Adam Mickiewicz University
Faculty of Mathematics and Computer Science

Joanna Berlinska

Scheduling divisible loads
in heterogeneous distributed systems

Ph.D. Thesis

Supervisor: Prof. Dr. Habil. Maciej Drozdowski

Poznan 2011

Acknowledgements

I wish to express my deep gratitude to my supervisor Professor Maciej Drozdowski
for his keen interest, inspiration and perfect guidance throughout the completion
of this thesis. He introduced me to the exciting field of divisible load theory and
motivated me to conduct original research with high standards. I am sincerely
grateful for his effort in training me to become a successful researcher.

The research reported in this thesis has been financially supported by the Pol-
ish Ministry of Science and Higher Education grants N N206 372039 "Scheduling
divisible loads in heterogeneous distributed systems" and N N519 188933 "New
problems of scheduling theory — complexity analysis, algorithmization".

The work presented in this thesis has been also partially supported by the

scholarship of the Adam Mickiewicz University Foundation for the year 2010.

Contents

1 Introduction

2 Single-Round Processing

2.1 Earlier Results 00
2.2 FPTAS for Problem DLS{C; =0}-OptV
2.3 FPTAS for Problem DLS{C; =0}-OptT"
2.4 Communication Sequence for Problem DLS{1Round}
2.5 Approximation Algorithms for Problem DLS{1Round}

2.5.1 Problem DLS{1Round}-OptV

2.5.2 Problem DLS{1Round}-Opt7T"

2.6 Conclusions

Multi-Round Processing with Limited Memory

3.1 Earlier Results o

3.2 Problem Formulation

3.3 Branch&Bound Algorithm and Genetic Algorithm
3.3.1 Branch&Bound Algorithm
3.3.2 Genetic Algorithm L.
3.3.3 Comparison of B&Band GA.

3.4 Properties of the Solutions
3.41 DepthofOverlap

3.4.2 Length of the Communication Sequence

3.4.3 Number of Used Processors 64

3.4.4 Dominating Set of Processors 67
3.4.5 Chunk Size Saturation 74
3.4.6 When Is It Hard to Find a Good Solution? 76
3.47 Conclusions oo 80
3.5 Heuristics L 82
3.5.1 Random Heuristics 82
3.5.2 First Free Heuristic 84
3.5.3 Appender Heuristics 84
3.5.4 Best Rate Heuristics 86
3.6 Comparison of the Heuristic Algorithms 87
3.6.1 Load Size 88
3.6.2 Startup Time o 90
3.6.3 Communication Rate 92
3.6.4 Memory Limit 0L 93
3.6.5 Computation Rate 95
3.6.6 Parameters Dispersion 95
3.6.7 Performance Dispersion 97
3.7 Summary 98
MapReduce Computations 100
4.1 Outline of MapReduce 100
4.2 Mathematical Model of MapReduce 102
4.3 Schedule Dominance Properties 108
4.3.1 Processing with a Single Reducer 108
4.3.2 Processing with Many Reducers 113
4.4 Scheduling Algorithms, 118
4.4.1 Single Reducer oL 118
4.4.2 Many Reducers 120

4.5 Performance Analysis L.

4.6 SUMMATYo e e

5 Multilayer Divisible Applications
5.1 Model of Multilayer Applications
5.2 Scheduling Algorithms, .
5.2.1 Load Partitioning for Reducer Layers
5.2.2 Load Partitioning for Mapper Layer
5.2.3 The Complete Load Partitioning Algorithm
5.2.4 Finishing Mapper Computations Order
5.2.5 Scheduling Communications
5.3 Computational Experiments
5.3.1 Speedup of Multilayer Applications
5.3.2 Load Distribution between Reducers
5.3.3 Load Distribution between Mappers.

5.4 Summary e

6 Summary and Conclusions

References

138
138
143
143
146
148
148
152
159
159
161
165
168

170

172

1 Introduction

The progress in many disciplines of science and technology is nowadays strongly
supported by computational methods. The research is often based on the results
delivered by complex and time-consuming calculations. The computational power
of a single computer is often insufficient. Hence, performing the computations
in distributed environments like grids or clusters becomes a necessity. What is
more, using a distributed computer system has many advantages. Large numbers
of processors taking part in computations result in big total computing power.
The system is scalable and the time needed for computations can be reduced
by employing more processors. On the other hand, controlling computations in
a distributed system is more complex. In order to obtain high efficiency, the
distributed applications need careful scheduling of communications and compu-
tations. As the computers may be spread around the world, the communication
delays may be quite big and cannot be neglected. The distributed computer sys-
tem is usually heterogeneous, and consequently, the different parameters of its
elements must be taken into account by the scheduling algorithms.

Divisible load theory (DLT) is a model of parallel computations which offers a
realistic approach to this problem. It is mostly used to represent processing large
amounts of data in distributed systems. It assumes that the input data, called
load, can be divided into pieces of arbitrary sizes and these pieces can be pro-
cessed independently in parallel on remote computers. The divisible load model

originated in the late 1980s in publications [1, 20]. It was applied to represent

distributed computations in a network of workstations in [1]. In [20] a chain net-
work of intelligent sensors was studied. In both cases, the analyzed problem was
how to schedule communications and computations, so that the total time needed
to process the load of a given size is as short as possible. On the one hand, using
more processors reduces computation time, but on the other hand it needs more
communications, which cost time. Hence, the problem is which processors should
be used and what load quantities they should receive. The mathematical models
proposed in the early publications were computationally tractable and reduced
the scheduling problem to a set of linear equations. Later on, more complex
models were developed and applied to various network topologies |16, 20, 21, 25,
systems with memory limitations [12, 30, 37|, computation costs [46] and other.
The most general divisible load scheduling problem was proved to be NP-hard
in [48]. Surveys of divisible load theory can be found, e.g., in [3, 14, 24, 45|. We
discuss these results in more detail in the following sections.

There are many examples of divisible load computations, like processing mea-
surement data |20], searching for patterns in text and database files |28], image
and video processing [38, 39, 43|, solving linear algebra problems |22, 32|, DNA
sequence alignment [47]. As we showed in [7, 10|, processing large amounts of
data in MapReduce model [23] on dedicated clusters can also be analyzed on
the grounds of divisible load theory. Moreover, the computations on volunteer
platforms like BOINC and distributed.net fulfill the assumptions about the di-
visibility and independence of the load grains. Therefore, the progress in DLT is
useful in efficiently managing many real distributed applications.

The main goal of this work is the analysis of several divisible load scheduling
problems in heterogeneous distributed systems and the construction of algorithms
solving these problems. As the analyzed problems are known to be computa-
tionally hard, we will propose approximation algorithms and heuristics. The

algorithms will be evaluated and compared by both analytical and experimental

methods. The divisible load theory will be also applied to model, analyze and
schedule computations in new parallel processing environments, like the MapRe-
duce framework. We will construct a mathematical model of such computations
and propose scheduling algorithms. Performance limits of the proposed organi-
zation of computations will be investigated.

The structure of this thesis is the following. Chapter 2 is dedicated to single-
round divisible load scheduling. In the single-round processing each computer
receives at most one message with the data to process. The scheduling problem
is which processors should take part in computations, what amounts of data they
should receive and in what order. Our main contributions presented in Chapter
2 are fully polynomial time approximation schemes for two scheduling problems.
These results have been already published in [6]. Extensions to more general
cases are also analyzed.

Chapter 3 covers multi-round divisible load scheduling in systems with limited
memory. Multi-round processing means that each processor can receive multiple
messages with data to process. It is assumed that the whole load is too big to store
it in the memories of the computers at the same moment. Therefore, the load
must be distributed and processed in many small pieces fitting available memory
buffers. We provide an experimental study of the features of near-optimum solu-
tions, and hence, the nature of the scheduling problem. Based on these results,
several groups of heuristics solving the analyzed problems are proposed. Their
advantages and weaknesses are demonstrated for a wide range of changing sys-
tem parameters. The experimental comparison of the proposed algorithms with
the heuristics known from earlier literature shows that a big improvement in the
quality of the obtained solutions has been achieved. The results contained in
Chapter 3 have been published in [8, 9, 11, 12|.

Chapter 4 introduces MapReduce paradigm for parallel computations. We

show that MapReduce computations can be analyzed as two divisible applica-

tions, such that the output of the first of them is the input for the second. We
formulate the mathematical model of such computations and propose scheduling
algorithms. Then, an experimental analysis of the MapReduce performance is
provided. These results have been published in |7, 10]. It was the first time when
scheduling divisible loads with precedence constraints was studied.

In Chapter 5 the problem considered in Chapter 4 is generalized. We introduce
the notion of a multilayer application. An example of a multilayer application is a
chain of MapReduce applications, such that one application in the chain produces
input for the next application. The influence of the system parameters on the
structure of the schedules is studied.

The last chapter contains a summary of all the presented results. We also
propose directions for future research on the aspects of divisible load theory ad-

dressed in this work.

2 Single-Round Processing

In this chapter we study divisible load scheduling for single-round organization of
computations. Let us start with some general assumptions about the computing
environment. In this work we assume that each processor comprises a CPU,
some memory and a hardware network interface (e.g. NIC and DMA). The words
processor, computer and processing element will be used interchangeably, unless
said to be otherwise. The CPU and network interface can work in parallel, so
that simultaneous computation and communication is possible. Each computer
can communicate with at most one processor at a time (i.e. so-called one-port
model is used).

In Chapters 2 and 3 we consider classical divisible load scheduling problems
in a star network (see Fig. 2.1). The load to be processed is initially located on
processor P called the originator, located in the center of the star. The originator
is connected to a set of m processors (workers) {Py,...,P,}. The originator
divides the load into pieces and sends them directly to the workers. Such a logical
topology can represent many parallel systems with different physical topologies,
like a grid of multiprocessor supercomputers, a cluster of workstations connected
via a local area network, or a set of processors sharing a bus in an SMP system.
We assume that the originator only dispatches the load to the other processors
and performs no computations. In the opposite case, the computational power
of the originator can be represented as an additional processor. For simplicity of

the mathematical model, the process of returning results to the originator is not

10

G"l) STIL

®)
A

Al A2 m

Figure 2.1: Star network topology.

analyzed. Practically, it means that the results returning time is short and can
be neglected. It has been shown in [18, 28] that this simplification is not limiting
the generality of our considerations, as sending results back can be included in
the model.

Each worker P; is described by its computing rate (inverse of speed, e.g. in
seconds per byte), denoted by A;. Processing load of size o on P; takes time o A;.
The communication link between P; and the originator is described by startup
time S; (e.g. in seconds) and communication rate (inverse of bandwidth) C;.
Hence, the time required to send load of size a to processor P; is S; + aC;. We
will use the notation A,,., = maxi<i<m Ai, Apmin = minj<;<,, A;, and similarly
for the other parameters. In the general case, all parameters A;, C;, S; are
nonnegative rational numbers.

Below we formulate several single-round divisible load scheduling problems.
We follow the notation used in [48|, where different divisible load scheduling prob-
lems are denoted by DLS{restriction}. The restriction is the list of additional

assumptions in the analyzed problem. These restrictions may be, for example:

e /Round for single-round scheduling problems,
e (C; =0 if all the bandwidths are infinite (C; = 0 for all 1 < i < m),

e S; =0 if there are no startup times (S; = 0 for all 1 <i < m).

The decision version of the general single-round divisible load scheduling prob-

lem can be formulated as follows.

11

Problem 2.1. (DLS{1Round})
Given m workers, their parameters A;, C; and S; for 1 <1 < m, and two rational
numbers V> 0 and T > 0, is it possible to process load of size V' within time T

from the moment when the originator starts sending out the load?

We also define the following two optimization problems connected with prob-

lem DLS{1Round}.

Problem 2.2. (DLS{1Round}-OptV)
Given a rational time T > 0, m workers, their parameters A;, C; and S; for
1 <i <m, find the greatest rational number Vopr(T), such that it is possible to

process load of size Vopr(T) within time T

Problem 2.3. (DLS{1Round}-OptT)
Given a rational load size V' > 0, m workers, their parameters A;, C; and S;
for 1 < i < m, find the smallest rational number Topr (V) > 0, such that it is

possible to process the whole load V' within time Topr(V).

Let us note that we are interested not only in finding the optimum time
T or the amount of load V, but also in constructing the optimum schedule.

Constructing a schedule involves making the following decisions:

e The set P C P of processors participating in the computations must be
chosen. Depending on the parameters of the processors and communication
links, it may be unprofitable to use some of them for computations.

e The communication sequence (also called activation sequence), defining the
order in which the processors receive load, must be chosen. For single-
round processing, the communication sequence is a permutation of indices
of processors from the set P'.

e The sizes of the load parts sent in each message must be selected.

12

2.1 Earlier Results

The early publications concerning scheduling divisible loads in a star system
used a simple linear communication model. All communication startup times .S;
were assumed to be equal to zero. The analyzed problems were DLS{1Round,
S; = 0} and the adequate optimization problems. It was proved independently
in [5, 13, 17, 35] that if all workers take part in the computations and finish work
at the same moment, then the problem DLS{1Round, S; = 0} can be solved
by sorting the processors by nondecreasing C; in the activation sequence. The
hypothesis that in the optimum solution all workers participate in computations
and finish work simultaneously was proved in [3].

The assumption about linear communication costs usually does not hold in
practice. It has a side effect that all processors can take part in the computa-
tions, no matter how many of them are available, and no matter how far from
the originator they are. Hence, a more realistic affine communication model, in-
cluding startup times, was introduced by Blazewicz and Drozdowski in [17]. In
publication [3] it was shown that in the optimum solutions of both optimization
versions of the problem DLS{1Round} all processors taking part in computations
finish work at the same moment. Additionally, the authors proved that if the load
size V' is large enough, then in any optimum solution all workers participate in
the computations and they should be activated in the order of nondecreasing C;.

The complexity of single-round divisible load scheduling problem remained
open until 2007. Finally, in [48] it was proved that the problem DLS{1Round,
C; = 0} is NP-complete. The proof was done by reduction from the NP-complete
2-PARTITION problem. The authors proposed pseudo-polynomial dynamic pro-
gramming algorithms solving the problems DLS{1Round, C; = 0}-OptV and
DLS{1Round, C; = 0}-OptT. However, since pseudopolynomial algorithms are

in fact exponential, it can be more useful to create polynomial approximation al-

13

gorithms for these problems. The strongest polynomial time approximation result
that can be derived for NP-hard problems (unless P=NP) is a fully polynomial
time approximation scheme (FPTAS). An FPTAS for an optimization problem II
with cost function f is an approximation algorithm A which for any given ¢ > 0

and an instance I of problem II

e returns a solution A(J) such that |f(A(l)) —OPT(I)| < e|OPT(I)|, where
OPT(I) is the optimum cost for instance I, and

e has running time polynomial in the size of I and 1/e.

Constructing fully polynomial time approximation schemes for DLS{1Round,
C; = 0}-OptV and DLS{1Round, C; = 0}-OptT is the aim of the next two

sections.

2.2 FPTAS for Problem DLS{C; = 0}-OptV

Let us start with an observation that if C; = 0 for 1 <7 < m, then nothing can
be gained by sending more then one message to the same processor. Hence, for
the divisible load scheduling problem with C; = 0 for all 7, there always exists an
optimum solution using one round only. Consequently, we can write DLS{C; = 0}
instead of DLS{1Round, C; = 0}, because these two problems are equivalent.
We begin our considerations with the problem of optimizing the size of the
load processed in a given time 7. Similarly as in [48|, we assume here that A,

and S; are integer numbers. The problem can be formulated as follows.

Problem 2.4. (DLS{C; = 0}-OptV)

Given a rational time T > 0, m workers, their integer parameters A; and S; for
1 <@ < m, and provided that the bandwidths are infinite, find the greatest rational
number Vopr(T), such that it is possible to process load of size Vopr(T) within

time T'.

14

Let us note that if S; > T for some processor P;, then this processor cannot
be used for processing load in time 7. Therefore, we assume that S; < T for
1 < i < m. Moreover, if A; = 0 for some processor P;, then P; can receive and
process an infinite amount of load in time S;. As S; < T', the scheduling problem
becomes trivial in this case. Hence, we assume that A; > 0 for 1 <7 < m.

In order to construct an FPTAS solving Problem 2.4, we need to know in what
order the processors should be activated. We will use the following proposition

given in [48].

Proposition 2.1. For a given time limit T and a set P" C {Py,...,P,} of
workers taking part in the computations, the mazimum load is processed if the

workers are ordered according to nondecreasing values of S;A; for P; € P’.

Proposition 2.1 can be proved by the interchange argument: ordering the
processors in P’ according to nondecreasing S; A; does not reduce the amount of
load processed in time 7.

As it is known from 3| that in the optimum solution all processors taking
part in computations finish work at the same moment, it follows from Proposition
2.1 that the scheduling problem can be reduced to choosing an optimum subset
of processors taking part in the computations. Let us assume, without loss of
generality, that S1A4; < ... < S,,A,,. We define a binary vector x = (x1,...,Z,)
as follows: z; = 1 if processor P; receives some load to process (i.e. P, € P’)
and z; = 0 in the opposite case (P; ¢ P’). The maximum amount of load which
can be processed in time 7" using the subset of processors indicated by x can be

obtained from the formula

Vorr(T,%) = 3 7;;’3 - IZS (2.1)

=1 =1 Jj=t

i=1 A;

The expression » is the amount of load which could be processed in time

T by processors indicated by x if there were no communication delays. Commu-

15

nication with processor P; takes time z;5;. During this time processors P;, where

J > 1, cannot process any load because they did not receive the input yet. Thus,

PR Py xiffj'_si is the amount of load which is lost because of communication
delays (cf. |48]).

Our goal is to maximize the size V' of load processed in a given time 7" as a
function of a binary vector x = (xy,...,x,,). Instead of maximizing V(x), we
will minimize the value of —V'(x). Since z; are binary variables, we have =7 = ;.

Hence we have

_ Z T;‘SZ']:Z + Z S xzxj (22)

i=1 1<i<j<m

A half-product |2| is a function f: {0,1}"™ — R of the form

f(x) = f(xy,.. szIz + Z ;T Ty, (2.3)

1<i<j<m

where p;, ¢;, r; are nonnegative constants for 1 < i < m. Thus, —V(x) is a

half-product, with p; = TA?Z.Si, G = S, 1y = A%-'

An FPTAS for minimizing half-products was proposed by Badics and Boros

in [2]. They assumed that the parameters p;, q;,r; are nonnegative integers for

1 <7 < m. In our case all parameters are nonnegative, but p; = T;Si and r;

_ 1

Aj
are not integer. However, the assumption about integrality of p; and r; is used
neither for proving the correctness of the Badics and Boros algorithm, nor for
estimating its running time. Therefore, we can use the algorithm proposed in [2]
to minimize the function —V(x). The algorithm receives number m, vectors p, q,

r of length m, and a positive approximation precision € < 1. It returns a binary

vector x° = (z5,...,2%).
For 1 < k < m, let gp(x) = —Zle PiTi + D cicjap Gty and Qx(x) =

Zle ¢;x;. The FPTAS for minimizing half-products proposed by Badics and
Boros is formulated in Algorithm 2.1 (cf. [2]).

16

Algorithm 2.1 MINIMIZE-HALF-PRODUCT(m, p, q, r, €)
STEP O0:

Let 6 > 0 be defined by the equation (14 6)™ =1+ ¢,
let Q =37, gy N = [*29], k=0 and X = {()}.
STEP 1:
Let k=k+1, X, =0,t=0, s=0,
L={(1, s Y-1,0), W1, - ¥s—1, D[(Y1, - Y1) € X}
STEP 2:
while s < N do
select z = (z1,...,2;) € L for which ¢ < Qr(z) < (1+6)*
and for which gi(z) is the smallest among all such z.
Let Xy =X, U{z},t=(14+0)° s=s+1.
end while
STEP 3:
if £ < m then
goto STEP 1
else
goto STEP 4.
end if
STEP 4:

Select x° € X, with the smallest g,,(x°), return x°.

It was proved in [2] that

fO) <)+ el f ()], (2.4)

where x* is a vector minimizing f, and the running time of the algorithm MINIMIZE-
HALF-PRODUCT is O(m?*log(>_i", ¢:)/e) [2]-

Based on these results, we propose Algorithm 2.2 for Problem 2.4 [6].

Theorem 2.2. Algorithm 2.2 is a fully polynomial time approximation scheme

for Problem 2.4 (DLS{C; = 0}-OptV).

17

Algorithm 2.2 FPTAS-OPT-V(T,m, A, S, ¢)
for:=1tomdo

T8,
pi =37
¢ =S5

— 1
T = 7
end for

x=MINIMIZE-HALF-PRODUCT(m, p, q, , ¢)

Tas c2cS;
return xppras(7,€) = X%, Vepras(T,e) = > ", Z_l -3 Z;”:Z ° Z]J

Proof. Since xgpras(T,¢) is returned by the MINIMIZE-HALF-PRODUCT al-

gorithm for the function —V'(x), we get from (2.4)
—Vepras(T,e) < —Vopr(T) + ¢| — Vopr(T)]|. (25)

As the amount of load Vo pr(T) is always nonnegative, this formula can be rewrit-

ten as

—Vepras(T,e) < —Vopr(T) 4+ eVopr(T). (2.6)

Hence,

VFPTAS(T7 8) Z VOPT(T)(l — 6). (27)

Moreover, the running time of Algorithm 2.2 is dominated by the running time
of MINIMIZE-HALF-PRODUCT, and is equal to at most O(m?log(>_7", Si)/e),
which is bounded from above by O(m?(log m+10g Sy.az)/€). Hence, Algorithm 2.2
is an FPTAS for Problem 2.4. O

2.3 FPTAS for Problem DLS{C; = 0}-OptT

The second optimization problem we will analyze is DLS{C; = 0}-OptT, which

can be formulated in the following way.

18

Problem 2.5. (DLS{1Round}-OptT)

Given a rational load size V> 0, m workers, their integer parameters A; and S;
for 1 <1 < m, and provided that the bandwidths are infinite, find the smallest
rational number Topr(V) > 0, such that it is possible to process the whole load

V' within time Topr(V).

To create an approximation scheme for Problem 2.5, we will use the dual
approximation algorithm approach proposed in [34|. As stated in [34], a dual
approximation algorithm is an algorithm which finds a superoptimal infeasible
solution of a given optimization problem. The performance of the algorithm is
measured by the degree of the infeasibility of the solution, controlled by a given
value € > 0. We will construct a dual approximation algorithm for Problem 2.4
(DLS{C; = 0}-OptV). This algorithm should accept a period of time 7" and
accuracy € (0 < e < 1), and deliver a schedule processing the load of size at least
Vopr(T') in time not longer than T'(1 4 €). We propose the following Algorithm
2.3 16).

