

	Summary

	IDEA in Various Hashing Modes
	The IDEA block cipher
	Weak-keys for IDEA
	Analysis of the Internal Functions
	Weak-keys Classes
	The null Weak-key

	Simple Collision Attacks
	Improved Collision Attacks
	Exploiting the Almost Half-Involution
	Improving Collision Attacks

	Preimage Attacks
	Summary

	Analysis of Addition-Rotation-XOR Designs
	Rotational Properties of Multi Additions and Subtractions
	Rotational Pairs with Corrections
	Definition of Problem
	Calculation of Probabilities of Rotational Pairs with Corrections for Addition

	Rotational Analysis of BMW-512
	Rotational Properties of Some BMW-512 Transforms
	Analysis of BMWv1-512

	Lower Complexity Attack on the Full BMWv1
	Analysis of Modified Version of BMWv2-512

	Rotational Analysis of SIMD-512
	Analysis of the Feistel of SIMD
	Analysis of Round-reduced Linearized SIMD
	Analysis of Round-reduced SIMD

	Shift Distinguishers on Shabal
	Summary

	Rotational Cryptanalysis and Chained Modular Additions
	Chained Modular Additions
	Applications
	Application to Rotational Cryptanalysis of BLAKE2
	Application to Rotational Cryptanalysis of Skein
	Application to Rotational Cryptanalysis of SIMD-512

	Summary

	Conclusions
	Contributions
	Design Guidelines
	Open Problems and Future Research Directions

	Proofs of Rotational Analysis Lemmas
	mCrypton
	Nonlinear Substitution
	Column-Wise Bit Permutation
	Column-To-Row Transposition
	Key Addition
	Altered Key Schedule
	Encryption

	Bibliography

