On tame operators between

non-archimedean power series spaces

WIESLAW SLIWA AND AGNIESZKA ZIEMKOWSKA

Abstract. Let p € {1,00}. We show that any continuous linear operator
T from A;(a) to A,(b) is tame ie. there exists a positive integer ¢ such that
sup, [|Tx||x/|x|ex < oo for every k € N. Next we prove that a similar result holds
for operators from Ay (a) to A,(b) if and only if the set M, , of all finite limit points
of the double sequence (bj/a;); jen is bounded. Finally we show that the range of

every tame operator from A (a) to A (b) has a Schauder basis.

1 Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field
K which is complete under the metric induced by the valuation | - | : K — [0, 00).
For fundamentals of locally convex Hausdorff spaces (lcs) and normed spaces we
refer to [6] - [9] and [12].

Let I" be the family of all non-decreasing unbounded sequences of positive real
numbers. Let a = (a,),b = (b,) € I'. The power series spaces of finite type A;(a)
and infinite type A, (b) are the most known and important examples of nuclear
Fréchet spaces with a Schauder basis. They were studied in [1] and [13] - [15]. Let
P, q € {1,00}.

The problem when A,(a) has a subspace (or quotient) isomorphic to A,(b) was
studied in [13]. In particular, the spaces A,(a) and A,(b) are isomorphic if and only if
p = ¢ and the sequences a, b are equivalent i.e. 0 < inf,(a,/b,) < sup,,(a,/b,) < 0o
([13], Corollary 6).
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N. De Grande-De Kimpe has proved ([1], Proposition 4.3) that any continuous
linear operator from A;(a) to A (b) is compactoid (the assumption that the field K is
spherically complete can be easy omitted). Hence A;(a) has no quotient isomorphic
to As(b), and A (b) has no subspace isomorphic to A;(a).

In [14], we have proved that the range of every continuous linear operator from
Ai(a) to A,(b) has a Schauder basis ([14], Theorem 10); a similar result holds for
continuous linear operators from A, (a) to A,(b), if the set M,, of all finite limit
points of the double sequence (b;/a;); jen is bounded ([14], Theorem 10). In partic-
ular, any complemented subspace F' of A;(a) has a Schauder basis ([14], Corollary
13); in fact, F' is isomorphic to A;(c) for some subsequence ¢ of a ([14], Proposition
14). Similar results hold for complemented subspaces of Ay (a), if the set M, , is
bounded ([14], Corollary 13 and Proposition 14).

It is not known whether the range of every continuous linear operator from A, (a)
to Ao (b) has a Schauder basis.

Let E and F be Fréchet spaces with fixed bases of continuous seminorms (| - [)
and (|| - ||x), respectively. A continuous linear operator 7' : E — F' is tame (or

linearly tame) if there exists a positive integer ¢ such that

sup | Tz||x/|z|x < 0o for all k € N;

clearly, any bounded linear operator from E to F' is tame. The pair (E, F') is tame
if every continuous linear operator from E to F'is tame. The space F is tame if the
pair (F, E) is tame.

In this paper we study tame operators from A,(a) to A,(b) (and from A,(a,r)
to A,(b, s)). First we show that the pair (A;(a), A,(b)) is tame for all a,b € I' and
p € {1,00} (Theorem 1); in particular, the space A;(a) is tame for every a € T'.

On the other hand, if @ € I" with M,, # {0,1} and r = (r;) C R is a strictly
increasing sequence with limy ry = 0 and limg (7o, /rx) = 1 then the space A;(a,r) is
not tame (Theorem 4).

Next, using the Grothendieck’s factorization theorem (Theorem 7), we prove
that the pair (A (a), A,(b)) is tame if and only if the set M, , is bounded (Theorem
9).

Finally we show that the range of every tame operator from A, (a) to Ay (b) has
a Schauder basis (Theorem 11).

In our paper we use and develop some ideas of [2] and [5].



2 Preliminaries

The linear span of a subset A of a linear space £ is denoted by [A].

By a seminorm on a linear space E we mean a function p : E — [0,00) such
that p(ax) = |a|p(z) for all « € K, z € E and p(x + y) < max{p(z),p(y)} for all
z,y € E. A seminorm p on E is a norm if kerp := {z € E : p(z) = 0} = {0}.

Let E, F be locally convex spaces. A map T : F — F is called an isomorphism
if it is linear, bijective and the maps T,7~! are continuous. If there exists an
isomorphism 7" : E — I, then we say that E is isomorphic to F. The family
of all continuous linear maps from FE to F we denote by L(E,F). An operator
T € L(E, F) is bounded if the range of some neighbourhood of zero in £ is bounded
in F. The range of T € L(E, F) is the subspace T'(F) of F.

The set of all continuous seminorms on a lcs F is denoted by P(FE). A non-
decreasing sequence (p,) of continuous seminorms on a metrizable lcs E is a base
in P(E) if for every p € P(E) there are C' > 0 and k € N such that p < Cp,. A
metrizable complete lcs is called a Fréchet space.

Let (z,,) be a sequence in a Fréchet space E. The series Y - x, is convergent
in F if and only if lim,, x,, = 0.

A normable Fréchet space is a Banach space.

Put Bx = {a € K : |a] < 1}. Let A be a subset of a lcs E. The set coA =
{3 a; :neN,aq,...,a € Bg,aq,...,a, € A} is the absolutely convex hull of
A; its closure in E is denoted by co”A. A subset A of a lcs F is absolutely convex
if coA = A.