Algorithm 2.3 DUAL-OPT-V(T,m, A, S, ¢)
call FPTAS-OPT-V(T,m, A, S, £/2)

return xpuar(7,¢) = xppras(7,¢/2), Vovar(T,e) = (1 +€)Vrpras(T,c/2)

In order to prove that Algorithm 2.3 is a dual approximation algorithm for

Problem 2.4, we will use the following fact.

Proposition 2.3. If it is possible to process load of size V' in time T using the
subset of processors indicated by a binary vector x = (x1,...,Ty), then it is also
possible to process load of size V(14 ¢) in time at most T(1+ ¢), using the same

subset of processors.

19

Proof. Let V' denote the maximum size of load which can be processed in time

T'(1 + ¢) using the processors indicated by the vector x. From (2.1) we obtain

V= Em: T+ e Zie)x" = f: Xm: 2 &l (2.8)
i=1] =1

=1 j=i
and
V=) Sty Ty e (2.9)
i=1 Aj i=1 j=i AJ
Hence,
/ non LL’ZLL’]SZ
V=(1+e)V+ed Y T2 V(ite). (2.10)
i=1 j=i
]

Note that if "= Tppr(V'), then by Proposition 2.3 load of size V(1 + ¢) can
be processed in time not longer than Tppr(V)(1 4 €). Hence, as a corollary, we

can formulate the following proposition.

Proposition 2.4. For any numbers V> 0 and € > 0 we have

TOPT(V(l + 8)) < TOPT(V)(l + 8). (211)

We will say that an algorithm is a fully polynomial time dual approximation
algorithm for a given problem if it is a dual approximation algorithm for this
problem with approximation precision € and its running time is polynomial in

both the problem size and 1/¢.

Theorem 2.5. Algorithm 2.3 is a fully polynomial time dual approximation al-

gorithm for Problem 2.4 (DLS{C; = 0}-OptV).

Proof. As Vpuar(T,e) = (1+¢)Vrpras(T,e/2) in Algorithm 2.3, we obtain from
(2.7) that

VDUAL(Ta E) > (1 + 5)VOPT(T)(1 — 6/2) > VOPT(T)> (212)

20

because £ < 1. Thus, the obtained solution is superoptimal. The time needed to
process the load of size Vpyar(T,¢) is at most T'(1 + ¢) by Proposition 2.3, as it
is possible to process load of size Vepras(T,e/2) in time T

The running time of Algorithm 2.3 is determined by the call to algorithm
FPTAS-OPT-V, whence it is equal to at most O(m?(logm + log Sppaz)/€). O

The dual approximation algorithm 2.3 is the key element of the FPTAS solving
Problem 2.5 (DLS{C; = 0}-OptT), given in Algorithm 2.4.

Algorithm 2.4 FPTAS-OPT-T(V,m, A,S,¢)
upper — Sma:c + VAma:c

lower = 0

LoBo =V A,in/m

while (upper — lower) > 5((21__5) LoBo do
T, = (upper + lower) /2
call DUAL-OPT-V(T,,m, A, S, ¢)
if Vpuar(Ty,e) <V(1+¢) then

lower =1,

else
upper =T,
end if
end while
call FPTAS-OPT-V(upper,m, A, S, /2)

return x = xppras(upper,e/2), T = upper

The idea of Algorithm 2.4 is to find a good approximation of Topr (V) with
a binary search. The initial search interval [lower, upper] is defined by trivial
lower and upper bounds for Topr(V). Then, it is iteratively narrowed to its
lower or upper half, depending on the results delivered by Algorithm 2.3 for the
currently examined value 7;,. When the search interval becomes short enough,
the searching procedure is finished and the vector x representing the subset of
processors which should be used for computations is obtained by Algorithm 2.2.

Below we prove that Algorithm 2.4 is an FPTAS solving Problem 2.5.

21

Theorem 2.6. Algorithm 2.4 is a fully polynomial time approzimation scheme

for Problem 2.5 (DLS{C; = 0}-OptT).

Proof. Let us start with the observation that at the beginning of the algorithm
upper and lower are trivial upper and lower bounds for Topr (V). LoBo is also
a lower bound on Tppr(V) and it is positive, since we assumed that A; > 0 for
1< <m.

First, we will analyze the variable upper in order to prove that the algorithm
always returns a feasible solution. At the beginning of the algorithm we have
upper = Spar + V Apaz. If this value is not changed in the binary search while
loop, then the algorithm FPTAS-OPT-V is called for parameters T = upper =
Siaz TV Amae and approximation precision €/2 at the end of executing Algorithm
2.4. The obtained schedule allows for processing the load of size at least V', as
it is enough to choose any nonempty subset of the set {P;,..., P,,} to process V'
units of load in time T' = S,,,02 + V Aaz-

Now let us assume that the value of upper is changed at least once to T},. This

happens only if Vpyar(T,,€) > V(1 +¢). Therefore, as we have in Algorithm 2.3

VDUAL(T, 8) = (1 + 8)VFPTA5(T, 8/2), (2.13)

there holds

Vepras(upper,e/2) = Vpyar(upper,e)/(14+¢) >V (2.14)

at any time during the execution of Algorithm 2.4. Hence, the solution obtained
by the algorithm FPTAS-OPT-T is always feasible.

Now let us estimate the quality of the obtained solution. We will show that

€

lower < Topr(V)(1 + 52

) (2.15)

22

throughout the execution of the program. Since initially lower = 0, this condition
is true before entering into the while loop. The value of variable lower is changed

to T, only when Vpyar(T,,e) < V(1 +¢). It follows from (2.13) that

(1 4+ &)Vrepras(lower,e/2) < V(1 +¢). (2.16)

Furthermore, from (2.7) we get

(14 &)Vopr(lower)(1 —e/2) < V(1 +¢), (2.17)
Vopr(lower) < V/(1 —¢/2) (2.18)

and finally
Vorr(lower) < V(1 + 5 -). (2.19)

Thus, it is impossible to process load V(1 + 5=) in time lower. Hence,

lower < Topr(V (1 + 5 °). (2.20)
—€
By Proposition 2.4 we have
€ €
Topr(V(1+ 5 a)) < Topr(V)(1+ 5 6)> (2.21)

what proves that (2.15) is true during the binary search.

The binary search is finished when upper < lower+€((21__5) LoBo. Since LoBo <

Topr(V), by (2.15) we get

€ e(l—e¢
upper < Topr(V)(1 + 5 z—:) ((2 — 8))TOPT(V) (2.22)
and consequently
upper < Topr(V)(1 + ¢). (2.23)

23

Thus, Algorithm 2.4 delivers the desired approximation of the optimum solution
of the problem.

The number of iterations in the binary search is at most equal to O(log((Smaez+
VAmax)/(E((zl__;)) V Auin/m))), which is bounded from above by O(logm +1og Sae

+ log Apmaz+log(1/e)+max(log V,log(1/V))). The execution time of each iteration

is O(m?(log m~+10g Syuaz)/€) due to calling Algorithm 2.3. Thus, the running time
of the whole algorithm FPTAS-OPT-T is at most O((log m+1og Syaz+10g Amar+
log(1/¢) + max(log V,1og(1/V)))m?(log m + log Spaz) /). O

2.4 Communication Sequence for Problem

DLS{1Round}

It would be desirable to extend the approximability results presented in the pre-
ceding sections to problems DLS{1Round}-OptV and DLS{1Round}-Opt7. Note
that DLS{1Round,C; = 0} is a selection problem. This means that it is compu-
tationally hard to select the set P’ of participating processors, but for a given
P’ the optimum activation sequence is known. Moreover, this feature allowed for
construction of an FPTAS selecting the set P’ of participating processors. The
main difficulty in problem DLS{1Round} is that for instances with C; > 0, the
optimum order of activating the processors is not known. Therefore, the schedul-
ing problems cannot be reduced to just choosing the processors which should take
part in computations. Let us remind that a general method of ordering processors

should cover special cases:

e ordering processors according to nondecreasing values S;A; if all C; are
equal to zero,

e ordering processors according to nondecreasing values C; if all S; are equal
to zero,

e ordering processors according to nondecreasing values C; if the load V' to

24

be processed or the time 7" used for processing is large enough.

Let us analyze the activation sequence for problem DLS{1Round}-OptV in-
stance with m = 3. We will compare the amounts of load which can be processed
for activation sequences o’ = (1,2, 3) and ¢” = (2,1, 3). In both cases we assume
that all processors finish computations at time 7', as this is true in the opti-
mum schedule. It is also assumed that the time 7' is so large that all processors
Py, Py, P; should take part in the computations in the optimum schedule.

Let o, o/ denote the sizes of the i-th piece of load sent for activation sequences
o' and o¢”, correspondingly. The sizes of the first two parts of load, sent to

processors P; and P, for communication sequence o', are equal to

, T—-5
= 2.24
Qg Cl 4 Al ()
and
, T—Sl—Clal—Sg
= 2.2

Qo 02 + A2) (5)

which gives

A (T —

aly, = o = 5) 5 (2.26)

(Ci+ A (Co+ Ay) Co+ Ay’
Similarly, for communication sequence o”, the sizes of the first two pieces of load,

sent to processors P, and P; correspondingly, are equal to

T -5,
S 2.2
“ Cy+ A, (7)
and
ot = AT = 5) 51 (2.28)

2T G+ AN(Cr+ A O A
Let us observe that the time needed for sending the first two pieces of load
may be different for activation sequences o’ and ¢”. Therefore, the amount of

load processed by computer P; may also be different in these two cases. The first

25

two chunks of load are sent in time

, T—Sl Al(T—Sl) SQ
t'=5+S+C——F++C — 2.29
S sy Wiy ro iy oAy Rals ey WA G
if activation sequence is ¢/, and in time
y T— Sg AQ(T — SQ) Sl
t"=5+S+Co——r—+C — 2.30
= ey ML Vro iy oAy Ralro Ay WO G
if activation sequence is ¢”. From (2.29) and (2.30) we obtain
At = — g = G125 = G5y (2.31)

(Cy+ A (Cy+ Ay)

Let ¢, and t% be the amounts of time used for communication and computations

of processor P for sequences ¢’ and ¢”. Note that

ty —ty = At. (2.32)
Therefore,
At
R) 2.33
Q3 — Qg Cs + A, ()

From equations (2.24)-(2.28) and (2.33), we can compute the difference between

the amounts of load processed in both schedules:

T(Cy, —Cy) + A1S; — AsSy
AV = o — o, =
Z ‘ Z ‘ (C1+ Ay)(Cy + Ay)

n ClAQSQ — CgAlsl
(C1+ A1) (Cy + A3)(C5 + Az)’

(2.34)

It can be seen that the sign of AV depends not only on the parameters of proces-
sors P; and P, but also on A3 and C5. Similarly, for m > 3 the order in which
the first two processors should be activated depends on the parameters of all the

remaining processors. Hence, it can be very difficult to decide in what order to

26

activate the processors, because the decision how to sequence, e.g., Py, P, cannot
be confined to just P, P». The first summand in formula (2.34) may suggest
sorting the processors according to nondecreasing values of T'C; 4+ A;S;. Such an
algorithm would handle properly the special cases mentioned at the beginning of
this section.

However, consider the following counterexample. Let T = 700, m = 4, and

let the parameters of the processors be as given in Table 2.1.

Table 2.1: Processor parameters for the counterexample.

1 0.051 0.129 137.084 97.291284
2 2.146 | 0.050 34.487 109.009102
3 | 0.654 | 0.458 31.565 341.243510
4 1.838 | 0.152 32.747 166.588986

The amounts of load which can be processed for all activation sequences are
given in Table 2.2. If the processors are sorted according to nondecreasing values
of TC; + A;S;, we obtain communication sequence (1,2,4,3) and the size of pro-
cessed load is about 3275.0461. On the other hand, the optimum communication
sequence is (2,1,4,3), which allows for processing the load of size approximately
3276.4212. Thus, the analyzed algorithm does not deliver the optimum commu-
nication sequence.

Another approach to selecting the best communication sequence is to start
from the initial sequence (1,2,...,m), and improve it by changing the positions
of some processors. Let us assume that it is allowed to perform two operations on
the communication sequence: swap a pair of processors or move a single processor
to another place in the sequence. Only the moves increasing processed load V
for the given schedule length 7" can be made. However, for the instance given
above, the amount of load processed for communication sequence o1 = (1,2, 3,4)

is approximately 3276.0243 (see Table 2.2). The only communication sequence

27

Table 2.2: The size V of load processed for different activation sequences in the coun-
terexample (rounded to 4 digits after decimal point).

Sequence Processed load V' Sequence Processed load V'
(1,2,3,4) 3276.0243 (1,2,4,3) 3275.0461
(1,3,2,4) 3264.4671 (1,3,4,2) 3265.8734
(1,4,2,3) 3272.7902 (1,4,3,2) 3275.0848
(2,1,3,4) 3274.1818 (2,1,4,3) 3276.4212
(2,3,1,4) 2135.6348 (2,3,4,1) 1963.7528
(2,4,1,3) 3102.9726 (2,4,3,1) 2097.1445
(3,1,2,4) 2040.9951 (3,1,4,2) 2044.6016
(3,2,1,4) 1963.8495 (3,2,4,1) 1792.8317
(3,4,1,2) 1879.3648 (3,4,2,1) 1776.3430
(4,1,2,3) 3104.2910 (4,1,3,2) 3103.4595
(4,2,1,3) 3078.8408 (4,2,3,1) 2076.1120
(4,3,1,2) 2021.0451 (4,3,2,1) 1920.2297

for which it is possible to process larger load, is the optimum sequence oy =
(2,1,4,3). Yet, it is impossible to obtain this solution by the moves described
above, as any allowed change to oy results in decreasing the amount of processed
load, and hence cannot be accepted.

The above counterexample proves not only that the described type of greedy
algorithms is not capable of solving our problem, but also that it is impossible to
find the optimum activation sequence by simply sorting the processors according
to some combination of instance parameters. Indeed, note that the communica-
tion sequence (1,2,3,4) is better than (1,2,4,3) and the sequence (2,1,4,3) is better
than (2,1,3,4). This shows that depending on the amount of time left for pro-
cessing on P3 and Py, it is better to activate one or the other processor earlier.
Thus, the order in which processors P; and P, should be activated depends on the
parameters of processors activated before them. Consequently, it is not possible
to determine the communication sequence locally, without taking into account
the sequence of other processors.

Moreover, for the above instance, the load processed by P; if it is activated

first is much greater than the load processed by P; in the case when the activation

28

sequence starts with 2. Still, in the optimum solution processor P, should receive
load before P;. Thus, a greedy algorithm, always appending to the communica-
tion sequence the processor which can process the greatest amount of load, also
does not deliver optimum solution.

Finally, it can be conjectured that DLS{1Round} is not a selection problem.

2.5 Approximation Algorithms for Problem
DLS{1Round}

Without knowing how to order the processors taking part in the computations for
problem DLS{1Round}, we are not able to create similar approximation schemes
as for problem DLS{C; = 0}. Therefore, we present several algorithms with

approximation ratio bounded but dependent on the instance parameters.

2.5.1 Problem DLS{1Round}-OptV

The simplest method of creating a solution of problem DLS{1Round}-OptV is
to send the whole load to a single processor only. The size of the load processed
by a single processor P; in time 7T is equal to (T — S;)/(A; + C;). Thus, we select

the processor for which this value is the greatest, as it is shown in Algorithm 2.5.

Algorithm 2.5 SINGLE-PROCESSOR-OPT-V(T, m, A, C, S)
=1

for : =2 tom do
if (T — SZ)/(AZ + CZ) > (T — S])/(AJ + Cj) then
Jj=1
end if
end for
return o = (j), V = (T'— 5,)/(4; + C))

29

Note that in the optimum schedule at least one processor P; must process
load of size at least Vopr(T')/m (in given time 7). Hence, Algorithm 2.5 delivers
a solution processing load of size at least Vopr(T)/m and is an approximation
algorithm with relative performance guarantee m. Note that this bound is tight.
Consider an instance with A; =1, C; =S5; =0fori=1,...,m. In the optimum
solution, all processors are activated and they process load of size mT. In the
solution delivered by Algorithm 2.5 only one processor is activated and the size
of the load is 7. The running time of Algorithm 2.5 is O(m).

The above approach can be extended by analyzing all communication se-
quences of length k for some constant £ < m. Similarly as before, we observe
that if the optimum solution of the problem activates at least k processors, then
it must contain a group of k processors which together process load of size at least
EVopr(T)/m. Hence, an algorithm enumerating all possible communication se-
quences of length k delivers a solution with relative performance guarantee m/k,
provided that the optimum solution of the instance of the problem uses at least
k processors. Unfortunately, the complexity of such an algorithm is O(m*) and
it grows exponentially with the relative performance guarantee.

Algorithm 2.5 can be also extended to a greedy Algorithm 2.6, selecting the
processors in the communication sequence one by one. As long as it is possible
to append a processor to the communication sequence, the processor which can
process the greatest load is chosen.

The running time of Algorithm 2.6 is O(m?). The results delivered by this
algorithm are not worse then for Algorithm 2.5. Still, the performance guarantee
m is tight. Indeed, consider the following problem instance. Let A; = 1 — ¢,
Ci=T-1,5=0,and A, =T,C;=0,5, =0fori=2,...,m, where 0 <e < 1

T T

is a small constant. Processor P; can process load of size Irc — 7= > 1lin

—€
time T'. For @ > 2, processor P; is capable of processing load of size % = 1in

time T'. Hence, Algorithm 2.6 will choose processor P; to obtain the first load

30

Algorithm 2.6 GREEDY-OPT-V(T,m, A, C,S)
o =)
V=0
j=1
while j # 0 do
j=0

for i =1tom do
if S; <T and 7 is not contained in o then
if j=0o0r (T'—-5;)/(Ai+C;) > (T"— S;)/(A; + C;) then
j=i
end if
end if
end for
if 7 # 0 then
o =ol|j {concatenation of ¢ and j}
V=V+(T-5))/(4;+Cj)
T=T-5—-CiT—-5;)/(A;+Cj)
end if
end while

return o, V

chunk. Sending data to processor P; will take time 77 = 01% = (T — l)Tfia.

The remaining processors P; will be activated afterwards and each of them will

: : 4~ T D) T-1 _ 1-¢
obtain the load of size (T' — 1T1)/A; = ——— = 1 — 7= = 7—. Thus, the

£

—e°

total size of the processed load will be V; = %

On the other hand, if processor P; is activated as the last one, then each of

processors Py, ..., P, receives load of size 1. The time left for communication

and computation on P is still 7', and P; processes load of size % The whole

Thus, we have % = % and

T
T—¢"

processed load has size Vo =m — 1+
limp_ oo % =1m.
The quality of the results obtained by Algorithm 2.6 in comparison to Algo-

rithm 2.5 strongly depends on the processor parameters. To analyze the difference

31

*

26 0.15
- /.]

21 —8— MAX L

/ 0.10

16 . N *

/ P —e—Alg.25,AVG —=—Alg. 2.5, WRST

/ 005 —%—Alg. 2.6, AVG —4—Alg. 2.6, WRST

[T
6 // s + =

1 T T T 0.00 T T T
1EO 1E1 1E2 1E3 1E4 1E0 1E1 1E2 1E3 1E4

a) b)

Figure 2.2: Experimental results for the first set of instances (slow communication). a)
Number of processors used by Algorithm 2.6. b) Quality of the solutions obtained by
Algorithms 2.5 and 2.6.

between the two algorithms we tested them on sets of random instances. Each
instance in the first set had m = 100 processors, and their parameters A;, C;, S;

were chosen randomly from the interval [0, 1]. For each generated set of proces-

sors, b instances were created, with 7' = 1,10, 100, 1000, 10000. The quality of the

Va
UpBo’

obtained solutions was measured as the quotient where V, is the amount of

load returned by the tested algorithm, and UpBo is the upper bound on the size

m T-S,
i=1 A;+C; "

of processed load, calculated as) The results of the experiments are
presented in Fig. 2.2. The number of processors used by the greedy Algorithm 2.6
depends on T' (see Fig. 2.2a). Although for each value of T" there were instances
for which only one processor was used, the average and the maximum number
of used processors (denoted by AVG and MAX in Fig. 2.2a, correspondingly)
increases with 7'. Despite this, the performance of Algorithm 2.6 does not change
much with growing 7" (cf. Fig. 2.2b), both on average (denoted AVG) and in the
worst case (denoted W RST'). This can be explained by the fact that the proces-
sors activated as the last ones receive only very small amounts of load. Moreover,
when startup times S; are small in comparison to 7', then the amounts of load

processed by a single processor or a fixed group of processors increase roughly lin-

early with 7. The upper bound on the total size of processed load also increases

32

Table 2.3: The quality of the solutions obtained by Algorithms 2.5 and 2.6 for the
second set of instances (fast communication), 7' = 10000.

Algorithm 2.5 Algorithm 2.6
AVG WRST AVG WRST
0.271073 0.061405 0.855082 0.598274

linearly with T'. Hence, the quality of the results obtained by both algorithms is
almost constant in relation to the upper bound when 7" grows beyond 100. Note
that it is much better than the worst-case estimate % = 0.01. It can be also
seen in Fig. 2.2b that on average Algorithm 2.6 delivers solutions about 1.5 times
better than Algorithm 2.5.

The above results can be explained by the fact that the communication pa-
rameters C;, S; were chosen from the same range as A;. The time necessary to
send a chunk of data was quite big and only a small number of processors could
be activated. Therefore, we created another set of instances, where parameters C;
and S; were chosen randomly from the interval [0,0.001]. The remaining param-
eters were selected as in the previous set. Since the startup times S; were very
small in comparison to all used value of T', the quality of the obtained solutions
was almost not changing with 7. Therefore, we present only the average and the
worst performance of both algorithms for 7" = 10000 in Table 2.3. The number
of processors used by Algorithm 2.6 was m = 100 for all instances in this set.
Therefore, the difference between the results obtained by Algorithms 2.5 and 2.6
is greater than for the previous set of instances, for which at most 26 processors
were used by the greedy algorithm. The quality of the results of both algorithms
is better than for the previous instance set. On average, Algorithm 2.5 allows for
processing load of size greater than 27% of the upper bound and Algorithm 2.6
greater than 85%.

We conclude that the difference in the quality of the results obtained by Algo-

rithms 2.5 and 2.6 depends on the communication parameters of the processors.

33

If communication is slow, then the quality of the obtained results is not very
good. However, this can be the effect of the used measure of quality. When com-
munication is slow, the upper bound we calculated may be much greater than
the optimum solution. If communication is fast in comparison to computations,
then the results obtained by both algorithms get better. The difference between
the results of Algorithms 2.5 and 2.6 is increasing and the greedy Algorithm 2.6

delivers solutions of very good quality.

2.5.2 Problem DLS{1Round}-OptT

In order to create an approximation algorithm for problem DLS{1Round}-OptT,
we can, similarly as in Algorithm 2.5, consider only communication sequences of

length 1. This approach is used in Algorithm 2.7.

