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Abstract. Urban growth and fractality is a topic that opens an entrance for a range of radical ideas: from the 
theoretical to the practical, and back again. We begin with a brief inventory of related ideas from the past, and 
proceed to one specific application of fractals in the non-Euclidean geometry of Manhattan space. We initialize 
our discussion by inventorying selected existing knowledge about fractals and urban areas, and then presenting 
empirical evidence about the geometry of and movement in physical urban space. 

Selected empirical analyses of minimum path distances between places in urban space indicate that its metric 
is best described by a general Minkowskian one whose parameters are between those for Manhattan and Euc-
lidean space. Separate analyses relate these results to the fractal dimensions of the underlying physical spaces. 
One principal implication is that theoretical, as well as applied, ideas based upon fractals and the Manhattan 
distance metric should be illuminating in a variety of contexts. These specific analyses are the focus of this paper, 
leading a reader through analytical approaches to fractal metrics in Manhattan geometry. Consequently, they 
suggest metrics for evaluating urban network densities as these represent compression of human activity. Be-
cause geodesics are not unique in Manhattan geometry, that geometry offers a better fit to human activity than 
do Euclidean tools with their unique geodesic activities: human activity often moves along different paths to get 
from one place to another.

Real-world evidence motivates our specific application, although an interested reader may find the subse-
quent “prospect” section of value in suggesting a variety of future research topics that are currently in progress. 
Does “network science” embrace tools such as these for network compression as it might link to urban function 
and form? Stay tuned for forthcoming work in Geographical Analysis.
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A rich and massive literature exists about frac-
tals, fractal dimensions, and the use of fractals in 
the social and behavior sciences. One goal of the 
selective discussion in Part 1 of the present paper 
is to emphasize parts of this literature relevant to 
its theme.

1. Inventory

1.1. A brief history

Cities often serve to compress human activity: 
through economies of scale, shared rides, public 
transit, or Planned Unit Developments, mixed 
use developments, or any of a host of contem-
porary planning trends. When an urban analysis 
tool also compresses pattern or data, it fits the en-
vironment – and the outcome is likely to make 
good sense.

One early paper addressing this topic (Arling-
haus & Nystuen 1990) illustrates the importance 
of using fractal geometry as a compression tool 
to analyze site development of fragile land, maxi-
mizing desirable use while minimizing environ-
mental damage. Another set of papers examines 
the use of fractal geometry to capture central 
place geometry, and employs that connection 
to answer remaining open questions associated 

with that geometry (e.g., Arlinghaus 1985, Ar-
linghaus & Arlinghaus 1989). 

Fractal geometry is one vehicle for capturing 
such compression. Another is to adjust the ge-
ometry of the underlying space containing form 
(Arlinghaus & Batty 2006, 2010). Maurits Escher 
explores the power of this approach with his ’cir-
cle limit’ series. In it, the Poincaré disk model of 
the hyperbolic plane, which compresses all of this 
non-Euclidean geometry inside a single bounded 
compact disk, represents artistic pattern. The 
implications of this non-Euclidean model for 
compressing elements of urban form or function 
within a compact space serve as one way to study 
bounded or unbounded urban complexity within 
a bounded geometric environment (Arlinghaus 
& Nystuen 1991, Arlinghaus 2010). 

However, all of these approaches function 
in the abstract world of pure mathematics: in it, 
form comes to life in its ’cleanest’ pattern, without 
perturbations from such complications as human 
decisions or physical landscapes. In addition, re-
al-world examples are critical to inform scholars 
of the possible utility of such approaches. Batty & 
Longley, and others, pursued this approach with 
remarkable success over a period of years. The 
focus here is on one particular non-Euclidean 
model, Manhattan space (see Fig. 1), as an inter-
vening position between the purely abstract and 
the totally ’real’ (Griffith et al. 2010).

1.2. An overview of fractal dimensions

The problem being addressed in this paper 
concerns the fractal dimension of Manhattan 
space, and whether or not Manhattan geometry 
(or some other non-Euclidean geometry) should 
replace Euclidean geometry as the two-dimen-
sional space for geographical theories.

