
Adam Mi
kiewi
z UniversityFa
ulty of Mathemati
s and Computer S
ien
e
Joanna Berli«ska

S
heduling divisible loadsin heterogeneous distributed systems
Ph.D. Thesis

Supervisor: Prof. Dr. Habil. Ma
iej Drozdowski

Pozna« 2011

A
knowledgements
I wish to express my deep gratitude to my supervisor Professor Ma
iej Drozdowskifor his keen interest, inspiration and perfe
t guidan
e throughout the
ompletionof this thesis. He introdu
ed me to the ex
iting �eld of divisible load theory andmotivated me to
ondu
t original resear
h with high standards. I am sin
erelygrateful for his e�ort in training me to be
ome a su

essful resear
her.The resear
h reported in this thesis has been �nan
ially supported by the Pol-ish Ministry of S
ien
e and Higher Edu
ation grants N N206 372039 "S
hedulingdivisible loads in heterogeneous distributed systems" and N N519 188933 "Newproblems of s
heduling theory �
omplexity analysis, algorithmization".The work presented in this thesis has been also partially supported by thes
holarship of the Adam Mi
kiewi
z University Foundation for the year 2010.

2

Contents
1 Introdu
tion 62 Single-Round Pro
essing 102.1 Earlier Results . 132.2 FPTAS for Problem DLS{Ci = 0}-OptV 142.3 FPTAS for Problem DLS{Ci = 0}-OptT 182.4 Communi
ation Sequen
e for Problem DLS{1Round} 242.5 Approximation Algorithms for Problem DLS{1Round} 292.5.1 Problem DLS{1Round}-OptV 292.5.2 Problem DLS{1Round}-OptT 342.6 Con
lusions . 353 Multi-Round Pro
essing with Limited Memory 363.1 Earlier Results . 373.2 Problem Formulation . 383.3 Bran
h&Bound Algorithm and Geneti
 Algorithm 433.3.1 Bran
h&Bound Algorithm 453.3.2 Geneti
 Algorithm . 463.3.3 Comparison of B&B and GA 493.4 Properties of the Solutions . 523.4.1 Depth of Overlap . 533.4.2 Length of the Communi
ation Sequen
e 603

3.4.3 Number of Used Pro
essors 643.4.4 Dominating Set of Pro
essors 673.4.5 Chunk Size Saturation . 743.4.6 When Is It Hard to Find a Good Solution? 763.4.7 Con
lusions . 803.5 Heuristi
s . 823.5.1 Random Heuristi
s . 823.5.2 First Free Heuristi
 . 843.5.3 Appender Heuristi
s . 843.5.4 Best Rate Heuristi
s . 863.6 Comparison of the Heuristi
 Algorithms 873.6.1 Load Size . 883.6.2 Startup Time . 903.6.3 Communi
ation Rate . 923.6.4 Memory Limit . 933.6.5 Computation Rate . 953.6.6 Parameters Dispersion . 953.6.7 Performan
e Dispersion 973.7 Summary . 984 MapRedu
e Computations 1004.1 Outline of MapRedu
e . 1004.2 Mathemati
al Model of MapRedu
e 1024.3 S
hedule Dominan
e Properties 1084.3.1 Pro
essing with a Single Redu
er 1084.3.2 Pro
essing with Many Redu
ers 1134.4 S
heduling Algorithms . 1184.4.1 Single Redu
er . 1184.4.2 Many Redu
ers . 1204

4.5 Performan
e Analysis . 1254.6 Summary . 1365 Multilayer Divisible Appli
ations 1385.1 Model of Multilayer Appli
ations 1385.2 S
heduling Algorithms . 1435.2.1 Load Partitioning for Redu
er Layers 1435.2.2 Load Partitioning for Mapper Layer 1465.2.3 The Complete Load Partitioning Algorithm 1485.2.4 Finishing Mapper Computations Order 1485.2.5 S
heduling Communi
ations 1525.3 Computational Experiments . 1595.3.1 Speedup of Multilayer Appli
ations 1595.3.2 Load Distribution between Redu
ers 1615.3.3 Load Distribution between Mappers 1655.4 Summary . 1686 Summary and Con
lusions 170Referen
es 172

5

1 Introdu
tion
The progress in many dis
iplines of s
ien
e and te
hnology is nowadays stronglysupported by
omputational methods. The resear
h is often based on the resultsdelivered by
omplex and time-
onsuming
al
ulations. The
omputational powerof a single
omputer is often insu�
ient. Hen
e, performing the
omputationsin distributed environments like grids or
lusters be
omes a ne
essity. What ismore, using a distributed
omputer system has many advantages. Large numbersof pro
essors taking part in
omputations result in big total
omputing power.The system is s
alable and the time needed for
omputations
an be redu
edby employing more pro
essors. On the other hand,
ontrolling
omputations ina distributed system is more
omplex. In order to obtain high e�
ien
y, thedistributed appli
ations need
areful s
heduling of
ommuni
ations and
ompu-tations. As the
omputers may be spread around the world, the
ommuni
ationdelays may be quite big and
annot be negle
ted. The distributed
omputer sys-tem is usually heterogeneous, and
onsequently, the di�erent parameters of itselements must be taken into a

ount by the s
heduling algorithms.Divisible load theory (DLT) is a model of parallel
omputations whi
h o�ers arealisti
 approa
h to this problem. It is mostly used to represent pro
essing largeamounts of data in distributed systems. It assumes that the input data,
alledload,
an be divided into pie
es of arbitrary sizes and these pie
es
an be pro-
essed independently in parallel on remote
omputers. The divisible load modeloriginated in the late 1980s in publi
ations [1, 20℄. It was applied to represent6

distributed
omputations in a network of workstations in [1℄. In [20℄ a
hain net-work of intelligent sensors was studied. In both
ases, the analyzed problem washow to s
hedule
ommuni
ations and
omputations, so that the total time neededto pro
ess the load of a given size is as short as possible. On the one hand, usingmore pro
essors redu
es
omputation time, but on the other hand it needs more
ommuni
ations, whi
h
ost time. Hen
e, the problem is whi
h pro
essors shouldbe used and what load quantities they should re
eive. The mathemati
al modelsproposed in the early publi
ations were
omputationally tra
table and redu
edthe s
heduling problem to a set of linear equations. Later on, more
omplexmodels were developed and applied to various network topologies [16, 20, 21, 25℄,systems with memory limitations [12, 30, 37℄,
omputation
osts [46℄ and other.The most general divisible load s
heduling problem was proved to be NP-hardin [48℄. Surveys of divisible load theory
an be found, e.g., in [3, 14, 24, 45℄. Wedis
uss these results in more detail in the following se
tions.There are many examples of divisible load
omputations, like pro
essing mea-surement data [20℄, sear
hing for patterns in text and database �les [28℄, imageand video pro
essing [38, 39, 43℄, solving linear algebra problems [22, 32℄, DNAsequen
e alignment [47℄. As we showed in [7, 10℄, pro
essing large amounts ofdata in MapRedu
e model [23℄ on dedi
ated
lusters
an also be analyzed onthe grounds of divisible load theory. Moreover, the
omputations on volunteerplatforms like BOINC and distributed.net ful�ll the assumptions about the di-visibility and independen
e of the load grains. Therefore, the progress in DLT isuseful in e�
iently managing many real distributed appli
ations.The main goal of this work is the analysis of several divisible load s
hedulingproblems in heterogeneous distributed systems and the
onstru
tion of algorithmssolving these problems. As the analyzed problems are known to be
omputa-tionally hard, we will propose approximation algorithms and heuristi
s. Thealgorithms will be evaluated and
ompared by both analyti
al and experimental7

methods. The divisible load theory will be also applied to model, analyze ands
hedule
omputations in new parallel pro
essing environments, like the MapRe-du
e framework. We will
onstru
t a mathemati
al model of su
h
omputationsand propose s
heduling algorithms. Performan
e limits of the proposed organi-zation of
omputations will be investigated.The stru
ture of this thesis is the following. Chapter 2 is dedi
ated to single-round divisible load s
heduling. In the single-round pro
essing ea
h
omputerre
eives at most one message with the data to pro
ess. The s
heduling problemis whi
h pro
essors should take part in
omputations, what amounts of data theyshould re
eive and in what order. Our main
ontributions presented in Chapter2 are fully polynomial time approximation s
hemes for two s
heduling problems.These results have been already published in [6℄. Extensions to more general
ases are also analyzed.Chapter 3
overs multi-round divisible load s
heduling in systems with limitedmemory. Multi-round pro
essing means that ea
h pro
essor
an re
eive multiplemessages with data to pro
ess. It is assumed that the whole load is too big to storeit in the memories of the
omputers at the same moment. Therefore, the loadmust be distributed and pro
essed in many small pie
es �tting available memorybu�ers. We provide an experimental study of the features of near-optimum solu-tions, and hen
e, the nature of the s
heduling problem. Based on these results,several groups of heuristi
s solving the analyzed problems are proposed. Theiradvantages and weaknesses are demonstrated for a wide range of
hanging sys-tem parameters. The experimental
omparison of the proposed algorithms withthe heuristi
s known from earlier literature shows that a big improvement in thequality of the obtained solutions has been a
hieved. The results
ontained inChapter 3 have been published in [8, 9, 11, 12℄.Chapter 4 introdu
es MapRedu
e paradigm for parallel
omputations. Weshow that MapRedu
e
omputations
an be analyzed as two divisible appli
a-8

tions, su
h that the output of the �rst of them is the input for the se
ond. Weformulate the mathemati
al model of su
h
omputations and propose s
hedulingalgorithms. Then, an experimental analysis of the MapRedu
e performan
e isprovided. These results have been published in [7, 10℄. It was the �rst time whens
heduling divisible loads with pre
eden
e
onstraints was studied.In Chapter 5 the problem
onsidered in Chapter 4 is generalized. We introdu
ethe notion of a multilayer appli
ation. An example of a multilayer appli
ation is a
hain of MapRedu
e appli
ations, su
h that one appli
ation in the
hain produ
esinput for the next appli
ation. The in�uen
e of the system parameters on thestru
ture of the s
hedules is studied.The last
hapter
ontains a summary of all the presented results. We alsopropose dire
tions for future resear
h on the aspe
ts of divisible load theory ad-dressed in this work.

9

2 Single-Round Pro
essing
In this
hapter we study divisible load s
heduling for single-round organization of
omputations. Let us start with some general assumptions about the
omputingenvironment. In this work we assume that ea
h pro
essor
omprises a CPU,some memory and a hardware network interfa
e (e.g. NIC and DMA). The wordspro
essor,
omputer and pro
essing element will be used inter
hangeably, unlesssaid to be otherwise. The CPU and network interfa
e
an work in parallel, sothat simultaneous
omputation and
ommuni
ation is possible. Ea
h
omputer
an
ommuni
ate with at most one pro
essor at a time (i.e. so-
alled one-portmodel is used).In Chapters 2 and 3 we
onsider
lassi
al divisible load s
heduling problemsin a star network (see Fig. 2.1). The load to be pro
essed is initially lo
ated onpro
essor P0
alled the originator, lo
ated in the
enter of the star. The originatoris
onne
ted to a set of m pro
essors (workers) {P1, . . . , Pm}. The originatordivides the load into pie
es and sends them dire
tly to the workers. Su
h a logi
altopology
an represent many parallel systems with di�erent physi
al topologies,like a grid of multipro
essor super
omputers, a
luster of workstations
onne
tedvia a lo
al area network, or a set of pro
essors sharing a bus in an SMP system.We assume that the originator only dispat
hes the load to the other pro
essorsand performs no
omputations. In the opposite
ase, the
omputational powerof the originator
an be represented as an additional pro
essor. For simpli
ity ofthe mathemati
al model, the pro
ess of returning results to the originator is not10

Figure 2.1: Star network topology.analyzed. Pra
ti
ally, it means that the results returning time is short and
anbe negle
ted. It has been shown in [18, 28℄ that this simpli�
ation is not limitingthe generality of our
onsiderations, as sending results ba
k
an be in
luded inthe model.Ea
h worker Pi is des
ribed by its
omputing rate (inverse of speed, e.g. inse
onds per byte), denoted by Ai. Pro
essing load of size α on Pi takes time αAi.The
ommuni
ation link between Pi and the originator is des
ribed by startuptime Si (e.g. in se
onds) and
ommuni
ation rate (inverse of bandwidth) Ci.Hen
e, the time required to send load of size α to pro
essor Pi is Si + αCi. Wewill use the notation Amax = max1≤i≤mAi, Amin = min1≤i≤m Ai, and similarlyfor the other parameters. In the general
ase, all parameters Ai, Ci, Si arenonnegative rational numbers.Below we formulate several single-round divisible load s
heduling problems.We follow the notation used in [48℄, where di�erent divisible load s
heduling prob-lems are denoted by DLS{restriction}. The restri
tion is the list of additionalassumptions in the analyzed problem. These restri
tions may be, for example:
• 1Round for single-round s
heduling problems,
• Ci = 0 if all the bandwidths are in�nite (Ci = 0 for all 1 ≤ i ≤ m),
• Si = 0 if there are no startup times (Si = 0 for all 1 ≤ i ≤ m).The de
ision version of the general single-round divisible load s
heduling prob-lem
an be formulated as follows. 11

Problem 2.1. (DLS{1Round})Given m workers, their parameters Ai, Ci and Si for 1 ≤ i ≤ m, and two rationalnumbers V > 0 and T > 0, is it possible to pro
ess load of size V within time Tfrom the moment when the originator starts sending out the load?We also de�ne the following two optimization problems
onne
ted with prob-lem DLS{1Round}.Problem 2.2. (DLS{1Round}-OptV)Given a rational time T > 0, m workers, their parameters Ai, Ci and Si for
1 ≤ i ≤ m, �nd the greatest rational number VOPT (T), su
h that it is possible topro
ess load of size VOPT (T) within time T .Problem 2.3. (DLS{1Round}-OptT)Given a rational load size V > 0, m workers, their parameters Ai, Ci and Sifor 1 ≤ i ≤ m, �nd the smallest rational number TOPT (V) ≥ 0, su
h that it ispossible to pro
ess the whole load V within time TOPT (V).Let us note that we are interested not only in �nding the optimum time
T or the amount of load V , but also in
onstru
ting the optimum s
hedule.Constru
ting a s
hedule involves making the following de
isions:

• The set P ′ ⊆ P of pro
essors parti
ipating in the
omputations must be
hosen. Depending on the parameters of the pro
essors and
ommuni
ationlinks, it may be unpro�table to use some of them for
omputations.
• The
ommuni
ation sequen
e (also
alled a
tivation sequen
e), de�ning theorder in whi
h the pro
essors re
eive load, must be
hosen. For single-round pro
essing, the
ommuni
ation sequen
e is a permutation of indi
esof pro
essors from the set P ′.
• The sizes of the load parts sent in ea
h message must be sele
ted.

12

2.1 Earlier ResultsThe early publi
ations
on
erning s
heduling divisible loads in a star systemused a simple linear
ommuni
ation model. All
ommuni
ation startup times Siwere assumed to be equal to zero. The analyzed problems were DLS{1Round,
Si = 0} and the adequate optimization problems. It was proved independentlyin [5, 13, 17, 35℄ that if all workers take part in the
omputations and �nish workat the same moment, then the problem DLS{1Round, Si = 0}
an be solvedby sorting the pro
essors by nonde
reasing Ci in the a
tivation sequen
e. Thehypothesis that in the optimum solution all workers parti
ipate in
omputationsand �nish work simultaneously was proved in [3℄.The assumption about linear
ommuni
ation
osts usually does not hold inpra
ti
e. It has a side e�e
t that all pro
essors
an take part in the
omputa-tions, no matter how many of them are available, and no matter how far fromthe originator they are. Hen
e, a more realisti
 a�ne
ommuni
ation model, in-
luding startup times, was introdu
ed by Bªa»ewi
z and Drozdowski in [17℄. Inpubli
ation [3℄ it was shown that in the optimum solutions of both optimizationversions of the problem DLS{1Round} all pro
essors taking part in
omputations�nish work at the same moment. Additionally, the authors proved that if the loadsize V is large enough, then in any optimum solution all workers parti
ipate inthe
omputations and they should be a
tivated in the order of nonde
reasing Ci.The
omplexity of single-round divisible load s
heduling problem remainedopen until 2007. Finally, in [48℄ it was proved that the problem DLS{1Round,
Ci = 0} isNP-
omplete. The proof was done by redu
tion from theNP-
omplete2-Partition problem. The authors proposed pseudo-polynomial dynami
 pro-gramming algorithms solving the problems DLS{1Round, Ci = 0}-OptV andDLS{1Round, Ci = 0}-OptT . However, sin
e pseudopolynomial algorithms arein fa
t exponential, it
an be more useful to
reate polynomial approximation al-13

gorithms for these problems. The strongest polynomial time approximation resultthat
an be derived for NP-hard problems (unless P=NP) is a fully polynomialtime approximation s
heme (FPTAS). An FPTAS for an optimization problem Πwith
ost fun
tion f is an approximation algorithm A whi
h for any given ε > 0and an instan
e I of problem Π

• returns a solution A(I) su
h that |f(A(I))−OPT (I)| ≤ ε|OPT (I)|, where
OPT (I) is the optimum
ost for instan
e I, and

• has running time polynomial in the size of I and 1/ε.Constru
ting fully polynomial time approximation s
hemes for DLS{1Round,
Ci = 0}-OptV and DLS{1Round, Ci = 0}-OptT is the aim of the next twose
tions.2.2 FPTAS for Problem DLS{Ci = 0}-OptVLet us start with an observation that if Ci = 0 for 1 ≤ i ≤ m, then nothing
anbe gained by sending more then one message to the same pro
essor. Hen
e, forthe divisible load s
heduling problem with Ci = 0 for all i, there always exists anoptimum solution using one round only. Consequently, we
an write DLS{Ci = 0}instead of DLS{1Round, Ci = 0}, be
ause these two problems are equivalent.We begin our
onsiderations with the problem of optimizing the size of theload pro
essed in a given time T . Similarly as in [48℄, we assume here that Aiand Si are integer numbers. The problem
an be formulated as follows.Problem 2.4. (DLS{Ci = 0}-OptV)Given a rational time T > 0, m workers, their integer parameters Ai and Si for
1 ≤ i ≤ m, and provided that the bandwidths are in�nite, �nd the greatest rationalnumber VOPT (T), su
h that it is possible to pro
ess load of size VOPT (T) withintime T . 14

Let us note that if Si > T for some pro
essor Pi, then this pro
essor
annotbe used for pro
essing load in time T . Therefore, we assume that Si ≤ T for
1 ≤ i ≤ m. Moreover, if Ai = 0 for some pro
essor Pi, then Pi
an re
eive andpro
ess an in�nite amount of load in time Si. As Si ≤ T , the s
heduling problembe
omes trivial in this
ase. Hen
e, we assume that Ai > 0 for 1 ≤ i ≤ m.In order to
onstru
t an FPTAS solving Problem 2.4, we need to know in whatorder the pro
essors should be a
tivated. We will use the following propositiongiven in [48℄.Proposition 2.1. For a given time limit T and a set P ′ ⊆ {P1, . . . , Pm} ofworkers taking part in the
omputations, the maximum load is pro
essed if theworkers are ordered a

ording to nonde
reasing values of SiAi for Pi ∈ P ′.Proposition 2.1
an be proved by the inter
hange argument: ordering thepro
essors in P ′ a

ording to nonde
reasing SiAi does not redu
e the amount ofload pro
essed in time T .As it is known from [3℄ that in the optimum solution all pro
essors takingpart in
omputations �nish work at the same moment, it follows from Proposition2.1 that the s
heduling problem
an be redu
ed to
hoosing an optimum subsetof pro
essors taking part in the
omputations. Let us assume, without loss ofgenerality, that S1A1 ≤ . . . ≤ SmAm. We de�ne a binary ve
tor x = (x1, . . . , xm)as follows: xi = 1 if pro
essor Pi re
eives some load to pro
ess (i.e. Pi ∈ P ′)and xi = 0 in the opposite
ase (Pi /∈ P ′). The maximum amount of load whi
h
an be pro
essed in time T using the subset of pro
essors indi
ated by x
an beobtained from the formula

VOPT (T,x) =
m
∑

i=1

Txi

Ai
−

m
∑

i=1

m
∑

j=i

xixjSi

Aj
. (2.1)The expression ∑m

i=1
Txi

Ai
is the amount of load whi
h
ould be pro
essed in time

T by pro
essors indi
ated by x if there were no
ommuni
ation delays. Commu-15

ni
ation with pro
essor Pi takes time xiSi. During this time pro
essors Pj, where
j ≥ i,
annot pro
ess any load be
ause they did not re
eive the input yet. Thus,
∑m

i=1

∑m
j=i

xixjSi

Aj
is the amount of load whi
h is lost be
ause of
ommuni
ationdelays (
f. [48℄).Our goal is to maximize the size V of load pro
essed in a given time T as afun
tion of a binary ve
tor x = (x1, . . . , xm). Instead of maximizing V (x), wewill minimize the value of −V (x). Sin
e xi are binary variables, we have x2

i = xi.Hen
e we have
−V (x) = −

m
∑

i=1

T − Si

Ai
xi +

∑

1≤i<j≤m

Si
1

Aj
xixj . (2.2)A half-produ
t [2℄ is a fun
tion f : {0, 1}m → R of the form

f(x) = f(x1, . . . , xm) = −
m
∑

i=1

pixi +
∑

1≤i<j≤m

qirjxixj , (2.3)where pi, qi, ri are nonnegative
onstants for 1 ≤ i ≤ m. Thus, −V (x) is ahalf-produ
t, with pi =
T−Si

Ai
, qi = Si, rj = 1

Aj
.An FPTAS for minimizing half-produ
ts was proposed by Badi
s and Borosin [2℄. They assumed that the parameters pi, qi, ri are nonnegative integers for

1 ≤ i ≤ m. In our
ase all parameters are nonnegative, but pi = T−Si

Ai
and rj =

1
Ajare not integer. However, the assumption about integrality of pi and ri is usedneither for proving the
orre
tness of the Badi
s and Boros algorithm, nor forestimating its running time. Therefore, we
an use the algorithm proposed in [2℄to minimize the fun
tion −V (x). The algorithm re
eives number m, ve
tors p, q,

r of length m, and a positive approximation pre
ision ε < 1. It returns a binaryve
tor xε = (xε
1, . . . , x

ε
m).For 1 ≤ k ≤ m, let gk(x) = −

∑k
i=1 pixi +

∑

1≤i<j≤k qirjxixj and Qk(x) =
∑k

i=1 qixi. The FPTAS for minimizing half-produ
ts proposed by Badi
s andBoros is formulated in Algorithm 2.1 (
f. [2℄).16

Algorithm 2.1 MINIMIZE-HALF-PRODUCT(m, p, q, r, ε)STEP 0:Let δ > 0 be de�ned by the equation (1 + δ)m = 1 + ε,let Q =
∑m

i=1 qi, N = ⌈2m logQ
ε

⌉, k = 0 and X0 = {()}.STEP 1:Let k = k + 1, Xk = ∅, t = 0, s = 0,
L = {(y1, . . . , yk−1, 0), (y1, . . . , yk−1, 1)|(y1, . . . , yk−1) ∈ Xk−1}STEP 2:while s ≤ N dosele
t z = (z1, . . . , zk) ∈ L for whi
h t ≤ Qk(z) < (1 + δ)sand for whi
h gk(z) is the smallest among all su
h z.Let Xk = Xk ∪ {z}, t = (1 + δ)s, s = s+ 1.end whileSTEP 3:if k < m thengoto STEP 1elsegoto STEP 4.end ifSTEP 4:Sele
t xε ∈ Xm with the smallest gm(xε), return xε.It was proved in [2℄ that

f(xε) ≤ f(x∗) + ε|f(x∗)|, (2.4)where x∗ is a ve
tor minimizing f , and the running time of the algorithmMINIMIZE-HALF-PRODUCT is O(m2 log(
∑m

i=1 qi)/ε) [2℄.Based on these results, we propose Algorithm 2.2 for Problem 2.4 [6℄.Theorem 2.2. Algorithm 2.2 is a fully polynomial time approximation s
hemefor Problem 2.4 (DLS{Ci = 0}-OptV).
17

Algorithm 2.2 FPTAS-OPT-V(T,m,A,S, ε)for i = 1 to m do
pi =

T−Si

Ai

qi = Si

ri =
1
Aiend for

xε=MINIMIZE-HALF-PRODUCT(m, p, q, r, ε)return xFPTAS(T, ε) = xε, VFPTAS(T, ε) =
∑m

i=1
Txε

i

Ai
−
∑m

i=1

∑m
j=i

xε
ix

ε
jSi

AjProof. Sin
e xFPTAS(T, ε) is returned by the MINIMIZE-HALF-PRODUCT al-gorithm for the fun
tion −V (x), we get from (2.4)
−VFPTAS(T, ε) ≤ −VOPT (T) + ε| − VOPT (T)|. (2.5)As the amount of load VOPT (T) is always nonnegative, this formula
an be rewrit-ten as
−VFPTAS(T, ε) ≤ −VOPT (T) + εVOPT (T). (2.6)Hen
e,

VFPTAS(T, ε) ≥ VOPT (T)(1− ε). (2.7)Moreover, the running time of Algorithm 2.2 is dominated by the running timeof MINIMIZE-HALF-PRODUCT, and is equal to at most O(m2 log(
∑m

i=1 Si)/ε),whi
h is bounded from above by O(m2(logm+logSmax)/ε). Hen
e, Algorithm 2.2is an FPTAS for Problem 2.4.2.3 FPTAS for Problem DLS{Ci = 0}-OptTThe se
ond optimization problem we will analyze is DLS{Ci = 0}-OptT , whi
h
an be formulated in the following way.
18

Problem 2.5. (DLS{1Round}-OptT)Given a rational load size V > 0, m workers, their integer parameters Ai and Sifor 1 ≤ i ≤ m, and provided that the bandwidths are in�nite, �nd the smallestrational number TOPT (V) ≥ 0, su
h that it is possible to pro
ess the whole load
V within time TOPT (V).To
reate an approximation s
heme for Problem 2.5, we will use the dualapproximation algorithm approa
h proposed in [34℄. As stated in [34℄, a dualapproximation algorithm is an algorithm whi
h �nds a superoptimal infeasiblesolution of a given optimization problem. The performan
e of the algorithm ismeasured by the degree of the infeasibility of the solution,
ontrolled by a givenvalue ε > 0. We will
onstru
t a dual approximation algorithm for Problem 2.4(DLS{Ci = 0}-OptV). This algorithm should a

ept a period of time T anda

ura
y ε (0 < ε < 1), and deliver a s
hedule pro
essing the load of size at least
VOPT (T) in time not longer than T (1 + ε). We propose the following Algorithm2.3 [6℄.Algorithm 2.3 DUAL-OPT-V(T,m,A,S, ε)
all FPTAS-OPT-V(T,m,A,S, ε/2)return xDUAL(T, ε) = xFPTAS(T, ε/2), VDUAL(T, ε) = (1 + ε)VFPTAS(T, ε/2)In order to prove that Algorithm 2.3 is a dual approximation algorithm forProblem 2.4, we will use the following fa
t.Proposition 2.3. If it is possible to pro
ess load of size V in time T using thesubset of pro
essors indi
ated by a binary ve
tor x = (x1, . . . , xm), then it is alsopossible to pro
ess load of size V (1 + ε) in time at most T (1 + ε), using the samesubset of pro
essors.

19

Proof. Let V ′ denote the maximum size of load whi
h
an be pro
essed in time
T (1 + ε) using the pro
essors indi
ated by the ve
tor x. From (2.1) we obtain

V ′ =
m
∑

i=1

T (1 + ε)xi

Ai

−
m
∑

i=1

m
∑

j=i

xixjSi

Aj

(2.8)and
V =

m
∑

i=1

Txi

Ai

−
m
∑

i=1

m
∑

j=i

xixjSi

Aj

. (2.9)Hen
e,
V ′ = (1 + ε)V + ε

m
∑

i=1

m
∑

j=i

xixjSi

Aj

≥ V (1 + ε). (2.10)
Note that if T = TOPT (V), then by Proposition 2.3 load of size V (1 + ε)
anbe pro
essed in time not longer than TOPT (V)(1 + ε). Hen
e, as a
orollary, we
an formulate the following proposition.Proposition 2.4. For any numbers V ≥ 0 and ε > 0 we have

TOPT (V (1 + ε)) ≤ TOPT (V)(1 + ε). (2.11)We will say that an algorithm is a fully polynomial time dual approximationalgorithm for a given problem if it is a dual approximation algorithm for thisproblem with approximation pre
ision ε and its running time is polynomial inboth the problem size and 1/ε.Theorem 2.5. Algorithm 2.3 is a fully polynomial time dual approximation al-gorithm for Problem 2.4 (DLS{Ci = 0}-OptV).Proof. As VDUAL(T, ε) = (1+ ε)VFPTAS(T, ε/2) in Algorithm 2.3, we obtain from(2.7) that
VDUAL(T, ε) ≥ (1 + ε)VOPT (T)(1− ε/2) ≥ VOPT (T), (2.12)20

be
ause ε < 1. Thus, the obtained solution is superoptimal. The time needed topro
ess the load of size VDUAL(T, ε) is at most T (1 + ε) by Proposition 2.3, as itis possible to pro
ess load of size VFPTAS(T, ε/2) in time T .The running time of Algorithm 2.3 is determined by the
all to algorithmFPTAS-OPT-V, when
e it is equal to at most O(m2(logm+ log Smax)/ε).The dual approximation algorithm 2.3 is the key element of the FPTAS solvingProblem 2.5 (DLS{Ci = 0}-OptT), given in Algorithm 2.4.Algorithm 2.4 FPTAS-OPT-T(V,m,A,S, ε)
upper = Smax + V Amax

lower = 0
LoBo = V Amin/mwhile (upper − lower) > ε(1−ε)

(2−ε)
LoBo do

Tp = (upper + lower)/2
all DUAL-OPT-V(Tp, m,A,S, ε)if VDUAL(Tp, ε) < V (1 + ε) then
lower = Tpelse
upper = Tpend ifend while
all FPTAS-OPT-V(upper,m,A,S, ε/2)return x = xFPTAS(upper, ε/2), T = upperThe idea of Algorithm 2.4 is to �nd a good approximation of TOPT (V) witha binary sear
h. The initial sear
h interval [lower, upper] is de�ned by triviallower and upper bounds for TOPT (V). Then, it is iteratively narrowed to itslower or upper half, depending on the results delivered by Algorithm 2.3 for the
urrently examined value Tp. When the sear
h interval be
omes short enough,the sear
hing pro
edure is �nished and the ve
tor x representing the subset ofpro
essors whi
h should be used for
omputations is obtained by Algorithm 2.2.Below we prove that Algorithm 2.4 is an FPTAS solving Problem 2.5.21

Theorem 2.6. Algorithm 2.4 is a fully polynomial time approximation s
hemefor Problem 2.5 (DLS{Ci = 0}-OptT).Proof. Let us start with the observation that at the beginning of the algorithm
upper and lower are trivial upper and lower bounds for TOPT (V). LoBo is alsoa lower bound on TOPT (V) and it is positive, sin
e we assumed that Ai > 0 for
1 ≤ i ≤ m.First, we will analyze the variable upper in order to prove that the algorithmalways returns a feasible solution. At the beginning of the algorithm we have
upper = Smax + V Amax. If this value is not
hanged in the binary sear
h whileloop, then the algorithm FPTAS-OPT-V is
alled for parameters T = upper =

Smax+V Amax and approximation pre
ision ε/2 at the end of exe
uting Algorithm2.4. The obtained s
hedule allows for pro
essing the load of size at least V , asit is enough to
hoose any nonempty subset of the set {P1, . . . , Pm} to pro
ess Vunits of load in time T = Smax + V Amax.Now let us assume that the value of upper is
hanged at least on
e to Tp. Thishappens only if VDUAL(Tp, ε) ≥ V (1+ ε). Therefore, as we have in Algorithm 2.3
VDUAL(T, ε) = (1 + ε)VFPTAS(T, ε/2), (2.13)there holds

VFPTAS(upper, ε/2) = VDUAL(upper, ε)/(1 + ε) ≥ V (2.14)at any time during the exe
ution of Algorithm 2.4. Hen
e, the solution obtainedby the algorithm FPTAS-OPT-T is always feasible.Now let us estimate the quality of the obtained solution. We will show that
lower < TOPT (V)(1 +

ε

2− ε
) (2.15)22

throughout the exe
ution of the program. Sin
e initially lower = 0, this
onditionis true before entering into the while loop. The value of variable lower is
hangedto Tp only when VDUAL(Tp, ε) < V (1 + ε). It follows from (2.13) that
(1 + ε)VFPTAS(lower, ε/2) < V (1 + ε). (2.16)Furthermore, from (2.7) we get

(1 + ε)VOPT (lower)(1− ε/2) < V (1 + ε), (2.17)
VOPT (lower) < V/(1− ε/2) (2.18)and �nally
VOPT (lower) < V (1 +

ε

2− ε
). (2.19)Thus, it is impossible to pro
ess load V (1 + ε

2−ε
) in time lower. Hen
e,

lower < TOPT (V (1 +
ε

2− ε
)). (2.20)By Proposition 2.4 we have

TOPT (V (1 +
ε

2− ε
)) ≤ TOPT (V)(1 +

ε

2− ε
), (2.21)what proves that (2.15) is true during the binary sear
h.The binary sear
h is �nished when upper ≤ lower+ ε(1−ε)

(2−ε)
LoBo. Sin
e LoBo ≤

TOPT (V), by (2.15) we get
upper ≤ TOPT (V)(1 +

ε

2− ε
) +

ε(1− ε)

(2− ε)
TOPT (V) (2.22)and
onsequently

upper ≤ TOPT (V)(1 + ε). (2.23)23

Thus, Algorithm 2.4 delivers the desired approximation of the optimum solutionof the problem.The number of iterations in the binary sear
h is at most equal toO(log((Smax+

V Amax)/(
ε(1−ε)
(2−ε)

V Amin/m))), whi
h is bounded from above by O(logm+log Smax

+ logAmax+log(1/ε)+max(log V, log(1/V))). The exe
ution time of ea
h iterationis O(m2(logm+logSmax)/ε) due to
alling Algorithm 2.3. Thus, the running timeof the whole algorithm FPTAS-OPT-T is at most O((logm+logSmax+logAmax+

log(1/ε) + max(log V, log(1/V)))m2(logm+ log Smax)/ε).2.4 Communi
ation Sequen
e for ProblemDLS{1Round}It would be desirable to extend the approximability results presented in the pre-
eding se
tions to problems DLS{1Round}-OptV and DLS{1Round}-OptT . Notethat DLS{1Round,Ci = 0} is a sele
tion problem. This means that it is
ompu-tationally hard to sele
t the set P ′ of parti
ipating pro
essors, but for a given
P ′ the optimum a
tivation sequen
e is known. Moreover, this feature allowed for
onstru
tion of an FPTAS sele
ting the set P ′ of parti
ipating pro
essors. Themain di�
ulty in problem DLS{1Round} is that for instan
es with Ci > 0, theoptimum order of a
tivating the pro
essors is not known. Therefore, the s
hedul-ing problems
annot be redu
ed to just
hoosing the pro
essors whi
h should takepart in
omputations. Let us remind that a general method of ordering pro
essorsshould
over spe
ial
ases:

• ordering pro
essors a

ording to nonde
reasing values SiAi if all Ci areequal to zero,
• ordering pro
essors a

ording to nonde
reasing values Ci if all Si are equalto zero,
• ordering pro
essors a

ording to nonde
reasing values Ci if the load V to24

be pro
essed or the time T used for pro
essing is large enough.Let us analyze the a
tivation sequen
e for problem DLS{1Round}-OptV in-stan
e with m = 3. We will
ompare the amounts of load whi
h
an be pro
essedfor a
tivation sequen
es σ′ = (1, 2, 3) and σ′′ = (2, 1, 3). In both
ases we assumethat all pro
essors �nish
omputations at time T , as this is true in the opti-mum s
hedule. It is also assumed that the time T is so large that all pro
essors
P1, P2, P3 should take part in the
omputations in the optimum s
hedule.Let α′

i, α′′
i denote the sizes of the i-th pie
e of load sent for a
tivation sequen
es

σ′ and σ′′,
orrespondingly. The sizes of the �rst two parts of load, sent topro
essors P1 and P2 for
ommuni
ation sequen
e σ′, are equal to
α′
1 =

T − S1

C1 + A1
(2.24)and

α′
2 =

T − S1 − C1α1 − S2

C2 + A2
, (2.25)whi
h gives

α′
2 =

A1(T − S1)

(C1 + A1)(C2 + A2)
−

S2

C2 + A2

. (2.26)Similarly, for
ommuni
ation sequen
e σ′′, the sizes of the �rst two pie
es of load,sent to pro
essors P2 and P1
orrespondingly, are equal to
α′′
1 =

T − S2

C2 + A2
(2.27)and

α′′
2 =

A2(T − S2)