Algorithm 2.7 SINGLE-PROCESSOR-OPT-T(V,m, A, C, S)
Jg=1

for : =2 tom do
if SZ + (A, + C,)V < Sj + (A] + C])V then
Jj=1
end if
end for
return o = (j), T'=S;+ (A, + C;)V

Note that if processor P; needs time T to process the load of size V', then it
cannot process the load of size V/m faster than in time 7'/m. As in the optimum
solution at least one processor has to receive load of size at least V//m, Algorithm
2.7 returns time 7" < mTppr(V). Observe that this bound is tight. Consider an
instance with A;, = 1, C; = S; =0 for i = 1,...,m. In the optimum solution,
all processors are activated and they process load V' in time % In the solution
delivered by Algorithm 2.7 only one processor is activated and it needs time V

to process the whole load. The running time of Algorithm 2.7 is O(m).

34

2.6 Conclusions

In this chapter we analyzed single-round divisible load scheduling in star net-
works. We proposed fully polynomial time approximation schemes for problems
DLS{C; = 0}-OptV and DLS{C; = 0}-OptT. As a by-product, a fully poly-
nomial time dual approximation algorithm was designed for the first problem.
We also analyzed the scheduling problems in the system with finite bandwidths
(i.e. when C; > 0). The order in which the processors should be activated was
studied as the main obstacle in creating approximation algorithms for this case.
Unfortunately, we showed that some classes of processor sequencing algorithms
cannot be used to solve this problem. We conjecture that constructing the opti-
mum sequence can be computationally hard, and DLS{1Round} is not a selection
problem. Finally, we proposed simple approximation algorithms giving tight rela-
tive performance guarantee m for problem DLS{1Round}-OptV and for problem
DLS{1Round}-OptT.

35

3 Multi-Round Processing

with Limited Memory

The single-round organization of computations has several disadvantages. Firstly,
the communication delays may be very long, while no computations can be started
until the first processor receives the whole amount of load assigned to it. Secondly,
in practice the whole load V' is often too big to be stored in the memories of worker
processors at the same time. In such a case it is impossible to create a single-
round schedule. It would be more profitable to send the load in many small
pieces (chunks), so that computations start earlier and fit in computer memories.
Consequently, computations could interleave with communications.

In this chapter we study multi-round divisible load scheduling in systems with
limited memory. We analyze the star network topology described in Chapter 2.
To take into account memory limitations, we introduce one more parameter char-
acterizing each processor P;,. Namely, B; is the size of memory buffer available
on P; (e.g. in bytes). Our goal is to find a schedule processing the load of a given
size in the shortest possible time. As each processor can receive many messages,
there are more scheduling decisions to be made than in the case of single-round

processing:

e The set P C P of processors participating in the computations must be
chosen.

e The length n of the communication sequence must be selected. It may be

36

much larger then the number of processors m.

e The communication sequence must be chosen. For multi-round processing,
the communication sequence is an arbitrary sequence whose elements are
indices of processors from the set P’.

e The sizes of the load parts sent in each message must be selected.

We start our considerations with a short summary of the previous work on
multi-round divisible load scheduling. In Section 3.2 we describe the mathe-
matical model used in this chapter. As our scheduling problem is known to be
computationally hard, we propose an exponential Branch&Bound algorithm and
a genetic algorithm in Section 3.3. We use the genetic algorithm not only as
a metaheuristic solving the scheduling problem, but also to gather information
about the features of good quality solutions. The results obtained from an ex-
tensive experimental study, as well as some analytical results, are presented in
Section 3.4. Based on this information, in Section 3.5 we propose several classes of
scheduling heuristics. We analyze and compare them, exposing their advantages

and weaknesses.

3.1 Earlier Results

Scheduling divisible loads in systems with limited memory was first analyzed in
[37]. The authors considered single-round schedules only, hence they assumed
that the whole load fits in the memory buffers of the workers. Other assumptions
were that all processors take part in the computations and that the activation
sequence is given. The communication delay model was linear (S; = 0 for 1 <i <
m). A fast heuristic called Incremental Balancing Strategy was proposed. This
algorithm did not always deliver optimum solutions, what was shown in [30].

A more general affine communication delay model was studied in [30]. A

linear programming formulation of the scheduling problem was designed for a

37

given activation sequence. Choosing the optimum set P’ of processors taking part
in the computations in systems with limited memory and affine communication
model has been shown to be NP-hard in [31] and strongly NP-hard in [4]. In [31]
the authors proposed and evaluated experimentally a Branch&Bound algorithm
and several heuristics for single-round scheduling with limited memory.
Multi-round divisible load scheduling with limited memory was first studied
in [29]. Only the size of the chunk currently processed by a given processor was
subject to the memory limit. The sizes of load parts arriving in the background
of computations were not taken into account. A more detailed memory model,
in which memory limits affected all chunks of data existing at a given processor,
was used in [26]. A Branch&Bound algorithm and a genetic algorithm solving the
analyzed scheduling problem were proposed. However, the mathematical model of
memory management was simplified to make the problem more tractable. It was
assumed that memory occupation is decreasing linearly during the computations.
This simplification has been removed in [27]. We discuss it in more detail in the

next section.

3.2 Problem Formulation

Before we present the mathematical model used in this chapter, let us briefly
analyze different models of memory management. The simplest approach is to
assume that only one load chunk may be present in the memory of a computer at
a time [31, 37]. The size of a piece of data sent to processor P; cannot exceed the
limit B; (cf. Fig. 3.1a). Thus, a processor cannot perform computations while
receiving a new piece of load. This results in long idle times and decreases the
efficiency of processing.

In [26] it was assumed that each processor can store multiple load chunks

at the same time and the size of these chunks together cannot exceed the limit

38

A A

] \commjunicbtion# \ t, ’—‘

Bi Bl BZ
e
i % =
o LR]
25 t g3 83 t
a) b) c)

Figure 3.1: Memory management: a) each chunk uses whole buffer, b) memory gradually
released, ¢) block memory releases.

B;. It was possible to gradually upload the data without stopping the computa-
tions. Consequently, the computations could be started quickly by sending short
initial chunks, and performed continuously by uploading data while computing.
However, to make the problem more tractable, it was also assumed in [26] that
memory is released to the operating system with very fine granularity. The size
of allocated memory was decreasing linearly during the computations, as shown
in Fig. 3.1b, and it was possible to compute the optimum load chunk sizes us-
ing linear programming for a given communication sequence. However, this way
of releasing memory is rather unusual, because releasing memory in many small
pieces would also require allocating memory in very fine pieces. Obtaining suf-
ficient memory for a piece of load would consist of multiple malloc/new calls to
the runtime environment. Consequently, acquiring memory would be complicated
and time-consuming.

Therefore, in this work we assume that memory allocation and release have
block nature. When a load chunk of size « is about to arrive at a processor, a
block of memory of size « is requested from the operating system. This block is re-
leased immediately after finishing processing the corresponding chunk of data (cf.
Fig. 3.1¢). The sum of sizes of memory blocks coexisting at processor P; cannot
exceed the limit B;. In other words, for each moment ¢, we have Zle?—[(z‘,t) o < B;,
where H(i,t) is the set of chunks received by P, and not completed by time ¢t. We
will be saying that chunks simultaneously existing in the memory buffer overlap.

Let us introduce the assumptions and notations necessary to formulate our

39

scheduling problem as a mixed nonlinear mathematical program. The load is
delivered to the processors in a sequence of communications. The activation se-
quence may be arbitrary. In particular, some processors may receive no load,
while some other processors receive multiple data chunks. If the message is re-
ceived by a processor without any load in the buffer, then the computations start
immediately after the end of communication. If the buffer already stores some
unprocessed chunks, then the processor switches from computing one load chunk
to the next one without idle time in the computations. If the whole memory buffer
of a processor is occupied, then no more load can be uploaded and, consequently,
idle times in communication may appear. We assume that the load chunks as-
signed to a given worker are processed in the order in which they were received.
Let us assume that the sequence o = (o(1),...,0(n)) of the communications to
the processors is given, where (i) is the index of the processor receiving the i-th
chunk. The size of this chunk is «;. The numbers of the load chunks as they are
sent, off the originator will be called global numbers. For simplicity of notation
we will also use a local numbering of the chunks received by a certain processor.
We define a function p(i, j) as a mapping from processor P; local chunk number
J to the global numbering. The number of load pieces received by processor P;
will be denoted by n;. In the mathematical program we want to construct, it
must be guaranteed that chunks simultaneously existing in a processor buffer do
not exceed the memory size. To formulate such a constraint we have to know the
sets of overlapping load chunks. However, this depends on the communication se-
quence, chunk communication and computation times, and hence, on the chunk
sizes, which are unknown. Let us define binary variables x;;, for 1 < i < m,
1 <j <k <mn; in the following way. Variable x;;, is equal to 1 if the j-th chunk
on processor P; overlaps with chunk £ on this processor, and equal to 0 otherwise.
In other words, z;;; = 1 means that processor P; started receiving chunk & before

computing the j-th chunk was finished. Both £ and j are local chunk numbers.

40

Our scheduling problem can be formulated in the following way [11, 27].

minimize T},

subject to

1
fir
fir
Jij
Jij

Lijk
Lijk

ng
%m+§:%wmm
k=j+1

v

Tmam

Lijk

vV

A%

vV

v

IA

IN

v

IA

v

0

tic1 + Se(i-1) + Co(i-1)Qti—1
toity + Si + Cittppiny + Aitpi)
1=1,....m, k=1,...,n,;
fik—1+ Aicyiig
i=1,....m, k=2,...,n;
totigy — (L —2iu) M ©=1,...,m,
j=1...ny—1 k=j5+1,....,n
Logik) + TijeM i=1,...,m,
j=1...ny—1, k=j5+1,....,n
T t=1,....m,7=1...,n; —1,
E=7+2,....n5, l=75+1,...)k—1
1,....om,5=1,...

Tijp 1= ;1 — 1,

k‘:j—l—l,...,ni, l:k—l—l,,nz

Bi izl,...,m,jzl,...,ni
n

2o

i=1

fmi izl,...,m

{0,1}

i=2,...

7n7

(3.5)

(3.6)

(3.7)

(3.8)

In the above formulation variables a; define the load partitioning resulting

in the minimum schedule length for the communication sequence o. Inequalities

(3.1), (3.2) determine the moments ¢; when the originator starts sending the i-th

chunk. Constraints (3.3),(3.4) determine the moment f;, when processing chunk

k of P; finishes. Inequalities (3.5), (3.6) guarantee that processing of chunk j is

finished before starting sending message k if z;;;, = 0, or that it is not finished

41

before starting sending message k if z;;, = 1. Due to inequalities (3.7), if chunk j
is not processed when chunk £ arrives, then the chunks between j and k& are also
unprocessed. Inequalities (3.8) ensure that if chunk j is finished before arriving
of some chunk k, then j cannot become unprocessed again. By inequalities (3.9)
memory limits are observed. The whole load is processed by (3.10). The schedule
length is not shorter than the completion time on any processor by constraints
(3.11). Formulation (3.1)-(3.12) is a mixed quadratic mathematical program, as
it uses binary variables (z;j;), continuous variables (;, fir, ti, Timas), and mul-
tiplication of variables in constraints (3.9). Solving mixed quadratic programs
is computationally hard. Thus, it can be expected that solving the program
(3.1)-(3.12) using general-purpose methods is computationally hard although the
activation sequence o is given. This is in sharp contrast with the complexity of
memory management models used in |26, 31|, for which linear programs were suf-
ficient to obtain the optimum load partition for a given communication sequence
o. It can be seen that a more careful representation of memory management
and chunk overlap made the mathematical model much more involved. Note that
(3.1)-(3.12) is very general and may cover various scenarios of optimum memory
management. For example, it is capable of representing a number of independent
buffers of equal or different sizes swapped on the processors.

Let us note that for given x;;, the formulation (3.1)-(3.12) becomes a linear
program (LP). Hence, we will split our problem into two parts. The first, com-
binatorial part is to choose not only the communication sequence, but also to
decide which chunks overlap with each other. The second, algebraic part is to
find the optimum load distribution using the linear program for a given communi-
cation sequence and overlap information. In the following discussion, we will use
a simpler overlap encoding. Instead of binary variables z;;;, we will use integer
variables z;;, where z;; is the local number of the last chunk overlapped by chunk

J on processor P;. Intuitively, 2;; denotes the end of the range of overlapping

42

chunks comprising chunk 5 on P;.
The mathematical program computing the optimum load distribution for a
given communication sequence o and overlap information encoded by values z;;,

may be formulated as follows [12].

minimize T},

subject to
ty, = 0 (3.13)
t; > tig+ Seion) + Copnyin i=2,....m, (3.14)
fi = ton) + S + Ciopipy + Aittpn (3.15)
1=1,....m, k=1,...,n;
fie = fir—1+ Aiayin (3.16)
1=1,....m, k=2,...,n
fii > tyisy di=1,...m =1, n—1 (3.17)
fii < e i=1,...om j=1,.. n—1 (3.18)
- Ay < B i=1,....m,j=1,...,n (3.19)
h=j

Vo= iai (3.20)
=1

Toae = fin, i=1,...,m (3.21)

In the above formulation constraints (3.13)-(3.18) correspond to (3.1)-(3.6),
and constraints (3.19)-(3.21) correspond to (3.9)-(3.11).

3.3 Branch&Bound Algorithm and Genetic

Algorithm

In this section we propose two basic algorithms solving our scheduling problem.

We start with an exponential Branch&Bound algorithm. Since its running time

43

‘overlap‘ no overlap ‘overlap‘ no overlap

1 Zill 1 0i1]
Zi2 »}3i2—0
j 2 j o
infeasible | infeasible|
n; ng
1 n; 1 n;
a) b)

Figure 3.2: Encoding overlaps on P; using a) z;;, b) d;;.

is unacceptable for practical use, we construct a genetic algorithm. We tune
its parameters based on the results delivered by the Branch&Bound algorithm.
Both algorithms solve the combinatorial part of the problem and use the linear
program (3.13)-(3.21) to solve the algebraic part.

Before we present the algorithms, let us introduce a more practical overlap
encoding, which was used in the actual implementation. The last chunk z;
overlapping with chunk j cannot be sent before j. Thus, values z; < j are
infeasible. Note that if chunk j on processor P; overlaps with chunk k > j, then
it must also overlap with all chunks between 5 and k. Moreover, chunks with
numbers greater then z;; cannot overlap with j anymore. Hence, there is a line
separating the overlapping and the non-overlapping chunks. Instead of z;; we can
use integer variables ¢;; denoting by how many chunks the overlapping front is
shifted ahead with chunk j on processor P; (cf. Fig. 3.2). For given values of
d;; we can compute values z;; = min{n;, max{z; ;_1,j} + d;;}, where z;p = 1. In
other words, ¢;; is encoding increments z;; — z; j_1. For example, if Vi, j,0;; = 0,
then chunks do not overlap, if Vi, j < n;,d;; = 1, then each pair of consecutive
chunks overlap. This overlap encoding is used in all the following algorithms

which directly refer to overlap values.

44

3.3.1 Branch&Bound Algorithm

A Branch&Bound algorithm (B&B) is a standard technique used to solve hard
combinatorial optimization problems. The algorithm is defined by a branching
rule and a bounding rule. The branching rule divides the set of possible solutions
until distinguishing unique solutions. The bounding rule eliminates the solutions
which are infeasible or their quality is certainly not better than the quality of
some already known solution.

In our scheduling problem the Branch&Bound algorithm has to find a com-
munication sequence o and determine chunk overlapping. The communication
sequences are built by appending a new processor to an already constructed lead-
ing sequence. Thus, any partial sequence o represents all sequences starting with
o. 'This set of sequences is branched into subsets of sequences beginning with
(o,P1),...,(0,Py). For each analyzed communication sequence o chunk overlap-
ping must be chosen. This is done by the second branching scheme. For processor
P; the overlap is determined by a vector (d;1,...,d;n,). A sequence (&;1,...,0d;;)
encoding the overlap for the first j chunks received by F;, is branched into overlap
encoding strings (&;1,...,60;5,0),..., (i1, ..., 0, n; —max{j + 1, z;;}).

The enumeration of possible solutions is bounded by two methods. For a
given sequence ¢ a lower bound LB(c) on the schedule length is computed as
follows. The startup times in ¢ are summed up: 7 = Z?Zl Sy(iy- The maximum
load V' that could be processed during the communication startup times is V; =
Yico(T1 — ng So(j))/Ai, where g(2) is the index of the first communication to

processor P; in 0. The notation » .. means that if i € o, then it is counted only

€0

once, like a member of a set. The load must be sent from the originator in time at

least 75 = V). In parallel with this communication, at most V5 = 7 Z:’;l %
units of load could be processed. If V3 =V —V; — V5 > 0, then this remaining
load V3 will be processed in time at least 73 = V3/(>°0", A%) The lower bound

is equal to LB(0) = 7 + 7 + max{0,73}. Let T be the length of the best

45

already known solution. If 7" < LB(o) then the successors of ¢ are discarded.
The second mechanism used for sequence elimination is based on the maximum
memory MEM (o) = >""" | By which could possibly become available in o. If
MEM (o) < V, then the memory available for holding the load is insufficient,
the communication sequence is too short and must be expanded. In such a
case the enumeration of the various overlap sequences was not attempted for the
given 0. Note that there are O(m™) communication sequences of length n for
m processors, and for each processor the number of possible ways of overlapping
the communication chunks is also exponential in n;. Hence, due to the high
computational complexity, an upper bound ny;4x on the length n of generated
sequences was also imposed. This was done to make the B&B algorithm more
usable, and it was not needed to properly define the algorithm. Consequently,
because of the constraint n, 4x, in some cases B&B was not able to deliver an

optimum, or even a feasible solution.

3.3.2 Genetic Algorithm

A genetic algorithm (GA), similarly as B&B, is a standard technique used to solve
hard combinatorial optimization problems. The idea of the genetic algorithm
is to mimic the process of evolution in nature. GA is a randomized algorithm
which maintains a population of solutions (called chromosomes) instead of a single
solution only. Genetic operators are used to transform the population in the
direction of improving solutions quality. To define a genetic algorithm, one has
to determine solution encoding, the set of genetic operators, algorithm stopping
criteria and several implementation-dependent tunable parameters.

In our implementation of GA we encode solutions as pairs of sequences of
equal length. The first of them is the communication sequence o. The second
sequence O is used to represent the overlap. More precisely, O(7) is the value of

do(i)j; where j is the number of load chunks sent to processor Fy; up to the i-th

46

chunk sent off the originator. The (equal) lengths of o and O can be adjusted
by GA to construct the best solution. Knowing the sequences o and O, we can
formulate the linear program (3.13)-(3.21) calculating values «; and T,,,,, defined
in Section 3.2. The fitness (quality) of the solution is measured as the inverse of
the schedule length 7)., obtained from the linear program.

We apply three genetic operators: selection, crossover and mutation. The
selection of the solutions for the new population is done by a combination of
elitist and roulette wheel method and is strongly connected with the crossover

operation. First, chromosomes which should undergo crossover operation are

chosen. Chromosomes are selected with probability T,’im / Zle Tfiax’ where T9,
denotes the schedule length for chromosome j, and G is the size of the population.
The total number of selected parents is Gpc, where pe is a tunable algorithm
parameter called crossover probability. In the crossover operation the selected
parents are randomly paired and combined. For example, let

[(1(1), ..., 01(n')), (O1(1),. .., Or(n))]

and

[(02(1), .., 02(n")), (Oa(1), ..., Oz(n"))]

be two parent solutions, with communication sequence lengths n’, n”, respectively.
Let £ < n/,l < n” be two randomly chosen crossover points. The two offspring
solutions are encoded in strings

[(01(1),. .., 01(k),00(l+1),...,09(n")), (O1(1),...,01(k),Ox(l + 1),...,04(n"))],
and

[(02(1),. .., 00(0),01(k + 1),...,01(n)), (O2(1),...,05(1),O1(k + 1),...,0:(n))].
The offspring replaces the parents in the new population. Note that because of
choosing two crossover points [and k the offspring string lengths may be different
than in their parents. The rest of the new population is selected by the elitist
method, so that the best (1 — pc)G chromosomes from the old population are

always preserved. The elitist component in the selection is necessary because the

47

differences in the solution fitness are often very small, and the best solutions may
be lost in the randomized selection.

Mutation operator changes randomly chosen genes (i.e. pairs (o(i),O(i))) in
the population to different values. Each gene is chosen for mutation with proba-
bility pps. Here pys is a tunable algorithm parameter called mutation probability.
When gene (o(7),0(7)) is mutated, the number () is changed to a randomly
chosen processor index between 1 and m, and the value O(i) is changed by at
most 1.

The algorithm stops after a fixed number of iterations ¢¢;. There is also a
limit 75 on the number of iterations without an improvement in the quality of
the best solution found so far. If the iteration limit it, is reached before it;, then
the population is replaced with randomly generated chromosomes and the search
is restarted (the best solution found so far is recorded).

GA is a randomized algorithm whose parameters must be tuned. The follow-
ing procedure was applied. A set of 200 random instances with m =3,...,6,V =
20, B; uniformly distributed in [0, 10], A;, C;, S; uniformly distributed in [0, 1],
were generated and solved to the optimum by B&B. The average relative dis-
tance of the schedule length T,,,, from the optimum length was the measure of
the tuning quality. The tunable parameters were selected one by one. The pro-
cess of selecting the tunable parameters is illustrated in Fig. 3.3. Intuitively, a
big population size G' should allow for finding good solutions in small number of
iterations. However, maintaining big populations is computationally expensive.
The population size G = 20 was selected as a compromise between the speed of
convergence to the near-optimum solutions, and the computational complexity
(cf. Fig. 3.3a). To select the crossover probability, the mutation operator was
switched off. Crossover probability pc = 0.8 was selected (Fig. 3.3b). It turned
out that the majority of the population (80%) are offspring. Thus, it can be con-

cluded that crossover is an effective optimization operator. After fixing G and p¢,

48

1.20 1.09
= G=5
116 —~—G=10 1.08
' G =20 \
—— G =230 107
112 —*%— G =40
—x— G =50 1.06
1.08
\\\L 1.05
A \0_*\.
1.04 [~
1.04
it it. .
1.00 : R 1.03 : : : : pe
1E1 1E2 1E3 0.01 0.1 03 0.6 08
a) b)
1.050 1.006 160
2 A =
= —o— quality ol 140
1.040 1,005 15— —=-— time s
. = =
/ 4120
1.004
1.030 T 100
\ 1.003 80
1.020 » \\ / Leo
1.002
1.010 — /\\ 7%
: " 1.001 —
" 120
ity it
1.000 : : : : — 1.000 : : : /it
0001 001 003 0.1 03 05 100/10 250/25 500/50 750/75 1000/100
c) d)

Figure 3.3: GA tuning. a) Solution quality vs. population size G, b) solution quality at
100th iteration vs. pc, c) solution quality at 100th iteration vs. pps, d) solution quality
and execution time for various iteration limits ity /its.

mutation probability py; = 0.1 was chosen (Fig. 3.3¢). In Fig. 3.3d the quality
of tuning is shown for various combinations of maximum number of iterations
and iterations without quality improvement. Note that improving the average
solution quality by 0.4% requires nearly 6-fold increase of the execution time.