A subset B of a les E is compactoid (or a compactoid) if for each neighbourhood
U of 0 in E there exists a finite subset A of E such that B C U + coA.

An operator T € L(E, F) is compactoid if for some neighbourhood U of zero in
E the set T'(U) is compactoid in F’; clearly, any compactoid operator is bounded.

For any seminorm p on a les E the map p: E/kerp — [0,00) x + ker p — p(z)
is a norm on E, = E/kerp.

A les F is nuclear if for every p € P(FE) there exists ¢ € P(E) with ¢ > p such
that the map

Vep: (Eq,q) — (B, D),z +kerq — x +kerp

is compactoid. Any nuclear Fréchet space E is a Fréchet-Montel space i.e. every

bounded subset of E' is compactoid.



Let U be an absolutely convex neighbourhood of zero in a lecs E. The Minkowski

functional of U
pu: E—]0,00),py(x) =inf{|a| : o € K and z € aU}

is a continuous seminorm on £.

A sequence (x,) in an lcs E is a Schauder basis in E if each x € E can be
written uniquely as z = Y | a,x, with (a,) C K, and the coefficient functionals
fo: E— K 2 — a,(n € N) are continuous.

An infinite matrix A = (a, ) of real numbers is a Kdthe matriz if 0 < a, <
ap k41 for all n, k € N, and sup,, a, r > 0 for n € N. Let A be a Kothe matrix.

The space K(A) = {z = (z,) € KN : lim,, |z,|a, x = 0 for every k € N} with the

canonical base (| - |¢) of seminorms, where
x|, = max |zp|an kg, k €N,

is a Fréchet space. The sequence (e;), where e; = (;,,), is an unconditional Schauder
basis in K (A). It is orthogonal with respect to the canonical base (]-|x) of seminorms

ie. forall k,n € Nand aq,...,qa, € K we have

|i2105i6z'|k = lrgiaélaiez-!k-

Any infinite-dimensional Fréchet space E with a Schauder basis is isomorphic to
K(A) for some Kéthe matrix (see [1], Proposition 2.4 and its proof).

By a Kothe space we mean a Fréchet space with a Schauder basis and with a
continuous norm. Any Ké&the space is isomorphic to K(A) for some Kothe matrix
with @, > 0 for all n,k € N (see [1], Proposition 2.4). Let E = K(A) be a Kothe
space. For any continuous linear functional f on E there exists a sequence (z;) C K
such that f(z) = > 7 xp2, for any x € E and sup,,(|z,|/anx) < 0o for some k € N
([1], Proposition 2.2). Then |f|; := sup,(|f(z)|/|z|x) = sup,(|zn|/ank) for k € N.

Let a = (a,) € I'. Then the following Kéthe spaces are nuclear (see [1]):

1. Al(a) = K(A) with A = (an’kL A = e_an/k;
2. Ay(a) = K(A) with A = (anp), anp = ek

Aq(a) and Ay (a) are the power series spaces (of finite type and infinite type, respec-

tively).



Let p € {1,00}. Denote by A, the family of all strictly increasing sequences
r = (rx) of real numbers such that limy r, = 0if p = 0 and limy, 7, = oo if p = co. Let
a € I'and r € A,. Clearly, the Kéthe space Ay(a,r) = K(A) with A = (ap ), ang =
ek ig isomorphic to A,(a).

Let (E,| -]|) be a normed space and let ¢t € (0,1]. A sequence (z,) C E is

t-orthogonal if for all m € N, aq, ..., a,, € K we have

m

E el > .
| .- ;x| > tlgl%}fn“%le'

1=

If (x,) C (E\ {0}) is t-orthogonal and linearly dense in E then it is ¢t-orthogonal
basis in E. Every t-orthogonal basis in £ is a Schauder basis ([7], [8]).

3 Results

First we shall prove that the pair (A;(a), A,(b)) is tame for all a,b € I and p = 1;
for p = oo it follows by [1], Proposition 4.3.

Theorem 1. Let a,b € I'. If r = (1), s = (sx) € Ay with inf.>1 lim sup, (rex/sx) =
0, then the pair (Ai(a,r), Ai(b,s)) is tame. If r € Ay and s € A, then the pair
(A1(a, 1), Ao (b, 8)) is tame. In particular, the pair (Ai(a), Ay(b)) is tame for any
p € {1,00}.

Proof. (1) Let r = (ry),s = (sx) € Ay with inf.>; limsup,(re/sk) = 0. Denote
by (]-|x) and (|| - ||x) the canonical bases in P(A;(a,r)) and P(A;(b, s)), respectively.
Let T € L(Ai(a,r), A1(b,s)). Then there exist increasing functions C,¢ : N — N
such that

VE € NVz € Ai(a) : [|[Tz||x < Ck)|x]pm)-

Let (t,;) C K with Te, =37, t, je;,n € N. For some function p: N x N — N we
have ||Te, ||k = |tnpmn,k)| €XP(Skbpn,k)) for n, k € N. Then for k,1,n € N we have

Tenlls o [tnpemml explsibpmnn)
ITenlle ™ [tnpmp] exp(kbpm.i))

