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Abstract. Let p ∈ {1,∞}. We show that any continuous linear operator

T from A1(a) to Ap(b) is tame i.e. there exists a positive integer c such that

supx ‖Tx‖k/|x|ck < ∞ for every k ∈ N. Next we prove that a similar result holds

for operators from A∞(a) to Ap(b) if and only if the set Mb,a of all finite limit points

of the double sequence (bj/ai)i,j∈N is bounded. Finally we show that the range of

every tame operator from A∞(a) to A∞(b) has a Schauder basis.

1 Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field

K which is complete under the metric induced by the valuation | · | : K → [0,∞).

For fundamentals of locally convex Hausdorff spaces (lcs) and normed spaces we

refer to [6] - [9] and [12].

Let Γ be the family of all non-decreasing unbounded sequences of positive real

numbers. Let a = (an), b = (bn) ∈ Γ. The power series spaces of finite type A1(a)

and infinite type A∞(b) are the most known and important examples of nuclear

Fréchet spaces with a Schauder basis. They were studied in [1] and [13] - [15]. Let

p, q ∈ {1,∞}.
The problem when Ap(a) has a subspace (or quotient) isomorphic to Aq(b) was

studied in [13]. In particular, the spaces Ap(a) and Aq(b) are isomorphic if and only if

p = q and the sequences a, b are equivalent i.e. 0 < infn(an/bn) ≤ supn(an/bn) <∞
([13], Corollary 6).

12010 Mathematics Subject Classification: 47S10, 46S10, 46A45.

Key words: Non-archimedean power series space, tame operator, Schauder basis.

1



N. De Grande-De Kimpe has proved ([1], Proposition 4.3) that any continuous

linear operator from A1(a) to A∞(b) is compactoid (the assumption that the field K is

spherically complete can be easy omitted). Hence A1(a) has no quotient isomorphic

to A∞(b), and A∞(b) has no subspace isomorphic to A1(a).

In [14], we have proved that the range of every continuous linear operator from

A1(a) to Ap(b) has a Schauder basis ([14], Theorem 10); a similar result holds for

continuous linear operators from A∞(a) to Ap(b), if the set Mb,a of all finite limit

points of the double sequence (bi/aj)i,j∈N is bounded ([14], Theorem 10). In partic-

ular, any complemented subspace F of A1(a) has a Schauder basis ([14], Corollary

13); in fact, F is isomorphic to A1(c) for some subsequence c of a ([14], Proposition

14). Similar results hold for complemented subspaces of A∞(a), if the set Ma,a is

bounded ([14], Corollary 13 and Proposition 14).

It is not known whether the range of every continuous linear operator from A∞(a)

to A∞(b) has a Schauder basis.

Let E and F be Fréchet spaces with fixed bases of continuous seminorms (| · |k)
and (‖ · ‖k), respectively. A continuous linear operator T : E → F is tame (or

linearly tame) if there exists a positive integer c such that

sup
x
‖Tx‖k/|x|ck <∞ for all k ∈ N;

clearly, any bounded linear operator from E to F is tame. The pair (E,F ) is tame

if every continuous linear operator from E to F is tame. The space E is tame if the

pair (E,E) is tame.

In this paper we study tame operators from Ap(a) to Aq(b) (and from Ap(a, r)

to Aq(b, s)). First we show that the pair (A1(a), Ap(b)) is tame for all a, b ∈ Γ and

p ∈ {1,∞} (Theorem 1); in particular, the space A1(a) is tame for every a ∈ Γ.

On the other hand, if a ∈ Γ with Ma,a 6= {0, 1} and r = (rk) ⊂ R is a strictly

increasing sequence with limk rk = 0 and limk(r2k/rk) = 1 then the space A1(a, r) is

not tame (Theorem 4).

Next, using the Grothendieck’s factorization theorem (Theorem 7), we prove

that the pair (A∞(a), Ap(b)) is tame if and only if the set Mb,a is bounded (Theorem

9).

Finally we show that the range of every tame operator from A∞(a) to A∞(b) has

a Schauder basis (Theorem 11).

In our paper we use and develop some ideas of [2] and [5].
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2 Preliminaries

The linear span of a subset A of a linear space E is denoted by [A].

By a seminorm on a linear space E we mean a function p : E → [0,∞) such

that p(αx) = |α|p(x) for all α ∈ K, x ∈ E and p(x + y) ≤ max{p(x), p(y)} for all

x, y ∈ E. A seminorm p on E is a norm if ker p := {x ∈ E : p(x) = 0} = {0}.
Let E,F be locally convex spaces. A map T : E → F is called an isomorphism

if it is linear, bijective and the maps T, T−1 are continuous. If there exists an

isomorphism T : E → F , then we say that E is isomorphic to F. The family

of all continuous linear maps from E to F we denote by L(E,F ). An operator

T ∈ L(E,F ) is bounded if the range of some neighbourhood of zero in E is bounded

in F. The range of T ∈ L(E,F ) is the subspace T (E) of F .

The set of all continuous seminorms on a lcs E is denoted by P(E). A non-

decreasing sequence (pn) of continuous seminorms on a metrizable lcs E is a base

in P(E) if for every p ∈ P(E) there are C > 0 and k ∈ N such that p ≤ Cpk. A

metrizable complete lcs is called a Fréchet space.

Let (xn) be a sequence in a Fréchet space E. The series
∑∞

n=1 xn is convergent

in E if and only if limn xn = 0.

A normable Fréchet space is a Banach space.

Put BK = {α ∈ K : |α| ≤ 1}. Let A be a subset of a lcs E. The set coA =

{
∑n

i=1 αiai : n ∈ N, α1, . . . , αn ∈ BK, a1, . . . , an ∈ A} is the absolutely convex hull of

A; its closure in E is denoted by coEA. A subset A of a lcs E is absolutely convex

if coA = A.

A subset B of a lcs E is compactoid (or a compactoid) if for each neighbourhood

U of 0 in E there exists a finite subset A of E such that B ⊂ U + coA.

An operator T ∈ L(E,F ) is compactoid if for some neighbourhood U of zero in

E the set T (U) is compactoid in F ; clearly, any compactoid operator is bounded.

For any seminorm p on a lcs E the map p : E/ ker p → [0,∞)x + ker p → p(x)

is a norm on Ep = E/ ker p.