Hence, 1t; = 100 and it; = 10 were selected as a compromise between quality and

complexity.

3.3.3 Comparison of B&B and GA

Let us now discuss the advantages and weaknesses of B&B and GA algorithms.
In general, B&B guarantees obtaining optimum solutions, but at very high com-

putational cost. Therefore, we had to impose a limit ny 4x on the maximum

49

1E5 17— 1E6 7=
I e H -
——
£
184 15 /‘ —m— B&B, m=8 1E5 E
1E3 —— B&B, m=2 /././
1E4
1E2 / —~CA
1E3 { —— B&B, ’rLMAX:S |
1E1 1
1E0 / 152
. 1 {
1E-1 [1E1 \ ¢ ‘*—0\—0——0\//
I n, Ny
1E2 : . . - 11—
0 10 20 30 40 50 1 2 3 4 5 6 7 8 9 10
a) b)

Figure 3.4: GA and B&B execution times, a) vs. sequence length, b) vs. processors
number m.

number of communications in the schedule. This modified B&B algorithm can
deliver optimum solutions only for such instances, for which the optimum com-
munication sequence is short enough. In Fig. 3.4 we compare average execution
time of B&B and GA on a Pentium IV 1 GHz CPU. In the case of B&B the ex-
ecution time is shown as a function of ny ax (Fig. 3.4a). We use ny;4x because
it turned out that this parameter is the main factor determining the size of the
search tree in B&B. The minimum possible communication sequence length is
NMIN = [ﬁ} It is hardly ever the length of the best sequence, or the depth
of the B&B search tree. To be certain that the best communication sequence
obtained in B&B is indeed optimum, it must have length at most nyax — 1.
Instances satisfying this condition are easier to solve than the instances which
force B&B to search a tree as deep as nyrax, and presenting the execution times
as a function of the guaranteed optimum communication sequence length would
not represent the real execution time of B&B. As it can be seen, even average ex-
ecution time of B&B for np;ax = 7, m = 8 is of order of one day on a Pentium IV
1 GHz CPU. Hence, B&B is not an acceptable tool for studying features of great

numbers of even moderate size instances. For GA, the execution time is shown

vs. the length n of the best obtained communication sequence. In Fig. 3.4b the

20

execution time vs. the number of processors m is shown.

From the tuning process described in the previous section we conclude that
GA is capable of delivering high quality solutions on average. The running time
of GA is much shorter than for B&B, what can be seen in Fig. 3.4. The main
disadvantage of GA as a tool for analyzing the problem properties is that it is
a randomized algorithm. In the limit of infinite iteration number, all feasible
solutions are reachable in a process of random transformations of the solutions.
However, for a finite number of iterations we have no guarantee that the algorithm
finds a near-optimum solution. Solutions which are not optimum may be too
easy to find by GA, what may give wrong indications on the nature of the solved
problem. Another feature of GA is that solutions which have complex structure
may be too improbable to be built in a finite number of iterations. For example,
the communication sequence may include some processor which is not present in
the optimum solution, because the probability of selecting any processor at least
once in the sequence is high. Conversely, it is very unlikely that GA builds a
long repetitive pattern of communications because the probability of generating
a certain pattern decreases exponentially with its length. Another consequence
of randomness is that for the same instance GA often returns different solutions
in consecutive runs. For example, for a set of 45 random instances each solved
20 times, the quotient % where T4, is the average schedule length in all runs
for a single instance, had the coefficient of variation 6%, and the average (over
all quotients %) was 0.9997.

We have to conclude that B&B is nearly unusable even on very moderate size
instances. GA has much shorter execution time, and in the range in which it
could be compared against B&B, the quality of the GA solutions is very good.
Hence, despite the limitations of GA, we will use this algorithm as a replacement

of B&B in the analysis of the scheduling problem features.

ol

3.4 Properties of the Solutions

In this section we analyze the characteristics of the near-optimum solutions of
our scheduling problem. As the algebraic part of the problem is solved optimally
for given sequences o and O, we concentrate on the features in the combinatorial

part of the solutions. The following properties are studied:

e the need and the extent of the overlap,

the length of the communication sequence,

the number of used processors,

the set of used processors,

chunk sizes,

parameters of instances which make them easy or hard to solve.

We draw conclusions both analytically and on the basis of experimental results.
Both GA and B&B were implemented in GNU C+-. Linear programs were solved
using 1p_solve package [41]. Over 30000 test instances were generated and solved
by GA on Pentium IV 1 GHz CPU with Linux. Unless stated otherwise, the test
data were generated in the following way. In the experiments involving analysis of
the influence of the system parameters A, B, C,.S on solution characteristics, the
instance parameters A;, B;, C;, S; were generated from U(0,1], i.e. the uniform
distribution within range (0,1]. The number of processors was generated from
U[1,10], and all experiments were repeated for V' € {2,5,10,20,50}. In the
experiments concerning a certain parameter (say A), this parameter was fixed to
a given value on all processors (e.g. Vi, A; = 0.01), and the remaining parameters
were generated as described above. For each combination of V' and a certain
value of the parameter (e.g. A; = 0.01), 1000 instances were generated.

Before we start the analysis of the properties of the solutions, let us point
out an important difference in the schedule structure between the divisible load

scheduling problem with and without memory limitations. It has been shown

o2

in [48] that if there are no memory limitations, then in the optimum solution of
the problem there are no idle times in computations and in communications. We

prove below that it is not the case when memory limits are present.

Proposition 3.1. The optimum solution of an instance of the divisible load
scheduling problem with limited memory may contain idle times in the compu-

tations and in the communication.

Proof. Suppose m =1, A; =1,B; = %,C’l = 0,5, = M, where M >V is a big
constant. The minimum number of communications is nyry = Bll = 2, for which
the schedule length is T},,. = 2M + V. There is an idle interval of length % in
the communications, and an idle interval of length M in the computations. Idle
times in the computations cannot be closed because any load which fits in memory
size By = % is processed in shorter time than the startup time S = M > V.
Suppose that we want to close the idle interval in the communications by sending
messages shorter than % However, in this case at least three chunks would have
to be sent from the originator. Then schedule length would be at least 30 . Since
M can be arbitrarily big in relation to V', the difference between the length of

a schedule with idle times and the length of the schedule without idle times in

communication can be arbitrarily big in absolute terms. O

3.4.1 Depth of Overlap

The depth of overlap, defined by numbers ¢;;, shows how many chunks interfere
with each other. The existence of non-zero overlaps means that the processor
must accumulate the load to be processed. It is of practical importance to verify
if the accumulation of the load is actually necessary, and to what degree.

Let us start with single processor considerations. When m = 1, the scheduling
problem may seem simple, but it is not trivial, since to construct a schedule one

has to decide on the overlap and the sizes of load chunks. It is also of practical

23

importance because it indicates how a very powerful server should cooperate with
each of the worker computers.

We will be saying that solutions for which chunks overlap by not more than
1, i.e. Vi,7,0;; < 1, have overlap at most 1. If Vi,j < n;,0;; = 1, then we
will be saying that a solution has overlap 1. Let us analyze a specific overlap
configuration. Assume that a schedule has overlap 1 (Vj < ny,d;; = 1), so that
the chunks overlap with their direct predecessor and direct successor (if any). If
chunk 1 has size a1, then by (3.19) chunk 2 has size at most ay < B; — aq, chunk
3 has size at most ag < By — ag, etc. Thus, if all pairs of chunks have their
maximum sizes, then the sizes of all chunks are in fact determined by a single
variable ;. The size of processed load is 3B if communication sequence has
even number n of messages, or it is ”T_lBl +ay if n is odd. Hence, it is possible to

construct such a schedule if the number of messages is at least n = [%1 We will

2V

say that solutions for m = 1 with n = [B—J and overlap 1 are coupled, because

consecutive chunks create couples coexisting in memory.
Proposition 3.2. The coupled solutions are not arbitrarily bad.

Proof. For the optimum solution we have 7% > (BLJ S1+C1V =npynS1+CLV

max

and T

max

> A,V. For a coupled solution, T, < [%151 + OV + AV =

nceprS1 + C1V + AV and nepr < 2narn.

1. If AV <npynSt + C1V then

Tmax < nchSl + Clv + A1V < 3nMIN51 + 201V
T - nyuinS1 + C1V ~ nyinS1+CLV T

max

2. If nM]NS;[+ Cﬂ/ S A1V then

Tz < nchSl + Cﬂ/ + A1V < 2(nMIN51 + 01V) + A1V <3
o = AV = AV =

max

o4

3.0
—e—MIN
25 [-m—AVG

—a—MAX /

Figure 3.5: m = 1, quality of the solutions with various communication sequence lengths
and the best overlap, relative to coupled solutions.

The above proposition gives an indication on the quality of coupled schedules
in the worst case. The average quality of such solutions was tested experimen-
tally. In Fig. 3.5 the quality of schedules for m = 1, various sequence lengths,
and the best overlap chosen by B&B algorithm is shown. The coupled solution
quality is used as a reference, and is represented by the point at the coordi-
nates (0,1). Solutions with forced shorter sequences are shown on the negative
part of horizontal axis and solutions with forced longer sequences on the positive
part. The best, the worst, and the average distance from the coupled solution is
shown. The results in Fig. 3.5 represent 888 randomly generated instances with
Ay, C, S, ~U[0,1], By ~ U(0,10),V = 10. It can be seen that typically the best
solutions are not very much better than the coupled ones. Increasing n beyond
[%} is not reducing schedule length by more than approximately 13%. Thus,
on average coupled solutions provide a simple and efficient method of solving the
combinatorial part of our problem on a single processor. Let us note that the
optimum communication sequence length n may be smaller or greater than (%}
depending on the instance.

Now we will move to analyzing the overlap for larger numbers of processors.

Let us start with an observation that arbitrarily deep overlaps may be necessary.

95

3k-1 e M 1
Py |2 l? 27 | L Sl P(] — P
B ‘ : : : : : : .
%Wﬁﬁﬁﬂﬂﬂ
P L © TM+3k-3 R
ﬁ

memory usage on H

Figure 3.6: An instance with arbitrarily big overlap in Theorem 3.3.

Theorem 3.3. There exist instances whose optimum solutions contain arbitrarily

big overlap.

Proof. Let k, M be two integers, where k > 5is even, and 28 —3k—1 > M > 3k+1.
Consider the following example: m = 3,V = 2% + k2kF 41,

A = 2%,31 =22 01 =0,8=M

Ay = 2%,32 =280y =0,5, =2,

A3 =M +3k—-3,B3=V,C3=k—1,5;3 =0.

We want to build a schedule of length 7' = M + 3k. We will show that no shorter
schedule may exist.

To process V, one activation of P; is necessary. Processors P, and P; cannot

process the load V' in time 7T'. Indeed, note that in time 7" processor Pj is capable

MA3k 3
T M+3k-3 T L+ M+3k—3

of processing at most Al < 2 units of load. Hence,

if processor P, was not activated, then P, would have to process more than 22*

k
2- = 2* messages to P,

units of load. This would require sending more than 7

and would take time longer than 2¥S, = 2+ > T'. Thus, processor P; must take
part in computations. Moreover, P; cannot be activated more than once because
251 =2M >T.

Now we will prove that processor P, must receive k& messages, processing of
which is not overlapping.

Consider the minimum load V — B; = k2% + 1 remaining to be processed by

o6

P, P;. As we noted above, in time 7' processor P is capable of processing less
than 2 units of load. Thus, to process the remaining load, P, must receive at
least k messages. If in the k& messages each one carries load By, then the whole
communication to P, and computation on P, can be feasibly performed in time
3k as shown in Fig. 3.6. Note that if £ chunks are sent to P, then none of them
may overlap. Were it otherwise, the maximum load which could be sent to P
would be (k — 1)B,, and P; would have to process load of size at least 2% + 1,
what is impossible in time 7.

On the other hand, assume that P receives at least £+ 1 messages. Then, the
time of communication with P, and P; is at least M + Sao(k + 1) = M + 2k + 2.
There remain k—2 time units for communication with P;. The maximum amount

k—2

of load which can be sent to P in this time is ;=F. Hence, P> must receive load

of size at least k2% +1 — £=2 = g2k 4+ L

Consider the overlapping of chunks sent to P,. A full buffer By of data on P,
is processed in time A By = 1 < S5. Hence, processing of each chunk is finished
before receiving the next chunk is completed. This means that the maximum
possible overlap on P, is 1. We will divide the set of all chunks sent to P, in
the following way. Let the first load chunk ¢ overlap with the next J; chunks
(0; € {0,1}). To obey memory limits, the group of §; + 1 consecutive chunks
i,...,1 + 0; may contain load of size at most By. The next group of chunks
starting with chunk ¢ + §; + 1, and containing d;,4,+1 + 1 chunks, is independent,
in the sense that they may carry another volume of size at most By. Thus, the
set of messages sent to P, can be divided into groups, each of which contains 1
or 2 chunks and carries load of size at most Bs. Let [y be the number of groups
with overlap 0 (single, non-overlapping chunks) and [; be the number of groups
with overlap 1 (pairs of overlapping chunks). The total number of messages sent

to Py is lg+2ly > k+1. The number of groups is [y +1; > k+1, because the load

sent to P is greater than kBy. Let V[denote the total amount of load contained

57

in the groups with overlap 0. As the maximum load which can be contained in
the groups with overlap 1 is [y By = 2¥1;, we have Vy > (k — [1)2F + ﬁ
Consider the minimum time of communication and computations on P, and
communication with P;. Sending a chunk of data to P takes time S;. The com-
putations of load contained in groups with overlap 0 sent to P, are not overlapped
by communications with P and they are executed in total time A5Vy. Compu-
tations of at most B, load units can be performed in parallel with startup S;
on P;. Hence, computation and communications of P, together with the startup
time S; take at least time
So(lo +20) + AVo + S1 — Ao By =
20+ 4+ R+ M—1>
2lo+4ll+k—ll+m+M—1:
M—l—k‘—l—(lo+l1)—|—(lo+2l1)—l—m—l >
M+k+k+1)+E+1) + g — 1=
M+3k+ 1+ gy >M+3k=T.
We proved that it is infeasible to send more than k£ messages to P,. Therefore,
P, must receive exactly & messages, processing of which must not overlap.
There are at most k£ + 2 free intervals in communications with P; and P, of
total length k. We will show now that the length of each such interval must be
smaller than 3. Indeed, consider the minimum load which must be processed by
P, equal to k2% — m As chunks sent to P, do not overlap, only one buffer
of data may be processed in parallel with communications to P; and P, in time
at most 1. The remaining load must be processed during the intervals with no
communications to P; and . Thus, the maximum time available for processing
on P is k+ 1. In each interval with no communications to P» at most one buffer
of data can be processed. Hence, if the length of any such interval is at least 3,
then the time which can be used for processing the load on P, decreases to k —1,
which is insufficient to process load of size k2¥ — —3— . Hence, the length of

M+3k—-3"

o8

Table 3.1: Relative frequency of the overlaps in all chunks.

overlap 0 1 2 > 2
frequency | 0.835 | 0.154 | 0.010 | 0.001

each interval which can be used for communications with Ps is smaller than 3.
Since P; receives one message and P, receives k messages, at most 2% +
k2F units of load are processed on P, and P,. Processor P; must compute the
remaining amount of at least V' — B; — kB, = 1 unit of load, what takes time at
least M +3k—3. Thus, there may be at most 3 idle time units in processing on Pj,

which means that in parallel with startup time S; processor P; must compute at

M—-3

133 As each chunk of data must be sent to P in an interval

least load of size
of size smaller than 3, the size of a chunk received by Pj is at most % Hence,
the number of messages waiting to be processed on P; when communication to

P starts must be at least $-D=3)

ST which tends to % as M tends to infinity.

We conclude that it is possible to construct an instance whose optimum schedule

requires arbitrarily deep overlap.

O

Although arbitrarily deep overlap is possible in the worst case, the experi-
mental results show that it is not common in practice. The data were gathered
from the solutions delivered by GA for 19953 randomly generated instances with
A, B;, C;, S; ~ U[0,1], m ~ U[1,10] and V € {2,5,10,20,50}. The depth of the
overlap of all chunks in all sequences of the solutions generated by GA for the
above instances is presented in Table 3.1.

A more detailed view of the chunk overlaps is shown in Fig. 3.7. The vertical
axis is the relative frequency of instances with a certain fraction of chunks with
a certain overlap. For example, (see the rightmost box "1" for overlap O = 0),
approximately 36% of all instances have only chunks with overlap 0. The absence

of a point in box "0" for overlap 0 means that there were no instances without

29

1E0

.y /‘/0\,/

1E-2 / ~

—-—0=0

183 - 0=1
—A—0 >2

1E-4

N

1E'5 T T T T T T T T T T T
0 (0,0.1) [0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.8)[0.6,0.7)[0.7,0.8)[0.8,0.9) [0.9,1) 1

Figure 3.7: Histogram of overlap frequencies in the instances.

a chunk with overlap 0. The number of solutions for which the chunks with
overlap 1 are 90% to 99.99% of all the chunks in the communication sequence is
approximately 0.4% of all instances (box "|0.9,1)" for overlap O = 1). On the
other hand, approximately 36% of all instances have no chunk with overlap 1.
Finally, overlaps 2 and bigger are very rare: approximately 87% solutions have
no chunk with overlap 2 or greater, and only 0.005% instances have solutions with
overlap at least 2 in more than 40% of all the chunks in the solution. Thus, it can
be seen that overlap deeper than 1 is rare, because it constitutes approximately

1% of all chunks in all solutions.

The analysis of the depth of the overlap leads to the following conclusions.

On a single processor the solutions with n = [2¥] and overlap 1 are good on
average. For multiple processors (m > 1) the overlap may be arbitrarily deep in

general. Still, overlaps greater than 1 are rare in practice.

3.4.2 Length of the Communication Sequence

The number of communications n is a very important characteristic of the solu-
tion, because it is a key determinant of the complexity of the algorithms solving

the problem. The minimum required length of the communication sequence de-

60

pends on V' and B;s. Therefore, it seems reasonable to use this minimum number
NyIN = (BL} of communications as a reference. We start with an observation
max

for the case of m = 1.

Proposition 3.4. For m = 1 the schedule for sequence of length nyrn can be at

most twice as long as the optimum schedule.

Proof. Schedule length T, for a sequence with the smallest possible length
narn 18 not greater than npnS1 + C1V + A1V, On the other hand, for the

optimum solution, 7% > nynS1+C1V and T > AV.

maxr — max

1. If A\ V < npynSt+ C1V then

Tmax < nMINSl + Clv + A1V

< < 2.
T;;mw nM]NS;[+ Cﬂ/
2. If AV > npynS; + C1V then
Tmax < nMINSl + Clv + A1V S 9.

Tx = AV

max

Let us also note that for a schedule with the number of communications not
greater than ny;;yk, we have T, < nynvkS1+C1V 4+ A1V, Hence, considering

the two above cases it can be proved that % <k+1 O

max

We show below that the above result cannot be transferred to the case m > 1.

Proposition 3.5. A communication sequence with the minimum possible number
of chunks narn can be arbitrarily bad for the schedule length. The length of the

optimum communication sequence can be arbitrarily big in relation to nyn-.

Proof. Consider an example: m = 2,4, = 1,B; = 1,7, = 0,5, = 1,45 =
%, By =V, Cy = 0,5 = M, where M is a big constant. The minimum number

of communications is ny;;y = 1, and it results in a schedule of length M + 1. On

61

the other hand if P, is used only and no chunks overlap, then the schedule length

is [V]+V, and the number of communications is n = [V']. The ratio of the two

M+1

VIV which can be made arbitrarily big by selection of M

schedule lengths is
and V.
For the second part of the proposition, note that the number of messages in

the optimum communication sequence proposed in the previous part of the proof

can be arbitrarily big. O

Let us now analyze the length of communication sequences generated by GA.

n

The values of the relative communication sequence lengths o are shown in

Fig. 3.8. Each of the charts shows the average (AVG) and the largest (MAX)

relative communication sequence lengths. In Fig. 3.8a the communication lengths

n
NMMIN

are shown for various A values. It can be seen that usually is not very big.
On average n ~ 1.39n,,7y, which is calculated over all instances with changing
A. The length of the sequence grows with A, what is most evident for the largest
registered relative lengths. This phenomenon can be attributed to the way of
calculating nyrn. For example, for V' = 2 and B; € (0, 1], the expected nyy is

4, and in extreme cases it can be just ny;;y = 2. On the other hand, as processors

get slower (A is increasing), it is more and more profitable to use all m available

n
? NN

processors. Thus grows with A. This increase is stronger for small V', and
weaker for bigger V.

In Fig. 3.8b a similar dependence is shown for changing g. The length of
the communication sequence quickly increases with g. This can be explained by
the following two facts. On the one hand, for g approaching 1, nyy is also
approaching 1, but as in Proposition 3.5, other parameters of the system make it
profitable to build sequences with n > 1. On the other hand, as g approaches
0, more short communications must be made to send the load off the originator.

Each message carries cost of some startup S;. Therefore, communication startup

costs dominate in the schedule length. To minimize this cost, it is advantageous to

62

1E2

i
8

: i // e

6

5 I—-4.>-/-\-—/_L -

4 »
2

1 '_’_’_.FW’/KM 1E0 —t ! BV

1E-3 1E-2 1E-1 1E0 1E-3 E-2 1E-1 1E0

a) b)

21 152 1E2

MAX
AVG

. ~ }\ L 1.51 =A%
M \ 1150 ——AVG
13 A + 1.49
/f\/ v \ 1 1.48 1E1 1
91 \ 1.47
s 4 ———vTee 1 1.46
—— AVG \¥ 1.45
1 . . CT 144 1E0

1E-3 1E-2 1E-1 1E0 1E-3 0

c) d)

in the solutions of GA, a) vs. A, b) vs. £

Figure 3.8: Relative sequence length — T

c)vs. C,d) vs. S.

send as few messages as possible. Hence, n tends to ny;;x when 5 is decreasing.
Similar observations can be made for big values of S (cf. Fig. 3.8d). For big S it is
profitable to send as few messages as possible. This, in turn, exposes the need for

for small S must be contrasted

big communication buffers. The behavior of —

with Fig. 3.8a. When S ~ 1 on average, as in Fig. 3.8a, then —— ~ 1.39. If

2 NMIN

S =0.001, as i

L ~ ~ 8. This means that big startup time is a

considerable disincentive to building long communication sequences.

