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Abstract

The aim of this dissertation is to investigate the properties of the noncommutative Fréchet
algebra with involution, called the algebra of smooth operators. This algebra is isomorphic as a
Fréchet space to the commutative algebra s of rapidly decreasing sequences (isomorphic also to
the well-known Schwartz space of smooth rapidly decreasing functions), and thus it is a kind of
noncommutative analogue of the algebra s.

A significant part of the dissertation is devoted to the description and classification of the
closed commutative *-subalgebras of the algebra of smooth operators. For instance, we show
that such a subalgebra is isomorphic to a closed *-subalgebra of the algebra s if and only
if it is isomorphic (as a Fréchet space) to a complemented subspace of s. We also find the
multplier algebra of the algebra of smooth operators, prove theorems on spectral and Schmidt
representations of elements of this algebra and show that there is a Holder continuous functional
calculus for normal smooth operators. Most of the proofs are based on the theory of bounded
and unbounded operators on a Hilbert space and the theory of nuclear Fréchet spaces.

Streszczenie

Celem rozprawy jest zbadanie wlasno$ci nieprzemiennej algebry Frécheta z inwolucja, zwanej al-
gebra operatoréw gladkich. Algebra ta jest izomorficzna jako przestrzen Frécheta z przemienng
algebra s ciagéw szybko malejacych do zera (izomorficzna takze z dobrze znana przestrzenia
Schwartza gladkich funkcji szybko malejacych) i w ten sposéb jest pewnego rodzaju nieprzemi-
ennym odpowiednikiem algebry s.

Znaczna cze$¢ rozprawy jest poswiecona opisie i klasyfikacji domknietych przemiennych
*-podalgebr algebry operatoréw gladkich. Na przyklad, pokazujemy, ze taka podalgebra jest
izomorficzna z domknieta *-podalgebra algebry s wtedy, i tylko wtedy, gdy jest izomorficzna
(jako przestrzeni Frécheta) z pewna dopelnialna podprzestrzenia s. Ponadto znajdujemy alge-
bre multiplikatorow algebry operatoréw gtadkich, dowodzimy twierdzen o reprezentacji spek-
tralnej i reprezentacji Schmidta elementéw tej algebry oraz pokazujemy, ze istnieje holderowsko
ciagly rachunek funkcyjny dla gtadkich operatoréw normalnych. Wiekszo$¢ dowodéw jest oparta
na teorii ograniczonych i nieograniczonych operatoréw na przestrzeni Hilberta oraz teorii nuk-
learnych przestrzeni Frécheta.
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Introduction

The aim of this dissertation is to investigate the properties of some specific noncommutative
Fréchet algebra with involution, called the algebra of smooth operators. The most important
features of this algebra are the following:

e it is isomorphic as a Fréchet space to the Schwartz space S(R) of smooth rapidly decreasing
functions on the real line;

e it has several representations as algebras of operators acting between natural spaces of
distributions and functions;

e it is a dense *-subalgebra of the C*-algebra K(¢2) of compact operators on fs;

e it is even contained in the class of Hilbert-Schmidt operators, and thus it is a unitary
space;

e the operator C*-norm || - ||g,—s¢, is so-called dominating norm on that algebra (the domi-
nating norm property is a key notion in the structure theory of nulcear Fréchet spaces —
see discussion below).

From the philosophical point of view, the algebra of smooth operators can be seen as a non-
commutative analogue of the commutative algebra s of rapidly decreasing sequences (isomorphic
as a Fréchet space to S(R)). Its structure (a Fréchet algebra with a natural noncommutative
multiplication, the hermitian adjoint and the Hilbert-Schmidt scalar product) is essentially richer
than the structure of s (a commutative Fréchet algebra with pointwise multiplication and conju-
gation, scalar product inherited from ¢5) and it involves many natural and interesting problems.

The algebra of smooth operators is defined as a Fréchet *-algebra £(s’, s) of continuous linear
operators from the LB-space (an inductive limit of Banach spaces)

o0

, 1/2
s = {§ = (&)jen € cN . ]f\q = (Z \§j|2j_2q) < oo for some g € No}

j=1
of slowly increasing sequences to the Fréchet space
o0 1/2
5= {f = (&)jen €CN 1 ¢, = (Z |§j]2j2q> < oo for every q € No}
j=1

of rapidly decreasing sequences. The space s’ is isomorphic to the strong dual of the Fréchet
space s (i.e. the space of all continuous linear functionals on s with the topology of uniform
convergence on bounded subsets of s) and the isomorphism is defined via the ”scalar product”

<§7 77> = Z gjma
j=1
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where £ € s and n € s’ (see [20, Ch. 22-25] for the general theory of Fréchet spaces and their
duals). Tt turns out that £(s', s) with the topology of uniform convergence on bounded sets in
s’ is a Fréchet space and it is isomorphic (as a Fréchet space) to s. Moreover, one can easily
show that (|[ - [|g)gen,s
||z[lq := sup |z¢]q,
[{fs!
is a fundamental system of norms on L(s’, s) (see Proposition 1.9).

It is worth mentioning that s is a nuclear space (i.e. every unconditionally convergent series
of elements of s is absolutely convergent, see also [20, Def. on p. 344]) and, moreover, by the
Komura-Komura theorem (see e.g. [20, Cor. 29.9]), it is universal in the class of all nuclear
Fréchet spaces: more precisely, a Fréchet space is nuclear if and only if it is isomorphic to some
closed subspace of s. We will see later that s is isomorphic (as a Fréchet space) to many
important classical spaces of analysis.

As we have seen above, from the point of view of Fréchet spaces, there is no difference be-
tween L£(s, s) and s. Things dramatically change when we endow £(s', s) and s with additional
algebraic operations: multiplication and involution. Clearly, s is a Fréchet *-algebra (i.e. a
Fréchet space with involution and jointly continuous multiplication) when equipped with point-
wise multiplication and termwise conjugation. Let us introduce multiplication and involution
on L(s',s). First observe that £(s, s) is embedded in the C*-algebra L(¢3) of continuous linear
operators on /5 via the (continuous, linear, injective) map

v: L(s',8) = L(£s), (z):=j10x0 s,

where ji: s < fo and j: f < s are (continuous) identity maps. Now, multiplication and
involution on L(s, s) are inherited from £(¢2) as the composition of operators (note that since
s < §', we can compose operators in £(s, s)) and the hermitian adjoint. With these operations
L(s',s) becomes a Fréchet *-algebra. Moreover, the algebras s and L(s',s) are both locally
m-convex, i.e. they admit fundamental systems of submultiplicative seminorms (see e.g. [25,
Lemma 2.2]); in fact, (|- |q)qen, and (|| - ||¢)qen, are submultiplicative systems of norms on
s and L(s,s), respectively. Clearly, £(s',s), being noncommutative, is not isomorphic as a
Fréchet *-algebra to s. Nevertheless, there are many ways to embed s into £(s',s) (as a closed
*-subalgebra), e.g. as the algebra of diagonal operators:

{éfk<.,ek>ek: (&x)ren € s},

here e;, denotes the vector in CN whose k-th coordinate equals 1 and the others equal 0.

It appears that the embedding ¢: L£(s',s) < L(f2) acts in fact into the C*-algebra K(¢2)
of compact operators on fo and ¢(L(s',s)) is dense in K(¢2). Thus L(s',s) can be seen as a
dense *-subalgebra of IC(¢3). We can show even more: L(s',s) is (properly) contained in the
intersection of all Schatten classes Sp(¢2) over p > 0. In particular, £(s',s) is contained in the
Hilbert space HS(¢3) of Hilbert-Schmidt operators with the scalar product defined by

0
<ZL‘, y>'H3 = Z <x€k7 y€k>,
k=1

and thus £(s, s) is a unitary space.
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It is worth comparing the algebras mentioned above with their commutative prototypes; this
is done by the following diagram with the horizontal continuous embeddings of algebras:

s> ﬂp>0 fp( EQ( Co

o]

L(s',8) = Np=0 Sp(l2) = HS(l2)— K(¢2).

The ”vertical correspondences”, mean, for example, that every monotonical element of the com-
mutative algebras from the first row is a sequence of singular numbers of some element of their
noncommutative analogues, and vice versa. Moreover, algebras from the first row are embedded
into the corresponding algebras from the second row (e.g. as the algebras of diagonal operators).
Let us also recall that £(s,s) = s (as Fréchet spaces) and HS(¢3) is unitarily isomorphic to £s.

The algebra L(s', s) is also called the algebra of smoothing (compact) operators. In order to
explain why this name is suitable, let us recall that the space s can be represented in many ways
by function spaces (usually spaces of smooth functions) which appear naturally in analysis. For
example, the space s is isomorphic as a Fréchet space to:

e the Schwartz space S(R™) of smooth rapidly decreasing functions on R",
e the space C°°(M) of smooth functions on an arbitrary compact C°°-manifold M,
e the space C*°[0, 1] of smooth functions on the interval [0, 1],

e the space A>°(D) of holomorphic functions on the unit disc with the smooth extension to
the boundary,

all equipped with their natural topologies. Note that the space s and all of the spaces above are
also commutative Fréchet algebras (with pointwise multiplication), sometimes with involution
(conjugation of functions), but they are not isomorphic as algebras to s (see Corollary 4.6).

Representations of the Fréchet space s above lead to natural representations of the Fréchet
*-algebra L(s',s). More precisely, L(s', s) is isomorphic as a Fréchet *-algebra to the following
algebras of continuous linear operators:

L(S'(R"),S(R™)),

L(E'(M),C>=(M)),
L(&'0, 1], ¢*10,1]),
L(A7>(D), A>(D)),

where
e S'(R™) is the space of tempered distributions on R",
e &'(M) is the space of distributions on a compact C°°-manifold M,
e £’'[0,1] is the space of distributions with support in [0, 1],

e A7°(D) is the space of holomorphic functions on the unit disc with polynomial growth,
i.e.

AT®(D) :={f € HD) : sup |f(2)[(1 — |z|)? < oo for some g € Np}.
zeD



Introduction iv

In order to define multiplication and involution on the spaces of operators above, we proceed
like in the case of L(s',s) — we just have to find an appropriate Hilbert space lying between a
Fréchet space and its dual, for example in the case of S(R™) we can choose the Hilbert space
L(R"™) (for details, see Theorem 1.10, Example 1.13 and [11, Th. 2.1]). Now, it is clear that
operators from L£(s', s) are smoothing in the following sense: they map (in some representations
of L(¢,s)) distributions (which may be highly irregular) to smooth functions. We use the term
"smooth” for short; indeed, this term seems to be more popular than the term “smoothing” (see,
for instance, [12, Th. 2, Ex. 2.6], [30, p. 301]).

Taking all the above into account, we can treat £(s',s) as a "noncommutative” analogue of
the very important space of analysis: s.

We shall also mention two extra representations of the Fréchet *-algebra L(s', s): the algebra

Koo == {(aji)jren € cN . sup |ajk|j7k? < oo for all ¢ € Ny}
J,keN

of rapidly decreasing matrices (with matrix multiplication and matrix complex involution) and

its ”continuous analogue”: the algebra S(R?) of Schwartz functions on R? with the Volterra

convolution

(f-9)(z,y) = /Rf(%Z)g(z,y)dz

as multiplication and the involution

[ (x,y) = fy,z).

In these forms, the algebra L£(s, s) usually appears and plays a significant role in K-theory of
Fréchet algebras (see Bhatt & Inoue [1, Ex. 2.12], Cuntz [8, p. 144], [9, p. 64-65], Glockner &
Langkamp [14], Phillips [25, Def. 2.1]) and in C*-dynamical systems (Elliot, Natsume & Nest
(12, Ex. 2.6]).

As we have already seen, the algebra £(s, s) is also an example of a dense *-subalgebra of a
C*-algebra (namely, it is a dense subalgebra of K(¢3)). Such algebras are of great importance in
noncommutative geometry (see, for instance, Bhatt & Inoue [1], Blackadar & Cuntz [2], Connes
[6, pp. 23, 183-184]) as they introduce differential structure on a noncommutative manifold.
From the philosophical point of view C*-algebras corespond to analogues of topological spaces
whereas some of their dense smooth subalgebras play the role of smooth structures.

As we already said, the algebra £(s, s) has a lot of natural ”structure”: its first natural norm
is a dominating C*-norm (see the discussion below), it has a natural unitary space structure
inherited from the space HS(¢2) of Hilbert-Schmidt operators, its spectral properties are closely
related to those of K(¢3), etc. Therefore, it seems that L£(s', s) is a very special dense *-subalgebra
of IC(¢2), and hence it might be the best candidate for a "differential structure” there. In spite
of the role played by L(s',s) as explained above, very little is known, for example, about its
algebraic structure. The main goal of the presented dissertation is to find initial results in this
direction.

The dissertation is divided into 5 chapters. In the first chapter we establish notation and
present some fundamental, well-known by now, facts concerning nuclear Fréchet spaces, operator
theory, the space s and the algebra L(s', s).

Chapter 2 is devoted to the so-called algebra of multipliers of £(s', s), which can be seen as
the largest (in some sense) *-algebra of operators acting on L£(s', s), i.e. the largest "resonable”
*-algebra in which £(s', s) is an ideal. Multiplier algebras of C*-algebras are usually described by
the so-called double centralizers (see [4] and Def. 2.2). In particular, the algebra of multipliers
(i.e. the algebra of double centralizers) of K(¢2) is L(¢2) (see [23, pp. 38-39, 81-83]). Using
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similar techniques, we show in the main result of Chapter 2 that the *

operators on £

-algebra of unbounded

L*(s) :={x: s — s:xis linear,s C D(z") and z*(s) C s},

where
D(LIZ*) = {77 € 62 : ElC € 62 vé €s <375a77> = <§a C>}

and z*n := ( for n € D(z*), is isomorphic as a *-algebra to the *-algebra of double centralizers of
L(s',s) (Th. 2.7). This fact connects our considerations to the theory of *-algebras of unbounded
operators on Hilbert spaces (the so-called O*-algebras) developed e.g. by G. Lassner (see e.g.
[18]) and K. Schmiidgen (see [29]).

In Section 3.1, we prove, using the fact that the norm || - ||s,—¢, is a dominating norm
on L(s',s) (Proposition 3.2), the crucial for the whole dissertation theorem on the spectral
representation of normal elements in £(s",s) (Theorem 3.1). As a by-product we obtain a kind
of spectral description of normal elements of £(s, s) among those of K(l2) (Corollary 3.6). We
also present in Section 3.2 a theorem on the Schmidt representation of an arbitrary operator in
L(s',s) (Theorem 3.8) and give a corresponding description of smooth operators among compact
operators (Corollary 3.9).

The aim of Chapter 4 is to describe and classify closed commutative *-subalgebras of L(s, s).
In Section 4.1, we show that every such algebra A is isomorphic as a Fréchet *-algebra to the
Kothe algebra

A1 Prllg) = {(ék)keN eCl: Sup(&| [[Pkllq) < oo for every ¢ € No}
S

with pointwise multiplication and conjugation (Theorem 4.9), where (Py)ken is the set of nonzero
minimal (self-adjoint) projections in A. To prove this, we show that (Pj)ken is a Schauder basis
of A, called the canonical Schauder basis (Lemma 4.4). In particular, we prove that the algebra
A is generated by a single operator x and also by the set of spectral projections of x (see again
Theorem 4.9).

Section 4.2 is devoted to closed maximal commutative *-subalgebras of L(s',s), i.e. those
closed commutative *-subalgebras of L£(s',s) which are not properly contained in any larger
closed commutative *-subalgebra of L£(s',s). It appears that the canonical Schauder bases of
such algebras consist of one-dimensional (pairwise orthogonal) projections Py forming a sequence
which is complete in the following sense: there is no nonzero projection P belonging to L(s', s)
such that PP = 0 for every k € N (Theorem 4.11). Consequently, algebra A is isomorphic to a
closed maximal commutative *-subalgebra of L£(s, s) if and only if

A X(fil,) = {<sk>keN € s sup((&u] 1fuls) < o for every g € No}
S

as a Fréchet *-algebra, where (fx)reny C s is the orthonormal sequence corresponding to the
canonical Schauder basis of A (Corollaries 4.16 and 4.21). Therefore, since every closed commu-
tative *-subalgebra of L(s', s) is contained in some closed maximal commutative *-subalgebra of
L(s',s) (Proposition 4.12), the class of closed commutative *-subalgebras of L(s', s) coincides (in
the sense of Fréchet *-algebra isomorphism) with the class of closed commutative *-subalgebras
of X°(|fxlq), (f&)ken C s being an orthonormal sequence (see Corollary 4.22).

In Section 4.3 we show a surprising fact that a closed commutative *-subalgebra of L(s', s)
is isomorphic as Fréchet *-algebra to some closed *-subalgebra of s if and only if it is isomorphic
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as a Fréchet space to some complemented subspace of s (Theorem 4.25), i.e. if it has the so-
called property (€2) (see Definition 0.2 below). We also give an example of a closed commutative
*-subalgebra of L(s’, s) which is not isomorphic to any closed *-subalgebra of s (Theorem 4.32).

In the last section of Chapter 4, we focus on a very specific class of closed commutative *-
subalgebras of L(s',s) with the property (), namely orthogonally complemented subalgebras.
A subalgebra A of L(s,s) is orthogonally complemented in L£(s',s), if there is an orthogonal
projection 7 on the Hilbert space HS(¢3) such that 7(L(s,s)) = A (see also Definition 4.33). In
Proposition 4.36 we characterize closed commutative orthogonally complemented *-subalgebras
in terms of their canonical Schauder bases. The case of closed maximal commutative orthogo-
nally complemented *-subalgebras of L(s', s) isomorphic (as Fréchet *-algebras) to s is of special
interest: it turns out, for instance, that the set of orthonormal sequences correspondending
to the canonical Schauder bases of algebras from this class coincides with the set of orthonor-
mal sequences which are at the same time Schauder bases of s (Theorem 4.37). Moreover,
it turns out that the closed maximal commutative orthogonally complemented *-subalgebras
A of L(s',s) isomorphic to s are exactly those for which there exists an algebra isomorphism
T: L(s',s) = L(s',s) preserving orthogonality which maps A onto the subalgebra of diagonal
operators (Corollary 4.38). We finish Section 4.4 with an example of a closed maximal commu-
tative *-subalgebra of L(s',s) isomorphic as a Fréchet *-algebra to s which is not orthogonally
complemented in £(s', s) (Theorem 4.39).