A fractal is a set for which the Hausdorff-Besi-
covitch dimension strictly exceeds the topological 
dimension (i.e., the dimension in Euclidean space, 
e.g., the topological dimension of a point is 0, of 
a line, 1, of a planar object, 2, and of a volume, 3). 
In contrast, the Hausdorff-Besicovitch dimension 
can be non-integer. It can be calculated with the 
box counting method, which may be applied to 
two-dimensional images as follows: For resolu-
tion 1/2k, where N(1/2k) denotes the minimum 

Fig. 1. Differences between Manhattan and Euclidean dis-
tances. Black line denotes a Euclidean distance.
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number (i.e., counting) of squares (i.e., boxes) 
of side-length 2k needed to cover all of the lines 
forming a two-dimension image, the Hausdorff-
Besicovitch dimension, d, is given by

The dimension d is always greater than or 
equal to its topological counterpart: d = 0.90309 
for the set of rational numbers (points with a top-
ological dimension of 0), and d = 1 for a straight 
line (a line has a topological dimension of 1). 

Manhattan (taxicab) geometry is non-Euclide-
an, and replaces the Pythagorean theorem with a 
metric that equals the sum of the absolute values 
of the differences between a pair of coordinates. 
The plane has a square grid superimposed on it, 
resulting in a regular square grid of points. The 
rotation, but not reflection or translation, trans-
formation of this lattice grid affects Manhattan 
distances. This space may be defined as follows: 
A  two-dimensional Manhattan space comprises 
P2 points (ui, vi) forming a regular square P-by-P 
grid, together with links between pairs of near-
by points that are exactly one unit of separation 
apart. The resulting plane geometry figure is a 
regular square tessellation, whereas the resulting 
graph is a regular square lattice. A family of spe-
cific finite Manhattan spaces is given by P rang-
ing from 2 to infinity.

The purpose of this paper is to summarize re-
sults for analyses on a unit square upon which 
the density (i.e., the number of vertical and hori-
zontal lines) of a lattice grid increases. Empirical 
examples motivate this exploration, which links 
Manhattan space to fractals as well as to spatial 
statistics. Fractal dimensions have been calculat-
ed with the Fractalyse software2.

1.3. A summary of empirical evidence

Selected real-world transportation networks 
were analyzed (Griffith et al. 2010) to determine 
whether or not empirical evidence implies that 
physical space is more Manhattan than Euclidean 

2	 For benchmark purposes, the fractal dimensions were 
calculated for the following images: a straight line, a 
Sierpiński carpet, a Koch coastline, a Koch island, a 
Sierpiński gasket, and a filled rectangle.

in nature. First, minimum paths between select-
ed points in the hierarchical set of expressways, 
highways, and streets for the Lansing, MI met-
ropolitan region were analyzed. The Manhattan 
metric furnishes the function that best character-
izes these minimum paths. Furthermore, the dis-
tance function for the restricted access express-
ways is closer to a Manhattan metric, whereas 
the distance function for the combination of all 
three types of roads is roughly midway between 
a Manhattan and a Euclidean metric.

Next, minimum paths between all stations in 
the following four limited-access urban mass-
transit rail networks (Griffith et al. 2010) were 
analyzed: Pittsburgh, Dallas-Ft. Worth, Toronto, 
and Washington, DC. Again, the distance func-
tion for each of these sets of minimum paths lies 
between a Manhattan and a Euclidean metric. In 
these cases, the distance function for the near-
linear Pittsburgh light rail network is closer to a 
Manhattan metric, whereas the distance function 
for the spider-like Washington, DC subway is 
closer to a Euclidean metric.

Finally, minimum paths between residential 
houses and arterial road exits in the Whitehills 
and Bailey limited-access neighborhoods (Grif-
fith et al. 2010) located in the Lansing, MI met-
ropolitan region were analyzed. Once more, the 
distance function for each neighborhood lies 
between that for a Manhattan and a Euclidean 
space. In both cases, it is much closer to Manhat-
tan space.

The principal conclusions here are as follows:
1)	 distance functions fall between those for a 

Manhattan and a Euclidean space; and,
2)	 a positive relationship appears to exist be-

tween the Minkowskian distance function ex-
ponent and the fractal dimension of selected 
empirical network graphs.
These findings imply that theoretical work 

based upon fractals and the Manhattan distance 
metric should be illuminating.

1.4. Manhattan space: infill asymptotics

The simplest Manhattan space forms a square 
with four points. If these links and points coin-
cide with the borders and corners of a unit square, 
Manhattan spaces can be constructed that involve 
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an increasing number of vertical and horizontal 
lines occurring between these borders. As the 
number of these lines goes to infinity, the Man-
hattan space lattice grid converges on a filled-in 
unit square.