A lcs E is nuclear if for every p ∈ P(E) there exists q ∈ P(E) with q ≥ p such

that the map

ϕq,p : (Eq, q)→ (Ep, p) , x+ ker q → x+ ker p

is compactoid. Any nuclear Fréchet space E is a Fréchet-Montel space i.e. every

bounded subset of E is compactoid.
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Let U be an absolutely convex neighbourhood of zero in a lcs E. The Minkowski

functional of U

pU : E → [0,∞), pU(x) = inf{|α| : α ∈ K and x ∈ αU}

is a continuous seminorm on E.

A sequence (xn) in an lcs E is a Schauder basis in E if each x ∈ E can be

written uniquely as x =
∑∞

n=1 αnxn with (αn) ⊂ K, and the coefficient functionals

fn : E → K, x→ αn(n ∈ N) are continuous.

An infinite matrix A = (an,k) of real numbers is a Köthe matrix if 0 ≤ an,k ≤
an,k+1 for all n, k ∈ N, and supk an,k > 0 for n ∈ N. Let A be a Köthe matrix.

The space K(A) = {x = (xn) ∈ KN : limn |xn|an,k = 0 for every k ∈ N} with the

canonical base (| · |k) of seminorms, where

|x|k = max
n
|xn|an,k, k ∈ N,

is a Fréchet space. The sequence (ej), where ej = (δj,n), is an unconditional Schauder

basis in K(A). It is orthogonal with respect to the canonical base (|·|k) of seminorms

i.e. for all k, n ∈ N and α1, . . . , αn ∈ K we have

|
n∑
i=1

αiei|k = max
1≤i≤n

|αiei|k.

Any infinite-dimensional Fréchet space E with a Schauder basis is isomorphic to

K(A) for some Köthe matrix (see [1], Proposition 2.4 and its proof).

By a Köthe space we mean a Fréchet space with a Schauder basis and with a

continuous norm. Any Köthe space is isomorphic to K(A) for some Köthe matrix

with an,k > 0 for all n, k ∈ N (see [1], Proposition 2.4). Let E = K(A) be a Köthe

space. For any continuous linear functional f on E there exists a sequence (zj) ⊂ K
such that f(x) =

∑∞
n=1 xnzn for any x ∈ E and supn(|zn|/an,k) <∞ for some k ∈ N

([1], Proposition 2.2). Then |f |∗k := supx(|f(x)|/|x|k) = supn(|zn|/an,k) for k ∈ N.
Let a = (an) ∈ Γ. Then the following Köthe spaces are nuclear (see [1]):

1. A1(a) = K(A) with A = (an,k), an,k = e−an/k;

2. A∞(a) = K(A) with A = (an,k), an,k = ekan .

A1(a) and A∞(a) are the power series spaces (of finite type and infinite type, respec-

tively).
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Let p ∈ {1,∞}. Denote by Λp the family of all strictly increasing sequences

r = (rk) of real numbers such that limk rk = 0 if p = 0 and limk rk =∞ if p =∞. Let

a ∈ Γ and r ∈ Λp. Clearly, the Köthe space Ap(a, r) = K(A) with A = (an,k), an,k =

erkan is isomorphic to Ap(a).

Let (E, ‖ · ‖) be a normed space and let t ∈ (0, 1]. A sequence (xn) ⊂ E is

t-orthogonal if for all m ∈ N, α1, . . . , αm ∈ K we have

‖
m∑
i=1

αixi‖ ≥ t max
1≤i≤m

‖αixi‖.

If (xn) ⊂ (E \ {0}) is t-orthogonal and linearly dense in E then it is t-orthogonal

basis in E. Every t-orthogonal basis in E is a Schauder basis ([7], [8]).

3 Results

First we shall prove that the pair (A1(a), Ap(b)) is tame for all a, b ∈ Γ and p = 1;

for p =∞ it follows by [1], Proposition 4.3.

Theorem 1. Let a, b ∈ Γ. If r = (rk), s = (sk) ∈ Λ1 with infc≥1 lim supk(rck/sk) =

0, then the pair (A1(a, r), A1(b, s)) is tame. If r ∈ Λ1 and s ∈ Λ∞, then the pair

(A1(a, r), A∞(b, s)) is tame. In particular, the pair (A1(a), Ap(b)) is tame for any

p ∈ {1,∞}.

Proof. (1) Let r = (rk), s = (sk) ∈ Λ1 with infc≥1 lim supk(rck/sk) = 0. Denote

by (| · |k) and (‖ · ‖k) the canonical bases in P(A1(a, r)) and P(A1(b, s)), respectively.

Let T ∈ L(A1(a, r), A1(b, s)). Then there exist increasing functions C,ϕ : N → N
such that

∀k ∈ N∀x ∈ A1(a) : ‖Tx‖k ≤ C(k)|x|ϕ(k).

Let (tn,j) ⊂ K with Ten =
∑∞

j=1 tn,jej, n ∈ N. For some function p : N× N→ N we

have ‖Ten‖k = |tn,p(n,k)| exp(skbp(n,k)) for n, k ∈ N. Then for k, l, n ∈ N we have

‖Ten‖l
‖Ten‖k

≥
|tn,p(n,k)| exp(slbp(n,k))

|tn,p(n,k)| exp(skbp(n,k))
= exp[(sl − sk)bp(n,k)].

Hence for all c, l, n, k ∈ N with [(sl − sk)bp(n,k) + (rck − rϕ(l))an] ≥ 0 we have

‖Ten‖l
‖Ten‖k

|en|ck
|en|ϕ(l)

≥ 1, so (∗) ‖Ten‖k
|en|ck

≤ ‖Ten‖l
|en|ϕ(l)

≤ C(l).
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Now we shall prove that there exist A > 0, K ≥ 1 and c ≥ ϕ(K) such that

(∗∗) ∀k ≥ K∃lk > k :
slk − sk

rϕ(lk) − rck
> A >

sk − s1

rck − rϕ(1)

.

Put A = 2s1/rϕ(1). Clearly limk[(sk − s1)/(rck − rϕ(1))] = A/2 for c ∈ N. By our

assumption, for some c0 ≥ 1 we have lim supk(rc0k/sk) < A−1. Since the sequences

(rck/sk)
∞
c=1 and [(sk−s1)/(rck−rϕ(1))]

∞
c=1 are decreasing for every k > ϕ(1), we have

∃k0 > ϕ(1)∀k ≥ k0∀c ≥ c0 :
rck
sk

<
1

A

and

∃K ≥ k0∀k ≥ K∀c ≥ c0 :
sk − s1

rck − rϕ(1)

< A.