In Fig. 3.8¢ the dependence of — "N on C' is shown. Note that this figure
has two vertical axes. The shapes of MAX and AV G are similar, but for the
average case the changes are in the range of approximately 5%. This should be

surprising because multi-installment divisible load processing was introduced to

reduce the time of initial waiting for load. Growing value of C' should be an

63

incentive to build shorter messages and longer communication sequences. This
tendency can be seen only for small values of C'. Yet, in our setting of the
experiments the expected value of the startup times is % This is a disincentive to

build long communication sequences as explained on the example of Fig. 3.8a and

n
NMIN

Fig. 3.8d. Hence, the dependence of average on C'is very weak. Moreover,
with growing C' the algorithm tends to compensate increasing communication
costs by sending fewer messages. Thus, initial waiting for the load is meaningless

compared to the whole communication cost.

From the above analysis of the communication sequence length we draw the
following conclusions. Startup times S; are an important element of communi-
cation time and they constitute the main disincentive to building long commu-
nication sequences. For startup times of the same order as communication time
per unit of load (C'), or computation time per unit of load (A), communica-
tion sequences have lengths about 1.4n,,;n. For small S the sequences can be
approximately 8-10 times longer than ny;;y on average. Moreover, S; and B;
are in a sense coupled in determining the system performance: small B;s expose
costs of communication startups, big S;s expose the need for processors with big

communication buffers.

3.4.3 Number of Used Processors

In this section we study the number m’ of processors from the set {Py,..., P,}
which take part in the computations. This characteristic of a solution is of prac-
tical importance. In contemporary grid and cluster systems very large numbers
of processors are available. It is necessary to know how many of them should
be used and how to adjust their number for different applications. Is is easy
to construct biased instances, for which only one processor should be used (e.g.
because all other processors have very large startup times S;), or for which all

processors should be used. It is known [3] that if there are no startup times

64

>

A g

o o —*—V/ =50

A=l S V=20
02 ——AVG 02 —a V=10
—A— A=1E-3 V=5
——/ =2
0.0 : v 0.0 ; ; =
1E0 1E1 1E2 1E-3 1E-2 1E-1 1E0
a) b)
1.0 1.0
0.8 08 ————
0.6 0.6 \
—*= V=50 —— V=50 (
04 +——¢ V=20 04 +—f—¢ V=20
—— V=10 —— =10
02__+V:5 02 | |-=—V=5
—— V=2 —— V=2
B/V
0.0 : : / 0.0 ; ; S
1E-3 1E-2 1E-1 1E0 1E-3 1E-2 1E-1 1E0
c) d)

Figure 3.9: Relative number %’ of different used processors in the solutions of GA, a)

vs. V. b) vs. Ac) vs. %, d) vs. S.

(S; = 0 for all 7), then computations can be started on any number of processors.
On the other hand, if communication startup times are present, then in single-
installment processing using all processors is a matter of sufficiently large volume
of load V' [3]. Hence, it may be expected that the number of used processors
in multi-installment processing should grow with decreasing startup times and
increasing volume of the load.

The relations between the relative number %’ of used processors and the values
of selected parameters in the solutions found by GA are presented in Fig. 3.9.
Fig. 3.9a shows that with growing amount of load V the number of different
used processors is increasing, as could be intuitively expected. This result was

confirmed in all the experiments we performed. This has a practical consequence,

65

that for larger problems it is profitable to use more processors (even not very
effective) instead of sending bigger number of load chunks only to a smaller set
of more effective processors.

The dependence of %l on A is shown in Fig. 3.9b. It can be seen that m’
increases with A only for small problem sizes (small V). For small V' only a
few chunks need to be sent. Therefore, for small A the algorithm minimizes the
schedule length by selecting only a few processors with big memory buffers and
fast communication links. If A as big, then computing time dominates in the
schedule length and it is profitable to distribute and parallelize computations.

1
Hence ™
m

is growing in this case. For big V' the number of chunks must be big
independently of the value of A, communication time (mainly startup times S;)
is dominating over computation time, and A is less important in determining the
schedule length. Therefore, A does not influence m’ for big V.

B

In Fig. 3.9c we present the dependence of %l on 3. In our method of test

instance generation the average number of processors is close to 5. Hence, for

5 < é the memory space necessary to process load V is created by using many
load chunks, and many processors working in parallel. On the other hand, when
5 > %, the size of the memory is often sufficient to process the whole load in just
one installment. Therefore, good solutions typically use only a few processors
with fast communication and computation.

Fig. 3.9d shows the relation between S, V and % With growing amount
of load V' the number of different used processors is increasing as in previously
described experiments. For small V' the number of different used processors de-
creases with S, which is in accord with our earlier expectations. However, for big
V' the increasing S results in increased % This counterintuitive behavior can
be partially explained by the way of generating test instances. Note that startup

times of all processors are equal in the experiments depicted in Fig. 3.9d. When

V' is big, then the number of sent chunks must also be big. With growing S,

66

startup times dominate in the schedule length and other parameters, by which
the processors differ, become meaningless. Therefore, GA becomes myopic to the
differences in processor parameters, and hence more processors are drawn to the
solutions.

The dependence of %’ on C' (not shown here) is very weak. This is a very
surprising situation because in many DLT papers the communication rate C' was
considered crucial for the system performance. Only for small V' and big C' (close
to 1) is the number of used processors slightly decreasing with growing C'. This is
a consequence of the startup time domination in the communication time. Only
for small V' the number of messages is small and hence the total startup cost
is small. Then, GA optimizes the schedule by using a small number of efficient
processors. This result does not eliminate C' as an important schedule structure
determinant, as will be shown in the following sections.

We finish this section with the following conclusions. The number of different
used processors differs depending on the settings. In general it is increasing
with V. In our experiment setting startup times dominated the schedule length,
especially when the number of chunks had to be big because V' was big or B was
small. When A is big and the computation time is at least comparable with the
communication time, then it is profitable to use many processors to parallelize
computations. When C' is big and its contribution to the communication time
is comparable or greater than the contribution of the startup times, then it is

profitable to choose only a small number of fast processors.

3.4.4 Dominating Set of Processors

In the previous section we considered only the number of processors which re-
ceive any load, not the degree of their participation in the computations. Here
we analyze the distribution of the load between the processors. Our goal is to

determine if there is any inequality in the load distribution, and if this is the case,

67

then what kind of processors dominate in the computations.

The first tool we applied in analyzing inequality in the load distribution is the
Gini index [33|. It is an indicator of some parameter deviation from the uniform
distribution and is commonly used in economics to quantify inequality in wealth
distribution. The closer the Gini index is to 0, the more equal and uniform the
distribution of the load is. The closer the Gini index is to 1, the more unequal the
distribution of the parameter is. The value of the Gini index for a set of values

{y; :i=1,...,n} can be calculated from the formula

i 2 v — il

G o
2n Zi:1 Yi

(3.22)

We calculated the Gini indices for the amount of the load received by the proces-
sors (which we will denote GiL), and for the number of received messages (which
we will refer to as Gi#). For example, GiL = 1 implies that the whole load V is
processed by a single processor, and GiL = 0 means that each processor receives
the same amount of load. Selected results are presented in Fig. 3.10. The general
observation is that GiL and Gi# demonstrate the same tendencies.

It can be seen in Fig. 3.10a that G7L is decreasing with increasing V', which
means that with growing size of the load its distribution becomes more equal.
This situation has been observed in all experiments. The dependence of GiL on
Ais shown in Fig. 3.10b. Only for small V' does A influence the load distribution.
For small V' the number of used processors is small and it is profitable to select
the best of them, while for big V' the number of load chunks must be big anyway,
which means that the communication time is long and the computation time
(hence A) has a little influence on the schedule length. Consequently, for big V'
the values of GiL do not depend on A. This situation is similar to Fig. 3.9b
depicting % vs. A. A strong change of GiL with g is observed in Fig. 3.10c
when 5 ~ % For smaller values of g the load distribution is more equal, for

bigger g the load distribution is more unequal. This is caused by the fact that

68

0.8 0.8

oo | 0 Fd:':‘:':’ﬁt.ég-

—x— V=50
= A=1 —— V=20
—a— A=1E-3 = V=5
v V=2 A
0.0 T 0.0 T T
1E0 1E1 1E2 1E-3 1E-2 1E-1 1E0

—— V=2

T T 0.0 T T
1E-3 1E-2 1E-1 1E0 1E-3 1E-2 1E-1 1E0

c) d)

Figure 3.10: Gini index of the GA solutions, a) GiL vs. V, b) GiL vs. A, ¢) GiL vs.
L d) Gi# vs. S.

for g > é only one installment is sufficient to process the whole load. These
results conform with the results depicted in Fig. 3.9c. In Fig. 3.10d Gi# is shown
for changing S. Again, similarly to Fig. 3.9d, with growing S the diversity of
used processor sets depends on V. For small problem sizes it is profitable to
use fewer processors, hence Gi# is big, what signifies inequality. For big V the
number of used processors is big, communication startup times dominate in the
schedule length, and the algorithm does not distinguish processors with different
parameters well, hence more of them are included in the communication sequence,
and the messages are distributed more equally.

Unfortunately, the Gini index is hard to interpret. For example, it is hard

to say if a certain value of GiL, Gi# already represents inequality or not. Only

69

general tendencies of changing inequality can be observed. Here, the tendencies
of Gini index only confirm the analysis of the number of used processors. More-
over, one cannot determine, using GiL, Gi#, what processors dominate in the
load distribution (if any). Therefore, we applied one more indicator of the load
distribution inequality.

The second measure of processor domination in the computations is based
on the analysis of the sets of processors receiving the largest amount of load.
Let V... be the greatest total load received by any processor. We call a set of
processors load frequent if it includes all processors which receive at least %
units of load. The processors in the load frequent set are called load frequent, or
just frequent.

We want to examine how much load and how many messages are sent to the
frequent processor set. The results of this study are shown in Fig. 3.11. All values
presented in this figure are relative: processor numbers are shown with respect

to m, and the loads are shown relative to V. In Fig. 3.11c,d, the horizontal axes

B
» Vo

represent all parameters A, &, C, .S, in range [0, 1] for four different relations. A
general observation is that the functions of the number of load frequent processors
in A (Fig. 3.11a), and in £, C, S (not shown here) have very similar tendencies as
the functions of %’ in the above parameters (see Fig. 3.9). However, the range of
changes of the number of frequent processors vs. V is narrower than the range of
changes in % For example, in Fig. 3.9a the number of used processors changes in
range approximately [0.4,1]. Here, the range of changes is approximately [0.3,0.5]
(cf. Fig. 3.11b). In the experiments with changing 5,0, S even smaller ranges
were observed. It can be concluded that the size of the frequent set of processors
is growing with V', but not as quickly as the number of different used processors
m'. This is because only a selected set of processors is frequently used while many

other processors get to the solution due to the randomized selection.

In Fig. 3.11c the load of the processor receiving the greatest amount of data is

70

0.6 0.6
W A=l
——AVG

0.4 0.5 +— —a— A=1E-3 /.

—— V=50
0.2 = V=20 0.4
—— V=10
= V=5
—— V=2
0.0 T T A 0.3 T v
1E-3 1E-2 1E-1 1E0 1E0 1E1 1E2
b)
1.0
—— A
- B/V
——C
0.9 - -9
<
-=-B/V 0.8 4
0.2 —a—C
—>—9
0.0 T T 0.7 T T
1E-3 1E-2 1E-1 1EO 1E-3 1E-2 1E-1 1E0
c) d)

Figure 3.11: Load frequent processor sets in GA solutions. a) Number of frequent
processors vs. A, b) number of frequent processors vs. V', ¢) load of the most loaded

B
processor and d) load of all the frequent processors vs. A, ,C, S.

B
Vo

depicted vs. changing A, 2. C. S. Independently of the type of changes, the most
loaded processor receives 0.6V-0.75V on average. With growing A computation
time starts dominating in the schedule length, the processor selection method
tends to build more computing power, and more processors are appended to the
frequent set. Hence, the size of the greatest part of load sent to a single processor
is decreasing. Growing g allows for using fewer processors and for economizing
on the communication time by sending smaller number of larger pieces of data.
Hence, for big 5 the most loaded processor receives load of size almost 0.75V.
For small g a big number of communications must be made anyway, what ex-

poses the cost of communication startup times dominating in the schedule length.

Consequently, GA becomes myopic to other processor parameters, the frequent

71

set has more processors, and the load is more dispersed between the processors.
The dependence on S, shown in Fig. 3.11c, is very weak. However, this is an
average over many sizes V. A more detailed picture exposes diversity with 1/
similar to the one shown in Fig. 3.9d, though in much narrower range. Unlike in
Fig. 3.9d, the load sizes are generally decreasing with increasing S, even for big
loads V. Similarly to the results in Section 3.4.3, the size of the biggest part of
the load received by a single processor does not depend on C.

The total amount of load assigned to all frequent processors is shown in
Fig. 3.11d. It can be seen that the frequent processor set collects more than
0.8V on average. The function of the total load received vs. g has a minimum.
This unexpected phenomenon can be explained in the following way. For big
values of 5 only a few processors take part in the computation because a sin-
gle installment is sufficient to process the whole load. Therefore, the number of
messages is small, load chunks have sizes close to processor memory buffer sizes,
the frequent set has small cardinality and receives almost the whole load. With
decreasing 5 more and more processors receive some load, and the contribution
of the most loaded processors is decreasing as depicted in Fig. 3.11c. However,
when 5 becomes extremely small, the communication startup cost is dominating
the schedule length, GA becomes unaware of processor parameters, and more of
the processors are randomly included in the frequent set. Therefore, the cardi-
nality of the frequent set is growing and also the total load in the frequent set is
growing.

Similar results were obtained for the set of processors receiving the greatest
number of messages (instead of the greatest amount of load). We finish the above
considerations with a conclusion that the frequent set of processors really exists.
With the exception of the instances biased by small g or big S, when almost
all processors are frequent, the frequent set contains approximately 40 — 50% of

all available processors. They receive 80-85% of the whole load, again with the

72

0.25 0.25

——A ——A
0.20 A\ 0.20 \

. -8B . -8B
\\ —a—C / >\\ —a—C
0.15 o] 0.15 ant}

0.10 ‘\g‘ +* 0.10 \A A -
> 4
0.05 ./././ \\T 0.05 \‘\\“3
0.00 . . . : 3 0.00 : : : :]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
a) b)

Figure 3.12: Received load and number of messages vs. processor rank in GA solutions.
a) Load vs. rank, b) number of chunks vs. rank.

exception of the cases biased by small 5 or big S.

The results in Fig. 3.10 and Fig. 3.11 confirm the existence of the sets of
processors receiving more load, and hence dominating in the computations. Yet,
in our test instances, when studying influence of a certain parameter, all proces-
sors had this parameter equal. We learned on the importance of the considered
parameter via the consequences of its low or high values. However, the effects of
the diversity of the given parameter were switched off. We did not verify how
important a parameter could be if it had different values in the processor set.
Therefore, another set of 1000 instances were generated with V' = 100, m gener-
ated from U[1,100], and A;, B;, C;, S; generated from UJ[0,1]. We examined the
fraction of the whole load and the number of received messages against the rank
of processors in the order of a certain parameter value. The results of this study
are shown in Fig. 3.12.

In Fig. 3.12 the processors were grouped into sets comprising 10% of the
processors ranked according to a certain parameter. For example, value 0.2 on
the horizontal axis in Fig. 3.12 represents processors with relative rank % in the
range (0.1,0.2]. The values on the vertical axes are relative: the size of the load is
shown with respect to V' and the number of received messages with respect to the

total number of messages. The four functions depicted in Fig. 3.12 correspond to

73

four different rankings: according to A, B,C,S. Let us remind that for A,C,S
smaller values represent better performance, and for B bigger values are better.
The relationships are similar for the received load (Fig. 3.12a) and for the number
of messages (Fig. 3.12b). Therefore, we will discuss only the load distribution.
The distribution of the load is tightly connected with all processor parameters.
It is evident that processors which have best communication links with respect
to C or S, or the biggest memory buffers receive more load to process. The
processors with small B or big S, C' receive almost no load. For parameter A
the relationship is weaker but it is still noticeable (the coefficient of correlation
between A and the upper limit of rank box interval is approximately —0.84).
We finish the study of the dominating set of processors with the following
observations based on the computational experiments. The dominating processor
set exists. The frequent processor set, as we defined it, comprises approximately
40-50% of all processors. In the biased case of big S or small 5 the load is
distributed almost equally and the frequent processor set may include nearly all
processors. There is a strong correlation between processor parameters and the
amount of load received for processing. This effect is strongest for parameter C

and weakest for parameter A.

3.4.5 Chunk Size Saturation

The next element of the schedule structure we want to analyze are the sizes of
load chunks. After determining the sequence of communications and the overlaps,
a linear program was used to find the load distribution. Since the computational
cost of linear programming may be considered high, it would be profitable to
eliminate it in constructing good quality solutions. To examine the structure of
the load partitioning we analyzed the number of chunks whose sizes are equal to
the size of the target processor buffer, i.e. a; = B,;. We will call such chunks

full chunks. It would be a very attractive solution to use just the processor buffer

74

=
/ oa —*%— V=50 \
~ .

0.4 —=—MAX — V=20 <
—— AVG —— V=10
0.2 4 MIN 0.2 V=5
—— V=2
0.0 r v 0.0 ; T A
1E0 1E1 1E2 1E-3 1E-2 1E-1 1E0
a) b)

—%— V=50
0.8 0.8 — V=20

R =
AN o= 7=
L NN y
Ll N\ L A

—— V=2

0.0 B/V T T 0.0 4 T T 5

1E-3 1E-2 1E-1 1E0 1E-3 1E-2 1E-1 1E0

c) d)

Figure 3.13: Average number of full chunks in GA solutions, a) vs. V in experiments
with changing A, b) vs. A, ¢) vs. g, d) vs. S .

size as the chunk size, thus eliminating the need for linear programming. Still,
such an approach eliminates the possibility of chunk overlapping. The results of
the experiments on load chunk sizes are shown in Fig. 3.13.

In all the pictures shown in Fig. 3.13 the number of full chunks is shown in
relation to the total number of chunks n. The number of full chunks is almost al-
ways high or noticeable, but not all chunks are full. It can be seen in Fig. 3.13a,b,d
that with growing load size V' the number of full chunks is also growing. This is
intuitively reasonable because bigger load V' requires more messages which expose
the costs of startup times. These can be reduced by using as few messages as
possible, and consequently filling the buffers more completely. This is also con-

firmed in Fig. 3.13c where the number of full chunks is shown against changing

)

5 and various values of V. When

B

v+ is small, then the number of messages must

be big, hence the startup times dominate in the schedule length, and to reduce
their contribution, the buffers are more fully filled. This situation is repeated in
Fig. 3.13d where the number of full chunks increases with the startup times. With
growing A (Fig. 3.13b) the number of full chunks is decreasing because the com-
putation time, and not the startup times, increasingly dominates in the schedule
length. Observe that in Fig. 3.13c the number of full chunks decreases with V/,
what may be attributed to the randomized nature of GA. When V' is growing,
but g remains constant, the computation time and the part of communication
time determined by parameter C' dominate over the startup times. Thus, it is
profitable to send more smaller messages in order to parallelize the computations
in a greater degree. Hence, with growing V' the fraction of chunks which are not

full is also growing.

3.4.6 When Is It Hard to Find a Good Solution?

To summarize the analysis of the features of the obtained solutions, we study
what makes an instance of our problem easy or hard to solve. Let us introduce
the goal of this section in more detail. Heuristics build good quality solutions
for many combinatorial optimization problems. However, this good performance
may sometimes be attributed to the nature of the problem, not a heuristic. Thus,
it is possible that our genetic algorithm builds good solutions not because it is
well designed, but because in some cases our scheduling problem may be easy to
solve. If we learn which instances are easy or hard to solve, then we will gain
some new insights into the nature of the problem, and real merits of GA.

We have to decide how to verify which instances are easy, and which ones are
hard to solve. We will compare the quality of the solutions obtained in three ways
for various types of instances. The worst solution observed provides an indication

on how bad a solution may be. The random solutions are not biased to being good

76

or bad. GA solutions are optimized and supposed to be good. The three solution
types indicate what can be achieved in the worst case, without great efforts
(random solutions), and at considerable cost of optimization. If GA solutions did
not differ much from the random solutions, then it would signify bad GA design.
All the three types of solutions were obtained using the GA infrastructure. The
random solution is the best one in the initial GA population of G = 20 solutions.
The worst solution is the worst one observed in the course of solving given instance
by GA. In all the three cases linear programming was used to obtain the best
chunk sizes «; and the schedule length for a given combinatorial part of the
solution. The quality of the solutions is measured as the relative distance from

the lower bound calculated in the following way. The minimum communication

time is 71 = N N Smin + VCpin. In this time at most Vo = (71 — Simin) D iy %
load could be processed. The remaining load V' — Vj is processed in time at least

equal to max{0, m — 71 + Spint- Thus the lower bound is equal to

v
LB = 11 + max{0, - — T+ Sonin - (3.23)

s 1/Ai

In Fig. 3.14 we show the influence of the system parameters on the quality
of the above three solution types. The points on these charts represent average
quality over the set of used test instances. Fig. 3.14a,b,c show the results for
the first set of random instances and V' = 20. It is striking that the worst case
solutions (denoted W RST') can be over one order of magnitude further from the
lower bound than the random solutions (denoted RN D) or the solutions of the
genetic algorithm (denoted GA). Moreover, G A solutions are substantially better
than RN D solutions, which means that GA really works. Now let us analyze the
tendencies in Fig. 3.14a,b,c. As it can be seen in Fig. 3.14a, with growing C' all
the lines tend to 1. This means that as the communication speed decreases, the
schedule length becomes dominated by the time of sending load off the originator.

Hence, in such a biased case it is easier to obtain good solutions. Similar tendency

77

1E3 1E3

—— WRST
) —=— RND {
~ |+CA ——WRST /
1E2 1E2 o

T——=RND
—a— GA
1E1 = N ' 1E1 ’<:\‘\-\-_\-\./.
4 \\‘ﬂ—_ﬁ
3
B/V
1E0 ; r | 1E0 : r
1E-3 1E-2 1E-1 1E0 1E-3 1E-2 1E-1 1E0
a) b)
1E3 1E3
—— WRST —— WRST /’
—a— RND —a— RND
<
1E2 \’_‘_;‘ 1E2 ——GA
1E1 1B =, /
k—*—i—‘——k—f'*—"//‘
E :_HN—.__ : 4 5
1E0 : : 5] 1E0 : : 5
1E-3 1E-2 1E-1 1E0 1E-3 1E-2 1E-1 1E0
c) d)

Figure 3.14: Quality of the solutions with reference to the lower bound for V' = 20, a)
vs. C, b) vs. %, c¢) vs. S, d) vs. the dispersion of S.

was observed for growing parameter A (not shown here).