= exp[(s; — k) Op(n)]-

Hence for all ¢,l,n,k € N with [(s; — s1)bpnk) + (Tek — Tw@))@n) > 0 we have

[ Tenlls lenle [ Tenlle _ [[Tenll

lenler  — |en‘<ﬁ(l)

> 1, so (%)

> < C(l).
[Ten |k en] o)



Now we shall prove that there exist A > 0, K > 1 and ¢ > ¢(K) such that

(o) V> K3l > bt — "% o 45

To(ly) = Tek Tek = Tip(1)

Sk — S1

Put A = 2sy/ryy. Clearly limg[(sp — s1)/(Ter — 741))] = A/2 for ¢ € N. By our
assumption, for some ¢y > 1 we have lim supy (rex/sk) < A~'. Since the sequences

(Ter/58)22y and [(sk —51)/(rex — rp1))]o2; are decreasing for every k > (1), we have

1
Tko > p(L)VE > koVe > o« -2 <

and
AK > kogVk > KVe > g —F 0 A

Tek — Tp(1)
Let ¢ > max{cy, ¢(K)}. Clearly limy[(s; — sz)/(roq) — Ter)] = s/Tex > A for k > K,
so we get

VE> K3, > k: —x "% <4
Tox) — Tek

Thus we have shown (xx).

Clearly | Tx|x < C(k)|z|ex for z € Aj(a,r) and 1 < k < K.
Let £ > K. Let n € N. Consider two cases.

Case 1: by < a,/A. Then

(Skz - Sl)bp(n,k) S (Tckz - T@(1)>Abp(n,k) S (Tck - Tgp(l)>an7

50 [(51 = 88)bp(nk) + (Tek — T(1))an] > 0. Using (x) we get || Te,|[r < C(1)]en]ek-
Case 2: by(nr) > an/A. Then

(slk - Sk)bp(n,k) Z (rgo(lk) - 74cl€)A’4b;7(n,lc) > (Tap(lk) - Tck:>a'na

50 [(81, = 8k )Dp(n,k) + (Tek — Toy))an] > 0. Using (x) we get [|Te,|[r < C(ly)|en]ck-
We have shown that || Te,||x < C(lx)|en|e for all n € N. It follows that || Tz || <
C(ly)|x|ex for every x € Aj(a,r) and k > K. Thus we have proved that T is tame.

(2) Let 7 € Ay and s € Aw. Then every continuous linear operator 7' from
Aq(a,r) to Ax(b, s) is bounded ([1], Proposition 4.3), so

dm € NVEk € NICy, > 0Vz € Aj(a) : |[Tz||k < Cklz|m,

where (| - [x) and (]| - ||x) are the canonical bases in P(A;(a,r)) and P(A(b,s)),
respectively. It follows that the pair (A;(a,r), A (b, s)) is tame. O



Corollary 2. The space Ai(a) is tame for every a € T.

In connection with Corollary 2 we shall prove that for some a € I',r € A; the

space Aj(a,r) is not tame. We need the following lemma.

Lemma 3. Let p € {1,00}. For every strictly increasing sequence (¢r) C N there
exists v = (ry) € A, with limy(ry, /T1) = 1.

Proof. First we shall prove that there exists a sequence (w;) C (0,00) with
Yo, w; = oo such that limy, Zj):kk w; = 0.

Let vy,...,vy, € (0,00). If we have vy, for some k € N we choose v; € (0,00)
for ¢ < i@ < 1py1 such that Zj):ki,t 41V = v This way we obtain a sequence
(v;) C (0,00) such that the sequence Vj, = Zfz’“k v;, k € N, is constant, since Vj 41 —
Vi = (Z;i’“lzﬂ v;) —vg = 0,k € N. It follows that ) :°, v; = co. Thus there exists
a strictly increasing sequence (n;) C N with ZZ&E v =>1forl €N
Let w; = v; for 1 < i < 4, and w; = v;/1 for ¢, < i < Yn,1,1 € N. The series
>, w; is disconvergent, since Zinffl +1w; > 1. The sequence Wy, = Zf’:’“k w;, k €N
is convergent to 0. Indeed, for [ € N and k > 1), we have [W;, < Zj}:’“k v; =V = V.

Put s, = Zle wi, T, = —exp(—sg) and Ry = expsy for k € N. Clearly r =

(r) € Ay and R = (Ry) € Ay For k € N we have
1< Tk/T’wk = ka/Rk = eXp(ka — Sk) < exp Wk,

so 1 = limy(Ry, /Ri) = limy (1 /ry, ) = limg(ry, /r5). O
Let E and F be Fréchet spaces with fixed bases of continuous seminorms (| - [)
and (|| - ||x), respectively. A continuous linear operator 7" : E — F' is polynomially

tame if there exist positive integers ¢ and n such that
sup ||Tz||g/|z|axn < oo for all k € N.

The pair (E, F) is polynomially tame if every continuous linear operator from F
to F' is polynomially tame. The space E is polynomially tame if the pair (F, E) is

polynomially tame.

Theorem 4. Let p € {1,00}. Let a € I' and r € A,. Assume that M,, # {0,1}
and limg(rog/ri) = 1. Then the space Ay(a,r) is not tame. If limy(rope /1) = 1,

then Ay(a,r) is not polynomially tame.