Let c ≥ max{c0, ϕ(K)}. Clearly liml[(sl− sk)/(rϕ(l)− rck)] = sk/rck > A for k ≥ K,

so we get

∀k ≥ K∃lk > k :
slk − sk

rϕ(lk) − rck
> A.

Thus we have shown (∗∗).
Clearly ‖Tx‖k ≤ C(k)|x|ck for x ∈ A1(a, r) and 1 ≤ k < K.

Let k ≥ K. Let n ∈ N. Consider two cases.

Case 1: bp(n,k) ≤ an/A. Then

(sk − s1)bp(n,k) ≤ (rck − rϕ(1))Abp(n,k) ≤ (rck − rϕ(1))an,

so [(s1 − sk)bp(n,k) + (rck − rϕ(1))an] ≥ 0. Using (∗) we get ‖Ten‖k ≤ C(1)|en|ck.
Case 2: bp(n,k) > an/A. Then

(slk − sk)bp(n,k) ≥ (rϕ(lk) − rck)Abp(n,k) > (rϕ(lk) − rck)an,

so [(slk − sk)bp(n,k) + (rck − rϕ(lk))an] ≥ 0. Using (∗) we get ‖Ten‖k ≤ C(lk)|en|ck.
We have shown that ‖Ten‖k ≤ C(lk)|en|ck for all n ∈ N. It follows that ‖Tx‖k ≤

C(lk)|x|ck for every x ∈ A1(a, r) and k ≥ K. Thus we have proved that T is tame.

(2) Let r ∈ Λ1 and s ∈ Λ∞. Then every continuous linear operator T from

A1(a, r) to A∞(b, s) is bounded ([1], Proposition 4.3), so

∃m ∈ N ∀k ∈ N∃Ck > 0 ∀x ∈ A1(a) : ‖Tx‖k ≤ Ck|x|m,

where (| · |k) and (‖ · ‖k) are the canonical bases in P(A1(a, r)) and P(A∞(b, s)),

respectively. It follows that the pair (A1(a, r), A∞(b, s)) is tame. 2
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Corollary 2. The space A1(a) is tame for every a ∈ Γ.

In connection with Corollary 2 we shall prove that for some a ∈ Γ, r ∈ Λ1 the

space A1(a, r) is not tame. We need the following lemma.

Lemma 3. Let p ∈ {1,∞}. For every strictly increasing sequence (ψk) ⊂ N there

exists r = (rk) ∈ Λp with limk(rψk
/rk) = 1.

Proof. First we shall prove that there exists a sequence (wi) ⊂ (0,∞) with∑∞
i=1wi =∞ such that limk

∑ψk

i=k wi = 0.

Let v1, ..., vψ1 ∈ (0,∞). If we have vk for some k ∈ N we choose vi ∈ (0,∞)

for ψk < i ≤ ψk+1 such that
∑ψk+1

i=ψk+1 vi = vk. This way we obtain a sequence

(vi) ⊂ (0,∞) such that the sequence Vk =
∑ψk

i=k vi, k ∈ N, is constant, since Vk+1 −
Vk = (

∑ψk+1

i=ψk+1 vi)− vk = 0, k ∈ N. It follows that
∑∞

i=1 vi = ∞. Thus there exists

a strictly increasing sequence (nl) ⊂ N with
∑ψnl+1

i=ψnl
+1 vi ≥ l for l ∈ N.

Let wi = vi for 1 ≤ i ≤ ψn1 and wi = vi/l for ψnl
< i ≤ ψnl+1

, l ∈ N. The series∑∞
i=1wi is disconvergent, since

∑ψnl+1

i=ψnl
+1wi ≥ 1. The sequence Wk =

∑ψk

i=k wi, k ∈ N
is convergent to 0. Indeed, for l ∈ N and k > ψnl

we have lWk ≤
∑ψk

i=k vi = Vk = V1.

Put sk =
∑k

i=1wi, rk = − exp(−sk) and Rk = exp sk for k ∈ N. Clearly r =

(rk) ∈ Λ1 and R = (Rk) ∈ Λ∞. For k ∈ N we have

1 ≤ rk/rψk
= Rψk

/Rk = exp(sψk
− sk) < expWk,

so 1 = limk(Rψk
/Rk) = limk(rk/rψk

) = limk(rψk
/rk). 2

Let E and F be Fréchet spaces with fixed bases of continuous seminorms (| · |k)
and (‖ · ‖k), respectively. A continuous linear operator T : E → F is polynomially

tame if there exist positive integers c and n such that

sup
x
‖Tx‖k/|x|ckn <∞ for all k ∈ N.

The pair (E,F ) is polynomially tame if every continuous linear operator from E

to F is polynomially tame. The space E is polynomially tame if the pair (E,E) is

polynomially tame.

Theorem 4. Let p ∈ {1,∞}. Let a ∈ Γ and r ∈ Λp. Assume that Ma,a 6= {0, 1}
and limk(r2k/rk) = 1. Then the space Ap(a, r) is not tame. If limk(r2k2/rk) = 1,

then Ap(a, r) is not polynomially tame.
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Proof. Since Ma,a 6= {0, 1}, there exist strictly increasing sequences (iv), (jv) ⊂
N such that (1) A := infv(ajv/aiv) > 0 and B := supv(ajv/aiv) < 1, if p = 1; (2)

A := supv(ajv/aiv) < ∞ and B := infv(ajv/aiv) > 1, if p = ∞. For some (ϕk) ⊂ N
we have (1) supk(rϕk

/rk) ≤ A, if p = 1; (2) infk(rϕk
/rk) ≥ A, if p =∞.

The operator

T : Ap(a, r)→ Ap(a, r), Tx =
∞∑
v=1

xivejv

is well defined, linear and continuous. Indeed, let x ∈ Ap(a, r). Then

|xiv |‖ejv‖k = |xiv | exp(rkajv) ≤ |xiv | exp(Arkaiv) ≤ |xiv | exp(rϕk
aiv)

for all v, k ∈ N. Thus limv xivejv = 0 in Ap(a, r) and ‖Tx‖k ≤ ‖x‖ϕk
for all k ∈ N.

Now we shall prove that T is not tame. Suppose by contrary that T is tame.

Then there exist c ≥ 1 and (Ck) ⊂ N such that ‖Tei‖k ≤ Ck‖ei‖ck for all k, i ∈ N.