In Chapter 5 we establish functional calculus for normal elements of £(s,s). In particu-
lar, f(z) belongs to L£(s',s) for each normal operator x € L(s',s) C L(¢2) and each Holder
continuous function f vanishing at zero and defined on the spectrum of x (Theorem 5.1). For
instance, positive elements in £(s', s) have positive square roots in £(s’, s). Another functional
calculus (only C'*° one) on dense subalgebras of C*-algebras has been developed by Blackadar
and Cuntz in [2] (see Prop. 6.4 and p. 277) under some additional assumptions on the algebra.
Unfortunately, it seems that £(s',s) does not satisfy the required conditions.

Most of the results from Sections 3.1, 4.1, 4.2 and Chapter 5 have been already published in
[5].

The results contained in this dissertation are mostly derived from and inspired by the theory
of nuclear Fréchet spaces [20], the theory of compact operators on ¢y ([7, 20]), the theory of
unbounded operators [29] and the theory of double centralizers of C*-algebras ([4, 15]). Probably
the main novelty of the methods used in the dissertation is an application of the so-called
properties (DN) and (£2) of Vogt and Zahariuta.

Definition 0.1. (see [20, Def. on p. 359 and Lemma 29.10]) A Fréchet space (X, (|| - |lq)qen,)
has the property (DN) if there is a continuous norm || - || on X such that for any ¢ € Ny there
is r € Ng and C' > 0 such that for all z € X

llallg < Cllll [l
The norm || - || is called a dominating norm.

Definition 0.2. (see [20, p. 367]) A Fréchet space E with a fundamental sequence (|| - ||¢)qen,
of seminorms has the property (Q2) if the following condition holds:

Wp 3q ¥r 39 € (0,1) 3C > 0vy € B lylly < Cllylly " llyll,
where E' is the topological dual of E and ||y|[;, := sup{|y(x)| : [|z[|, < 1}.

Clearly, £(s, s) has the properties (DN) and (£2) as isomorphic to s.
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The properties (DN) and (£2) with their several modifications are very important topological
invariants in the theory of nuclear Fréchet spaces. For example, Vogt and Wagner (see [31, 32,
33, 35] and [20, Ch. 30]) proved the following splitting theorem for nuclear Fréchet spaces.

Theorem 0.3. Let E, F,G be nuclear Fréchet spaces and let

0—E-F-%ag—0

be a short exact sequence of continuous linear maps. If the space G has the property (DN) and
the space E has the property (X2), then the sequence splits, i.e. the map q has a continuous linear
right inverse and the map j has a continuous linear left inverse.

As a further consequence of the last theorem, one gets a characterization of subspaces and
quotients of the space s in terms of the properties (DN) and () (Vogt and Wagner [33, 35], [20,
Ch. 31]). Recall that a subspace F' of a Fréchet space E is called complemented (in F) if there
is a continuous projection 7: E — E with im7 = F..

Theorem 0.4. A Fréchet space is isomorphic to
(i) a closed subspace of the space s if and only if it is nuclear and it has the property (DN);
(ii) a quotient of the space s if and only if it is nuclear and it has the property (Q);

(iii) a complemented subspace of the space s if and only if it is nuclear and it has the properties

(DN) and ().

As mentioned above, the operator C*-norm || - ||¢,—¢, is a dominating norm on L(s,s)
(compare with [27, Th. 4] and see Proposition 3.2 for the straightforward proof). This result
will be of great importance in our considerations; it will lead to unexpected connections of the
property (DN) and (Q2) to spectral properties of the elements of £(s', s) and algebraic properties
of the algebra L(¢, s).

Investigations of the algebra L(s',s) in the context of the theory of Fréchet spaces were
proposed some years ago by Leonhard Frerick (University of Trier). Some results have been
already known (see, for instance, a survey in [11]). For example, it is known that not only £(s’, s)
is contained in the intersetion of all Schatten classes S,(¢2), p > 0, but also that the sequence
of eigenvalues (non-increasing in modulus, counting geometric multiplicity) of an operator from
L(s',s) belongs to s ([11, Cor. 2.5]). Moreover, it follows from [3, Prop. A.2.8] and [30, Lemma
5.7] that an operator belonging to the algebra with unit

L(s',s)1:={z+ Al :2€L(s,s),\ e C}

(1 is here the identity operator on f2) is invertible in £(s',s)1 if and only if it is invertible in
L(l2) (see also [11, Th. 2.3]). Consequently, L£(s,s)1 is a Q-algebra (i.e. the set of invertible
elements in £(s,s)1 is open) so L(s,s) is a Q-algebra as well (i.e. the set of quasi-invertible
elements in £(¢, s) is open, see [13, Prop. 4.14] and [14]).

Piszczek proved that every positive functional on L£(s;s) and every derivation from the
algebra L£(s, s) to an arbitrary bimodule over £(s', s) are continuous [28, Th. 11 and Th. 13].
Next he proved that the algebra L(s',s) is not boundedly approximately amenable but it is
approximately amenable and approximately contractibile [28, Cor. 19, Th. 21 and Cor. 22].

Moreover, Piszczek showed that £(s,s) has no bounded approximate identity ([28, Prop.
2]), i.e. there is no bounded net (uy)yepn C L(s',s) such that zuy — = and uyz — =z for all
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x € L(s',s). Let us also mention here, that £(s',s) is not a locally C*-algebra, i.e. there is
no sequence of C*-norms defining the topology on L£(s',s). Otherwise, since L(s',s) is a Q-
algebra, it would be automatically a C*-algebra so a Banach space (see [13, Cor. 8.2]); this
gives a contradiction as £(s', s) = s is not a Banach space. In the book of Fragoulopoulou [13]
it is developed a theory of topological algebras A with involution if either A has a bounded
approximative identity or A is a locally C*-algebra. In view of the above negative results the
mentioned theory cannot be applied to £(s', s), and therefore we need new ideas. We hope that
our dissertation contributes in this direction.



Chapter

Preliminaries

Throughout the thesis, N will denote the set of natural numbers {1,2,...} and Ny := NU {0}.
By a projection on the complex separable Hilbert space

o= {& = (& )jen € T el = (i |sj|2)1/2 < oo

=1

we always mean a continuous orthogonal (i.e. self-adjoint) projection.

By a Fréchet space we mean a complete metrizable locally convex space over C (we will not
use locally convex spaces over R). A Fréchet algebra is a Fréchet space which is an algebra with
continuous multiplication. A Fréchet *-algebra is a Fréchet algebra with an involution.

For locally convex spaces F,F, we denote by L(E,F) the space of all continuous linear
operators from E to F. To shorten notation, we write £(E) instead of L(E, E).

We use the standard notation and terminology. All the notions from functional analysis are
explained in [7] or [20] and those from topological algebras in [13], [19] or [36].

81. The space s and its dual: We define the space of rapidly decreasing sequences as the
Fréchet space

00 1/2
g = {g = (&)jen € cN . €lg = <Z gj\2j2q> < oo forall g € No}
j=1

with the topology corresponding to the system (|- [4)4en, of norms. We may identify the strong
dual of s (i.e. the space of all continuous linear functionals on s with the topology of uniform
convergence on bounded subsets of s, see e.g. [20, Def. on p. 267]) with the space of slowly
increasing Sequences

0o 1/2
¢ i= {6 = (€en e i 1ely = (L Igl) < oo for some g € Fo}
j=1

equipped with the inductive limit topology given by the system (| - |)4en, of norms (note that
for a fixed ¢, | - ]’q is defined only on a subspace of s’). More precisely, every n € s’ corresponds
to the continuous linear functional on s:

E (Em) =&
j=1

1
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Please note the conjugation on the second variable! These functionals are continuous, because,
by the Cauchy-Schwartz inequality, for all ¢ € Ny, £ € s and 1 € s’ we have

(& m| < Elqlnly- (1.1)

Conversely, one can show that for each continuous linear functional y on s there is n € s’ such

that Y= <)77>
Similarly, we identify £ € s with the continuous linear functional on s':

n= (0,6 =Y 0.
j=1

In particular, for each continuous linear functional y on s’ there is £ € s such that y = (-, ).
We emphasize that the "scalar product” (-, -) is well-defined on s x s’ U s’ x s and, of course,
on fo x fo.

§2. Nuclear Fréchet spaces and the property (DN): Recall that a Fréchet space E
is nuclear if every unconditionally convergent series of elements of E is absolutely convergent
(see also [20, Def. on p. 344]). Nuclear Fréchet spaces share many nice properties with finite-
dimensional spaces, e.g. every closed bounded set in a nuclear Fréchet space is compact (see
[20, Lemma 24.19 and Cor. 28.5]). However, there are pathological examples of nuclear Fréchet
spaces which do not behave like finite-dimensional spaces, e.g. there are nuclear Fréchet spaces
without Schauder basis (the first example is due to Mityagin and Zobin [22]).

In the class of all Fréchet spaces the space s is, in some sense, universal. More precisely,
the Komura-Komura theorem (see e.g. [20, Cor. 29.9]) gives the following characterization of
nuclear spaces.

Theorem 1.1. A Fréchet space is nuclear if and only if it is isomorphic to some closed subspace
N
of s.

Closed subspaces of the space s can be characterized by the so-called property (DN) (see
Theorem 1.3 below).

Definition 1.2. A Fréchet space (X, (|| - ||¢)qen,) has the property (DN) (see [20, Def. on p.
359]) if there is a continuous norm || - || on X such that for all ¢ € Ny there is r € Ny and C > 0
such that

12117 < Cllz| ||l

for all z € X. The norm || - || is called a dominating norm.

The following Theorem is due to Vogt (see [33] and [20, Ch. 31]).

Theorem 1.3. A Fréchet space is isomorphic to a closed subspace of s if and only if it is nuclear
and it has the property (DN).

The (DN) condition for the space s reads as follows.
Proposition 1.4. For every p € Ny and £ € s we have
€l < 11€]les I€]2p-

In particular, the norm || - ||¢, is a dominating norm on s.
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Proof. Fix p € Ny and £ € s. Then, from the Cauchy-Schwartz inequality, we obtain

o] o] o] 1/2 o] 1/2
€12 =D 161757 =" 1] - &1 < (Z |£j|2) (Z |£j|2j4p) = 11€]¢, /€] 2p-
j=1 Jj=1 j=1 j=1

|

We will usually use (see Lemma 3.3 and its proof) the condition (DN) in the following
equivalent form (see [20, Lemma 29.10]): there is a continuous norm || - || on X such that for
any q € Ng and 6 € (0,1) there is r € Ny and C > 0 such that

—0 0
[l2llg < Cllz|' =l (1.2)

for all z € X.

§3. Kothe spaces: We say that a matrix (a;¢)jengen, of non-negative numbers is a Kdthe
matriz if the following conditions hold:

(i) for each j € N there is ¢ € Ny such that a;, > 0;
(ii) Ajq < Gjg11 for j € N and g € Np.

For 1 < p < oo and a Kothe matrix (a;q)jen,qen, We define the Kdthe space

00 1/p
N(az) = {g = (€))en € CV ¢ [€]pg = (z |gjaj,q|1’> <ooforallge No}
j=1
and for p = o0

A(ajq) = {f = (£)jen € CV : |¢]oog = sulr\l) |€5lajq < oo forall g € No}
je

with the topology generated by the norms (| - [,4)qen, (see e.g. [20, Def. p. 326]).

It is well-known (see [20, Lemma 27.1]) that the spaces A(aj,) are Fréchet spaces and
sometimes they are Fréchet *-algebras with pointwise multiplication and conjugation, e.g. if
ajq > 1 for all 5 € N and ¢ € Np.

By definition, s is just the Kéthe space A?(j?). Moreover, since the matrix (j9)jen gen,
satisfies the so-called Grothendieck-Pietsch condition (see e.g. [20, Prop. 28.16 item 6]), s is a
nuclear space, and thus it has also other Kéthe space representations (see again [20, Prop. 28.16
& Ex. 29.4(1)]).

Proposition 1.5. For all1 < p < oo, s = NP(j9) as a Fréchet space. In particular, § € s if and
only if
sull\]) €577 < o0

VS
for every q € Np.
We use o-norms in the definition of s to clarify our ideas, for example we have [£|o = |[£]|e,
for £ € s and |n|y = ||nl|s, for n € f. However, in some situations the supremum norms | - s q

(as they are relatively easy to compute) will be more convenient. For instance, we use them in
the proof of the following well-known facts.



Chapter 1. Preliminaries 4

Proposition 1.6. If (§;),en € s, then (|§,~]9)j€N € s for every 6 > 0.

Proof. For £ € 5,0 > 0 and g € Ny we get

sup &7 = (sup [¢]79/%)? < 0.
JEN jEN

OdJ
Proposition 1.7. We have
s C ﬂ L.
0>0
Proof. Take £ € s and § > 0. By Proposition 1.6, we obtain
o0 oo
Y1617 <suplgl?5* D 57 < oo
j=1 JjeN j=1
O

§4. The algebra L(s',s): Let E, F be locally convex spaces. Recall that L(E, F') denotes the
space of all continuous linear operators from E to F' and, to shorten notation, we write L(E)
instead of L(FE, E).

It is a simple matter to show that L(s’,s) with the topology of uniform convergence on
bounded sets in s is a Fréchet space and it is isomorphic to s®s, the completed tensor product
of s (see [16, §41.7 (5)] and note that, s being nuclear, there is only one tensor topology), and
thus L£(s',s) = s as a Fréchet space (see e.g. [20, Lemma 31.1]). Moreover, it is easily seen that
(H ’ HQ)(]ENO7

||zllq := sup [z]q,
|€lg<1
is a fundamental system of norms on L(s, s).

Let us introduce multiplication and involution on L(s',s). First observe that s is a dense
subspace of £, {5 is a dense subspace of s’, and, moreover, the embedding maps ji: s < /o,
jo: £y — s' are continuous. Hence,

v L(8',8) = L(€2), u(x):=j1oxo0 o, (1.3)

is a well-defined (continuous) embedding of L(s', s) into the C*-algebra L£(¢3), and thus we may
define a multiplication on £(s', s) by

Ty = fl(a(a:) ou(y)),
i.e.
xy=x0j0UY,

where j := jo 0 j1: s < s'. Similarly, an involution on £(s', s) is defined by

where ¢(z)* is the hermitian adjoint of ¢(z). The following Proposition makes these definitions
correct.
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Proposition 1.8. For all x,y € L(s,s) we have:
(i) u(@)ouly) € LL(s,5));
(ii) v(z)* € L(L(, 9)).

Proof. (i): This is clear.
(ii): Let z € L(s',s) and let (ex)ren be the canonical orthonormal basis of f5. Then

(e(x)er, n) = (ex, v(x)"n)

for all k € N and n € ¢, hence «(x)*n = ((¢(z)er, n))ken for n € la.
Consider the operator z: s — s, zn := ((zeg, n))ren. Fix n € s’ and choose r € Ny so that
|l < co. Then for all ¢ € Ny there is a constant C' > 0 such that

e e

|2n|? = ZI zer, ) 2k* < (In[l) leekl k* < C(nll.) Z

k=1 k=1

the second inequality being a consequence of the continuity of x. This means that the operator
z is well-defined, continuous, and clearly z |, = ¢(z)*. Hence, t(z)* = 1(z) € «(L(s, 5)). O

In future, we just identify x € L(s',s) and ¢(x) € L(¢3) so we omit ¢ in the notation.

A Fréchet algebra F is called locally m-convex if E has a fundamental system of submulti-
plicative seminorms. It is well-known that £(s, s) is locally m-convex (see e.g. [25, Lemma 2.2]);
we give a simple proof that the norms || - ||, are submultiplicative, which shows simultaneously
that the multiplication introduced above is separately continuous, and thus, by [36, Th. 1.5], it
is jointly continuous.

Proposition 1.9. For every x,y € L(s',s) and q € Ng we have ||zy|lq < ||2|lq]|yllq-

Proof. Let 2,y € L(s',s) and let By, By denote the closed unit ball for the norms |- |4, | - |,
respectively. Clearly, y(B;) C ||y||By and B, C By. Hence,

llzyllg = sup |z(y(&))lg = sup |z(n)ly < sup |z(n)ly = |lyllq sup [x(n)lq
el <1 ney(By) néllylleBq n€B,

< llyllq sup [z(n)lq = l[=(lql[ylq-
neB,’Z

a

We may summarize this paragraph by saying that L£(s',s) is a locally m-convex Fréchet
*-algebra. It is sometimes called the algebra of smooth operators or the algebra of smoothing
operators.

§5. Representations of L(s',s): Let E be a Fréchet space, E’ be its strong dual (i.e. the
space of all continuous linear functionals on F with the topology of uniform convergence on
bounded sets in E) and let H be a Hilbert space with a scalar product (-,-)%. Assume that E
is dense in H and

- [l B = 10,00),  I€]lo = /(€ On

is a continuous norm on E. We call (E,H, E') a Gelfand triple or a rigged Hilbert space (see e.g.
[29, Remark 2 on p. 47]).
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Let j1: F — H denote the embedding map and let jo: H < E’ be the adjoint of ji, i.e.

(72(m)(&) = (& mn

for ¢ € F and n € H. Since F is dense in H, jo is injective. Define j := jo 0 j1: E — F'.
Assume also that:

(%) E has a Schauder basis which is orthonormal with respect to the scalar product of H
and such that the corresponding coefficients space is s. In particular, by the closed graph
theorem, F is isomorphic as a Fréchet space to s.

Then, repeating arguments from the previous paragraph, we may prove the following (see
also [11, Th. 2.1]).

Theorem 1.10. Under the conditions stated above,

(i) the map
v LB E) = L(H), u(z):=j1o0x0js,
is a well-defined continuous embedding of L(E', E) (with the topology of uniform conver-
gence on bounded subsets of E') into the C*-algebra L(H);

(ii) L(F', E) with multiplication

wy =" (i(x) o uly)) =wojoy,

and involution
o =1 (u(x)"),

t(z)* being the hermitian adjoint of 1(x), is a locally m-convex Fréchet *-algebra;
(i) L(E',E) = L(s',s) as a Fréchet *-algebra.
The following result is due Vogt.

Theorem 1.11. [34, Cor. 7.7] Let E be a nuclear Fréchet space. If || - ||o is a dominating
Hilbert norm on E and E = s as a Fréchet space, then the isomorphism can be chosen so that
it is unitary between Fy and ly (here Ey is the completion of (E,||-1|o))-

By Theorem 1.11 (with || - ||o = || - ||%), assuming || - || to be a dominating norm on F 2 s,
we easily show the condition (%), and thus, by Theorem 1.10, L(E’, E) is Fréchet *-algebra
representation of £(s, s).

Theorem 1.12. Let (E,H,E") be a Gelfand triple. If || - ||% is a dominating norm on E and
E = s as a Fréchet space, then there is a unitary map U: H — Ly such that Ug: E — s is
an isomorphism of Fréchet spaces. In particular, the condition (%) is satisfied, i.e. E has a
Schauder basis which is orthonormal with respect to the scalar product of H and such that the
corresponding coefficients space is s.