(C1 + A1)(C2 + A2)
−

S1

C1 + A1
. (2.28)Let us observe that the time needed for sending the �rst two pie
es of loadmay be di�erent for a
tivation sequen
es σ′ and σ′′. Therefore, the amount ofload pro
essed by
omputer P3 may also be di�erent in these two
ases. The �rst25

two
hunks of load are sent in time
t′ = S1 + S2 + C1

T − S1

C1 + A1
+ C2(

A1(T − S1)

(C1 + A1)(C2 + A2)
−

S2

C2 + A2
) (2.29)if a
tivation sequen
e is σ′, and in time

t′′ = S1 + S2 + C2
T − S2

C2 + A2
+ C1(

A2(T − S2)

(C1 + A1)(C2 + A2)
−

S1

C1 + A1
) (2.30)if a
tivation sequen
e is σ′′. From (2.29) and (2.30) we obtain

∆t = t′ − t′′ =
C1A2S2 − C2A1S1

(C1 + A1)(C2 + A2)
. (2.31)Let t′3 and t′′3 be the amounts of time used for
ommuni
ation and
omputationsof pro
essor P3 for sequen
es σ′ and σ′′. Note that

t′′3 − t′3 = ∆t. (2.32)Therefore,
α′′
3 − α′

3 =
∆t

C3 + A3
. (2.33)From equations (2.24)-(2.28) and (2.33), we
an
ompute the di�eren
e betweenthe amounts of load pro
essed in both s
hedules:

∆V =

3
∑

i=1

α′′
i −

3
∑

i=1

α′
i =

T (C1 − C2) + A1S1 − A2S2

(C1 + A1)(C2 + A2)

+
C1A2S2 − C2A1S1

(C1 + A1)(C2 + A2)(C3 + A3)
. (2.34)It
an be seen that the sign of ∆V depends not only on the parameters of pro
es-sors P1 and P2, but also on A3 and C3. Similarly, for m > 3 the order in whi
hthe �rst two pro
essors should be a
tivated depends on the parameters of all theremaining pro
essors. Hen
e, it
an be very di�
ult to de
ide in what order to26

a
tivate the pro
essors, be
ause the de
ision how to sequen
e, e.g., P1, P2
annotbe
on�ned to just P1, P2. The �rst summand in formula (2.34) may suggestsorting the pro
essors a

ording to nonde
reasing values of TCi +AiSi. Su
h analgorithm would handle properly the spe
ial
ases mentioned at the beginning ofthis se
tion.However,
onsider the following
ounterexample. Let T = 700, m = 4, andlet the parameters of the pro
essors be as given in Table 2.1.Table 2.1: Pro
essor parameters for the
ounterexample.
i Ai Ci Si TCi + AiSi for T = 7001 0.051 0.129 137.084 97.2912842 2.146 0.050 34.487 109.0091023 0.654 0.458 31.565 341.2435104 1.838 0.152 32.747 166.588986The amounts of load whi
h
an be pro
essed for all a
tivation sequen
es aregiven in Table 2.2. If the pro
essors are sorted a

ording to nonde
reasing valuesof TCi + AiSi, we obtain
ommuni
ation sequen
e (1,2,4,3) and the size of pro-
essed load is about 3275.0461. On the other hand, the optimum
ommuni
ationsequen
e is (2,1,4,3), whi
h allows for pro
essing the load of size approximately3276.4212. Thus, the analyzed algorithm does not deliver the optimum
ommu-ni
ation sequen
e.Another approa
h to sele
ting the best
ommuni
ation sequen
e is to startfrom the initial sequen
e (1, 2, . . . , m), and improve it by
hanging the positionsof some pro
essors. Let us assume that it is allowed to perform two operations onthe
ommuni
ation sequen
e: swap a pair of pro
essors or move a single pro
essorto another pla
e in the sequen
e. Only the moves in
reasing pro
essed load Vfor the given s
hedule length T
an be made. However, for the instan
e givenabove, the amount of load pro
essed for
ommuni
ation sequen
e σ1 = (1, 2, 3, 4)is approximately 3276.0243 (see Table 2.2). The only
ommuni
ation sequen
e27

Table 2.2: The size V of load pro
essed for di�erent a
tivation sequen
es in the
oun-terexample (rounded to 4 digits after de
imal point).Sequen
e Pro
essed load V Sequen
e Pro
essed load V(1,2,3,4) 3276.0243 (1,2,4,3) 3275.0461(1,3,2,4) 3264.4671 (1,3,4,2) 3265.8734(1,4,2,3) 3272.7902 (1,4,3,2) 3275.0848(2,1,3,4) 3274.1818 (2,1,4,3) 3276.4212(2,3,1,4) 2135.6348 (2,3,4,1) 1963.7528(2,4,1,3) 3102.9726 (2,4,3,1) 2097.1445(3,1,2,4) 2040.9951 (3,1,4,2) 2044.6016(3,2,1,4) 1963.8495 (3,2,4,1) 1792.8317(3,4,1,2) 1879.3648 (3,4,2,1) 1776.3430(4,1,2,3) 3104.2910 (4,1,3,2) 3103.4595(4,2,1,3) 3078.8408 (4,2,3,1) 2076.1120(4,3,1,2) 2021.0451 (4,3,2,1) 1920.2297for whi
h it is possible to pro
ess larger load, is the optimum sequen
e σ2 =

(2, 1, 4, 3). Yet, it is impossible to obtain this solution by the moves des
ribedabove, as any allowed
hange to σ1 results in de
reasing the amount of pro
essedload, and hen
e
annot be a

epted.The above
ounterexample proves not only that the des
ribed type of greedyalgorithms is not
apable of solving our problem, but also that it is impossible to�nd the optimum a
tivation sequen
e by simply sorting the pro
essors a

ordingto some
ombination of instan
e parameters. Indeed, note that the
ommuni
a-tion sequen
e (1,2,3,4) is better than (1,2,4,3) and the sequen
e (2,1,4,3) is betterthan (2,1,3,4). This shows that depending on the amount of time left for pro-
essing on P3 and P4, it is better to a
tivate one or the other pro
essor earlier.Thus, the order in whi
h pro
essors P3 and P4 should be a
tivated depends on theparameters of pro
essors a
tivated before them. Consequently, it is not possibleto determine the
ommuni
ation sequen
e lo
ally, without taking into a

ountthe sequen
e of other pro
essors.Moreover, for the above instan
e, the load pro
essed by P1 if it is a
tivated�rst is mu
h greater than the load pro
essed by P2 in the
ase when the a
tivation28

sequen
e starts with 2. Still, in the optimum solution pro
essor P2 should re
eiveload before P1. Thus, a greedy algorithm, always appending to the
ommuni
a-tion sequen
e the pro
essor whi
h
an pro
ess the greatest amount of load, alsodoes not deliver optimum solution.Finally, it
an be
onje
tured that DLS{1Round} is not a sele
tion problem.2.5 Approximation Algorithms for ProblemDLS{1Round}Without knowing how to order the pro
essors taking part in the
omputations forproblem DLS{1Round}, we are not able to
reate similar approximation s
hemesas for problem DLS{Ci = 0}. Therefore, we present several algorithms withapproximation ratio bounded but dependent on the instan
e parameters.2.5.1 Problem DLS{1Round}-OptVThe simplest method of
reating a solution of problem DLS{1Round}-OptV isto send the whole load to a single pro
essor only. The size of the load pro
essedby a single pro
essor Pi in time T is equal to (T −Si)/(Ai +Ci). Thus, we sele
tthe pro
essor for whi
h this value is the greatest, as it is shown in Algorithm 2.5.Algorithm 2.5 SINGLE-PROCESSOR-OPT-V(T,m,A,C,S)
j = 1for i = 2 to m doif (T − Si)/(Ai + Ci) > (T − Sj)/(Aj + Cj) then

j = iend ifend forreturn σ = (j), V = (T − Sj)/(Aj + Cj)

29

Note that in the optimum s
hedule at least one pro
essor Pi must pro
essload of size at least VOPT (T)/m (in given time T). Hen
e, Algorithm 2.5 deliversa solution pro
essing load of size at least VOPT (T)/m and is an approximationalgorithm with relative performan
e guarantee m. Note that this bound is tight.Consider an instan
e with Ai = 1, Ci = Si = 0 for i = 1, . . . , m. In the optimumsolution, all pro
essors are a
tivated and they pro
ess load of size mT . In thesolution delivered by Algorithm 2.5 only one pro
essor is a
tivated and the sizeof the load is T . The running time of Algorithm 2.5 is O(m).The above approa
h
an be extended by analyzing all
ommuni
ation se-quen
es of length k for some
onstant k ≤ m. Similarly as before, we observethat if the optimum solution of the problem a
tivates at least k pro
essors, thenit must
ontain a group of k pro
essors whi
h together pro
ess load of size at least
kVOPT (T)/m. Hen
e, an algorithm enumerating all possible
ommuni
ation se-quen
es of length k delivers a solution with relative performan
e guarantee m/k,provided that the optimum solution of the instan
e of the problem uses at least
k pro
essors. Unfortunately, the
omplexity of su
h an algorithm is O(mk) andit grows exponentially with the relative performan
e guarantee.Algorithm 2.5
an be also extended to a greedy Algorithm 2.6, sele
ting thepro
essors in the
ommuni
ation sequen
e one by one. As long as it is possibleto append a pro
essor to the
ommuni
ation sequen
e, the pro
essor whi
h
anpro
ess the greatest load is
hosen.The running time of Algorithm 2.6 is O(m2). The results delivered by thisalgorithm are not worse then for Algorithm 2.5. Still, the performan
e guarantee
m is tight. Indeed,
onsider the following problem instan
e. Let A1 = 1 − ε,
C1 = T −1, S1 = 0, and Ai = T , Ci = 0, Si = 0 for i = 2, . . . , m, where 0 < ε < 1is a small
onstant. Pro
essor P1
an pro
ess load of size T

A1+C1
= T

T−ε
> 1 intime T . For i ≥ 2, pro
essor Pi is
apable of pro
essing load of size T

T
= 1 intime T . Hen
e, Algorithm 2.6 will
hoose pro
essor P1 to obtain the �rst load30

Algorithm 2.6 GREEDY-OPT-V(T,m,A,C,S)
σ = ()

V = 0

j = 1while j 6= 0 do
j = 0for i = 1 to m doif Si < T and i is not
ontained in σ thenif j = 0 or (T − Si)/(Ai + Ci) > (T − Sj)/(Aj + Cj) then

j = iend ifend ifend forif j 6= 0 then
σ = σ|j {
on
atenation of σ and j}
V = V + (T − Sj)/(Aj + Cj)

T = T − Sj − Cj(T − Sj)/(Aj + Cj)end ifend whilereturn σ, V
hunk. Sending data to pro
essor P1 will take time T1 = C1
T

T−ε
= (T − 1) T

T−ε
.The remaining pro
essors Pi will be a
tivated afterwards and ea
h of them willobtain the load of size (T − T1)/Ai =

(T−(T−1) T
T−ε

)

T
= 1 − T−1

T−ε
= 1−ε

T−ε
. Thus, thetotal size of the pro
essed load will be V1 =

T+(m−1)(1−ε)
T−ε

.On the other hand, if pro
essor P1 is a
tivated as the last one, then ea
h ofpro
essors P2, . . . , Pm re
eives load of size 1. The time left for
ommuni
ationand
omputation on P1 is still T , and P1 pro
esses load of size T
T−ε

. The wholepro
essed load has size V2 = m− 1 + T
T−ε

. Thus, we have V2

V1
= mT−ε(m−1)

(m−1)(1−ε)+T
and

limT→∞
V2

V1
= m.The quality of the results obtained by Algorithm 2.6 in
omparison to Algo-rithm 2.5 strongly depends on the pro
essor parameters. To analyze the di�eren
e31

a)1

6

11

16

21

26

1E0 1E1 1E2 1E3 1E4

AVG

MAX

b)0.00

0.05

0.10

0.15

1E0 1E1 1E2 1E3 1E4

Alg. 2.5, AVG Alg. 2.5, WRST

Alg. 2.6, AVG Alg. 2.6, WRST

Figure 2.2: Experimental results for the �rst set of instan
es (slow
ommuni
ation). a)Number of pro
essors used by Algorithm 2.6. b) Quality of the solutions obtained byAlgorithms 2.5 and 2.6.between the two algorithms we tested them on sets of random instan
es. Ea
hinstan
e in the �rst set had m = 100 pro
essors, and their parameters Ai, Ci, Siwere
hosen randomly from the interval [0, 1]. For ea
h generated set of pro
es-sors, 5 instan
es were
reated, with T = 1, 10, 100, 1000, 10000. The quality of theobtained solutions was measured as the quotient Va

UpBo
, where Va is the amount ofload returned by the tested algorithm, and UpBo is the upper bound on the sizeof pro
essed load,
al
ulated as ∑m

i=1
T−Si

Ai+Ci
. The results of the experiments arepresented in Fig. 2.2. The number of pro
essors used by the greedy Algorithm 2.6depends on T (see Fig. 2.2a). Although for ea
h value of T there were instan
esfor whi
h only one pro
essor was used, the average and the maximum numberof used pro
essors (denoted by AVG and MAX in Fig. 2.2a,
orrespondingly)in
reases with T . Despite this, the performan
e of Algorithm 2.6 does not
hangemu
h with growing T (
f. Fig. 2.2b), both on average (denoted AV G) and in theworst
ase (denoted WRST). This
an be explained by the fa
t that the pro
es-sors a
tivated as the last ones re
eive only very small amounts of load. Moreover,when startup times Si are small in
omparison to T , then the amounts of loadpro
essed by a single pro
essor or a �xed group of pro
essors in
rease roughly lin-early with T . The upper bound on the total size of pro
essed load also in
reases32

Table 2.3: The quality of the solutions obtained by Algorithms 2.5 and 2.6 for these
ond set of instan
es (fast
ommuni
ation), T = 10000.Algorithm 2.5 Algorithm 2.6AVG WRST AVG WRST0.271073 0.061405 0.855082 0.598274linearly with T . Hen
e, the quality of the results obtained by both algorithms isalmost
onstant in relation to the upper bound when T grows beyond 100. Notethat it is mu
h better than the worst-
ase estimate 1
m

= 0.01. It
an be alsoseen in Fig. 2.2b that on average Algorithm 2.6 delivers solutions about 1.5 timesbetter than Algorithm 2.5.The above results
an be explained by the fa
t that the
ommuni
ation pa-rameters Ci, Si were
hosen from the same range as Ai. The time ne
essary tosend a
hunk of data was quite big and only a small number of pro
essors
ouldbe a
tivated. Therefore, we
reated another set of instan
es, where parameters Ciand Si were
hosen randomly from the interval [0, 0.001]. The remaining param-eters were sele
ted as in the previous set. Sin
e the startup times Si were verysmall in
omparison to all used value of T , the quality of the obtained solutionswas almost not
hanging with T . Therefore, we present only the average and theworst performan
e of both algorithms for T = 10000 in Table 2.3. The numberof pro
essors used by Algorithm 2.6 was m = 100 for all instan
es in this set.Therefore, the di�eren
e between the results obtained by Algorithms 2.5 and 2.6is greater than for the previous set of instan
es, for whi
h at most 26 pro
essorswere used by the greedy algorithm. The quality of the results of both algorithmsis better than for the previous instan
e set. On average, Algorithm 2.5 allows forpro
essing load of size greater than 27% of the upper bound and Algorithm 2.6greater than 85%.We
on
lude that the di�eren
e in the quality of the results obtained by Algo-rithms 2.5 and 2.6 depends on the
ommuni
ation parameters of the pro
essors.33

If
ommuni
ation is slow, then the quality of the obtained results is not verygood. However, this
an be the e�e
t of the used measure of quality. When
om-muni
ation is slow, the upper bound we
al
ulated may be mu
h greater thanthe optimum solution. If
ommuni
ation is fast in
omparison to
omputations,then the results obtained by both algorithms get better. The di�eren
e betweenthe results of Algorithms 2.5 and 2.6 is in
reasing and the greedy Algorithm 2.6delivers solutions of very good quality.2.5.2 Problem DLS{1Round}-OptTIn order to
reate an approximation algorithm for problem DLS{1Round}-OptT ,we
an, similarly as in Algorithm 2.5,
onsider only
ommuni
ation sequen
es oflength 1. This approa
h is used in Algorithm 2.7.Algorithm 2.7 SINGLE-PROCESSOR-OPT-T(V,m,A,C,S)
j = 1for i = 2 to m doif Si + (Ai + Ci)V < Sj + (Aj + Cj)V then

j = iend ifend forreturn σ = (j), T = Sj + (Aj + Cj)VNote that if pro
essor Pi needs time T to pro
ess the load of size V , then it
annot pro
ess the load of size V/m faster than in time T/m. As in the optimumsolution at least one pro
essor has to re
eive load of size at least V/m, Algorithm2.7 returns time T ≤ mTOPT (V). Observe that this bound is tight. Consider aninstan
e with Ai = 1, Ci = Si = 0 for i = 1, . . . , m. In the optimum solution,all pro
essors are a
tivated and they pro
ess load V in time V
m
. In the solutiondelivered by Algorithm 2.7 only one pro
essor is a
tivated and it needs time Vto pro
ess the whole load. The running time of Algorithm 2.7 is O(m).34

2.6 Con
lusionsIn this
hapter we analyzed single-round divisible load s
heduling in star net-works. We proposed fully polynomial time approximation s
hemes for problemsDLS{Ci = 0}-OptV and DLS{Ci = 0}-OptT . As a by-produ
t, a fully poly-nomial time dual approximation algorithm was designed for the �rst problem.We also analyzed the s
heduling problems in the system with �nite bandwidths(i.e. when Ci > 0). The order in whi
h the pro
essors should be a
tivated wasstudied as the main obsta
le in
reating approximation algorithms for this
ase.Unfortunately, we showed that some
lasses of pro
essor sequen
ing algorithms
annot be used to solve this problem. We
onje
ture that
onstru
ting the opti-mum sequen
e
an be
omputationally hard, and DLS{1Round} is not a sele
tionproblem. Finally, we proposed simple approximation algorithms giving tight rela-tive performan
e guarantee m for problem DLS{1Round}-OptV and for problemDLS{1Round}-OptT .

35

3 Multi-Round Pro
essingwith Limited Memory
The single-round organization of
omputations has several disadvantages. Firstly,the
ommuni
ation delays may be very long, while no
omputations
an be starteduntil the �rst pro
essor re
eives the whole amount of load assigned to it. Se
ondly,in pra
ti
e the whole load V is often too big to be stored in the memories of workerpro
essors at the same time. In su
h a
ase it is impossible to
reate a single-round s
hedule. It would be more pro�table to send the load in many smallpie
es (
hunks), so that
omputations start earlier and �t in
omputer memories.Consequently,
omputations
ould interleave with
ommuni
ations.In this
hapter we study multi-round divisible load s
heduling in systems withlimited memory. We analyze the star network topology des
ribed in Chapter 2.To take into a

ount memory limitations, we introdu
e one more parameter
har-a
terizing ea
h pro
essor Pi. Namely, Bi is the size of memory bu�er availableon Pi (e.g. in bytes). Our goal is to �nd a s
hedule pro
essing the load of a givensize in the shortest possible time. As ea
h pro
essor
an re
eive many messages,there are more s
heduling de
isions to be made than in the
ase of single-roundpro
essing:

• The set P ′ ⊆ P of pro
essors parti
ipating in the
omputations must be
hosen.
• The length n of the
ommuni
ation sequen
e must be sele
ted. It may be36

mu
h larger then the number of pro
essors m.
• The
ommuni
ation sequen
e must be
hosen. For multi-round pro
essing,the
ommuni
ation sequen
e is an arbitrary sequen
e whose elements areindi
es of pro
essors from the set P ′.
• The sizes of the load parts sent in ea
h message must be sele
ted.We start our
onsiderations with a short summary of the previous work onmulti-round divisible load s
heduling. In Se
tion 3.2 we des
ribe the mathe-mati
al model used in this
hapter. As our s
heduling problem is known to be
omputationally hard, we propose an exponential Bran
h&Bound algorithm anda geneti
 algorithm in Se
tion 3.3. We use the geneti
 algorithm not only asa metaheuristi
 solving the s
heduling problem, but also to gather informationabout the features of good quality solutions. The results obtained from an ex-tensive experimental study, as well as some analyti
al results, are presented inSe
tion 3.4. Based on this information, in Se
tion 3.5 we propose several
lasses ofs
heduling heuristi
s. We analyze and
ompare them, exposing their advantagesand weaknesses.3.1 Earlier ResultsS
heduling divisible loads in systems with limited memory was �rst analyzed in[37℄. The authors
onsidered single-round s
hedules only, hen
e they assumedthat the whole load �ts in the memory bu�ers of the workers. Other assumptionswere that all pro
essors take part in the
omputations and that the a
tivationsequen
e is given. The
ommuni
ation delay model was linear (Si = 0 for 1 ≤ i ≤

m). A fast heuristi

alled In
remental Balan
ing Strategy was proposed. Thisalgorithm did not always deliver optimum solutions, what was shown in [30℄.A more general a�ne
ommuni
ation delay model was studied in [30℄. Alinear programming formulation of the s
heduling problem was designed for a37

given a
tivation sequen
e. Choosing the optimum set P ′ of pro
essors taking partin the
omputations in systems with limited memory and a�ne
ommuni
ationmodel has been shown to be NP-hard in [31℄ and strongly NP-hard in [4℄. In [31℄the authors proposed and evaluated experimentally a Bran
h&Bound algorithmand several heuristi
s for single-round s
heduling with limited memory.Multi-round divisible load s
heduling with limited memory was �rst studiedin [29℄. Only the size of the
hunk
urrently pro
essed by a given pro
essor wassubje
t to the memory limit. The sizes of load parts arriving in the ba
kgroundof
omputations were not taken into a

ount. A more detailed memory model,in whi
h memory limits a�e
ted all
hunks of data existing at a given pro
essor,was used in [26℄. A Bran
h&Bound algorithm and a geneti
 algorithm solving theanalyzed s
heduling problem were proposed. However, the mathemati
al model ofmemory management was simpli�ed to make the problem more tra
table. It wasassumed that memory o

upation is de
reasing linearly during the
omputations.This simpli�
ation has been removed in [27℄. We dis
uss it in more detail in thenext se
tion.3.2 Problem FormulationBefore we present the mathemati
al model used in this
hapter, let us brie�yanalyze di�erent models of memory management. The simplest approa
h is toassume that only one load
hunk may be present in the memory of a
omputer ata time [31, 37℄. The size of a pie
e of data sent to pro
essor Pi
annot ex
eed thelimit Bi (
f. Fig. 3.1a). Thus, a pro
essor
annot perform
omputations whilere
eiving a new pie
e of load. This results in long idle times and de
reases thee�
ien
y of pro
essing.In [26℄ it was assumed that ea
h pro
essor
an store multiple load
hunksat the same time and the size of these
hunks together
annot ex
eed the limit38

Figure 3.1: Memory management: a) ea
h
hunk uses whole bu�er, b) memory graduallyreleased,
) blo
k memory releases.
Bi. It was possible to gradually upload the data without stopping the
omputa-tions. Consequently, the
omputations
ould be started qui
kly by sending shortinitial
hunks, and performed
ontinuously by uploading data while
omputing.However, to make the problem more tra
table, it was also assumed in [26℄ thatmemory is released to the operating system with very �ne granularity. The sizeof allo
ated memory was de
reasing linearly during the
omputations, as shownin Fig. 3.1b, and it was possible to
ompute the optimum load
hunk sizes us-ing linear programming for a given
ommuni
ation sequen
e. However, this wayof releasing memory is rather unusual, be
ause releasing memory in many smallpie
es would also require allo
ating memory in very �ne pie
es. Obtaining suf-�
ient memory for a pie
e of load would
onsist of multiple mallo
/new
alls tothe runtime environment. Consequently, a
quiring memory would be
ompli
atedand time-
onsuming.Therefore, in this work we assume that memory allo
ation and release haveblo
k nature. When a load
hunk of size α is about to arrive at a pro
essor, ablo
k of memory of size α is requested from the operating system. This blo
k is re-leased immediately after �nishing pro
essing the
orresponding
hunk of data (
f.Fig. 3.1
). The sum of sizes of memory blo
ks
oexisting at pro
essor Pi
annotex
eed the limit Bi. In other words, for ea
h moment t, we have ∑l∈H(i,t) αl ≤ Bi,where H(i, t) is the set of
hunks re
eived by Pi and not
ompleted by time t. Wewill be saying that
hunks simultaneously existing in the memory bu�er overlap.Let us introdu
e the assumptions and notations ne
essary to formulate our39

s
heduling problem as a mixed nonlinear mathemati
al program. The load isdelivered to the pro
essors in a sequen
e of
ommuni
ations. The a
tivation se-quen
e may be arbitrary. In parti
ular, some pro
essors may re
eive no load,while some other pro
essors re
eive multiple data
hunks. If the message is re-
eived by a pro
essor without any load in the bu�er, then the
omputations startimmediately after the end of
ommuni
ation. If the bu�er already stores someunpro
essed
hunks, then the pro
essor swit
hes from
omputing one load
hunkto the next one without idle time in the
omputations. If the whole memory bu�erof a pro
essor is o

upied, then no more load
an be uploaded and,
onsequently,idle times in
ommuni
ation may appear. We assume that the load
hunks as-signed to a given worker are pro
essed in the order in whi
h they were re
eived.Let us assume that the sequen
e σ = (σ(1), . . . , σ(n)) of the
ommuni
ations tothe pro
essors is given, where σ(i) is the index of the pro
essor re
eiving the i-th
hunk. The size of this
hunk is αi. The numbers of the load
hunks as they aresent o� the originator will be
alled global numbers. For simpli
ity of notationwe will also use a lo
al numbering of the
hunks re
eived by a
ertain pro
essor.We de�ne a fun
tion ρ(i, j) as a mapping from pro
essor Pi lo
al
hunk number
j to the global numbering. The number of load pie
es re
eived by pro
essor Piwill be denoted by ni. In the mathemati
al program we want to
onstru
t, itmust be guaranteed that
hunks simultaneously existing in a pro
essor bu�er donot ex
eed the memory size. To formulate su
h a
onstraint we have to know thesets of overlapping load
hunks. However, this depends on the
ommuni
ation se-quen
e,
hunk
ommuni
ation and
omputation times, and hen
e, on the
hunksizes, whi
h are unknown. Let us de�ne binary variables xijk for 1 ≤ i ≤ m,
1 ≤ j < k ≤ ni in the following way. Variable xijk is equal to 1 if the j-th
hunkon pro
essor Pi overlaps with
hunk k on this pro
essor, and equal to 0 otherwise.In other words, xijk = 1 means that pro
essor Pi started re
eiving
hunk k before
omputing the j-th
hunk was �nished. Both k and j are lo
al
hunk numbers.40

Our s
heduling problem
an be formulated in the following way [11, 27℄.minimize Tmaxsubje
t to
t1 = 0 (3.1)
ti ≥ ti−1 + Sσ(i−1) + Cσ(i−1)αi−1 i = 2, . . . , n, (3.2)

fik ≥ tρ(i,k) + Si + Ciαρ(i,k) + Aiαρ(i,k) (3.3)
i = 1, . . . , m, k = 1, . . . , ni,

fik ≥ fi,k−1 + Aiαρ(i,k) (3.4)
i = 1, . . . , m, k = 2, . . . , ni,

fij ≥ tρ(i,k) − (1− xijk)M i = 1, . . . , m, (3.5)
j = 1, . . . , ni − 1, k = j + 1, . . . , ni

fij ≤ tρ(i,k) + xijkM i = 1, . . . , m, (3.6)
j = 1, . . . , ni − 1, k = j + 1, . . . , ni

xijk ≤ xilk i = 1, . . . , m, j = 1, . . . , ni − 1, (3.7)
k = j + 2, . . . , ni, l = j + 1, . . . , k − 1

xijk ≥ xijl i = 1, . . . , m, j = 1, . . . , ni − 1, (3.8)
k = j + 1, . . . , ni, l = k + 1, . . . , ni

αρ(i,j) +

ni
∑

k=j+1

xijkαρ(i,k) ≤ Bi i = 1, . . . , m, j = 1, . . . , ni (3.9)
V =

n
∑

i=1

αi (3.10)
Tmax ≥ fini

i = 1, . . . , m (3.11)
xijk ∈ {0, 1} (3.12)In the above formulation variables αi de�ne the load partitioning resultingin the minimum s
hedule length for the
ommuni
ation sequen
e σ. Inequalities(3.1), (3.2) determine the moments ti when the originator starts sending the i-th
hunk. Constraints (3.3),(3.4) determine the moment fik when pro
essing
hunk

k of Pi �nishes. Inequalities (3.5), (3.6) guarantee that pro
essing of
hunk j is�nished before starting sending message k if xijk = 0, or that it is not �nished41

before starting sending message k if xijk = 1. Due to inequalities (3.7), if
hunk jis not pro
essed when
hunk k arrives, then the
hunks between j and k are alsounpro
essed. Inequalities (3.8) ensure that if
hunk j is �nished before arrivingof some
hunk k, then j
annot be
ome unpro
essed again. By inequalities (3.9)memory limits are observed. The whole load is pro
essed by (3.10). The s
hedulelength is not shorter than the
ompletion time on any pro
essor by
onstraints(3.11). Formulation (3.1)-(3.12) is a mixed quadrati
 mathemati
al program, asit uses binary variables (xijk),
ontinuous variables (αi, fik, ti, Tmax), and mul-tipli
ation of variables in
onstraints (3.9). Solving mixed quadrati
 programsis
omputationally hard. Thus, it
an be expe
ted that solving the program(3.1)-(3.12) using general-purpose methods is
omputationally hard although thea
tivation sequen
e σ is given. This is in sharp
ontrast with the
omplexity ofmemory management models used in [26, 31℄, for whi
h linear programs were suf-�
ient to obtain the optimum load partition for a given
ommuni
ation sequen
e
σ. It
an be seen that a more
areful representation of memory managementand
hunk overlap made the mathemati
al model mu
h more involved. Note that(3.1)-(3.12) is very general and may
over various s
enarios of optimum memorymanagement. For example, it is
apable of representing a number of independentbu�ers of equal or di�erent sizes swapped on the pro
essors.Let us note that for given xijk the formulation (3.1)-(3.12) be
omes a linearprogram (LP). Hen
e, we will split our problem into two parts. The �rst,
om-binatorial part is to
hoose not only the
ommuni
ation sequen
e, but also tode
ide whi
h
hunks overlap with ea
h other. The se
ond, algebrai
 part is to�nd the optimum load distribution using the linear program for a given
ommuni-
ation sequen
e and overlap information. In the following dis
ussion, we will usea simpler overlap en
oding. Instead of binary variables xijk we will use integervariables zij , where zij is the lo
al number of the last
hunk overlapped by
hunk
j on pro
essor Pi. Intuitively, zij denotes the end of the range of overlapping42

hunks
omprising
hunk j on Pi.The mathemati
al program
omputing the optimum load distribution for agiven
ommuni
ation sequen
e σ and overlap information en
oded by values zij,may be formulated as follows [12℄.minimize Tmaxsubje
t to
t1 = 0 (3.13)
ti ≥ ti−1 + Sσ(i−1) + Cσ(i−1)αi−1 i = 2, . . . , n, (3.14)

fik ≥ tρ(i,k) + Si + Ciαρ(i,k) + Aiαρ(i,k) (3.15)
i = 1, . . . , m, k = 1, . . . , ni,

fik ≥ fi,k−1 + Aiαρ(i,k) (3.16)
i = 1, . . . , m, k = 2, . . . , ni,

fij ≥ tρ(i,zij) i = 1, . . . , m, j = 1, . . . , ni − 1 (3.17)
fij < tρ(i,zij+1) i = 1, . . . , m, j = 1, . . . , ni − 1 (3.18)

zij
∑

k=j

αρ(i,k) ≤ Bi i = 1, . . . , m, j = 1, . . . , ni (3.19)
V =

n
∑

i=1

αi (3.20)
Tmax ≥ fini

i = 1, . . . , m (3.21)In the above formulation
onstraints (3.13)-(3.18)
orrespond to (3.1)-(3.6),and
onstraints (3.19)-(3.21)
orrespond to (3.9)-(3.11).3.3 Bran
h&Bound Algorithm and Geneti
AlgorithmIn this se
tion we propose two basi
 algorithms solving our s
heduling problem.We start with an exponential Bran
h&Bound algorithm. Sin
e its running time43

a) b)Figure 3.2: En
oding overlaps on Pi using a) zij , b) δij .is una

eptable for pra
ti
al use, we
onstru
t a geneti
 algorithm. We tuneits parameters based on the results delivered by the Bran
h&Bound algorithm.Both algorithms solve the
ombinatorial part of the problem and use the linearprogram (3.13)-(3.21) to solve the algebrai
 part.Before we present the algorithms, let us introdu
e a more pra
ti
al overlapen
oding, whi
h was used in the a
tual implementation. The last
hunk zijoverlapping with
hunk j
annot be sent before j. Thus, values zij < j areinfeasible. Note that if
hunk j on pro
essor Pi overlaps with
hunk k > j, thenit must also overlap with all
hunks between j and k. Moreover,
hunks withnumbers greater then zij
annot overlap with j anymore. Hen
e, there is a lineseparating the overlapping and the non-overlapping
hunks. Instead of zij we
anuse integer variables δij denoting by how many
hunks the overlapping front isshifted ahead with
hunk j on pro
essor Pi (
f. Fig. 3.2). For given values of
δij we
an
ompute values zij = min{ni,max{zi,j−1, j} + δij}, where zi0 = 1. Inother words, δij is en
oding in
rements zij − zi,j−1. For example, if ∀i, j, δij = 0,then
hunks do not overlap, if ∀i, j < ni, δij = 1, then ea
h pair of
onse
utive
hunks overlap. This overlap en
oding is used in all the following algorithmswhi
h dire
tly refer to overlap values.