Hence exp(rckaiv − rkajv) ≥ C−1
k for all v, k ∈ N.

By our assumptions we get limk(r2tk/rk) = 1 for any t ∈ N, so limk(rck/rk) = 1.

Case 1: p = 1. Let δ ∈ (B, 1). Then there exists k0 ∈ N such that (rck/rk) ≥
δ > B ≥ (ajv/aiv) for all v, k ∈ N with k ≥ k0. Let k ≥ k0. Thus rckaiv − rkajv ≤
[1− (B/δ)]rckaiv for all v ∈ N.

Case 2: p = ∞. Let δ ∈ (1, B). Then there exists k0 ∈ N such that rck/rk ≤
B/δ < B ≤ ajv/aiv for all v, k ∈ N with k ≥ k0. Let k ≥ k0. Thus rckaiv − rkajv ≤
(1− δ)rckaiv for all v ∈ N.

It follows that limv exp(rckaiv − rkajv) = 0; a contradiction.

Similarly we show that T is not polynomially tame if limk(r2k2/rk) = 1. 2

Neverless we have the following.

Remark. Let a ∈ Γ and r ∈ Λ1. Then any diagonal continuous operator T from

A1(a, r) to A1(a, r) is tame. Indeed, for some (ti) ⊂ K we have Tei = tiei, i ∈ N.

By the continuity of T there exist strictly increasing sequences (Ck), (ϕk) ⊂ N with

(∗) |ti| exp[(rk − rϕk
)ai] ≤ Ck for all i, k ∈ N.

Let k ∈ N. Since liml(rl − rϕl
) = 0, there is an l = lk ∈ N with rk − rk+1 ≤

rl − rϕl
. Hence, using (∗) for lk instead k, we get |ti| exp[(rk − rk+1)ai] ≤ Clk , so

‖Tei‖k ≤ Clk‖ei‖k+1 for all i ∈ N. It follows that ‖Tx‖k ≤ Clk‖x‖k+1 for all

k ∈ N, x ∈ A1(a, r). 2

We get also the following result.
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Proposition 5. Let a ∈ Γ. Then there exists a diagonal continuous operator T from

A1(a) to A1(a) such that for every r ∈ Λ1 we have supx ‖Tx‖k/‖x‖k = ∞, k ∈ N
and supx ‖Tx‖k/‖x‖k+1 <∞, k ∈ N, where (‖ · ‖k)is the canonical base of norms on

A1(a, r).

Proof. Put sk = −1/k for k ∈ N. Put Di,k = exp[(sk+1 − sk)ai] for k, i ∈ N.
The sequence di = max{k ∈ N : k ≤ Di,k}, i ∈ N, is increasing and limi di = ∞. It

follows that Ck := supi(di/Di,k) < ∞ for k ∈ N, since di ≤ Di,di
≤ Di,k if di ≥ k.

Clearly bi := infk CkDi,k ≥ di for i ∈ N. Let α ∈ K with |α| > 1. Let (ti) ⊂ K with

|ti| ≤ bi ≤ |ti||α| for i ∈ N.

The operator T : A1(a) → A1(a), Tx =
∑∞

i=1 tixiei is well defined, linear and

continuous. Indeed, let x ∈ A1(a). Then |tixi| exp(skai) ≤ Ck exp(sk+1ai)|xi| for k ∈
N, so limi tixiei = 0 in A1(a), Tx ∈ A1(a) and |Tx|k ≤ Ck|x|k+1, k ∈ N, where (| · |k)
is the canonical base of norms on A1(a). Let r ∈ Λ1. Clearly supi(‖Tei‖k/‖ei‖k) =

supi |ti| =∞, k ∈ N.

Let k ∈ N. Then there exists l = l(k) ∈ N with sl+1 − sl < rk+1 − rk. Hence

sup
i
|ti| exp[(rk − rk+1)ai] ≤ sup

i
|ti| exp[(sl − sl+1)ai] ≤ Cl,

so ‖Tei‖k ≤ Cl(k)‖ei‖k+1 for i ∈ N. Thus supx ‖Tx‖k/‖x‖k+1 ≤ Cl(k). 2

To study the tameness of the power series spaces of infinite type A∞(a) we shall

need the Grothendieck’s factorization theorem. To show this theorem we need the

following.

Proposition 6. Let E and F be Fréchet spaces and let T ∈ L(E,F ). Assume that

the range of T is of II-category in F . Then T is open.

Proof. Let U be an absolutely convex and open subset of E. Put V = T (U)
F

.

Let (λn) ⊂ (K \ {0}) with lim |λn| = ∞. Then T (E) =
⋃∞
n=1 λnT (U). Since T (E)

is II-category in F and V = λ−1
n λnT (U)

F
for n ∈ N, the set V has an interior point

x. We have V − x = T (U)− x
F
⊂ T (U)− T (U)

F
= V . Thus 0 is an interior point

of V . It follows that
⋃∞
n=1 λnV = F . Hence, by [7], Theorem 3.5.10 and its proof,

we infer that T (U) is open, so T is open. 2

Let E and F be locally convex spaces. If E is a linear subspace of F and the

inclusion map i : E → F is continuous, we write E ↪→ F.
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Theorem 7. (Grothendieck’s Factorization Theorem; compare with [4], Theorem

24.33) Let Fn, n ≥ 0 be Fréchet spaces and let E be a lcs. Assume that F0 ⊂
⋃∞
n=1 Fn

and Fn ↪→ E for n ≥ 0. Then F0 ↪→ Fm for some m ∈ N

Proof. Let n ∈ N and Hn = {(x, y) ∈ F0 × Fn : x = y}. It is easy to see

that Hn is a closed subspace of the Fréchet space F0×Fn; so Hn is a Fréchet space.

The map Pn : Hn → F0, Pn(x, y) = x is continuous. Since F0 ⊂
⋃∞
n=1 Fn, we get

F0 =
⋃∞
n=1 Pn(Hn). By the Baire category theorem, there is an m ∈ N such that

Pm(Hm) is of II-category in F0. By Proposition 6, Pm is open. Thus F0 = Pm(Hm),

so F0 ⊂ Fm. The inclusion map i : F0 → Fm has a closed graph. By the closed

graph theorem ([3], Corollary 2.2), the map i is continuous. 2

We say that a pair (E,F ) of Fréchet spaces is tameable, if there exist bases of

continuous seminorms on E and F, with respect to which the pair (E,F ) is tame.

We shall need the following simple result.