Proof. The first statement of the theorem trivially follows from Theorem 1.11. We will show
that (U~ (ex))ren is a Schauder basis of s with the desired properties (here ej, denotes the vector
in CN whose k-th coordinate equals 1 and the others equal 0).
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Since U~': ¢ — H is unitary and U‘glz s — F is an isomorphism of Fréchet spaces,

(U~Y(ex))ken is a Schauder basis of E which is orthonormal with respect to (-, -)%. Moreover,
the corresponding coefficients space is

{({(€, U™ e rren: € € B} = {((U€, ex)ren: € € B} = {((n,ex))ren: 1 € s} = s,
which completes the proof. |

Following [11, Th. 2.1], we now give some examples of Gelfand triples satisfying the condition
(%)
FEzample 1.13. For the following Gelfand triples (E,H, E'), L(F’, E) are isomorphic as Fréchet
*-algebras to L(s', s) (in the proof of (%) we may indicate — as in [11, Th. 2.1] — an appropriate
Schauder basis or, alternatively, we can show that || - || is a dominating norm on F and then
apply Theorem 1.12):
(1)

(S(R™), L*(R"), S'(R™)),

where S(R™) is the space of rapidly decreasing smooth functions on R”, L?(R") is the Hilbert
space of square integrable functions on R™ with the scalar product

(f.9)i= [ (Dt

and S'(R™) is the space of tempered distributions on R™;
(2)
(C>(M),L*(M), &' (M)),
where M is a compact smooth manifold, C° (M) is the space of smooth functions on M, L?(M)
is the space of square integrable functions on M with the scalar product

o9y = [ 1090,

1 being a measure which is strictly positive and absolutely continuous with respect to the
Lebesgue measure on every element of the atlas of M, and &'(M) is the space of distributions
on M;
(3)

(C*[0,1], £2[0, 1],&"[0, 1)),

where C°°[0, 1] is the space of smooth functions on [0, 1], L?[0,1] is the Hilbert space of square
integrable functions on [0, 1] with the scalar product

dt
vV1—1t2
and £'[0,1] is the space of distributions on [0, 1] with compact support (here the orthogonal
basis is given by the Chebyshev polynomials);

(4)

)= [ 509

(A%(D), H*(D), A~>(D)),

where A*°(D) is the space of holomorphic functions on the open unit disc D which admit the
C>-extension to D, H?(D) is the Hardy space on I with the scalar product

gy = tim —— [ f(ret)glremat

r—1— 27 -
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and A~°(D) = (A*>°(D))’ (as locally convex spaces) is the space of holomorphic functions on D
of polynomial growth, i.e. such that

sup |f(2)[(1 — [2])?

zeD

for some ¢ € Np.
We shall also mention two extra representations of £(s', s).

Ezample 1.14. The following Fréchet *-algebras are isomorphic to £(s’, s) (for the proof, see [11,
Th. 2.1]):
(1) the algebra K of the so-called rapidly decreasing matrices:

Koo :={(ajr)jren € cV . s;pN laj k|79 < oo for all ¢ € Ng}
-]7 e

with matrix multiplication and matrix conjugate transpose as involution (see e.g. [14], [25, Def.

2.1]));

(2) the algebra S(IR?) of rapidly decreasing smooth functions on R? with the Volterra convolution

(f-g)(z,y) : /f:vz g(z,y)d

as multiplication and involution

f*(x,y) = f(y7 l‘)
(see e.g. [1, Ex. 2.12]).

§6. L(s',s) as a class of compact operators on /5: Let K(¢3) denote the space of all
compact operators on f5. Recall that each z € K(¢3) has a Schmidt representation of the form

Z (s fr) 9>

where (si(z))ren C [0,00) — the so-called sequence of singular numbers — is a non-increasing
null sequence, (fx)ken, (gk)ken are orthonormal sequences in fo and the series converges in the
norm || - ||s,—e, (see e.g. [20, Prop. 16.3]). It appears (see [11, Cor. 3.2]) that the canonical
embedding ¢: L(s',s) < L(¢2) acts in fact into the space

m Sp(€2)7

p>0

where
Sp i ={zx € K(¥2) : (si(x))ren € {p}.

is the p-th Schatten class; in particular, every smooth operator is compact (as an operator on
?3), and therefore £(s, s) can be regarded as some class of compact operators on ¢. Since, every
non-increasing sequence in (), ¢, is already in s (see [26, 8.5.5]), this means the following.

Proposition 1.15. The sequence of singular numbers of an element in L(s',s) belongs to s.

Proposition 1.16. ,C(s’,s)”'HéQ_”Z2 = K(£y).
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Proof. Let F({2) denote the space of finite operators on ¢o. It suffices to show that

]_—(62) C L(SI, S)||'ng~>e2’

because
,C(£2)H~||€2—>£2 _ ’C(Zg) _ 7;(62)””@2_)[2

(see e.g. [20, Cor. 16.4]).

If x is a one-dimensional operator on ¢y, then z = (-,&)n for some &, € ¢5. Since the
space s is dense in f5, one can find sequences (&x)ren, (Mk)ren of elements in s tending to &
and 7, respectively. It is easy to see that each zy := (-, &)nx belongs to L(s, s), and moreover

. . « s 7 7 NIle £
||z — xk||ey—e, — 0 as k — co. Hence every one-dimensional operator on fs is in £(s/, 5)” leg—e

and thus F () C L(¢, S)HVWQ%Q, which completes the proof. O

I

§7. Spectral properties of £(s',s): Finally, we shall recall some basic spectral properties
of the algebra L(s, s). For the sake of convenience, we state the following definition.

Definition 1.17. We say that a sequence (A,)nen C C is a sequence of eigenvalues of an infinite
dimensional compact operator x on ¢ if it satisfies the following conditions:

(i) {An}nen is the set of eigenvalues of z without zero;

(i) [A1] > |A2] > ... > 0 and if two eigenvalues have the same absolute value then we can
ordered them in an arbitrary way;

(iii) the number of occurrences of the eigenvalue )\, is equal to its geometric multiplicity (i.e.
the dimension of the space ker(\,1 — z)).

Let us also introduce the algebra with a unit
L(s',s)1:={z+Al:2€L(s,s),)eC},

where 1 is the identity operator on £5. We endow the algebra £(s’, s); with the product topology.

Proposition 1.19 below is well-known (see e.g. [14] and [13, Prop. 4.14]) and it is a simple
consequence of Proposition 1.18. However, Propositions 1.18 and 1.19 also follow from [3, Prop.
A.2.8]. Straightforward proofs of Propositions 1.18 and 1.20 can be found in [11, Th. 3.3, Cor.
3.5].

Proposition 1.18. An operator in L(s', s); is invertible if and only if it is invertible in L({3).

Proposition 1.19. The algebra L(s',s)1 is a Q-algebra, i.e. the set of invertible elements in
L(s',8)1 is open. Consequently, L(s',s) is a Q-algebra as well, i.e. the set of quasi-invertible
elements in L(s', s) is open.

Proposition 1.20. The spectrum of x in L(s',s); equals the spectrum of x in L(l2) and it
consists of zero and the set of all eigenvalues of x. If, moreover, x is infinite-dimensional, then
the sequence of eigenvalues of x (see Definition 1.17) belongs to s.



Chapter

Multiplier algebra of £(s’, s)

In this chapter we want to describe the so-called multiplier algebra of L(s, s), which is, in some
sense, the largest algebra of operators acting on £(s, s). The algebra

L(s)NL(s) :={x € L(s):x=7|s for some z € L(s")} (2.1)

seems to be a good candidate, because if x € L(s',s) and y € L(s) N L(s"), then clearly zy, yx €
L(s',s). Now, using heuristic arguments, we will show that the algebra £(s) N L(s") is optimal.
Assume that y € L(E,F) for some locally convex spaces E,F. If zy € L(s',s) for every
x € L(s,s) then, in particular, ((-,£)¢)y € L(s,s) for all £ € s, and therefore (y(n),&) has to
be well-defined for every £ € s and 7 € s’, which shows that y: s’ — s’. Similarly, we show that
if yz € L(s,s) for every x € L(s',s) then y: s — s. Hence, y € L(s) N L(s).

The algebra L£(s) N L(s’) can also be seen as the algebra of unbounded operators on £ (see
Proposition 2.1):

L¥(s):={x: s — s:xis linear,s C D(z*) and z*(s) C s}, (2.2)

where
D($*) = {77 € €2 : HC € 62 Vf €s <$§777> = <£ag>}

and z*n := ( for n € D(z*) (one can show that ¢ is unique), which defines a natural involution
on L£*(s). This result follows e.g. from [17, Prop. 2.2]; the proof we propose here involves basic
theory of locally convex spaces, including properties of continuous linear functionals on s and s’
(see Preliminaries).

Proposition 2.1. £*(s) = L(s) N L(s') as sets.

Proof. Take z € L£*(s). Let (§)jen C s and assume that {; — 0 and z§; — 1 as j — oc.
Then, for every (¢ € s, we have

and, on the other hand,

Hence (n,¢) = 0 for every ¢ € s, and therefore 7 = 0. By the closed graph theorem for Fréchet
spaces (see e.g. [20, Th. 24.31]), x: s — s is continuous. The continuity of z*: s — s can be
obtained in a similar way.

10
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Now, we shall show that 2 can be extended to a continuous linear operator from s’ to s’.
Take & € s’ and define a linear functional p¢: s — C, pe(n) := (z*n, ). From the continuity of
x*: s — s, it follows that for every ¢ € Ny there is r € Ny and C' > 0 such that |z*n|, < C|n),
for all n in s. Hence, with the same quantifiers, we get

lee(m)| = [{&™n, )] < |2 nlq - 1€l < Clnlr - €] (2.3)

50 ¢ is continuous. Consequently, for each { € s’ we can find a unique ¢ € s’ such that

<777<> = 905(77) = <$*7775>

for all n € s and we may define 7: s’ — s’ by 7€ := (. Clearly, 7 is a linear extension of x, and
moreover Z is continuous. In fact, by (2.3), for every g € Ny there is € Ny and C' > 0 such that

|ZE], = sup [(n,TE)| = sup [(x™n,&)| < CIE[;
Inl-<1 In]-<1

for all £ € ¢, i.e. T is continuous.

Now, let z € L(s) N L(s"). For each n € s we define a linear functional ¥,: s’ — C,
() := (T, n), where T: s — & is the continuous extension of z. By the continuity of the
operator T on the LB-space s, it follows that for every r € Ny there is ¢ € Ny and C > 0 such
that [Z£[, < C[¢], for £ € s'. Hence, for £ € s', we have

[Un ()] = K&, m)| < [ZE]g - Inlg < Clnlq - €]

which shows that 1), is continuous, and therefore there exists ¢ € s such that ¥, (-) = (-, (),
ie. (Z&n) = (&,() for £ € §'. Consequently, (x&,n) = (£,() for £ € s, hence s C D(z*) and
x*(s) C s, i.e. © € L*(s). O

The algebras £*(D) (here D is a dense subspace of a complex Hilbert space H and in the
definition of £*(s) we replace s with D and /5 with H) and its *-subalgebras — called O*-algebras
or Op*-algebras — were introduced by Lassner in [18]. In particular, £*(s) and L(s', s) are O*-
algebras. For more information we refer the reader to the book of Schmiidgen [29].

Another, more abstract, approach to multipliers goes through the so-called double centra-
lizers (see Definition 2.2) and it goes back to Johnson [15]. We will show that, in our case, both
approaches give the same algebra of multipliers (Theorem 2.7). The theory of double centralizers
of C*-algebras was developed by Busby (see [4] and also [23, pp. 38-39, 81-83]); this exposition
will be also very useful in the case of L(¢, ).

Definition 2.2. Let A be a *-algebra (over C). A pair (L, R) of maps from A to A (neither
linearity nor continuity is required) such that xL(y) = R(x)y for z,y € A is called a double
centralizer on A. We denote the set of all double centralizers on A by DC(A). Moreover, for a
map T: A — A we define T*: A — A by T*(x) := (T'(z*))*.

Lemma 2.3. If (L,R) € DC(A), then (R*,L*) € DC(A).
Proof. For all z,y € A we have
zR*(y) = z(R(y"))" = (R(y")z")" = (y"L(z"))" = L(z")"y = L*(2)y,

which completes the proof. O
Now, let (L1, Ry), (L2, R2) € DC(A), A € C. We define:
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(i) (L17R1) + (LQ,RQ) = (Ll + Lo, Ry + Rz);
(ii) M(L1, Ry) := (AL1, ARy);
)

(iil) (L1, R1) - (L2, Re) := (L1L2, RoRy);

(iv) (L1, B1)* = (Rf, L7).

A straightforward computation shows that DC(A) with the operations defined above is a
*-algebra. The elements of A correspond to the elements of DC(A) via the map, called the
double representation of A (see [15, p. 301]),

0: A—DC(A), o(x):=(Ly, Ry),

where L, (y) := xy and R,(y) := yx are the right and left multiplication maps, respectively. One
can easily show that g is a homomorphism of *-algebras. Our main Theorem 2.7 states that the
double representation of L(s',s) can be extended to a *-isomorphism of £*(s) and DC(L(s, s)).

In general the double representation does not have to be even injective; algebras for which
this is true are called faithful.

Definition 2.4. Let A be an algebra over C. We say that A is left faithful (right faithful, resp.)
if vz = yz (zx = zy, resp.) for all z € A implies x = y. If A is left and right faithful, then A is
said to be faithful.

It is easy to verify that every C*-algebra is faithful (see [4, Cor. 2.4] and [10, 1.3.5]). In the
case of L(s,s) we are able to prove more.

Proposition 2.5. If z € L(s) N L(s") and Z: ' — &' is the continuous extension of z, then
(i) if zL(s',s) =0, then z = 0;
(i) iof L(s',8)z2 =0, then z = 0.

In particular, L(s',s) is faithful.

Proof. (i) Assume that zz = 0 for all x € L(s',s). Then, in particular for z := (-,£)¢ (here
¢ €s), we get

(,€)2(€) = 22 = 0.

Thus z(§) =0 for all £ € s, i.e z=0.
(ii) Let 2z = 0 for all x € L£(s,s). Then, for all € € s, ((-,£)§)z2 =0, i.e. {0z =0 (we treat
¢ as a functional on s’). Hence z = 0. O

The following results are well-known (see [15, Th. 7, Th. 14]). For the convenience of the
reader, we present the proofs. We follow the proof of [4, Prop. 2.5] (the case of C*-algebras).

Proposition 2.6. Let A be a faithful Fréchet algebra and let (L, R) € DC(A). Then
(i) L and R are linear continuous maps on A;
(ii) L(zy) = L(x)y for every z,y € A;

(iii) R(xy) = zR(y) for every xz,y € A.



Chapter 2. Multiplier algebra of L(s',s) 13

Proof. (i) Let z,y,z € A, a, 8 € C. Then
zL(ax + By) = R(z)(ax + By) = aR(z)z + BR(2)y = z(al(z) + BL(y)),

hence, by the assumption, L(ax + By) = aL(x) + BL(y) and so L is linear.
Now, let (z;)jen C A and assume that z; — 0 and L(x;) — y (convergence in the topology
of A). Let (]| ||¢)qen, be a fundamental system of seminorms on A. Then

lzyllg < llzy = 2L(25)lq + [l2L(5)llq = [[2(y — L(x5)llq + [[R(2)2;llq
< |l2llg - lly = L(z)llg + I1R(2)lq - llz5llg = O,

as j — 00, so ||zyl||q = 0 for every ¢ € Ny, and therefore zy = 0. Hence, by the assumption,
y = 0. Now, by the closed graph theorem for Fréchet spaces (see e.g. [20, Th. 24.31]), L is
continuous.

Analogous arguments work for the map R.

(ii) Let z,y,z € A. Then

zL(zy) = R(z)ry = (R(2)x)y = (2L(x))y = 2(L(x)y),

and therefore, by the assumption, L(zy) = L(z)y.
(iii) Analogously as in (ii) (here we need the assumption that A is left faithful). 0
For z € L(s) N L(s") we define L., R,: L(s',s) = L(5,s), L,(x) := zz, R,(x) := xZ, where
Z: s — ¢ is the extension of z according to the definition of £(s) N L(s).

Theorem 2.7. The map 0: L*(s) — DC(L(s,s)), z — (L., R;) is a *-isomorphism between
*-algebras.

Proof. Throughout the proof, for £, € s, £ ® n denotes the one-dimensional operator (-, n)&.

By Proposition 2.1, £*(s) = L(s) N L(s) so for z € L£*(s) the left and right multiplication
maps L., R,: L(s',s) — L(s',s) are well defined. Moreover, it is easy to see that zL,(y) =
R, (x)y for z,y € L(s',s) and z € L*(s). Hence, (L., R,) € DC(L(s, s)) for every z € L*(s), i.e.
o is well defined.

The proof of the fact that g is a *-algebra homomorphism is straightforward and the injec-
tivity of ¢ follows directly from Proposition 2.5. We will show that g is surjective.

Let (L,R) € DC(L(s,s)) and fix e € s with ||e||,, = 1. We define a linear continuous map
(use Propositions 2.5 and 2.6) u: s — s by

ul = L ®e)(e).

For £, € s we have

(ug,m) = (L(E @ e)(e),n) = (L(E @ e)(e), (n @ e)(e)) = ((e @ N)[L(E @ e)(e)]; )
([(e@n) L@ e)l(e),e) = ([R(e @n)(§ @ e)l(e), ) = (R(e ®n)[( @ e)(e)], €)
= (R(e®@n)(§), e) = (&, (R(e ®n))*(e)).
This means that u*n = (R(e ®n))*(e) € s for n € s. Hence, s C D(u*) and u*(s) C s, i.e.

u € L*(s), and thus, by Proposition 2.1, u has the continuous extension @: s’ — s’. We have
also shown that

(ug,m) = (R(e@n)(§), €). (2.4)
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Next, by Propositions 2.5 and 2.6, for { € s we obtain

Ly @n)(Q) = (u€@n)(¢) = [LE @ e)(e) ®n](¢) = ((, ML ®e)(e)
=L ®e)((¢,me) = LE @ e)[(e @n) ()] = [L(E ® e)(e @ n)](C)
=L((¢®e)(e®n))(¢) = LE®n)(C),

hence L,(§ ®n) = L(§ ®n). Since {£ ® n : £,n € s} is a Schauder basis in £(s',s), it follows
that L, = L.
Likewise, (2.4) implies for ¢ € s

Ry(§@n)(C) = [(€ @n)ul(¢) = (u¢,mE = (R(e ®@n)((),e)§ = (§ @ e)(R(e @n)(¢)) =
[(§ @ e)R(e @n)](¢) = R((§ @ e)(e @n))(C) = R(§ @n)(C),

and therefore R, = R. Hence p(u) = (Ly, Ry) = (L, R), and thus p is surjective. O



Chapter

Spectral and Schmidt representations

As we have already seen in Preliminaries §6, elements of £(s',s) can be regarded as compact
operators on {3, and therefore every infinite-dimensional normal operator x € L(s,s) has the
spectral representation

e
T = Z )\k‘Pka
k=1

where (A;)ken is a non-increasing (in modulus) null sequence of nonzero pairwise different com-
plex numbers, (Px)ken is a sequence of nonzero pairwise orthogonal finite-dimensional projec-
tions and the series converges in the operator norm || - ||¢,—¢, (see e.g. [7, Th. 7.6]). Moreover,
every operator z € L(s', s) has a Schmidt representation of the form

= skl fr)gns
k=1

where (sg)reny C [0,00) is a non-increasing null sequence, (fx)ren, (gr)ken are orthonormal
sequences in f3 and the series converges in the norm || - ||z, ¢, (see e.g. [20, Prop. 16.3]).