In Fig. 3.14b the dependence of the solutions quality on changing 5 is shown.
With growing 5 all the three types of solutions get closer to the lower bound.
It is intuitively attractive to conclude that with growing g the solutions are less
dominated by choosing processors with small startups .5;, and good solutions are
easier to obtain because we are less limited with the choice of the processor. Not
disregarding this growing flexibility, it should not be forgotten that the construc-
tion of the lower bound (3.23) influences the results presented here. The lower
bound is based on the assumption that the smallest S; coincide with the biggest
B;, which is rarely true. Hence, for small 5 and a big number of the startups

the error resulting from this simplification may be significant. This may result

78

in the big distance of the solutions from the lower bound. With increasing g the
domination of the startup costs in the schedule length decreases, the contribu-
tion of the transfer and the computation time increases, and the lower bound is
representing this situation better. Thus, the results in Fig. 3.14b indeed confirm
that with growing % it is getting easier to obtain solutions closer to the lower
bound, but it is achieved by using fewer messages and communication startup
times. Moreover, for the biggest 5 solutions W RST, RND get slightly worse
and G A solutions do not. This means that even if memory buffers are big, it is
necessary to adjust the set of used processors. The genetic algorithm handles this
better than in the RN D solutions.

In Fig. 3.14c the dependence of the three types of solutions on changing pa-
rameter S is shown. A counterintuitive tendency of improving W RST solution
quality with growing S can be observed. With growing S the contribution of the
startup times to the schedule length is growing, independently of the chosen set
of processors. Therefore, the difference between the worst solution and the lower
bound is decreasing with growing S. The genetic algorithm performs better than
RN D because it is able to build solutions with relative quality improving even
with increasing domination of the startup time.

In Fig. 3.14d the quality of the solutions for growing dispersion of S is shown.
The test instances for Fig. 3.14d were generated as in the first set of instances

with V' = 20, except for parameter S, which was generated with uniform distri-

1-d0g 1+dg
2 02

bution from range | |. The value of dg is shown on the horizontal axis
in Fig. 3.14d. As it can be seen, with growing dg, and hence growing heterogene-
ity of the system, the quality of all three types of solutions is worsening. This

means that our problem becomes harder to solve with growing heterogeneity of

the computing environment. Similar experiments were performed for controlled

B

dispersion d4,0p, dc of parameters A, 7, C, respectively. In all these experiments

the dependence of the quality of the solutions on the range of diversity has a very

79

similar shape as in Fig. 3.14d. This confirms once again that in heterogeneous
systems good quality solutions are harder to obtain. Let us use the range of the
changes of the worst-case solutions quality as an indicator of the sensitivity to the
dispersion of a certain parameter. For dg changing from 1E-3 to 1, the distance
from the lower bound grew ~ 34 times. For similar changes of: (1) d¢ the dis-
tance changed ~ 14 times, (2) §4 it changed ~ 1.8 times, (3) dp it changed ~ 1.3
times. This means that the diversities of S and C' have the strongest influence
on the difficulty of obtaining good solutions, and the diversity of A and 5 the
smallest.

We finish these considerations with the following conclusions.

e [t is easier to obtain good quality solutions when the communication time
or the computation time dominates in the schedule length.

e [t is easier to obtain good quality solutions for big memory buffers.

e [t is easier to obtain good solution quality for homogeneous systems. So-
lution quality is particularly sensitive to the dispersion of communication
parameters S, C, and less to the dispersion of A, g.

e The genetic algorithm really works, because it builds considerably better
solutions than RN D. Moreover, in some cases it is able to counteract the

general tendencies of the solution quality represented in RN D, W RST.

3.4.7 Conclusions

Overall, the experiments performed in Section 3.4 revealed a complex and some-
times counterintuitive interaction of the system parameters in determining good

quality solutions. The following observations have been made.

e In the worst case an arbitrarily big number of messages may have to be
accumulated on a processor in the optimum solutions. However, it turned
out that in the near-optimum solutions obtained by the genetic algorithm

chunk overlap is rare.

80

e There is a minimum number of messages that must be sent anyway. Using
this number of communications may result in arbitrarily bad solutions. In
the computational experiments it has been established that the number
of messages is a small multiple of the minimum possible number. The
communication startup time is the main disincentive to using great numbers

of messages in delivering the load to the processors.

e There are inequalities in the load distribution and there exists a dominating
set of processors which receives most of the load. The size of the dominat-
ing set of processors is growing with the load size V. There is a strong
correlation between the parameters of a processor and its contribution in
the load processing. Processors with faster communication links, bigger
memory buffers, and computing faster receive more load. It appears that

the order of parameter importance in the load distribution is Cj, B;, S;, A;.

e A majority of load chunks, although not all, carry maximum possible load
(equal to the size of the receiver’s memory buffer). The number of full

chunks grows with V', and is strongly correlated with parameters S;, B;.

e The problem has a natural tendency to become easier to solve when one
parameter dominates in the schedule length. For example, big values of all

A; in relation to C;, S; simplify obtaining good solutions.

e Another side of the above observation is that it is relatively easy to build
biased instances whose solutions are dictated by extreme values of a certain
parameter, e.g. extremely slow communication or computation, or very

small memory buffers.

e In a sense, parameters B; and S; work together when building a biased
instance. Small memory buffers B; incur many communications, which

expose the cost of the startup times S;. Conversely, big startup times may

81

be compensated by the use of long messages which require big memory

buffers.

e Good quality solutions are harder to obtain in heterogeneous systems.

3.5 Heuristics

The aim of the research presented in Section 3.4 was to gather information about
desirable properties of the solutions of our problem. Based on this information,
we propose several groups of heuristics. We also present the algorithms known
from earlier literature. We start with very simple algorithms, which do not use
the information about the nature of the problem. They are meant to verify
if the algorithms presented later perform well or not. The most complex of the
algorithms solving our problem is the genetic algorithm described in section 3.3.2.
We compare the quality and the running time of all the proposed algorithms in
a series of computational experiments. We examine how the system parameters
influence the relations between the solutions generated by the algorithms. These
experiments not only show which heuristic is better, or worse, to use for a given
type of instance of the problem, but may also be used to verify the conclusions

drawn from the experiments presented in the previous section.

3.5.1 Random Heuristics

The first group of algorithms we present are random heuristics. They were de-
signed mainly to verify the performance of other algorithms by comparing the
obtained solutions with what can be gained without effort, by random algorithms.
Analyzing several different types of random heuristics may be helpful for distin-
guishing the most important elements in the process of creating a solution.

The first three random heuristics, introduced in |27], use two-step approach.

They choose a communication sequence and overlap values in a random pro-

82

cess, but afterwards the optimum chunk sizes are computed by LP (3.13)-(3.21).
Heuristic Rnd1 appends random processors to the communication sequence until
the accumulated memory is not smaller than the load size V. All chunk over-
laps d;; are set to 0 (no chunks overlap). This construction implies that the
communication sequences created by Rndl will be short.

Heuristics Rnd2 and Rnd3 are strongly connected with Rnd1, as they use the
communication sequence delivered by Rndl. Heuristic Rnd2 doubles this com-
munication sequence and applies overlap 1 to all chunks. Overlap 1 means that
each two consecutive chunks sent to the same processor overlap. The communi-
cation sequences created by Rnd2 are up to twice as long as in the case of Rnd1.
However, they do not have to be exactly twice longer, as it is possible that some
chunk sizes computed by the LP will be equal to 0.

Heuristic Rnd3 lengthens the communication sequence obtained from Rndl1,
appending a random number of chunks sent to random processors. The maximum
length of the appended sequence is 3 times the original sequence length. The
overlap values d;; are chosen randomly from values 0 and 1. Since some chunks
overlap and their sizes together cannot exceed memory limits, the total memory
collected may be smaller than the load size V. Therefore, some solutions delivered
by Rnd3 may be infeasible. The communication sequences generated by Rnd3
are usually much longer than the sequences delivered by Rndl1.

Heuristics Rnd1l — Rnd3 randomize only the solution of the combinatorial
part of the problem while still using LP (3.13)-(3.21) to find the chunk sizes.
Therefore, we introduce another random heuristic Rnd4 [9]. This algorithm
is substantially different because it does not use LP to choose the chunk sizes.
Rnd4 not only sends load to random processors, but also chooses chunk sizes
randomly between 0 and memory buffer size for a given processor. If the size
of the currently free memory on the receiver processor is not sufficient, sending

the chunk is postponed until enough memory is released. The originator remains

83

idle during this time. The whole process is repeated until all the load is sent.
Computing overlap values is unnecessary in this algorithm, but it is possible to
calculate them from the generated schedule.

The solution obtained by Rnd4 can be further improved by heuristic Rnd4LP.
This algorithm uses the communication and overlap sequences delivered by Rnd4,

but the chunk sizes are computed using LP (3.13)-(3.21).

3.5.2 First Free Heuristic

The next heuristic we created is called first free (FF) heuristic. This is one more
simple algorithm designed mainly to test the quality of the other algorithms and
the difficulty of test instances. In this algorithm each chunk has the maximum
possible size (equal to the memory limit of the processor receiving this chunk).
Hence, no chunks may overlap and all overlap values d;; must be 0. At the
beginning, each of the processors P, ..., P, receives one chunk. Each processor
which finishes processing a chunk is added to a queue of free processors. Messages
with new load are always sent to the first processor in this queue (i.e. the one
which finished previous computations at the earliest moment). Note that FF does
not order the processors in the first load distribution round. Thus, the sequence
of the first m communications can be considered random. This may result in
low quality solutions, especially when the number of necessary communications

is low.

3.5.3 Appender Heuristics

The idea of appender heuristics (or appenders for short) first emerged in [27].
The appenders are meant to mimic the construction of the communication se-
quence o and overlaps O as in B&B algorithm. For the purpose of constructing
the communication sequence it is assumed that each chunk has (phantom) size

equal to the memory buffer size on the chosen receiver processor. A message

84

is always sent to the first free processor. In the search for a free processor, the
workers are always checked in the same order, depending on a particular appender
heuristic. Processors are appended to the communication sequence until the sent
(phantom) load is at least three times greater than V. This excessive reservation
of capacity for load processing is made to give some freedom in selecting chunk
sizes. Afterwards, overlap 0;; = 1 is applied to all chunks. This choice is moti-
vated by the observations that chunk overlaps often allow for better performance,
but big overlaps do not seem necessary in most cases. The optimum chunk sizes
are computed by LP (3.13)-(3.21).

The four basic appender heuristics apA, apC, apS and apB, search for a
receiver of each chunk, checking one parameter only. The chunk will be sent to a
free processor with the best value of this parameter (i.e. the smallest A;, C;, S;
and the greatest B;, correspondingly). The heuristic apA, as the only algorithm
from these four, was introduced and tested in [27]. Still, on the basis of the results
from Section 3.4, we expect that parameter A should not be used as the main
factor in choosing the processor. Thus, we want to compare this algorithm with
the algorithms using different parameters.

A little more sophisticated approach was used in appenders apSBC and apS-
BCA. Heuristic apSBC, introduced in [27|, searches for a free processor which
can receive a whole buffer of data in the shortest time (i.e. the one with the small-
est value of S; + B;C;). Heuristic apSBCA is similar, but it takes into account
the time of both communication and computation. Therefore, the processor with
the smallest value of S; + B;(C; + A;) is chosen.

Note that in algorithms apSBC and apSBCA processors with small mem-
ory buffers may be preferred, what is probably disadvantageous for the solution
quality. Therefore, we propose the last two appender heuristics, apSBCr and
apSBCATr, which use a modified idea of apSBC and apSBCA (cf. (8, 9|). Instead

of the communication time or communication and computation time they take

85

into account the time per unit of load. The processors are checked in the order of
increasing values of S;/B;+ C; (for apSBCr) or S;/B;+ C;+ A; (for apSBCAr). In

this way, the processors with large, and not small memory buffers are preferred.

3.5.4 Best Rate Heuristics

The heuristics in the last group are called best rate heuristics [8, 9] and denoted
by BRx, where x € {1,...,6}. In heuristics BRx it is assumed that the size
of each chunk sent to processor F; is equal to 5; = B;/x. In order to choose a
receiver of a chunk of data, for each processor P, we compute the time 7; needed

to process this chunk, were it sent to this processor:

ir,' = max{max{to, Ti} + SZ + 62(Cz + Az), ti + 61Az} - to, (324)

where:

e {4 is the time when the originator can start sending the chunk,
e 7, is the time when enough memory becomes available at processor F;,
e {; is the moment when processor P; completes processing the preceding

chunks and can start processing the current chunk.

The load is always sent to the processor with the best current processing rate,
i.e. with the minimum value of T;/3;. This process is repeated as long as there is
some unprocessed load. The construction of the algorithm prevents using more
memory than available. The values of chunk overlaps do not have to be computed
in this algorithm, but they can be obtained from the generated schedule. As the
chunk sizes are equal to B;/x in heuristic BRx, the possible overlap values §;;
are 0,...,x — 1. Thus, there is no chunk overlap in the solutions generated by
BR1, but the remaining algorithms from this group can create solutions with

overlapping chunks.

86

The result of each of the BRx heuristic may be improved by BRxLP heuristic.
BRxLP uses the communication sequence and overlap values delivered by BRx,
while the chunk sizes are computed using LP (3.13)-(3.21). Our experiments
showed that the difference between the results obtained by BRx and BRxLP
heuristics is very small, especially for larger values of x. Hence, in the next
section we will present the results obtained by BRxXLP heuristics only for z = 1

and x = 2.

3.6 Comparison of the Heuristic Algorithms

In this section we present the experimental results concerning the quality of the
solutions and the computational costs of the heuristics presented in Section 3.5
and the genetic algorithm described in Section 3.3.2. Assessing quality of the
algorithms is essentially a bicriterial problem, because the quality of the solu-
tions is bought at some computational cost. The goal of this study is to analyze
the quality of the solutions and the computational cost of obtaining them. The
worst case estimations of the approximability ratios tend to be excessively pes-
simistic. Algorithms with high order of the worst case complexity sometimes
have acceptable runtime. Hence, worst case estimations of the approximation
ratio or the complexity do not seem to be a good tool to compare the practical
trade-off between the quality and the cost. Therefore, experimental analysis is
applied here. We use the same set of instances as in Section 3.4. We will examine
the performance results of over 20 algorithms, demonstrating their advantages
and weaknesses for different system parameters. As it was not possible to obtain
the optimum results for the generated instances, the lower bound (LB), defined
in Section 3.4.6 by formula (3.23), was used as a reference. The quality of all
algorithms was measured as the average relative distance of the solutions from

the lower bound.

87

In the following discussion the performance of the algorithms is shown on
diagrams in which the horizontal axis is the average execution time, and the
vertical axis is the average relative distance from the lower bound. For example,
in Fig. 3.15 a good algorithm should be represented by a point as close as possible
to the lower-left corner of the diagram which represents good quality and short
execution time. In the sense of computational cost an algorithm dominates all the
algorithms positioned to the right of it in the diagram. In the sense of solution
quality an algorithm dominates all the algorithms positioned above it. Some
algorithm may have the shortest execution time for a given quality, and vice
versa, the best quality at a given computational cost. Thus, it is possible to
consider some algorithms Pareto-optimal as non-dominated with respect to the

quality and the run time.

3.6.1 Load Size

In the first series of experiments we examined the influence of the load size V
on the quality of the results obtained by different algorithms. We present here
the results obtained for the extreme values V' = 2 and V = 50. Let us remind
that in our problem the load is arbitrarily divisible, and even for V' = 2 hundreds
of communications may be performed. To control the running time of GA, we
assumed that the number of communications in a schedule must be smaller than
1000. The same upper bound was applied to all other algorithms.

The relationship between the performance of different algorithms for V' = 2
is presented in Fig. 3.15a. The analyzed algorithms can be divided into three
groups based on their execution times. The fastest group are the algorithms
not using LP (FF, BRx and Rnd4). The second group are heuristics computing
optimal chunk sizes with LP (Rnd1l - Rnd3, Rnd4LP, appenders, BRXLP). The
slowest of all algorithms is GA, as it creates many solutions and uses LP. Note

that GA can be stopped after some number of iterations. Hence GA may be rep-

88

13 13
3 S
3 3
S] S
9 o = 9 > S
2 +
x
& X
5 X 5 — u
A]
. I:P ‘ m} © A
A . .
] time]s]] time|s]
1E-7 1E-5 1E-3 1E-1 1E1 1E3 1E-7 1E-5 1E-3 1E-1 1E1 1E3
mBR1 ® BR2 BR3 +BR4 mBR1 ¢ BR2 BR3 +BR4
ABR5 X BR6 OBR1LP 0BR2LP ABR5S X BR6 OBR1LP OBR2LP
AFF AGA Rnd1 © Rnd2 AFF AGA Rnd1 © Rnd2
Rnd3 ¢ Rnd4 +Rnd4LP DapA Rnd3 ¢ Rnd4 +Rnd4LP DOapA
apC o apS apB X apSBC apC & apS apB X apSBC
- apSBCA mapSBCr apSBCAr —apSBCA mapSBCr apSBCAr
a) b)

Figure 3.15: Solution quality vs. execution time for different problem sizes V', a) V = 2,
b) V = 50.

resented by a dependence of quality versus time in Fig. 3.15. Since the existence
of such a dependence does not change our conclusions, we decided to represent
the performance of GA with just one point to make the picture more readable.

The best solutions are obtained by GA and then by heuristics BR1LP, BR2LP.
Algorithms BR1 and BR2 are only slightly worse. The quality of BRx heuristics
decreases with increasing x. This can be explained by the fact that dividing
the memory buffers into more parts leads to sending a bigger number of smaller
chunks. When there are too many messages, the contribution of startup times
becomes too big and makes the whole schedule longer.

Most of the appender heuristics perform similarly to the random algorithms
and are worse than our simplest heuristic FF. Thus, appenders are not good for
solving our scheduling problem. This situation is similar for most of the test
instances. The best of all appender heuristics are apSBCr and apSBCAr. Thus,
we can conclude that our modification to appenders apSBC, apSBCA lead to a big
improvement in the results in comparison to the appender heuristics proposed in
the earlier literature. Appender apA delivers the worst solutions of all the studied
algorithms. This confirms the observation from Section 3.4, that the computation

speed alone cannot be the most important parameter to determine the order of

89

sending data chunks.

The results obtained by the analyzed algorithms for V' = 50 are presented in
Fig. 3.15b. It can be seen that the quality and the execution time of almost all
algorithms become worse for bigger V. This behavior is understandable, because
larger instances intuitively should be harder to solve. For V' = 50 the genetic
algorithm is outperformed by heuristics BR1 and BR2 (even the variants with-
out LP). Indeed, when there is more load to be processed, longer communication
sequences are needed, and the search space of GA becomes much larger. Con-
sequently, the chances of finding a good solution decrease, since the number of
iterations performed in GA remains the same. There is no such effect on simple
heuristics, and except for GA, there are no important changes in the relationships
between the performance of the algorithms compared to V' = 2.

We can conclude this section with an observation that the growing load size
makes the problem harder from the point of view of the running time and quality
for all proposed algorithms. Its impact on the genetic algorithm seems stronger
than on other heuristics. However, mutual relationships in the performance of

the heuristics remain almost unchanged for different values of V.

3.6.2 Startup Time

The results obtained for the extreme values of startup times (S = 0.001 and
S = 1) are presented in Fig. 3.16. For small S the best results are obtained
by GA. The second best algorithms are apC and apSBCr (their points overlap
in Fig. 3.16a). This may be surprising, because we stated earlier that appender
heuristics do not work well in general. However, when startup times are very small
in relation to the other parameters, there is no need to keep the communication
sequence short. Moreover, since in the analyzed instances parameter S is the
same for all processors, only the other parameters are important. Parameter C

seems to play the main role in this case. The results obtained by apSBCr are very

90

uality
uality

5 = 5 X
A A &
m |:-|'- +
PP = 'y
3 > o 3 or
A . o
] timels] . A o tulze[s]
1E-7 1E-5 1E-3 1E-1 1E1 1E3 1E-7 1E-5 1E-3 1E-1 1E1 1E3
mBR1 ¢ BR2 BR3 +BR4 mBR1 ¢ BR2 BR3 +BR4
ABR5 X BR6 OBR1LP 0oBR2LP ABR5 X BR6 OBR1LP 0OBR2LP
AFF AGA Rnd1 © Rnd2 AFF AGA Rnd1 © Rnd2
Rnd3 # Rnd4 +Rnd4LP DOapA Rnd3 ¢ Rnd4 +Rnd4LP DOapA
apC ©apS apB X apSBC apC ©apS apB X apSBC
= apSBCA mapSBCr apSBCAr - apSBCA mapSBCr apSBCAr

a) b)
Figure 3.16: Solution quality vs. execution time for different communication startup
times, a) S =0.001, b) § = 1.
similar to the ones delivered by apC, because the values of S;/B; + C; are close
to C; for very small S;. This conforms with the earlier results in DLT |3, 14, 17]
stating that communication rate C' is a key performance parameter in divisible
load processing when S; = 0 for all 7.

The results of all BRx heuristics are similar, because the main difference
between them is the number of messages sent and hence the contribution of the
startup times, which has almost no importance for very small S. Heuristics
sending always a full buffer of data (FF, Rndl, BR1, BR1LP) perform badly,
because they do not use overlapping, create longer waiting intervals during the
communication and bigger imbalance in the computation completion times. This
can be avoided at a little cost by sending many short messages if startup times
are short. There are almost no differences in the results of BR2 - BR6. Thus,
dividing the memory buffers into two parts (and hence overlap at most 1) seems
enough to take the advantage of accumulating the load on processors.

The situation becomes completely different for S = 1. The main objective is
now to minimize the contribution of startup times which dominates the schedule
length. Therefore, algorithms creating the shortest communication sequences

construct the best solutions. Even a very simple algorithm FF delivers solutions

91

of good quality, because it always sends a full buffer of data. The differences
between BRx heuristics become explicit. Splitting the communication into more
parts leads to a big decrease in the solution quality. Heuristic BR1 works well,
but with increasing x each BRx is getting worse, up to BR5 and BR6 being
the worst of all BRx algorithms. It is worth mentioning that GA can handle
this situation, creating shorter sequences and obtaining as good results as BR1.
Appenders apA and apC do not perform well, because they do not take into
account memory buffer sizes. As it is better to send a smaller number of messages,
processors having big memory buffers should be preferred. Therefore, appenders
apB, apSBCr and apSBCAr are better. Heuristics apSBC and apSBCA create
extremely bad solutions. As all startup times are equal, the processors with
smaller memory buffers may be preferred by these algorithms, what leads to
constructing very long communication sequences and reinforces the contribution
of startup times in the schedule length.

Except for the algorithms creating very long communication sequences, the
solutions obtained for S = 1 have generally higher quality than for S = 0.001.
This may be attributed to two facts. When big startup times dominate the whole
schedule length, the other processor parameters are not very important anymore.
Therefore, it is easier to construct good solutions, taking into account only one
parameter instead of some combination. The second reason is that if startup
times are big and equal, the lower bound LB better coincides with the actual

optimum schedule length.