Proof. Since M, , # {0, 1}, there exist strictly increasing sequences (i,), (j,) C
N such that (1) A := inf,(a;,/a;,) > 0 and B := sup,(a;,/a;,) < 1, if p = 1; (2)
A = sup,(a;,/a;,) < oo and B := inf,(a;,/a;,) > 1, if p = co. For some (¢;) C N
we have (1) sup,(ry, /ri) < A, if p = 1; (2) infy(ry, /16) > A, if p = oco.
The operator .
T:A,(a,r)— Ay(a,r),Tx = invejv
v=1

is well defined, linear and continuous. Indeed, let = € A,(a,r). Then
i, [lles, I = @i, | exp(rray,) < |z, | exp(Argas,) < |z, [ exp(ry,ai,)

for all v, k € N. Thus lim, z;,e;, =0 in A,(a,r) and ||Tz|; < ||z|,, for all £ € N.

Now we shall prove that T is not tame. Suppose by contrary that 7' is tame.
Then there exist ¢ > 1 and (Cy) C N such that ||Te;|| < Clle;||ex for all k,i € N.
Hence exp(rqa;, — rya;j,) > O for all v, k € N.

By our assumptions we get limy(rqty /1) = 1 for any ¢ € N, so limg (7 /rx) = 1.

Case 1: p=1. Let 6 € (B,1). Then there exists kg € N such that (rq/r)
§ > B > (aj,/a;,) for all v,k € N with k > ko. Let k > ko. Thus rea,, — ria;,
[1— (B/d)]rea;, for all v € N.

Case 2: p = o0. Let § € (1, B). Then there exists ky € N such that r. /7
B/é < B < aj,/a;, for all v,k € N with & > k. Let k > ko. Thus rea;, — ria;,
(1 = d)rea;, for all v € N,

It follows that lim, exp(repa;, — rxaj,) = 0; a contradiction.

IN IV

IA A

Similarly we show that 7" is not polynomially tame if limy(rg2/ry) = 1. O

Neverless we have the following.

Remark. Let a € I' and » € A;. Then any diagonal continuous operator 7" from
Ai(a,r) to Ay(a,r) is tame. Indeed, for some (t;) C K we have Te; = t;e;,7 € N.
By the continuity of T" there exist strictly increasing sequences (Cy), (¢r) C N with

(%) [ti| exp[(ry — ry, )ai] < Cy for alli, k € N.

Let £ € N. Since limy(r; — ry,) = 0, there is an | = [, € N with ry — 75y <
1 — ry,. Hence, using (x) for [, instead k, we get |t;|exp[(ry — ris1)ai] < Cy, sO
ITeillr < Cylleillgr for all i € N. It follows that ||[Tz|x < Ci|z|x+1 for all
keN,z e A(a,r). O

We get also the following result.



Proposition 5. Leta € I'. Then there ezists a diagonal continuous operator T from
Ai(a) to Ai(a) such that for every r € Ay we have sup, [|Tx|x/||z|x = 0o,k € N
and sup, ||Tz||x/||z||k+1 < 00, k € N, where (|| - ||x)is the canonical base of norms on
Ai(a,r).

Proof. Put sy = —1/k for k € N. Put D, = exp[(sk+1 — Sk)aq| for k,i € N.
The sequence d; = max{k € N: k < D;;},7 € N, is increasing and lim; d; = co. It
follows that Cj := sup,(d;/D; ) < oo for k € N, since d; < D; 4, < D, if d; > k.
Clearly b; := infy, Cy D, > d; for i € N. Let o € K with |o| > 1. Let (¢;) C K with
1t;| <b; < |ti||a for i € N,

The operator T : Ay(a) — Ai(a), Tz = Y .2, tixie; is well defined, linear and
continuous. Indeed, let x € A;(a). Then |t;x;| exp(sia;) < Cy exp(sps1a;)|z;| for k €
N, so lim; t;z;¢; = 0 in Ay(a), Tz € Ai(a) and |Tz|x < Cklz|ps1, k € N, where (|- |x)
is the canonical base of norms on A;(a). Let r € A;. Clearly sup,(||Te;i||x/|e:illx) =
sup, |t;| = oo, k € N.

Let k € N. Then there exists [ = [(k) € N with s;41 — s; < rpy1 — 1. Hence

sup [t3] exp[(rs — ri4n)as] < sup ti] expl(s: — sier)ad] < C,
so || Te;||r < Ciyll€illks1 for i € N. Thus sup, [|Tz|r/||z|k+1 < Cigy- O

To study the tameness of the power series spaces of infinite type A, (a) we shall
need the Grothendieck’s factorization theorem. To show this theorem we need the

following.

Proposition 6. Let E and F be Fréchet spaces and let T € L(E, F). Assume that
the range of T is of Il-category in F'. Then T s open.

Proof. Let U be an absolutely convex and open subset of E. Put V. =T(U) .
Let (A,) € (K\ {0}) with lim|A,| = co. Then T(E) = |U,—, A\,T(U). Since T'(E)
is [I-category in F and V = /\;1)\nT—(U)F for n € N, the set V' has an interior point
2. We have V — 2 = T(U) —z  T(U) —T(U) = V. Thus 0 is an interior point
of V. Tt follows that | J.2, A,V = F. Hence, by [7], Theorem 3.5.10 and its proof,
we infer that T'(U) is open, so T is open. O

Let E and F be locally convex spaces. If F is a linear subspace of F' and the

inclusion map ¢ : £ — F' is continuous, we write F <— F.