44

3.3.1 Bran
h&Bound AlgorithmA Bran
h&Bound algorithm (B&B) is a standard te
hnique used to solve hard
ombinatorial optimization problems. The algorithm is de�ned by a bran
hingrule and a bounding rule. The bran
hing rule divides the set of possible solutionsuntil distinguishing unique solutions. The bounding rule eliminates the solutionswhi
h are infeasible or their quality is
ertainly not better than the quality ofsome already known solution.In our s
heduling problem the Bran
h&Bound algorithm has to �nd a
om-muni
ation sequen
e σ and determine
hunk overlapping. The
ommuni
ationsequen
es are built by appending a new pro
essor to an already
onstru
ted lead-ing sequen
e. Thus, any partial sequen
e σ represents all sequen
es starting with
σ. This set of sequen
es is bran
hed into subsets of sequen
es beginning with
(σ, P1), . . . , (σ, Pm). For ea
h analyzed
ommuni
ation sequen
e σ
hunk overlap-ping must be
hosen. This is done by the se
ond bran
hing s
heme. For pro
essor
Pi the overlap is determined by a ve
tor (δi1, . . . , δini

). A sequen
e (δi1, . . . , δij)en
oding the overlap for the �rst j
hunks re
eived by Pi, is bran
hed into overlapen
oding strings (δi1, . . . , δij , 0), . . . , (δi1, . . . , δij, ni −max{j + 1, zij}).The enumeration of possible solutions is bounded by two methods. For agiven sequen
e σ a lower bound LB(σ) on the s
hedule length is
omputed asfollows. The startup times in σ are summed up: τ1 = ∑n
i=1 Sσ(i). The maximumload V ′ that
ould be pro
essed during the
ommuni
ation startup times is V1 =

∑

i∈σ(τ1 −
∑g(i)

j=1 Sσ(j))/Ai, where g(i) is the index of the �rst
ommuni
ation topro
essor Pi in σ. The notation ∑

i∈σ means that if i ∈ σ, then it is
ounted onlyon
e, like a member of a set. The load must be sent from the originator in time atleast τ2 = V Cmin. In parallel with this
ommuni
ation, at most V2 = τ2
∑m

i=1
1
Aiunits of load
ould be pro
essed. If V3 = V − V1 − V2 > 0, then this remainingload V3 will be pro
essed in time at least τ3 = V3/(

∑m
i=1

1
Ai
). The lower boundis equal to LB(σ) = τ1 + τ2 + max{0, τ3}. Let T be the length of the best45

already known solution. If T ≤ LB(σ) then the su

essors of σ are dis
arded.The se
ond me
hanism used for sequen
e elimination is based on the maximummemory MEM(σ) =
∑n

i=1Bσ(i) whi
h
ould possibly be
ome available in σ. If
MEM(σ) < V , then the memory available for holding the load is insu�
ient,the
ommuni
ation sequen
e is too short and must be expanded. In su
h a
ase the enumeration of the various overlap sequen
es was not attempted for thegiven σ. Note that there are O(mn)
ommuni
ation sequen
es of length n for
m pro
essors, and for ea
h pro
essor the number of possible ways of overlappingthe
ommuni
ation
hunks is also exponential in ni. Hen
e, due to the high
omputational
omplexity, an upper bound nMAX on the length n of generatedsequen
es was also imposed. This was done to make the B&B algorithm moreusable, and it was not needed to properly de�ne the algorithm. Consequently,be
ause of the
onstraint nMAX , in some
ases B&B was not able to deliver anoptimum, or even a feasible solution.3.3.2 Geneti
 AlgorithmA geneti
 algorithm (GA), similarly as B&B, is a standard te
hnique used to solvehard
ombinatorial optimization problems. The idea of the geneti
 algorithmis to mimi
 the pro
ess of evolution in nature. GA is a randomized algorithmwhi
h maintains a population of solutions (
alled
hromosomes) instead of a singlesolution only. Geneti
 operators are used to transform the population in thedire
tion of improving solutions quality. To de�ne a geneti
 algorithm, one hasto determine solution en
oding, the set of geneti
 operators, algorithm stopping
riteria and several implementation-dependent tunable parameters.In our implementation of GA we en
ode solutions as pairs of sequen
es ofequal length. The �rst of them is the
ommuni
ation sequen
e σ. The se
ondsequen
e O is used to represent the overlap. More pre
isely, O(i) is the value of
δσ(i)j , where j is the number of load
hunks sent to pro
essor Pσ(i) up to the i-th46

hunk sent o� the originator. The (equal) lengths of σ and O
an be adjustedby GA to
onstru
t the best solution. Knowing the sequen
es σ and O, we
anformulate the linear program (3.13)-(3.21)
al
ulating values αi and Tmax de�nedin Se
tion 3.2. The �tness (quality) of the solution is measured as the inverse ofthe s
hedule length Tmax obtained from the linear program.We apply three geneti
 operators: sele
tion,
rossover and mutation. Thesele
tion of the solutions for the new population is done by a
ombination ofelitist and roulette wheel method and is strongly
onne
ted with the
rossoveroperation. First,
hromosomes whi
h should undergo
rossover operation are
hosen. Chromosomes are sele
ted with probability 1

T j
max

/
∑G

j=1
1

T j
max

, where T j
maxdenotes the s
hedule length for
hromosome j, and G is the size of the population.The total number of sele
ted parents is GpC , where pC is a tunable algorithmparameter
alled
rossover probability. In the
rossover operation the sele
tedparents are randomly paired and
ombined. For example, let

[(σ1(1), . . . , σ1(n
′)), (O1(1), . . . , O1(n

′))]and
[(σ2(1), . . . , σ2(n

′′)), (O2(1), . . . , O2(n
′′))]be two parent solutions, with
ommuni
ation sequen
e lengths n′, n′′, respe
tively.Let k ≤ n′, l ≤ n′′ be two randomly
hosen
rossover points. The two o�springsolutions are en
oded in strings

[(σ1(1),. . . , σ1(k), σ2(l + 1),. . . , σ2(n
′′)), (O1(1),. . . , O1(k), O2(l + 1),. . . , O2(n

′′))],and
[(σ2(1),. . . , σ2(l), σ1(k + 1),. . . , σ1(n

′)), (O2(1),. . . , O2(l), O1(k + 1),. . . , O1(n
′))].The o�spring repla
es the parents in the new population. Note that be
ause of
hoosing two
rossover points l and k the o�spring string lengths may be di�erentthan in their parents. The rest of the new population is sele
ted by the elitistmethod, so that the best (1 − pC)G
hromosomes from the old population arealways preserved. The elitist
omponent in the sele
tion is ne
essary be
ause the47

di�eren
es in the solution �tness are often very small, and the best solutions maybe lost in the randomized sele
tion.Mutation operator
hanges randomly
hosen genes (i.e. pairs (σ(i), O(i))) inthe population to di�erent values. Ea
h gene is
hosen for mutation with proba-bility pM . Here pM is a tunable algorithm parameter
alled mutation probability.When gene (σ(i), O(i)) is mutated, the number σ(i) is
hanged to a randomly
hosen pro
essor index between 1 and m, and the value O(i) is
hanged by atmost 1.The algorithm stops after a �xed number of iterations it1. There is also alimit it2 on the number of iterations without an improvement in the quality ofthe best solution found so far. If the iteration limit it2 is rea
hed before it1, thenthe population is repla
ed with randomly generated
hromosomes and the sear
his restarted (the best solution found so far is re
orded).GA is a randomized algorithm whose parameters must be tuned. The follow-ing pro
edure was applied. A set of 200 random instan
es with m = 3, . . . , 6, V =

20, Bi uniformly distributed in [0, 10], Ai, Ci, Si uniformly distributed in [0, 1],were generated and solved to the optimum by B&B. The average relative dis-tan
e of the s
hedule length Tmax from the optimum length was the measure ofthe tuning quality. The tunable parameters were sele
ted one by one. The pro-
ess of sele
ting the tunable parameters is illustrated in Fig. 3.3. Intuitively, abig population size G should allow for �nding good solutions in small number ofiterations. However, maintaining big populations is
omputationally expensive.The population size G = 20 was sele
ted as a
ompromise between the speed of
onvergen
e to the near-optimum solutions, and the
omputational
omplexity(
f. Fig. 3.3a). To sele
t the
rossover probability, the mutation operator wasswit
hed o�. Crossover probability pC = 0.8 was sele
ted (Fig. 3.3b). It turnedout that the majority of the population (80%) are o�spring. Thus, it
an be
on-
luded that
rossover is an e�e
tive optimization operator. After �xing G and pC ,48

a)1.00

1.04

1.08

1.12

1.16

1.20

1E1 1E2 1E3 b)1.03

1.04

1.05

1.06

1.07

1.08

1.09

0.01 0.1 0.3 0.6 0.8

)1.000

1.010

1.020

1.030

1.040

1.050

0.001 0.01 0.03 0.1 0.3 0.5 d)1.000

1.001

1.002

1.003

1.004

1.005

1.006

100/10 250/25 500/50 750/75 1000/100

0

20

40

60

80

100

120

140

160

Figure 3.3: GA tuning. a) Solution quality vs. population size G, b) solution quality at100th iteration vs. pC ,
) solution quality at 100th iteration vs. pM , d) solution qualityand exe
ution time for various iteration limits it1/it2.mutation probability pM = 0.1 was
hosen (Fig. 3.3
). In Fig. 3.3d the qualityof tuning is shown for various
ombinations of maximum number of iterationsand iterations without quality improvement. Note that improving the averagesolution quality by 0.4% requires nearly 6-fold in
rease of the exe
ution time.Hen
e, it1 = 100 and it2 = 10 were sele
ted as a
ompromise between quality and
omplexity.3.3.3 Comparison of B&B and GALet us now dis
uss the advantages and weaknesses of B&B and GA algorithms.In general, B&B guarantees obtaining optimum solutions, but at very high
om-putational
ost. Therefore, we had to impose a limit nMAX on the maximum49

a)1E-2

1E-1

1E0

1E1

1E2

1E3

1E4

1E5

0 10 20 30 40 50 b)1E0

1E1

1E2

1E3

1E4

1E5

1E6

1 2 3 4 5 6 7 8 9 10Figure 3.4: GA and B&B exe
ution times, a) vs. sequen
e length, b) vs. pro
essorsnumber m.number of
ommuni
ations in the s
hedule. This modi�ed B&B algorithm
andeliver optimum solutions only for su
h instan
es, for whi
h the optimum
om-muni
ation sequen
e is short enough. In Fig. 3.4 we
ompare average exe
utiontime of B&B and GA on a Pentium IV 1 GHz CPU. In the
ase of B&B the ex-e
ution time is shown as a fun
tion of nMAX (Fig. 3.4a). We use nMAX be
auseit turned out that this parameter is the main fa
tor determining the size of thesear
h tree in B&B. The minimum possible
ommuni
ation sequen
e length is
nMIN = ⌈ V

Bmax
⌉. It is hardly ever the length of the best sequen
e, or the depthof the B&B sear
h tree. To be
ertain that the best
ommuni
ation sequen
eobtained in B&B is indeed optimum, it must have length at most nMAX − 1.Instan
es satisfying this
ondition are easier to solve than the instan
es whi
hfor
e B&B to sear
h a tree as deep as nMAX , and presenting the exe
ution timesas a fun
tion of the guaranteed optimum
ommuni
ation sequen
e length wouldnot represent the real exe
ution time of B&B. As it
an be seen, even average ex-e
ution time of B&B for nMAX = 7, m = 8 is of order of one day on a Pentium IV1 GHz CPU. Hen
e, B&B is not an a

eptable tool for studying features of greatnumbers of even moderate size instan
es. For GA, the exe
ution time is shownvs. the length n of the best obtained
ommuni
ation sequen
e. In Fig. 3.4b the50

exe
ution time vs. the number of pro
essors m is shown.From the tuning pro
ess des
ribed in the previous se
tion we
on
lude thatGA is
apable of delivering high quality solutions on average. The running timeof GA is mu
h shorter than for B&B, what
an be seen in Fig. 3.4. The maindisadvantage of GA as a tool for analyzing the problem properties is that it isa randomized algorithm. In the limit of in�nite iteration number, all feasiblesolutions are rea
hable in a pro
ess of random transformations of the solutions.However, for a �nite number of iterations we have no guarantee that the algorithm�nds a near-optimum solution. Solutions whi
h are not optimum may be tooeasy to �nd by GA, what may give wrong indi
ations on the nature of the solvedproblem. Another feature of GA is that solutions whi
h have
omplex stru
turemay be too improbable to be built in a �nite number of iterations. For example,the
ommuni
ation sequen
e may in
lude some pro
essor whi
h is not present inthe optimum solution, be
ause the probability of sele
ting any pro
essor at leaston
e in the sequen
e is high. Conversely, it is very unlikely that GA builds along repetitive pattern of
ommuni
ations be
ause the probability of generatinga
ertain pattern de
reases exponentially with its length. Another
onsequen
eof randomness is that for the same instan
e GA often returns di�erent solutionsin
onse
utive runs. For example, for a set of 45 random instan
es ea
h solved20 times, the quotient Tmax

Tmax
where Tmax is the average s
hedule length in all runsfor a single instan
e, had the
oe�
ient of variation 6%, and the average (overall quotients Tmax

Tmax
) was 0.9997.We have to
on
lude that B&B is nearly unusable even on very moderate sizeinstan
es. GA has mu
h shorter exe
ution time, and in the range in whi
h it
ould be
ompared against B&B, the quality of the GA solutions is very good.Hen
e, despite the limitations of GA, we will use this algorithm as a repla
ementof B&B in the analysis of the s
heduling problem features.

51

3.4 Properties of the SolutionsIn this se
tion we analyze the
hara
teristi
s of the near-optimum solutions ofour s
heduling problem. As the algebrai
 part of the problem is solved optimallyfor given sequen
es σ and O, we
on
entrate on the features in the
ombinatorialpart of the solutions. The following properties are studied:
• the need and the extent of the overlap,
• the length of the
ommuni
ation sequen
e,
• the number of used pro
essors,
• the set of used pro
essors,
•
hunk sizes,
• parameters of instan
es whi
h make them easy or hard to solve.We draw
on
lusions both analyti
ally and on the basis of experimental results.Both GA and B&B were implemented in GNU C++. Linear programs were solvedusing lp_solve pa
kage [41℄. Over 30000 test instan
es were generated and solvedby GA on Pentium IV 1 GHz CPU with Linux. Unless stated otherwise, the testdata were generated in the following way. In the experiments involving analysis ofthe in�uen
e of the system parameters A,B,C, S on solution
hara
teristi
s, theinstan
e parameters Ai, Bi, Ci, Si were generated from U(0, 1], i.e. the uniformdistribution within range (0,1℄. The number of pro
essors was generated from

U [1, 10], and all experiments were repeated for V ∈ {2, 5, 10, 20, 50}. In theexperiments
on
erning a
ertain parameter (say A), this parameter was �xed toa given value on all pro
essors (e.g. ∀i, Ai = 0.01), and the remaining parameterswere generated as des
ribed above. For ea
h
ombination of V and a
ertainvalue of the parameter (e.g. Ai = 0.01), 1000 instan
es were generated.Before we start the analysis of the properties of the solutions, let us pointout an important di�eren
e in the s
hedule stru
ture between the divisible loads
heduling problem with and without memory limitations. It has been shown52

in [48℄ that if there are no memory limitations, then in the optimum solution ofthe problem there are no idle times in
omputations and in
ommuni
ations. Weprove below that it is not the
ase when memory limits are present.Proposition 3.1. The optimum solution of an instan
e of the divisible loads
heduling problem with limited memory may
ontain idle times in the
ompu-tations and in the
ommuni
ation.Proof. Suppose m = 1, A1 = 1, B1 =
V
2
, C1 = 0, S1 = M , where M ≫ V is a big
onstant. The minimum number of
ommuni
ations is nMIN = V

B1
= 2, for whi
hthe s
hedule length is Tmax = 2M + V . There is an idle interval of length V

2
inthe
ommuni
ations, and an idle interval of length M in the
omputations. Idletimes in the
omputations
annot be
losed be
ause any load whi
h �ts in memorysize B1 = V

2
is pro
essed in shorter time than the startup time S = M ≫ V .Suppose that we want to
lose the idle interval in the
ommuni
ations by sendingmessages shorter than V

2
. However, in this
ase at least three
hunks would haveto be sent from the originator. Then s
hedule length would be at least 3M . Sin
e

M
an be arbitrarily big in relation to V , the di�eren
e between the length ofa s
hedule with idle times and the length of the s
hedule without idle times in
ommuni
ation
an be arbitrarily big in absolute terms.3.4.1 Depth of OverlapThe depth of overlap, de�ned by numbers δij , shows how many
hunks interferewith ea
h other. The existen
e of non-zero overlaps means that the pro
essormust a

umulate the load to be pro
essed. It is of pra
ti
al importan
e to verifyif the a

umulation of the load is a
tually ne
essary, and to what degree.Let us start with single pro
essor
onsiderations. When m = 1, the s
hedulingproblem may seem simple, but it is not trivial, sin
e to
onstru
t a s
hedule onehas to de
ide on the overlap and the sizes of load
hunks. It is also of pra
ti
al53

importan
e be
ause it indi
ates how a very powerful server should
ooperate withea
h of the worker
omputers.We will be saying that solutions for whi
h
hunks overlap by not more than
1, i.e. ∀i, j, δij ≤ 1, have overlap at most 1. If ∀i, j < ni, δij = 1, then wewill be saying that a solution has overlap 1. Let us analyze a spe
i�
 overlap
on�guration. Assume that a s
hedule has overlap 1 (∀j < n1, δ1j = 1), so thatthe
hunks overlap with their dire
t prede
essor and dire
t su

essor (if any). If
hunk 1 has size α1, then by (3.19)
hunk 2 has size at most α2 ≤ B1−α1,
hunk3 has size at most α3 ≤ B1 − α2, et
. Thus, if all pairs of
hunks have theirmaximum sizes, then the sizes of all
hunks are in fa
t determined by a singlevariable α1. The size of pro
essed load is n

2
B1 if
ommuni
ation sequen
e haseven number n of messages, or it is n−1

2
B1+α1 if n is odd. Hen
e, it is possible to
onstru
t su
h a s
hedule if the number of messages is at least n = ⌈2V

B1
⌉. We willsay that solutions for m = 1 with n = ⌈2V

B1
⌉ and overlap 1 are
oupled, be
ause
onse
utive
hunks
reate
ouples
oexisting in memory.Proposition 3.2. The
oupled solutions are not arbitrarily bad.Proof. For the optimum solution we have T ∗

max ≥ ⌈ V
B1
⌉S1+C1V = nMINS1+C1Vand T ∗

max ≥ A1V . For a
oupled solution, Tmax ≤ ⌈2V
B1

⌉S1 + C1V + A1V =

nCPLS1 + C1V + A1V and nCPL ≤ 2nMIN .1. If A1V ≤ nMINS1 + C1V then
Tmax

T ∗
max

≤
nCPLS1 + C1V + A1V

nMINS1 + C1V
≤

3nMINS1 + 2C1V

nMINS1 + C1V
≤ 3.2. If nMINS1 + C1V ≤ A1V then

Tmax

T ∗
max

≤
nCPLS1 + C1V + A1V

A1V
≤

2(nMINS1 + C1V) + A1V

A1V
≤ 3.

54

-8 -6 -4 -2 0 2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

Figure 3.5: m = 1, quality of the solutions with various
ommuni
ation sequen
e lengthsand the best overlap, relative to
oupled solutions.The above proposition gives an indi
ation on the quality of
oupled s
hedulesin the worst
ase. The average quality of su
h solutions was tested experimen-tally. In Fig. 3.5 the quality of s
hedules for m = 1, various sequen
e lengths,and the best overlap
hosen by B&B algorithm is shown. The
oupled solutionquality is used as a referen
e, and is represented by the point at the
oordi-nates (0, 1). Solutions with for
ed shorter sequen
es are shown on the negativepart of horizontal axis and solutions with for
ed longer sequen
es on the positivepart. The best, the worst, and the average distan
e from the
oupled solution isshown. The results in Fig. 3.5 represent 888 randomly generated instan
es with
A1, C1, S1 ∼ U [0, 1], B1 ∼ U(0, 10), V = 10. It
an be seen that typi
ally the bestsolutions are not very mu
h better than the
oupled ones. In
reasing n beyond
⌈2V
B1

⌉ is not redu
ing s
hedule length by more than approximately 13%. Thus,on average
oupled solutions provide a simple and e�
ient method of solving the
ombinatorial part of our problem on a single pro
essor. Let us note that theoptimum
ommuni
ation sequen
e length n may be smaller or greater than ⌈2V
B1

⌉depending on the instan
e.Now we will move to analyzing the overlap for larger numbers of pro
essors.Let us start with an observation that arbitrarily deep overlaps may be ne
essary.
55

Figure 3.6: An instan
e with arbitrarily big overlap in Theorem 3.3.Theorem 3.3. There exist instan
es whose optimum solutions
ontain arbitrarilybig overlap.Proof. Let k,M be two integers, where k > 5 is even, and 2k−3k−1 > M > 3k+1.Consider the following example: m = 3, V = 22k + k2k + 1,

A1 =
1

22k
, B1 = 22k, C1 = 0, S1 = M,

A2 =
1
2k
, B2 = 2k, C2 = 0, S2 = 2,

A3 = M + 3k − 3, B3 = V, C3 = k − 1, S3 = 0.We want to build a s
hedule of length T = M +3k. We will show that no shorters
hedule may exist.To pro
ess V , one a
tivation of P1 is ne
essary. Pro
essors P2 and P3
annotpro
ess the load V in time T . Indeed, note that in time T pro
essor P3 is
apableof pro
essing at most T
A3

= M+3k
M+3k−3

= 1 + 3
M+3k−3

< 2 units of load. Hen
e,if pro
essor P1 was not a
tivated, then P2 would have to pro
ess more than 22kunits of load. This would require sending more than 22k

B2
= 2k messages to P2,and would take time longer than 2kS2 = 2k+1 > T . Thus, pro
essor P1 must takepart in
omputations. Moreover, P1
annot be a
tivated more than on
e be
ause

2S1 = 2M > T .Now we will prove that pro
essor P2 must re
eive k messages, pro
essing ofwhi
h is not overlapping.Consider the minimum load V − B1 = k2k + 1 remaining to be pro
essed by56

P2, P3. As we noted above, in time T pro
essor P3 is
apable of pro
essing lessthan 2 units of load. Thus, to pro
ess the remaining load, P2 must re
eive atleast k messages. If in the k messages ea
h one
arries load B2, then the whole
ommuni
ation to P2 and
omputation on P2
an be feasibly performed in time
3k as shown in Fig. 3.6. Note that if k
hunks are sent to P2, then none of themmay overlap. Were it otherwise, the maximum load whi
h
ould be sent to P2would be (k − 1)B2, and P3 would have to pro
ess load of size at least 2k + 1,what is impossible in time T .On the other hand, assume that P2 re
eives at least k+1 messages. Then, thetime of
ommuni
ation with P1 and P2 is at least M + S2(k + 1) = M + 2k + 2.There remain k−2 time units for
ommuni
ation with P3. The maximum amountof load whi
h
an be sent to P3 in this time is k−2

k−1
. Hen
e, P2 must re
eive loadof size at least k2k + 1− k−2

k−1
= k2k + 1

k−1
.Consider the overlapping of
hunks sent to P2. A full bu�er B2 of data on P2is pro
essed in time A2B2 = 1 < S2. Hen
e, pro
essing of ea
h
hunk is �nishedbefore re
eiving the next
hunk is
ompleted. This means that the maximumpossible overlap on P2 is 1. We will divide the set of all
hunks sent to P2 inthe following way. Let the �rst load
hunk i overlap with the next δi
hunks(δi ∈ {0, 1}). To obey memory limits, the group of δi + 1
onse
utive
hunks

i, . . . , i + δi may
ontain load of size at most B2. The next group of
hunksstarting with
hunk i+ δi + 1, and
ontaining δi+δi+1 +1
hunks, is independent,in the sense that they may
arry another volume of size at most B2. Thus, theset of messages sent to P2
an be divided into groups, ea
h of whi
h
ontains 1or 2
hunks and
arries load of size at most B2. Let l0 be the number of groupswith overlap 0 (single, non-overlapping
hunks) and l1 be the number of groupswith overlap 1 (pairs of overlapping
hunks). The total number of messages sentto P2 is l0+2l1 ≥ k+1. The number of groups is l0+ l1 ≥ k+1, be
ause the loadsent to P2 is greater than kB2. Let V0 denote the total amount of load
ontained57

in the groups with overlap 0. As the maximum load whi
h
an be
ontained inthe groups with overlap 1 is l1B2 = 2kl1, we have V0 ≥ (k − l1)2
k + 1

k−1
.Consider the minimum time of
ommuni
ation and
omputations on P2 and
ommuni
ation with P1. Sending a
hunk of data to P2 takes time S2. The
om-putations of load
ontained in groups with overlap 0 sent to P2 are not overlappedby
ommuni
ations with P2 and they are exe
uted in total time A2V0. Compu-tations of at most B2 load units
an be performed in parallel with startup S1on P1. Hen
e,
omputation and
ommuni
ations of P2 together with the startuptime S1 take at least time

S2(l0 + 2l1) + A2V0 + S1 − A2B2 =

2l0 + 4l1 +
V0

2k
+M − 1 ≥

2l0 + 4l1 + k − l1 +
1

2k(k−1)
+M − 1 =

M + k + (l0 + l1) + (l0 + 2l1) +
1

2k(k−1)
− 1 ≥

M + k + (k + 1) + (k + 1) + 1
2k(k−1)

− 1 =

M + 3k + 1 + 1
2k(k−1)

> M + 3k = T .We proved that it is infeasible to send more than k messages to P2. Therefore,
P2 must re
eive exa
tly k messages, pro
essing of whi
h must not overlap.There are at most k + 2 free intervals in
ommuni
ations with P1 and P2, oftotal length k. We will show now that the length of ea
h su
h interval must besmaller than 3. Indeed,
onsider the minimum load whi
h must be pro
essed by
P2, equal to k2k − 3

M+3k−3
. As
hunks sent to P2 do not overlap, only one bu�erof data may be pro
essed in parallel with
ommuni
ations to P1 and P2, in timeat most 1. The remaining load must be pro
essed during the intervals with no
ommuni
ations to P1 and P2. Thus, the maximum time available for pro
essingon P2 is k+1. In ea
h interval with no
ommuni
ations to P2 at most one bu�erof data
an be pro
essed. Hen
e, if the length of any su
h interval is at least 3,then the time whi
h
an be used for pro
essing the load on P2 de
reases to k−1,whi
h is insu�
ient to pro
ess load of size k2k − 3

M+3k−3
. Hen
e, the length of58

Table 3.1: Relative frequen
y of the overlaps in all
hunks.overlap 0 1 2 > 2frequen
y 0.835 0.154 0.010 0.001ea
h interval whi
h
an be used for
ommuni
ations with P3 is smaller than 3.Sin
e P1 re
eives one message and P2 re
eives k messages, at most 22k +

k2k units of load are pro
essed on P1 and P2. Pro
essor P3 must
ompute theremaining amount of at least V −B1 − kB2 = 1 unit of load, what takes time atleastM+3k−3. Thus, there may be at most 3 idle time units in pro
essing on P3,whi
h means that in parallel with startup time S1 pro
essor P3 must
ompute atleast load of size M−3
M+3k−3

. As ea
h
hunk of data must be sent to P3 in an intervalof size smaller than 3, the size of a
hunk re
eived by P3 is at most 3
k−1

. Hen
e,the number of messages waiting to be pro
essed on P3 when
ommuni
ation to
P1 starts must be at least (k−1)(M−3)

3(M+3k−3)
, whi
h tends to k−1

3
as M tends to in�nity.We
on
lude that it is possible to
onstru
t an instan
e whose optimum s
hedulerequires arbitrarily deep overlap.Although arbitrarily deep overlap is possible in the worst
ase, the experi-mental results show that it is not
ommon in pra
ti
e. The data were gatheredfrom the solutions delivered by GA for 19953 randomly generated instan
es with

Ai, Bi, Ci, Si ∼ U [0, 1], m ∼ U [1, 10] and V ∈ {2, 5, 10, 20, 50}. The depth of theoverlap of all
hunks in all sequen
es of the solutions generated by GA for theabove instan
es is presented in Table 3.1.A more detailed view of the
hunk overlaps is shown in Fig. 3.7. The verti
alaxis is the relative frequen
y of instan
es with a
ertain fra
tion of
hunks witha
ertain overlap. For example, (see the rightmost box "1" for overlap O = 0),approximately 36% of all instan
es have only
hunks with overlap 0. The absen
eof a point in box "0" for overlap 0 means that there were no instan
es without59

1E-5

1E-4

1E-3

1E-2

1E-1

1E0

1[0.9,1)[0.8,0.9)[0.7,0.8)[0.6,0.7)[0.5,0.6)[0.4,0.5)[0.3,0.4)[0.2,0.3)[0.1,0.2)(0,0.1)0Figure 3.7: Histogram of overlap frequen
ies in the instan
es.a
hunk with overlap 0. The number of solutions for whi
h the
hunks withoverlap 1 are 90% to 99.99% of all the
hunks in the
ommuni
ation sequen
e isapproximately 0.4% of all instan
es (box "[0.9,1)" for overlap O = 1). On theother hand, approximately 36% of all instan
es have no
hunk with overlap 1.Finally, overlaps 2 and bigger are very rare: approximately 87% solutions haveno
hunk with overlap 2 or greater, and only 0.005% instan
es have solutions withoverlap at least 2 in more than 40% of all the
hunks in the solution. Thus, it
anbe seen that overlap deeper than 1 is rare, be
ause it
onstitutes approximately1% of all
hunks in all solutions.The analysis of the depth of the overlap leads to the following
on
lusions.On a single pro
essor the solutions with n = ⌈2V
B
⌉ and overlap 1 are good onaverage. For multiple pro
essors (m > 1) the overlap may be arbitrarily deep ingeneral. Still, overlaps greater than 1 are rare in pra
ti
e.3.4.2 Length of the Communi
ation Sequen
eThe number of
ommuni
ations n is a very important
hara
teristi
 of the solu-tion, be
ause it is a key determinant of the
omplexity of the algorithms solvingthe problem. The minimum required length of the
ommuni
ation sequen
e de-60

pends on V and Bis. Therefore, it seems reasonable to use this minimum number
nMIN = ⌈ V

Bmax
⌉ of
ommuni
ations as a referen
e. We start with an observationfor the
ase of m = 1.Proposition 3.4. For m = 1 the s
hedule for sequen
e of length nMIN
an be atmost twi
e as long as the optimum s
hedule.Proof. S
hedule length Tmax for a sequen
e with the smallest possible length

nMIN is not greater than nMINS1 + C1V + A1V . On the other hand, for theoptimum solution, T ∗
max ≥ nMINS1 + C1V and T ∗

max ≥ A1V .1. If A1V ≤ nMINS1 + C1V then
Tmax

T ∗
max

≤
nMINS1 + C1V + A1V

nMINS1 + C1V
≤ 2.2. If A1V ≥ nMINS1 + C1V then

Tmax

T ∗
max

≤
nMINS1 + C1V + A1V

A1V
≤ 2.Let us also note that for a s
hedule with the number of
ommuni
ations notgreater than nMINk, we have Tmax ≤ nMINkS1+C1V +A1V . Hen
e,
onsideringthe two above
ases it
an be proved that Tmax

T ∗

max
≤ k + 1.We show below that the above result
annot be transferred to the
ase m > 1.Proposition 3.5. A
ommuni
ation sequen
e with the minimum possible numberof
hunks nMIN
an be arbitrarily bad for the s
hedule length. The length of theoptimum
ommuni
ation sequen
e
an be arbitrarily big in relation to nMIN .Proof. Consider an example: m = 2, A1 = 1, B1 = 1, C1 = 0, S1 = 1, A2 =

1
V
, B2 = V, C2 = 0, S2 = M, where M is a big
onstant. The minimum numberof
ommuni
ations is nMIN = 1, and it results in a s
hedule of length M +1. On61

the other hand if P1 is used only and no
hunks overlap, then the s
hedule lengthis ⌈V ⌉+ V , and the number of
ommuni
ations is n = ⌈V ⌉. The ratio of the twos
hedule lengths is M+1
⌈V ⌉+V

, whi
h
an be made arbitrarily big by sele
tion of Mand V .For the se
ond part of the proposition, note that the number of messages inthe optimum
ommuni
ation sequen
e proposed in the previous part of the proof
an be arbitrarily big.Let us now analyze the length of
ommuni
ation sequen
es generated by GA.The values of the relative
ommuni
ation sequen
e lengths n
nMIN

are shown inFig. 3.8. Ea
h of the
harts shows the average (AVG) and the largest (MAX)relative
ommuni
ation sequen
e lengths. In Fig. 3.8a the
ommuni
ation lengthsare shown for various A values. It
an be seen that usually n
nMIN

is not very big.On average n ≈ 1.39nMIN , whi
h is
al
ulated over all instan
es with
hanging
A. The length of the sequen
e grows with A, what is most evident for the largestregistered relative lengths. This phenomenon
an be attributed to the way of
al
ulating nMIN . For example, for V = 2 and Bi ∈ (0, 1], the expe
ted nMIN is4, and in extreme
ases it
an be just nMIN = 2. On the other hand, as pro
essorsget slower (A is in
reasing), it is more and more pro�table to use all m availablepro
essors. Thus, n

nMIN
grows with A. This in
rease is stronger for small V , andweaker for bigger V .In Fig. 3.8b a similar dependen
e is shown for
hanging B

V
. The length ofthe
ommuni
ation sequen
e qui
kly in
reases with B

V
. This
an be explained bythe following two fa
ts. On the one hand, for B

V
approa
hing 1, nMIN is alsoapproa
hing 1, but as in Proposition 3.5, other parameters of the system make itpro�table to build sequen
es with n ≫ 1. On the other hand, as B

V
approa
hes0, more short
ommuni
ations must be made to send the load o� the originator.Ea
h message
arries
ost of some startup Si. Therefore,
ommuni
ation startup
osts dominate in the s
hedule length. To minimize this
ost, it is advantageous to62

a)1

2

3

4

5

6

7

8

9

1E-3 1E-2 1E-1 1E0 b)1E0

1E1

1E2

1E-3 1E-2 1E-1 1E0

)1

5

9

13

17

21

1E-3 1E-2 1E-1 1E0

1.44

1.45

1.46

1.47

1.48

1.49

1.50

1.51

1.52

d)1E0

1E1

1E2

1E-3 1E-2 1E-1 1E0Figure 3.8: Relative sequen
e length n
nMIN

in the solutions of GA, a) vs. A , b) vs. B
V ,
) vs. C, d) vs. S.send as few messages as possible. Hen
e, n tends to nMIN when B

V
is de
reasing.Similar observations
an be made for big values of S (
f. Fig. 3.8d). For big S it ispro�table to send as few messages as possible. This, in turn, exposes the need forbig
ommuni
ation bu�ers. The behavior of n

nMIN
for small S must be
ontrastedwith Fig. 3.8a. When S ≈ 1

2
on average, as in Fig. 3.8a, then n

nMIN
≈ 1.39. If

S = 0.001, as in Fig. 3.8d, then n
nMIN

≈ 8. This means that big startup time is a
onsiderable disin
entive to building long
ommuni
ation sequen
es.In Fig. 3.8
 the dependen
e of n
nMIN

on C is shown. Note that this �gurehas two verti
al axes. The shapes of MAX and AV G are similar, but for theaverage
ase the
hanges are in the range of approximately 5%. This should besurprising be
ause multi-installment divisible load pro
essing was introdu
ed toredu
e the time of initial waiting for load. Growing value of C should be an63

in
entive to build shorter messages and longer
ommuni
ation sequen
es. Thistenden
y
an be seen only for small values of C. Yet, in our setting of theexperiments the expe
ted value of the startup times is 1
2
. This is a disin
entive tobuild long
ommuni
ation sequen
es as explained on the example of Fig. 3.8a andFig. 3.8d. Hen
e, the dependen
e of average n

nMIN
on C is very weak. Moreover,with growing C the algorithm tends to
ompensate in
reasing
ommuni
ation
osts by sending fewer messages. Thus, initial waiting for the load is meaningless
ompared to the whole
ommuni
ation
ost.From the above analysis of the
ommuni
ation sequen
e length we draw thefollowing
on
lusions. Startup times Si are an important element of
ommuni-
ation time and they
onstitute the main disin
entive to building long
ommu-ni
ation sequen
es. For startup times of the same order as
ommuni
ation timeper unit of load (C), or
omputation time per unit of load (A),
ommuni
a-tion sequen
es have lengths about 1.4nMIN . For small S the sequen
es
an beapproximately 8-10 times longer than nMIN on average. Moreover, Si and Biare in a sense
oupled in determining the system performan
e: small Bis expose
osts of
ommuni
ation startups, big Sis expose the need for pro
essors with big
ommuni
ation bu�ers.3.4.3 Number of Used Pro
essorsIn this se
tion we study the number m′ of pro
essors from the set {P1, . . . , Pm}whi
h take part in the
omputations. This
hara
teristi
 of a solution is of pra
-ti
al importan
e. In
ontemporary grid and
luster systems very large numbersof pro
essors are available. It is ne
essary to know how many of them shouldbe used and how to adjust their number for di�erent appli
ations. Is is easyto
onstru
t biased instan
es, for whi
h only one pro
essor should be used (e.g.be
ause all other pro
essors have very large startup times Si), or for whi
h allpro
essors should be used. It is known [3℄ that if there are no startup times64

a)0.0

0.2

0.4

0.6

0.8

1.0

1E0 1E1 1E2 b)0.0

0.2

0.4

0.6

0.8

1.0

���� ���� ���� 1E0

)0.0

0.2

0.4

0.6

0.8

1.0

���� ���	 ���� 1E0 d)0.0

0.2

0.4

0.6

0.8

1.0

��

���
��
 1E0Figure 3.9: Relative number m′

m of di�erent used pro
essors in the solutions of GA, a)vs. V , b) vs. A
) vs. B
V , d) vs. S.(Si = 0 for all i), then
omputations
an be started on any number of pro
essors.On the other hand, if
ommuni
ation startup times are present, then in single-installment pro
essing using all pro
essors is a matter of su�
iently large volumeof load V [3℄. Hen
e, it may be expe
ted that the number of used pro
essorsin multi-installment pro
essing should grow with de
reasing startup times andin
reasing volume of the load.The relations between the relative number m′

m
of used pro
essors and the valuesof sele
ted parameters in the solutions found by GA are presented in Fig. 3.9.Fig. 3.9a shows that with growing amount of load V the number of di�erentused pro
essors is in
reasing, as
ould be intuitively expe
ted. This result was
on�rmed in all the experiments we performed. This has a pra
ti
al
onsequen
e,65

that for larger problems it is pro�table to use more pro
essors (even not verye�e
tive) instead of sending bigger number of load
hunks only to a smaller setof more e�e
tive pro
essors.The dependen
e of m′

m
on A is shown in Fig. 3.9b. It
an be seen that m′in
reases with A only for small problem sizes (small V). For small V only afew
hunks need to be sent. Therefore, for small A the algorithm minimizes thes
hedule length by sele
ting only a few pro
essors with big memory bu�ers andfast
ommuni
ation links. If A as big, then
omputing time dominates in thes
hedule length and it is pro�table to distribute and parallelize
omputations.Hen
e m′

m
is growing in this
ase. For big V the number of
hunks must be bigindependently of the value of A,
ommuni
ation time (mainly startup times Si)is dominating over
omputation time, and A is less important in determining thes
hedule length. Therefore, A does not in�uen
e m′ for big V .In Fig. 3.9
 we present the dependen
e of m′

m
on B

V
. In our method of testinstan
e generation the average number of pro
essors is
lose to 5. Hen
e, for

B
V

< 1
5
the memory spa
e ne
essary to pro
ess load V is
reated by using manyload
hunks, and many pro
essors working in parallel. On the other hand, when

B
V
> 1

5
, the size of the memory is often su�
ient to pro
ess the whole load in justone installment. Therefore, good solutions typi
ally use only a few pro
essorswith fast
ommuni
ation and
omputation.Fig. 3.9d shows the relation between S, V and m′

m
. With growing amountof load V the number of di�erent used pro
essors is in
reasing as in previouslydes
ribed experiments. For small V the number of di�erent used pro
essors de-
reases with S, whi
h is in a

ord with our earlier expe
tations. However, for big

V the in
reasing S results in in
reased m′

m
. This
ounterintuitive behavior
anbe partially explained by the way of generating test instan
es. Note that startuptimes of all pro
essors are equal in the experiments depi
ted in Fig. 3.9d. When