In this chapter we derive necessary and sufficient conditions on these representations for a
compact operator to belong to £(s’,s). In both representations a crucial role is played by the
property (DN) (see [20, Def. p. 359] and Definition 1.2); to be more precise, it is important
that the operator norm || ||¢,—¢, is & dominating norm on £(s', s) (see Proposition 3.2). To my
best knowledge the property (DN) has not been used yet in investigations of L(s, s).

3.1 Spectral representation of normal operators

In this section we prove the following theorem on the spectral representation of normal elements
in £(s', s) which leads to a spectral characterization of normal elements in £(s', s) (see Corollary
3.6 below).

Theorem 3.1. Every infinite-dimensional normal operator x in L(s',s) has a unique spectral
representation © = > poq MNP, where (Ag)ren s a non-increasing (in modulus) sequence in
s of nonzero pairwise different elements, (Py)ren is a sequence of nonzero pairwise orthogonal
finite-dimensional projections belonging to L(s', s) and the series converges absolutely in L(s', s).
Moreover, (|\k|?||Pkllq)ken € s for all ¢ € Ng and all 0 € (0,1].

15
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Since L(s',s) = s as a Fréchet space, from Proposition 1.4, it follows that £(s’,s) has the
property (DN). The following result, which is closely related to the result of K. Piszczek [27,
Th. 4], shows much more. For convenience, we give a more straightforward proof.

Proposition 3.2. The norm || - ||¢,—e, @8 a dominating norm on L(s,s).
Proof. Clearly, ||x|ls,—e, = ||z|lo for = € L(s,s). By [33, Th. 4.3] (see the proof), the
conclusion is equivalent to the condition
1
WGNW>O}€N@C>OW>O|LM§COﬂLW+MLm>
By Proposition 1.4, the norm |- | is a dominating norm on s. Hence, again by [33, Th. 4.3], we

get
1
Vg € No,n > 03r € Ng,Dyg > 0Vk >0 |-|q§D0<k"\~|r+k|-yo).

Now, by the bipolar theorem (see e.g. [20, Th. 22.13]), we obtain (following the proof of |20,
Lemma 29.13]) an equivalent condition

k

where Uy := {£ € s : [§]; < 1} and Uy is its polar. If § > 0 and h € (0, 1] are given, we define
n:=20+1and k := Vh. Since k2" < k"1 we obtain

1
Vg € No,n>03r e Ng,D >0Vk >0 U;CD<k’7Uf+U§), (3.1)

o o o ° 1 ° o 1 o
U,oU) ={r®y: z,yeclU)} CD(""nUr _|_ka> ®D<anr +kU0)

1

c D? (k2"Uﬁ Q@US + 2k US @ UL + 2

w®m)
1

k2

Cc 3D? (k”lU,? ® U2 + ;

1
Us ® U{;) = 3D? (h"U,? QU+ -U§ ® U;;).

Since r and D in the condition (3.1) can be choosen so that ¢ < r and D > 1, we obtain
1

o o o o 2 Orro o
U, U, CU ®U, C3D (h UT®U,,+h

w®m>
for h > 1, whence

1
Vg € Ng,0 > 03r € Ng,C > 0Vh >0 U;®U;cc(h9U,?®U;+hU5®U§).

Therefore,
1

sup |z(z)] < Csup{]z(m)] 2 e UL @U? + .

w®m}
2eUgeUyg
1
— Csup {y(z’ +N@) 2 €W O UL, € U ® Ug}
1
< C'sup {]z'(x)\ + 2" (2)| : 2 € WU @ UL, 2" € EUS ® US}

1
= C(he sup |z(z)| + 7 _sup |z(x)|)
2€URUS 2€USRUS
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forallz: =377 7;®y; €s®s.
Let x: s ®s — L(8',5), x(Xf_1 25 ®y;)(2) := 27— 2(y;)xj. We have, for all p € Ny,

n

(Son)| -

J=1 {
- sup{ 21(271:22(%)%)‘ A2 € U;}

{

{

sup

21,792 € U? }
2€USRUS

n
> zi(xg)za(yy)|
Jj=1

= su

T

Jj=1
. o
.zEUp}
P

En:l?«'(yj)wj
(Fon)e

J=1

= sup

ZZGU;}
P

n
~ (X em)
j=1

n n 1 n
HX(Z%@@%) X<Zfﬂj®yj) +hHX<Z$j®yj) >
Jj=1 q Jj=1 T Jj=1 0

Finally, since the set {x(>°j_; ¥; ® y;) : 2j,y; € s,k € N} is dense in L(s, ), we obtain

p

Hence

< C(h9

1
lalle < (Wl + 3 lell)
for all z € L(s, s). O

Lemma 3.3. Let (E, (|| - |lq)qen,) be a Fréchet space with the property (DN) and let || - ||, be a
dominating norm. If (zx)ken C E, (Ag)reny C C satisfy the conditions

(i) supgen ||k|lp < 0o,
(i) Vg € No supgey |kl |[7x]lg < oo,

then
Vg € No V8 € (0,1]  sup ||’ ||ak]]y < oo
keN

Moreover, for any other sequence (yr)ken C E satisfying conditions (i) and (ii) we have
Vq € No Vq' € Ny V0 € (0,1] Zug‘)‘kleumk”q”yk”q’ < 0.
€
Proof. Fix ¢ € Ny and 6 € (0,1). Since || - ||, is a dominating norm on E, there are C' > 0 and

r € Ny such that
—0 (%
llzkllg < Cllaklly~llall] (3:2)

for all k& € N (see Preliminaries §2, condition 1.2). Let Ci := supey||2k|lp < 00, Co =
Supren | Ak| ||zk|lg < co. Then by (3.2),

Nel?lzkllg < Cllael b~ (k] [|zl])? < COTPCE =: C,

where C3 does not depend on k.
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To prove the second assertion we also fix ¢ € Ny and let (yx)ren C E satisfy conditions (i)
and (ii). We have

el kg yelle = (Al el lg) (Al lyell)
and from the first part of the proof,

‘9/2

sup [\e|2||zk]ly < 00 and  sup A2 [yilly < oo,
keN keN

so we are done. O

Proposition 3.4. Let N be a finite set or N. If (Py)ren 8 a sequence of pairwise orthogonal
finite-dimensional projections on by, (Ag)kenr C C\ {0} and x := Y o APy € L(s,s) (the
series converging in the norm || - ||e,—e, ), then (Py)gen C L(s',5).

Proof. Since, P, = )\ikx o Py, it follows that Py: £ — s. On the other hand, P, = P o lexv SO
Py extends to Py: s' — f5. Hence P, = P, o Py: s — s. O

Lemma 3.5. Let (\g)ken be a decreasing (in modulus) sequence of nonzero complex numbers
and let (Pg)ren be a sequence of nonzero pairwise orthogonal finite-dimensional projections on
ly. Moreover, assume that the series Y po | A\ Py converges in the norm || - ||¢y—e, and its limit
belongs to L(s',s). Then (M\g)ken € 8, (Pr)ren C L(8',s) and the series converges absolutely in
L(s',5). Moreover, (|\|°||Pxl|q)ken € s for all ¢ € Ny and 6 € (0,1].

Proof. By Proposition 1.20, the sequence of eigenvalues of the operator x = Y 70, \p P
belongs to s. Clearly, each )\ is an eigenvalue of > 72 ; A\ P and the number of its occurrences
is less than or equal to the geometric multiplicity, so (Ag)ren is, likewise, in s. Moreover, by
Proposition 3.4, P, € L(s, s) for k € N.

Fix ¢ € Ny and 6 € (0,1]. We will show that (|JAx|®||Ps||¢)ken € s, which implies that
the series Y 72, A\i P converges absolutely in £(s’,s). For this purpose, consider the operator
Ty: L(l2) — L(s,s) which sends z € L({2) to the following composition (in L£(s, s)):

S s ly Bty s B

By the closed graph theorem for Fréchet spaces (see e.g. [20, Th. 24.31]), T, is continuous
and since the sequence of operators (Py)gen is bounded in L£(f2), the sequence (AfPg)reny =
(T Pr)ken is bounded in £(¢, s), hence

sup [ Mg [*|| Pyl < oo
keN

Therefore, since ||-||s,—¢, is @ dominating norm on £(s, s) and || Pg||s,—¢, = 1 for k € N, Lemma
3.3 (applied to the sequences (A\2)gen and (Pg)gen) implies that

sup [\ /2| Pyl < oc.
keN

Hence, by Proposition 1.6, we get

sup [\i|[| Pelgk? < sup [ M| 2[|Pyllg - sup [Ae]??E < o0
keN keN keN

for every ¢’ € Ny, which completes the proof. O
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Now, it is not hard to prove the main theorem of this section.

Proof of Theorem 3.1. Let x be a normal infinite-dimensional operator in £(s’,s). The
operator z (as an operator on f3) is compact (see [11, Prop. 3.1]), thus by the spectral theorem
for normal compact operators (see e.g. [7, Th. 7.6]), x = Y 5ej APk, where (Ap)gen is a
decreasing null sequence of nonzero pairwise different elements, (Py)xen is a sequence of nonzero
pairwise orthogonal finite-dimensional projections and the series converges in the norm ||-||¢,—¢, -
Now, the conclusion follows from Lemma 3.5. |

As a corollary, we get a characterization of normal operators in £(s’,s) among compact
operators on {5 (remember that we identify elements of L(s',s) with some compact operators
on £3).

Corollary 3.6. Let x be a compact infinite-dimensional normal operator on £y with spectral
representation x = Y po 1 \ePi, i.e. (Ai)ken @5 a non-increasing in modulus null sequence of
nonzero pairwise different complex numbers, (Py)ren 1S a sequence of nonzero pairwise ortho-
gonal finite-dimensional projections and the series converges in the norm || - ||¢,—¢,. Then the
following assertions are equivalent:

(i) x € L(s,5);

(i) Py € L(s',5) for k € N and (|\e|?||Ps||¢)ren € s for all ¢ € Ny and 6 € (0,1];
(iii) Py € L(s',s) for k € N, (Ax)ken € s and supyey | Ai| || Px|lq < 0o for all g € No;
(iv) Py € L(s',s) for k € N and Y721 | M| || Pxllq < 0o for all g € Ny.

Moreover, if x = ny:l M\ Py, is a finite-dimensional operator on fa, then x € L(s,s) if and only
if Pp € L(s',s) fork=1,...,N.

Proof. The implication (i)=-(ii) follows directly from Theorem 3.1. The implications (ii)=>(iii),

(iv)=(i) are trivial.
(iii)=(iv): We have

- o
>~ el 1Pelly < sup e[ V211 Pl - 3 2 < oo,
k=1 keN =

because, by Lemma 3.3, supyen |Ak|"/2]| Pe||4 < oo and, by Proposition 1.7, s C i/
The finite-dimensional case is an immediate consequence of Proposition 3.4. O

3.2 Schmidt representation

The technique used in the previous section can be applied to get the Schmidt representation of
arbitrary operators belonging to £(s, s).

Proposition 3.7. Let N be a finite set or N. If (fx)nen and (gk)nen are orthonormal sequences
inly, (Ag)nen C C\{O0} and z := 3", cnr M (-, fr)gr € L, s) (the series converging in the norm
Il 1lez—e, ). then (fi)ken, (gr)ren C s

Proof. Since z: s — s, it follows that g, = )\—Ik:): fr € s for every k € N. Moreover,

Sonen M (s gr) fr = 2% € L(s', s) (see Proposition 1.8), hence fi = /\zlkx*gk € s for every k € N.
O
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Theorem 3.8. Let x be an infinite-dimensional operator in L(s',s) with a Schmidt represen-
tation © = Y fey k(s fu) 9k, t-e. (sk)ken C [0,00) is a non-increasing null sequence, (fi)ken,
(9k)ken are orthonormal sequences in Ly and the series converges in the norm || - ||sy—e,. Then
(sk)ken € S, (fr)ren, (9k)ken C s and the series converges absolutely in L(s',s). Moreover,
(52] frlqlgrlq)ken € s for all ¢ € Ny and every 6 € (0,1].

Proof. By Proposition 1.15, (sg)ren € s and, by Proposition 3.7, ( fx)ken, (9k)ken C S.

Take ¢ € Ny and 6 € (0,1]. We claim that (s%|fx|q|gk|q)ken € s; this will imply that the
series Y 72 Sk (*, fr)gr converges absolutely in £(s', s).

As in the proof of Lemma 3.5, we consider the continuous operator T, : L({3) — L(s,s)
mapping z € L({2) to the composition:

B s ly Dby s B,

Since the sequence of one-dimensional operators ((-, gx)fx)ren is bounded in L(¢3), it follows
that (s2(-, fe)gr)ken = (Tu({", gr) fx))ken is bounded in £(s’, s). Hence,

sup sz| filglgrlg < 00,
keN
because

H<a fk>gk”q = |fk|q’9k:|q-

Therefore, since || - ||z, ¢, is a dominating norm on L£(s',s) and ||(-, fx)gk|le,—e, = 1 for k € N,
Lemma 3.3 (applied to the sequences (s7)ren and ({-, fx)gk)ken) implies that

sup [sx %2 filqlgrly < oo
keN
If we combine this with Proposition 1.6, we get
sup [k |%] filqlgrlak? = sup [sx]%?| fillgklq - sup [si|**k7 < oo
keN keN keN
for every ¢’ € Ny, which completes the proof. O

Corollary 3.9. Let x be a compact infinite-dimensional normal operator on £o with a Schmidt
representation x =Y poq Sk{, fk)gr. Then the following assertions are equivalent:

(i) © € L(s',s) (as an operator on {3);
(ii) fr,gx € s for k € N and (s%|fxlqlgklq)ken € s for all ¢ € No and 6 € (0,1];
(tit) fr,gx € s for k € N, (sp)ren € s and supyey Sk|frlqlgrlq < 00 for all ¢ € Ny;

() fr,gx € s for k € N and Y32 sg|frlqlgrlq < 00 for all ¢ € Ny.

Moreover, if x = chvzl sk, fk)gk is a Schmidt representation of a finite-dimensional operator
on Uy, then x € L(s',s) if and only if fi,gr € s fork=1,...,N.

Proof. The implication (i)=-(ii) follows directly from Theorem 3.8 and the implication (ii)=-(iii)
is trivially satisfied.
(iii)=(iv): We have

o0

[o.¢]
1/2 1/2
Zsk|fk‘q’9k’q < SUPSk/ | frlglgrlq - Z Sk/ < 00,
k=1 keN k=1
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because, by Lemma 3.3 (applied to the space s and sequences (sk)ren, (fr)ken, (9r)keN),
SUPLeN s,lg/2\fk|q|gk|q < 0o and, by Proposition 1.7, s C ¢y /5.

(iv)=(i): By inequality (1.1) from Preliminaries §1, each (-, fx)gx belongs to L(s', s). Hence,
by assumption, the series Y72 sk (-, fx)gr is absolutely convergent in L£(s',s), and thus = €
L(s,s).

The finite-dimensional case is an immediate consequence of Proposition 3.7. a



Chapter

Closed commutative *-subalgebras of £(s’, s)

This chapter is devoted to the study of closed commutative *-subalgebras of L(s,s). We apply
the spectral representation theorem for normal smooth operators (Theorem 3.1) to show that
such algebras are isomorphic (as Fréchet *-algebras) to Kothe algebras

AP ((1Prllg) ken.gens )

(A°(||Pgl|q) for short) for an appropriate sequence (FPj)ren of pairwise orthogonal projections
belonging to L(s,s). Conversely, for every sequence (Py)ren C L(s',s) of pairwise orthogonal
projections, the algebra A>°(||Py||,) is isomorphic as a Fréchet *-algebra to a closed commutative
*-subalgebra of L(s',s). Observe that, since ||Py||; > || Pklle, = 1, the Kothe space A°(||Pxl|q)
is really a Fréchet *-algebra with pointwise multiplication and conjugation as involution.

Next, it turns out that every algebra A°°(||Py||,) is isomorphic (as a Fréchet *-algebra) to
some algebra

A% ((max |fjla)jen.qems)

(again, to simplify notation, we write A>°(max |f;|,)) for some orthonormal sequence (f;);jen C s
and a family {Ny}ren of finite nonempty pairwise disjoint sets of natural numbers, i.e. they
are isomorphic to closed *-subalgebras of A>(|f;]4). That is why we can reduce investigations
of closed commutative *-subalgebras of L£(s,s) to the study of orthonormal sequences whose
elements belong to the space s. Developing this idea, we give a characterization of some special
types of closed commutative *-subalgebras of L(s',s): so-called maximal subalgebras, subalge-
bras which are isomorphic to some closed *-subalgebras of s (note that s is a commutative Fréchet
*-algebra with pointwise multiplication and conjugation) and orthogonally complemented subal-
gebras. In particular, we show that every orthogonally complemented commutative *-subalgebra
of L(s,s) is isomorphic to a *-subalgebra of s. We also provide some examples showing that
not every commutative *-subalgebra of L£(s',s) can be embedded isomorphically into s as a
*-subalgebra as well as that not every closed commutative *-subalgebra of L£(s', s) embeddable
in s is orthogonally complemented.

In this chapter ej denotes the vector in CN whose k-th coordinate equals 1 and the others
equal 0.

22
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4.1 Kothe algebra representation of closed commutative
*-subalgebras of L(s, s)

In the first section we show, applying the spectral representation theorem for normal smooth
operators (Theorem 3.1), that minimal projections (Py)ren of a closed commutative *-subalgebra
Aof L(s',s) form in A a Schauder basis (the so-called canonical Schauder basis of A, see Lemma
4.4). Several consequences of this fact are derived; in particular, we prove that A is isomorphic
as a Fréchet *-algebra to the corresponding Kéthe algebra A°(||Py||) (Theorem 4.9). This will
be also the starting point for the next sections.