1.4.1. Lattice-based fractal dimension results
The fractal dimension of a given P-by-P Man-

hattan space lattice has the following entries in 
its box counting regression, for which vector  
N(k) = [(n1(k), n2(k),..., nK(k)]

where f(2) is some function of 2, and K > P de-
notes the finest resolution used in the box count-
ing procedure. K is often 14 in practice. If all en-
tries in the vector N(k) are ln[P(2k+1 – P)], then f(2) 
reduces to 2k, and hence the fractal dimension is k 
= 1. Because the smallest values of P is 2, at least 
one entry in the vector N(k) is 2kln(2), and hence k 
must be greater than 1. In other words, the small-
est fractal dimension for a Manhattan space is 
greater than 1. Meanwhile, as P goes to infinity, k 
increases. When K is infinity, all entries in the vec-
tor N(k) are 2kln(2), f(2) reduces to 2k, and hence 
the fractal dimension is k = 2. Exploratory work 
reveals a numerical relationship between the two 
quantities of P and its corresponding fractal di-
mension, calculated with Fractalyse.

The principal implications here are:
1)	 as P increases, the bounded space becomes 

increasingly filled, converging on a bounded 
Euclidean plane; and,

2	 the fractal dimension of finite Manhattan 
space relates to the principal eigenfunction 
of the corresponding regular lattice planar 
graph.

1.4.2. Approximate Euclidean distances in 
Manhattan space

The difference between Manhattan and Eucli-
dean distance between a pair of points is given 
by

because all points are uniformly spaced along 
both their horizontal and their vertical axes. The 
relationships between g and h are as follows (see 
Fig. 1):

g = h : 2(P – g)3

g < h : 2(P – g)(P – h)(P – h + 1)
The maximum acceptable difference quantity 

δ determines the degree of similarity between 
Manhattan and Euclidean distances (see Fig. 2). 
Because the largest distance between points in a 
unity square is √2, setting δ to this value results 
in a 100% agreement between distances rendered 
by the two metric functions. Setting δ to 0 results 
in a 100[2P/(P2 + 1)]% agreement, which asymp
totically goes to 0%. Fig. 2b portrays cases be-
tween these two extreme values of δ. These tra-
jectories indicate a decline for small values of P 

Fig. 2. Percentage of approximately equal Manhattan and 
Euclidean distances with increasing P. Left (a): for thresh-
olds ranging from 0.00001 to 0.2. Right (b): for thresholds 

ranging from 0.01 to 0.09.
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until Manhattan space contains a sufficient den-
sity of lines, at which time the trajectories begin 
to increase and oscillate as they converge on their 
asymptotic values. If δ = 0.2 (i.e., up to a 14.1% 
increase in Manhattan distance over Euclidean 
distance), for example, then the asymptotic per-
centage of acceptable differences is roughly 75. If 
δ = 0.01, this agreement decreases to 0.2%.

2. Prospect

These preceding, and other, experiments chal-
lenge us to pursue more deeply possible abstract 
linkages between theory and practice. Thus, we 
see a number of interesting research directions 
for consideration.

2.1. Pattern compression

Hyperbolic geometry is another non-Eucli-
dean geometry in which parallel lines do meet, 
and in such a way that the points at infinity are 
included in the model. One way to visualize 
the hyperbolic plane is as the Euclidean plane 
with all horizon points, points at infinity, in-
cluded. One model of this plane, the Poincaré 
disk, permits the entire hyperbolic plane to be 
compressed into a bounded space. In contrast, 
the Euclidean plane has infinite, unbounded ex-
tent, and cannot be so compressed. Visualize a 
stereographic projection of the sphere from the 
north pole into a plane tangent to the sphere at 
the south pole. The projection of the north pole 
forces the attempted compactification to infin-
ity.

An opportunity for such compression might 
arise in new settings as well as in casting exist-
ing research into this non-Euclidean framework. 
The image in Fig. 3 comprises two copies (one 
reflected) of a fractal construction generated as 
a compression pattern for optimizing land/wa-
ter interface in a marina (Arlinghaus & Nystuen 
1990). When it is viewed in this manner, as two 
copies, we see it through the non-Euclidean lens 
of the Poincaré disk in which the parallel lines of 
the road edges do meet. (Maurits Escher’s Circle 

Limit series suggests beautiful illustrations of 
this sort of idea.) Carried to the limit, this con-
struction, given that the generator has 4 sides, 
and that the self-similarity factor is also 4, leads 
to a dimension of 2. That is, F = [log(n)/log(k0.5)], 
where n is the number of generator sides and k is 
some factor of self-similarity.