V is big, then the number of sent
hunks must also be big. With growing S,66

startup times dominate in the s
hedule length and other parameters, by whi
hthe pro
essors di�er, be
ome meaningless. Therefore, GA be
omes myopi
 to thedi�eren
es in pro
essor parameters, and hen
e more pro
essors are drawn to thesolutions.The dependen
e of m′

m
on C (not shown here) is very weak. This is a verysurprising situation be
ause in many DLT papers the
ommuni
ation rate C was
onsidered
ru
ial for the system performan
e. Only for small V and big C (
loseto 1) is the number of used pro
essors slightly de
reasing with growing C. This isa
onsequen
e of the startup time domination in the
ommuni
ation time. Onlyfor small V the number of messages is small and hen
e the total startup
ostis small. Then, GA optimizes the s
hedule by using a small number of e�
ientpro
essors. This result does not eliminate C as an important s
hedule stru
turedeterminant, as will be shown in the following se
tions.We �nish this se
tion with the following
on
lusions. The number of di�erentused pro
essors di�ers depending on the settings. In general it is in
reasingwith V . In our experiment setting startup times dominated the s
hedule length,espe
ially when the number of
hunks had to be big be
ause V was big or B wassmall. When A is big and the
omputation time is at least
omparable with the
ommuni
ation time, then it is pro�table to use many pro
essors to parallelize
omputations. When C is big and its
ontribution to the
ommuni
ation timeis
omparable or greater than the
ontribution of the startup times, then it ispro�table to
hoose only a small number of fast pro
essors.3.4.4 Dominating Set of Pro
essorsIn the previous se
tion we
onsidered only the number of pro
essors whi
h re-
eive any load, not the degree of their parti
ipation in the
omputations. Herewe analyze the distribution of the load between the pro
essors. Our goal is todetermine if there is any inequality in the load distribution, and if this is the
ase,67

then what kind of pro
essors dominate in the
omputations.The �rst tool we applied in analyzing inequality in the load distribution is theGini index [33℄. It is an indi
ator of some parameter deviation from the uniformdistribution and is
ommonly used in e
onomi
s to quantify inequality in wealthdistribution. The
loser the Gini index is to 0, the more equal and uniform thedistribution of the load is. The
loser the Gini index is to 1, the more unequal thedistribution of the parameter is. The value of the Gini index for a set of values
{yi : i = 1, . . . , n}
an be
al
ulated from the formula

G =

∑n
i=1

∑n
j=1 |yi − yj |

2n
∑n

i=1 yi
. (3.22)We
al
ulated the Gini indi
es for the amount of the load re
eived by the pro
es-sors (whi
h we will denote GiL), and for the number of re
eived messages (whi
hwe will refer to as Gi#). For example, GiL = 1 implies that the whole load V ispro
essed by a single pro
essor, and GiL = 0 means that ea
h pro
essor re
eivesthe same amount of load. Sele
ted results are presented in Fig. 3.10. The generalobservation is that GiL and Gi# demonstrate the same tenden
ies.It
an be seen in Fig. 3.10a that GiL is de
reasing with in
reasing V , whi
hmeans that with growing size of the load its distribution be
omes more equal.This situation has been observed in all experiments. The dependen
e of GiL on

A is shown in Fig. 3.10b. Only for small V does A in�uen
e the load distribution.For small V the number of used pro
essors is small and it is pro�table to sele
tthe best of them, while for big V the number of load
hunks must be big anyway,whi
h means that the
ommuni
ation time is long and the
omputation time(hen
e A) has a little in�uen
e on the s
hedule length. Consequently, for big Vthe values of GiL do not depend on A. This situation is similar to Fig. 3.9bdepi
ting m′

m
vs. A. A strong
hange of GiL with B

V
is observed in Fig. 3.10
when B

V
≈ 1

5
. For smaller values of B

V
the load distribution is more equal, forbigger B

V
the load distribution is more unequal. This is
aused by the fa
t that68

a)0.0

0.2

0.4

0.6

0.8

1E0 1E1 1E2 b)0.0

0.2

0.4

0.6

0.8

���� ���� ���� 1E0

)0.0

0.2

0.4

0.6

0.8

���� ���	 ���� 1E0 d)0.0

0.2

0.4

0.6

1E-3 1E-2 1E-1 1E0Figure 3.10: Gini index of the GA solutions, a) GiL vs. V , b) GiL vs. A,
) GiL vs.
B
V , d) Gi# vs. S.for B

V
> 1

5
only one installment is su�
ient to pro
ess the whole load. Theseresults
onform with the results depi
ted in Fig. 3.9
. In Fig. 3.10d Gi# is shownfor
hanging S. Again, similarly to Fig. 3.9d, with growing S the diversity ofused pro
essor sets depends on V . For small problem sizes it is pro�table touse fewer pro
essors, hen
e Gi# is big, what signi�es inequality. For big V thenumber of used pro
essors is big,
ommuni
ation startup times dominate in thes
hedule length, and the algorithm does not distinguish pro
essors with di�erentparameters well, hen
e more of them are in
luded in the
ommuni
ation sequen
e,and the messages are distributed more equally.Unfortunately, the Gini index is hard to interpret. For example, it is hardto say if a
ertain value of GiL, Gi# already represents inequality or not. Only69

general tenden
ies of
hanging inequality
an be observed. Here, the tenden
iesof Gini index only
on�rm the analysis of the number of used pro
essors. More-over, one
annot determine, using GiL, Gi#, what pro
essors dominate in theload distribution (if any). Therefore, we applied one more indi
ator of the loaddistribution inequality.The se
ond measure of pro
essor domination in the
omputations is basedon the analysis of the sets of pro
essors re
eiving the largest amount of load.Let Vmax be the greatest total load re
eived by any pro
essor. We
all a set ofpro
essors load frequent if it in
ludes all pro
essors whi
h re
eive at least Vmax

2units of load. The pro
essors in the load frequent set are
alled load frequent, orjust frequent.We want to examine how mu
h load and how many messages are sent to thefrequent pro
essor set. The results of this study are shown in Fig. 3.11. All valuespresented in this �gure are relative: pro
essor numbers are shown with respe
tto m, and the loads are shown relative to V . In Fig. 3.11
,d, the horizontal axesrepresent all parameters A, B
V
, C, S, in range [0, 1] for four di�erent relations. Ageneral observation is that the fun
tions of the number of load frequent pro
essorsin A (Fig. 3.11a), and in B

V
, C, S (not shown here) have very similar tenden
ies asthe fun
tions of m′

m
in the above parameters (see Fig. 3.9). However, the range of
hanges of the number of frequent pro
essors vs. V is narrower than the range of
hanges in m′

m
. For example, in Fig. 3.9a the number of used pro
essors
hanges inrange approximately [0.4,1℄. Here, the range of
hanges is approximately [0.3,0.5℄(
f. Fig. 3.11b). In the experiments with
hanging B

V
, C, S even smaller rangeswere observed. It
an be
on
luded that the size of the frequent set of pro
essorsis growing with V , but not as qui
kly as the number of di�erent used pro
essors

m′. This is be
ause only a sele
ted set of pro
essors is frequently used while manyother pro
essors get to the solution due to the randomized sele
tion.In Fig. 3.11
 the load of the pro
essor re
eiving the greatest amount of data is70

a)0.0

0.2

0.4

0.6

1E-3 1E-2 1E-1 1E0 b)0.3

0.4

0.5

0.6

1E0 1E1 1E2

)0.0

0.2

0.4

0.6

0.8

���� ���� ���� 1E0 d)0.7

0.8

0.9

1.0

1E-3 1E-2 1E-1 1E0Figure 3.11: Load frequent pro
essor sets in GA solutions. a) Number of frequentpro
essors vs. A, b) number of frequent pro
essors vs. V ,
) load of the most loadedpro
essor and d) load of all the frequent pro
essors vs. A, BV , C, S.depi
ted vs.
hanging A, B
V
, C, S. Independently of the type of
hanges, the mostloaded pro
essor re
eives 0.6V -0.75V on average. With growing A
omputationtime starts dominating in the s
hedule length, the pro
essor sele
tion methodtends to build more
omputing power, and more pro
essors are appended to thefrequent set. Hen
e, the size of the greatest part of load sent to a single pro
essoris de
reasing. Growing B

V
allows for using fewer pro
essors and for e
onomizingon the
ommuni
ation time by sending smaller number of larger pie
es of data.Hen
e, for big B

V
the most loaded pro
essor re
eives load of size almost 0.75V .For small B

V
a big number of
ommuni
ations must be made anyway, what ex-poses the
ost of
ommuni
ation startup times dominating in the s
hedule length.Consequently, GA be
omes myopi
 to other pro
essor parameters, the frequent71

set has more pro
essors, and the load is more dispersed between the pro
essors.The dependen
e on S, shown in Fig. 3.11
, is very weak. However, this is anaverage over many sizes V . A more detailed pi
ture exposes diversity with Vsimilar to the one shown in Fig. 3.9d, though in mu
h narrower range. Unlike inFig. 3.9d, the load sizes are generally de
reasing with in
reasing S, even for bigloads V . Similarly to the results in Se
tion 3.4.3, the size of the biggest part ofthe load re
eived by a single pro
essor does not depend on C.The total amount of load assigned to all frequent pro
essors is shown inFig. 3.11d. It
an be seen that the frequent pro
essor set
olle
ts more than0.8V on average. The fun
tion of the total load re
eived vs. B
V
has a minimum.This unexpe
ted phenomenon
an be explained in the following way. For bigvalues of B

V
only a few pro
essors take part in the
omputation be
ause a sin-gle installment is su�
ient to pro
ess the whole load. Therefore, the number ofmessages is small, load
hunks have sizes
lose to pro
essor memory bu�er sizes,the frequent set has small
ardinality and re
eives almost the whole load. Withde
reasing B

V
more and more pro
essors re
eive some load, and the
ontributionof the most loaded pro
essors is de
reasing as depi
ted in Fig. 3.11
. However,when B

V
be
omes extremely small, the
ommuni
ation startup
ost is dominatingthe s
hedule length, GA be
omes unaware of pro
essor parameters, and more ofthe pro
essors are randomly in
luded in the frequent set. Therefore, the
ardi-nality of the frequent set is growing and also the total load in the frequent set isgrowing.Similar results were obtained for the set of pro
essors re
eiving the greatestnumber of messages (instead of the greatest amount of load). We �nish the above
onsiderations with a
on
lusion that the frequent set of pro
essors really exists.With the ex
eption of the instan
es biased by small B

V
or big S, when almostall pro
essors are frequent, the frequent set
ontains approximately 40 − 50% ofall available pro
essors. They re
eive 80-85% of the whole load, again with the72

a)0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0 b)0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0Figure 3.12: Re
eived load and number of messages vs. pro
essor rank in GA solutions.a) Load vs. rank, b) number of
hunks vs. rank.ex
eption of the
ases biased by small B
V
or big S.The results in Fig. 3.10 and Fig. 3.11
on�rm the existen
e of the sets ofpro
essors re
eiving more load, and hen
e dominating in the
omputations. Yet,in our test instan
es, when studying in�uen
e of a
ertain parameter, all pro
es-sors had this parameter equal. We learned on the importan
e of the
onsideredparameter via the
onsequen
es of its low or high values. However, the e�e
ts ofthe diversity of the given parameter were swit
hed o�. We did not verify howimportant a parameter
ould be if it had di�erent values in the pro
essor set.Therefore, another set of 1000 instan
es were generated with V = 100, m gener-ated from U [1, 100], and Ai, Bi, Ci, Si generated from U [0, 1]. We examined thefra
tion of the whole load and the number of re
eived messages against the rankof pro
essors in the order of a
ertain parameter value. The results of this studyare shown in Fig. 3.12.In Fig. 3.12 the pro
essors were grouped into sets
omprising 10% of thepro
essors ranked a

ording to a
ertain parameter. For example, value 0.2 onthe horizontal axis in Fig. 3.12 represents pro
essors with relative rank i

m
in therange (0.1, 0.2]. The values on the verti
al axes are relative: the size of the load isshown with respe
t to V and the number of re
eived messages with respe
t to thetotal number of messages. The four fun
tions depi
ted in Fig. 3.12
orrespond to73

four di�erent rankings: a

ording to A,B,C, S. Let us remind that for A,C, Ssmaller values represent better performan
e, and for B bigger values are better.The relationships are similar for the re
eived load (Fig. 3.12a) and for the numberof messages (Fig. 3.12b). Therefore, we will dis
uss only the load distribution.The distribution of the load is tightly
onne
ted with all pro
essor parameters.It is evident that pro
essors whi
h have best
ommuni
ation links with respe
tto C or S, or the biggest memory bu�ers re
eive more load to pro
ess. Thepro
essors with small B or big S, C re
eive almost no load. For parameter Athe relationship is weaker but it is still noti
eable (the
oe�
ient of
orrelationbetween A and the upper limit of rank box interval is approximately −0.84).We �nish the study of the dominating set of pro
essors with the followingobservations based on the
omputational experiments. The dominating pro
essorset exists. The frequent pro
essor set, as we de�ned it,
omprises approximately40-50% of all pro
essors. In the biased
ase of big S or small B
V

the load isdistributed almost equally and the frequent pro
essor set may in
lude nearly allpro
essors. There is a strong
orrelation between pro
essor parameters and theamount of load re
eived for pro
essing. This e�e
t is strongest for parameter Cand weakest for parameter A.3.4.5 Chunk Size SaturationThe next element of the s
hedule stru
ture we want to analyze are the sizes ofload
hunks. After determining the sequen
e of
ommuni
ations and the overlaps,a linear program was used to �nd the load distribution. Sin
e the
omputational
ost of linear programming may be
onsidered high, it would be pro�table toeliminate it in
onstru
ting good quality solutions. To examine the stru
ture ofthe load partitioning we analyzed the number of
hunks whose sizes are equal tothe size of the target pro
essor bu�er, i.e. αi = Bσ(i). We will
all su
h
hunksfull
hunks. It would be a very attra
tive solution to use just the pro
essor bu�er74

a)0.0

0.2

0.4

0.6

0.8

1.0

1E0 1E1 1E2 b)0.0

0.2

0.4

0.6

0.8

1.0

���� ���� ���� 1E0

)0.0

0.2

0.4

0.6

0.8

1.0

���� ���	 ���� 1E0 d)0.0

0.2

0.4

0.6

0.8

1.0

��

���
��
 1E0Figure 3.13: Average number of full
hunks in GA solutions, a) vs. V in experimentswith
hanging A, b) vs. A,
) vs. B
V , d) vs. S .size as the
hunk size, thus eliminating the need for linear programming. Still,su
h an approa
h eliminates the possibility of
hunk overlapping. The results ofthe experiments on load
hunk sizes are shown in Fig. 3.13.In all the pi
tures shown in Fig. 3.13 the number of full
hunks is shown inrelation to the total number of
hunks n. The number of full
hunks is almost al-ways high or noti
eable, but not all
hunks are full. It
an be seen in Fig. 3.13a,b,dthat with growing load size V the number of full
hunks is also growing. This isintuitively reasonable be
ause bigger load V requires more messages whi
h exposethe
osts of startup times. These
an be redu
ed by using as few messages aspossible, and
onsequently �lling the bu�ers more
ompletely. This is also
on-�rmed in Fig. 3.13
 where the number of full
hunks is shown against
hanging75

B
V
and various values of V . When B

V
is small, then the number of messages mustbe big, hen
e the startup times dominate in the s
hedule length, and to redu
etheir
ontribution, the bu�ers are more fully �lled. This situation is repeated inFig. 3.13d where the number of full
hunks in
reases with the startup times. Withgrowing A (Fig. 3.13b) the number of full
hunks is de
reasing be
ause the
om-putation time, and not the startup times, in
reasingly dominates in the s
hedulelength. Observe that in Fig. 3.13
 the number of full
hunks de
reases with V ,what may be attributed to the randomized nature of GA. When V is growing,but B

V
remains
onstant, the
omputation time and the part of
ommuni
ationtime determined by parameter C dominate over the startup times. Thus, it ispro�table to send more smaller messages in order to parallelize the
omputationsin a greater degree. Hen
e, with growing V the fra
tion of
hunks whi
h are notfull is also growing.3.4.6 When Is It Hard to Find a Good Solution?To summarize the analysis of the features of the obtained solutions, we studywhat makes an instan
e of our problem easy or hard to solve. Let us introdu
ethe goal of this se
tion in more detail. Heuristi
s build good quality solutionsfor many
ombinatorial optimization problems. However, this good performan
emay sometimes be attributed to the nature of the problem, not a heuristi
. Thus,it is possible that our geneti
 algorithm builds good solutions not be
ause it iswell designed, but be
ause in some
ases our s
heduling problem may be easy tosolve. If we learn whi
h instan
es are easy or hard to solve, then we will gainsome new insights into the nature of the problem, and real merits of GA.We have to de
ide how to verify whi
h instan
es are easy, and whi
h ones arehard to solve. We will
ompare the quality of the solutions obtained in three waysfor various types of instan
es. The worst solution observed provides an indi
ationon how bad a solution may be. The random solutions are not biased to being good76

or bad. GA solutions are optimized and supposed to be good. The three solutiontypes indi
ate what
an be a
hieved in the worst
ase, without great e�orts(random solutions), and at
onsiderable
ost of optimization. If GA solutions didnot di�er mu
h from the random solutions, then it would signify bad GA design.All the three types of solutions were obtained using the GA infrastru
ture. Therandom solution is the best one in the initial GA population of G = 20 solutions.The worst solution is the worst one observed in the
ourse of solving given instan
eby GA. In all the three
ases linear programming was used to obtain the best
hunk sizes αi and the s
hedule length for a given
ombinatorial part of thesolution. The quality of the solutions is measured as the relative distan
e fromthe lower bound
al
ulated in the following way. The minimum
ommuni
ationtime is τ1 = nMINSmin + V Cmin. In this time at most V0 = (τ1 − Smin)
∑m

i=1
1
Aiload
ould be pro
essed. The remaining load V − V0 is pro
essed in time at leastequal to max{0, V∑m

i=1
1/Ai

− τ1 + Smin}. Thus the lower bound is equal to
LB = τ1 +max{0,

V
∑m

i=1 1/Ai
− τ1 + Smin}. (3.23)In Fig. 3.14 we show the in�uen
e of the system parameters on the qualityof the above three solution types. The points on these
harts represent averagequality over the set of used test instan
es. Fig. 3.14a,b,
 show the results forthe �rst set of random instan
es and V = 20. It is striking that the worst
asesolutions (denoted WRST)
an be over one order of magnitude further from thelower bound than the random solutions (denoted RND) or the solutions of thegeneti
 algorithm (denoted GA). Moreover, GA solutions are substantially betterthan RND solutions, whi
h means that GA really works. Now let us analyze thetenden
ies in Fig. 3.14a,b,
. As it
an be seen in Fig. 3.14a, with growing C allthe lines tend to 1. This means that as the
ommuni
ation speed de
reases, thes
hedule length be
omes dominated by the time of sending load o� the originator.Hen
e, in su
h a biased
ase it is easier to obtain good solutions. Similar tenden
y77

a)1E0

1E1

1E2

1E3

1E-3 1E-2 1E-1 1E0 b)1E0

1E1

1E2

1E3

1E-3 1E-2 1E-1 1E0

)1E0

1E1

1E2

1E3

1E-3 1E-2 1E-1 1E0 d)1E0

1E1

1E2

1E3

1E-3 1E-2 1E-1 1E0Figure 3.14: Quality of the solutions with referen
e to the lower bound for V = 20, a)vs. C, b) vs. B
V ,
) vs. S, d) vs. the dispersion of S.was observed for growing parameter A (not shown here).In Fig. 3.14b the dependen
e of the solutions quality on
hanging B

V
is shown.With growing B

V
all the three types of solutions get
loser to the lower bound.It is intuitively attra
tive to
on
lude that with growing B

V
the solutions are lessdominated by
hoosing pro
essors with small startups Si, and good solutions areeasier to obtain be
ause we are less limited with the
hoi
e of the pro
essor. Notdisregarding this growing �exibility, it should not be forgotten that the
onstru
-tion of the lower bound (3.23) in�uen
es the results presented here. The lowerbound is based on the assumption that the smallest Si
oin
ide with the biggest

Bi, whi
h is rarely true. Hen
e, for small B
V
and a big number of the startupsthe error resulting from this simpli�
ation may be signi�
ant. This may result78

in the big distan
e of the solutions from the lower bound. With in
reasing B
V
thedomination of the startup
osts in the s
hedule length de
reases, the
ontribu-tion of the transfer and the
omputation time in
reases, and the lower bound isrepresenting this situation better. Thus, the results in Fig. 3.14b indeed
on�rmthat with growing B

V
it is getting easier to obtain solutions
loser to the lowerbound, but it is a
hieved by using fewer messages and
ommuni
ation startuptimes. Moreover, for the biggest B

V
solutions WRST,RND get slightly worseand GA solutions do not. This means that even if memory bu�ers are big, it isne
essary to adjust the set of used pro
essors. The geneti
 algorithm handles thisbetter than in the RND solutions.In Fig. 3.14
 the dependen
e of the three types of solutions on
hanging pa-rameter S is shown. A
ounterintuitive tenden
y of improving WRST solutionquality with growing S
an be observed. With growing S the
ontribution of thestartup times to the s
hedule length is growing, independently of the
hosen setof pro
essors. Therefore, the di�eren
e between the worst solution and the lowerbound is de
reasing with growing S. The geneti
 algorithm performs better than

RND be
ause it is able to build solutions with relative quality improving evenwith in
reasing domination of the startup time.In Fig. 3.14d the quality of the solutions for growing dispersion of S is shown.The test instan
es for Fig. 3.14d were generated as in the �rst set of instan
eswith V = 20, ex
ept for parameter S, whi
h was generated with uniform distri-bution from range [1−δS
2

, 1+δS
2

]. The value of δS is shown on the horizontal axisin Fig. 3.14d. As it
an be seen, with growing δS, and hen
e growing heterogene-ity of the system, the quality of all three types of solutions is worsening. Thismeans that our problem be
omes harder to solve with growing heterogeneity ofthe
omputing environment. Similar experiments were performed for
ontrolleddispersion δA, δB, δC of parameters A, B
V
, C, respe
tively. In all these experimentsthe dependen
e of the quality of the solutions on the range of diversity has a very79

similar shape as in Fig. 3.14d. This
on�rms on
e again that in heterogeneoussystems good quality solutions are harder to obtain. Let us use the range of the
hanges of the worst-
ase solutions quality as an indi
ator of the sensitivity to thedispersion of a
ertain parameter. For δS
hanging from 1E-3 to 1, the distan
efrom the lower bound grew ≈ 34 times. For similar
hanges of: (1) δC the dis-tan
e
hanged ≈ 14 times, (2) δA it
hanged ≈ 1.8 times, (3) δB it
hanged ≈ 1.3times. This means that the diversities of S and C have the strongest in�uen
eon the di�
ulty of obtaining good solutions, and the diversity of A and B
V
thesmallest.We �nish these
onsiderations with the following
on
lusions.

• It is easier to obtain good quality solutions when the
ommuni
ation timeor the
omputation time dominates in the s
hedule length.
• It is easier to obtain good quality solutions for big memory bu�ers.
• It is easier to obtain good solution quality for homogeneous systems. So-lution quality is parti
ularly sensitive to the dispersion of
ommuni
ationparameters S, C, and less to the dispersion of A, B

V
.

• The geneti
 algorithm really works, be
ause it builds
onsiderably bettersolutions than RND. Moreover, in some
ases it is able to
ountera
t thegeneral tenden
ies of the solution quality represented in RND,WRST .3.4.7 Con
lusionsOverall, the experiments performed in Se
tion 3.4 revealed a
omplex and some-times
ounterintuitive intera
tion of the system parameters in determining goodquality solutions. The following observations have been made.
• In the worst
ase an arbitrarily big number of messages may have to bea

umulated on a pro
essor in the optimum solutions. However, it turnedout that in the near-optimum solutions obtained by the geneti
 algorithm
hunk overlap is rare. 80

• There is a minimum number of messages that must be sent anyway. Usingthis number of
ommuni
ations may result in arbitrarily bad solutions. Inthe
omputational experiments it has been established that the numberof messages is a small multiple of the minimum possible number. The
ommuni
ation startup time is the main disin
entive to using great numbersof messages in delivering the load to the pro
essors.
• There are inequalities in the load distribution and there exists a dominatingset of pro
essors whi
h re
eives most of the load. The size of the dominat-ing set of pro
essors is growing with the load size V . There is a strong
orrelation between the parameters of a pro
essor and its
ontribution inthe load pro
essing. Pro
essors with faster
ommuni
ation links, biggermemory bu�ers, and
omputing faster re
eive more load. It appears thatthe order of parameter importan
e in the load distribution is Ci, Bi, Si, Ai.
• A majority of load
hunks, although not all,
arry maximum possible load(equal to the size of the re
eiver's memory bu�er). The number of full
hunks grows with V , and is strongly
orrelated with parameters Si, Bi.
• The problem has a natural tenden
y to be
ome easier to solve when oneparameter dominates in the s
hedule length. For example, big values of all
Ai in relation to Ci, Si simplify obtaining good solutions.

• Another side of the above observation is that it is relatively easy to buildbiased instan
es whose solutions are di
tated by extreme values of a
ertainparameter, e.g. extremely slow
ommuni
ation or
omputation, or verysmall memory bu�ers.
• In a sense, parameters Bi and Si work together when building a biasedinstan
e. Small memory bu�ers Bi in
ur many
ommuni
ations, whi
hexpose the
ost of the startup times Si. Conversely, big startup times may81

be
ompensated by the use of long messages whi
h require big memorybu�ers.
• Good quality solutions are harder to obtain in heterogeneous systems.3.5 Heuristi
sThe aim of the resear
h presented in Se
tion 3.4 was to gather information aboutdesirable properties of the solutions of our problem. Based on this information,we propose several groups of heuristi
s. We also present the algorithms knownfrom earlier literature. We start with very simple algorithms, whi
h do not usethe information about the nature of the problem. They are meant to verifyif the algorithms presented later perform well or not. The most
omplex of thealgorithms solving our problem is the geneti
 algorithm des
ribed in se
tion 3.3.2.We
ompare the quality and the running time of all the proposed algorithms ina series of
omputational experiments. We examine how the system parametersin�uen
e the relations between the solutions generated by the algorithms. Theseexperiments not only show whi
h heuristi
 is better, or worse, to use for a giventype of instan
e of the problem, but may also be used to verify the
on
lusionsdrawn from the experiments presented in the previous se
tion.3.5.1 Random Heuristi
sThe �rst group of algorithms we present are random heuristi
s. They were de-signed mainly to verify the performan
e of other algorithms by
omparing theobtained solutions with what
an be gained without e�ort, by random algorithms.Analyzing several di�erent types of random heuristi
s may be helpful for distin-guishing the most important elements in the pro
ess of
reating a solution.The �rst three random heuristi
s, introdu
ed in [27℄, use two-step approa
h.They
hoose a
ommuni
ation sequen
e and overlap values in a random pro-82

ess, but afterwards the optimum
hunk sizes are
omputed by LP (3.13)-(3.21).Heuristi
 Rnd1 appends random pro
essors to the
ommuni
ation sequen
e untilthe a

umulated memory is not smaller than the load size V . All
hunk over-laps δij are set to 0 (no
hunks overlap). This
onstru
tion implies that the
ommuni
ation sequen
es
reated by Rnd1 will be short.Heuristi
s Rnd2 and Rnd3 are strongly
onne
ted with Rnd1, as they use the
ommuni
ation sequen
e delivered by Rnd1. Heuristi
 Rnd2 doubles this
om-muni
ation sequen
e and applies overlap 1 to all
hunks. Overlap 1 means thatea
h two
onse
utive
hunks sent to the same pro
essor overlap. The
ommuni-
ation sequen
es
reated by Rnd2 are up to twi
e as long as in the
ase of Rnd1.However, they do not have to be exa
tly twi
e longer, as it is possible that some
hunk sizes
omputed by the LP will be equal to 0.Heuristi
 Rnd3 lengthens the
ommuni
ation sequen
e obtained from Rnd1,appending a random number of
hunks sent to random pro
essors. The maximumlength of the appended sequen
e is 3 times the original sequen
e length. Theoverlap values δij are
hosen randomly from values 0 and 1. Sin
e some
hunksoverlap and their sizes together
annot ex
eed memory limits, the total memory
olle
ted may be smaller than the load size V . Therefore, some solutions deliveredby Rnd3 may be infeasible. The
ommuni
ation sequen
es generated by Rnd3are usually mu
h longer than the sequen
es delivered by Rnd1.Heuristi
s Rnd1 � Rnd3 randomize only the solution of the
ombinatorialpart of the problem while still using LP (3.13)-(3.21) to �nd the
hunk sizes.Therefore, we introdu
e another random heuristi
 Rnd4 [9℄. This algorithmis substantially di�erent be
ause it does not use LP to
hoose the
hunk sizes.Rnd4 not only sends load to random pro
essors, but also
hooses
hunk sizesrandomly between 0 and memory bu�er size for a given pro
essor. If the sizeof the
urrently free memory on the re
eiver pro
essor is not su�
ient, sendingthe
hunk is postponed until enough memory is released. The originator remains83

idle during this time. The whole pro
ess is repeated until all the load is sent.Computing overlap values is unne
essary in this algorithm, but it is possible to
al
ulate them from the generated s
hedule.The solution obtained by Rnd4
an be further improved by heuristi
Rnd4LP.This algorithm uses the
ommuni
ation and overlap sequen
es delivered by Rnd4,but the
hunk sizes are
omputed using LP (3.13)-(3.21).3.5.2 First Free Heuristi
The next heuristi
 we
reated is
alled �rst free (FF) heuristi
. This is one moresimple algorithm designed mainly to test the quality of the other algorithms andthe di�
ulty of test instan
es. In this algorithm ea
h
hunk has the maximumpossible size (equal to the memory limit of the pro
essor re
eiving this
hunk).Hen
e, no
hunks may overlap and all overlap values δij must be 0. At thebeginning, ea
h of the pro
essors P1, . . . , Pm re
eives one
hunk. Ea
h pro
essorwhi
h �nishes pro
essing a
hunk is added to a queue of free pro
essors. Messageswith new load are always sent to the �rst pro
essor in this queue (i.e. the onewhi
h �nished previous
omputations at the earliest moment). Note that FF doesnot order the pro
essors in the �rst load distribution round. Thus, the sequen
eof the �rst m
ommuni
ations
an be
onsidered random. This may result inlow quality solutions, espe
ially when the number of ne
essary
ommuni
ationsis low.3.5.3 Appender Heuristi
sThe idea of appender heuristi
s (or appenders for short) �rst emerged in [27℄.The appenders are meant to mimi
 the
onstru
tion of the
ommuni
ation se-quen
e σ and overlaps O as in B&B algorithm. For the purpose of
onstru
tingthe
ommuni
ation sequen
e it is assumed that ea
h
hunk has (phantom) sizeequal to the memory bu�er size on the
hosen re
eiver pro
essor. A message84

is always sent to the �rst free pro
essor. In the sear
h for a free pro
essor, theworkers are always
he
ked in the same order, depending on a parti
ular appenderheuristi
. Pro
essors are appended to the
ommuni
ation sequen
e until the sent(phantom) load is at least three times greater than V . This ex
essive reservationof
apa
ity for load pro
essing is made to give some freedom in sele
ting
hunksizes. Afterwards, overlap δij = 1 is applied to all
hunks. This
hoi
e is moti-vated by the observations that
hunk overlaps often allow for better performan
e,but big overlaps do not seem ne
essary in most
ases. The optimum
hunk sizesare
omputed by LP (3.13)-(3.21).The four basi
 appender heuristi
s apA, apC, apS and apB, sear
h for are
eiver of ea
h
hunk,
he
king one parameter only. The
hunk will be sent to afree pro
essor with the best value of this parameter (i.e. the smallest Ai, Ci, Siand the greatest Bi,
orrespondingly). The heuristi
 apA, as the only algorithmfrom these four, was introdu
ed and tested in [27℄. Still, on the basis of the resultsfrom Se
tion 3.4, we expe
t that parameter A should not be used as the mainfa
tor in
hoosing the pro
essor. Thus, we want to
ompare this algorithm withthe algorithms using di�erent parameters.A little more sophisti
ated approa
h was used in appenders apSBC and apS-BCA. Heuristi
 apSBC, introdu
ed in [27℄, sear
hes for a free pro
essor whi
h
an re
eive a whole bu�er of data in the shortest time (i.e. the one with the small-est value of Si + BiCi). Heuristi
 apSBCA is similar, but it takes into a

ountthe time of both
ommuni
ation and
omputation. Therefore, the pro
essor withthe smallest value of Si +Bi(Ci + Ai) is
hosen.Note that in algorithms apSBC and apSBCA pro
essors with small mem-ory bu�ers may be preferred, what is probably disadvantageous for the solutionquality. Therefore, we propose the last two appender heuristi
s, apSBCr andapSBCAr, whi
h use a modi�ed idea of apSBC and apSBCA (
f. [8, 9℄). Insteadof the
ommuni
ation time or
ommuni
ation and
omputation time they take85

into a

ount the time per unit of load. The pro
essors are
he
ked in the order ofin
reasing values of Si/Bi+Ci (for apSBCr) or Si/Bi+Ci+Ai (for apSBCAr). Inthis way, the pro
essors with large, and not small memory bu�ers are preferred.3.5.4 Best Rate Heuristi
sThe heuristi
s in the last group are
alled best rate heuristi
s [8, 9℄ and denotedby BRx, where x ∈ {1, . . . , 6}. In heuristi
s BRx it is assumed that the sizeof ea
h
hunk sent to pro
essor Pi is equal to βi = Bi/x. In order to
hoose are
eiver of a
hunk of data, for ea
h pro
essor Pi we
ompute the time Ti neededto pro
ess this
hunk, were it sent to this pro
essor:
Ti = max{max{t0, τi}+ Si + βi(Ci + Ai), ti + βiAi} − t0, (3.24)where:

• t0 is the time when the originator
an start sending the
hunk,
• τi is the time when enough memory be
omes available at pro
essor Pi,
• ti is the moment when pro
essor Pi
ompletes pro
essing the pre
eding
hunks and
an start pro
essing the
urrent
hunk.The load is always sent to the pro
essor with the best
urrent pro
essing rate,i.e. with the minimum value of Ti/βi. This pro
ess is repeated as long as there issome unpro
essed load. The
onstru
tion of the algorithm prevents using morememory than available. The values of
hunk overlaps do not have to be
omputedin this algorithm, but they
an be obtained from the generated s
hedule. As the
hunk sizes are equal to Bi/x in heuristi
 BRx, the possible overlap values δijare 0, . . . , x − 1. Thus, there is no
hunk overlap in the solutions generated byBR1, but the remaining algorithms from this group
an
reate solutions withoverlapping
hunks. 86

The result of ea
h of the BRx heuristi
 may be improved by BRxLP heuristi
.BRxLP uses the
ommuni
ation sequen
e and overlap values delivered by BRx,while the
hunk sizes are
omputed using LP (3.13)-(3.21). Our experimentsshowed that the di�eren
e between the results obtained by BRx and BRxLPheuristi
s is very small, espe
ially for larger values of x. Hen
e, in the nextse
tion we will present the results obtained by BRxLP heuristi
s only for x = 1and x = 2.3.6 Comparison of the Heuristi
 AlgorithmsIn this se
tion we present the experimental results
on
erning the quality of thesolutions and the
omputational
osts of the heuristi
s presented in Se
tion 3.5and the geneti
 algorithm des
ribed in Se
tion 3.3.2. Assessing quality of thealgorithms is essentially a bi
riterial problem, be
ause the quality of the solu-tions is bought at some
omputational
ost. The goal of this study is to analyzethe quality of the solutions and the
omputational
ost of obtaining them. Theworst
ase estimations of the approximability ratios tend to be ex
essively pes-simisti
. Algorithms with high order of the worst
ase
omplexity sometimeshave a

eptable runtime. Hen
e, worst
ase estimations of the approximationratio or the
omplexity do not seem to be a good tool to
ompare the pra
ti
altrade-o� between the quality and the
ost. Therefore, experimental analysis isapplied here. We use the same set of instan
es as in Se
tion 3.4. We will examinethe performan
e results of over 20 algorithms, demonstrating their advantagesand weaknesses for di�erent system parameters. As it was not possible to obtainthe optimum results for the generated instan
es, the lower bound (LB), de�nedin Se
tion 3.4.6 by formula (3.23), was used as a referen
e. The quality of allalgorithms was measured as the average relative distan
e of the solutions fromthe lower bound. 87