Lemma 4.1. Let A be a subalgebra of the algebra A over C. Let N € N, ai,...,any € ﬁ,
A,..,Av € C, a; #0, a? = aj, ajap, = 0 for j #k, \j # 0 and \; # A\, for j # k. Then
ai,...,any € A whenever \ia1 + ...+ Ayay € A.

Proof. We use induction on N. The case N = 1 is trivial.
Assume that the conclusion holds for all M < N. Let a := Aa1 +...+ Ayay € A. We have

May + ...+ May =d® € A,

and, on the other hand,
ANAIGL + ...+ )\?VCLN = Aya €A

SO
(A2 = AyADar+ ...+ (M4 = AvAdv_1)ay_1 = a® — A\ya € A.

Since A\; # 0 and \; # Ay for j € {1,...,N — 1}, we have /\? — ANAj = Aji(Aj — An) # O for
je{l,...,N—-1}. It /\§ — AnA; are pairwise different then, from the inductive assumption,
ai,...,an_1 € Asoay € A as well.

Assume that these numbers are not pairwise different. Then we define an equivalence relation
R on the set {1,..., N — 1} in the following way:

ij <~ )\j()\j — /\N) = )\k(/\k — )\N).

Let I1,...,In, denote the equivalence classes which contain no less than two elements and let
Iy :={i1,...,in,} be the remaining indices. From our assumption, I1 # (). For j € {1,..., N1}
and k € I; let

)\;» = MM — AN)

a;» = z Qp,-

’VLEIJ'

and let

We also define
/N1+1 = )\il ()\ll - )‘N)v /\3\71—&-2 = )‘i2 ()‘12 - )‘N)a s a/\Q\fl—&-No = )\iNO (AiNO - )‘N)

and
CLIN1+1 = ail,a§\71+2 = Qg e e ,alNlJrNO = aiNO.
Clearly, 1 < N’ := N1 + No < N, a} # 0, a;? = aj, ajay = 0, N} # 0, \; # X, for j,k €
{1,...,N"}, j # k and
Mah + ...+ Ny = a® — Aya € A.
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From the inductive assumption, a} € A, hence

N
Z AnQp = Z an-Z)\nan:allaGA.
n=1

nely nely

Again, from the inductive assumption, a, € A for n € Iy, and therefore 37, cry  ny\ 7, Anan € A
Once again, from the inductive assumption, a,, € A forn € {1,..., N}\I;. Thusay,...,ay € A,
which completes the proof. O

Recall that, by Theorem 3.1, every infinite-dimensional normal operator x € L£(s', s) has a
unique spectral representation

(o]
z=>Y AP,
k=1

where (A;)ken is a non-increasing (in modulus) sequence in s of nonzero pairwise different
elements, (Pj)ren is a sequence of nonzero pairwise orthogonal finite-dimensional projections
belonging to L(s',s) (i.e., P, as an operator on /o, is a projection) and the series converges
absolutely in £(s/, s).

Proposition 4.2. Let A be a closed *-subalgebra of L(s',s) (not necessarily commutative) and
let  be an infinite-dimensional normal operator in L(s',s) with spectral representation x =
Yorey MePrx. Then x € A if and only if P, € A for all k € N.

Proof. Let Ny :=0, Ny :=sup{k € N: |A\;| = |\1|} and for j =2,3,... let N; :=sup{k € N:
|Ae| = [An;_ 41]}. Since (|Ax|)ren is a null sequence, we have N; < oo for all j € N.

By Theorem 3.1, if P, € A for all £k € N then « € A. To prove the converse assume that
r € A. Then 2% = 322, \p P € A so za* = 302, |\i|? P € A, whence

n = — ) P = cA
= 2 (w ARPHE

k=1

for all n € N. Hence for arbitrary ¢ and n we get

00 |)\k‘ 2n
Z W Pk—(P1+...+PN1)
k=1

5 (M)Z”Pk

k=N;+1 Al

< —_— P,
_k%l(w 1Pl

< 1<‘)\N1+1|>2n_1 i P‘k:| ||PkH
BEESTANIPST N1 !

[yn — (P14 ...+ Pny)llg =

q

q

A |
By Theorem 3.1, 3232 n, 11 [ M| || Prllq < 00, and moreover f\f\lﬁl < 1. Thus

Ny — (PL+ ...+ Pny)|lg = O

as n — oo. Therefore, since A is closed, we conlude that P; + ...+ Py, € A. Consequently,

o

Z |/\k|2Pk =qxx* — |)\1|2(P1 + ...+ PNl) € A;
k=N1+1
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hence, proceeding by induction, Py, 41+ ...+ Pn,,, € A for j € Ny, so

Nj+1
Z Ao P = (PNj+1 + .. ~PNJ-+1)$ € A.
k=N, +1

Finally, by Lemma 4.1, P, € A for k € N. O

Proposition 4.3. For every othonormal system (fx)ken in 2 and a sequence (A;)ren € co, the
series > peq Mk (-, fx) fre converges in the norm || - ||1,—1, -

Proof. This is a simple consequence of the Pythagorean theorem and the Bessel inequality. O

Lemma 4.4. Let A be a commutative subalgebra of L(s',s). Let P denote the set of nonzero
(self-adjoint) projections belonging to A and let M be the set of minimal elements in P with
respect to the order relation

VPQeP PXQ&PQ=QP=0P.
Then

(i) M is an at most countable family of pairwise orthogonal projections belonging to L(s', s)
such that
vPeP3P,....,.PL. e M P=P+---+P,.

(i) If A is also a closed *-subalgebra of L(s',s), then M is a Schauder basis in A.

For a closed commutative *-subalgebra A of £(s',s) the Schauder basis M from Lemma 4.4
will be called the canonical Schauder basis (of A).
Proof. (i) By definition

M={PeP:VQecP (Q=2P=Q=P)}.
Firstly, we will show that
VvPeP3IP,....PL,LeM P=P+---+P. (4.1)

Take P € P. If P € M, then we are done. Otherwise, there is () € P such that Q =< P,
Q # P. Of course, P—Q € P. f Q,P —Q € M, then P = Q + (P — Q) is the desired
decomposition. Otherwise, we decompose ) or P — @ into smaller projections as was done
above for P. Since P is finite-dimensional, after finitely many steps we finish our procedure.

Next, we shall prove that projections in M are pairwise orthogonal. Let P,Q € M, P # Q
and suppose, to derive a contradiction, that PQ # 0. Since A is commutative,

(PQ)* = P?Q*=PQ and (PQ)"=PQ

and thus PQ € P. Moreover,
P(PQ) = P*Q = PQ

so PQ =< P. Now, PQ # P implies that P ¢ M and if PQ = P then @ ¢ M, which is a
contradiction.

Finally, since projections in M are pairwise orthogonal (as projections on #3), M is at most
countable.
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(ii) Let x € A. If x is finite-dimensional, then x has spectral decomposition of the form
Z,]qul urQr. Hence by Lemma 4.1 and (i), x is a linear combination of projections in M.

Assume that z is infinite-dimensional and let = >"72; urQ (spectral representation of x).
Since A is a closed commutative *-subalgebra of L(s', s), by Proposition 4.2, Q) € A for k € N.
Next, from (i),

Uk
vkeN3QM, ..o em Q=Y Q.

Jj=1

Hence

oo g
r=3 3 mQy.

k=1j=1

Forlg=0,j=lo+l+...+l1+n,1<n<Ilet P, := Q") and let \; := 1. Consider the
series Y 7o Mg Px. Clearly, if the series converges in £(s',s) (or in || - ||g,—¢,) then its limit is .
We shall first show that the series converges in the norm || - ||¢,—s,-

Since Py, is a (self-adjoint) projection of finite dimension dj, we have Py, = Z?’; 16 egk)>e§-k)
(k)

for every orthonormal basis (ej );.lkzl of the image of P,. For dy =0, j =dy+di1+...+dp_1+n,
1 <n <dlet e = e and let N := M. By Proposition 4.3, the series 3721 N:(-, e;)e;
converges in the norm || - ||s,—¢,. Hence Y 72, \p Py converges in the norm || - ||z, ¢, because
(ON  X\ePy)nen is a subsequence of the sequence of partial sums of the series S N eg)e;

Now, by Lemma 3.5, x = Y 72, AP, and the series converges absolutely in £(s',s). This
shows that every operator in A is represented by an absolutely convergent series Y 72, A/ P/
with P/’ € M. To prove the uniquness of this representation assume that > 72 ; A/ P// = 0. Then

o0
APl =Py NP =0
k=1

so X' =0 for m € N. This shows that the sequence of coefficients is unique, hence M is a
Schauder basis in A. O

If A is an arbitrary algebra, then A denotes the set of nonzero *-multiplicative functionals
on A (the so-called Gelfand space of A).

Corollary 4.5. The set A of nonzero *-multiplicative functionals on a closed commutative *-
subalgebra A of L(s, s) is exactly the set of coefficient functionals with respect to the canonical

Schauder basis of A.

Proof. Clearly, every coefficient functional is *-multiplicative. Conversely, if ¢ is a nonzero

*-multiplicative functional on A and {P,},en is the canonical Schauder basis then ¢(P,) =
©(P2) = (p(P,))?, thus p(P,) = 0 or ¢(P,) = 1. Suppose that p(P,) = ¢(Py,) = 1 for n # m.
Then

2=¢(P) +¢(Pn) = ¢(Pn + Pn) :‘P((Pn"‘Pm)Q) = (@(Pn+Pm))2
= ((p(Pn) + 90<Pm))2 =4,
a contradiction. Hence, there is at most one n € N such that ¢(P,) = 1. If ¢(P,) = 0 for all

n € N then, since {P, },en is a basis, ¢ = 0, a contradiction. Thus, there is exactly one n € N
such that ¢(P,) =1 and ¢(P,,) = 0 for m # n, i.e. ¢ is a coefficient functional. 0



Chapter 4. Closed commutative *-subalgebras of L(s', s) 27

Corollary 4.6. Let A be one of the following Fréchet *-algebras with pointwise multiplication
(without a unit):

(i) the algebra S(R™) of rapidly decreasing smooth functions;

(ii) the algebra D(K) of test functions with support in a compact set K C R™ such that int(K) #
0;

(iii) the algebra CS°(M) of smooth functions on a compact smooth manifold M wvanishing at
a € M;

(iv) the algebra C2°(Q) of smooth functions on Q vanishing at a € Q, where Q # () is an open
bounded subset of R"™ with C'-boundary;

(v) the algebra E,(K) of Withney jets on a compact set K C R™ with the extension property,
flat at a € K and such that int(K) # 0.

Then A is isomorphic to s as a Fréchet space but it is not isomorphic to any closed commutative
*-subalgebra of L(s',s) as a Fréchet *-algebra.

Proof. It is well-known that the spaces in (i)—(v) are isomorphic to s as Fréchet spaces (see
e.g. [20, Ch. 31], [32, Satz 4.1]).

To prove the second assertion let us compare the relevant sets of *-multiplicative function-
als. If A is one of the spaces from items (i)—(v), then every point evaluation functional on A
is *-multiplicative and since the underlying space has the cardinality ¢ of the continuum, the
cardinality of the set of *-multiplicative functionals on A is no less than ¢. On the other hand,
by Corollary 4.5, the set of *-multiplicative functionals on any infinite dimensional closed com-
mutative *-subalgebra of L£(s',s) is at most countable, hence none of the spaces from (i)—(v) is
isomorphic to A. O

It is clear that the algebra s with pointwise multiplication and conjugation is a *-subalgebra
of L(s',s) (consider, for example, diagonal operators). The previous corollary shows that it is
not the case for many other interesting Fréchet *-algebras isomorphic to s (as Fréchet spaces).

For a subset Z of L(s, s) we will denote by alg(Z) the closed *-subalgebra of £(s', s) generated
by Z.

Proposition 4.7. If { P }ren is a family of pairwise orthogonal projections belonging to L(s', s),
then o
alg({ Prtren) = In({ P tren)

and alg({ Px}ken) s a commutative *-algebra.

Proof. Clearly, lin({Py}ren) C alg({ P }ren) and lin({ Py }rens) is a commutative *-algebra.
By the continuity of multiplication and involution, lin({ Py }renr) is a commutative *-algebra as

well. Hence, in({Py}ren) = alg({Pr }ren)- O

Proposition 4.8. Every sequence { Py trenr C L(8, 8) of nonzero pairwise orthogonal projections
is the canonical Schauder basis of the algebra alg({Px}renr). In particular, {Py}ren s a basic
sequence in L(s',s), i.e. it is a Schauder basis of the Fréchet space in({Py}ren)-
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Proof. Let M be the canonical Schauder basis of A := alg({Pg}ren) which consists of all
projections which are minimal with respect to the order relation described in Lemma 4.4. We
shall show that { P }ren = M, and then the second statement follows from Proposition 4.7.
Fix k € N and assume that Q < P}, for some nonzero projection Q € A, i.e. QP = Q. Since
A =1in({Pg }ren), we have
M;
Q= lim Y M\P,
J]—00 n—1
for some M; € N and )\%]) € C. From the continuity of algebra multiplication and scalar
multiplication, we get

j—o0 j—o00

M; M;
— —( 1 () — 1 () T ()
Q=QP, = (jlgglO;An Pn)Pk = lim <;An PnPk> = lim )\ P,
= (lim AP, = AP,
j-}OO
where \; 1= lim;_, )\,g] ) € C. Since Q@ is a nonzero projection, we deduce that A\ = 1 and
Q@ = Py. Hence {Py}ren C M.

Now, suppose that there is a projection @ in M \ {P;}renr. We have already proved that
{Pi}renr © M, hence by Lemma 4.4(i), Qz = 0 for all x € lin({Py}ren). By continuity
of multiplication, Qz = 0 for every z € lin({Py}ren’) = A. In particular, Q = Q? = 0, a
contradiction. Hence, { Py }ren = M. O

Closed commutative *-subalgebras of L£(s', s) are, in some sense, quite simple: each of them
is generated by a single operator and also by its spectral projections. From nuclearity we also
get the following sequence space representations.

Theorem 4.9. Let A be a closed commutative infinite-dimensional *-subalgebra of L(s',s) and
let {Pyx}ren be the canonical Schauder basis of A (see Lemma 4.4 and the definition below).
Then

A = alg({ P }ren) = A°([|Prllq)

as Fréchet *-algebras and the isomorphism is given by Py +— ey for k € N. Moreover, there is
an operator x € A with spectral representation x = Y oy A\ Px such that A = alg(x).

Proof. By Proposition 4.7, A = lin({ Py }ren) = alg({ Py }ren), and, from the nuclearity of the
space L(s',s) = s (see Preliminaries §1),

A= N[ Pllg) = X ([ Prelly)

as Fréchet spaces (see e.g. [20, Cor. 28.13, Prop. 28.16]), where the isomorphism is given
by Py +— e for k € N. Moreover, since on the linear span of {Pj}rey multiplication (resp.
involution) corresponds to pointwise multiplication (resp. conjugation) in A!(||Py||,), the iso-
morphism is also a *-algebra isomorphism, where the Kéthe space is equipped with pointwise
multiplication.

Now, we shall show that there is a decreasing sequence (Ag)gen of positive numbers such that
the series Y 72| Ay Py is absolutely convergent in £(s’,s). To do so, choose a sequence (Cy)gen
such that Cy > maxj<g<q||Px||q- Clearly, Cy/||Pkllq > 1 for ¢ > k, so

. C . Cl 02 Ck:—l
1nfq2m1n{ , ey ,1}>O
[ Pelly” [Pkl l2 || Pellk—1
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for kK € N. Let A1 := 1 and let

1 Cq A1
Ak = min < — inf . }
g {k2 g€V | Pell,” 2

Then A\ > 0, the sequence (A;)xen is strictly decreasing and

0o © 1 Cr © 1
el Prelle < — inf ———|| P, < C, — < 00.
/;1 kll qu—];lk,g?}gNHPkHT” kllg < q};kQ 00

Consequently, z := .72, A\ P, € L(s',s) and this series is the spectral representation of
x. Moreover, since P, € A for k € N and A is closed, we have x € A. Finally, the equality
alg(x) = alg({ P }ren) is a consequence of Proposition 4.2. O

4.2 Closed maximal commutative *-subalgebras of L(s, s)

A closed commutative *-subalgebra of L£(s',s) is said to be mazimal commutative if it is not
properly contained in any larger closed commutative *-subalgebra of L(s',s). We begin this
section with a characterization of canonical Schauder bases of closed maximal commutative
*-subalgebras of L(s',s) (Theorem 4.11). Then we show that every such algebra A is isomorphic
to a Kothe algebra A*°(|fi|q), where (fi)ren C s is an orthonormal sequence corresponding to
the canonical Schauder basis of A (Corollaries 4.16, 4.21).

By the Kuratowski-Zorn lemma, every closed commutative *-subalgebra of L(s,s) is con-
tained in some closed maximal commutative *-subalgebra of L£(s',s) (Proposition 4.12), and
therefore the class of closed commutative *-subalgebras of L£(s',s) is (in the sense of Fréchet
*-algebra isomorphism) the class of closed commutative *-subalgebras of A>°(|fxl|q), (fx)ken C s
being an orthonormal sequence (see Theorems 4.17, 4.20 and Corollaries 4.22, 4.23). We provide
formulas for the corresponding isomorphisms; the Kuratowski-Zorn lemma is used only in the
proofs of Propositions 4.12 and 4.13.

For a subset Z of L(s/,s), the set

comm(Z) := {x € L(s',s) : zy = yz for all y € Z}

is called the commutant of Z. Let us note that the commutant of Z C L(s', s) differs from the
classical commutant of Z as a subset of L(f2). We will also show the relation between closed
maximal commutative *-subalgebras of £(s',s) and their commutants (see Theorem 4.11 and
compare with the case of C*-algebras [24, 2.8.1]).

Proposition 4.10. For every self-adjoint subset Z of L(s',s), the commutant comm(Z) is a
closed *-subalgebra of L(s',s).

Proof. Clearly, if z,y commute with every z € Z then Az, z 4+ y, xy and x* commute as well.
Hence, from the continuity of the algebra operations and the involution, comm(Z) is a closed
*-subalgebra of L(s, s). O

We say that a sequence {Pj}ren of nonzero pairwise orthogonal projections belonging to
L(s',s) is complete if there is no nonzero projection P belonging to £(s', s) such that PP =0
for every k € N. We say that an orthonormal system (fx)ren of l2 is s-complete, if every fi
belongs to s and for every £ € s the following implication holds: if (¢, fi) = 0 for every k € N,
then £ = 0.
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Theorem 4.11. For a closed commutative *-subalgebra A of L(s',s) the following assertions
are equivalent:

(i) A is mazimal commutative;

(ii) the canonical Schauder basis {Py}ren of A is a complete sequence of pairwise orthogonal
one-dimensional projections belonging to L(s',s);

(iii) there is an s-complete sequence (fi)ken such that (-, fx)fi)ken is the canonical Schauder
basis of A.