Proposition 8. Let E and F be Fréchet spaces with bases of continuous seminorms

(| · |k) and (‖ · ‖k), respectively. Then the following conditions are equivalent.

(1) The pair (E,F ) is tameable.

(2) There exists a function S : N→ N such that

∀T ∈ L(E,F ) ∃d ∈ N ∀k ≥ d : sup
x
‖Tx‖k/|x|S(k) <∞.

(3) There exists a function S : N→ N such that

∀T ∈ L(E,F ) ∃c ∈ N ∀k ∈ N : sup
x
‖Tx‖k/|x|cS(k) <∞.

Proof. (1)⇒ (2). Let (| · |′k) and (‖ · ‖′k) be bases of continuous seminorms on E

and F , respectively, with respect to which the pair (E,F ) is tame. Then for every

T ∈ L(E,F ) there is a c = c(T ) ∈ N such that

CT,k := sup
x∈E
‖Tx‖′k/|x|′ck <∞, k ∈ N.

For some increasing functions C,D, ϕ, ψ : N→ N we have

|x|′k ≤ D(k)|x|ψ(k) and ‖y‖k ≤ C(k)‖y‖′ϕ(k) for all x ∈ E, y ∈ F and k ∈ N.

Put S(k) = ψ(kϕ(k)), k ∈ N. For T ∈ L(E,F ), x ∈ E and k ≥ c = c(T ) we have

‖Tx‖k ≤ C(k)‖Tx‖′ϕ(k) ≤ CT,ϕ(k)C(k)|x|′cϕ(k) ≤ WT,k|x|ψ(cϕ(k)) ≤ WT,k|x|S(k),

10



where WT,k := D(cϕ(k))CT,ϕ(k)C(k).

(2) ⇒ (3). Let T ∈ L(E,F ). Clearly there is c ∈ N with supx ‖Tx‖k/|x|c < ∞
for 1 ≤ k ≤ d. Then supx ‖Tx‖k/|x|cS(k) <∞ for all k ∈ N.

(3)⇒ (1). Without loss of generality we can assume that the function S : N→ N
is increasing and S(k) ≥ 2k for k ∈ N. Put | · |′k = | · |Sk(k) and ‖ · ‖′k = ‖ · ‖Sk(k) for

all k ∈ N. Clearly (| · |′k) and (‖ · ‖′k) are bases of continuous seminorms on E and F,

respectively, with respect to which the pair (E,F ) is tame. Indeed, let T ∈ L(E,F )

and c ∈ N with supx ‖Tx‖k/|x|cS(k) <∞ for all k ∈ N. Let k ∈ N. Then

sup
x

‖Tx‖′k
|x|′(c+1)k

= sup
x

‖Tx‖Sk(k)

|x|Sck+k(ck+k)

≤ sup
x

‖Tx‖Sk(k)

|x|cSk+1(k)

<∞,

since Sck+k(ck + k) ≥ Sck−1(Sk+1(k)) ≥ 2ck−1Sk+1(k) ≥ cSk+1(k).

Thus (E,F ) is tameable. 2

Now we shall prove that the pair (A∞(a), Ap(b)) is tame if and only if the set

Mb,a is bounded.

Remark. Nyberg proved that for a, b ∈ Γ the set Mb,a is bounded if and only if

there exist strictly increasing sequences (mi), (ni) ⊂ N such that supi(bmi+1
/ani+1) <

∞ and limi(bmi+1/ani
) =∞ ([5], Lemma 5.1).

Theorem 9. Let p ∈ {1,∞}. Let a, b ∈ Γ. Then the following conditions are equiv-

alent.

(1) The pair (A∞(a), Ap(b)) is tame.

(2) The pair (A∞(a), Ap(b)) is tameable.

(3) The set Mb,a of all finite limit points of the double sequence (bi/aj)i,j∈N is

bounded.

Proof. Denote by (| · |k) and (‖ · ‖k) the canonical bases of continuous norms

on A∞(a) and Ap(b), respectively. Put H = L(A∞(a), Ap(b)). For T ∈ H and

(k, n) ∈ N × N we put ‖T‖k,n = supx ‖Tx‖k/|x|n. For k ∈ N we set rk = −1/k if

p = 1 and rk = k if p =∞.
The implication (1)⇒ (2) is obvious.

(2) ⇒ (3). Denote by B the family of all bounded subsets of A∞(a). For any

(n,B) ∈ N×B the functional qn,B : H → [0,∞), T → supx∈B ‖Tx‖n, is a seminorm

on H. Denote by τ the locally convex topology on H generated by these seminorms.

Then H = (H, τ) is a locally convex space. Let s : N→ N. Denote by Hs the family

11



of all T ∈ H such that ‖T‖k,s(k) <∞ for any k ∈ N. Clearly Hs is a linear subspace

of H and functionals ‖ · ‖k,s(k) |Hs , k ∈ N are norms on Hs.

It is not hard to check that Hs with the metrizable locally convex topology τs

generated by these norms is complete. Thus Hs = (Hs, τs) is a Fréchet space. It is

easy to see that Hs ↪→ H.

By Proposition 8 there is a function S : N→ N such that for every T ∈ H there

exists a positive integer c such that ‖T‖k,cS(k) < ∞, k ∈ N. Let c ∈ N. Denote by

Fc the Fréchet space Hsc , where sc : N→ N, k → cS(k). Then
⋃∞
c=1 Fc = H.

Let g be a strictly increasing continuous mapping of [0,∞) onto itself with g(k) ≥
S(k + 2), k ∈ N. Put G(x) =

∫ x
0
g(t)dt and f(x) = xG(x) for x > 0. Let u(x) =

x2f ′(x) for x > 0. Then f ′, u and their inverse functions h = (f ′)−1, w = u−1 are

strictly increasing mappings of (0,∞) onto itself. Clearly S(k) ≤ g(k−2) ≤ G(k−1)

for k ≥ 3.

Denote by F0 the Fréchet space Hs0 , where s0 : N → N with f(k) < s0(k) ≤
f(k) + 1, k ∈ N. By the Grothendieck’s factorization theorem there is an m ∈ N
such that F0 ↪→ Fm. Then we have

(∗)∀k ∈ N ∃nk ∈ N ∃Ck > 1∀T ∈ F0 : ‖T‖k,sm(k) ≤ Ck max
1≤n≤nk

‖T‖n,s0(n).