Not only is there the sort of forward and back 
opportunity of existing and future research, 
there is also an opportunity to cross disciplinary 
boundaries. Network compression is impor-
tant within various existing graph-theoretical or 
network science structures. One early example 
appears with Steiner networks — networks of 
shortest total length (Arlinghaus 1977 and later). 
Clear evidence of the importance of compression 
when dealing with numbers also exists. The Fi-
bonacci sequence permits data compression as 
a universal code (Wikipedia 2010). Considering 
if, and how, the non-Euclidean world translates 
into the electronic environment, parallel process-
ing, and various interesting coding situations 
based on compression patterns of various sorts, 
particularly as these relate to geographic infor-
mation (Arlinghaus et al. 1989), merits attention. 
The realm of possibilities, at the theoretical level, 
is endless.

Fig. 3. The top half of this figure is reflected about a hori-
zontal equator to create the bottom half. Imagine the whole 

figure embedded in a circumscribing disk.
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2.2. Turning theory into practice

Often theory, regardless of how abstract it 
may be, furnishes a basis for conceptualizing 
real-world example situations. Fractal geometry 
constitutes one of the more abstract theories that 
are capable of achieving this end.

2.2.1. Models as an intervening step
Consider a specific urban landscape with an 

underlying grid road pattern, as suggested in 
the previous fractal analysis of empirical grids, 
in order to facilitate ease and logic of movement. 
Consider endowing that pattern with a set of 
separated zoning categories reflecting human 
decisions of various sorts. As an intervening step 
in turning theory into practice in an actual city, 
consider the Burgess model or other artificial ex-
pressions of urban spatial structure and growth. 
The concentric circles of the Burgess model reflect 
different densities of land use, and therefore dif-
ferent densities of the underlying road pattern. 
Thus, application of a single fractal iteration se-
quence would not generate appropriate pattern, 
or its compression. Imagine, therefore, that in the 
core zone containing the downtown, a fractal it-
eration sequence of squares that, when carried to 
the limit has a dimension of 2, is truncated so that 
generated parcel size corresponds to observed 
parcel size (e.g., minimum, maximum, average, 
or as desired) according to zoning type. In the 
transition ring, choose an iteration pattern for 
roads that has a fractal dimension less than 2, and 
again truncate that sequence according to parcel 
size demands. In the small-house residential ring, 
choose a pattern that has a fractal dimension less 
than the previous two rings, and again truncate 
it according to parcel size. In an outer ring, rep-
resenting large housing, choose a pattern with an 
even lower fractal dimension, and again truncate 
according to land-use parcel size.

What happens with pattern within these rings 
is straightforward: create a fractal pattern that 
generates a road grid and truncate this pattern 
generation in accordance with parcel size as de-
termined by land use and zoning. What is more 
difficult is to consider how to align that pattern 
at the edges of adjacent rings. Typically, the adja-
cent patterns do not mesh because different itera-
tion sequences, reflecting variety in space-filling 

based on land use, are employed. One approach 
might be to align core road network boundary 
points. The left-over points become cul-de-sacs, 
which might be used to advantage for privacy 
needs for residential land uses or for industrial 
uses wishing a relatively low profile. Here, un-
like the case of much existing planning, good rea-
son exists to create cul-de-sacs — as an appendix-
style vestigial organ of an otherwise efficiently 
structured network.

Generally, a grid exists throughout a given 
landscape, but the space-filling needs of different 
zoning categories produce distinct neighborhoods 
of road network. Within-ring accessibility along 
a grid network is encouraged, while between-
ring accessibility is reduced, perhaps fostering a 
safer environment. Such an approach also offers 
a visual “interest” factor in an otherwise boring 
overall grid pattern. Naturally, one might vary 
the urban model, the method for partitioning ur-
ban areas, as well as the general planning con-
text (beyond zoning and land use). Transcending 
the models, which are useful as transitions from 
theory to practice, we see the importance of real-
world implementation of ideas and ideals.

2.2.2. Ideas for real-world implementation
Models serve as “pilots” for ideas, as “beta-

tests” for strategies. To move to the real-world 
from the conceptualized model-world is an art. 
No fixed way exists to do so. Often, temporarily 
discarding some of the structure from the model-
world is helpful, especially when some element 
of it returns at a later stage in real-world sugges-
tions for implementation. 