(iv) A =comm(A).

Proof. (i)=-(ii): Suppose that for some m € N the projection P, is not one-dimensional. Then
there are two nonzero pairwise orthogonal projections Q1, Q2 € L(s, s) such that P, = Q1+ Q2.
By Proposition 4.7, lin({ Py : k # m}U{Q1,Q2}) is a closed commutative *-subalgebra of L(s', s),
and clearly

A =lin({Ps}ren) C in({Py : k # m} U{Q1, Q2}).

By Proposition 4.8, { Py }ren is the canonical Schauder basis of A, and {Py : k # m}U{Q1,Q2}
is the canonical Schauder basis of in({Py : k # m} U {Q1,Q2}), so

A+ H({Pk k£ m} U {Ql,QQ}).

Thus, A is not maximal, a contradiction.

If P € L(s,s) is a nonzero projection orthogonal to all P, then, using similar arguments, we
find that lin({ Py }xenU{P}) is a closed commutative *-subalgebra of L(s', s) properly containing
A, a contradiction.

(ii)<(iii): One can easily show that an orthonormal system (fx)xen is s-complete if and only
if the sequence of projections ((-, fx)fx)kren is complete in L(s', s).

(ii)=(iv): Since A is commutative, we get A C comm(A). Now, suppose that there is
x € comm(A) \ A. By Proposition 4.10, z* € comm(A) so x + z*,i(x — 2*) € comm(A), and
moreover z* ¢ A. Since z = ZE- + i(w;f*), we have x +z* ¢ A or i(x — z*) ¢ A. Without loss
of generality assume that = 4+ 2* ¢ A. The operator = + z* is self-adjoint, hence it has a spectral
representation Y oo fmQm. Then, by Propositions 4.2 and 4.10, @,, € comm(A) for all m € N
and there exists mg for which Q,,, ¢ A (otherwise  + 2* € A). Let J := {k : P, < Qm,} (see
the definition of < in Lemma 4.4). Since @, is finite-dimensional, J is finite. One can easily
check that Qm, —>_,c; P is a projection (if J =0, then Yjes b= 0). Moreover,

(Qmo =X Py)Pu=0 (4.2)

jedJ

for all n € N. Indeed, if n € J, then from the definition of <, Q,, P, = Py, so

(Qmo = 3 Pi) P = QuigPa — Pu = 0.

JjeJ
Let n ¢ J. We have QP = PyQm, because Q,, € comm(A). This implies that Qm,Fn
is a projection and im Qpn,, P, = im @, N im P,. Therefore, since the projections P, are one-
dimensional, we have Qpn P, = P, or Qm,P, = 0. By our assumption, Qpm,P, # Pn, so
Qmo P = 0. Now,
(Qmo - ZP])PTL = Qmopn =0.

jeJ
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Since the sequence (Py)ren is complete, (4.2) implies that Qm, — > ;c; P = 0. Hence
Qm, € A, a contradiction.
(iv)=-(i): Follows directly from the definition of the commutant of A. O

Proposition 4.12. Every closed commutative *-subalgebra of L(s', s) is contained in some maz-
imal commutative *-subalgebra of L(s,s).

Proof. Let A be a closed commutative *-subalgebra of L(s',s). Clearly,

A= {B: B commutative *-subalgebra of L(s',s) and A C B}

with C is a partially ordered set. Consider a chain C in A and let Ac = Uaec A. Tt is easy to
check that A¢ € A, and, of course, A¢ is an upper bound of C. Hence, by the Kuratowski-Zorn
lemma, A has a maximal element; let us call it M. By the continuity of the algebra operations,

M) is a closed commutative *-subalgebra of L(s, s), hence from the maximality of M, we
have M = M- ’s), i.e. M is a (closed) maximal commutative *-subalgebra of L(s', s) containing
A. O

Proposition 4.13. Every sequence of pairwise orthogonal projections belonging to L(s',s) can
be extended by one-dimensional projections to a complete sequence.

Proof. Let {Pg}ren be a sequence of pairwise orthogonal projections belonging to L(s, s).
Then, by Proposition 4.7, A := alg({ P }ken) is a closed commutative *-subalgebra of L(s', s),
and, by Proposition 4.12, there is a maximal commutative *-subalgebra A of L(s',s) containing
A. Hence, by Theorems 4.9 and 4.11, we have A = alg({Qk }ren) for some complete sequence
{Qk }ren of one-dimensional projections belonging to £(s, s). By Lemma 4.4(i), for every k € N/

there exist ng), ng), ce Ql(:) € {Qm}men such that P, = Zéf;l Q;k), and, in consequence,

{Pi}een U ({Qm}mEN \ {ng)}

keN71<j<lk>
is a complete extension of the sequence { Py }ren - O

The property (DN) for the space s gives us the following useful inequality.

Proposition 4.14. For every p,r € Ny there is ¢ € No such that for all £ € s with ||€]]s, =1
the following inequality holds

€1y < [€lq-

Proof. Take p,r € Ny and let j € Ny be such that » < 2/. Applying iteratively (j-times) the
inequality from Proposition 1.4 to £ € s with |[|¢][s,, = 1 we get

€15 < (€127 < [E]gip,

and thus the required inequality holds for ¢ = 27p. O

Proposition 4.15. Let (fi)reny C s be an orthonormal sequence. Then

®: alg({(-, fe) futren) = A°(Ifrlg), @ (i )\k<‘7fk>fk> = (k) ken
k=1

is a Fréchet *-algebra isomorphism.
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Proof. By Proposition 4.8, {{-, fx) fx }ken is the canonical Schauder basis of alg({(-, fx) fx txen)-
Hence, by Theorem 4.9,

®o: alg({(-, fi) fiebken) = AZ(C, fi) felle)s Po <§: /\k<'7fk:>fk> 1= (Ak)ken
k=1

is a Fréchet *-algebra isomorphism. Moreover, we have

1< | fulg < 112 = 11¢ fid fullg = [ful2 < | frl2g

for ¢ € Ny, where the last inequality follows from Proposition 4.14. Consequently,

AZANC Fid Trllg) = A% (1 fkla)

as Fréchet *-algebras (notice that the algebra operations are the same in both algebras), which
completes the proof. O

Let us recall that, by Theorem 4.11, the canonical Schauder basis of a maximal commutative
closed *-subalgebra of L(s', s) is a sequence ({-, fx) fx)ren for some s-complete sequence (fi)reN-
Hence, by Theorem 4.9 and Proposition 4.15, we immediately get the following:

Corollary 4.16. Let A be a closed mazimal commutative *-subalgebra of L(s',s) with the
canonical Schauder basis ({-, fx) fx)ken. Then

AZX2([frlq)

and the isomorphism is given by (-, fx) fx — ex for k € N.

Theorem 4.17. Let A be an infinite-dimensional closed commutative *-subalgebra of L(s', s) and
let (3 jen, (s f3) fi)ken be its canonical Schauder basis (here (fj)jen s an orthonormal sequence
in s). Then A is isomorphic as a Fréchet *-algebra to the closed *-subalgebra of A°(|fklq)

generated by {3 ;cn; €jken and the isomorphism is given by 3 icn, (- [i)fj = Xjen, €j for
k e N.

Please note that (Ny)ken is a family of pairwise disjoint finite subsets of N.
Proof. Let B be the closed *-subalgebra of A>(|fy|q) generated by {3 ;cn;, €j}ren. Let

JiA—alg ({ Tt fj>fj}kEN) s alg({( fi) fibren)

be the identity map and define

O alg({ (-, fr) fetren) — A1 frlq)

by (-, fi) fr — ek, where N := Upeny Ni. We consider the map W :=®o J: A — im(® o J).
Clearly, (> en; (5 fi)fi) = Xjen, €5 for k € N. Moreover, by Proposition 4.15, ¥ is
a Fréchet *-algebra isomorphism and im V¥ is a closed *-subalgebra of A\°°(|fx|s). Hence, by

Proposition 4.7,
im@zlin({Ze]} >CBCim\If
JEN keN

and so im ¥ = B, which completes the proof. O
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In the following proposition we characterize infinite-dimensional closed *-subalgebras of
A¥(|fklq) (here (fx)ken C s is an orthonormal sequence), and consequently we obtain a charac-
terization of closed *-subalgebras of s (Corollary 4.19). It is possible to generalize this result for
a larger class of Kothe algebras, which seems to be a more natural approach. Nevertheless, we
will confine ourselves to the case A*°(]fx|q), for which we already have all the tools needed.

Proposition 4.18. Let (fi)ken C s be an orthonormal sequence and let A be an infinite-
dimensional closed *-subalgebra of AX>°(|fx|q). Then

(i) there is a family { Ny }ren of finite nonempty pairwise disjoint sets of natural numbers such
that {3, €j}ken is a Schauder basis of A;

(i) A= A> (maxjen, |filq) as Fréchet *-algebras and the isomorphism is given by 3¢ ns €5 —
e for k € N.

Conversely, if {N}ren is a family of finite nonempty pairwise disjoint sets of natural num-
bers and B is the closed *-subalgebra of X°(|fx|q) generated by the set {3 ;cn, €j}tken, then

(iil) (Xjen, €j)ken is a Schauder basis of B;

(iv) B = X*°(maxjen;, |fjlg) as Fréchet *-algebras and the isomorphism is given by 3~ ns €5 =
e for k € N.

Proof. In order to prove (i) and (ii) define

@ alg({( fu) fifren) = A7 (1 fklq)

by (-, fx)fx + er for k € N. Then, by Proposition 4.15, ®~1(A) is a closed *-subalgebra
of alg({{-, fx) fr}ren), and (Pg)ren — the canonical Schauder basis of ®1(A) — consists of
projections belonging to alg({(-, fx)fx}ren). Hence, by Proposition 4.8 and Lemma 4.4(i),
P =3 jen, (-, [j) f; for some family {Nj}ren of finite nonempty pairwise disjoint sets of natural
numbers, and therefore (3-,cn; €j)ken = (®(Px))ken is a Schauder basis of A. Clearly, the g-th
norm of 37, €; in the space A C A°(|filq) equals maxjen, |fi]q- Hence, since A is a nuclear
space, we have (see e.g. [20, Cor. 28.13 and Prop. 28.16])

A= AT (}2%?: fj!q>

as Fréchet spaces, where the isomorphism is defined by > .czq € + ex for & € N. Hence,
A = X>®(maxjcn; |fjlq) also as a Fréchet *-algebra. Similar arguments apply to prove (iii) and
(iv). O

Corollary 4.19. Every infinite-dimensional closed *-subalgebra of s is isomorphic as a Fréchet
*-algebra to A\>®°(n}) for some strictly increasing sequence (ng)gen of natural numbers. Con-
versely, if (ng)ren s a strictly increasing sequence of natural numbers, then A\>°(n}) is isomor-
phic as a Fréchet *-algebra to some infinite-dimensional closed *-subalgebra of s.

Proof. We apply Proposition 4.18 for f; = ex. Let {Nj}ren be a family of finite nonempty
pairwise disjoint sets of natural numbers. We have

e = 4 = g € Nt
;161%;]63|q ?61%3] (max{yj : j k)
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for all ¢ € Ng and k € N. Let o: N — N be the bijection for which (max{j : j € Nyx)})ren is
(strictly) increasing and let ny, := max{j : j € Ny} for k € N. Then

A (jnel%;; \ej\q) = A= (np);
and therefore the conclusion follows from Proposition 4.18. a

The following characterization of infinite-dimensional closed commutative *-subalgebras of
L(s',s) is a straightforward consequence of Theorem 4.17 and Proposition 4.18(iv).

Theorem 4.20. Let A be an infinite-dimensional closed commutative *-subalgebra of L(s',s)
and let (3= ;en; (- f5) fi)ken be its canonical Schauder basis. Then

A= A“(g%ﬁ fj|q>
as a Fréchet *-algebra and the isomorphism is given by > :cn, (-, f5)fj = ek for k € N.

Corollaries 4.21, 4.22 and 4.23 are reformulations of Corollary 4.16 and Theorems 4.17, 4.20,
respectively. They summarize the content of the present section and give a full description of
closed commutative *-subalgebras of L(s', s).

Corollary 4.21. Every closed maximal commutative *-subalgebra of L(s', s) is isomorphic as a
Fréchet *-algebra to the algebra \*°(|filq) for some s-complete orthonormal sequence (fx)ken-
Conversely, if (fi)ken is an s-complete orthonormal sequence, then A\*°(|fx|q) is isomorphic as
a Fréchet *-algebra to some closed mazimal commutative *-subalgebra of L(s',s).

Proof. Let A be a closed maximal commutative *-subalgebra of £(s’,s). By Theorem 4.11,
there is an s-complete sequence (fx)ren such that {(-, fx) fx }xen is the canonical Schauder basis
of A. Hence, by Proposition 4.15, A = X\>°(| fx|,) as Fréchet *-algebras.

Now, let (fx)ren be an arbitrary s-complete orthonormal sequence. Then, by Proposition
4.15, alg({ (-, fx) fx tken) is isomorphic as a Fréchet *-algebra to A*°(] fx|,), and, by Theorem 4.11,
alg({(-, fx) fx tren) is maximal commutative. O

Corollary 4.22. Every closed commutative *-subalgebra of L(s',s) is isomorphic as a Fréchet
*-algebra to some closed *-subalgebra of the algebra A*°(|fx|q) for some orthonormal sequence
(fr)ken C s. Conversely, if (fx)ken C s is an orthonormal sequence, then every closed *-sub-
algebra of X\>°(| fx|q) is isomorphic as a Fréchet *-algebra to some closed commutative *-subalgebra

of L(s',5).

Proof. The first assertion follows immediately from Theorem 4.17.

If now (fx)ken C s is an arbitrary orthonormal sequence, then according to Proposition 4.15,
A(|fxlq) is isomorphic as a Fréchet *-algebra to alg({(-, f&) fx }ren). Consequently, every closed
*-subalgebra of A*°(|fk|y) is isomorphic as a Fréchet *-algebra to some closed *-subalgebra of

alg({ (-, fu) frtren). O

Corollary 4.23. Every infinite-dimensional closed commutative *-subalgebra of L(s',s) is iso-
morphic as a Fréchet *-algebra to the algebra A\*°(maxjen, | fjlq) for some orthonormal sequence
(fx)ken C s and some family {Ny}ren of finite nonempty pairwise disjoint sets of natural num-
bers. Conversely, if (fr)ken C s s an orthonormal sequence and {Nj}ren is a family of finite
nonempty pairwise disjoint sets of natural numbers, then \>°(maxjcns |fjlq) s isomorphic as a
Fréchet *-algebra to some infinite-dimensional closed commutative *-subalgebra of L(s',s).
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Proof. The assertions easily follow from Corollary 4.22 and Proposition 4.18. a

4.3 Closed commutative *-subalgebras of L(s',s) with the
property (1)

In the present section we prove that a closed commutative *-subalgebra of £(s', s) is isomorphic
as a Fréchet *-algebra to some closed *-subalgebra of s if and only if it is isomorphic as a Fréchet
space to some complemented subspace of s (Theorem 4.25), i.e. if it has the so-called property
() (see Definition 4.24 below). We also give an example of a closed commutative *-subalgebra
of L(s',s) which is not isomorphic to any closed *-subalgebra of s (Theorem 4.32).

Definition 4.24. A Fréchet space E with a fundamental sequence (|| - ||4)qen, of seminorms
has the property () if the following condition holds:

¥p 3¢ Vr36 € (0,1)3C >0y e E" |yl < Cllylly ~llyllY,

where E' is the topological dual of E and ||y||;, := sup{|y(x)| : [|z[|, < 1}.

The property (2) (together with the property (DN)) plays a crucial role in the theory of
nuclear Fréchet spaces (for details, see [20, Ch. 29] and Introduction).

Recall that a subspace F' of a Fréchet space E is called complemented (in E) if there is a
continuous projection 7: E — E with im 7 = F. Since every subspace of L(s’, s) has the property
(DN) (and, by Proposition 3.2, the norm || - ||g,—¢, is already a dominating norm), Theorem
[20, Prop. 31.7] implies that a closed *-subalgebra of L(s,s) is isomorphic to a complemented
subspace of s if and only if it has the property (2). The class of complemented subspaces of s
is still not well-understood (e.g. we do not know, whether every such subspace has a Schauder
basis — the Pelczynski problem) and, on the other hand, the class of closed *-subalgebras of s
has a simple description (see Corollary 4.19). Therefore, in view of Theorem 4.25, the property
(Q) seems to be very restrictive for closed commutative *-subalgebras of L(s', s).

Theorem 4.25. Let A be an infinite-dimensional closed commutative *-subalgebra of L(s',s)
and let (3 ;en;, (5 fi)fi)ken be its canonical Schauder basis. Then the following assertions are
equivalent:

(i) A is isomorphic as a Fréchet *-algebra to some closed *-subalgebra of s;

)
(ii) A is isomorphic as a Fréchet space to some complemented subspace of s;
(iii) A has the property (2);

(iv) IpVq Ir 3C > 0Vk  maxjen, | filq < Cmaxjen, |fil-

In order to prove Theorem 4.25, we will need Propositions 4.26—4.28 and Lemma 4.30.
The following result is a consequence of nuclearity of closed commutative *-subalgebras of

L(s,s).

Proposition 4.26. Let (fx)ren C s be an orthonormal system in £y and for r € Ny let o,: N —
N be a bijection such that the sequence (|fs, (k)|r)ken is non-decreasing. Then
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(i) for all p € N and q € Ny there exists r € N such that

oo
Z ’fk|q < 00;

k=1 \fk|1/p

(ii) for every p € Ny there are ro € N such that

kP
lim =0
k=00 | fo, (k)|

for all v > rg.