Let Ti,j : A∞(a)→ Ap(b), x→ xiej for i, j ∈ N. Clearly Ti,j ∈ H and

‖Ti,j‖k,n = sup
x
|xi|‖ej‖k/|x|n = exp(rkbj − nai)

for all i, j, n, k ∈ N. Using (∗) we get

∀k ∈ N∃nk ∈ N∃Ck > 0∀i, j ∈ N : exp(rkbj−sm(k)ai) ≤ Ck max
1≤n≤nk

exp(rnbj−s0(n)ai).

Consider two cases.

Case 1: p =∞. Then we have ∀k ∈ N∃nk ∈ N∃Dk > 0∀i, j ∈ N :

k(bj/ai)−mS(k) ≤ Dk/ai + max
1≤n≤nk

[n(bj/ai)− f(n)],

so

∀k ∈ N∀A ∈Mb,a : kA−mS(k) ≤ sup
n

[An− f(n)].

It is easy to see that supt>0(At− f(t)) = Ah(A)− f(h(A)) for A > 0.

Suppose that there exists A ∈ Mb,a such that h(A) > m + 1. Then for k ∈ N
with h(A) < k ≤ h(A) + 1 we have

kA−mS(k) ≤ Ah(A)− f(h(A)) ≤ Ak − f(k − 1),
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so (k − 1)G(k − 1) = f(k − 1) ≤ mS(k) ≤ mG(k − 1). Thus h(A) < k ≤ m + 1; a

contradiction.

It follows that A ≤ h−1(m+ 1) for every A ∈Mb,a, so Mb,a is bounded.

Case 2: p = 1. Then we have ∀k ∈ N∃nk ∈ N∃Dk > 0∀i, j ∈ N :

−1

k

bj
ai
−mS(k) ≤ Dk

ai
+ max

1≤n≤nk

(
−1

n

bj
ai
− f(n)

)
,

so

∀k ∈ N∀A ∈Mb,a : −A
k
−mS(k) ≤ sup

n

(
−A
n
− f(n)

)
.

It is easy to see that supt>0(−A/t− f(t)) = −A/w(A)− f(w(A)) for A > 0.

Suppose that there exists A ∈ Mb,a with w(A) > m + 1. Then for k ∈ N with

w(A) < k ≤ w(A) + 1 we have

−A/k −mS(k) ≤ −A/w(A)− f(w(A)) ≤ −A/k − f(k − 1),

so (k − 1)G(k − 1) = f(k − 1) ≤ mS(k) ≤ mG(k − 1). Thus w(A) < k ≤ m + 1; a

contradiction.

It follows that A ≤ w−1(m+ 1) for every A ∈Mb,a, so Mb,a is bounded.

(3) ⇒ (1). Let B > supMb,a. Let T ∈ H. Then there exists ϕ : N → N such

that Ck := ‖T‖k,ϕ(k) < ∞, k ∈ N. Let (tn,j) ⊂ K with Ten =
∑∞

j=1 tn,jej, n ∈ N.

For all n, k ∈ N there exists v(n, k) ∈ N with

‖Ten‖k = |tn,v(n,k)| exp(rkbv(n,k)).

Then for all l, n, k ∈ N we have

‖Ten‖k
‖Ten‖l

≥
|tn,v(n,l)| exp(rkbv(n,l))

|tn,v(n,l)| exp(rlbv(n,l))
= exp[(rk − rl)bv(n,l)].

Hence for all c, l, n, k ∈ N with [(rk − rl)bv(n,l) + (cl − ϕ(k))an] ≥ 0 we have

‖Ten‖k
‖Ten‖l

|en|cl
|en|ϕ(k)

≥ 1, so (∗) ‖Ten‖l
|en|cl

≤ ‖Ten‖k
|en|ϕ(k)

≤ Ck.

Let c be an integer greater than B + ϕ(1).

Let l ∈ N. Any positive integer n satisfies one of the following conditions.

(∗1) bv(n,l)/an ≤ B. Then

(rl − r1)bv(n,l)/an ≤ (rl − r1)B ≤ (cl − ϕ(1)).

Hence (r1 − rl)bv(n,l) + (cl − ϕ(1))an ≥ 0. Using (∗) we get ‖Ten‖l ≤ C1|en|cl.
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(∗2) bv(n,l)/an ≥ ϕ(2l)2l. Then

(r2l − rl)bv(n,l) + (cl − ϕ(2l))an ≥ (ϕ(2l) + cl − ϕ(2l))an > 0.

Using (∗) we obtain ‖Ten‖l ≤ C2l|en|cl.
(∗3) B < bv(n,l)/an < ϕ(2l)2l. By the definition of the set Mb,a the set of all

positive integers n satisfying (∗3) is finite.

It follows that Dl := supn ‖Ten‖l/|en|cl < ∞ for every l ∈ N. Hence ‖Tx‖l ≤
Dl|x|cl for every x ∈ A∞(a), so T is tame. Thus the pair (A∞(a), Ap(b)) is tame. 2

Corollary 10. The space A∞(a) is tame if and only if the set Ma,a is bounded.

In [14] we have shown that the range of any continuous linear operator from

A∞(a) to A∞(b) has a Schauder basis, if the set Mb,a is bounded ([14], Theorem 10).

It is not known whether the assumption on Mb,a is necessary. We shall prove the

following.

Theorem 11. Let a, b ∈ Γ. Then the range of every tame operator S from A∞(a)

to A∞(b) has a Schauder basis.

Proof. By (| · |k) we denote the canonical base in P(A∞(c)) for every c ∈ Γ. It

is easy to see that there exist two strictly increasing sequences (sn), (tn) ⊂ N and

d = (dn) ∈ Γ with supn(dn+1 − dn) < ∞ such that dsn = an and dtn = bn for all

n ∈ N. The operator R : A∞(d)→ A∞(a), (xn)→ (xsn), is well defined, linear and

|Rx|k ≤ |x|k for all x ∈ A∞(d), k ∈ N. Moreover R(A∞(d)) = A∞(a).

For y = (yn) ∈ A∞(b) we put zy = (zy,n), where zy,n = yk if n = tk for some

k ∈ N, and zy,n = 0 otherwise. Then the operator Q : A∞(b) → A∞(d), Qy = zy

is well defined, linear and |Qy|k = |y|k for all y ∈ A∞(b), k ∈ N. It is easy to see

that the linear operator T : A∞(d) → A∞(d), T = QSR, is tame and the range of

T is isomorphic to the range of S, so it is enough to show that the range of T has a

Schauder basis. Put E = A∞(d). By tameness of T we have

∃c ∈ N∀k ∈ N∃Ck ∈ N∀x ∈ E : |Tx|k ≤ Ck|x|ck;

clearly we can assume that the sequence (Ck) is strictly increasing.