3.6.3 Communication Rate

The charts concerning parameter C' (Fig. 3.17) show that for C' = 1 our problem
is much easier to solve than for small C'. The schedule length is dominated by
the communication time and it is not difficult to find a solution with the schedule

length close to the lower bound. After magnifying Fig. 3.17b we could observe

92

33 33

2 o =
3 3
25 = 25 =
.
17 * 17
9 S o 9
A
t o© A o i
] . . : . time]s] 1] P S ol tmze[s]
1E-7 1E-5 1E-3 1E-1 1E1 1E3 1E-7 1E-5 1E-3 1E-1 1E1 1E3
HBR1 ¢ BR2 BR3 +BR4 HBR1 ¢ BR2 BR3 +BR4
ABR5 X BR6 OBR1LP OBR2LP ABR5 X BR6 OBR1LP OBR2LP
AFF AGA Rnd1 & Rnd2 AFF AGA Rnd1 & Rnd2
Rnd3 & Rnd4 +Rnd4LP OapA Rnd3 ¢ Rnd4 +Rnd4LP DOapA
apC ¢ apS apB X apSBC apC ©apS apB X apSBC
=apSBCA mapSBCr apSBCAr =apSBCA mapSBCr apSBCAr
a) b)

Figure 3.17: Solution quality vs. execution time for different communication rates, a)
C =0.001,b) C = 1.

that the relationships between different algorithms remain similar for C' = 0.001
and for C' = 1, with the best solutions delivered by heuristics BR1, BR1ILP and
very similar results of GA. This suggests that the construction of our algorithms
is not sensitive to changing values of communication rate. The observed improve-
ment in the solution quality for C' =1 in comparison to C' = 0.001 is due to the

nature of the problem, which is easier to solve for big communication rate C.

3.6.4 Memory Limit

Let us remind that we cannot analyze the influence of parameter B only, while
using instances with different load sizes V. The parameter we should rather
examine is the relative buffer size, i.e. B/V. This value determines the number
of communications needed in a schedule and is a natural parameter of the problem
instance.

For B/V =1, it is possible to send the whole load as one message, and there
is no need to create long communication sequences. Therefore, all the algorithms
work faster than for smaller memory buffers (cf. Fig. 3.18a). The best solutions

are achieved by GA, which becomes very effective when it does not have to create

93

21 21

= > 5]
3 E
3 3
16 += 16 +== * £
11 11
* X A
6 e 6 o
T e ‘ +
1 . . — timels 1 Lo o O timels)
1E-7 1E-5 1E-3 1E-1 1E1 1E3 1E-7 1E-5 1E-3 1E-1 1E1 1E3
mBR1 ¢ BR2 BR3 +BR4 HBR1 ¢ BR2 BR3 +BR4
ABR5 XBR6 OBR1LP OBR2LP OBR1LP OBR2LP AFF AGA
AFF AGA Rnd1 < Rnd2 Rnd1 < Rnd2 Rnd3 & Rnd4
Rnd3 ¢ Rnd4 +Rnd4LP OapA +Rnd4LP DOapA AapC © apS
apC o apS apB X apSBC apB XapSBC =apSBCA mapSBCr
= apSBCA mapSBCr apSBCAr apSBCAr
a) b)

Figure 3.18: Solution quality vs. execution time for different memory limits, a) B/V =
1, b) B/V = 0.005.

and combine long sequences. Good results are also provided by heuristic BR2
and appenders apSBCr, apSBCAr. Heuristic BR1 is now a little worse than BR2
because it sends only one message in the whole schedule and cannot balance the
use of computers performing fast computations and fast communication.

The smallest value of B/V which could be reliably solved by all algorithms
(especially GA) without restricting the instance parameters was 0.005. Heuris-
tics BR5 and BR6 had to produce communication sequences longer than the fixed
limit we used (1000 and 1200 messages correspondingly). Therefore, they are not
presented in Fig. 3.18b. For B/V = 0.005, each communication sequence length
had to be at least equal to 200. With so many messages sent, startup times
dominate the schedule length. Therefore, the best results are obtained by algo-
rithms BR1 and BR2, creating short sequences and minimizing the contribution
of startup times. Creating and combining very long sequences is a barrier for
GA effectiveness, which performs similarly to appenders apS, apSBC, apSBCA,
apSBCr and apSBCAr. These five algorithms deliver almost the same results (the
points overlap in Fig. 3.18b) because small values of B expose the significance of

parameter S in the last four appenders.

94

25 25

= >
= hs u
s s
3 3
19 = 19 =
* o,
13 13 >
- A
7 7 >_'<K S
o S time|s] ' 2 .
X fime|s i
1 Ag . ,9* —A 1 timels]
1E-7 1E-5 1E-3 1E-1 1E1 1E3 1E-7 1E-5 1E-3 1E-1 1E1 1E3
mBR1 #®BR2 XBR3 +BR4 EBR1 & BR2 X BR3 +BR4
ABR5 X BR6 OBR1LP 0BR2LP ABR5 X BR6 OBRILP 0BR2LP
AFF AGA Rnd1 & Rnd2 AFF AGA Rnd1 < Rnd2
Rnd3 # Rnd4 +Rnd4LP OapA Rnd3 ¢ Rnd4 +Rnd4LP OapA
apC © apS apB X apSBC apC © apS apB X apSBC
=apSBCA MapSBCr apSBCAr =apSBCA M apSBCr apSBCAr
a) b)

Figure 3.19: Solution quality vs. execution time for different dispersions of startup
time, a) dg = 0.001, b) 6g = 1.

3.6.5 Computation Rate

It seems that changing the value of parameter A does not affect the relations
between the solutions delivered by different algorithms. In both cases, A =
0.001 and A = 1, the chart obtained (not shown here) is very similar to the one
presented in Fig. 3.15a. Increasing A leads to a slight improvement of all obtained
results. This is an intuitively expected effect of a single parameter dominating

the schedule length. It could be also observed for big values of C' (Fig. 3.17b).

3.6.6 Parameters Dispersion

In this section we examine the influence of system heterogeneity, i.e. of the
dispersion of the processor parameters. The method of generating test instances
was described in Section 3.4.6.

The results for the dispersion of startup times are shown in Fig. 3.19. For
larger dispersion algorithm FF loses quality in relation to BRx algorithms. There
is also a reshuffling among appender algorithms. All the results get much worse
when parameter S is chosen from a wider range. This phenomenon was observed

for the dispersion of all parameters. However, the scale of the effect is different for

95

21 21

—=—BR1 —4—GA —e—Rnd1 —=—BR1 —A—GA —e—Rnd1
—%—Rnd4 —a—apA apSBCr —%—Rnd4 —A—apA apSBCr | 4
17 +——*%—FF | 17 +—|{ —¥%—FF

13

/
g - |
5 A A N A ,‘x/)/)é/r 5g ——————— —
pe———— N A

1E-3 1E-2 1E-1 1EO 1E-3 1E-2 1E-1 1EO

a) b)

Figure 3.20: Average solution quality vs. parameter dispersion, a) dc, b) d4.

different parameters. It seems that the most important factor is the dispersion
of S, then C, B/V, and finally A has the smallest impact. Thus, by its nature
our problem is more difficult in a more heterogeneous system.

The relations between the solutions quality and the dispersion of parameters
C and A are shown in Fig. 3.20. These charts confirm the difference between the
importance of the dispersion of these two parameters. Changing d4 has a small
influence on the solutions quality. On the other hand, decreasing the dispersion
of parameter C' leads to a big improvement in the obtained results. Note that
the quality of the solutions obtained in experiments on d,4 is similar to the ones
with big dispersion of parameter C' (the right end of Fig. 3.20a). This means that
smaller differences between the communication speed of the processors make the
problem easier to solve, but smaller differences in the computation speed do not
help. The charts obtained for changing ds and dp (not shown here) are similar to
Fig. 3.20a, although the changes in the solutions quality are smaller. We conclude
that narrowing the range of A has almost no effect, when the dispersion of the
other parameters is still big. Narrowing the range of the other parameters makes

obtaining quality solutions easier.

96

26 1— 26 — -

21 =3 21 1=
B - B
D >
16 1= 16 4=
S E -
TR AA— +— "= > F
% M OX
6 L S] 6 7Y X -
oq g o tlime StdA. dev. » 1i®e std de’:
1 T T T T 1 T T T - — Il . —
1E-7 1E-5 1E-3 1E-1 1E1 1E3 1E-7 1E-5 1E-3 1E-1 1E1 1E3
mBR1 ® BR2 BR3 +BR4 HBR1 ¢ BR2 BR3 +BR4
ABR5 X BR6 OBR1LP OBR2LP ABR5 XBR6 OBR1LP 0BR2LP
AFF AGA Rnd1 © Rnd2 AFF AGA Rnd1 © Rnd2
Rnd3 # Rnd4 +Rnd4LP OapA Rnd3 ¢ Rnd4 +Rnd4LP DOapA
apC o apS apB X apSBC apC ¢ apS apB X apSBC
=apSBCA mapSBCr apSBCAr =apSBCA mapSBCr apSBCAr
a) b)

Figure 3.21: Standard deviation of the solution quality vs. standard deviation of exe-
cution time, a) V =2, b) V = 50.

3.6.7 Performance Dispersion

In the last group of experiments we analyze the dispersion of the solution quality
and execution times for a set of test instances. The purpose of this section is to
check if the algorithms good on average are also stable in cost and in quality.

In Fig. 3.21 the standard deviation of the solution quality is shown against
the standard deviation of execution times. Before discussing the results let us
comment on this way of the result depicting. In a set of test instances the
dispersion of the execution times naturally exists for any algorithm. An algorithm
solving our problem to optimality (e.g. B&B) has no dispersion of the relative
distance from the optimum solution, but it has some dispersion of the distance
from the lower bound. Thus, if we compare the dispersion of the solution quality
relative to the lower bound, then some dispersion also naturally exists. Still, it is
possible to compare algorithms with each other. An algorithm with very stable
performance would be located in the lower-left corner of Fig. 3.21.

From Fig. 3.21 we conclude that with respect to the stability of the solution
quality, the picture is very similar as for the average values. Algorithms that
deliver best solutions on average also have the smallest standard deviation of the

solution quality. As for the standard deviation of the execution time, it can be

97

concluded that the deviation increases with the complexity of the algorithms.
Thus, FF, Rnd4, BRx have the smallest standard deviation, then the algorithms
using linear programming, and finally, GA has the biggest execution time stan-
dard deviation. We also analyzed dispersion in the relative sense and applied
coefficients of variation (not shown here). For small problem sizes (V' = 2) the
picture is very similar to Fig. 3.21. For bigger problem sizes (V' = 50) coefficients
of variation for all algorithms are clustered around 1, and hence points represent-
ing all the algorithms are very close to each other. In this case algorithm BR6
dominates all other algorithms, while BR1LP and BR2LP have the two biggest
coefficients of variation for the execution time.

We finish this section with a conclusion, that algorithms which are not dom-
inated in the sense of average quality and average execution times are also non-
dominated in the sense of dispersions of these values. Thus, good algorithms in

the average sense have also stable performance.

3.7 Summary

The choice of a practical algorithm solving our problem depends on the budget
of time to construct a solution and on the system parameters. A series of exper-
iments showed that in a non-biased case the best quality results are achieved by
the genetic algorithm and by heuristics BR1, BR2. Best rate heuristics (BRI,
BR2) seem to offer good quality and very low cost. Thus, BR1, BR2 can be
recommended as a universal solution. The genetic algorithm offers quality so-
lutions, but at considerable cost. The number of communications is the factor
determining complexity of GA. Hence, GA can be recommended only if the time
budget is sufficiently big or V/B = 1.

The simplest heuristic FF may also be interesting as it is the fastest method,

and its quality is not the worst. The class of appender heuristics in almost all

98

tests turned out to be dominated both in the execution time and in the quality.
Hence, we do not recommend the use of appender heuristics proposed in [27].
There seems to be no apparent advantage in heuristics using LP as a refinement
after choosing the communication sequence and the load chunk overlap. It may
be concluded that the combinatorial part of the problem determines the quality
of a solution in a greater degree than the algebraic part.

We also reconfirmed the observations on the nature of the problem itself gath-
ered in Section 3.4. The problem is easier to solve if one of the parameters A or C
is big and determines the schedule length. Changing communication startup time
S from close to zero to a dominating component of the schedule length changes
the problem qualitatively. The memory size and the communication startup time
are connected. On the one hand, small memory sizes impose numerous com-
munications, and hence, expose the cost of startup times. On the other hand,
the cost of big communication startup times may be reduced by sending as few
messages as possible to processors with big memory buffers. It appeared easy
to create biased test instances hard to solve by some type of heuristics. System
heterogeneity makes the problem more difficult to solve for all proposed algo-
rithms. Therefore, it is not advantageous to use very heterogeneous computing
platforms. It seems advisable to group computing clients into classes according
to, e.g., similar values of communication speeds, and to dedicate separate servers
for each such class. Then, good schedules should be easier to build by the nature

of the problem itself.

99

4 MapReduce Computations

In this chapter we analyze a new type of distributed computations embodied in the
so-called MapReduce paradigm. In the previous chapters we analyzed schedul-
ing one load volume in a star network topology. Now we move to analyzing two
operations, mapping and reducing, interpreted as two divisible applications with
precedence constraints. We start this chapter with the description of MapRe-
duce paradigm and the distributed processing environment. Then we formulate
the mathematical model of MapReduce computations and propose scheduling al-
gorithms. The algorithms are tested in a series of computational experiments.
Performance limits of MapReduce are also investigated. The results presented
in this chapter are the first application of divisible load theory to processing

applications with precedence constraints.

4.1 Outline of MapReduce

MapReduce is a programming model for processing large data sets on big numbers
of computers. It can be implemented in many ways, and indeed it has various
implementations |23, 40, 42, 44]. Notably, MapReduce has been applied as a
production system at Google for processing Internet data [23|. Hence, it is very
practical to analyze scheduling and performance of MapReduce. Here, we will
outline MapReduce as described in [23|. In short, MapReduce computations con-

sist in processing input data set by creating a set of intermediate key/value pairs,

100

and then reducing them to yet another list of key/value pairs. The computations
are performed in parallel.

In more detail, MapReduce applications are divided into two steps and defined
by two functions: Map and Reduce. In the first step a Map function processes
the input data set (e.g. a text or HTML file), and generates a set of intermediate
(keyl,valuel) pairs. In the second step these intermediate pairs are sorted by
keyl, and a Reduce function merges the intermediate pairs with equal values of
keyl, to produce a list of pairs (keyl, value2). In this way, the input data set is
transformed into a list of key/value pairs.

Let us consider two examples given in [23|. Counting occurrences of words
in a big set of documents can be organized in the following way. The Map
function generates an intermediate pair (word, 1) for each word in the input
file(s). The intermediate pairs are reduced by summing ones, and thus producing
pairs (word, count). In the inverted index computation all documents comprising
certain words must be identified. The Map function emits pairs (word, docI D)
for each word in the input file(s), where docID is a document identifier (e.g. a
URL of a web page). In the Reduce function all (word, docI D) pairs are sorted
by word, and pairs (word,list _docIDs) are emitted, where list docIDs is a
sorted list of docI Ds. There are many types of practical applications which can
be expressed in the MapReduce model. More detailed and advanced examples
can be found in [23].

Both map and reduce operations are performed in parallel in a distributed
computer system. Processing a MapReduce application starts with splitting the
input files into load units, called splits in [23] (see Fig. 4.1). Many copies of the
program start on a cluster of machines. One of the machines, called the master,
assigns work to the other computers (workers). There are m map tasks and r
reduce tasks to assign. In the further discussion the map tasks will be called

mappers, and the reduce tasks reducers. A worker which received a mapper reads

101

file for Reducer 1

Network file for Reducer
file system Mapper 1 ﬁle.for.Re.duéer
i Viapper 2 *(leforReducer 1

file for Reducer

/

split V/ Reducer »

Input load Map phase intermediate files Reduce phase (on reducer disks)
(on mapper disks)

Figure 4.1: MapReduce execution overview.

the corresponding input load unit and processes the data using the Map function.
The output of this function is divided into r parts by a partitioning function and
written to r files on the local disk. Each of these r files corresponds to one of the
reducers. Usually the partitioning function is of the form hash(keyl) mod r. The
information about local file locations is sent back to the master, which forwards
it to the reduce workers.

When a reduce worker receives this information, it reads the buffered data
from the local disks of the map workers. After reading all intermediate data, the
reduce worker sorts them by the intermediate keys in order to group together all
occurrences of the same intermediate key. Each key and the corresponding set of
values are then processed by the Reduce function. The generated output is ap-
pended to a final output file for a given reducer. Thus, the output of MapReduce
is available in 7 output files. The execution of MapReduce is completed when all

reducers finish their work.

4.2 Mathematical Model of MapReduce

In this section we formulate a mathematical model of MapReduce computations

[7, 10]. We will pass from the "microscopic" view of the computations to a

102

coarser "macroscopic" model used in the following sections. We simplify the per-
ception of MapReduce computations to build a mathematically and conceptually
tractable representation of the complex computing platform and the distributed
application. Notation introduced in this section is summarized in Table 4.1.

Let us start with the model of the communication network. The structure of
the network is unknown in general, but it is known that the bandwidth of the
unthrottled communication channels which can be simultaneously used is limited.
We will represent this limitation as the number [of communication channels which
can be simultaneously in use without reducing the channel communication speed.
Thus, if two processors can communicate with speed 1/C' in the otherwise unused
network, then the bandwidth limitation for the concurrent channels in the whole
network is [/C. When referring to the above limit on the number of concurrent
channels we will be talking about the bisection width limit.

We perceive the mappers and the reducers in a more coarse way than in [23].
In [23] a mapper is an application executing the Map function for one load unit.
The size lu of a load unit is 16-64MB, and a processor receives approximately
100 load units |23]. Here we will assume that a single mapper is an application
executing the Map function for all the load (i.e. all load units) assigned to a
certain processor. Similarly, we unify all reducer computations assigned to a
certain processor to a single (compound) reducer. Let m denote the number of
mappers (consequently, also processors executing them), and let r denote the
number of reducers. We assume that a mapper and a reducer can be executed
on the same processor, but a reducer starts work only after the mapper finishes
computations. Thus, the mapper and the reducer computations do not interleave
on the same processor. It is usually assumed that m > r, but it is also possible
to represent m < r in our model. We exclude simultaneous execution of several
mappers, or reducers, on the same computer. Were such coallocation possible, it

can be represented in our model as several processors, each running a different

103

Table 4.1: Summary of notation for scheduling MapReduce applications.

Q;

ma;
a pvciv S;

red ored

tred _ Sred + T('VOV/T)

size of the load processed by mapper i; in bytes;

microscopic computing rate, communication rate,
communication startup time for processor P;
executing mapper i, respectively; expressed in
seconds per byte (™, ¢;) and in seconds (s;);

microscopic computing rate and computation
startup time for reducer application, equal for all
processors, respectively; expressed in seconds per

byte (a"°?) and in seconds (s7¢);

macroscopic computing rate of processor P,
executing a mapper application;

communication rate for reading mapper results by
the reducers; expressed in seconds per byte;

mapper result multiplicity fraction;

bisection width limit, expressed in parallel chan-
nels;

size of the load unit, in bytes;

number of mappers;

processor executing mapper ;

number of reducers;

computation startup time, equal for all processors;
schedule length on m mappers and r reducers;
schedule length, simplified notation for given m, r;
reducer computing time function in load size x;
execution time of a reducer;

the whole load size, in bytes;

104

P 1 mapper computation reducers reads reducer computation reducer writes

1
l PR mapper computation reducers reads reducer computation reducer writes
|
'

1 1 1
I- m ! mapper, computation reducers :l'eads reducer computati(}n reducer writes
'
' f !

|
i mappers compute
"

-k --
He -t -

1

+

' : reducers compute

f '

E mappers to reducers transfer :
i

startup reducers store results

Figure 4.2: General view of MapReduce schedule structure.

mapper or reducer. The total size of the load to be processed is V.

A rough schedule structure of MapReduce computations is shown in Fig. 4.2.
Detailed schedule structures are analyzed in the following sections. MapReduce
computations are divided into several phases which may partially overlap. In the
first stage the code for the mapper and reducer applications is loaded on the pro-
cessors. For the sake of simplicity of presentation we assume that the mapper and
reducer codes are uploaded together. We assume that most of the processors read
the code from the network file system. The code may include virtual machines,
libraries, the mapper and the reducer codes themselves. Thus, the computa-
tion startup time S may be quite long. The computation startup time elapses
only once because when processing the following load chunks the code already
resides on the executing processor. The differences in the startup time between
the processors are negligible. We assume that processors read the code one by
one. Although a more effective organization of the code broadcast is possible, we
choose this simple distribution scheme to avoid more specific assumptions on the
network structure and on the implementation of MapReduce.

In the second stage each mapper reads load units from the network file sys-
tem, processes them, and stores the results in r local files for r reducers. A
microscopic view of processing a single load unit of size lu (e.g. in bytes) by

mapper ¢ is shown in Fig. 4.3. Processor P, (running mapper ¢) reads lu bytes

105

¢ - lu

Sj
P’Z ; amawP Ly |

reading : computing |

Figure 4.3: Microscopic view of Map computations for a single load unit.

of input in time s; + ¢; - lu. Although computers are identical, the load may be
read from local or from remote locations. Consequently, s;,c; are different for
different processors. The fixed time delay s; includes both communication and
computation startup times needed in practice to start the computations and read
the next load unit. The lu bytes of input are processed in time a™ -[u. This time
comprises both computations and storing the results in local files. Thus, we as-
sume that from the point of view of computations only, processors are essentially
the same, because local computing rate ™ is the same for all processors. The
total time of processing a load unit is s; + (¢; + a™)lu. Since the load reading,
processing and storing operations are repeated many times (for hundreds of load
units [23]), we simplify the representation of these operations to processing with
rate A;. It follows from the above discussion that A; - lu = s; + (¢; + a™?)lu, and
the operations performed by a mapper may be perceived as if processing the load
with the average rate A; = s;/lu+ ¢; + a™. Here A; depends on lu, but the size
of the load unit is fixed for a MapReduce execution, hence also A; is constant. In
the following discussion we will use this coarse representation of mapper compu-
tations as performed with rate A;. Let «; denote the total size of load assigned to
mapper . According to the methodology of DLT we assume that «; is a rational
number. This simplification implies that the load assignment obtained in our
model needs rounding to load units used in practical MapReduce. We assume
that the effects of such load rounding are negligible. It will be assumed that the
amount of results produced by the mappers is proportional to the input size. For

«; bytes of input vy«; bytes of output are produced.