Theorem 7. (Grothendieck’s Factorization Theorem; compare with [4], Theorem
24.33) Let F,,,n > 0 be Fréchet spaces and let E be a lcs. Assume that Fy C |J,~, Fy,
and F,, — E forn >0. Then Fy — F,, for some m € N

Proof. Let n € N and H, = {(z,y) € Fy x F,, : * = y}. It is easy to see
that H, is a closed subspace of the Fréchet space Fy x F},; so H, is a Fréchet space.
The map P, : H, — Fy, P,(x,y) = z is continuous. Since Fy C |J7_, F),, we get
Fy =U,_, P.(H,). By the Baire category theorem, there is an m € N such that
P,.(H,,) is of Il-category in Fy. By Proposition 6, P,, is open. Thus Fy = P,,(H,,),
so Iy C F,,. The inclusion map ¢ : Fy — F}, has a closed graph. By the closed
graph theorem ([3], Corollary 2.2), the map 4 is continuous. O

We say that a pair (E, F') of Fréchet spaces is tameable, if there exist bases of

continuous seminorms on F and F, with respect to which the pair (E, F') is tame.

We shall need the following simple result.

Proposition 8. Let E and F' be Fréchet spaces with bases of continuous seminorms
(|- |&) and (|| - ||x), respectively. Then the following conditions are equivalent.

(1) The pair (E, F) is tameable.

(2) There ezists a function S : N — N such that

VI'e L(E,F)3d € NVE > d :sup||Tz||r/|x]s@w < oo.
(3) There ezists a function S : N — N such that
VI'e L(E,F) 3c € NVk € N:sup || Tx||r/|x]csiw) < 00.

Proof. (1) = (2). Let (|-]}) and (]| - [|%,) be bases of continuous seminorms on £
and F, respectively, with respect to which the pair (E, F') is tame. Then for every
T € L(E,F) there is a ¢ = ¢(T') € N such that

Cry = sgg | T,/ |x|., < oo,k € N.
For some increasing functions C, D, ¢, : N — N we have
2]}, < D(k)|2|y@m) and [[y[lx < C(k)[yll,) for allz € B,y € Fandk € N.
Put S(k) = ¢(ke(k)),k € N.For T € L(E,F),z € E and k > ¢ = ¢(T) we have
ITx|lx < CR)IT| 0 < CrpmC(R)|@lpm) < Wrklzlyeowy) < Wrklzlse,
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where Wr, := D(cp(k))Cr o C (k).

(2) = (3). Let T' € L(E, F). Clearly there is ¢ € N with sup, [|Tx||x/|z]. < o
for 1 <k < d. Then sup, ||Tx|/x/|x|csx) < oo for all k € N.

(3) = (1). Without loss of generality we can assume that the function S : N — N
is increasing and S(k) > 2k for k € N. Put |- [, = | - [sry and || - [, = || - [|s» ) for
all k € N. Clearly (] -5,) and (]| - [|,) are bases of continuous seminorms on £ and F),
respectively, with respect to which the pair (E, F') is tame. Indeed, let T' € L(E, F')
and ¢ € N with sup, ||Tz||x/|z|csk) < oo for all k € N. Let & € N. Then

Tzl Tx Tx
wp W7ol _ Tl Tl

x |l'|/(c+1)k x ‘x|50k+k(ck+k) . |x’cSk+1(k)

since Sck+k(ck + ]{3) > Sck—1(5k+1(k>) > 2ck—1Sk+1(k> > CSk'H(k)_
Thus (E, F) is tameable. O

Now we shall prove that the pair (A (a), A,(b)) is tame if and only if the set
M, is bounded.

Remark. Nyberg proved that for a,b € I" the set M, , is bounded if and only if
there exist strictly increasing sequences (m;), (n;) C N such that sup;(bm,,, /@n,+1) <

oo and lim;(by,,1+1/an,) = oo ([5], Lemma 5.1).

Theorem 9. Let p € {1,00}. Let a,b € I'. Then the following conditions are equiv-
alent.

(1) The pair (As(a), Ay(b)) is tame.

(2) The pair (As(a), A,(b)) is tameable.

(3) The set My, of all finite limit points of the double sequence (b;/a;);jen s
bounded.

Proof. Denote by (| - |x) and (|| - ||x) the canonical bases of continuous norms
on Ax(a) and A,(b), respectively. Put H = L(Ax(a),A,(b)). For T € H and
(k,n) € Nx N we put ||T||g,n = sup, ||T%|x/|x|,. For k € N we set r, = —1/k if
p=1andr, =k if p=o0.

The implication (1) = (2) is obvious.

(2) = (3). Denote by B the family of all bounded subsets of Ay (a). For any
(n, B) € N x B the functional ¢, g : H — [0,00),T — sup,cp |T%||», is a seminorm
on H. Denote by 7 the locally convex topology on H generated by these seminorms.

Then H = (H, 1) is a locally convex space. Let s : N — N. Denote by H, the family

11



of all T' € H such that ||T|sx) < oo for any k € N. Clearly H, is a linear subspace

of H and functionals || - ||zsx) |m,, k¥ € N are norms on H,.

It is not hard to check that H, with the metrizable locally convex topology 7
generated by these norms is complete. Thus H; = (H,, 75) is a Fréchet space. It is
easy to see that Hy — H.