In the following dis
ussion the performan
e of the algorithms is shown ondiagrams in whi
h the horizontal axis is the average exe
ution time, and theverti
al axis is the average relative distan
e from the lower bound. For example,in Fig. 3.15 a good algorithm should be represented by a point as
lose as possibleto the lower-left
orner of the diagram whi
h represents good quality and shortexe
ution time. In the sense of
omputational
ost an algorithm dominates all thealgorithms positioned to the right of it in the diagram. In the sense of solutionquality an algorithm dominates all the algorithms positioned above it. Somealgorithm may have the shortest exe
ution time for a given quality, and vi
eversa, the best quality at a given
omputational
ost. Thus, it is possible to
onsider some algorithms Pareto-optimal as non-dominated with respe
t to thequality and the run time.3.6.1 Load SizeIn the �rst series of experiments we examined the in�uen
e of the load size Von the quality of the results obtained by di�erent algorithms. We present herethe results obtained for the extreme values V = 2 and V = 50. Let us remindthat in our problem the load is arbitrarily divisible, and even for V = 2 hundredsof
ommuni
ations may be performed. To
ontrol the running time of GA, weassumed that the number of
ommuni
ations in a s
hedule must be smaller than1000. The same upper bound was applied to all other algorithms.The relationship between the performan
e of di�erent algorithms for V = 2is presented in Fig. 3.15a. The analyzed algorithms
an be divided into threegroups based on their exe
ution times. The fastest group are the algorithmsnot using LP (FF, BRx and Rnd4). The se
ond group are heuristi
s
omputingoptimal
hunk sizes with LP (Rnd1 - Rnd3, Rnd4LP, appenders, BRxLP). Theslowest of all algorithms is GA, as it
reates many solutions and uses LP. Notethat GA
an be stopped after some number of iterations. Hen
e GA may be rep-88

a)
1

5

9

13

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCAr b)

1

5

9

13

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCArFigure 3.15: Solution quality vs. exe
ution time for di�erent problem sizes V , a) V = 2,b) V = 50.resented by a dependen
e of quality versus time in Fig. 3.15. Sin
e the existen
eof su
h a dependen
e does not
hange our
on
lusions, we de
ided to representthe performan
e of GA with just one point to make the pi
ture more readable.The best solutions are obtained by GA and then by heuristi
s BR1LP, BR2LP.Algorithms BR1 and BR2 are only slightly worse. The quality of BRx heuristi
sde
reases with in
reasing x. This
an be explained by the fa
t that dividingthe memory bu�ers into more parts leads to sending a bigger number of smaller
hunks. When there are too many messages, the
ontribution of startup timesbe
omes too big and makes the whole s
hedule longer.Most of the appender heuristi
s perform similarly to the random algorithmsand are worse than our simplest heuristi
 FF. Thus, appenders are not good forsolving our s
heduling problem. This situation is similar for most of the testinstan
es. The best of all appender heuristi
s are apSBCr and apSBCAr. Thus,we
an
on
lude that our modi�
ation to appenders apSBC, apSBCA lead to a bigimprovement in the results in
omparison to the appender heuristi
s proposed inthe earlier literature. Appender apA delivers the worst solutions of all the studiedalgorithms. This
on�rms the observation from Se
tion 3.4, that the
omputationspeed alone
annot be the most important parameter to determine the order of89

sending data
hunks.The results obtained by the analyzed algorithms for V = 50 are presented inFig. 3.15b. It
an be seen that the quality and the exe
ution time of almost allalgorithms be
ome worse for bigger V . This behavior is understandable, be
auselarger instan
es intuitively should be harder to solve. For V = 50 the geneti
algorithm is outperformed by heuristi
s BR1 and BR2 (even the variants with-out LP). Indeed, when there is more load to be pro
essed, longer
ommuni
ationsequen
es are needed, and the sear
h spa
e of GA be
omes mu
h larger. Con-sequently, the
han
es of �nding a good solution de
rease, sin
e the number ofiterations performed in GA remains the same. There is no su
h e�e
t on simpleheuristi
s, and ex
ept for GA, there are no important
hanges in the relationshipsbetween the performan
e of the algorithms
ompared to V = 2.We
an
on
lude this se
tion with an observation that the growing load sizemakes the problem harder from the point of view of the running time and qualityfor all proposed algorithms. Its impa
t on the geneti
 algorithm seems strongerthan on other heuristi
s. However, mutual relationships in the performan
e ofthe heuristi
s remain almost un
hanged for di�erent values of V .3.6.2 Startup TimeThe results obtained for the extreme values of startup times (S = 0.001 and
S = 1) are presented in Fig. 3.16. For small S the best results are obtainedby GA. The se
ond best algorithms are apC and apSBCr (their points overlapin Fig. 3.16a). This may be surprising, be
ause we stated earlier that appenderheuristi
s do not work well in general. However, when startup times are very smallin relation to the other parameters, there is no need to keep the
ommuni
ationsequen
e short. Moreover, sin
e in the analyzed instan
es parameter S is thesame for all pro
essors, only the other parameters are important. Parameter Cseems to play the main role in this
ase. The results obtained by apSBCr are very90

a)
1

3

5

7

9

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCAr b)

1

3

5

7

9

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCArFigure 3.16: Solution quality vs. exe
ution time for di�erent
ommuni
ation startuptimes, a) S = 0.001, b) S = 1.similar to the ones delivered by apC, be
ause the values of Si/Bi + Ci are
loseto Ci for very small Si. This
onforms with the earlier results in DLT [3, 14, 17℄stating that
ommuni
ation rate C is a key performan
e parameter in divisibleload pro
essing when Si = 0 for all i.The results of all BRx heuristi
s are similar, be
ause the main di�eren
ebetween them is the number of messages sent and hen
e the
ontribution of thestartup times, whi
h has almost no importan
e for very small S. Heuristi
ssending always a full bu�er of data (FF, Rnd1, BR1, BR1LP) perform badly,be
ause they do not use overlapping,
reate longer waiting intervals during the
ommuni
ation and bigger imbalan
e in the
omputation
ompletion times. This
an be avoided at a little
ost by sending many short messages if startup timesare short. There are almost no di�eren
es in the results of BR2 - BR6. Thus,dividing the memory bu�ers into two parts (and hen
e overlap at most 1) seemsenough to take the advantage of a

umulating the load on pro
essors.The situation be
omes
ompletely di�erent for S = 1. The main obje
tive isnow to minimize the
ontribution of startup times whi
h dominates the s
hedulelength. Therefore, algorithms
reating the shortest
ommuni
ation sequen
es
onstru
t the best solutions. Even a very simple algorithm FF delivers solutions91

of good quality, be
ause it always sends a full bu�er of data. The di�eren
esbetween BRx heuristi
s be
ome expli
it. Splitting the
ommuni
ation into moreparts leads to a big de
rease in the solution quality. Heuristi
 BR1 works well,but with in
reasing x ea
h BRx is getting worse, up to BR5 and BR6 beingthe worst of all BRx algorithms. It is worth mentioning that GA
an handlethis situation,
reating shorter sequen
es and obtaining as good results as BR1.Appenders apA and apC do not perform well, be
ause they do not take intoa

ount memory bu�er sizes. As it is better to send a smaller number of messages,pro
essors having big memory bu�ers should be preferred. Therefore, appendersapB, apSBCr and apSBCAr are better. Heuristi
s apSBC and apSBCA
reateextremely bad solutions. As all startup times are equal, the pro
essors withsmaller memory bu�ers may be preferred by these algorithms, what leads to
onstru
ting very long
ommuni
ation sequen
es and reinfor
es the
ontributionof startup times in the s
hedule length.Ex
ept for the algorithms
reating very long
ommuni
ation sequen
es, thesolutions obtained for S = 1 have generally higher quality than for S = 0.001.This may be attributed to two fa
ts. When big startup times dominate the wholes
hedule length, the other pro
essor parameters are not very important anymore.Therefore, it is easier to
onstru
t good solutions, taking into a

ount only oneparameter instead of some
ombination. The se
ond reason is that if startuptimes are big and equal, the lower bound LB better
oin
ides with the a
tualoptimum s
hedule length.3.6.3 Communi
ation RateThe
harts
on
erning parameter C (Fig. 3.17) show that for C = 1 our problemis mu
h easier to solve than for small C. The s
hedule length is dominated bythe
ommuni
ation time and it is not di�
ult to �nd a solution with the s
hedulelength
lose to the lower bound. After magnifying Fig. 3.17b we
ould observe92

a)
1

9

17

25

33

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCAr b)

1

9

17

25

33

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCArFigure 3.17: Solution quality vs. exe
ution time for di�erent
ommuni
ation rates, a)

C = 0.001, b) C = 1.that the relationships between di�erent algorithms remain similar for C = 0.001and for C = 1, with the best solutions delivered by heuristi
s BR1, BR1LP andvery similar results of GA. This suggests that the
onstru
tion of our algorithmsis not sensitive to
hanging values of
ommuni
ation rate. The observed improve-ment in the solution quality for C = 1 in
omparison to C = 0.001 is due to thenature of the problem, whi
h is easier to solve for big
ommuni
ation rate C.3.6.4 Memory LimitLet us remind that we
annot analyze the in�uen
e of parameter B only, whileusing instan
es with di�erent load sizes V . The parameter we should ratherexamine is the relative bu�er size, i.e. B/V . This value determines the numberof
ommuni
ations needed in a s
hedule and is a natural parameter of the probleminstan
e.For B/V = 1, it is possible to send the whole load as one message, and thereis no need to
reate long
ommuni
ation sequen
es. Therefore, all the algorithmswork faster than for smaller memory bu�ers (
f. Fig. 3.18a). The best solutionsare a
hieved by GA, whi
h be
omes very e�e
tive when it does not have to
reate93

a)
1

6

11

16

21

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCAr b)

1

6

11

16

21

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR1LP BR2LP FF GA
Rnd1 Rnd2 Rnd3 Rnd4
Rnd4LP apA apC apS
apB apSBC apSBCA apSBCr
apSBCArFigure 3.18: Solution quality vs. exe
ution time for di�erent memory limits, a) B/V =

1, b) B/V = 0.005.and
ombine long sequen
es. Good results are also provided by heuristi
 BR2and appenders apSBCr, apSBCAr. Heuristi
 BR1 is now a little worse than BR2be
ause it sends only one message in the whole s
hedule and
annot balan
e theuse of
omputers performing fast
omputations and fast
ommuni
ation.The smallest value of B/V whi
h
ould be reliably solved by all algorithms(espe
ially GA) without restri
ting the instan
e parameters was 0.005. Heuris-ti
s BR5 and BR6 had to produ
e
ommuni
ation sequen
es longer than the �xedlimit we used (1000 and 1200 messages
orrespondingly). Therefore, they are notpresented in Fig. 3.18b. For B/V = 0.005, ea
h
ommuni
ation sequen
e lengthhad to be at least equal to 200. With so many messages sent, startup timesdominate the s
hedule length. Therefore, the best results are obtained by algo-rithms BR1 and BR2,
reating short sequen
es and minimizing the
ontributionof startup times. Creating and
ombining very long sequen
es is a barrier forGA e�e
tiveness, whi
h performs similarly to appenders apS, apSBC, apSBCA,apSBCr and apSBCAr. These �ve algorithms deliver almost the same results (thepoints overlap in Fig. 3.18b) be
ause small values of B expose the signi�
an
e ofparameter S in the last four appenders.94

a)
1

7

13

19

25

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCAr b)

1

7

13

19

25

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCArFigure 3.19: Solution quality vs. exe
ution time for di�erent dispersions of startuptime, a) δS = 0.001, b) δS = 1.3.6.5 Computation RateIt seems that
hanging the value of parameter A does not a�e
t the relationsbetween the solutions delivered by di�erent algorithms. In both
ases, A =

0.001 and A = 1, the
hart obtained (not shown here) is very similar to the onepresented in Fig. 3.15a. In
reasing A leads to a slight improvement of all obtainedresults. This is an intuitively expe
ted e�e
t of a single parameter dominatingthe s
hedule length. It
ould be also observed for big values of C (Fig. 3.17b).3.6.6 Parameters DispersionIn this se
tion we examine the in�uen
e of system heterogeneity, i.e. of thedispersion of the pro
essor parameters. The method of generating test instan
eswas des
ribed in Se
tion 3.4.6.The results for the dispersion of startup times are shown in Fig. 3.19. Forlarger dispersion algorithm FF loses quality in relation to BRx algorithms. Thereis also a reshu�ing among appender algorithms. All the results get mu
h worsewhen parameter S is
hosen from a wider range. This phenomenon was observedfor the dispersion of all parameters. However, the s
ale of the e�e
t is di�erent for95

a)1

5

9

13

17

21

1E-3 1E-2 1E-1 1E0

BR1 GA Rnd1
Rnd4 apA apSBCr
FF

b)1

5

9

13

17

21

1E-3 1E-2 1E-1 1E0

BR1 GA Rnd1
Rnd4 apA apSBCr
FF

Figure 3.20: Average solution quality vs. parameter dispersion, a) δC , b) δA.di�erent parameters. It seems that the most important fa
tor is the dispersionof S, then C, B/V , and �nally A has the smallest impa
t. Thus, by its natureour problem is more di�
ult in a more heterogeneous system.The relations between the solutions quality and the dispersion of parameters
C and A are shown in Fig. 3.20. These
harts
on�rm the di�eren
e between theimportan
e of the dispersion of these two parameters. Changing δA has a smallin�uen
e on the solutions quality. On the other hand, de
reasing the dispersionof parameter C leads to a big improvement in the obtained results. Note thatthe quality of the solutions obtained in experiments on δA is similar to the oneswith big dispersion of parameter C (the right end of Fig. 3.20a). This means thatsmaller di�eren
es between the
ommuni
ation speed of the pro
essors make theproblem easier to solve, but smaller di�eren
es in the
omputation speed do nothelp. The
harts obtained for
hanging δS and δB (not shown here) are similar toFig. 3.20a, although the
hanges in the solutions quality are smaller. We
on
ludethat narrowing the range of A has almost no e�e
t, when the dispersion of theother parameters is still big. Narrowing the range of the other parameters makesobtaining quality solutions easier.

96

a)
1

6

11

16

21

26

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCAr b)

1

6

11

16

21

26

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCArFigure 3.21: Standard deviation of the solution quality vs. standard deviation of exe-
ution time, a) V = 2, b) V = 50.3.6.7 Performan
e DispersionIn the last group of experiments we analyze the dispersion of the solution qualityand exe
ution times for a set of test instan
es. The purpose of this se
tion is to
he
k if the algorithms good on average are also stable in
ost and in quality.In Fig. 3.21 the standard deviation of the solution quality is shown againstthe standard deviation of exe
ution times. Before dis
ussing the results let us
omment on this way of the result depi
ting. In a set of test instan
es thedispersion of the exe
ution times naturally exists for any algorithm. An algorithmsolving our problem to optimality (e.g. B&B) has no dispersion of the relativedistan
e from the optimum solution, but it has some dispersion of the distan
efrom the lower bound. Thus, if we
ompare the dispersion of the solution qualityrelative to the lower bound, then some dispersion also naturally exists. Still, it ispossible to
ompare algorithms with ea
h other. An algorithm with very stableperforman
e would be lo
ated in the lower-left
orner of Fig. 3.21.From Fig. 3.21 we
on
lude that with respe
t to the stability of the solutionquality, the pi
ture is very similar as for the average values. Algorithms thatdeliver best solutions on average also have the smallest standard deviation of thesolution quality. As for the standard deviation of the exe
ution time, it
an be97

on
luded that the deviation in
reases with the
omplexity of the algorithms.Thus, FF, Rnd4, BRx have the smallest standard deviation, then the algorithmsusing linear programming, and �nally, GA has the biggest exe
ution time stan-dard deviation. We also analyzed dispersion in the relative sense and applied
oe�
ients of variation (not shown here). For small problem sizes (V = 2) thepi
ture is very similar to Fig. 3.21. For bigger problem sizes (V = 50)
oe�
ientsof variation for all algorithms are
lustered around 1, and hen
e points represent-ing all the algorithms are very
lose to ea
h other. In this
ase algorithm BR6dominates all other algorithms, while BR1LP and BR2LP have the two biggest
oe�
ients of variation for the exe
ution time.We �nish this se
tion with a
on
lusion, that algorithms whi
h are not dom-inated in the sense of average quality and average exe
ution times are also non-dominated in the sense of dispersions of these values. Thus, good algorithms inthe average sense have also stable performan
e.3.7 SummaryThe
hoi
e of a pra
ti
al algorithm solving our problem depends on the budgetof time to
onstru
t a solution and on the system parameters. A series of exper-iments showed that in a non-biased
ase the best quality results are a
hieved bythe geneti
 algorithm and by heuristi
s BR1, BR2. Best rate heuristi
s (BR1,BR2) seem to o�er good quality and very low
ost. Thus, BR1, BR2
an bere
ommended as a universal solution. The geneti
 algorithm o�ers quality so-lutions, but at
onsiderable
ost. The number of
ommuni
ations is the fa
tordetermining
omplexity of GA. Hen
e, GA
an be re
ommended only if the timebudget is su�
iently big or V/B ≈ 1.The simplest heuristi
 FF may also be interesting as it is the fastest method,and its quality is not the worst. The
lass of appender heuristi
s in almost all98

tests turned out to be dominated both in the exe
ution time and in the quality.Hen
e, we do not re
ommend the use of appender heuristi
s proposed in [27℄.There seems to be no apparent advantage in heuristi
s using LP as a re�nementafter
hoosing the
ommuni
ation sequen
e and the load
hunk overlap. It maybe
on
luded that the
ombinatorial part of the problem determines the qualityof a solution in a greater degree than the algebrai
 part.We also re
on�rmed the observations on the nature of the problem itself gath-ered in Se
tion 3.4. The problem is easier to solve if one of the parameters A or Cis big and determines the s
hedule length. Changing
ommuni
ation startup time
S from
lose to zero to a dominating
omponent of the s
hedule length
hangesthe problem qualitatively. The memory size and the
ommuni
ation startup timeare
onne
ted. On the one hand, small memory sizes impose numerous
om-muni
ations, and hen
e, expose the
ost of startup times. On the other hand,the
ost of big
ommuni
ation startup times may be redu
ed by sending as fewmessages as possible to pro
essors with big memory bu�ers. It appeared easyto
reate biased test instan
es hard to solve by some type of heuristi
s. Systemheterogeneity makes the problem more di�
ult to solve for all proposed algo-rithms. Therefore, it is not advantageous to use very heterogeneous
omputingplatforms. It seems advisable to group
omputing
lients into
lasses a

ordingto, e.g., similar values of
ommuni
ation speeds, and to dedi
ate separate serversfor ea
h su
h
lass. Then, good s
hedules should be easier to build by the natureof the problem itself.

99

4 MapRedu
e Computations
In this
hapter we analyze a new type of distributed
omputations embodied in theso-
alled MapRedu
e paradigm. In the previous
hapters we analyzed s
hedul-ing one load volume in a star network topology. Now we move to analyzing twooperations, mapping and redu
ing, interpreted as two divisible appli
ations withpre
eden
e
onstraints. We start this
hapter with the des
ription of MapRe-du
e paradigm and the distributed pro
essing environment. Then we formulatethe mathemati
al model of MapRedu
e
omputations and propose s
heduling al-gorithms. The algorithms are tested in a series of
omputational experiments.Performan
e limits of MapRedu
e are also investigated. The results presentedin this
hapter are the �rst appli
ation of divisible load theory to pro
essingappli
ations with pre
eden
e
onstraints.4.1 Outline of MapRedu
eMapRedu
e is a programming model for pro
essing large data sets on big numbersof
omputers. It
an be implemented in many ways, and indeed it has variousimplementations [23, 40, 42, 44℄. Notably, MapRedu
e has been applied as aprodu
tion system at Google for pro
essing Internet data [23℄. Hen
e, it is verypra
ti
al to analyze s
heduling and performan
e of MapRedu
e. Here, we willoutline MapRedu
e as des
ribed in [23℄. In short, MapRedu
e
omputations
on-sist in pro
essing input data set by
reating a set of intermediate key/value pairs,100

and then redu
ing them to yet another list of key/value pairs. The
omputationsare performed in parallel.In more detail, MapRedu
e appli
ations are divided into two steps and de�nedby two fun
tions: Map and Redu
e. In the �rst step a Map fun
tion pro
essesthe input data set (e.g. a text or HTML �le), and generates a set of intermediate(key1, value1) pairs. In the se
ond step these intermediate pairs are sorted by
key1, and a Redu
e fun
tion merges the intermediate pairs with equal values of
key1, to produ
e a list of pairs (key1, value2). In this way, the input data set istransformed into a list of key/value pairs.Let us
onsider two examples given in [23℄. Counting o

urren
es of wordsin a big set of do
uments
an be organized in the following way. The Mapfun
tion generates an intermediate pair (word, 1) for ea
h word in the input�le(s). The intermediate pairs are redu
ed by summing ones, and thus produ
ingpairs (word, count). In the inverted index
omputation all do
uments
omprising
ertain words must be identi�ed. The Map fun
tion emits pairs (word, docID)for ea
h word in the input �le(s), where docID is a do
ument identi�er (e.g. aURL of a web page). In the Redu
e fun
tion all (word, docID) pairs are sortedby word, and pairs (word, list_docIDs) are emitted, where list_docIDs is asorted list of docIDs. There are many types of pra
ti
al appli
ations whi
h
anbe expressed in the MapRedu
e model. More detailed and advan
ed examples
an be found in [23℄.Both map and redu
e operations are performed in parallel in a distributed
omputer system. Pro
essing a MapRedu
e appli
ation starts with splitting theinput �les into load units,
alled splits in [23℄ (see Fig. 4.1). Many
opies of theprogram start on a
luster of ma
hines. One of the ma
hines,
alled the master,assigns work to the other
omputers (workers). There are m map tasks and rredu
e tasks to assign. In the further dis
ussion the map tasks will be
alledmappers, and the redu
e tasks redu
ers. A worker whi
h re
eived a mapper reads101

Network
file system

Input load Map phase Reduce phaseintermediate files
(on mapper disks)

.
.

.
.

.
.

.
.

.
.

.
.

....

....split 1

split V

Mapper 1 Reducer 1

fileforReducer 1

outputfile 1

outputfile 2

outputfile r

fileforReducer 1

fileforReducer 2

fileforReducer r

fileforReducer r

Mapper 2 Reducer 2

Mapper m Reducer r

(on reducer disks)Figure 4.1: MapRedu
e exe
ution overview.the
orresponding input load unit and pro
esses the data using the Map fun
tion.The output of this fun
tion is divided into r parts by a partitioning fun
tion andwritten to r �les on the lo
al disk. Ea
h of these r �les
orresponds to one of theredu
ers. Usually the partitioning fun
tion is of the form hash(key1) mod r. Theinformation about lo
al �le lo
ations is sent ba
k to the master, whi
h forwardsit to the redu
e workers.When a redu
e worker re
eives this information, it reads the bu�ered datafrom the lo
al disks of the map workers. After reading all intermediate data, theredu
e worker sorts them by the intermediate keys in order to group together allo

urren
es of the same intermediate key. Ea
h key and the
orresponding set ofvalues are then pro
essed by the Redu
e fun
tion. The generated output is ap-pended to a �nal output �le for a given redu
er. Thus, the output of MapRedu
eis available in r output �les. The exe
ution of MapRedu
e is
ompleted when allredu
ers �nish their work.4.2 Mathemati
al Model of MapRedu
eIn this se
tion we formulate a mathemati
al model of MapRedu
e
omputations[7, 10℄. We will pass from the "mi
ros
opi
" view of the
omputations to a102

oarser "ma
ros
opi
" model used in the following se
tions. We simplify the per-
eption of MapRedu
e
omputations to build a mathemati
ally and
on
eptuallytra
table representation of the
omplex
omputing platform and the distributedappli
ation. Notation introdu
ed in this se
tion is summarized in Table 4.1.Let us start with the model of the
ommuni
ation network. The stru
ture ofthe network is unknown in general, but it is known that the bandwidth of theunthrottled
ommuni
ation
hannels whi
h
an be simultaneously used is limited.We will represent this limitation as the number l of
ommuni
ation
hannels whi
h
an be simultaneously in use without redu
ing the
hannel
ommuni
ation speed.Thus, if two pro
essors
an
ommuni
ate with speed 1/C in the otherwise unusednetwork, then the bandwidth limitation for the
on
urrent
hannels in the wholenetwork is l/C. When referring to the above limit on the number of
on
urrent
hannels we will be talking about the bise
tion width limit.We per
eive the mappers and the redu
ers in a more
oarse way than in [23℄.In [23℄ a mapper is an appli
ation exe
uting the Map fun
tion for one load unit.The size lu of a load unit is 16-64MB, and a pro
essor re
eives approximately100 load units [23℄. Here we will assume that a single mapper is an appli
ationexe
uting the Map fun
tion for all the load (i.e. all load units) assigned to a
ertain pro
essor. Similarly, we unify all redu
er
omputations assigned to a
ertain pro
essor to a single (
ompound) redu
er. Let m denote the number ofmappers (
onsequently, also pro
essors exe
uting them), and let r denote thenumber of redu
ers. We assume that a mapper and a redu
er
an be exe
utedon the same pro
essor, but a redu
er starts work only after the mapper �nishes
omputations. Thus, the mapper and the redu
er
omputations do not interleaveon the same pro
essor. It is usually assumed that m ≥ r, but it is also possibleto represent m < r in our model. We ex
lude simultaneous exe
ution of severalmappers, or redu
ers, on the same
omputer. Were su
h
oallo
ation possible, it
an be represented in our model as several pro
essors, ea
h running a di�erent103

Table 4.1: Summary of notation for s
heduling MapRedu
e appli
ations.
αi size of the load pro
essed by mapper i; in bytes;
amap, ci, si mi
ros
opi

omputing rate,
ommuni
ation rate,
ommuni
ation startup time for pro
essor Piexe
uting mapper i, respe
tively; expressed inse
onds per byte (amap, ci) and in se
onds (si);
ared, sred mi
ros
opi

omputing rate and
omputationstartup time for redu
er appli
ation, equal for allpro
essors, respe
tively; expressed in se
onds perbyte (ared) and in se
onds (sred);
Ai =

si
lu
+ amap + ci ma
ros
opi

omputing rate of pro
essor Piexe
uting a mapper appli
ation;

C
ommuni
ation rate for reading mapper results bythe redu
ers; expressed in se
onds per byte;
γ0 mapper result multipli
ity fra
tion;
l bise
tion width limit, expressed in parallel
han-nels;
lu size of the load unit, in bytes;
m number of mappers;
Pi pro
essor exe
uting mapper i;
r number of redu
ers;
S
omputation startup time, equal for all pro
essors;
T (m, r) s
hedule length on m mappers and r redu
ers;
T s
hedule length, simpli�ed notation for given m, r;
τ(x) redu
er
omputing time fun
tion in load size x;
tred = sred + τ(γ0V/r) exe
ution time of a redu
er;
V the whole load size, in bytes;

104

Figure 4.2: General view of MapRedu
e s
hedule stru
ture.mapper or redu
er. The total size of the load to be pro
essed is V .A rough s
hedule stru
ture of MapRedu
e
omputations is shown in Fig. 4.2.Detailed s
hedule stru
tures are analyzed in the following se
tions. MapRedu
e
omputations are divided into several phases whi
h may partially overlap. In the�rst stage the
ode for the mapper and redu
er appli
ations is loaded on the pro-
essors. For the sake of simpli
ity of presentation we assume that the mapper andredu
er
odes are uploaded together. We assume that most of the pro
essors readthe
ode from the network �le system. The
ode may in
lude virtual ma
hines,libraries, the mapper and the redu
er
odes themselves. Thus, the
omputa-tion startup time S may be quite long. The
omputation startup time elapsesonly on
e be
ause when pro
essing the following load
hunks the
ode alreadyresides on the exe
uting pro
essor. The di�eren
es in the startup time betweenthe pro
essors are negligible. We assume that pro
essors read the
ode one byone. Although a more e�e
tive organization of the
ode broad
ast is possible, we
hoose this simple distribution s
heme to avoid more spe
i�
 assumptions on thenetwork stru
ture and on the implementation of MapRedu
e.In the se
ond stage ea
h mapper reads load units from the network �le sys-tem, pro
esses them, and stores the results in r lo
al �les for r redu
ers. Ami
ros
opi
 view of pro
essing a single load unit of size lu (e.g. in bytes) bymapper i is shown in Fig. 4.3. Pro
essor Pi (running mapper i) reads lu bytes105

..........Figure 4.3: Mi
ros
opi
 view of Map
omputations for a single load unit.of input in time si + ci · lu. Although
omputers are identi
al, the load may beread from lo
al or from remote lo
ations. Consequently, si, ci are di�erent fordi�erent pro
essors. The �xed time delay si in
ludes both
ommuni
ation and
omputation startup times needed in pra
ti
e to start the
omputations and readthe next load unit. The lu bytes of input are pro
essed in time amap ·lu. This time
omprises both
omputations and storing the results in lo
al �les. Thus, we as-sume that from the point of view of
omputations only, pro
essors are essentiallythe same, be
ause lo
al
omputing rate amap is the same for all pro
essors. Thetotal time of pro
essing a load unit is si + (ci + amap)lu. Sin
e the load reading,pro
essing and storing operations are repeated many times (for hundreds of loadunits [23℄), we simplify the representation of these operations to pro
essing withrate Ai. It follows from the above dis
ussion that Ai · lu = si+(ci + amap)lu, andthe operations performed by a mapper may be per
eived as if pro
essing the loadwith the average rate Ai = si/lu+ ci+ amap. Here Ai depends on lu, but the sizeof the load unit is �xed for a MapRedu
e exe
ution, hen
e also Ai is
onstant. Inthe following dis
ussion we will use this
oarse representation of mapper
ompu-tations as performed with rate Ai. Let αi denote the total size of load assigned tomapper i. A

ording to the methodology of DLT we assume that αi is a rationalnumber. This simpli�
ation implies that the load assignment obtained in ourmodel needs rounding to load units used in pra
ti
al MapRedu
e. We assumethat the e�e
ts of su
h load rounding are negligible. It will be assumed that theamount of results produ
ed by the mappers is proportional to the input size. For
αi bytes of input γ0αi bytes of output are produ
ed.106

In the third stage (
f. Fig. 4.2) the results stored on the mappers are read bythe redu
ers. We assume that the partitioning fun
tion divides the spa
e of keyvalues into r equal parts. This is a
hieved by the use of hashing in distributingthe mapper output as des
ribed in Se
tion 4.1. Consequently, the size of the inputfor ea
h redu
er is equal to γ0V/r bytes in m
hunks of sizes γ0α1/r, . . . , γ0αm/r.Ea
h
hunk
omes from a dedi
ated �le on a di�erent pro
essor. We assumethat the redu
ers read the load from the mappers with equal rate C. Theremay be some advantages in the
ommuni
ation speed if a mapper and a redu
erare exe
uted on the same pro
essor. Still, ea
h redu
er has to read its inputfrom all mapper workers and su
h advantages
an
el out when averaged over allthe inputs. Moreover, the advantage of the lo
al read in relation to the wholereading time diminishes with the in
reasing number of mappersm. Consequently,we assume that the di�eren
es in the
ommuni
ation rate for the transfers fromthe mappers to the redu
ers are negligible. Ea
h of r redu
ers reads its inputfrom mapper i in time γ0αiC/r unless there is bandwidth limitation. At mostone
hannel
an be opened to a mapper with transfer rate C. The methods ofin
orporating bandwidth limitations in the
ommuni
ation model are des
ribedin the following se
tions.In the fourth stage r redu
ers sort the input data, perform redu
e operations,and �nally in the �fth stage store the results in the network �le system. Let
sred denote the redu
er
omputation startup time, and ared (in se
onds per byte)the redu
er pro
essing rate. Parameter ared represents
omputations, transfers tolo
al disks and storing the results in the network �le system. All redu
ers re
eiveinput of roughly the same size γ0V/r. Consequently, all redu
ers have equalexe
ution time tred = sred+τ(γ0V/r), where τ(x) is the running time of a redu
ervs. the size x of the input. We will assume that the redu
er exe
ution time is
τ(x) = ared(x log2 x), whi
h
orresponds to the
omplexity of sorting. Here weassumed that writing the redu
er results in the last stage is
ontention-free. This107

may not be true in general. Pre
autions to avoid redu
ers writing
ontention arementioned in the further se
tions and in Chapter 5.We assume that if there are other ba
kground servi
es exe
uted by the pro-
essors (e.g. for the network �le system), then they in�uen
e the pro
essor per-forman
e in a
onstant way. In other words, simultaneous
omputation and
ommuni
ation is possible, but performan
e parameters amap, ared, ci, S, si, sredremain
onstant.MapRedu
e implementation in
ludes pro
edures to tolerate failures. We donot in
lude them expli
itly in our model. However, a simple optimisti
 model offailure handling
an be assumed for the purposes of performan
e modeling. Sin
ethe fault toleran
e methods are based on retrying failed
omputations, thesefeatures
an be represented as pro
essing load greater than V (for mapping) orrunning additional mappers and redu
ers. The size of the additional load
an beestimated using histori
al data on the failures.Our goal is to partition the input load of size V into mapper
hunks α1, . . . , αmand s
hedule mapper to redu
er
ommuni
ations so that the total s
hedule length
T is as short as possible.4.3 S
hedule Dominan
e PropertiesIn this se
tion we analyze s
hedule dominan
e properties for MapRedu
e
ompu-tations. We start with presenting the optimum s
heduling strategy for the
asewhen only one redu
er takes part in pro
essing. Afterwards, we study s
heduledominan
e properties for pro
essing with many redu
ers.4.3.1 Pro
essing with a Single Redu
erWe will say that the order of reading the results from the mappers by a redu
eris the FIFO order if a redu
er reads its inputs (mapper outputs) in the order108

a)
b)Figure 4.4: Redu
er read orders. a) FIFO s
hedule stru
ture, b) LIFO s
hedule stru
-ture.of starting
omputations on the mapper pro
essors (Fig. 4.4a). The oppositesequen
e of reading the results, starting from the last a
tivated mapper pro
essor,and �nishing with the mapper a
tivated as the �rst one, will be
alled the LIFOorder (Fig. 4.4b). The results
an be read from the mappers sequentially. Thismeans that only after reading the whole �le from mapper i
an a redu
er startreading the �le from mapper i+1 (in the given sequen
e, e.g. FIFO or LIFO). Inthe opposite
ase a redu
er may open two
ommuni
ation
hannels to mappers iand i+1 and read the �les
on
urrently. In the latter
ase the bandwidth 1/C ofthe input to the pro
essor running a redu
er is shared by both
hannels. Below weargue that faster pro
essors should start
omputations �rst, and that the resultsshould be read sequentially in the FIFO order.Proposition 4.1. When there is only one redu
er (r = 1), a MapRedu
e s
hedulea
tivating mapper pro
essors in the order of nonde
reasing Ai, with sequentialFIFO redu
er reads, is optimum.Proof. We will show that the above s
hedule stru
ture is optimum by
omparingthe amounts of load pro
essed by the mapper pro
essors in a given time T againstdi�erent s
hedule organizations. The s
hedule stru
ture proposed above allowsfor pro
essing bigger load in time T than in other s
hedules. Therefore, it alsoallows for pro
essing given load V in the shortest time. Let us analyze the
ase109

with two mappers (m = 2).Let us �rst analyze the FIFO stru
ture (see Fig. 4.4a) with bandwidth sharing.The redu
er reads from the �rst mapper the load of size γ0α1. Let 0 ≤ γ0β1 ≤

γ0α1 be the part of load read from the �rst mapper while the se
ond mapper is still
omputing. The remaining part γ0(α1 − β1) is read in parallel with the resultsfrom the se
ond mapper. The speed of reading mapper results is determinedby the shared bandwidth 1
C
of the redu
er input interfa
e. Thus, we have thefollowing relationships in the
omputing and
ommuni
ation times:

P1 : S + α1A1 + β1γ0C + (α1 − β1 + α2)γ0C = T (4.1)
P2 : 2S + α2A2 + (α1 − β1 + α2)γ0C = T, (4.2)from whi
h we obtain
P1 : S + α1(A1 + γ0C) + α2γ0C = T (4.3)
P2 : 2S + α2(A2 + γ0C) + (α1 − β1)γ0C = T. (4.4)From (4.3) we obtain

α2 = (T − S − α1 (A1 + γ0C)) /γ0C (4.5)whi
h substituted in (4.4) yields
α1 =

TA2 + Sγ0C − SA2 − β1γ
2
0C

2

A1A2 + A1Cγ0 + A2Cγ0
. (4.6)Returning with α1 to (4.5), the load α2 is

α2 =
TA1 − 2SA1 − Sγ0C + β1γ0CA1 + β1γ

2
0C

2

A1A2 + A1Cγ0 + A2Cγ0
. (4.7)

110

Together we have
α1 + α2 =

(T − S)(A1 + A2)− SA1 + β1γ0CA1

A1A2 + A1Cγ0 + A2Cγ0
. (4.8)Note that the above load is in
reasing with β1. Hen
e, it is biggest if β1 = α1.This means that the bandwidth is not shared while reading the results from these
ond mapper. Therefore, the equation system (4.3)-(4.4) gets the followingform:

P1 : S + α1A1 + (α1 + α2)γ0C = T (4.9)
P2 : 2S + α2(A2 + γ0C) = T. (4.10)From (4.10) we obtain

α2 =
T − 2S

A2 + γ0C
, (4.11)and by observing that S + A2α2 = α1(A1 + γ0C) (
f. Fig. 4.4a) we get

α1 =
TA2 + Sγ0C − SA2

(A1 + γ0C)(A2 + γ0C)
. (4.12)The total size of the pro
essed load is

α1 + α2 =
T (A1 + A2) + Tγ0C − 2SA1 − SA2 − Sγ0C

(A1 + γ0C)(A2 + γ0C)
. (4.13)Let us now analyze the LIFO result reading order (
f. Fig. 4.4b). First letus
he
k if bandwidth sharing while reading mapper results is pro�table. Let

0 ≤ γ0β2 ≤ γ0α2 be the part of the results read by the redu
er from P2 while P1is still
omputing. Analogously to (4.3), (4.4) we obtain in the LIFO
ase:
P1 : S + α1(A1 + γ0C) + (α2 − β2)γ0C = T (4.14)
P2 : 2S + α2(A2 + γ0C) + α1γ0C = T. (4.15)111

From (4.15) we derive α1 and substitute it in (4.14), from whi
h we obtain
α2 =

TA1 − Sγ0C − 2SA1 − β2γ
2
0C

2

A1A2 + A1Cγ0 + A2Cγ0
. (4.16)By substituting α2 in (4.15) we have

α1 =
TA2 − SA2 + Sγ0C + β2A2γ0C + β2γ

2
0C

2

A1A2 + A1Cγ0 + A2Cγ0
. (4.17)Together the pro
essed load is

α1 + α2 =
(T − S)(A1 + A2)− SA1 + β2A2γ0C

A1A2 + A1Cγ0 + A2Cγ0
. (4.18)As in (4.8), it is a fun
tion stri
tly in
reasing with β2. Hen
e, it is most e�e
tiveto make β2 = α2, i.e. the maximum possible. Consequently, bandwidth shar-ing while reading the results from two mappers is not pro�table. Now we will
al
ulate what amount of load is pro
essed in the LIFO mode in given time T ,provided that β2 = α2. From (4.14)

α1 =
T − S

A1 + γ0C
. (4.19)By observing that A1α1 = S + (A2 + γ0C)α2 and using the above value of α1 weobtain

α2 =
TA1 − 2SA1 − Sγ0C

(A1 + γ0C)(A2 + γ0C)
. (4.20)Together the load pro
essed in the LIFO mode without bandwidth sharing is

α1 + α2 =
T (A1 + A2) + Tγ0C − 2SA1 − SA2 − 2Sγ0C

(A1 + γ0C)(A2 + γ0C)
. (4.21)Comparing (4.13) and (4.21) we see that the FIFO order of the redu
er inputreading is more pro�table be
ause the numerator in (4.13) is bigger by Sγ0C.112

It remains to determine the optimum order of starting the
omputations onthe pro
essors. If we swit
h the order of a
tivating the pro
essors from (P1, P2),to (P2, P1) then the pro
essor indi
es in (4.13) get swapped and the pro
essedload is
α′
1 + α′

2 =
T (A1 + A2) + Tγ0C − 2SA2 − SA1 − Sγ0C

(A1 + γ0C)(A2 + γ0C)
(4.22)Subtra
ting α1+α2 in equation (4.13) from α′

1+α′
2 in the above equation we get

(α′
1 + α′

2)− (α1 + α2) =
SA1 − SA2

(A1 + γ0C)(A2 + γ0C)
. (4.23)Thus, the load pro
essed in time T in
reases after the swap only if A1 > A2. Thismeans that in the order (P1, P2) we would have started
omputations on a slowerpro
essor �rst. Hen
e, the faster pro
essor should start the
omputations earlier.We demonstrated that for two mappers, sharing bandwidth while readingoutputs from the mappers is not pro�table both in the LIFO and in the FIFOorder of reading. Of the two orders FIFO is better, and for FIFO the fasterpro
essor (i.e. the one with the smaller Ai) should be started �rst. This result
an be iteratively extended to more than just two mappers.4.3.2 Pro
essing with Many Redu
ersIn this se
tion we
onsider s
heduling for more than one redu
er. Unfortunately,a generally optimum s
hedule stru
ture, similar to the one de�ned in Proposition4.1 for a single redu
er, does not seem to exist for many redu
ers. On the
on-trary, it will be shown that ea
h of the alternative s
hedule stru
tures with manyredu
ers
an dominate the other under
ertain
onditions.As suggested by Proposition 4.1, we assume the FIFO order of �nishing the
omputations on the mappers and that a single redu
er is not reading the resultsfrom two (or more) mappers in parallel. As explained in Se
tion 4.2, the amountsof load read by all redu
ers are the same. The a
tual pro
essors running the113

a)
.....