Proof. (i) Take p € N and ¢ € Ny. By Proposition 4.8, ({-, fx) fx)ren is a Schauder basis in
the nuclear Fréchet space lin({(, fx) fx }xen). Hence, by the Grothendieck-Pietsch theorem (see
e.g. [20, Th. 28.15]), there is r1 € Ny such that

G o) frllg.
Z s fie) il =0

Clearly, |filg < |fx|2 and, by Proposition 1.4, |fi|2, < |fi|2r,. Hence for 5 := 2r we get
| frlq | frlg G fio) frllg
< < 0.
Z | flrs Z < | fil?, Z (- fi) frllm
By Proposition 4.14, there is 7 € N such that

| filre < | fxl /P,

and therefore

i |fk:|q Z |fk|q
VAL |fk|’"2

(ii) Let p € N. From (i) (applied to ¢ = 0) there is rg such that for » > ry we have

S e

— < X0
1 o m\ il A

Since (| fgr(k)|,1«/ P)ken is non-decreasing, it follows from the elementary theory of number series

t}lat linlkggoo T;AAJEWT7E 0 \V}lellce llrnk4$co Tf‘k“T* = 0 Od
or(k)Ir

Proposition 4.27. Let (ajq)jeNgeNys (0j.q)jengen, be Kothe matrices for which A*(ajq4) and
A>®(bjq) are nuclear Fréchet *-algebras. Then the following assertions are equivalent:

(i
(ii

(iii

) A®(aj,q) = A>X(bjq) as Fréchet *-algebras;

) there is a bijection o: N — N such that A*(a,(j).4) = A(bjq) as Fréchet *-algebras;
) there is a bijection o: N — N such that A*(a,(j),4) = A(bjq) as sets;

(iv) there is a bijection o: N — N such that

() Vg€ Ng Ir € Ng 3C > 0Vj €N ay(;) 4 < Cbjy,
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() V' €No 3¢’ € NgIC" > 0Vj €N bjw < Cagj g

Proof. Denote A := A*(a;,) and B := X>*(b; ).

(i)=(ii): Assume that there is an isomorphism ®: A — B of Fréchet *-algebras. Clearly, if
€2 = ¢, then ®(¢) = ®(£2) = (®(€))?, and the same is true for @1, i.e. ® maps the idempotents
of A onto the idempotents of B. Note also that each idempotent of A and B is a sum of pairwise
different idempotents e,. Then, for a fixed k € N, there is a set I/ C N such that

CI)(ek) = Z (&)

lel

On the other hand, if ¢V = > je, €5 1s the idempotent of A such that ®(¢W) = ¢, then

<I> (Zé(”) =Y 2" ="«

lel lel lel

S0, by the injectivity of @,

IPIITES L

1€l jed, lel

which implies that |I| = |J;| = 1. Hence ®(ex) = ¢;, for some [ € N, i.e. for the bijection
o: N — N defined by l,() := k we have ®(eq(r)) = ex. Therefore, ®((&, (1)) ken) = (§k)ren for
(§k)ken € B (note that (e, i) )ken is a Schauder basis in A and (ex)ren is a Schauder basis in
B), which shows (ii).

(ii)=-(iii): Obvious.

(iii)=(iv): The proof follows from the observation that the identity map Id: A°*(ay(;) 4
A>(bjq) is continuous (use the closed graph theorem).

(iv)=>(i): It is easy to see that ®: A — B defined by e, i) + ey is an isomorphism of Fréchet
*-algebras. O

) —

Proposition 4.28. Let A be an infinite-dimensional closed commutative *-subalgebra of L(s', s)
and let (3 jen, (5 fi) fi)ken be its canonical Schauder basis. Moreover, let (ny)ren be a strictly
increasing sequence of natural numbers and let B be the closed *-subalgebra of s generated by
{en, }ken. Then the following assertions are equivalent:

(i) A is isomorphic to B as a Fréchet *-algebra;
(ii) A (maxjens | filq) = A®(n}) as Fréchet *-algebras;

(iif) there is a bijection o: N — N such that A*(maxjen,,, [filg) = A®(nl) as Fréchet
*-algebras;

(iv) there is a bijection 0: N — N such that \**(maxjen, ,, [filq) = A2 (n]) as sets;
(v) there is a bijection o: N — N such that

() Vg e Ny Ir e Ng 3C' > 0Vk € N max;ep, |filg < Cny,

(B) V' €Ng 3¢’ € NgIC' > 0Vk €N nf, < C'maxjen;, | filg-

Proof. This is an immediate consequence of Theorem 4.20 and Proposition 4.27. O
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Remark 4.29. In view of Corollary 4.19, every closed *-subalgebra of s is isomorphic as a Fréchet
*-algebra to A*°(n{) (i.e. the closed *-subalgebra of s generated by {en, }ren) for some strictly
increasing sequence (ng)gen C N, hence Proposition 4.28 characterizes closed commutative
*-subalgebras of L(s',s) which are isomorphic as Fréchet *-algebras to some *-subalgebra of
s.

Lemma 4.30. Let (ax)ken C [1,00) be a non-decreasing sequence such that ax > 2k for k big
enough. Then there exist a strictly increasing sequence (bg)ken C N and C > 0 such that

1
Zap < b, < Ca?
Cak_ kS ak

for every k € N.

Proof. Let kg € N be such that a; > 2k for k > kg and choose C' € N so that
1
6% <k< Ca,Qc

for k € Np := {1,...,ko}. Denote also N} := {k € N: a; = ag,+1} and, recursively, Nj1 :=
{k € N:ay = amaxn;+1}- Clearly, Nj are finite, pairwise disjoint, ey, Nj = N and k <[ for
ke N, leNj.

Let by, := k for k € Ny and let

bmj+1-1 = C’[max{a?nrl,amj}} +1

for j € Nand 1 <1 < |Nj|, where m; := minNj and [z] := min{n € Z : n > 2} stands for
the ceiling of z € R. We will show inductively that (bx)gen is a strictly increasing sequence of
natural numbers such that

1
aak § bk S C’a% (43)

for every k € N.
Clearly, the condition (4.3) holds for & € Ny. Assume that (bk)keNou..uN; s a strictly

increasing sequence of natural numbers for which the condition (4.3) holds. For simplicity,

denote m := min ;1. By the inductive assumption, we obtain b,,_1 < Ca?,_,, hence

b — b—1 > C[max{a?,_,an}|+1—Cad?_,>Cad? _+1—-Ca? _,>1

80 bin—1 < b, and, clearly, by, < bmt1 < ... < bmax A -
Fix 1 <1 < |Njy1]|. We have

berlfl > Capy, = Caerlfl > aaerlfl

so the first inequality in (4.3) holds for k € Nj;1. Next, by assumption, we get

mti—1 > 2(m+1—-1), (4.4)
whence
I <am—iy1—m+1. (4.5)
Consider two cases. If a,, > a2,_;, then, from (4.5)

bn—t141 = Clan| +1=Clamsi—1] +1 < 2Camyi-1 + amyr—1 —m +1
< (2C + Dam4i-1 < CaZyy_q,
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where the last inequality holds because C' > 1 and, from (4.4), we have
i1 > 2(m+1—1) > 2m > 2(kg 4+ 1) > 4.

Finally, if a2,_; > a,, then, from (4.4), we obtain (note that, by the definition of N; and Nj1,
we have a;,—1 < ap)

Clag 11 +1
Cl(am — 1)?] +1
Cla2, — 2, + 1] +1
< O(a2, — 2am +2) +1
< Cam —2Cam +2C + Cl
= Ca72n+l—1 - CQ2amyi1 —2-1)
< Oy — ClAm+1-1)—2-1)
=CaZ, ;1 — C(dm+3l—6) < CaZ,,,_;.

141 =

Hence we have shown that the second inequality in (4.3) holds for k& € N1, and the proof is
complete. O

Now, we are ready to prove the main theorem of this section.

Proof of Theorem 4.25. (i)=(ii): By Corollary 4.19, each closed *-subalgebra of s is isomor-
phic to some complemented subspace of s (and one can prove that it is complemented in s).
(ii)e(iii): See e.g. [20, Prop. 31.7].
(iii)=-(iv): By Theorem 4.20 and nuclearity (see e.g. [20, Prop. 28.16]),

AgAOO(jHEI?\i’qu) =\ (HGIaX‘fj‘q)

as a Fréchet *-algebra. Next, by [20, Lemma 27.11, Lemma 27.12], we have
A'={neCt: Z €6l - Imi| < 00 for all € € N (max | fl,)}
k=1
where the Minkowski functional || - ||/ of the polar of {¢ € CN : 3202 €] - maxjen;, |fjlq < 1} is
given by

Z\§k| max]f]]q<1}—su ud

keN MaXje |fj|q.

]l = sup{

Hence, the property (€2) applied to unit vectors gives
1 1

maxjen, |film = maxjen; |fl] 70 maxjen; [£514

VidmVn30 < 0 <13C >0Vk

In particular, taking [ = 0, we get (iv).
(iv)=-(i): By Proposition 4.26(ii), there is p; > p and a bijection o: N — N such that the

sequence (|fyu, ., lp1)ken is non-decreasing and limy oo ﬁ = 0, where p is taken from the

(k) le1
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condition (iv) and py € Nj is choosen so that max;en; | filpy = |fuelpi- Then for sufficiently
k1
large k we get Trolr = 2 SO

| frtoy lor = 2K (4.6)

Consequently, for k£ big enough we have

]é%}”(( | filp, = ’fﬂd(k’) b1 = 2Kk

and the sequence (maneN[,(k) |filp1)ken is non-decreasing. Hence, by Lemma 4.30, there is a
strictly increasing sequence (ng)reny C N and C; > 0 such that

1
— max \fj]pl <ni <C; max |fj 2
jENU(k)

o |p: (4.7)

for every k € N. Now, by the conditions (iv) and (4.7), we get that for all ¢ there is  and
Cy := CCT such that

max < (C max
e 1fly <€ mox |1

for all k& € N, so the condition («) from Proposition 4.28(v) holds. Finally, by (4.7) and
Proposition 4.14 we obtain that for all 7/ there is ¢ and C3 := C}" such that

‘pl S CQnZ

nj, < Cs Inax | fj

v’ <Cg max |fj\q
JENG (k)

H

for every k € N, so the condition () from Proposition 4.28(v) is satisfied, and therefore, by
Proposition 4.28, A is isomorphic as a Fréchet *-algebra to the closed *-subalgebra of s generated

by {enk }kEN' O

Lemma 4.31. For every increasing sequence (o;)jen C (0,00) and every p € N we have

p
sup a? A Hal :Hai.
i=1

JjEN i=1

Proof. For j > p+ 1 we get

p—j+1 j—1 j—1 )
I, o g Y e
=1 i=p+1 J
and, similarly, for 7 < p — 1 we obtain
p—j+1 -1 . p—j+1
7 = TP <1
i=1 % i=j Yi
. _ —1 . . .
Since o Pt [[P2) oy = []Y_; @i, the supremum is attained for j = p, and we are done. O

Theorem 4.32. There is a closed commutative *-subalgebra of L(s',s) which is not isomorphic
to any closed *-subalgebra of s.
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Proof. Let my be the k-th prime number, Ny 1 := my, Ny j11 = mivkj for j,k € N. Denote
ak,1 := ¢ and

-,

’l:

Qfj = Ch———7 —
’, j*l
Nk,j

for j > 2, where the sequence (cx)ren is choosen so that ||(ax ;)jenlle, = 1, i-e.

2\ —1/2
o= (S (1))

7=1

The numbers ¢, are well-defined, because, by Lemma 4.31,

11 Ny - i1 = N N1+
() = 3 (i T ) = 3 e (77 T )
Jj= 2J Jj= = Jj=1 »J

2 oo 1

Jj—1 0 )
1—j+1 2 1 2 1
<oup (W57 TNt 3o =M D <M D <o
jeN i=1 Nig; j=1 "k, =17
Finally, define an orthonormal sequence (fx)kren by

[
fk = Z Ak jENy ;-

=1

We will show that alg({(-, fx) fx }ren) is a closed *-subalgebra of £(s’, s) which is not isomorphic
as an algebra to any closed *-subalgebra of s. By Theorem 4.25, it is enough to show that each
fr belongs to s and for every p,r € N the following condition holds

hm ‘fk‘OOJH'l

=00
k—o0 ’fk|r co.p ’

where |€|o0,q 1= sup;en €177 (see Proposition 1.5).
Note first that | fx|ecp = ak pN . In fact, by Lemma 4.31, we get

ijf Ng,i i1 =
P = i p -j
|fk|oo,p—supaijkj = ¢ sup N’] = T = ¢ sup N HN’“
Jje jeN Nk,j jeN i=1
p p—lN
_ L D . Hz’:l ki P
=Ck H Nii = Ckavp N k‘ypN/mp'
) k,p

In particular, fi € s for k € N. Next, for j,k € N, we have

j CkN] . Hf ALY .
akjr1Np 1 R+l Nl Ty Nk N
A, o - lllsz : f;lljfzm kot
Ni N

Moreover, for every j,r € N we get

Nk,j N
Niji1 _ my, 27k

r T = r
Nk,j de Nk,j k—o0
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and clearly a; ; <1 for j, k € N. Hence, for p,r € N we obtain

p+1 P
| frloopr1 akvPHNk,erl _ akvPHNk,pH 1 Nept1 NP 1 Nipt1
r - r pr - 1 pr — Vkp  Tr—1° pr
| frlbo p Nk p k.p kp Nip Ok p Nip
Nipi1

- NII:;) k—o00

which is the desired conclusion. O

4.4 Orthogonally complemented closed commutative
*-subalgebras of L(s, s)

It would be interesting to describe commutative *-subalgebras of L(s', s) which are complemented
(in L(s,s)). This problem does not seem to be so easy to solve because, in general, a projection
on L(s',s) has nothing in common with the algebraic structure of £(s',s). In this section we
shall consider commutative *-subalgebras of £(s, s) which are complemented in a very specific
way — the so-called orthogonally complemented subalgebras (see Definition 4.33).

We first characterize closed commutative orthogonally complemented *-subalgebras in terms
of their canonical Schauder bases (Proposition 4.36). Next, we consider the class of closed max-
imal commutative orthogonally complemented *-subalgebras of L£(s',s) isomorphic as Fréchet
*-algebras to s (Theorem 4.37). It appears that closed maximal commutative orthogonally com-
plemented *-subalgebras A of L(s',s) isomorphic to s are exactly those for which there exists
an algebra isomorphism T': L(s',s) — L(s, s) preserving orthogonality, which maps A onto the
subalgebra of diagonal operators (Corollary 4.38). We also give an example of a closed max-
imal commutative *-subalgebra of L£(s',s) isomorphic as a Fréchet *-algebra to s which is not
orthogonally complemented in L£(s',s) (Theorem 4.39).

Definition 4.33. A linear map 7: L(s',s) — L(s',s) is said to be an orthogonal projection
if there is a continuous projection 7: HS(¢2) — HS(¢2) which is orthogonal with respect to
the Hilbert-Schmidt scalar product and satisfies 7|,y ) = 7. A linear subspace A of L(s,s)
is called orthogonally complemented (in L(s',s)) if A = im7 for some orthogonal projection
w: L8, 8) = L(s,5).

Recall that HS(¢2) stands for the space of Hilbert-Schmidt operators, i.e.

HS(b2) := Sa(L2) == {z € K(la) : (sx(2))ren € L2},

where (si(z))ren is the sequence of singular numbers of x. The space HS(¢2) with a scalar
product defined by

[e.e]

(,y)ns == ) _(wer, yer)
k=1

becomes a Hilbert space. The corresponding hilbertian norm is denoted by vs, i.e.

00 1/2
va() 1= ({2, 2)s) V2 = (2 erkuz) |
k=1

Remark 4.34. Clearly, an orthogonal projection 7 on L(s', s) is a (continuous) projection in the
sense that 72 = m. Hence, every orthogonally complemented *-subalgebra of £(s',s) has (£2)
(see Theorem 0.4) and can be embedded isomorphically as a closed *-subalgebra into the Fréchet
*-algebra s (Theorem 4.25).
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Remark 4.35. Let (Pg)ren be a sequence of nonzero pairwise orthogonal finite dimensional (self-

adjont) projections on f5 and let dj denote the dimension of im Py, for k € N. Then (d,;lPk) keN

is an orthonormal basis of the Hilbert space HHS({Pk} ken) (the closed linear span of { Py }ren
in the topology of (HS(¢2),12)), hence the map 7: HS(l2) — HS(L2),

Fwi= Y di (@, P)us P, (4.8)
k=1

is a continuous orthogonal projection onto HHS({Pk}kGN). If, moreover, 7(L(s',s)) C L(s,s),
then, by the closed graph theorem for Fréchet spaces and Lemma 3.5, the map

™ i=

7~T|£(5, ' L(s',s) = L(s,5)
is a continuous orthogonal projection onto A := Hﬁ(s,’s)({Pk}keN) = alg({ Py }ken), and thus A
is orthogonally complemented in £(s, s).

On the other hand, if alg({ Py }ren) is orthogonally complemented in £(s, s), then one can
easily check that the corresponding orthogonal projection 7: HS(¢2) — HS(¢2) is defined by
(4.8).

In the following Proposition we characterize orthogonally complemented commutative *-sub-
algebras of £(s,s) among all closed commutative *-subalgebras of L(s', s).

Proposition 4.36. Let A be an infinite-dimensional closed commutative *-subalgebra of L(s', s)
and let (Py)ren = (X jen, (5 fi) fi)ken be its canonical Schauder basis. Then the following
assertions are equivalent:

(i) A is orthogonally complemented;
(i) for all g € Ny and for all x € L(5, s)

P
up L@ Peds

|| Py < 00;
el |Nk‘ H Hq )

iii) for all ¢ € Ng and for all x € L(s', s
(iii) f q :

> (@fi fi)|-

JENE

sup —— max |filqg < o0.

keN \Nk!

Proof. (i)=-(ii): If A is orthogonally complemented in £(s,s) then, by Remark 4.35, the
corresponding orthogonal projection 7: L(s',s) — L(s', s) is given by

7T£I}—Z|N‘ kaHSPk

Now, from Lemma 3.5 it follows that the series above is absolutely convergent for all z € £(s', s),
and therefore (ii) holds.

(ii)=(i): Assume that the condition (ii) is satisfied. Since the space A = alg({Pj}ren) is
a nuclear Fréchet space (as a closed subspace of the nuclear Fréchet space L(s,s)), the space
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A([|Pellg) = alg({Pr}ren) (see Theorem 4.9) is nuclear as well. Hence, by the Grothendieck-
Pietsch theorem (see e.g. [20, Th. 28.15]), for given ¢ € Ny one can find r € Ny such that

9
Z k”q
k=1 Pk”r

whence, by assumption,

e x P ’HS| ‘(x Pk>7-[8| HPqu
Pk| <sup |kr
,; WG Pella < sup ==re 17 Z!PH

for all z € £(s,s). This shows that for the orthogonal projection 7: HS(¢3) — HS(¢2) defined
by (4.8) we have 7(L(s',s)) C L(s,s), and thus, by Remark 4.35, A is orthogonally comple-
mented in L(s', s).