By Proposition 8 there is a function S : N — N such that for every T' € H there
exists a positive integer ¢ such that ||7'|xcsx) < 00,k € N. Let ¢ € N. Denote by
F. the Fréchet space H,, , where s, : N — N,k — ¢S(k). Then | J2, F. = H.

Let g be a strictly increasing continuous mapping of [0, c0) onto itself with g(k) >

S(k+2),k € N. Put G(z) = [ g(t)dt and f(z) = 2G(z) for & > 0. Let u(z) =
22 f'(x) for x > 0. Then f’,u and their inverse functions h = (f')~',w = u™! are
strictly increasing mappings of (0, 0o) onto itself. Clearly S(k) < g(k—2) < G(k—1)
for k > 3.

Denote by Fy the Fréchet space Hy,, where so : N — N with f(k) < so(k) <
f(k) + 1,k € N. By the Grothendieck’s factorization theorem there is an m € N

such that Fy <— F;,. Then we have
(+) Vk € N3nx € N3Cp > 19T € Fy : | Tl < Cr max [T lnsoio-
Let T;; : Aoo(a) — Ap(b),x — z;e; for i,j € N. Clearly T} ; € H and
155l = sup |illlejlle/|z]n = exp(rib; — na;)
for all 7, j,n, k € N. Using (%) we get
Vk € N3ny, € N3C, > 0Vi, j € N : exp(rib;j—sm(k)a;) < Cp max exp(r,b;—so(n)a;).

1<n<ng

Counsider two cases.
Case 1: p = 0o. Then we have Vk € Ndn, € NdD;, > 0Vi,j € N :

k(bj/ai) —mS(k) < Dy/a; + 1%1;1%}5%[”(%/&") — f(n)],

SO
Vk € NVA € My, : kA —mS(k) < sup[An — f(n)].

It is easy to see that sup,. (At — f(t)) = Ah(A) — f(h(A)) for A > 0.
Suppose that there exists A € M, such that h(A) > m + 1. Then for k € N
with h(A) < k < h(A) + 1 we have

kA —mS(k) < AR(A) — f(h(A)) < Ak — f(k — 1),

12



so(k—1)G(k—-1)= f(k—1) <mS(k) <mG(k—1). Thus h(A) <k <m+1;a
contradiction.
It follows that A < h=*(m + 1) for every A € M, ,, so M, is bounded.
Case 2: p=1. Then we have Vk € Ndn, € NdD, > 0Vi,j € N :
—1b; D, —1b;
_ - _ - R
k a; mS(k) < a; +1£a§}§zk < n a; f(n)),

SO

A
Vk € NVA € M, : -y~ mS (k) < sup (—% — f(n)) :

It is easy to see that sup,.o(—A/t — f(t)) = —A/w(A) — f(w(A)) for A > 0.
Suppose that there exists A € M;, with w(A) > m + 1. Then for k¥ € N with
w(A) <k <w(A)+ 1 we have

—Afk —mS(k) < —Afw(A) = Fw(A)) < —Afk— f(k —1),

so(k—1)Gk—-1)=f(k—1) <mS(k) <mG(k—1). Thusw(A) <k<m+1;a
contradiction.

It follows that A < w™!(m + 1) for every A € My, so M, , is bounded.

(3) = (1). Let B > sup Mp,. Let T € H. Then there exists ¢ : N — N such
that Ci == ||T||k,ex) < 00,k € N. Let (t,;) C K with Te, =~

j=1 tn,jej,n € N.
For all n, k € N there exists v(n, k) € N with

|Tenlls = [tnum.m| exp(rebum))-

Then for all [,n, k € N we have

||T6n||k: > |tn,v(n,l)’exp(rkbv(n,l))

- = e&Xp[\l'y — T bv nl)|-
||Te7’b||l |tn7v(n,l)| eXp(lev(n,l)) [( k l) ( l)]
Hence for all ¢,l,n, k € N with [(ry — 71)bym) + (¢l — ©(k))a,] > 0 we have

[Tenll:

|€n|cl

[Tenllx

|en o)

||T6n||k |€n|cl

<
[Tenl: |€n|so(k)

< Cj.

> 1, so

Let ¢ be an integer greater than B + ¢(1).
Let [ € N. Any positive integer n satisfies one of the following conditions.
(*1) byny/an < B. Then

(1 = r1)bonyy/an < (r — 1) B < (cl — p(1)).
Hence (ry — 77)bynyy + (¢l — ¢(1))a, > 0. Using (x) we get ||Te,|; < Cilen|a.
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(*2) buny/an > ¢(20)21. Then
(ror = 1)by(ny + (cl = @(20))an > (p(21) + cl — p(21))a, > 0.

Using (*) we obtain ||Te,||; < Cylen]q.

(x3) B < bymy/an < ¢(20)21. By the definition of the set M;, the set of all
positive integers n satisfying (#3) is finite.

It follows that D; := sup,, || Tenlli/|en|la < oo for every I € N. Hence || Tz, <
Dy|x|y for every z € Ay (a), so T is tame. Thus the pair (A (a), A,(b)) is tame. O

Corollary 10. The space Ax(a) is tame if and only if the set M, is bounded.

In [14] we have shown that the range of any continuous linear operator from
A (a) to A (b) has a Schauder basis, if the set M, , is bounded ([14], Theorem 10).
It is not known whether the assumption on M, is necessary. We shall prove the

following.

Theorem 11. Let a,b € I'. Then the range of every tame operator S from Ay (a)
to Aw(b) has a Schauder basis.