.....

b)

.....

)

.Figure 4.5: Many redu
ers exemplary read s
hedule stru
tures. a) Case A, redu
ersread in parallel, b)
ase B, redu
ers read sequentially,
) redu
ers share bandwidth.redu
ers
an be arbitrary free ma
hines. For example, P1
an exe
ute redu
er 1after
ompletion of mapper 1, or it
an be some other pro
essor from a separate
omputer pool if su
h a pool exists.The alternative
ommuni
ation s
hedules are shown in Fig. 4.5. In the �rsts
hedule type (Fig. 4.5a) the end of reading the results from Pi by the �rstredu
er is syn
hronized with the end of the
omputations on Pi+1. Note thatin this s
hedule di�erent redu
ers read di�erent mapper results in parallel, whatmay violate the bise
tion width limit. For the time being, we assume that thebise
tion width is not ex
eeded. We will
all this s
hedule type
ase A. In these
ond type of s
hedule (Fig. 4.5b) the redu
ers read output from the mapperssequentially. The end of reading the data by the last redu
er from mapper Pi
oin
ides with the end of
omputation on mapper Pi+1. Here all redu
er readsare sequential, only one
ommuni
ation
hannel is used at a time. Therefore,the speed of
ommuni
ation is the same as in one-to-one
ommuni
ation withoutnetwork
ontention. We will refer to the se
ond type of s
hedule as to
ase B.114

a)

b)
.....

............Figure 4.6: Spe
ial
ases of the �rst redu
ers read orders. a) Case A.1, b) Case A.2.In the third type of s
hedule (Fig. 4.5
) the redu
ers read the results from themappers one by one, but the bandwidth is equally shared between the redu
ers.The end of reading from mapper Pi
oin
ides with the end of
omputations onmapper Pi+1. This
ase is very similar to Case B. Hen
e, we do not analyze itseparately in the further dis
ussion.To demonstrate the la
k of dominan
e of the above
ommuni
ation s
hedulestru
tures we will
al
ulate the amount of load pro
essed on two mappers andtransferred to two redu
ers (m = r = 2) in time T . Note that sin
e the exe
u-tion times of the redu
ers are equal, the minimization of T is equivalent to theminimization of the whole s
hedule length.Case A. We
an distinguish two sub-
ases (Fig. 4.6). In the �rst one (
ase A.1)there is an idle time in the
ommuni
ations with P2. This means that readingresults from P1 is longer than from P2. Hen
e α1 ≥ α2. In the se
ond sub-
ase(
ase A.2)
ommuni
ation with P2 is longer than with P1, and α1 ≤ α2.Case A.1. In the �rst sub-
ase we have the
onditions:
α1(A1 + γ0C/2) = α2A2 + S (4.24)
S + α1(A1 + γ0C) + α2γ0C/2 = T (4.25)115

α1 ≥ α2. (4.26)Hen
e, we obtain:
α1 =

TA2 − A2S + γ0CS/2

A1A2 + A1γ0C/2 + A2γ0C + γ2
0C

2/4
(4.27)

α2 =
TA1 + Tγ0C/2− 2A1S − 3/2γ0CS

A1A2 + A1γ0C/2 + A2γ0C + γ2
0C

2/4
(4.28)

α1 + α2 =
T (A1 + A2 + γ0C/2)− S(2A1 + A2)− γ0CS

A1A2 + A1γ0C/2 + A2γ0C + γ2
0C

2/4
, (4.29)with an additional requirement α1 ≥ α2 equivalent to:

T (A2 − A1 − γ0C/2) ≥ A2S − 2A1S − 2γ0CS. (4.30)Case A.2. In the se
ond sub-
ase we have the
onditions:
α1(A1 + γ0C/2) = α2A2 + S (4.31)
2S + α2(A2 + γ0C) = T (4.32)
α1 ≤ α2. (4.33)Hen
e, we obtain:

α1 =
TA2 − A2S + γ0CS

A1A2 + A1γ0C + A2γ0C/2 + γ2
0C

2/2
(4.34)

α2 =
TA1 + Tγ0C/2− 2A1S − γ0CS

A1A2 + A1γ0C + A2γ0C/2 + γ2
0C

2/2
(4.35)

α1 + α2 =
T (A1 + A2 + γ0C/2)− S(2A1 + A2)

A1A2 + A1γ0C + A2γ0C/2 + γ2
0C

2/2
, (4.36)with an additional requirement α1 ≤ α2 equivalent to:

T (A2 − A1 − γ0C/2) ≤ A2S − 2A1S − 2γ0CS. (4.37)
116

At least one of the
onditions (4.30), (4.37) is always satis�ed. If both aresatis�ed, then the load amounts given by (4.29) and (4.36) are equal.Case B. In the
urrent s
hedule stru
ture we have the
onditions (
f. Fig. 4.5b):
α1(A1 + 2γ0C/2) = α2A2 + S (4.38)
2S + α2(A2 + 2γ0C/2) = T. (4.39)Thus, we obtain:

α1 =
TA2 −A2S + γ0CS

A1A2 + A1γ0C + A2γ0C + γ2
0C

2
(4.40)

α2 =
TA1 + Tγ0C − 2A1S − 2γ0CS

A1A2 + A1γ0C + A2γ0C + γ2
0C

2
(4.41)

α1 + α2 =
T (A1 + A2 + γ0C)− S(2A1 + A2)− γ0CS

A1A2 + A1γ0C + A2γ0C + γ2
0C

2
. (4.42)Let us now
ompare the amounts of load pro
essed in time T in the aboveanalyzed s
hedule stru
tures. By
omparing (4.29), (4.36), (4.42) we
an see thatnone of the s
hedule stru
tures always results in the biggest pro
essed load fora given time T . Thus, no single
ommuni
ation s
hedule stru
ture seems to beoptimum in all
ases. To build the optimum s
hedule a more general tool, possiblyin
orporating all possible stru
tures, must be applied. On the other hand, if we
on
entrate only on the part of (4.29), (4.36), (4.42) whi
h grows with T , then it
an be
on
luded that for very big T (whi
h may result from a need for pro
essingvery big loads) the load pro
essed in
ases A.1, A.2 is larger than in
ase B. Forexample, the di�eren
e between (4.29) and (4.42) in the part proportional to Tis equal to

T (A1+A2+γ0C/2)
A1A2+A1γ0C/2+A2γ0C+γ2

0
C2/4

− T (A1+A2+γ0C)
A1A2+A1γ0C+A2γ0C+γ2

0
C2 =

Tγ0C/2(A2
1
+3/2A1γ0C+A2γ0C/2+γ2

0
C2/2)

(A1A2+A1γ0C/2+A2γ0C+γ2
0
C2/4)(A1A2+A1γ0C+A2γ0C+γ2

0
C2)

> 0 (4.43)117

...

Figure 4.7: The s
hedule stru
ture for a single redu
er.A similar inequality
an be derived for (4.36) and (4.42). Therefore, in the furtherdis
ussion we will be using s
hedules based on
ase A.4.4 S
heduling AlgorithmsIn this se
tion we propose algorithms for the load partitioning in MapRedu
e
omputations. For pro
essing with a single redu
er, when optimum s
hedule pat-tern is known, we give an algorithm yielding the optimum load partitioning. Inthe
ase of many redu
ers the optimum s
hedule stru
ture is not known. Hen
e,we propose two heuristi
 s
heduling methods, based on the results obtained fora single redu
er and inequality (4.43), and
onsider their advantages and disad-vantages. A general s
heduling algorithm for a sequen
e of redu
ing appli
ations,ea
h of whi
h may be exe
uted on many pro
essors, will be presented in Chapter 5.Sin
e all redu
ers have equal exe
ution time tred, we
on
entrate on minimizingthe length of the partial s
hedule
omprising mapper
omputations and mapperto redu
er transmissions.4.4.1 Single Redu
erLet us remind that it follows from Proposition 4.1 that the mappers should startthe
omputations in the order of in
reasing Ais and the outputs from the mappersare read sequentially. Let us assume that pro
essors P1, . . . , Pm running themappers are numbered a

ording to in
reasing Ais, i.e. A1 ≤ A2 ≤ . . . ≤ Am.118

A s
hedule for the above setting is shown in Fig. 4.7. From Proposition 4.1 andfrom Fig. 4.7 we infer that the time of
omputing on pro
essor Pi and reading itsresults is equal to the time of startup and
omputing on pro
essor Pi+1. Hen
ewe get a system of linear equations determining the load partitioning:
(Ai + γ0C)αi = S + Ai+1αi+1 for i = 1, . . . , m− 1 (4.44)

m
∑

i=1

αi = V . (4.45)The above linear system
an be solved in O(m) time for αis by the redu
tion of
αi to a�ne linear fun
tions of αm, i.e. αi = li+kiαm. More pre
isely, from (4.44)

lm = 0 km = 1 (4.46)
αi =

S

Ai + γ0C
+

Ai+1

Ai + γ0C
αi+1 =

=
S

Ai + γ0C
+

Ai+1

Ai + γ0C
(li+1 + ki+1αm) =

=

(

S

Ai + γ0C
+

Ai+1li+1

Ai + γ0C

)

+

(

Ai+1ki+1

Ai + γ0C

)

αm =

= li + kiαm for i = m− 1, . . . , 1. (4.47)By substituting αis in (4.45) we obtain
αm =

V −
∑m

i=1 li
∑m

i=1 ki
(4.48)and the remaining αis are obtained from (4.48) and (4.47). Let us note that

αm in (4.48) may be negative. This negative solution is a demonstration that atthe
urrent parameters Ai, γ0, C, S, V the number of pro
essors m is too big touse them all. Therefore, if αm < 0, then the number of pro
essors m must bede
reased.
119

.....

.....

.....

.....

.....

.....

.....

.....Figure 4.8: A s
hedule for many redu
ers. The �rst method.If all αi are nonnegative, then the total s
hedule length is (
f. Fig. 4.7)
T = mS + αm(Am + γ0C) + tred = S + α1A1 + γ0CV + tred, (4.49)where tred = sred + τ(γ0V/r).4.4.2 Many Redu
ersBelow we propose two s
heduling methods for MapRedu
e
omputations withmany redu
ers. Ea
h of them has its advantages and weaknesses. We summarizethem at the end of this se
tion.The �rst method of load partitioning for many redu
ers is a natural extensionof the method for a single redu
er. The s
hedule stru
ture is shown in Fig. 4.8.In this method the end of the read by the �rst redu
er from Pi
oin
ides with themapper
ompletion time on Pi+1. The method of
al
ulating α1, . . . , αm for r = 1presented in Se
tion 4.4.1
an be applied here with using the
ommuni
ation time

γ0C/r in pla
e of γ0C. Thus, the load partitioning is determined by the systemof linear equations:
(Ai + γ0C/r)αi = S + Ai+1αi+1 for i = 1, . . . , m− 1 (4.50)120

m
∑

i=1

αi = V. (4.51)The solution of this system is given by formulas:
αi = li + kiαm for i = m− 1, . . . , 1 (4.52)

lm = 0, km = 1 (4.53)
li =

S+Ai+1li+1

(Ai+γ0C/r)
, ki =

Ai+1ki+1

(Ai+γ0C/r)
for i = m− 1, . . . , 1 (4.54)

αm =
V−

∑m
i=1 li∑m

i=1 ki
. (4.55)None of the mappers is read simultaneously by many redu
ers and no redu
erreads outputs from many mappers in parallel. The bandwidths of the mappers'network output interfa
es and the redu
ers' network input interfa
es are notshared. Yet, the bise
tion width limitations are not obeyed if l < r. The s
hedulelength is

T =
m

max
i=1

{iS + αi(Ai + γ0C) +
γ0C

r

m
∑

j=i+1

αj}+ tred, (4.56)where tred = sred + τ(γ0V/r).This s
hedule may be implemented as follows. Whenever Pi �nishes trans-ferring its results to redu
er j, it noti�es Pi+1 to begin a transfer to j. Then
Pi starts transferring results to redu
er j + 1, provided that it has been alreadynoti�ed to do it by Pi−1.The se
ond method assumes that the order of mapper to redu
er
ommuni-
ations is given, and they are preassigned to
ertain time intervals. The
ommu-ni
ation s
hedule stru
ture is shown in Fig. 4.9. A mapper to redu
er transferappears in exa
tly one time interval. Hen
e, in ea
h interval [ti, ti+1) a
ompleteset of results of size γ0αj/r is read from a mapper Pj . All redu
ers read map-per pro
essors in the same order: P1, P2, . . . , Pm. The order of redu
er reads isthe same for all the read mappers. New
ommuni
ation operations are started121

.....

.....

.....

.....Figure 4.9: A s
hedule for many redu
ers. The se
ond method. Notation i → j meanstransfer of mapper i results to redu
er j.as soon as the mappers �nish their
omputations and the su�
ient number of
ommuni
ation
hannels (not ex
eeding the bise
tion width l) is available. Thebise
tion width limitation is obeyed, as well as sequential reading of the mapperresults by the redu
ers. This s
hedule
an be implemented as in the previousmethod with additional pre
autions not to ex
eed the bise
tion width limit l.For example, whenever the number k of
ompleted load transfers on mapper 1 issu
h that k mod l = 0, mapper 1 waits to be noti�ed by mapper m that k− l+1transfers from mapper m are
ompleted.Let us analyze the number of ne
essary
ommuni
ation intervals. If l ≥ r,then the bise
tion width limit l is not bounding, and the number of intervalsne
essary to perform m reads by ea
h of r redu
ers is m + r − 1. On the otherhand, if the number of simultaneous
hannels is l < r, then after opening l read
hannels by l redu
ers the (l+1)-th redu
er shall wait until the
ompletion of theread operation of the �rst redu
er from the m-th mapper. This requires m − ladditional
ommuni
ations of redu
er 1 with mappers Pl+1, . . . , Pm to release a122

ommuni
ation
hannel. Consequently, m − l idle intervals appear in the readsfrom ea
h mapper. Then, at the end of ea
h interval [tm, tm+1), . . . , [tm+l, tm+l+1)a new read operation is started by redu
ers l+1, . . . , l+ l. Thus, after m− l idleintervals, read operations are performed in the following l intervals. The sequen
esof m− l idle intervals are inserted in the s
hedule ⌈ r
l
⌉−1 times. Overall, there are

(⌈ r
l
⌉−1)(m−l)+m+r−1 intervals in the
ommuni
ation s
hedule. For simpli
ityof notation let us introdu
e a fun
tion itv(i, j) whi
h returns the number of theinterval in whi
h redu
er j reads output of mapper i (
ounting starts with value1 for interval [t1, t2)). The values of itv(i, j)
an be
al
ulated as follows:

itv(i, j) =

(⌈

j

l

⌉

− 1

)

m+ i+ (j − 1) mod l (4.57)for i = 1, . . . , m, j = 1, . . . , r. Let vti(i) be the set of mappers whi
h are read ininterval i, i.e.
vti(i) = {a : itv(a, b) = i, b ∈ {1, . . . , r}} . (4.58)The values of vti(i)
an be tabulated in O(mr) time. The partition of the load
an be
al
ulated from the following linear program.minimize titv(m,r)+1 (4.59)

iS + Aiαi = ti for i = 1, . . . , m (4.60)
γ0C

r
αk ≤ ti+1 − ti for i = 1, . . . , itv(m, r), k ∈ vti(i) (4.61)

m
∑

i=1

αi = V (4.62)In the above linear program αi, ti are variables. We minimize the
ompletiontime of the last
ommuni
ation titv(m,r)+1. By
onstraints (4.60) the
omputations�nish before reading from the mappers is started. Inequalities (4.61) guaranteethat all
ommuni
ations �t in the time intervals where they are assigned. Thewhole load is pro
essed by (4.62). The linear program (4.59)-(4.62) has itv(m, r)+123

1 + m variables, whi
h is O(mr/l), and at most m + 1 + itv(m, r)l
onstraints,whi
h is O(mr).The above linear program
an be further simpli�ed. Let us remind that theredu
ers read equal size outputs from a
ertain mapper. For example, all
ommu-ni
ations (i, j) from a �xed mapper i to redu
ers j = 1, . . . , r have the same size
γ0αi/r. Consequently, intervals [tma+i, tma+i+1), and [tmb+i, tmb+i+1) have equallength be
ause they
omprise read operations from the same set of mappers, forsome positive integers i, a < b su
h that mb+i ≤ itv(m, r). The blo
k of intervals
[tm, tm+1), . . . , [t2m−1, t2m) is repeated (⌈ r

l
⌉ − 1) times. After them (r − 1) mod lintervals follow whi
h repeat the lengths of some earlier intervals. Namely, thedistan
e between titv(m,(⌈ r

l
⌉−1)l+1) and titv(m,r)+1 is equal to the distan
e between

tm and tm+((r−1) mod l)+1. Consequently, the length of the s
hedule until the endof mapper to redu
er
ommuni
ations is
tm + (⌈

r

l
⌉ − 1)(t2m − tm) + (tm+((r−1) mod l)+1 − tm) =

= (⌈
r

l
⌉ − 1)(t2m − tm) + tm+((r−1) mod l)+1. (4.63)The values of variables tam+i for 1 < a ≤ ⌈ r

l
⌉−1 and 0 ≤ i < m
an be
al
ulatedas tm + a(t2m − tm) + (tm+i − tm) = a(t2m − tm) + tm+i. Hen
e, LP (4.59)-(4.62)
an be redu
ed tominimize (⌈

r

l
⌉ − 1)(t2m − tm) + tm+((r−1) mod l)+1 (4.64)

iS + Aiαi = ti for i = 1, . . . , m (4.65)
γ0C

r
αk ≤ ti+1 − ti for i = 1, . . . , 2m, k ∈ vti(i) (4.66)

m
∑

i=1

αi = V. (4.67)The fun
tions of the
onstraints in the above LP are the same as in the earlier one.The number of variables is 3m, the number of
onstraints is at most 2ml+m+1.124

The obje
tive fun
tion (4.64) redu
es to tm+r if r ≤ l.The above two methods of s
heduling have advantages and disadvantages.The �rst algorithm is mathemati
ally simple and easy to implement in pra
ti
e.On the other hand it ignores the network bise
tion width. The se
ond one ismore pre
ise in representing bandwidth limitations. Additionally, sin
e the re-du
er
omputations start times are spread in time, the redu
er writes are alsospread in time, what allows to avoid network
ontention while writing the �nalresults. On the other hand, this method makes spe
i�
 assumptions (althoughnot unrealisti
) on the stru
ture of the s
hedule, and requires more
areful
oor-dination (syn
hronization) of
ommuni
ations.4.5 Performan
e AnalysisBelow we analyze the in�uen
e of the system parameters on the performan
eof MapRedu
e
omputations. All linear programs were solved using lp_solvelinear programming library [41℄. Unless stated otherwise, we assume the followingreferen
e system and appli
ation parameters: lu =16E6, m = 1000, r = l = 100,
S = 1, C = cmap =1E-8, γ0 = 0.1, amap = ared =1E-7, smap = sred =1E-2,
V = 1E15. The above values
an be interpreted as follows. The size of a load unitis approximately 16 MB. There are 1000 mappers, 100 redu
ers, and the bise
tionwidth is not bounding. We will study the in�uen
e of the limited bise
tion widthin the further text. The
omputation startup time S is 1s. The
ommuni
ationrate, both for the mappers and for the redu
ers, is 10ns/B. The
omputationstartup times for ea
h unit of load on the mapper, and for the redu
ers are 10ms.The load size is 1PB.If the bise
tion width l is not bounding, then both methods of load parti-tioning presented in Se
tion 4.4 give similar results (within the range of analyzedparameter values). Therefore, with the ex
eption of
hannel number l
onsider-125

Table 4.2: MapRedu
e phase duration vs. problem size V .mapper to
V startup mapping redu
er redu
ing Ttransfer1E17 2.10E-04% 2.43% 0.231% 97.6% 4.77E081E16 2.25E-03% 2.61% 0.249% 97.4% 4.44E071E15 2.44E-02% 2.83% 0.269% 97.2% 4.10E061E14 0.265% 3.19% 0.291% 96.8% 3.78E051E13 2.87% 4.73% 0.303% 95.3% 3.49E044.383E12 6.65% 6.64% 0.292% 93.3% 1.50E04ations, we will present the results obtained for the �rst method, whi
h is mu
hfaster.Let us start with analyzing
hara
teristi
 s
hedule features. This will be usefulin understanding the following results. In Table 4.2 we have
olle
ted the relativedurations of the MapRedu
e phases for various problem sizes. Note that theper
entages do not sum to 100% be
ause the phases partially overlap. The lastline is given for the smallest load for whi
h m = 1000mappers
ould be e�e
tivelyused. For smaller V some of the αis be
ome negative. It
an be seen in Table 4.2that the s
hedule length is dominated by the redu
ing time, and this dominationgrows with the problem size V . This observation remains valid also for higher
omplexity fun
tions than τ(x) = ared(x log2 x), be
ause then the redu
tion timedominates even more.In Fig. 4.10 the imbalan
e of the mapper load distribution is presented. Onthe horizontal axis the indi
es of the mappers are shown. A bigger number meansthat the mapper is a
tivated later. On the verti
al axis the fra
tions αi/(V/m)are shown. The dependen
ies are depi
ted for instan
es with one parameter
hanged with respe
t to the referen
e system. Instan
es with C = 1E-9, γ0 =

0.01, r = 1000 are shown as one line as they all represent equal load partition.It
an be seen that for some system
on�gurations the load on the mappersin
reases, for some other
on�gurations the load fra
tions de
rease. The border126

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0 200 400 600 800 1000Figure 4.10: Skew of mapper loads, for varied system parameters.
ases are systems whi
h satisfy Srm = γ0V C. This formula
an be derivedanalyti
ally for a homogeneous system by
al
ulating by how mu
h the load ina pair of pro
essors Pi, Pi+1 must di�er to satisfy equation (4.50). Pre
isely, let
αi = αi+1 +∆, Ai = Ai+1 = A. From equation (4.50) we have

(A+ γ0C/r)(αi+1 +∆) = S + Aαi+1. (4.68)From this it
an be derived that
∆ = (Sr − αi+1γ0C)/(Ar + Cγ0). (4.69)By assuming that the load distribution is equal, αi+1 = V/m and ∆ = 0, weobtain the above mentioned formula. We observed that the systems with Srm <

γ0V C have in
reasing load distribution α1 < α2 < . . . < αm, while systemswith Srm > γ0V C have de
reasing load distribution α1 > α2 > . . . > αm. These
ond
ase seems advantageous for the overall performan
e be
ause the mapper
ompletion times are less s
attered in time (see Fig. 4.8). Note that the referen
e127

system has the less advantageous, in
reasing load distribution.In the following dis
ussion we use speedup as a performan
e index. Classi
ally,speedup is
al
ulated as a

eleration of
omputations on a
ertain number ofpro
essors with referen
e to the exe
ution time on a single ma
hine. However,mapping and redu
ing
an be performed on di�erent numbers of pro
essors, whatmakes the dependen
e 2-dimensional, and
onsequently harder to understand.For
larity of the following
harts it is often more
onvenient to use di�erentreferen
e systems than a single-pro
essor
on�guration. Therefore, we de�nespeedup in a slightly more general way:
ς(a, b) =

T (a, b)

T (m, r)
, (4.70)where T (a, b) is the s
hedule length for the referen
e system with a mappers and bredu
ers, and T (m, r) is the s
hedule length for the tested system withmmappersand r redu
ers. Here m, r are subje
t to
hange, and a, b remain
onstant. Insome tests even m, r remain �xed, and other parameters (e.g. lu, amap, l) arevaried. A

ording to equation (4.70), ς(1, 1) is equivalent to the
lassi
 speedup.The above de�nition emphasizes the referen
e system whi
h may be di�erent fordi�erent
harts.The performan
e of MapRedu
e with respe
t to growing number of mappersmis shown in Fig. 4.11. It
an be observed in Fig. 4.11 that for r ≥ 100 the numberof mappers that
an be e�e
tively exploited is smaller than 20000. Moreover,with growing m the speedup ς(1, 1) levels o� around r when m > r, but itgrows with in
reasing r. This
an be explained in the following way. The wholepro
essing time has three main
omponents: the time of mapping, the intervalof data transfer from the mappers to the redu
ers, and the redu
ing time. Forvariable number of mappers m, and the remaining system
on�guration �xed,only the �rst interval is
hanging its length with m. If m < r then in
reasingmapper number m redu
es the s
hedule length, and hen
e the speedup grows128

1E0

1E1

1E2

1E3

1E4

1E5

1E0 1E1 1E2 1E3 1E4 1E5Figure 4.11: Speedup ς(1, 1) vs. the number of mappers m for various numbers ofredu
ers r. Load size V = 1E15.nearly linearly. For m > r the mapping time be
omes mu
h smaller than theother two intervals. Hen
e, the redu
ing time dominates and determines thespeedup for m > r. The redu
ing time, in turn, de
reases with r even faster thanlinearly be
ause the
omplexity fun
tion of redu
ing operations is nonlinear in
V/r. Hen
e, the speedup in
reases with r slightly faster than r when m ≫ r. Letus note that the above observations depend very mu
h on the amount of results
γ0V produ
ed by the mappers. We dis
uss it in the further text (
f. Fig. 4.13).The performan
e of MapRedu
e with respe
t to
hanging number of mappers
m and problem size V , for �xed number of redu
ers r = 100, is shown in Fig. 4.12.Note that in Fig. 4.12 the speedup ς(1, 100) is shown, i.e. it is
al
ulated a

ordingto (4.70) with respe
t to the system with a = 1, b = 100. When
al
ulatedwith respe
t to a single ma
hine (i.e. for ς(1, 1)) then with
hanging V thespeedups di�er from ea
h other by not more than 27%, and the lines nearlyoverlap in a setting similar to Fig. 4.11. Therefore, we de
ided to use ς(1, 100)in Fig. 4.12 to expose better the in�uen
e of V on the performan
e. It
an beobserved in Fig. 4.12 that for smaller problem sizes (V =1E13, 1E14) the lines end129

0

5

10

15

20

25

30

35

1E0 1E1 1E2 1E3 1E4 1E5Figure 4.12: Speedup ς(1, 100) vs. the mappers number m and problem size V , for
r = 100.before 10000 mappers. This means that a system with a
ertain big number ofmappers
annot be e�e
tively exploited be
ause the load is too small
onsideringthe
omputation startup times and pro
essing rates. With growing problem size
V the speedup ς(1, 100) is getting smaller. This is a
onsequen
e of the followingfa
ts. The mapping time and the
ommuni
ation time grow nearly linearly with
V . On the other hand, the
omplexity fun
tion of redu
ing grows with V fasterthan linearly. Hen
e, when V grows, the redu
ing time grows in relation to themapping time and the
ommuni
ation time. When V is big, in
reasing m redu
esthe s
hedule length in a smaller degree than when V is small. Consequently, thebigger load sizes V are, the smaller the speedups that are a
hievable by
hangingmappers number m.In Fig. 4.13 the dependen
e of speedup ς(1, 1) on the multipli
ity γ0 of theresults produ
ed by the mappers is shown for
hanging m and �xed r = 100. Letus remind that on average for ea
h input load unit lu the mappers produ
e luγ0results. Thus, the bigger γ0 is, the more data is transferred from the mappers tothe redu
ers. When γ0 is very small, the redu
ing time and the time of transfer130

1E0

1E1

1E2

1E3

1E4

1E0 1E1 1E2 1E3 1E4 1E5

`

Figure 4.13: Speedup ς(1, 1) vs. mappers number m and result multipli
ity fa
tor γ0,for r = 100.from the mappers to the redu
ers are very short, and the mapping time dominates.On the other hand, for big γ0 the redu
ing time dominates in the s
hedule length.Hen
e,
hanges of γ0
ontrol the speedup in Fig. 4.13 in a two-fold way. The �rstis the speedup for m = 1, and the se
ond is the maximum speedup for bignumbers of mappers m. Note that here the speedup is shown for a system witha �xed number r = 100 of redu
ers. Thus, already for m = 1 we have somespeedup with respe
t to the single-ma
hine system (where a = b = 1 in equation(4.70)). For m = 1 the bigger γ0 is, the more
omputations shift to the redu
ers,and the more the r = 100 redu
ers have to do. Consequently, for m = 1 (and
r = 100) bigger γ0 results in bigger speedup. For very big m the mapping timeis already short, and the s
hedule length is determined by the redu
ing time. Asa result, when γ0 is big (γ0 = 1, or γ0 = 0.1) the speedup saturates around thenumber of redu
ers r. On the other hand, when γ0 is small, redu
ing no longerdominates in the s
hedule length, while mapping prevails. Then, the mappingtime
an be redu
ed by adding mappers, and the speedup is linear in a far widerrange of mapper numbers m, up to nearly m = 1000 for γ0 = 1E-3. It
an be131

Table 4.3: Speedup ς(1, 1) vs. load unit size lu, for m = 1000, r = 100.
lu 1E3 1E4 1E5 1E6 1E7 1E8
Ai 1.011E-5 1.110E-6 2.100E-7 1.200E-7 1.110E-7 1.101E-7
ς(1, 1) 749.9 308.9 160.9 142.5 140.6 140.4
on
luded from Fig. 4.13 that γ0 is a very important parameter for s
alability ofMapRedu
e
omputations. With small values of γ0 MapRedu
e s
ales well with

m, and systems with m ≫ r
an be e�e
tively used.Now let us analyze the impa
t of the load unit size lu on the performan
eof MapRedu
e. In Table 4.3 we show the relation between load unit size lu,the resulting mapper pro
essing rate Ai, and speedup ς(1, 1) for the system with
m = 1000, r = 100 and all parameters �xed ex
ept for lu. It
an be seen that theimpa
t of lu is visible only if lu is very small and si/lu is greater than or
loseto max{amap, ci}, i.e. when lu is sele
ted extremely badly. It
an be
on
ludedthat for reasonable lu sizes (lu ≥ 1E6) the impa
t of lu is small. We have anartifa
t of big speedup when lu is small (lu = 1000). Obviously, bigger speedupfor lu = 1000 does not mean that the
omputations are �nished in a shortertime. For lu = 1000 the
umulative pro
essing rates Ai of mappers are very big,mappers work slowly, and mapping time is big in the whole s
hedule length. Forbig lu,
umulative pro
essing rates Ai of the mappers are smaller (pro
essors arefaster), the mapping time has a smaller
ontribution to the s
hedule length, andusing m = 1000 mappers redu
es the s
hedule length relatively fewer times thanwhen parameters Ai are big. Consequently, for m = 1000 we have better speedupwith lu = 1000 than for lu = 1E8.While reading input for mapping, some ma
hines may a

ess their input datafrom lo
al disks. This results in smaller values of si, ci, what gives some per-forman
e advantage. Sin
e the overall in�uen
e of si is minor (
f. Table 4.3),we analyzed the in�uen
e of ci only. We depi
t the performan
e advantages due132

1.0

1.1

1.2

1.3

1.4

1.5

1.6

���

0.01 0.1 1Figure 4.14: Speedup ς(1000, 100) vs. the fra
tion of fast mappers and mi
ros
opi

omputing rate amap. Standard ci = 1E-8, fast ci = 1E-10.to the lo
al reads in Fig. 4.14. Sin
e the s
hedule length is dominated by theredu
ing time, we eliminated it in Fig. 4.14 by showing the speedup with respe
tto the time by when mapper to redu
er
ommuni
ations �nish, for m = 1000,
r = 100. To draw Fig. 4.14 we assumed that reading from a lo
al �le is 100times faster than reading from the network. Thus, the standard reading rate is
ci = 1E-8, and the fast reading rate is ci = 1E-10. On the horizontal axis thefra
tion of fast pro
essors in the whole pool of mappers is shown. For example,value 0.1 means that 10% of mappers read their inputs lo
ally. It
an be seenthat the smaller the mi
ros
opi
 mapping rate amap is, the bigger the gain fromhaving some
omputers reading their inputs faster. If the mi
ros
opi

omputingrate amap is small, then the
ommuni
ation rates are not dominated by the
om-puting rate. On the other hand, another e�e
t
an be observed. Note that with
hanging amap, the load partition and the s
hedule proportions also
hange. Theload distribution resulting from equations (4.50) and (4.51) is very imbalan
edwhen amap is very small. Pre
isely, if amap is small, then also Ai are small, values
ki in (4.54) qui
kly de
rease, while values of li stabilize. Consequently, the load133

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1 10 100Figure 4.15: Speedup ς(1000, 100) vs. the bise
tion width l and problem size V .partitioning is very unequal, and the s
hedule length is not shorter as one
ouldexpe
t. This is an artifa
t
aused by assuming a parti
ular s
hedule stru
ture.For example, if amap = 1E-9, or 1E-10 and all mappers (100%) read fast, then thespeedup de
reases. For
larity, we removed the
orresponding two points fromFig. 4.14. Let us note that the speedup from fast lo
al reading is smaller than0.3% when
al
ulated with in
luded redu
ing time. This means that the redu
ingtime domination suppresses overall gains from the performan
e optimizations inother stages of MapRedu
e.Finally, let us dis
uss the impa
t of the limited bise
tion width l. As alreadymentioned, if the bise
tion width is not bounding, the di�eren
es between theload partitioning a

ording to the two methods of s
heduling with many redu
ersare negligible. However, only the se
ond method takes into a

ount the bise
tionwidth limit. Thus, in the following we report the results obtained using the lattermethod. The impa
t of the bise
tion width l and problem size V on the speedup
ς(1000, 100) is shown in Fig. 4.15. It
an be observed that with in
reasing numberof
hannels the relative speedup stabilizes. This means that new
hannels from134

0

50

100

150

1 10 100Figure 4.16: Speedup ς(1, 1) vs. the bise
tion width l and
ommuni
ation rate C.the mappers to the redu
ers have a gradually de
reasing impa
t on the s
hedulelength whi
h be
omes dominated by the mapping and the redu
ing time. Within
reasing problem size V the gains from additional
hannels l, and hen
e biggerbandwidth, are relatively smaller be
ause the redu
ing time in
reases faster thanlinearly with V , while the
ommuni
ation time in
reases only linearly with V .Therefore, speedup ς(1000, 100) in Fig. 4.15 de
reases with problem size V .In Fig. 4.16 the impa
t of the bise
tion width l and the
ommuni
ation rate Cis presented. As it
an be seen, the faster the
ommuni
ation is (i.e. the smaller
C is), the smaller the impa
t of the bise
tion width. Intuitively, this behavior isexpe
ted. When the speed of
ommuni
ation from the mappers to the redu
ersis small, then adding new
hannels in
reases the bandwidth and redu
es the loadtransfer time signi�
antly. Hen
e, for C = 1E-6 the speedup in
reases withthe bise
tion width l. On the other hand, if the
ommuni
ation speed is high(C = 1E-9, C = 1E-10), then the bandwidth from the mappers to the redu
ersis su�
ient, and adding new
hannels has no impa
t on the performan
e whi
his determined by the mapping and the redu
ing time.135

4.6 SummaryIn this
hapter we proposed a mathemati
al model of MapRedu
e appli
ation.We proposed two s
heduling algorithms of mapper to redu
er transfers. The�rst one is mathemati
ally simple, but it does not take into a

ount the bise
-tion width limitations of the data
enter network. The se
ond method obeysthe bise
tion width limitation, but requires more
areful organization of datatransfers. When the bise
tion width was not a limiting fa
tor, then the resultsobtained from both methods were very similar. Then, we analyzed the in�uen
eof the system parameters on the performan
e of MapRedu
e
omputations. Thefollowing observations have been made:
• The
omplexity of redu
ing operation is higher than the other
omponentsof MapRedu
e
omputations. This has the following
onsequen
es.� MapRedu
e
omputations s
ale well with the number of redu
ers r.However, ea
h redu
er produ
es one output �le and a large number ofoutput �les may be impra
ti
al in some appli
ations.� The amount of results γ0V produ
ed by the mappers is a key parameter
ontrolling the performan
e of MapRedu
e, as γ0V shifts the bulk ofthe
omputation
ost between mapping and redu
ing. The bigger γ0Vis, the smaller the
ontribution of the mapping time, and the less thenumber of mappers m de
ides about the performan
e. If γ0 ≈ 1, thenthe number of mappers m need not be greater than the number ofredu
ers r.� Redu
ing time domination
an override gains from some optimizations,e.g. from reading load from lo
al disks by some mappers.It seems that the redu
ing operation shall be
ome a bottlene
k for theperforman
e of MapRedu
e. 136

• In
reasing the number of
hannels l or the
ommuni
ation speed 1/C
om-pensate ea
h other be
ause they both in
rease the bandwidth between themappers and the redu
ers.
• The in�uen
e of the load unit size lu on the performan
e is marginal.