(ii)<(iii): Take z € HS(¢2) and fix an orthonormal basis {fj}jeN = {fj}jen U {gj}jen of
¢5 extending the orthonormal system {f;};en. First note that for £ € N we have

[e.e]

(@, Poyps = Y _(@fj, Pofi) = D (@fj i),

Jj=1 JENK
because the Hilbert-Schmidt scalar product does not depend on the choice of an orthonormal

basis (see e.g. [20, Prop. 16.16(2)]). Hence,

(2, Po)ns| _ 1
W] Wil

S (afi £

JEN

Moreover, by Theorems 4.9 and 4.20

AZ([Pell) = A (max [ filq),

as Fréchet *-algebras and the isomorphism is given by er — e;. Therefore,
A(]|P, = A\*(max | f;
(1Pelly) = X (max | £l

which completes the proof. O

Now, we shall focus on maximal commutative orthogonally complemented *-subalgebras of
L(s', s) isomorphic to s as Fréchet *-algebras.

Theorem 4.37. Let (fi)ren be an s-complete sequence such that X>°(|fy)lq) = s as a Fréchet
*-algebra for some bijection o: N — N and let u: by — £y be given by uey := fop) for k € N.
Then the following conditions are equivalent:

(i) u e L(s)NL(s);

(i) supgen [(@fr, fi)| [frlg < oo for all z € L(s',s) and all q € No;

(iv

u(s) =

)
)

(i) ((n, for)) ken € s for alln € s;
)

(v) (fi)ken s a Schauder basis of s;
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(vi) for all ¢ € Ny there is r € Ny such that supgen | fxll| frlq < 005

(vii) alg({(-, fx) fx}ren) is orthogonally complemented in L(s',s).
Proof. First note that, by Proposition 4.28, there is a bijection ¢: N — N such that

(@) Vg €N Ir e Ng IC >0VE €N [fr)lg < CK;

(B) V' €Ng 3¢ € NgIC" > 0Vk €N k" < C'| fyly-
(i)=(ii): Let @: s — s’ be the continuous extension of u (see (2.1)) and let us recall that,

by Proposition 2.1, u* € £L(s). Hence for x € L(s', s) we get
(Tfo)s for)) = (vley, ue) = (u*zley, ex),

and thus the condition («) shows that for every ¢ € Ny there are r € Ny and C' > 0 such that

‘<xfa(k)vfa(k)>‘ |fa(k‘)|q < C|<u*l‘ﬂ€k,€k>|k‘r.

Now, since u*zu € L(s, s), we obtain
sup |(u*ztue, er) k" < sup ||u*zte||s, - ||ex|le,k" < O sup|eg|lk" = C’
keN eN keN

for some C” > 0, which completes the proof.
(ii)=-(iii): For n = 0 the conclusion is trivially satisfied. If n € s\ {0}, then we define

x:= (-,n)n. Clearly, z € L(s', s) and
|<xfa(k)7fa(k)>|1/2 = ‘<<fa(k:)777>777 fa(k’)>|1/2 = ‘<777 fa(kz)>|

Therefore, by the condition (), for every r’ € Ny there are ¢ € Ny and C’ > 0 such that
1, Lo K™ < CN0, Lot 1 ol = C N fotiys S ol
< C' (@ Loy Fotr))| - | oty l2a) %,

where the last inequality follows from Proposition 1.4. Hence, by assumption, ({1, fo(x)))ken € s.
(iii)=(iv): By the condition (a), we obtain u(s) C s, so we only need to prove that s C u(s).

To do this we first show that -
0=, fot)) Foti) (4.9)
k=1
for all n € s and the series converges in the norm || - ||¢,.
Take 7 € s. Clearly, if { f;(x)}ren is an orthonormal basis of £3, then (4.9) holds. If it is not
the case, we may find an orthonormal system {gi }repns in €2 such that {f, ) tken U {gk fren is

an orthonormal basis of ¢5. Then
[o.¢]

n= Z<na fU(k))fU(k) + Z <7779k>gk

k=1 keN

(the series converges in the norm || - ||s,). Notice that (iii) and («)) imply that the first series is
absolutely convergent in s, and consequently v := >, cn/(7, gk)gr € s. But v is orthogonal to
each fy(x) and {f,u)}ken is s-complete, so v = 0, and thus (4.9) holds.
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Now, by assumption and (4.9), we get

n=u (Z(n? fa(k))@c) , where Z<777 fa(k:)>ek € s,

k=1 k=1

hence s C u(s).

(iv)=(v): Since u(s) = s, u: 3 — ¢2 has dense range. Moreover, u preserves the scalar
product and thus u is unitary. Now the conclusion follows by [34, Remark 1]. We include the
proof for completeness.

For n € s take £ € s such that n = u&. Then

o0
n= Z<777 fa(k))fa(k)
k=1
(the series converges in the norm || -[|¢,¢,) and, since u is unitary, we have (1, fox)) = (£, ex) =

&k> 50 ({1, fo(k)) Jken € s. Hence, the condition () shows that for every ¢ € Ny there are r € Ny
and C > 0 such that

Z nafa(k ||fU(k; <CZ|777f0k)>|k < 00,

and thus the series > 72 | (1, fo(k)) fo(k) is absolutely convergent in s. Moreover, by orthogonality,
it is easily seen that there is no other representations > ¢ fi, so (fx)ken is a Schauder basis of
s.

(v)=(i): First observe that the assumption implies that (fy(x))ren is an orthonormal basis
of #9, and therefore v is unitary.

By («), for n € s and g € Ny we obtain

o

= Z(U(n) fotk

[e.o]

fU k) fa(k Z 777€k | ’fo‘ ’

q

< C‘n|7’+2 Z ‘ek’r—‘err C”'?\r+2 Z L2 < 00,
k=1 k=1

hence u(s) C s.

Next, by assumption, for every n € s there is a unique sequence (cg)gen of complex numbers
such that n = 332 cx fo(x), and, by the Dynin-Mityagin theorem (see e.g. [20, Th. 28.12]), the
series is convergent absolutely in s. On the other hand, since ( fg(k,)) ke is an orthonormal basis
of 45, it follows that

)
Z m, fa(k fa(k

(a priori, the series converges in the norm || - |[¢,-s¢,), and thus ¢, = (1, fy(x))- By the condition
(B), for every 1’ € Ny there are ¢’ € Ny and C’ > 0 such that

0o )
Z |<n7fa(k)>|kr < C,Z |<77a fa(k:)>| |fo(k)|q’ < 00,

k=1 k=1
i.e. ({0, fo(r)))ken € s. Consequently, since

o0 o0

U*(U) = “_1(77) =u ! ( Z(U: fa(kz)>fa(k:)) = Z<777 fO’(k’)>ek‘7

k=1 k=1
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u*(s) C s.
We have proved that u € L*(s) (see (2.2) for definition), and thus, by Proposition 2.1,
ue L(s)NL(s).
(v)<(vi): Easily follows from the Dynin-Mityagin theorem (see [21, remark after Th. 9]).
(ii)<(vii): This is an immediate consequence of Proposition 4.36. 0

Corollary 4.38. Let A be a mazimal commutative *-subalgebra of L(s',s) isomorphic (as a
Fréchet *-algebra) to s. The following assertions are equivalent:

(i) A is orthogonally complemented;
(ii) there is a unitary map w: o — la, u(s) = s such that
T: L(s,s) = L(s,s), T(x):=u"zu,

is a Fréchet *-algebra isomorphism preserving orthogonality (i.e. (x,y)ns = (Tx,Ty)us)
which maps A onto the *-subalgebra

D= { i k(- er)er: (Sk)ren € 8}

k=1
of diagonal operators in L(s',s);

(ili) there is a Fréchet *-algebra isomorphism T: L(s',s) — L(s',s) preserving orthogonality
such that T(A) = D.

Proof. (i)=(ii): By assumption, Theorem 4.11 and Corollary 4.16, there is an s-complete
sequence (fr)ren such that
s = A= 2(] frlg)ken)

as Fréchet *-algebras. Hence, by Proposition 4.27, we get A\°°(|fyr)lq) = s (as Fréchet *-
algebras) for some bijection o: N — N. Therefore, by Theorem 4.37 (the implications (vii)=-(i)
and (vii)=-(iv)), the map

w: by — by, uep = fg(k)

is unitary and w);: s — s is a continuous automorphism of s. Now, it is easy to show that
T: L(s',s) = L(s',s) defined by T'(z) := u*zu has the desired properties.

(ii)=-(iii): Obvious.

(iii)=-(i): Since D is orthogonally complemented with the projection

7w L(s',s) = L(s)8), w(x):= Z(xek,ek><-,ek>ek,
k=1

it follows that 7! o w o T is the orthogonal projection onto A. O

Our next result shows that the algebra s can be embedded in £(s',s) in a non-orthogonally
way. In particular, there are closed commutative *-subalgebras of £(s', s) isomorphic to a com-
plemented subspace of s (i.e. with the property (£2)) which are not orthogonally complemented
in £(s, ).

Theorem 4.39. There is a closed commutative *-subalgebra of L(s',s) isomorphic as a Fréchet
*~algebra to s which is not orthogonally complemented in L(s',s).
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Proof. By Corollary 4.16, Proposition 4.28 and Theorem 4.37, it is enough to find an orthonor-
mal basis (fx)reny C s of o which is not a Schauder basis of s and such that A*°(|fx|,) = s as a
Fréchet *-algebra.

Let 1 i
(e + ey ) for k=275 €N,
Tk = %(ezﬂ — egii_y) for k= 20+ — 1,5 €N,
€k otherwise.

Clearly, {er tren C Iin({ fx}ren), so { fx }ren is linearly dense in ¢, i.e. (fx)ren is an orthonormal
basis of #5.

Suppose that (fi)ren is a Schauder basis of s. Then & — (¢, fx) for k € N are coefficient
functionals, and therefore, by the Dynin-Mityagin theorem (see [21, remark after Th. 9]), for
every q € Ny there is r € Ny such that

Sup | it filoo,g < 00, (4.10)
keN

where [€, , := supjen [§51777 and [€]oo,q := supjey |€;]77 (see also Proposition 1.5). For ¢ € Ny
we easily compute
L oG+t _ qya / L o—ait
|f2]’"007q = 7(2 - 1) and ‘f?j!|oo,q =—=2 .

V2 V2

Hence for ¢ = 1 and r € Ny we obtain

1

|f2j!|{>o,r|f2j!’oo7q = 52—7“]'! . (2(j+1)! 1) >

oUADI—rit _ LojiGirir) _,

4

=

as j — 0o. Thus the condition (4.10) is not satisfied, a contradiction. Therefore, (fi)ren is not
a Schauder basis of s.

It remains to prove that A*°(|fx|q) = s. Let 0: N — N be a bijection for which the sequence
(|fo(k)loo,1)ken is non-decreasing. For j € N let

Aj = {|fotiyloon 1 20'+1 <k < 207D
and let
Bj = {2 +2,2' +3,... 207D _ 2} {\2(20““ —1)}u {20 41y,

We will show inductively that A; = B;.
An easy computation shows that for ¢ € N

V2

LU+ _ 1V fork=2"ork=20+tD'_1 j &N
|fk|ooq: ( ) o . o e (4'11)
’ k4 otherwise.

Hence ’fa(1)|oo,1 =1, ‘f0(2)|oo,1 = ’f0(3)|oo,1 = %7 |f0(4)‘oo,1 =550 A1 = By = {BT\/i75} and
the conclusion holds for j = 1.

Now, let us assume that A;_; = B;_1. Then, in particular, ’fa(2j1)|oo71 =maxA;_1 = 27" 41,
and therefore, since for j > 2 we have

91! 49 < \2(20#1)! ~ 1) < oGt (4.12)
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it follows that min A; = min B; = 27' + 2. Clearly, |B;| = 2U+1)' — 27" — 1 and %(2@“)! -1)
occurs in the sequence (| f,(x)loo,1)ken two times. But A; is indexed by 20+D" — 27" numbers, so
by (4.12) we have %(2(3'“)! — 1) € A; and therefore A; = B;.

Now, comparing the elements of sets A; and Bj, it is easy to see that k—1 < ]fa(k) loo,1 < k+1
for all & € N. Moreover, by (4.11), for every ¢ € Ny there is a constant C' > 0 such that
| frloog < C|fild, for all k € N. Hence, for k € N we have

| fotyloog < Clfarylior < Ok +1)7 < 21CK1
and also for k > 2
k?“, S 2T/ (]{j — l)rl S 2T"fo.(k,)"g;71 S QTIC/’fO-(k)’OO’q/7

where the last inequality follows from Proposition 4.14. The case k = 1 (i.e. 1 = [fy(1)|oo,1) 18
trivial. Hence, by Propositions 1.5 and 4.28, A>°(| fx|q) = s. O
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Functional calculus in £(s’, s)

If z is a normal operator in £(s', s) C K (¢3) with spectral representation z = >, zr A\p Py and f is
a continuous function on the spectrum o (x) of x vanishing at zero, then the continuous functional
calculus for normal operators provides a uniquely determined operator f(z) := Y cn APk €
K(¢2) (see e.g. [20, Prop. 17.20]). Recall that, by Proposition 1.20, the spectrum of z (in
L(s',s)1) coincides with the spectrum of x in £(¢3) (and thus also in K(¢2)).

In this chapter, we want to describe those functions f for which f(x) is again in £(s',s) (see
Theorem 5.2 and Corollary 5.3). Moreover, it turns out that for a normal operator z € L(s', s)
and a Holder continuous at zero function f: o(z) — C with f(0) = 0, we have f(z) € L(s,s)
as well (Proposition 5.1).

From the general theory of Fréchet locally m-convex algebras we get the holomorphic func-
tional calculus on L(s, s) (see Prop. 1.9 and [25, Lemma 1.3], [36, Th. 12.16]). More precisely, if
x is an arbitrary operator in £(s,s) and f is a holomorphic function on an open neighborhood
U of o(x) with f(0) = 0, then f(z) € L(s',s), and moreover the map ®: Hy(U) — L(5,s),
f — f(z), is a continuous algebra homomorphism (Hy(U) stands for the space of holomorphic
functions on U vanishing at zero).

It is worth mentioning that Blackadar and Cuntz developed a C'*°-functional calculus on
some dense subalgebras of C*-algebras (see [2, Prop. 6.4 and p. 277]). Unfortunately, it seems
that L£(s', s) does not fit to their theory.

Recall that a function f: X — C (X C C, 0 € X) is Hélder continuous at zero if there are
0 € (0,1] and C > 0 such that |f(t) — f(0)|] < C|t|? for all ¢ in a neighborhood of zero. Let
us note that every function which is differentiable at zero is also Hélder continuous at zero. As
an immediate consequence of Theorem 3.1, we get the following Hélder continuous functional
calculus for normal operators in £(s', s).

Theorem 5.1. If x € L(s',s) C K(¢2) is normal, then for every Hélder continuous at zero
function f: o(x) — C with f(0) =0, we have f(z) € L(s,s) as well. In particular:

(i) if x is positive (i.e. o(z) C [0,00)) and 6 € (0,00), then 2% € L(s',s);
(ii) || € L(5,5);

(ili) if x s self-adjoint (i.e. x* = x), then x4 := (|z| + x)/2, v_ = (|Jz| — x)/2 € L(, 5).

50



Chapter 5. Functional calculus in L(s', s) 51

Proof. Let z =Y, APk € L(5',s) be normal and let f: o(z) — C be Hélder continuous at
zero with f(0) = 0. Then |f| < C| - |? for some C > 0 and # € (0, 1]. Hence, by Corollary 3.6,

STFO)Pellg < C Y Il Psllg < 0.
keN keN

So, again from Corollary 3.6, it follows that f(x) = > f(M\x) P € L(5, 5).

To prove (i), observe that f: [0,00) — C, f(x) := 2%, is Holder continuous for every 6 €
(0,00). Then |z| = Va*x € L(s',s), since z*z > 0. Finally the functions fi, f_, fi(x) =
max{x,0}, f—(x) := max{—x,0} are also Holder continuous at zero. O

For a normal operator x in L£(s',s) with spectral representation = = Y 7> ; A\ Py, we define
the function space

Cs(o(x)) :==A{f:o(x) = C: f(0) = 0, (f(Ar))ren € A= (| Prllg) }-

It is easy to show that the space Cs(o(x)) with the system (cq)gen,s
¢q(f) = sup |F ()] | Prllg,
keN

of seminorms, pointwise multiplication and conjugation is a Fréchet *-algebra.

Theorem 5.2. If x is an infinite-dimensional normal operator in L(s',s) with spectral repre-
sentation © =Y po1 A\ Py, then the map

D5 Culo(w) — alg(e),  B(F) = (@) = 3. SO P
k=1

is a Fréchet *-algebra isomorphism such that ®(id) = x.

Proof. By Theorem 4.9, ® is well defined, and of course ®(id) = x and ®(f) = ®(f)*. The space
alg(z) is a nuclear Fréchet space (as a closed subspace of the nuclear Fréchet space L(s,s))
so A®(||Px|lq) = alg(x) (see Theorem 4.9) is a nuclear Fréchet space as well. Thus, by the
Grothendieck-Pietsch theorem (see e.g. [20, Th. 28.15]), for given g € Ny one can find r € Ny

such that C' := 372, Hﬁ:”j < oo. Hence

1 P%lq
[ P%l ]

12Ny < D 1F O IPllg = D 1F ) 1Pl
k=1 k=1

Hlqu
<sup|f(A P T'E =Cecr(f).
kEN‘ ( k)‘ H kH kﬂHPkHr ( )

Thus ® is continuous.

Clearly, ® is injective. To prove that it is also surjective, take y € alg(x). By Theorem
4.9, (Py)ken is a Schauder basis, so there is a sequence (ug)gen such that y = 372, urPr. Let
g(Mg) := pg for k € N. Then

sup |g(Ae)| || Prllq = sup |px] [|Prllq < oo,
keN keN

hence g € Cs(o(x)), and of course, ®(g) = y. O
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For a normal operator z € IC({2) we define the C*-algebra
Co(o(z)) :=={f :0(x) — C: f is continuous and f(0) = 0}.

Theorem 5.2 shows, in particular, that for a fixed normal operator x € L(s', s), f(x) € L(s, s)
for all f € Cs(o(x)). The following result shows that Cs(o(x)) is the biggest subspace of Cy(o(x))
with this property.

Corollary 5.3. Let x be a normal operator belonging to L(s',s) and let f € Co(o(x)). Then
f(z) € L(s',s) if and only if f € Cs(o(x)).

Proof. Let > 72, A\ P, be spectral representation of z. By Theorem 5.2, f € Cs(o(x)) implies
that f(z) € L(s',s). Conversely, if f(z) = Y72, f(M)Pr € L(s,s), then by Corollary 3.6,
Y1 [ f%)] 1| Pxllg < oo for every ¢ € Ng. Hence, suppey |f(Mk)| [|Pxllq < oo, and thus
f € Cy(a(x)). O
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