Thus, when moving from the previously out-
lined Burgess idea, one might not wish to begin 
by first establishing abstract fractal pattern and 
then assessing how well actual road networks 
fit abstract form; rather, actual networks might 
serve as the starting point. A  straightforward 
manner to calculate road density within a region 
is simply to measure the length of road network 
within the region and divide by the radius of the 
region (if it is circular), its perimeter, its area, or 
some other general regional measure. Such an 
index might be applied in concentric circles or 
other regions.

A density measure of this sort, unlike a fractal 
dimension, is a relative measure. Different an-
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swers might come about when they should not, 
simply by shifting a boundary a bit, or choosing 
a different radius. Relative measures offer oppor-
tunity for the “gerrymandering” of results. One 
way to overcome this relative measure problem 
might be to employ the fractal measures that 
depend on global whole-hierarchy characteris-
tics rather than only on local ones. The existing 
fractal space-filling calculations (as previously 
discussed, or perhaps for hexagons; Arlinghaus 
1985) may be used to calibrate the measure as 
a “fractally-bound density measure” for urban 
road network accessibility. Thus, in the inner 
zone, where highest space filling is required, the 
density measure would not be allowed to go be-
yond the highest fractal space-filling value. Sub-
sequent circles or zones are bounded by subse-
quent fractal space-filling values, until the edge 
of the compact region is reached: all of which 
assumes that no issues exist involving points at 
infinity in relation to Euclidean geometry. 

2.3. Turning practice back into theory 

Often real-world examples suggest further 
needs for theory. Boundary value problems 
arise in the previously outlined Burgess idea. 
They occur because we split the domain of the 
function used for fractal calculation. Good real-
world reasons may exist for splitting a domain. 
The reasons for doing so should be compelling 
(as with zoning), and might include a wide va-
riety of considerations: rivers with few crossing 
points are one possibility; barriers, such as the 
Berlin Wall, might suggest others that limit ac-
cess. Accessibility based on visible features might 
be one criterion for partitioning the domain of a 
function. Cataloguing/classifying the multitude 
of possible geographic reasons for domain par-
titioning is an interesting problem itself, particu-
larly when considering associated boundary val-
ue issues, and assembling wisdom gained from 
specific styles of application. Taxonomy is the 
heart of science; it, too, has boundaries and exem-
plifies the boundary value problem. One future 
research direction concerning this topic might be 
to create a taxonomic document about boundary 
value problems in geography and the associated 
splitting of geographical domains.

From an abstract viewpoint, the splitting of 
domains is not desirable because calculation from 
the left of a boundary value may not produce the 
same results as calculation from the right. Thus, 
one prefers entire domain calculations rather 
than split domain calculations. As few boundary 
points as possible are best, although, as previous-
ly noted, they may be desirable from a real-world 
point of view. Reconciliation of conflicting views 
may come about in a variety of ways. One reason 
hyperbolic geometry is attractive for real-world 
application is that even the points at infinity are 
included: no boundary exists that separates them 
from the other points, and hence no boundary 
value problems are present!

We wish to proceed with this general research 
agenda, individually and collaboratively, in vari-
ous ways. Hopefully, others will see much more, 
and advance our inventory and prospect of such 
analysis even more rapidly than the current rate 
of city growth.

3. Conclusions and implications

In conclusion, this paper contributes an inter-
esting discussion to the urban growth and frac-
tality literature, in both theoretical and practical 
terms. It furnishes a brief, selective inventory of 
related ideas from the past, and an overview of 
empirical findings concerning fractals and the 
non-Euclidean geometry of Manhattan space. 
The empirical geographic work involves met-
ric function characterizations of minimum path 
distances between places in urban space, which 
are best described by a general Minkowskian one 
whose parameters are between those for Man-
hattan and Euclidean space. These Minkowskian 
metric results also relate to the fractal dimensions 
of the underlying physical spaces. One principal 
implication of this work is that theoretical, as 
well as applied, ideas based upon fractals and the 
Manhattan distance metric merit attention when 
formulating or re-formulating mathematical spa-
tial theory. 

We also outline some prospective work de-
rived from implications of the empirical results. 
The Burgess (i.e., concentric zones), Hoyt (i.e., 
sector), and Harris-Ullman (i.e., multiple nuclei) 
models of urban spatial structure furnish good 
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candidates for reformulations that incorporate 
fractal structures of city street networks. We out-
line one possibility involving the Burgess model. 
In summary, considerably more research effort 
needs to be devoted to urban growth and fractal-
ity.
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