Proof. By (] - |x) we denote the canonical base in P(A(c)) for every c € T'. It
is easy to see that there exist two strictly increasing sequences (s,), (t,) C N and
d = (d,) € T with sup,(dn,+1 — dn) < oo such that ds, = a,, and d;, = b, for all
n € N. The operator R : A (d) — Ax(a), (z,) — (xs,), is well defined, linear and
|Rx|; < |z|f for all 2 € A (d), k € N. Moreover R(Ay(d)) = Ax(a).

For y = (y,) € Ax(b) we put z, = (z,,), where z,, = y; if n = ), for some
k € N, and z,, = 0 otherwise. Then the operator @) : A (b) — Ax(d),Qy = 2,
is well defined, linear and |Qy|, = |y|x for all y € A (b),k € N. It is easy to see
that the linear operator T' : A (d) — Ax(d),T = QSR, is tame and the range of
T is isomorphic to the range of .S, so it is enough to show that the range of 7" has a
Schauder basis. Put F = A, (d). By tameness of 7" we have

de € NVE € NIC, € NVx € E : |Tx|p < Cklx|er;

clearly we can assume that the sequence (Cy) is strictly increasing.
Let (t,;) C K with Te, = >°72  tnje5,n € N. Then Tw = 3272 | (3707 £ jan)e;

j=1\2un=1
for every = (x,,) € E. Put o, = expd,,n € N. Then D := sup,,(a41/,) < 0.

For all £,n € N we have

(*1) m?X|tn,j|Oé? - |T6n|k < Ok|en‘ck - Cka;k

14



Put Ny = (NU {0}), Co = 1 and M, =[], C; for k > 0.

The function ¢ : N — Ny, ¢(t) = max{k € Ny : Cyx < oy}, is non-decreasing and
lim, ¢(t) = oc.

Let f: N — (0,00), f(t) = ! /M. Then f(t) = maxysq ok /Mj for t € N,
since of ' /M;_, < aF /M if and only if k < ¢(t) for all k,t € N. Thus f is
non-decreasing, f(1) > 1 and lim; f(t) = oo.

Let (ng) C N be a strictly increasing sequence with g(ng) > k for every k € N.

For n € N we have

(n+1)—q(n) (n+1)—g(n)
M1y < Cnyyy " Moy < 0y Mygm.

Let k € N. For n > n; we get

() Cntt Moy Mo Moy o
fln+ 1) qfr=h = gk = 0=k f(n)

The function r : N — Ny, 7(t) = max{k € Ny : Cy < a?°} is non-decreasing and
lim, r(t) = oc.

Let g : N — (0,00),9(t) = afcr(t)/Mr(t). Then ¢(t) = max;>o a?* /M, for t € N,
since o2F 7V /My < a2k /M, if and only if k < r(¢) for all ¢,k € N. Thus g is
non-decreasing and g(t) > f(t) for t € N.

For n € N we have

r(n+1)—r(n) 2¢(r(n+1)—r(n))
MT‘(n+1) < Cr(n+1) M’”(”) < Qi Mr(n)'

Let k € N. For n > ny we get r(n) > q(n) > k and

(*3) Oégﬁfl _ Mr(n+1) Mr(n) Mr(n) _ aiCk .
gn+1) OB S (R S R R) ()

Put [|z]|y = sup; f(j)];| and ||z(l2 = sup; g(j)|z;| for & = (x;) € E. Clearly, [lz], <
|z|l2 for x € E. Moreover, |z|;, < My||z|; for x € E,k € N, since o < M, f(n) for
k,n € N.

We shall prove that there exists C' > 0 such that ||[Tz||; < C||z||2 for every
r € E. Let v € E with |lz]|2 < co. Then ||Tz||y = sup; f(j) >~ tn;Tnl. Let
j >mny. Then q(j) > 2, so using (*;) we get

o0 qu(j)|t 2] C 'acq(j)|x |
. }: ‘ < J ntonl q(j)%n nl_
F4) sl < e My (j) = My
n=1
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2¢(g(j)—1)
[zn| < max g(n)|z,| = [z
n M- n q(j)—1 n

Put P: E — E,(x1,29,...) — (T1,T2,...,2,,,0,0,...). Since dim P(F) < oo there
exists C] > 1 such that ||z||; < Cilz|; for every z € P(FE). Hence for C' = C{C, M.
we have

max f(j)| > tnjza| = [|PTx|s < Cf|PTaly < Cf|Tx| <

1<j<ny
n=1

C1C|zle < Cllz|ly < ||zl

Thus ||Tx||y = sup; f(J)] > oney tngan] < Clz|ls for every x € E.

The set B = {z € E : lim, g(n)|z,| = 0 and ||z|]z < 1} is an absolutely convex
compactoid in E. Indeed, let ¢ € K with |p| > 1. Let (v;) C K with 1 < |y;]g9(j) <
| for j € N; clearly (v;) € co. If # = (x;) € B, then sup,|z;/9;| < 1; so
B C co{vje; : j € N}. For j, k € N we have

sl < o122 < fpla-®sup S < o Mo
Yi€ilk < |®P|—Fx = |@la; T sup > (Pl
7 9(7) 7 g(n) ast

so lim; y;e; = 0 in E. Thus B is compactoid in E.

Therefore V' = T'(B) is an absolutely convex compactoid in G = T'(F).