137

5 Multilayer Divisible Appli
ations
In the previous
hapter we introdu
ed a mathemati
al model and two s
hedulingalgorithms for MapRedu
e appli
ations. A MapRedu
e appli
ation
onsists oftwo
omputational stages: mapping and redu
ing. It is stated in [23℄ that theoutput of a MapRedu
e is often the input to another su
h appli
ation. Hen
e,it is justi�ed to treat a
hain of su
h divisible
omputations pro
essing the loadone after another as one appli
ation
onsisting of many stages whi
h we will
alllayers. Therefore, in this
hapter we study multilayer divisible appli
ations. Inthe following, we generalize the mathemati
al model proposed in the previous
hapter to handle multilayer appli
ations. The generalization
onsists, e.g., inallowing for unequal load distribution in all layers. Then, we propose s
hedulingalgorithms whi
h make fewer assumptions on the s
hedule stru
ture than in theprevious
hapter. Afterwards, the quality and the features of the s
hedules gen-erated by our algorithms are analyzed in a series of
omputational experiments.5.1 Model of Multilayer Appli
ationsIn this se
tion we formulate a mathemati
al model of multilayer
omputations.The notation is summarized in Table 5.1.In a MapRedu
e appli
ation the mapper layer interleaves reading the datafrom some pla
e in the network with
omputing, while the redu
er layer �rst ob-tains the whole input from the mapper layer. Thus, there is a signi�
ant di�eren
e138

Table 5.1: Summary of notation for s
heduling multilayer appli
ations.
αi the load size pro
essed by mapper i; in bytes;
aredp , sredp the
omputing rate and the
omputation startuptime for redu
ers in layer p; in se
onds per byte(aredp) and in se
onds (sredp);
βijk the size of the load sent in interval [ti, ti+1) fromsender j to re
eiver k;
A
omputing rate of a pro
essor exe
uting mapperappli
ation;
C
ommuni
ation rate for reading data by the redu
-ers and storing the �nal results;
l bise
tion width limit, expressed in parallel
hannels;
m number of mapper pro
essors;
Pi pro
essor i;
R number of redu
er layers;
γ0 mapper result multipli
ity fra
tion;
γp layer p redu
er result multipli
ity fra
tion;
δpk load fra
tion re
eived by redu
er k in layer p;
rp number of redu
er pro
essors in layer p;
S
omputation startup time, equal for all pro
essors;
T s
hedule length;
[ti, ti+1) the i-th
ommuni
ation interval in a given layer;
τp(x) = aredp x log2 x layer p redu
er
omputing time fun
tion in loadsize x;
V the whole load size, in bytes;

139

Figure 5.1: General view of multilayer appli
ation s
hedule stru
ture.in the way of reading the input load. In a sense, the mappers read "ambient"data, while the redu
ers obtain their inputs from spe
i�
 mappers taking part inthe
omputations. The mappers data delivery needs no spe
ial s
heduling, whilethe redu
ers load delivery does need it. Similarly, in a multilayer appli
ationonly the initial layer obtains the load from distributed network lo
ations and
anpro
ess a part of the data before reading the rest of input. The pro
essors in allthe remaining layers obtain data from the pre
eding layer. They need to readall the data and only after that
an they start pro
essing. Let us remind thatthe redu
ers have to re
eive the whole data set before starting the
omputationsbe
ause usually sorting is involved. In the following, we will be saying that amultilayer appli
ation
onsists of one mapper layer and R ≥ 1 redu
er layers.The number of mappers will be denoted by m, as in Chapter 4. The numberof redu
ers in layer p, 1 ≤ p ≤ R, will be denoted by rp. For
onvenien
e, themapper layer will be also referred to as layer 0.A rough s
hedule stru
ture of multilayer
omputations is shown in Fig. 5.1.Multilayer
omputations are divided into 2R+ 3 stages, whi
h partially overlap.The �rst two stages are the same as in MapRedu
e
omputations (see Se
tion4.2). In the startup stage, the
ode for all appli
ations is loaded on the pro
essors.The
omputation startup time of ea
h mapper pro
essor is S.In the se
ond stage, ea
h of the mappers reads the load, performs
omputa-140

tions and saves the results in r1 lo
al �les for r1 redu
ers from the �rst redu
erlayer. In the previous
hapter we per
eived mapper i operations as pro
essingload with some average rate Ai. The mapper pro
essing rates were di�erent, re-sulting from reading the load lo
ally or from remote lo
ations. However, it turnedout in Se
tion 4.5 that the in�uen
e of di�eren
es in the mapper parameter siwas marginal. The in�uen
e of di�eren
es in ci was so small, that to make itmore signi�
ant we restri
ted our
onsiderations to the mapper layer only (
f.Fig. 4.14). Otherwise, the in�uen
e of heterogeneity in ci was suppressed by theredu
ing duration. For multilayer
omputations, there are many redu
er layersand the duration of their
omputations makes an even bigger
ontribution in theoverall s
hedule length. It
an be expe
ted that also here the in�uen
e of themapper heterogeneity is small. Hen
e, for simpli
ity of presentation, we assumehere that the pro
essing rates of all mappers are equal to A. As before, by αiwe denote the size of the load assigned to mapper i, and by γ0 the mapper resultmultipli
ity fra
tion.In the following 2R stages the redu
ing operations take pla
e in the
onse
-utive redu
er layers. More pre
isely, in stage number 1 + 2p, 1 ≤ p ≤ R, theredu
ers in layer p read load from the mappers (if p = 1) or the redu
ers in layer
p−1 (
f. Fig. 5.1). The partitioning fun
tion used in layer p−1 divides the spa
eof key values into rp not ne
essarily equal parts. We assume that the partitioningfun
tions used in all layers of
omputations are, in a sense, sender-independent.The proportions between the amounts of load sent to the re
eivers in the nextlayer should be the same for ea
h sender. Were it otherwise, di�erent senderswould distribute the data with the same key to di�erent re
eivers, thus violatingthe integrity of the results. Therefore, we determine the load distribution in agiven layer p ≥ 1 by the fra
tions of load whi
h should be re
eived by ea
h
om-puter. Let δpk denote the fra
tion of results assigned to redu
er k from layer p.The amount of results produ
ed by the redu
ers in layer p for the input of size α141

is γpα. The total amount of load sent to layer p is V ∏p−1
i=0 γi. Hen
e, redu
er kin layer p re
eives input of size roughly equal to δpkV

∏p−1
i=0 γi. All redu
ers readthe load with equal rate C. The bise
tion width limit is denoted by l.In stages number 2 + 2p, 1 ≤ p ≤ R, the redu
ers from layer p sort the inputdata and perform the
omputations using a Reducep fun
tion. For a multilayerappli
ation, the fun
tion Reducep in a sense
omprises both redu
ing operationsof the p-th appli
ation in the
hain and mapping operations of the (p + 1)-stappli
ation in the
hain. Be
ause the pattern of
ommuni
ations between thepro
essors from
onse
utive layers is unknown in general, and a redu
er
an onlystart
omputations after it re
eives the whole assigned load, we assume that allredu
ers in layer p start the
omputations at the same time, after transferring alldata between layer p − 1 and p. We denote the
omputation startup time of aredu
er in layer p by sredp and its pro
essing rate by aredp . The
omputation timeof a redu
er in layer p, re
eiving the load of size x, is de�ned by the fun
tion

τp(x) = aredp x log2 x. As redu
er k in layer p re
eives input of size δpkV
∏p−1

i=0 γi,its exe
ution time is sredp + τp(δpkV
∏p−1

i=0 γi).Finally, in the last, (2R+3)-rd stage, the redu
ers in layer R store the resultsin the network �le system with equal writing rate C. The output of a MapRedu
eappli
ation is usually available in multiple �les to be used by other MapRedu
eappli
ations. However, sin
e we analyze here the whole sequen
e of su
h appli
a-tions, produ
ing a
ompa
t set of results, we assume that the �nal output shouldbe saved in a single �le. Still, the s
heduling algorithms proposed in the furthertext
an be easily modi�ed to handle other organizations of storing results, e.g.keeping the data on the redu
ers from the last layer or parallel writing to thenetwork �le system,
on�ned by the bise
tion width limit l (
f. Se
tion 5.2.1).A s
heduling algorithm for multilayer appli
ations has to
hoose the fra
tions
δpk of the load re
eived by the redu
ers in ea
h layer, partition the input loadof size V into mapper
hunks α1, . . . , αm, and s
hedule mapper to redu
er and142

redu
er to redu
er
ommuni
ations, as well as storing the results by the redu
ersfrom the last layer, so that the total s
hedule length T is as small as possible.5.2 S
heduling AlgorithmsIn this se
tion we propose algorithms for load partitioning and
ommuni
ations
heduling for multilayer
omputations. The s
heduling problem is
omplex andan instan
e
ontains a lot of parameters. Therefore, for
larity, we present thealgorithm divided into parts
orresponding to the R+1
omputation layers. Thisis possible due to the assumption that all redu
ers in a given layer start the
omputations at the same moment. The
omputations of di�erent layers areseparated in time from ea
h other and the s
hedule
an be built for one layer ata time.Note that the optimum load distribution between the mappers (layer 0) de-pends on the fra
tions of the load whi
h should be sent to the �rst layer of redu
ers(δ1k). Similarly, the load distribution for the redu
ers in layer p depends on thefra
tions of load re
eived by the redu
ers in layer p + 1. Therefore, we presentthe s
hedule
onstru
tion starting with the last layer and we pro
eed to layer 0.Consequently, while s
heduling
omputations in layer p, the fra
tions δp+1,k arealready known. After presenting the algorithms for separate
omputation lay-ers, we show how to
onstru
t the s
heduling algorithm for the whole multilayerappli
ation.5.2.1 Load Partitioning for Redu
er LayersPro
essing in the last redu
er layer may seem di�erent than in the previous layers,be
ause the results are not sent to another set of redu
ers. Still, storing resultssequentially in the distributed �le system
an be seen as sending data to onemore layer
onsisting of a single pro
essor. Hen
e, we
an de�ne rR+1 = 1 and143

δR+1,1 = 1, and use similar formulas for obtaining the load distribution in allredu
er layers. The algorithm �nding the load distribution in redu
er layer p(p = 1, . . . , R) is des
ribed below.We assume that all redu
ers in layer p start
omputations at time t0 = 0. Letus denote by t1 ≤ . . . ≤ trp the moments when redu
ers in layer p �nish their
omputations. As all redu
ers are identi
al and start
omputations at t0 = 0, we
an assume that the redu
ers are ordered by their
omputation
ompletion times.Thus, redu
er k �nishes
omputations at time tk. Let trp+1 be the moment whenall redu
ers �nished writing their results. The amount of load sent in interval
[ti, ti+1) from redu
er j in layer p to redu
er k in layer p+1 will be denoted by βijk.The following mathemati
al program
omputes the optimum values of variables
ti, δpj and βijk. Note that the load fra
tions δp+1,k are
onstants
omputed in theprevious step of the optimization.

minimize trp+1 (5.1)
sredp + τp(δpiV

p−1
∏

q=0

γq) ≤ ti for i = 1, . . . , rp (5.2)
C

i
∑

j=1

βijk ≤ ti+1 − ti for i = 1, . . . , rp, k=1, . . . , rp+1 (5.3)
C

rp+1
∑

k=1

βijk ≤ ti+1 − ti for i = 1, . . . , rp, j=1, . . . , i (5.4)
C

rp
∑

j=1

rp+1
∑

k=1

βijk ≤ l(ti+1 − ti) for i = 1, . . . , rp (5.5)
βijk = 0 for j=1, . . . , rp, i = 1, . . . , j − 1, k = 1, . . . , rp+1 (5.6)
rp
∑

i=1

βijk = δp+1,kδpjV

p
∏

q=0

γq for j = 1, . . . , rp, k = 1, . . . , rp+1 (5.7)
rp
∑

j=1

δpj = 1 (5.8)
144

In the above formulation, we minimize the length of the s
hedule from themoment when the redu
ers in layer p start
omputations to the moment whenthey �nish
ommuni
ating with the redu
ers in layer p+ 1. By inequalities (5.2)redu
er i in layer p �nishes
omputations no later than at the moment ti, for
1 ≤ i ≤ rp. Constraints (5.3)-(5.5) guarantee that all
ommuni
ations �t in the
ommuni
ation intervals together and that the bise
tion width limit is observed.By (5.6) no redu
er sends its results before �nishing the
omputations. Ea
hredu
er in layer p sends all its results by (5.7) and the whole load is pro
essed by(5.8). There are r2prp+1+2rp+1 variables and rp+1r

2
p/2+rp(3rp+1+rp)/2+5rp/2+1
onstraints in the given program.As we mentioned in Se
tion 5.1, the above mathemati
al program
an beeasily modi�ed for layer p = R to handle di�erent methods of storing the �nalresults. For example, if parallel writing
on�ned only by the bise
tion width limit

l is possible, it is enough to omit
onstraints (5.3). If the results are stored lo
allyon ea
h of the redu
ers from the last layer,
onstraints (5.3) should be omittedand additionally l should be
hanged to rR in
onstraints (5.5). Alternatively,the latter
ase may be handled in an even simpler way, by in
luding the resultswriting in fun
tion τp, and substituting
onstraints (5.3)-(5.7) with ti ≤ trR+1 for
i = 1, . . . , rR.Let us note that
onstraints (5.2) are not linear be
ause of the form of thefun
tion τp. In order to provide a pra
ti
al method of solving (5.1)-(5.8), wetransform this program into a linear program. We approximate the fun
tion τpwith a pie
ewise linear
onvex fun
tion τ ′p. For ea
h interval [2y, 2y+1), for 0 ≤

y ≤ log2 V , the values ay = (τp(2
y+1)− τp(2

y))/(2y+1− 2y) and by = τp(2
y)− ay2

yare
al
ulated. Then, we set τ ′p(x) = ayx + by for x ∈ [2y, 2y+1). Thus, the
onstraints (5.2) are
hanged to
sredp + ayδpiV

p−1
∏

q=0

γq + by ≤ ti for i = 1, . . . , rp, y = 0, . . . , log2 V, (5.9)145

what in
reases the number of
onstraints in the mathemati
al program by rp log2 V .The relative error
aused by this approximation de
reases with growing x. In ourexperiments (whi
h will be des
ribed in Se
tion 5.3), the sizes of load obtainedby the redu
ers are larger than 1E5. For su
h values the approximation error isless than 1%. Su
h a range of error is on par with typi
al a

ura
y of measuringsystem parameters su
h as A, C, ared, sred. Hen
e, it should be su�
ient for pra
-ti
al purposes. If ne
essary, a better approximation a

ura
y
an be a
hieved by
onsidering intervals shorter than [2y, 2y+1). As τ ′p(x) ≥ τp(x) for x ≤ V , the loadpartitioning obtained for the fun
tion τ ′p allows to
reate a feasible solution withthe original fun
tion τp.5.2.2 Load Partitioning for Mapper LayerIn this se
tion we analyze s
heduling the mapper
omputations and the
ommu-ni
ations between the mappers and the �rst layer of redu
ers, so that this phaseof pro
essing is as short as possible. The optimum load partitioning between theredu
ers in the �rst layer, given by fra
tions δ1k, has been already found by themathemati
al program des
ribed in the previous se
tion. As the optimum order of�nishing
omputations by the mappers is not known, we will use binary variables
zij (1 ≤ i, j ≤ m) to de�ne this order. Pre
isely, if mapper j �nishes pro
essingas the k-th of all mappers, then we set zij = 0 for 1 ≤ i ≤ k − 1 and zij = 1 for
k ≤ i ≤ m. Thus, zij = 1 means that mapper j has �nished
omputations bytime ti, and
onsequently,
an send some load in interval [ti, ti+1).Let t1 ≤ . . . ≤ tm be the times when the mappers �nish their
omputations.Let tm+1 be the moment when the mapper to redu
er
ommuni
ations �nish.We will denote by βijk the amount of results read by redu
er k from mapper
j in time interval [ti, ti+1). Let M denote a big
onstant. For example, M ≫

mS + (C + A)V . The optimum load partitioning and the sequen
e of �nishing
omputations by the mappers
an be
omputed from the following linear program.146

minimize tm+1 (5.10)
jS + Aαj ≥ ti − zijM for i = 1, . . . , m, j = 1 . . . , m (5.11)
jS + Aαj ≤ ti + (1− zij)M for i = 1, . . . , m, j = 1 . . . , m (5.12)
C

m
∑

j=1

βijk ≤ ti+1 − ti for i = 1, . . . , m, k=1, . . . , r1 (5.13)
C

r1
∑

k=1

βijk ≤ ti+1 − ti for i = 1, . . . , m, j=1, . . . , m, (5.14)
C

m
∑

j=1

r1
∑

k=1

βijk ≤ l(ti+1 − ti) for i = 1, . . . , m (5.15)
βijk ≤ zijV for i = 1, . . . , m, j=1, . . . , m, k = 1, . . . , r1 (5.16)
m
∑

i=1

βijk = δ1kγ0αj for j = 1, . . . , m, k = 1, . . . , r1 (5.17)
m
∑

i=1

αi = V (5.18)
zi+1,j ≥ zij for i = 1, . . . , m− 1, j = 1, . . . , m (5.19)
m
∑

j=1

zij = i for i = 1, . . . , m (5.20)In the above program, zij are binary variables, and αj , βijk, ti are rationalvariables. We minimize tm+1 whi
h is the length of the s
hedule until the end ofthe mapper to redu
er
ommuni
ations. Inequalities (5.11) and (5.12) guaranteethat the mappers �nish
omputations in the order de�ned by variables zij . By(5.13) and (5.14) no mapper or redu
er
ommuni
ates longer than the
ommu-ni
ation interval. By (5.15) the bise
tion width limit is observed. Inequalities(5.16) guarantee that no load is sent by a mapper whi
h has not �nished
ompu-tations. Ea
h redu
er re
eives the appropriate amount of results by (5.17) andthe whole load is pro
essed by (5.18). Constraints (5.19)-(5.20) ensure that thereis one-to-one
orresponden
e between the mappers and moments ti, 1 ≤ i ≤ m,when they �nish
omputations. There are m2r1 + 2m+ 1 rational variables, m2147

binary variables and m2r1 + 4m2 + 2mr1 +m+ 1
onstraints in the above linearprogram.5.2.3 The Complete Load Partitioning AlgorithmIn order to
reate a load partitioning algorithm for the whole multilayer appli-
ation, the mathemati
al programs des
ribed above should be put together andsolved as one program. However, this leads to many pra
ti
al di�
ulties. Firstly,su
h a program
ontains ∑R
p=1(r

2
prp+1 + 2rp + 1) +m2r1 + 2m+ 1 rational vari-ables and m2 binary variables. The number of
onstraints is ∑R

p=1

(

rp+1r
2
p/2 +

rp(3rp+1+ rp)/2+5rp/2+1+ rp log2 V
)

+m2r1+4m2+2mr1+m+1. Hen
e, themathemati
al program is very large even for very small instan
es. Se
ondly, allvalues αj and δpk are variables in the
ompound mathemati
al program. Hen
e,in the
onstraints
orresponding to (5.7) and (5.17) the variables are multipliedand the program is not linear. Thus, it is very hard to solve this program inpra
ti
e. Therefore, in the
omputational experiments presented in Se
tion 5.3an algorithm solving the problem separately for ea
h layer was used. The loaddistribution obtained in this way for a given layer may be suboptimal from thepoint of view of the whole multilayer appli
ation exe
ution time. Still, it
an beused as an approximation of the solutions to start a study of the problem features.5.2.4 Finishing Mapper Computations OrderThe order in whi
h the mappers should �nish their
omputations is unknown ingeneral. This resulted in using binary variables in the mathemati
al programfor the load partitioning in the mapper layer. However, if the startup time Sis negligible, then the mappers are not distinguished by the order of startingthem. Consequently, the binary variables are not needed in formulation (5.10)-(5.20), whi
h be
omes similar to (5.1)-(5.8). Furthermore, we prove below thatif the load is distributed equally between the redu
ers in the �rst layer, then the148

a)
b)Figure 5.2: Communi
ation pattern in s
hedules a) σ1 and b) σ2. Labeling (i) of the
ommuni
ation intervals is explained in the main text.mappers should �nish
omputations in the FIFO order. Also in this
ase thebinary variables
an be removed from the LP (5.10)-(5.20).Theorem 5.1. If δ1k = 1

r1
for k = 1, . . . , r1, then the FIFO order of �nishingmapper
omputations is optimum.Proof. We will show that FIFO is a dominating stru
ture by
al
ulating theamount of load pro
essed in a given time, and by the inter
hange argument. As-sume that in a s
hedule σ1 of the mapper phase pro
essor Pi+1 �nishes
omputa-tions before Pi. The amount of load pro
essed by Pi+1 in this s
hedule is αi+1, andthe amount of load pro
essed by Pi is αi = α

(1)
i + α

(2)
i , where Aα

(1)
i = S +Aαi+1(see Fig. 5.2). Sin
e S > 0, A > 0, we have α

(1)
i ≥ αi+1. We will
onstru
t as
hedule σ2 in whi
h pro
essor Pi is assigned load of size α(1)

i and pro
essor Pi+1re
eives load of size αi+1 + α
(2)
i . Therefore, pro
essor Pi �nishes
omputationsbefore Pi+1 in σ2. The amounts of load assigned to pro
essors other than Pi and

Pi+1 remain the same as in σ1. We will show that it is possible to s
hedule themapper to redu
er
ommuni
ations in σ2 so that the total length of σ2 is notgreater than the length of σ1.Let us
hoose a set I of time intervals in whi
h Pi sent load to the redu
ers in149

s
hedule σ1 and whi
h did not overlap with any
ommuni
ations from Pi+1 in σ1,su
h that∑I∈I |I| = γ0C(α
(1)
i −αi+1). This operation is possible be
ause the totallength of the intervals in whi
h Pi
ommuni
ates in σ1, and whi
h do not overlapwith
ommuni
ations from Pi+1, is equal to at least γ0C(α

(1)
i + α

(2)
i − αi+1) ≥

γ0C(α
(1)
i − αi+1). Note that this set usually may be
hosen in many di�erentways. The total length of the intervals in set I allows for sending load of size

α
(1)
i − αi+1.Let us introdu
e the following labeling of the
ommuni
ation intervals in whi
hat least one of pro
essors Pi and Pi+1 sends load in σ1. The intervals from I re
eivelabel 1, the other
ommuni
ation intervals in whi
h Pi sends load get label 2, andall
ommuni
ation intervals
ontaining
ommuni
ations from Pi+1 re
eive label 3(
f. Fig. 5.2).We s
hedule the
ommuni
ations in σ2 so that pro
essor Pi performs all
om-muni
ations in intervals labeled with 1 or 3, and Pi+1 sends load in intervalslabeled with 2. The total length of intervals marked with 2 is γ0C(α

(1)
i + α

(2)
i)−

∑

I∈I |I| = γ0C(αi+1 + α
(2)
i). The total length of intervals labeled with 3 is

γ0Cαi+1. The intervals marked with 1 and 3 do not overlap. Therefore, pro
es-sors Pi and Pi+1 have enough time to send the required amount of data to theredu
ers. The
ommuni
ations from pro
essors other than Pi and Pi+1 remains
heduled in the same way as in s
hedule σ1. The bise
tion width limit is still ob-served, be
ause we only swapped some
ommuni
ation slots between pro
essors
Pi and Pi+1.However, further
hanges in the
ommuni
ation s
hedule are needed to guar-antee that ea
h redu
er re
eives a proper amount of load from pro
essors Pi and
Pi+1. Note that the previous transformations do not guarantee that the
om-muni
ation s
hedule for redu
ers (reading) remains un
hanged. Sin
e the loadassignments
hange, some redu
er may have to read from two mappers simul-taneously. The
ommuni
ation s
hedule will be
hanged globally, not only for150

Figure 5.3: S
heduling mapper to redu
er
omputations in σ2, for m = 3, r1 = 3.Notation j → k stands for: mapper j
ommuni
ates with redu
er k in layer 1.pro
essors Pi and Pi+1. Let us de�ne t1 < . . . < tq as all distin
t moments ins
hedule σ1 when any mapper to redu
er
ommuni
ation starts or �nishes. Thus,in ea
h interval Ii = [ti, ti+1) ea
h mapper either
ommuni
ates all the time withthe same redu
er, or it does not
ommuni
ate at all. As the s
hedule is feasible,in ea
h interval Ii there are at most min(l, r1) mappers sending some load.Let us divide ea
h interval Ii into r1 subintervals Ii1, . . . , Iir1 of equal length(
f. Fig. 5.3). Let P ′
1, . . . , P

′
m′ be the pro
essors whi
h send some load in interval

Ii. Note that ne
essarily m′ ≤ l and m′ ≤ r1. In s
hedule σ2 pro
essor P ′
j will
ommuni
ate with redu
ers j, j + 1, . . . , r1, 1, . . . , j − 1 in intervals Ii1, . . . , Iir1,
orrespondingly (
f. Fig. 5.3). As m′ ≤ r1, no redu
er reads more than onemapper at a time in s
hedule σ2. The bise
tion width limit is not violated in σ2be
ause m′ ≤ l. Furthermore, all mappers send the same amount of load as ins
hedule σ1 and ea
h redu
er re
eives the same amount of load from any givenmapper. Therefore, the obtained s
hedule σ2 is feasible and its length is notlarger then the length of σ1.Repeating the above pro
edure for ea
h pair of pro
essors Pj , Pj+1, su
h that

Pj+1 �nished
omputations before Pj, we prove that there exists an optimums
hedule in whi
h the mappers �nish the
omputations in the FIFO order.Whether the FIFO s
hedule stru
ture is generally optimum, remains an openquestion. Some
omputational experiments indi
ate that it may be the
ase.151

5.2.5 S
heduling Communi
ationsAfter solving the mathemati
al programs given in Se
tions 5.2.1 and 5.2.2, theamounts of data to be sent between ea
h pair of
omputers in ea
h time intervalare known. A feasible
ommuni
ation s
hedule
an be built for ea
h interval
[ti, ti+1) between two layers using a two-stage approa
h similar to the one usedfor problem R|pmtn|Cmax [15, 19, 36℄. Then, a s
hedule for all load transfers
an be built by the
on
atenation of the partial s
hedules for the
onse
utiveintervals. However, let us observe that here the algorithm for R|pmtn|Cmax isnot su�
ient be
ause we have the bise
tion width
onstraints, not present inproblem R|pmtn|Cmax. Hen
e, we generalize the former approa
h. Below we givethe s
heduling method in detail, and prove its feasibility.Consider one of the intervals [ti, ti+1) with the load transfers βijk from sender jto re
eiver k delivered by formulations (5.1)-(5.8) or (5.10)-(5.20). Let us denotethe number of the load senders for the given interval by n1 and the number of there
eivers by n2, i.e. n1 = |{j : βijk > 0}|, n2 = |{k : βijk > 0}|. Let W = [wjk]be the n1 × n2 matrix de�ned by wjk = Cβijk/∆t, where ∆t = ti+1 − ti is thelength of the time interval. Thus, wjk ≤ 1 is the fra
tion of the length of the
urrent time interval used to transfer load from sender j to re
eiver k. Note that
∑n1

j=1

∑n2

k=1wjk ≤ l by (5.5), (5.15).Row j of matrix W ,
orresponding to sender j, will be
alled
riti
al if
∑n2

k=1wjk = 1. Similarly, the k-th
olumn of W ,
orresponding to re
eiver k,will be
alled
riti
al if ∑n1

j=1wjk = 1. We will be saying that the bise
tion widthlimitation is a
tive for matrix W if ∑n1

j=1

∑n2

k=1wjk = l. Let us de�ne a set F ofpositive elements of matrix W ,
ontaining:
• exa
tly one element from ea
h
riti
al row or
olumn, and
• at most one element from ea
h non-
riti
al row or
olumn, and
• exa
tly l elements in total if the bise
tion width limitation is a
tive for W ,or at most l elements in the opposite
ase.152

Thus, F
orresponds to a set of
on
urrent
ommuni
ations in a feasible s
hedule.Algorithm 5.1
onstru
ts the optimum s
hedule for interval [ti, ti+1) by
on
ate-nating partial s
hedules of length ε > 0 for a given set F .Algorithm 5.1 MULTILAYER-COMMUNICATIONS
∆t := ti+1 − tiwhile ∆t > 0 do
onstru
t set F
v1min := minwjk∈F{wjk}

v1max := maxj∈{j′:wj′k /∈F for all k=1,...,n2}{
∑n2

k=1wjk}

v2max := maxk∈{k′:wjk′ /∈F for all j=1,...,n1}{
∑n1

j=1wjk}if |F| < l then
v2min :=

l−
∑n1

j=1

∑n2
k=1

wjk

l−|F|else
v2min := 1end if

ε := min{v1min, 1− v1max, 1− v2max, v
2
min}for ea
h wjk ∈ F dos
hedule
ommuni
ation from sender j to re
eiver k in interval

[ti+1 −∆t, ti+1 −∆t + ε∆t)end forfor ea
h wjk ∈ F do
wjk := wjk − εend for

∆t := ∆t(1 − ε)if ∆t > 0 thenfor ea
h wjk do
wjk := wjk/(1− ε)end forend ifend while

153

Figure 5.4: Network for �nding set F . Ar
s are labeled with (lower, upper) bounds.Notation a|b is used for non-
riti
al|
riti
al nodes (see the explanation in the main text).In this algorithm ε is de�ned so that the elements of W :
• never be
ome negative by the
hoi
e of v1min, whi
h means that a
ommu-ni
ation is not performed after the proper amount of load is sent,
• the
onstraints on the sums of elements of W in any row or
olumn are notviolated by the
hoi
e of v1max, v

2
max, and hen
e the
riti
al
ommuni
ationsare always exe
uted,

• the
onstraint on the sum of elements of W is not violated by the
hoi
e of
v2min, and the a
tive bise
tion width limitation is also obeyed.In ea
h iteration of the while loop either a row or
olumn of W be
omes
riti
al, or an element ofW is de
reased to 0, or the bise
tion width limit be
omesa
tive. Hen
e, the algorithm
onsists of at most n1 + n2 + n1n2 + 1 iterations.It remains to give an algorithm that �nds set F for a given matrix W . This
an be done by using network �ow formulation (see Fig. 5.4). Beyond the sinkand the sour
e, the network has n1 nodes
orresponding to the senders, n2 nodes
orresponding to the re
eivers, and a node representing the bise
tion width limi-tation. There is an ar
 between sender j and re
eiver k if and only if wjk > 0. Thear
s from the sour
e to the senders, from the senders to the re
eivers, and from154

the re
eivers to the bise
tion width limitation node have
apa
ities bounded fromabove by 1. The ar
s from the sour
e to the non-
riti
al senders, all ar
s fromthe senders to the re
eivers, and the ar
s from the non-
riti
al re
eivers to thebise
tion width limitation have lower bound of
apa
ity equal to 0. For the ar
sfrom the sour
e to the
riti
al senders and for the ar
s from the
riti
al re
eiversto the bise
tion width limitation node the �ows are bounded from below by 1.The ar
 from the bise
tion width limit node to the sink has
apa
ity l. If thebise
tion width limit is a
tive then its �ow is bounded from below by l, and by 0otherwise. For
on
iseness, in Fig. 5.4 the notation a|b is used for lower boundson the �ow of ar
s whi
h lead from or to the non-
riti
al|
riti
al nodes. Findinga feasible �ow in the above network is equivalent to �nding the set F : the ar
from sender node j to re
eiver node k with positive �ow indi
ates wjk ∈ F .We will now prove that a feasible �ow, and hen
e the set F , always exist.Consider a weighted bipartite graph G = (X ∪ Y,E, w), su
h that there are
n1 verti
es in X ,
orresponding to the rows of matrix W and n2 verti
es in Y ,representing the
olumns of W . The set E
omprises an edge between verti
es
uj ∈ X and vk ∈ Y if and only if wjk > 0, and the weight of this edge is equal to
wjk. Note that the sum of the weights of all edges in
ident to any given vertex isnot greater than 1, and the sum of all edge weights in G is at most l. We will saythat a vertex is
riti
al if it
orresponds to a
riti
al row or
olumn in W . Thus,the sum of weights of edges in
ident to a
riti
al vertex in G is equal to 1. Letus denote the number of
riti
al verti
es in X by cX and the number of
riti
alverti
es in Y by cY . The subsets of
riti
al verti
es in X and Y will be denotedby Xc and Yc
orrespondingly. Let Gc denote a subgraph of G indu
ed by the setof
riti
al verti
es, i.e. Gc = G[Xc ∪ Yc]. Let wc be the sum of the edge weightsin subgraph Gc.In order to prove that a feasible �ow in the network des
ribed above alwaysexists, we need to show that there is always a mat
hing Mc in G su
h that155