Let (tn,j) ⊂ K with Ten =
∑∞

j=1 tn,jej, n ∈ N. Then Tx =
∑∞

j=1(
∑∞

n=1 tn,jxn)ej

for every x = (xn) ∈ E. Put αn = exp dn, n ∈ N. Then D := supn(αn+1/αn) < ∞.
For all k, n ∈ N we have

(∗1) max
j
|tn,j|αkj = |Ten|k ≤ Ck|en|ck = Ckα

ck
n .
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Put N0 = (N ∪ {0}), C0 = 1 and Mk =
∏k

i=0Ci for k ≥ 0.

The function q : N → N0, q(t) = max{k ∈ N0 : Ck ≤ αt}, is non-decreasing and

limt q(t) =∞.

Let f : N → (0,∞), f(t) = α
q(t)
t /Mq(t). Then f(t) = maxk≥0 α

k
t /Mk for t ∈ N,

since αk−1
t /Mk−1 ≤ αkt /Mk if and only if k ≤ q(t) for all k, t ∈ N. Thus f is

non-decreasing, f(1) ≥ 1 and limt f(t) =∞.
Let (nk) ⊂ N be a strictly increasing sequence with q(nk) > k for every k ∈ N.

For n ∈ N we have

Mq(n+1) ≤ C
q(n+1)−q(n)
q(n+1) Mq(n) ≤ α

q(n+1)−q(n)
n+1 Mq(n).

Let k ∈ N. For n ≥ nk we get

(∗2)
αkn+1

f(n+ 1)
=

Mq(n+1)

α
q(n+1)−k
n+1

≤
Mq(n)

α
q(n)−k
n+1

≤
Mq(n)

α
q(n)−k
n

=
αkn
f(n)

.

The function r : N → N0, r(t) = max{k ∈ N0 : Ck ≤ α2c
t } is non-decreasing and

limt r(t) =∞.

Let g : N→ (0,∞), g(t) = α
2cr(t)
t /Mr(t). Then g(t) = maxk≥0 α

2ck
t /Mk for t ∈ N,

since α
2c(k−1)
t /Mk−1 ≤ α2ck

t /Mk if and only if k ≤ r(t) for all t, k ∈ N. Thus g is

non-decreasing and g(t) ≥ f(t) for t ∈ N.

For n ∈ N we have

Mr(n+1) ≤ C
r(n+1)−r(n)
r(n+1) Mr(n) ≤ α

2c(r(n+1)−r(n))
n+1 Mr(n).

Let k ∈ N. For n ≥ nk we get r(n) ≥ q(n) > k and

(∗3)
α2ck
n+1

g(n+ 1)
=

Mr(n+1)

α
2c(r(n+1)−k)
n+1

≤
Mr(n)

α
2c(r(n)−k)
n+1

≤
Mr(n)

α
2c(r(n)−k)
n

=
α2ck
n

g(n)
.

Put ‖x‖1 = supj f(j)|xj| and ‖x‖2 = supj g(j)|xj| for x = (xj) ∈ E. Clearly, ‖x‖1 ≤
‖x‖2 for x ∈ E. Moreover, |x|k ≤ Mk‖x‖1 for x ∈ E, k ∈ N, since αkn ≤ Mkf(n) for

k, n ∈ N.

We shall prove that there exists C > 0 such that ‖Tx‖1 ≤ C‖x‖2 for every

x ∈ E. Let x ∈ E with ‖x‖2 < ∞. Then ‖Tx‖1 = supj f(j)|
∑∞

n=1 tn,jxn|. Let

j ≥ n1. Then q(j) ≥ 2, so using (∗1) we get

f(j)|
∞∑
n=1

tn,jxn| ≤ max
n

α
q(j)
j |tn,j||xn|
Mq(j)

≤ max
n

Cq(j)α
cq(j)
n |xn|

Mq(j)

=
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max
n

α
cq(j)
n |xn|
Mq(j)−1

≤ max
n

α
2c(q(j)−1)
n

Mq(j)−1

|xn| ≤ max
n

g(n)|xn| = ‖x‖2.

Put P : E → E, (x1, x2, ...) → (x1, x2, ..., xn1 , 0, 0, ...). Since dimP (E) < ∞ there

exists C ′1 > 1 such that ‖x‖1 ≤ C ′1|x|1 for every x ∈ P (E). Hence for C = C ′1C1Mc

we have

max
1≤j≤n1

f(j)|
∞∑
n=1

tn,jxn| = ‖PTx‖1 ≤ C ′1|PTx|1 ≤ C ′1|Tx|1 ≤

C ′1C1|x|c ≤ C‖x‖1 ≤ C‖x‖2.

Thus ‖Tx‖1 = supj f(j)|
∑∞

n=1 tn,jxn| ≤ C‖x‖2 for every x ∈ E.
The set B = {x ∈ E : limn g(n)|xn| = 0 and ‖x‖2 ≤ 1} is an absolutely convex

compactoid in E. Indeed, let ϕ ∈ K with |ϕ| > 1. Let (γj) ⊂ K with 1 ≤ |γj|g(j) <

|ϕ| for j ∈ N; clearly (γj) ∈ c0. If x = (xj) ∈ B, then supj |xj/γj| ≤ 1; so

B ⊂ co{γjej : j ∈ N}. For j, k ∈ N we have

|γjej|k < |ϕ|
αkj
g(j)

≤ |ϕ|α−ckj sup
n

α2ck
n

g(n)
≤ |ϕ|Mk

αckj
,

so limj γjej = 0 in E. Thus B is compactoid in E.

Therefore V = T (B) is an absolutely convex compactoid in G = T (E).

Denote by F the completion of the normed space (G, | · |1). Clearly, V is an

absolutely convex compactoid in F . Let t ∈ (0, 1). By [8], Lemma 4.36 and Theorem

4.37, there exists a t-orthogonal sequence (gn) in F with (gn) ⊂ (ϕV )\{0} such that

V ⊂ coF{gn : n ∈ N} and limn |gn|1 = 0; without loss of generality we can assume

that the sequence (|gn|1) is non-increasing. Clearly (γjej) ⊂ ϕB, so B is linearly

dense in E. Hence V is linearly dense in G, so (gn) is linearly dense in F . Thus (gn)

is a t-orthogonal basis in F . Let (g∗n) ⊂ F ∗ be the sequence of coefficient functionals

associated with the Schauder basis (gn) in F .