Denote by F' the completion of the normed space (G, |- |1). Clearly, V is an
absolutely convex compactoid in F'. Let ¢t € (0, 1). By [8], Lemma 4.36 and Theorem
4.37, there exists a t-orthogonal sequence (g,,) in F with (g,) C (¢V)\{0} such that
V C c'{g, : n € N} and lim,, |g,|; = 0; without loss of generality we can assume
that the sequence (|g,|1) is non-increasing. Clearly (v,e;) C @B, so B is linearly
dense in E. Hence V is linearly dense in G, so (g,) is linearly dense in F'. Thus (gy)
is a t-orthogonal basis in F'. Let (g) C F* be the sequence of coefficient functionals
associated with the Schauder basis (g,,) in F.

Let y, = g% oT.,n € N; then (y,) C E* and Tz = 7, yn(2)g, in F for every
x € E. The set V) = @VE is an absolutely convex metrizable complete compactoid
in E, so 7 |y,= 71 |v, where 7 is the topology of E and 7y is the one generated by
| - |y on E ([10], Theorem 3.2). It follows that lim, g, = 0 in E. It is not hard to
check that

mF{gn 'n €N} = {angn H(Yn) C BK} .

n=1
Thus |y,(z)] < 1 for all x € B,n € N. Denote by H the linear span of B. We have
af < Myg(n) for all k,n € N, so H = {x = (x,) € KN : lim, g(n)|x,| = 0}. It
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follows that (H, || - ||2) is a Banach space. Thus using the Banach-Steinhaus theorem

we get K = sup,, ||yn|5 < 0o, where ||y, |5 = sup,cgq [yn(2)]/]| 22

We shall prove that the series >~ | y,(x)gy is convergent in E for every = € E.
In this order it is enough to show that lim, y,(z)g, = 0 in E for every x € E. For
every n € N there exists h,, € B such that g, = ¢T'h,,. Hence

(a) llgnlls = lellThally < @|CllAnll2 < Cle] forn € N.

The sequence (g,) is t-orthogonal in (E, |- |;), thus |Tz|; > tmax, |y,(z)||ga|1 for
x € E. Hence |y,(x)| < (|Tx|1/tlgnl1) < (Cilz|c/tlgn]1) for all x € E;n € N, so
lynls < C1/t|gn]1 for n € N.

Let k € N. Put [ = 2c(k +1). Let ng > ng with [gy,|1 < af, /g(ni). Since

(g(n)/at) > (af /M) for n € N, we get lim,(g(n)/at) = co. Thus for every n > ng

there exists w,, > n; such that

) olm) 1 glwt)

oG, |gn|1 Q41 7

(*5

clearly lim,, w, = co. Let n > ng,w = w, + 1 and s = min{i € N: o; > ozfuc}. Then

r(w) > r(ng) > q(ng) >k and s > ng. We have o,y < ¢ < o, and

2cr(w 2cr(w)—c 2cer(w)—c
g(w) oF < Quw (w) O M (1) _ Qw (w) ) _ 2k
ag, f(s) = agMyw) o™ A G
Hence we get
k
max{a’;_l, g(U)) as } S a2wck S DQCkOé?UCk.
ag, f(s) "
Using (*2) we have for x € F
k 2
kP maX{glgg%l%lﬂyg%lwgl} <
k 2
k o , k g ||z ||y
max 4 oy |x|1,—supf(j)|a:»|} < max {048_ |z|q, )
{ P E(s) s ’ ! f(s)

Hence, using (*4) and (x5), we get for z = g,

Oék O{k C
e < mae ot gl 10 < g Lt 25Tl o

f(s) V() lgnh
k
C " k g(w) O <C " DZCk 2ck.
el max { ok, 20T < ClolliD*a
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We have |2(e)|/9(7) = [2(es)|/llejla < 12l for all j € N.
Using (*3) we get for z = (z;) € E*

Eh :SUP@ < IIl:%LX{maxg(nl)ﬂ max 9(wn) 17| 12

] J
l . -\ ) A 1 -\ ) h 1— c }
i ab J<ny 9(j) m<i<wn ol g(j) jow, b€ af

g(wy,) z|% al |23
Smax{g(nl)HZH;, ~Il5, 2| < max fg(wn)HZH;,al_cc .

l l—c
awn awn Wn, Wn

Hence, using (x4), we get for z = y,, and for some constant K

* ol K 1 C K
memw{%<wﬁww@ﬁ}Smw{ 2 1}< |

a o gnhois e aipCtlgnly ) T lgnhade

Wn Wn

Thus |g,|k|ya|; < K'ald+et = K'/af, for K' = C||D**K; and n > ny.

We have shown that for every k € N there is an | € N such that lim,, |g,|k|ya|; =
0. For every z € E we have |y, (2)gnlk < |gnlk|ynl}|z|i for n > ng, so lim,, y,(z)g, =0
in E for every x € E. Thus the series Y | y,(2)gy is convergent in E for every
r€e€b.

Since Y 7 Yn(2)gn = Tz in (E,|- |1), we infer that Y, y,(z)g, = Tz in E
for every x € E. Thus Y~ ¢*(y)g, = y in G = T(E) for every y € G. Clearly,
gh = g:lec € G* and ¢}, (gm) = On.m for n,m € N.

It follows that (g,) is a Schauder basis in G. O
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