1) Mc
overs all
riti
al verti
es,2) Mc has size at most l, and3) if the bise
tion width limit is a
tive, then the size of Mc is exa
tly l.We prove it in Theorems 5.4 and 5.5 eventually, but for this we need some prelim-inary results. First, in Lemma 5.2 we show that a mat
hing satisfying the above
ondition 1) always exists.Lemma 5.2. A mat
hing in G
overing all
riti
al verti
es always exists.Proof. This follows dire
tly from the proof given in [15, 36℄ for the algorithmsolving problem R|pmtn|Cmax.Note that if cX + cY ≤ l then the above result implies that there exists amat
hing in G of size at most l
overing all
riti
al verti
es. For the opposite
ase, su
h a mat
hing must
ontain at least cX + cY − l pairs of
riti
al verti
esmat
hed with ea
h other, in order not to violate
ondition 2). We prove in Lemma5.3 that a mat
hing
onsisting of cX + cY − l pairs of
riti
al verti
es exists inthis
ase. In Theorem 5.4 we use this fa
t to prove that there exists a mat
hingsatisfying both
onditions 1) and 2) given above. Finally, in Theorem 5.5 itis proved that if the bise
tion width limit is a
tive, then a mat
hing satisfying
onditions 1), 2) and 3) exists.Lemma 5.3. If cX+cY > l, then there exists a mat
hing of size at least cX+cY −lin the graph Gc.Proof. The sum of all edge weights in graph G is not smaller than ∑

j∈Xc
wjk +

∑

k∈Yc
wjk − wc. Hen
e, by (5.5), (5.15)

∑

j∈Xc

wjk +
∑

k∈Yc

wjk − wc ≤ l. (5.21)
156

As the sum of weights of edges in
ident to a
riti
al vertex in G is equal to 1, weobtain from (5.21)
wc ≥ cX + cY − l. (5.22)Now
onsider the minimum vertex
over of Gc. Sin
e the sum of weights ofedges in
ident to any vertex in Gc is not greater than 1, at least wc verti
es arene
essary in the Gc vertex
over. Thus, by (5.22) the minimum vertex
over of Gchas at least cX + cY − l elements. By König's theorem, the size of the maximummat
hing in Gc is equal to the size of the minimum vertex
over. Hen
e, thereexists a mat
hing of size at least cX + cY − l in Gc.Theorem 5.4. There exists a mat
hing in G of size at most l
overing all
riti
alverti
es.Proof. If cX+cY ≤ l, the thesis follows from Lemma 5.2. Assume that cX+cY > l.Consider the maximum mat
hing M in Gc. Suppose that not all
riti
al verti
esare mat
hed by M . We will show that for ea
h
riti
al vertex v ∈ Y unmat
hedby M eithera) there exists an even length M-alternating path π1 starting in v and endingwith a non-
riti
al vertex v′ ∈ Y (
f. Fig. 5.5a), orb) there exists an odd lengthM-augmenting path π2 starting from v (Fig. 5.5b).Suppose that there is no M-alternating path π1 starting in v and ending witha non-
riti
al vertex v′ ∈ Y . Consider the graph Gv indu
ed by the set of all

M-alternating paths starting in v ∈ Y . Sin
e no alternating path π1 ending innon-
riti
al v′ ∈ Y exists, all verti
es of Gv
ontained in Y are
riti
al. Graph
Gv
ontains also all neighbors in X of these verti
es. By Lemma 5.2, there existsa mat
hing in Gv
overing all its
riti
al verti
es from the set Y . As v is theonly
riti
al vertex in Gv
ontained in Y and not mat
hed by M , there existsan M-augmenting path starting in v. In other words, we ne
essarily have
ase157

a)
b)Figure 5.5: Augmenting mat
hing M . Bla
k nodes are
riti
al, non-
riti
al nodes arewhite, gray nodes may be
riti
al or not. The bold edges are in M . The left �gure is theinitial mat
hing M , the right �gure is the augmented mat
hing. a) Case a - alternatingpath starting in
riti
al v and �nishing in non-
riti
al v′ ∈ Y . b) Case b - augmentingpath starting in
riti
al v.b (Fig. 5.5b). Analogous reasoning
an be applied to the unmat
hed
riti
alverti
es in X .Thus, for ea
h unmat
hed
riti
al vertex v we
an �nd either anM-alternatingpath π1 or an M-augmenting path π2. We set M ′ = M ⊕ π1 or M ′ = M ⊕ π2
orrespondingly, where the symbol ⊕ denotes the symmetri
 di�eren
e. In both
ases, no
riti
al verti
es be
ome unmat
hed by M ′, we gain at least one
riti
alvertex mat
hed by M ′, and the number of edges in M ′ is in
reased by at most1 (see Fig. 5.5a,b). The size of the initial mat
hing M was em ≥ cX + cY − lby Lemma 5.3. At most cX + cY − 2em
riti
al verti
es in G were unmat
hedin M . Thus, we obtain a mat
hing
overing all
riti
al verti
es, with at most

em + cX + cY − 2em ≤ l edges.The last thing to prove is the existen
e of a mat
hing satisfying
onditions 1),2) and 3) in the
ase when the bise
tion width limit is a
tive.
158

Theorem 5.5. If the sum of edge weights in G is equal to l, then there exists amat
hing in G of size l,
overing all
riti
al verti
es.Proof. We
an apply the same pro
edure as in the proof of Theorem 5.4 to obtaina mat
hing M of size at most l,
overing all
riti
al verti
es. The sum of weightsof the edges in
ident to any vertex in G is at most 1. Hen
e, if the sum of alledge weights in G is l, then the minimum vertex
over in G
ontains at least lverti
es. By König's theorem, the size of the maximum mat
hing in G is at least
l. Therefore, if |M | < l, we
an further augment the mat
hing M until it hasexa
tly l edges.5.3 Computational ExperimentsIn this se
tion the in�uen
e of the instan
e parameters on the s
hedules for mul-tilayer appli
ations is analyzed. Unless written to be otherwise, the referen
esystem
on�guration used in the experiments is the following. There are R = 2redu
er layers. Ea
h layer
onsists of 5 pro
essors (m = r1 = r2 = 5). The size ofthe test instan
es is a result of both high
omplexity of the s
heduling algorithmand the a
hievable numeri
al pre
ision. The redu
er layers are
hara
terized byparameters sredp = 1E-2, aredp = 1E-7, γp = 0.1 (for p = 1, 2), The mapper param-eters are A = 1E-7, S = 1 and γ0 = 0.1. The
ommuni
ation rate is C = 1E-8,and the bise
tion width limit l = 5 is not restri
ting the
ommuni
ation. Theinitial amount of load is V = 1E15.5.3.1 Speedup of Multilayer Appli
ationsIn Chapter 4 we analyzed the in�uen
e of the number of pro
essors in the two
omputational layers and the other system parameters on the relative length ofthe obtained s
hedules. Qualitatively, the results obtained for the mathemati
almodel presented in this
hapter do not di�er mu
h from the previous ones. As an159

a)1

3

5

7

9

11

1 2 3 4 5 6 7 � 9 1� b)1

3

5

7

9

11

1 2 3 4 5 6 7 � 9 1�Figure 5.6: Speedup for di�erent γ0, γ1, a) vs. m, for r1 = r2 = 5, b) vs. r1, for
m = r2 = 5.example, we present in Fig. 5.6 the speedup for
hanging m and r1 (in relationto the system with m = r1 = r2 = 1). We analyzed
ases with big (γp = 1) andsmall (γp = 1E-3) load multipli
ity fra
tions in ea
h layer. It turned out thatthe value of γ2 has almost no impa
t on the speedup. This
an be explained bythe fa
t that γ2 in�uen
es only the time needed to store the �nal results, whi
his very short in
omparison to the whole s
hedule length. Therefore, we presentonly the instan
es with γ2 = 1 in Fig. 5.6.As it
ould be expe
ted, the fra
tions γ0 and γ1 in�uen
e the performan
e ofthe appli
ation. It
an be seen that the appli
ation s
ales well with the mappernumber m if γ0 is small (see Fig. 5.6a). In this
ase, the redu
ers re
eive littleload and do not dominate in the
omputations. On the other hand, if γ0 is big,then the number of mappers has a small impa
t on the speedup be
ause the bulkof
omputations takes pla
e in layer 1, and the appli
ation s
ales better with thenumber of redu
ers r1 (
f. Fig. 5.6a and Fig. 5.6b). The range of the speedupis determined not only by γ0, but also by γ1. If γ1 is big, then the redu
ers inthe se
ond layer re
eive big load and their
ontribution to the s
hedule lengthis
omparable with the �rst layer. On the other hand, if γ1 is small, then theexe
ution time of the whole appli
ation is dominated by the �rst redu
er layer.Then, r1 has the greatest in�uen
e on the s
hedule length. The in�uen
e of r2160

on the performan
e of the appli
ation is signi�
ant for the speedup only if both
γ0 and γ1 are big. We do not show these results here be
ause they follow thepattern of Fig. 5.6a,b.In the previous
hapter we presented s
heduling algorithms for 2-layer appli-
ations. The algorithms for r1 > 1 assumed a spe
i�

ommuni
ation s
hedulestru
ture, whi
h
ould be an obsta
le to �nding the optimum solution. In par-ti
ular, the amounts of load assigned to di�erent pro
essors
ould be biased. Inthis
hapter we relaxed the assumptions on the
ommuni
ation pattern, as wellas on the load partitioning in the redu
er layers. Therefore, in the further textwe
on
entrate on the load distribution between the pro
essors in a given layer.5.3.2 Load Distribution between Redu
ersThis se
tion is dedi
ated to analyzing the load distribution in the redu
er layers.The number of the redu
ers in the �rst layer is set to r1 = 10. Sin
e r2 = 5,the bise
tion width limit l = 5 is not restri
ting the
ommuni
ation between the�rst and the se
ond layer. We present the load distribution in redu
er layer pas the load fra
tions re
eived by the
onse
utive pro
essors relative to the equaldistribution, i.e. the values δpk/(1/rp). As the fra
tions of load re
eived by theredu
ers in the �rst layer depend on the load sent to the redu
ers in the nextlayer, we start our study with the se
ond layer.The values of load fra
tions δ2,k for di�erent values of
ommuni
ation rate Care shown in Fig. 5.7. Let us remind that a

ording to the model from Se
tion5.1, the redu
ers in a given layer start
omputations at the same moment and�nish them in the order of their indi
es. Hen
e, the fra
tions δ2,k are alwaysnonde
reasing. It
an be seen in Fig. 5.7a that for very fast
ommuni
ation theload distribution in the se
ond layer of redu
ers is very equal. For C = 1E-7 thedi�eren
es are more signi�
ant than for smaller values of C, but the fra
tions δ2,kstill grow nearly linearly. This
an be explained by the fa
t that for very fast161

a)0.994

0.996

0.998

1.000

1.002

1.004

1.006

1 2 3 4 5 b)0

1

2

3

4

1 2 3 4 5Figure 5.7: Relative load fra
tions δ2,k/(1/r2) vs.
ommuni
ation rate C, a) fast
om-muni
ation (small C), b) slow
ommuni
ation (big C).
ommuni
ation, the time of
omputations dominates in the s
hedule length fora given layer. Therefore, to make this time shorter, the load should be dividedequally, so that the
omputations �nish around the same time on all pro
essors.The situation be
omes di�erent for slow
ommuni
ation (
f. Fig. 5.7b). For verybig values of C (C = 1E-4, C = 1E-5) the time needed for storing the resultsdominates in the s
hedule length. Thus, it is pro�table to start
ommuni
ationsfrom some redu
ers very early, while other pro
essors are still
omputing. Thisleads to great inequalities in the load distribution between the redu
ers. The�rst pro
essors re
eive very small load, while the last redu
er has to pro
ess morethan a half (for C = 1E-5) or even more than 90% (for C = 1E-4) of all data.The load distribution between the pro
essors in the �rst redu
er layer is pre-sented in Fig. 5.8. As in the se
ond layer, the distribution is balan
ed for fast
ommuni
ation and very unequal for slow
ommuni
ation. Another interestingphenomenon
an be observed. For fast
ommuni
ation, the redu
ers
an be di-vided into two groups
omprising 5 pro
essors ea
h (see Fig. 5.8a). The pro
essorsin a given group re
eive similar amounts of load. As there are 5 pro
essors inlayer 2 whi
h re
eive data from the redu
ers in the �rst layer, we infer that thepro
essors in a given group
an use a similar
ommuni
ation pattern, but
om-muni
ate with the redu
ers from the se
ond layer in di�erent order. Pre
isely,162

a)0.9985

0.9990

0.9995

1.0000

1.0005

1.0010

1.0015

1 2 3 4 5 6 7 8 9 10 b)0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10Figure 5.8: Relative load fra
tions δ1,k/(1/r1) vs.
ommuni
ation rate C, a) fast
om-muni
ation (small C), b) slow
ommuni
ation (big C).for very fast
ommuni
ation, the redu
ers in layer 1
onstitute re
tangular blo
ksof
omputations of roughly the same time on r2 pro
essors. The pro
essors ina given group �nish
omputations around the time when the previous group�nished sending the results to the next layer of redu
ers. Thus, it seems thatthe optimum
ommuni
ation pattern in this
ase is similar to the �rst methodof s
heduling MapRedu
e
omputations proposed in Chapter 4. The di�eren
eis that in Chapter 4 we syn
hronized the
omputations and
ommuni
ations of
onse
utive pro
essors, and not
onse
utive groups of several workers. The in-equalities in the load distribution between the pro
essors in a given group be
omelarger when C gets larger. This
an be
aused by a more unequal load distribu-tion in the se
ond redu
er layer. It
an be seen in Fig. 5.8b that in the
ase ofslow
ommuni
ation the groups of 5 pro
essors
annot be distinguished anymore.It
an be inferred that the pattern of
ommuni
ations is very di�erent for slow
ommuni
ations.In the test instan
es des
ribed above the number r1 was divisible by r2. Thus,for fast
ommuni
ation the redu
ers in the �rst layer
ould be divided into groups,ea
h of whi
h
omprised r2
omputers. In Fig. 5.9 we show the load distributionin the �rst redu
er layer for r1 = 10 and r2 = 4. In this
ase, one group of size 4and three groups of size 2
an be distinguished for C = 1E-7, and groups of sizes163

a)0.998

0.999

1.000

1.001

1.002

1 2 3 4 5 6 7 8 9 10 b)0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10Figure 5.9: Load fra
tions δ1,k vs.
ommuni
ation rate C for r1 = 10, r2 = 4, a) fast
ommuni
ation (small C), b) slow
ommuni
ation (big C).4, 2, 4 are visible for C = 1E-8. Thus, there is no simple repetitive pattern inthe load distribution, whi
h
ould be easily generalized to any system
on�gura-tion. Additionally, the number and the sizes of the obtained groups depend onparameter C. This suggests that in the systems with fast
ommuni
ation it maybe pro�table to use the numbers of redu
ers r1 divisible by r2. In su
h a
ase,the assumption that the pro
essors are divided into r1/r2 groups
an be used tobase the s
heduling algorithm on a predetermined load partitioning pattern. Thiswould result in the design of simpler and faster s
heduling heuristi
s.The amount of time ne
essary to send the load from one redu
er layer toanother depends not only on parameter C, but also on the bise
tion width limit
l. Let us remind that the load distribution in the last layer does not depend on l,as the results are stored sequentially. In Fig. 5.10 we present the load distributionin the �rst redu
er layer for di�erent values of l. The value C = 1E-8 in Fig. 5.10
an be
onsidered fast
ommuni
ation. The results shown in Fig. 5.10a
on�rmthat the groups of pro
essors re
eiving similar amounts of load are
onne
tedwith the number of pro
essors whi
h
an
ommuni
ate at the same time. When
l = 2, groups of 2 pro
essors
an be observed in Fig. 5.10a. For l = 1 ea
hpro
essor
onstitutes a separate group. Similarly, for l = 5 �ve-pro
essor groups
an be observed. If r1 is not divisible by l (Fig. 5.10b), then no
lear groups of164

a)0.9985

0.9990

0.9995

1.0000

1.0005

1.0010

1.0015

1 2 3 4 5 6 7 8 9 10 b)0.9996

0.9998

1.0000

1.0002

1.0004

1 2 3 4 5 6 7 8 9 10Figure 5.10: Relative load fra
tions δ1,k/(1/r1) vs. the bise
tion width limit l, a) r1divisible by l, b) r1 not divisible by l.pro
essors
an be distinguished. It seems that the pattern of
ommuni
ation isnot so simple anymore.5.3.3 Load Distribution between MappersIn this se
tion we analyze the load distribution in the mapper layer. In the fol-lowing simulations we assumed the FIFO stru
ture of the mapper
omputations.Whether it is generally optimum, remains an open question. However, we
hosethis stru
ture for several pra
ti
al reasons. The startup times are short in relationto the whole s
hedule, and hen
e, the order of starting pro
essors and startuppro
edure have small impa
t in di�erentiating the pro
essors. Mixed integer lin-ear programming is
omputationally hard, and only very small instan
es
an besolved to optimality in a

eptable time. The
hoi
e of the FIFO order allowed usto solve larger instan
es of the problem: the number of mappers was m = 50 inthe experiments presented in this se
tion.In the �rst series of experiments we analyzed the load distribution between themappers for relatively small startup times S = 1. The results of the experimentswith
hanging C and l are presented in Fig. 5.11. The load distribution in themapper layer was shown as the fra
tions αj/(V/m). As
ould be intuitivelyexpe
ted, the results are very similar to the distributions for the �rst redu
er165

a)0

1

2

3

4

5

6

0 10 20 30 40 50 b)0.7

0.8

0.9

1.0

1.1

1.2

1.3

0 10 20 30 40
��Figure 5.11: Mapper load fra
tions αj/(V/m) for S = 1, a) vs. C, b) vs. l.layer. The di�eren
e between the
omputations in the mapper and the redu
erlayers is the presen
e of startup time S, but its in�uen
e was almost negligible inthis set of experiments. Thus, we observed the same phenomena as were des
ribedin Se
tion 5.3.2. For example, groups of min{r1, l} mappers with nearly equalload assignments
an be distinguished when C is small and m is divisible by

min{r1, l}. When C is big, the majority of the load is pro
essed by the ma
hinesa
tivated as the last ones.In order to better expose the di�eren
es between the mapper and the redu
erlayers we in
reased the startup time S to 1E4. The results of the experiments with
hanging
ommuni
ation rate C are shown in Fig. 5.12. For fast
ommuni
ationwe observed a qualitative di�eren
e in the load distribution (see Fig. 5.12a).The mapper loads are now generally de
reasing. Similarly to the redu
er layer,the mappers
an be divided into groups of
onse
utive 5 pro
essors (we have
r1 = l = 5). However, the fra
tions of load obtained by the pro
essors in a givengroup are far from equal. The di�eren
e between the amounts of load re
eived bytwo
onse
utive pro
essors from the same group is about 1E11 for C = 1E-8, 1E-9, 1E-10. The time needed to pro
ess load of this size on a mapper is 1E4, whi
his equal to the startup time S. Thus, the pro
essors in a given group re
eive su
hamounts of data that they �nish
omputations at approximately the same time.166

a)0.85

0.90

0.95

1.00

1.05

1.10

1.15

0 10 20 30 40 50 b)0

1

2

3

4

5

6

0 10 20 30 40 50Figure 5.12: Mapper load fra
tions αj/(V/m) for S = 1E4 vs. C, a) fast
ommuni
ation(small C), b) slow
ommuni
ation (big C).Then, they use the available
ommuni
ation
hannels to send the results to theredu
ers. The �rst
omputer in the next group of mappers re
eives su
h amountof load that it still performs
omputations while all
ommuni
ation
hannels areused by the previous group. For C = 1E-8 this means that the load obtained bythe �rst pro
essor in a given group is larger than the load assigned to the lastpro
essor in the pre
eding group. Hen
e
omes the
hara
teristi
 saw-like patternin Fig. 5.12a.When the
ommuni
ations gets slower (C is bigger) the situation
hanges andis more similar to the redu
er layer distribution (
f. Fig. 5.12b). The sizes ofload assigned to
onse
utive mappers are in
reasing and the groups of 5 mappersre
eiving similar amounts of load
an be seen. This
an be explained by thefa
t that for slow
ommuni
ation the startup time S = 1E4 is not signi�
ant inthe s
hedule length. Hen
e, the results obtained here are similar to the redu
erlayers.The load distributions in the mapper layer for di�erent bise
tion width limits
l are presented in Fig. 5.13. When the number of mappers m is divisible by l(Fig. 5.13a), then groups
omprising l mappers
an be observed again. Di�erenttenden
ies
an be seen for di�erent values of l. When l = 5, the amount of loadassigned to the mappers in a given group and the amounts of load obtained by167

a)0.85

0.90

0.95

1.00

1.05

1.10

1.15

0 10 20 30 40 50 b)0.90

0.95

1.00

1.05

1.10

0 10 20 30 40 50Figure 5.13: Mapper load fra
tions αj/(V/m) for S = 1E4 vs. l, a) m divisible by l, b)
m not divisible by l.
onse
utive groups are de
reasing. For l = 2, the �rst mapper in a given pairre
eives more load than the se
ond, but there are no visible di�eren
es betweenthe groups. For l = 1, the load sizes assigned to the mappers are in
reasing.Although these three patterns seem di�erent, they are in fa
t instantiation of thesame type of
ommuni
ation organization. The l mappers in a given group �nishthe
omputations around the same moment. The mappers from ea
h followinggroup �nish the
omputations when the pre
eding group �nishes sending resultsand the
ommuni
ation
hannels
an be used by the next group of pro
essors.Su
h an organization of pro
essing is not possible when m is not divisible by
l (Fig. 5.13b). In this
ase, the groups of l mappers
an be seen at the beginningof the mapper sequen
e, but for the mappers a
tivated later, the group patterngradually disappears. Thus, the s
hedule starts with blo
ks of l mappers, whi
hgradually dismantle to single-mapper "groups".5.4 SummaryIn this
hapter we introdu
ed multilayer divisible appli
ations and proposeds
heduling algorithms for all
omputation layers. The order in whi
h the mappersshould �nish their
omputations was analyzed. We proved that the FIFO order168

is optimum in some spe
ial
ases.The load distribution between the pro
essors in di�erent
omputation layerswas analyzed. It turned out that it is to a large degree determined by the
om-putation rate C. When C is small, the
omputation time dominates the s
hedulelength. Hen
e, the load distribution is rather balan
ed, so that all pro
essors �n-ish
omputing around the same time. If C is very big, the
ommuni
ation timedominates the s
hedule length and it is pro�table to start the
ommuni
ations assoon as possible. This leads to big inequalities in the load distribution.Another important parameter in�uen
ing the load distribution is the bise
-tion width limit l. If the number of senders (mappers or redu
ers) is divisibleby l and the
ommuni
ation is fast, then the
omputers form groups of size l.The
omputers in a given group �nish the
omputations around the same mo-ment and send their results during the same time interval, using the l available
ommuni
ation
hannels. The next group �nishes the
omputations almost ex-a
tly when the
ommuni
ation
hannels are released. If the number of senders isnot divisible by l, the groups of l
omputers are visible at the beginning of thesender sequen
e, but then they disappear. Thus, it may be pro�table to use thenumbers of mappers or redu
ers divisible by l. In this
ase, due to the additionalinformation about the s
hedule stru
ture, faster s
heduling algorithms may bedevised.

169

6 Summary and Con
lusions
In this work we analyzed s
heduling divisible loads in heterogeneous distributedsystems. First, we studied
lassi
al single-round divisible load s
heduling prob-lems in star networks. We proposed fully polynomial time approximation s
hemesfor the problems with in�nite bandwidths. This result
omplements
omputa-tional
omplexity analysis of this problem. The obsta
les in approa
hing themore general problem with �nite bandwidths were presented. Future resear
hmay in
lude further analysis of the approximability of this problem. Another di-re
tion is the
onstru
tion of approximation algorithms for single-round divisibleload s
heduling with limited memory.The se
ond problem analyzed in this work was multi-round s
heduling instar networks. Su
h an organization of
ommuni
ations allows for de
reasing theinitial
ommuni
ation delays and for taking into a

ount the pra
ti
al memorylimitations. We proposed a geneti
 algorithm solving the
orresponding s
hedul-ing problem and used it to perform an experimental study of the properties of thenear-optimum solutions. Analyti
ally obtained results were also provided. Theresults were used to
onstru
t fast and simple heuristi
s for our s
heduling prob-lem. We analyzed them experimentally and
ompared with the algorithms knownfrom the earlier literature. The heuristi
s proposed in this work obtained substan-tially better results in mu
h shorter time. Some
lasses of ine�
ient heuristi
swere singled out. These results
an be used as a base for future resear
h onapproximation algorithms for the analyzed problem.170

The following parts of this thesis were dedi
ated to s
heduling divisible MapRe-du
e and multilayer
omputations. S
heduling divisible loads with pre
eden
e
onstraints was not studied before. We proposed mathemati
al models ands
heduling algorithms for the analyzed organization of
omputations. On thebasis of a series of
omputational experiments we analyzed the in�uen
e of the sys-tem parameters on the performan
e of MapRedu
e appli
ations and the stru
tureof the s
hedules. These results
an be helpful in
onstru
ting e�e
tive
omputernetworks as well as in designing e�
ient MapRedu
e and multilayer divisibleappli
ations in pra
ti
e. The analysis of the load distribution in multilayer
om-putations showed that the
ommuni
ation parameters in a great extent in�uen
ethe amounts of load whi
h should be assigned to the parti
ular pro
essors. Wepointed out that adjusting the number of
omputers used for pro
essing to othersystem parameters (e.g. the bise
tion width limit) may lead to simpli�
ations inthe s
heduling algorithms and in the stru
ture of the optimum s
hedule. Thisfa
t
an be useful both for designing multilayer appli
ations and for
ontrollingtheir exe
ution. A future resear
h dire
tion is better modeling of MapRedu
eand multilayer appli
ations. Several problems posed in this work, like �nding theoptimum order of �nishing mapper
omputations or
onstru
ting fast approxi-mation algorithms for s
heduling multilayer appli
ations, are also open areas forfurther study.

171

Bibliography
[1℄ R. Agrawal, H.V. Jagadish, Partitioning Te
hniques for Large-Grained Par-allelism, IEEE Transa
tions on Computers 37 (1988) 1627-1634.[2℄ T. Badi
s, E. Boros, Minimization of Half-Produ
ts, Mathemati
s of Oper-ations Resear
h 23(3) (1988) 649-660.[3℄ O. Beaumont, H. Casanova, A. Legrand, Y. Robert, Y. Yang, S
hedulingDivisible Loads on Star and Tree Networks: Results and Open Problems,IEEE Transa
tions on Parallel and Distributed Systems 16 (2005) 207-218.[4℄ O. Beaumont, A. Legrand, L. Mar
hal, Y. Robert, Independent and Divis-ible Tasks S
heduling on Heterogeneous Star-Shaped Platforms with Lim-ited Memory, Laboratoire de l'Informatique du Parallélisme, É
ole NormaleSupérieure de Lyon, Te
hni
al Report 2004-22 (2004).[5℄ O. Beaumont, A. Legrand, Y. Robert, S
heduling Divisible Workloads onHeterogeneous Platforms, Parallel Computing 29(9) (2003) 1121-1152.[6℄ J. Berli«ska, Fully Polynomial Time Approximation S
hemes for S
hedul-ing Divisible Loads, in: R. Wyrzykowski, J. Dongarra, K. Kar
zewski, J.Wa±niewski (Eds.), Parallel Pro
essing and Applied Mathemati
s: 8th In-ternational Conferen
e PPAM 2009, Part II, Le
ture Notes in ComputerS
ien
e 6068 (2010) 1-10.

172

[7℄ J. Berli«ska, M. Drozdowski, Dominan
e Properties for Divisible MapRedu
eComputations, Institute of Computing S
ien
e, Pozna« University of Te
h-nology, Resear
h Report RA-09/09 (2009), http://www.
s.put.poznan.pl/mdrozdowski/rapIIn/ra0909.pdf.[8℄ J. Berli«ska, M. Drozdowski, Heuristi
s for Divisible Loads S
heduling inSystems with Limited Memory, Pro
eedings of the 4th Multidis
iplinary In-ternational S
heduling Conferen
e: Theory & Appli
ations (2009) 321-329.[9℄ J. Berli«ska, M. Drozdowski, Heuristi
s for Multi-Round Divisible LoadsS
heduling with Limited Memory, Parallel Computing 36(4) (2010) 199-211.[10℄ J. Berli«ska, M. Drozdowski, S
heduling Divisible MapRedu
e Computa-tions, Journal of Parallel and Distributed Computing 71(3) (2011) 450-459.[11℄ J. Berli«ska, M. Drozdowski, M. Lawenda, Multi-Installment Divisible LoadsS
heduling in Systems with Limited Memory, Institute of Computing S
i-en
e, Pozna« University of Te
hnology, Resear
h Report RA-07/08 (2008),http://www.
s.put.poznan.pl/mdrozdowski/rapIIn/ra0708.pdf.[12℄ J. Berli«ska, M. Drozdowski, M. Lawenda, Experimental Study of S
hedulingwith Memory Constraints Using Hybrid Methods, Journal of Computationaland Applied Mathemati
s 232 (2009) 638-654.[13℄ V. Bharadwaj, D. Ghose, V. Mani, Optimal Sequen
ing and Arrangement inDistributed Single-Level Tree Networks with Communi
ation Delays, IEEETransa
tions on Parallel and Distributed Systems 5(9) (1994) 968-976.[14℄ V. Bharadwaj, D. Ghose, V. Mani, T.G. Robertazzi, S
heduling DivisibleLoads in Parallel and Distributed Systems, IEEE Computer So
iety Press,Los Alamitos, CA, (1996).
173

[15℄ J. Bªa»ewi
z, W. Cellary, R. Sªowi«ski, J. W�glarz, S
heduling Under Re-sour
e Constraints - Deterministi
 Models, Annals of Operations Resear
h 7(1986).[16℄ J. Bªa»ewi
z, M. Drozdowski, S
heduling Divisible Jobs on Hyper
ubes, Par-allel Computing 21 (1995) 1945-1956.[17℄ J. Bªa»ewi
z, M. Drozdowski, Distributed Pro
essing of Divisible Jobs WithCommuni
ation Startup Costs, Dis
rete Applied Mathemati
s 76 (1997) 21-41.[18℄ J. Bªa»ewi
z, M. Drozdowski, M. Markiewi
z, Divisible Task S
heduling -Con
ept and Veri�
ation, Parallel Computing 25 (1999) 87�98.[19℄ J. Bªa»ewi
z, K. E
ker, E. Pes
h, G. S
hmidt, J. W�glarz, S
heduling Com-puter and Manufa
turing Pro
esses, Springer, Heidelberg (1996).[20℄ Y.-C. Cheng, T.G. Robertazzi, Distributed Computation with Communi-
ation Delay, IEEE Transa
tions on Aerospa
e and Ele
troni
 Systems 24(1988) 700-712.[21℄ Y.-C. Cheng, T.G. Robertazzi, Distributed Computation for a Tree Networkwith Communi
ation Delays, IEEE Transa
tions on Aerospa
e and Ele
-troni
 Systems 26 (1990) 511-516.[22℄ N. Comino, V.L. Narasimhan, A Novel Data Distribution Te
hnique forHost-Client Type Parallel Appli
ations, IEEE Transa
tions on Parallel andDistributed Systems 13 (2002) 97-110.[23℄ J. Dean, S. Ghemawat, MapRedu
e: Simpli�ed Data Pro
essing on LargeClusters, in: OSDI'04: Sixth Symposium on Operating System Design andImplementation, San Fran
is
o, CA (2004) 137-150, http://labs.google.
om/papers/mapredu
e.html. 174

[24℄ M. Drozdowski, S
heduling for Parallel Pro
essing, Springer, London (2009).[25℄ M. Drozdowski, W. Gªazek, S
heduling Divisible Loads in a Three-Dimensional Mesh of Pro
essors, Parallel Computing 25 (1999) 381-404.[26℄ M. Drozdowski, M. Lawenda, Multi-Installment Divisible Load Pro
essingin Heterogeneous Systems with Limited Memory, in: R. Wyrzykowski, J.Dongarra, N. Meyer, J. Wa±niewski (Eds.), Parallel Pro
essing and AppliedMathemati
s: 6th International Conferen
e PPAM 2005, Le
ture Notes inComputer S
ien
e 3911 (2006) 847-854.[27℄ M. Drozdowski, M. Lawenda, A New Model of Multi-Installment DivisibleLoads Pro
essing in Systems with Limited Memory, in: R. Wyrzykowski,J. Dongarra, K. Kar
zewski, J. Wa±niewski (Eds.), Parallel Pro
essing andApplied Mathemati
s: 7th International Conferen
e PPAM 2007, Le
tureNotes in Computer S
ien
e 4967 (2008) 1009-1018.[28℄ M. Drozdowski, P. Wolniewi
z. Experiments with S
heduling Divisible Tasksin Clusters of Workstations, in: A. Bode, T. Ludwig, W. Karl, R. Wismuller(Eds.), Euro-Par 2000 Parallel Pro
essing: 6th International Euro-Par Con-feren
e, Le
ture Notes in Computer S
ien
e 1900 (2000) 311-319.[29℄ M. Drozdowski, P. Wolniewi
z, Pro
essing Time and Memory Requirementsfor Multi-Installment Divisible Job Pro
essing, in: R. Wyrzykowski, J. Don-garra, M. Paprzy
ki, J. Wa±niewski (Eds.), Parallel Pro
essing and AppliedMathemati
s: 4th International Conferen
e PPAM 2001, Le
ture Notes inComputer S
ien
e 2328 (2002) 125-133.[30℄ M. Drozdowski, P. Wolniewi
z, Divisible Load S
heduling in Systems withLimited Memory, Cluster Computing 6 (2003) 19-29.
175

[31℄ M. Drozdowski, P. Wolniewi
z, Optimum Divisible Load S
heduling on Het-erogeneous Stars with Limited Memory, European Journal of OperationalResear
h 172 (2006) 545-559.[32℄ D. Ghose, H.J. Kim, Load Partitioning and Trade-O� Study for LargeMatrix-Ve
tor Computations in Multi
ast Bus Networks with Communi
a-tion Delays, Journal of Parallel and Distributed Computing 55 (1998) 32-59.[33℄ C. Gini, Variabilità e mutabilità, C. Cuppini, Bologna (1912).[34℄ D. Ho
hbaum, D. Shmoys, Using Dual Approximation Algorithms forS
heduling Problems: Theoreti
al and Pra
ti
al Results, Journal of the ACM34(1) (1987) 144-162.[35℄ H.J. Kim, G. Jee, J.G. Lee, Optimal Load Distribution for Tree NetworkPro
essors, IEEE Transa
tions on Aerospa
e and Ele
troni
 Systems 32(2)(1996) 607-612.[36℄ E.L. Lawler, J. Labetoulle, On Preemptive S
heduling of Unrelated ParallelPro
essors by Linear Programming, Journal of the ACM 25(4) (1978) 612-619.[37℄ X. Li, V. Bharadwaj, C.C. Ko, Pro
essing Divisible Loads on Single-LevelTree Networks with Bu�er Constraints, IEEE Transa
tions on Aerospa
eand Ele
troni
 Systems 36 (2000) 1298-1308.[38℄ X. Li, V. Bharadwaj, C.C. Ko, Distributed Image Pro
essing on a Networkof Workstations, International Journal of Computers and Appli
ations 25(2003) 1-10.[39℄ T. Lim, T.G. Robertazzi, E�
ient Parallel Video Pro
essing through Con-
urrent Communi
ation on a Multi-Port Star Network, in: 2006 Conferen
eon Information S
ien
es and Systems, Prin
eton, NJ (2006) 458-463.176

[40℄ J. Lin, C. Dyer, Data-Intensive Text Pro
essing with MapRedu
e, Morgan& Claypool (2010).[41℄ Lp_solve referen
e guide (2010), http://lpsolve.sour
eforge.net/5.5/.[42℄ R. Pike, S. Dorward, R. Griesemer, S. Quinlan, Interpreting the Data: Par-allel Analysis with Sawzall, S
ienti�
 Programming 13 (2005) 277-298.[43℄ K. van der Raadt, Y. Yang, H. Casanova, Pra
ti
al Divisible Load S
hedulingon Grid Platforms with APST-DV, Pro
eedings of the 19th IEEE Interna-tional Parallel and Distributed Pro
essing Symposium (IPDPS'05) (2005)29.b.[44℄ C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, C. Kozyrakis, Eval-uating MapRedu
e for Multi-Core and Multipro
essor Systems, HPCA '07:Pro
eedings of the 13th International Symposium on High-Performan
eComputer Ar
hite
ture (2007) 13-24.[45℄ T.G. Robertazzi, Ten Reasons to Use Divisible Load Theory, IEEE Computer36 (2003) 63-68.[46℄ J. Sohn, T.G. Robertazzi, S. Luryi, Optimizing Computing Costs Using Di-visible Load Analysis, IEEE Transa
tions on Parallel and Distributed Sys-tems 9 (1998) 225-234.[47℄ H.M. Wong, V. Bharadwaj, Aligning Biologi
al Sequen
es on DistributedBus Networks: A Divisible Load S
heduling Approa
h, IEEE Transa
tionson Information Te
hnology in Biomedi
ine, 9(4) (2005) 489-501.[48℄ Y. Yang, H. Casanova, M. Drozdowski, M. Lawenda, A. Legrand, On theComplexity of Multi-Round Divisible Load S
heduling, INRIA Rh�ne-Alpes,Resear
h Report 6096 (2007), http://hal.inria.fr/inria-00123711/en/. 177