Let yn = g∗n ◦ T, n ∈ N; then (yn) ⊂ E∗ and Tx =
∑∞

n=1 yn(x)gn in F for every

x ∈ E. The set V0 = ϕV
E

is an absolutely convex metrizable complete compactoid

in E, so τ |V0= τ1 |V0 , where τ is the topology of E and τ1 is the one generated by

| · |1 on E ([10], Theorem 3.2). It follows that limn gn = 0 in E. It is not hard to

check that

coF{gn : n ∈ N} =

{
∞∑
n=1

ψngn : (ψn) ⊂ BK

}
.

Thus |yn(x)| ≤ 1 for all x ∈ B, n ∈ N. Denote by H the linear span of B. We have

αkn ≤ Mkg(n) for all k, n ∈ N, so H = {x = (xn) ∈ KN : limn g(n)|xn| = 0}. It
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follows that (H, ‖ ·‖2) is a Banach space. Thus using the Banach-Steinhaus theorem

we get K = supn ‖yn‖∗2 <∞, where ‖yn‖∗2 = supx∈H |yn(x)|/‖x‖2.

We shall prove that the series
∑∞

n=1 yn(x)gn is convergent in E for every x ∈ E.

In this order it is enough to show that limn yn(x)gn = 0 in E for every x ∈ E. For

every n ∈ N there exists hn ∈ B such that gn = ϕThn. Hence

(∗4) ‖gn‖1 = |ϕ|‖Thn‖1 ≤ |ϕ|C‖hn‖2 ≤ C|ϕ| for n ∈ N.

The sequence (gn) is t-orthogonal in (E, | · |1), thus |Tx|1 ≥ tmaxn |yn(x)||gn|1 for

x ∈ E. Hence |yn(x)| ≤ (|Tx|1/t|gn|1) ≤ (C1|x|c/t|gn|1) for all x ∈ E, n ∈ N, so

|yn|∗c ≤ C1/t|gn|1 for n ∈ N.

Let k ∈ N. Put l = 2c(k + 1). Let n0 > nk with |gn0|1 ≤ αcnl
/g(nl). Since

(g(n)/αcn) ≥ (αcn/M1) for n ∈ N, we get limn(g(n)/αcn) =∞. Thus for every n ≥ n0

there exists wn ≥ nl such that

(∗5)
g(wn)

αcwn

≤ 1

|gn|1
<
g(wn + 1)

αcwn+1

;

clearly limnwn =∞. Let n ≥ n0, w = wn + 1 and s = min{i ∈ N : αi ≥ α2c
w }. Then

r(w) ≥ r(nk) ≥ q(nk) > k and s > nk. We have αs−1 < α2c
w ≤ αs and

g(w)

αcw

αks
f(s)

≤ α
2cr(w)
w

αcwMr(w)

αksMr(w)

α
r(w)
s

=
α

2cr(w)−c
w

α
r(w)−k
s

≤ α
2cr(w)−c
w

α
2c(r(w)−k)
w

= α(2k−1)c
w .

Hence we get

max

{
αks−1,

g(w)

αcw

αks
f(s)

}
≤ α2ck

w ≤ D2ckα2ck
wn
.

Using (∗2) we have for x ∈ E

|x|k = max

{
max
1≤j<s

αkj |xj|,max
j≥s

αkj |xj|
}
≤

max

{
αks−1|x|1,

αks
f(s)

sup
j≥s

f(j)|xj|
}
≤ max

{
αks−1|x|1,

αks‖x‖1
f(s)

}
.

Hence, using (∗4) and (∗5), we get for x = gn

|gn|k ≤ max

{
αks−1|gn|1,

αks‖gn‖1
f(s)

}
≤ |gn|1 max

{
αks−1,

αks
f(s)

C|ϕ|
|gn|1

}
≤

C|ϕ||gn|1 max

{
αks−1,

g(w)

αcw

αks
f(s)

}
≤ C|ϕ||gn|1D2ckα2ck

wn
.
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We have |z(ej)|/g(j) = |z(ej)|/‖ej‖2 ≤ ‖z‖∗2 for all j ∈ N.
Using (∗3) we get for z = (zj) ∈ E∗

|z|∗l = sup
j

|zj|
αlj
≤ max

{
max
j≤nl

g(nl)
|zj|
g(j)

, max
nl<j≤wn

g(wn)

αlwn

|zj|
g(j)

, sup
j>wn

1

αl−cwn

|zj|
αcj

}

≤ max

{
g(nl)‖z‖∗2,

g(wn)

αlwn

‖z‖∗2,
|z|∗c
αl−cwn

}
≤ max

{
αlnl

αlwn

g(wn)‖z‖∗2,
|z|∗c
αl−cwn

}
.

Hence, using (∗4), we get for z = yn and for some constant Kl

|yn|∗l ≤ max

{
αlnl

g(wn)

αlwn

‖yn‖∗2,
|yn|∗c
αl−cwn

}
≤ max

{
αlnl

K

|gn|1αl−cwn

,
1

αl−cwn

C1

t|gn|1

}
≤ Kl

|gn|1αl−cwn

.

Thus |gn|k|yn|∗l ≤ K ′α2ck+c−l
wn

= K ′/αcwn
for K ′ = C|ϕ|D2ckKl and n > n0.

We have shown that for every k ∈ N there is an l ∈ N such that limn |gn|k|yn|∗l =

0. For every x ∈ E we have |yn(x)gn|k ≤ |gn|k|yn|∗l |x|l for n > n0, so limn yn(x)gn = 0

in E for every x ∈ E. Thus the series
∑∞

n=1 yn(x)gn is convergent in E for every

x ∈ E.

Since
∑∞

n=1 yn(x)gn = Tx in (E, | · |1), we infer that
∑∞

n=1 yn(x)gn = Tx in E

for every x ∈ E. Thus
∑∞

n=1 g
∗
n(y)gn = y in G = T (E) for every y ∈ G. Clearly,

g′n := g∗n|G ∈ G∗ and g′n(gm) = δn,m for n,m ∈ N.

It follows that (gn) is a Schauder basis in G. 2
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[13] Śliwa, W. – On relations between non-archimedean power series spaces,

Indag. Mathem., N.S., 17 (2006), 627-639.
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