106

In the third stage (cf. Fig. 4.2) the results stored on the mappers are read by
the reducers. We assume that the partitioning function divides the space of key
values into r equal parts. This is achieved by the use of hashing in distributing
the mapper output as described in Section 4.1. Consequently, the size of the input
for each reducer is equal to voV/r bytes in m chunks of sizes vy /7, ..., Yooum /T
Each chunk comes from a dedicated file on a different processor. We assume
that the reducers read the load from the mappers with equal rate C'. There
may be some advantages in the communication speed if a mapper and a reducer
are executed on the same processor. Still, each reducer has to read its input
from all mapper workers and such advantages cancel out when averaged over all
the inputs. Moreover, the advantage of the local read in relation to the whole
reading time diminishes with the increasing number of mappers m. Consequently,
we assume that the differences in the communication rate for the transfers from
the mappers to the reducers are negligible. Each of r reducers reads its input
from mapper 7 in time y9a;C/r unless there is bandwidth limitation. At most
one channel can be opened to a mapper with transfer rate C. The methods of
incorporating bandwidth limitations in the communication model are described
in the following sections.

In the fourth stage r reducers sort the input data, perform reduce operations,
and finally in the fifth stage store the results in the network file system. Let

red (

5™ denote the reducer computation startup time, and a in seconds per byte)

red represents computations, transfers to

the reducer processing rate. Parameter a
local disks and storing the results in the network file system. All reducers receive
input of roughly the same size vV/r. Consequently, all reducers have equal
execution time "¢ = 574+ 7(7,V/r), where 7(x) is the running time of a reducer
vs. the size z of the input. We will assume that the reducer execution time is

red(

7(z) = a"*(xlog, x), which corresponds to the complexity of sorting. Here we

assumed that writing the reducer results in the last stage is contention-free. This

107

may not be true in general. Precautions to avoid reducers writing contention are
mentioned in the further sections and in Chapter 5.

We assume that if there are other background services executed by the pro-
cessors (e.g. for the network file system), then they influence the processor per-
formance in a constant way. In other words, simultaneous computation and
communication is possible, but performance parameters ™, a"*?, ¢;, S, s;, s
remain constant.

MapReduce implementation includes procedures to tolerate failures. We do
not include them explicitly in our model. However, a simple optimistic model of
failure handling can be assumed for the purposes of performance modeling. Since
the fault tolerance methods are based on retrying failed computations, these
features can be represented as processing load greater than V' (for mapping) or
running additional mappers and reducers. The size of the additional load can be
estimated using historical data on the failures.

Our goal is to partition the input load of size V' into mapper chunks oy, . .., a,,
and schedule mapper to reducer communications so that the total schedule length

T is as short as possible.

4.3 Schedule Dominance Properties

In this section we analyze schedule dominance properties for MapReduce compu-
tations. We start with presenting the optimum scheduling strategy for the case
when only one reducer takes part in processing. Afterwards, we study schedule

dominance properties for processing with many reducers.

4.3.1 Processing with a Single Reducer

We will say that the order of reading the results from the mappers by a reducer

is the FIFO order if a reducer reads its inputs (mapper outputs) in the order

108

P|s | a1 Ay mapper computation 51’y00|(041 — B+ O[Q)’}/UC‘

P! S | g Agy mapper computation {(ca; — 51 + a2)yC
‘ computing ! reducer reading
Pl S| a4 mapper computation (o — P2 + 041)’)/0q

B S| @Ay mapper computation B270C' (2 — B + al)’yoq

computing H reducer reading

o
-

Figure 4.4: Reducer read orders. a) FIFO schedule structure, b) LIFO schedule struc-
ture.

of starting computations on the mapper processors (Fig. 4.4a). The opposite
sequence of reading the results, starting from the last activated mapper processor,
and finishing with the mapper activated as the first one, will be called the LIFO
order (Fig. 4.4b). The results can be read from the mappers sequentially. This
means that only after reading the whole file from mapper ¢ can a reducer start
reading the file from mapper i+ 1 (in the given sequence, e.g. FIFO or LIFO). In
the opposite case a reducer may open two communication channels to mappers ¢
and 7+ 1 and read the files concurrently. In the latter case the bandwidth 1/C of
the input to the processor running a reducer is shared by both channels. Below we
argue that faster processors should start computations first, and that the results

should be read sequentially in the FIFO order.

Proposition 4.1. When there is only one reducer (r = 1), a MapReduce schedule
activating mapper processors in the order of nondecreasing A;, with sequential

FIFO reducer reads, is optimum.

Proof. We will show that the above schedule structure is optimum by comparing
the amounts of load processed by the mapper processors in a given time 7" against
different schedule organizations. The schedule structure proposed above allows
for processing bigger load in time 7' than in other schedules. Therefore, it also

allows for processing given load V' in the shortest time. Let us analyze the case

109

with two mappers (m = 2).

Let us first analyze the FIFO structure (see Fig. 4.4a) with bandwidth sharing.
The reducer reads from the first mapper the load of size ya1. Let 0 < o8 <
Yoar1 be the part of load read from the first mapper while the second mapper is still
computing. The remaining part 7o(c; — (1) is read in parallel with the results
from the second mapper. The speed of reading mapper results is determined
by the shared bandwidth é of the reducer input interface. Thus, we have the

following relationships in the computing and communication times:

P1 : S + OélAl + 51’}/00 + (Oél — ,81 + Oég)”)/oc =T (41)

P2 : 25 + O{2A2 + (O{l - 61 + O{g)’)/QC = T, (42)
from which we obtain

Pl . S + oy (Al + ’}/00) + (1/2’}/00 =T (43)

P2 : 25 + OéQ(AQ + ’}/00) + (O{l - ﬁl)%C =T. (44)
From (4.3) we obtain
Qg = (T -5 - (03] (Al + ’}/00)) /’)/QC (45)

which substituted in (4.4) yields

. TA2 + S’)/()C - SA2 - 51786'2

= 4.6
“ A Ay + A Cyp + AsC (4.6)
Returning with «a; to (4.5), the load ay is
TA; —25A; — S%C + iryoCAr + B C?
Qg = . (47)

A Ay + A1Cy + A2C0

110

Together we have

(T = S)(Ay + Az) = SAL + B170CA4

4.8
A1Ay + A1Cry + ACy (48)

a1+a2:

Note that the above load is increasing with §;. Hence, it is biggest if 5, = a;.
This means that the bandwidth is not shared while reading the results from the
second mapper. Therefore, the equation system (4.3)-(4.4) gets the following

form:

Pl : S + (1/1141 + (Oél + (1/2)’)/00 =T (49)

P2 : 25 + OéQ(AQ + ’}/00) =1T. (410)

From (4.10) we obtain

T —28
= — 4.11
@ Ay + 7 C’ ()
and by observing that S + Asas = a1(A; +70C) (cf. Fig. 4.4a) we get
TA2 + S’}/()C — SA2
ap = . 4.12
' (A1 +7%C) (A2 +7%0) (4.12)
The total size of the processed load is
TA +A TvC —25A; — SAy — Sv,C
o +ag = LALFA) F T Lo o (4.13)

(A1 +7C)(Az +70)

Let us now analyze the LIFO result reading order (cf. Fig. 4.4b). First let
us check if bandwidth sharing while reading mapper results is profitable. Let
0 < 79fB2 < Yoz be the part of the results read by the reducer from P, while P,

is still computing. Analogously to (4.3), (4.4) we obtain in the LIFO case:

P1 : S —+ Oél(Al + ’700) + (Oég — 52)”)/06' =T (414)

P2 : 25 + OéQ(AQ + ”)/()C) + 061’}/00 =1T. (415)

111

From (4.15) we derive oy and substitute it in (4.14), from which we obtain

o TAl — S’)/OC — 25141 — ,82’)/802

“ T T A Ay 1 ACrp + AsCrg (4.16)
By substituting s in (4.15) we have
oy — T2 = SA> + S3C + B AnoC + BarfC? (417)
A1As + A1Cvyo + ACyp
Together the processed load is
oy — (T'—S)(AL + Ay) — SA + ,BQAQ’}/(]C. (4.18)

AlAQ + Alc”)/o + AQC”)/O

As in (4.8), it is a function strictly increasing with 3. Hence, it is most effective
to make 55 = ap, i.e. the maximum possible. Consequently, bandwidth shar-
ing while reading the results from two mappers is not profitable. Now we will
calculate what amount of load is processed in the LIFO mode in given time 7',

provided that By = ag. From (4.14)

T—-S
= 4.19
“ Ay +7C ()

By observing that Ajay = S + (As + 70C)ay and using the above value of a; we

obtain
TAl - 25141 — S’}/(]C
(A1 4+ 70C) (A2 +7%C)

ay = (4.20)

Together the load processed in the LIFO mode without bandwidth sharing is

T(Al + Ag) + T’}/()C — 2SA1 — SAQ — 25’}/00
(A1 +7%C) (A2 +70) '

aq —+ Qg = (421)

Comparing (4.13) and (4.21) we see that the FIFO order of the reducer input

reading is more profitable because the numerator in (4.13) is bigger by Sv,C.

112

It remains to determine the optimum order of starting the computations on
the processors. If we switch the order of activating the processors from (P, P),
to (P, Py) then the processor indices in (4.13) get swapped and the processed

load is
T(Al + Ag) + T’}/()C — 25142 — SAl — S’)/QC
(A1 +7%C) (A2 +7%0)

oy +ag = (4.22)

Subtracting «; + a5 in equation (4.13) from o) + o in the above equation we get

SA; — SA

o +ab) — (o) + ay) =)
(o1 +a5) = (01 + ar) (A1 +7%C) (A2 +70)

(4.23)

Thus, the load processed in time T increases after the swap only if A; > Ay. This
means that in the order (P, P») we would have started computations on a slower
processor first. Hence, the faster processor should start the computations earlier.

We demonstrated that for two mappers, sharing bandwidth while reading
outputs from the mappers is not profitable both in the LIFO and in the FIFO
order of reading. Of the two orders FIFO is better, and for FIFO the faster
processor (i.e. the one with the smaller A;) should be started first. This result

can be iteratively extended to more than just two mappers. O

4.3.2 Processing with Many Reducers

In this section we consider scheduling for more than one reducer. Unfortunately,
a generally optimum schedule structure, similar to the one defined in Proposition
4.1 for a single reducer, does not seem to exist for many reducers. On the con-
trary, it will be shown that each of the alternative schedule structures with many
reducers can dominate the other under certain conditions.

As suggested by Proposition 4.1, we assume the FIFO order of finishing the
computations on the mappers and that a single reducer is not reading the results
from two (or more) mappers in parallel. As explained in Section 4.2, the amounts

of load read by all reducers are the same. The actual processors running the

113

P lS |a1 A; mapper computation|oz1%0 /r |a1700 /r| l%g%fggé}%&%n

a Lo :
) Py fS |a2A2 mapper computation | aayoC'/1 | eyoC/7 gg%éﬁ%gﬁ%ﬂl -----
time
P1 | S Jon Ay mapper computation|a;70C/rarnC/ I
b) P ; [H
Py : S |a2A2 mapper computation |gyoC / 71@2’700 / T %gglgﬁ%gﬁ%ﬂl -----
time o
P l S a1 Ay mapper computation a1y C | %%%S%&%n
b 1 H
(¢ | f
) Py T S | as Ay mapper computation a7y C %gglg%%g&%rn -----
| time

Figure 4.5: Many reducers exemplary read schedule structures. a) Case A, reducers
read in parallel, b) case B, reducers read sequentially, ¢) reducers share bandwidth.

reducers can be arbitrary free machines. For example, P, can execute reducer 1
after completion of mapper 1, or it can be some other processor from a separate
computer pool if such a pool exists.

The alternative communication schedules are shown in Fig. 4.5. In the first
schedule type (Fig. 4.5a) the end of reading the results from P; by the first
reducer is synchronized with the end of the computations on F;.;. Note that
in this schedule different reducers read different mapper results in parallel, what
may violate the bisection width limit. For the time being, we assume that the
bisection width is not exceeded. We will call this schedule type case A. In the
second type of schedule (Fig. 4.5b) the reducers read output from the mappers
sequentially. The end of reading the data by the last reducer from mapper P;
coincides with the end of computation on mapper P;,;. Here all reducer reads
are sequential, only one communication channel is used at a time. Therefore,
the speed of communication is the same as in one-to-one communication without

network contention. We will refer to the second type of schedule as to case B.

114

Py S |ayA; mapper computation| a170C/2 a17C/2 J

Py : ’S |a2A2 mapper computation 042”)/00/2 042700/2
a) | Tst redpcar ...
| computation
¢ T »/2nd reducer
1 computation "

Pi| S |ajA; mapper Computation|oz1’y()0/2 a1yC/2

b) Py : {i| oAy mapper computation | voyoC'/2 ozwgC/Z\
! Tst reducer | ...
| computation
T 2nd reducer

A

I
hl

computation

Figure 4.6: Special cases of the first reducers read orders. a) Case A.1, b) Case A.2.

In the third type of schedule (Fig. 4.5¢) the reducers read the results from the
mappers one by one, but the bandwidth is equally shared between the reducers.
The end of reading from mapper P; coincides with the end of computations on
mapper P;;. This case is very similar to Case B. Hence, we do not analyze it
separately in the further discussion.

To demonstrate the lack of dominance of the above communication schedule
structures we will calculate the amount of load processed on two mappers and
transferred to two reducers (m = r = 2) in time 7. Note that since the execu-
tion times of the reducers are equal, the minimization of 7" is equivalent to the

minimization of the whole schedule length.

Case A. We can distinguish two sub-cases (Fig. 4.6). In the first one (case A.1)
there is an idle time in the communications with . This means that reading
results from P is longer than from P,. Hence a; > as. In the second sub-case
(case A.2) communication with P; is longer than with P, and a; < as.

Case A.1. In the first sub-case we have the conditions:

(03] (Al + ’700/2) = OéQAQ + S (424)

S + oy (Al + ’700) + Oég’)/()C/Q =T (425)

115

(03] Z Q9.

Hence, we obtain:

TAs — AsS +7CS/2

T A Ay + A2 + AroC + 12C2/4
o — TA1+T’}/00/2—2A15—3/2’)/QCS
2T AlAg +A1’}/00/2 +A2’}/00+’7802/4
T(Al + A2 + ’}/00/2) — S(2A1 + Ag) - ’)/QCS
)] + g =

A1As + A10C/2 + AyyoC 4+ 13C% /4

with an additional requirement oy > sy equivalent to:

Case A.2. In the second sub-case we have the conditions:

Oél(Al + ’}/00/2) = OégAg + S
25+ as(As+7C) =T

(03] S Q9.

Hence, we obtain:

T Ay — A4S + 4CS

UT A Ay + AiyeC + AyyoC2 + 12022
B TA, + TyC/2 — 24,5 — 7CS
2T A A+ AieC o+ AgyoC2 12022
T(A;+ Az +7%C/2) — S(24; + As)
(03] + Qg =

A1 Ay + AiyoC + AxyoC/2 +745C2% /2

with an additional requirement o < s equivalent to:

116

Y

(4.26)

(4.27)
(4.28)

(4.29)

(4.30)

(4.31)
(4.32)

(4.33)

(4.34)
(4.35)

(4.36)

(4.37)

At least one of the conditions (4.30), (4.37) is always satisfied. If both are

satisfied, then the load amounts given by (4.29) and (4.36) are equal.

Case B. In the current schedule structure we have the conditions (cf. Fig. 4.5b):

(03] (Al + 2’)/00/2) = OéQAQ + S (438)

Thus, we obtain:

o TAy — A58 +vCS (4.40)
! A1 Ay + A1yoC 4 AyyoC + 72C2 '

o — TAl + T’}/()C - 2A15 - 2’)/005 (4 41)
2 A1 Ay + A1yoC 4 AgyoC + 72C? ‘

T(Al + Ag + ’}/()C) — S(2A1 + Ag) — ’)/005
= . 4.42
ot o A Ay + A1yoC + Ag7oC + 1202 (442)

Let us now compare the amounts of load processed in time 7' in the above
analyzed schedule structures. By comparing (4.29), (4.36), (4.42) we can see that
none of the schedule structures always results in the biggest processed load for
a given time 7'. Thus, no single communication schedule structure seems to be
optimum in all cases. To build the optimum schedule a more general tool, possibly
incorporating all possible structures, must be applied. On the other hand, if we
concentrate only on the part of (4.29), (4.36), (4.42) which grows with 7', then it
can be concluded that for very big T' (which may result from a need for processing
very big loads) the load processed in cases A.1, A.2 is larger than in case B. For
example, the difference between (4.29) and (4.42) in the part proportional to T’
is equal to

T(A1+A2+’yoC/2) _ T(A1+A2+’yoC) _
A1A2+A1'\/QC/2+A2700+’*/302/4 A1A2+A1'\/QC+A2'\/QC+’7802

T0C/2(A2+43/2A170C+ A2 C/2+~v2C2/2) -0 (4 43)
(A1 A2+ A170C/2+A270C+75C2 /4) (A1 A+ A170C+ A2 C+5 C?))

117

P | S| a1 Ay mapper computation| a17C ‘ fj%%lfc)ﬁl‘éation

P S | ;A mapper computation | ;i C ‘
Pt S a1 A mapper computation | @i+170C
Py S | amAm mapper computation | apC |

time

Figure 4.7: The schedule structure for a single reducer.

A similar inequality can be derived for (4.36) and (4.42). Therefore, in the further

discussion we will be using schedules based on case A.

4.4 Scheduling Algorithms

In this section we propose algorithms for the load partitioning in MapReduce
computations. For processing with a single reducer, when optimum schedule pat-
tern is known, we give an algorithm yielding the optimum load partitioning. In
the case of many reducers the optimum schedule structure is not known. Hence,
we propose two heuristic scheduling methods, based on the results obtained for
a single reducer and inequality (4.43), and consider their advantages and disad-
vantages. A general scheduling algorithm for a sequence of reducing applications,
each of which may be executed on many processors, will be presented in Chapter 5.
Since all reducers have equal execution time "¢, we concentrate on minimizing
the length of the partial schedule comprising mapper computations and mapper

to reducer transmissions.

4.4.1 Single Reducer

Let us remind that it follows from Proposition 4.1 that the mappers should start
the computations in the order of increasing A;s and the outputs from the mappers
are read sequentially. Let us assume that processors Fi,..., P, running the

mappers are numbered according to increasing A;s, ie. A; < Ay < ... < A,

118

A schedule for the above setting is shown in Fig. 4.7. From Proposition 4.1 and
from Fig. 4.7 we infer that the time of computing on processor P; and reading its
results is equal to the time of startup and computing on processor P,y ;. Hence

we get a system of linear equations determining the load partitioning:

(AZ + ’}/()C)O./i =S + Ai+1ai+1 for i = 1, e, — 1 (444)

zm: a;=V. (4.45)
=1

The above linear system can be solved in O(m) time for ;s by the reduction of

«; to affine linear functions of a,, i.e. a; = l; + k;a,. More precisely, from (4.44)

=0 kp=1 (4.46)
LS Aw
Y A+ C A+ %O S
S Ainr

= lz kz m) —
Ai+’YoC+Ai+%C(+1 7+ Kiriam)

_ (S n Aipilipy) n (Ai—i-lki—i-l)a _
Ai+7%C A +7C Ai+ywC) ™

=1; + ko, fori=m-—1,...,1. (4.47)

By substituting «;s in (4.45) we obtain

o, = Y Z iz bi (4.48)

Zz’:l ki

and the remaining «;s are obtained from (4.48) and (4.47). Let us note that
ay, in (4.48) may be negative. This negative solution is a demonstration that at
the current parameters A;,vo, C, S,V the number of processors m is too big to
use them all. Therefore, if a,, < 0, then the number of processors m must be

decreased.

119

Py IS |Oé1A1 mapper|a1700/rla1700/r|QZWOC/T*

P; *S Iay;Ai mapper Oziﬂ/UC/TI iamC’/rl MC/M

Py SlaiiAir mapper J0i%C/r|0i1%C oi190C] -

am’yOC/rH ‘am’\/OC/T]

Tst reducer
computation

P, }S |amAm mapper computation am%C / r

r-th reducer
computation®"**

-
-

time

Figure 4.8: A schedule for many reducers. The first method.

If all a; are nonnegative, then the total schedule length is (cf. Fig. 4.7)

T =mS + ap(Apy +7%C) + 1" = S + a1 A} + %OV + 7 (4.49)

where ¢4 = s7¢d 4 (v, V /7).

4.4.2 Many Reducers

Below we propose two scheduling methods for MapReduce computations with
many reducers. Each of them has its advantages and weaknesses. We summarize

them at the end of this section.

The first method of load partitioning for many reducers is a natural extension
of the method for a single reducer. The schedule structure is shown in Fig. 4.8.
In this method the end of the read by the first reducer from P; coincides with the
mapper completion time on F; ;. The method of calculating oy, ..., a,, forr =1
presented in Section 4.4.1 can be applied here with using the communication time
7C/r in place of v,C. Thus, the load partitioning is determined by the system

of linear equations:

(AZ + ’YoC/T)O&Z' =5 + Ai—i—lai—i-l for i = 1, N (e 1 (450)

120

» a;=V. (4.51)

The solution of this system is given by formulas:

o; =l + ki, fori=m-1,...,1 (4.52)

l,=0, k,=1 (4.53)

li:ﬁ’ kl_m fOI"L—m—l,...,l (454)
V=" o,

Qi = Lt (4.55)

None of the mappers is read simultaneously by many reducers and no reducer
reads outputs from many mappers in parallel. The bandwidths of the mappers’
network output interfaces and the reducers’ network input interfaces are not

shared. Yet, the bisection width limitations are not obeyed if [< r. The schedule

length is
m C &
T = malx{iS + a;(A; +7%C) + Sl E a;} + (4.56)
i= r
j=it1

where "¢ = s7¢d 4 (v V /7).

This schedule may be implemented as follows. Whenever P; finishes trans-
ferring its results to reducer j, it notifies P,,; to begin a transfer to j. Then
P; starts transferring results to reducer j + 1, provided that it has been already

notified to do it by P;_;.

The second method assumes that the order of mapper to reducer communi-
cations is given, and they are preassigned to certain time intervals. The commu-
nication schedule structure is shown in Fig. 4.9. A mapper to reducer transfer
appears in exactly one time interval. Hence, in each interval [¢;,¢;,1) a complete
set of results of size ypa; /7 is read from a mapper P;. All reducers read map-
per processors in the same order: Py, Ps,..., P,. The order of reducer reads is

the same for all the read mappers. New communication operations are started

121

PlS | oAy 1-1152 idle [1s3(1o4 1

P | S| and, 122 idle R34

Py S| asA; 31352 idle podl3—4| |

Py S| Ay 1512 idle [4—3[4—4
i Tst reducer
| computation ! '
2nd reducer C
: computation !
3rd reducer
: computation "+
4th reducer
: computation -
time

Figure 4.9: A schedule for many reducers. The second method. Notation ¢ — j means
transfer of mapper ¢ results to reducer j.

as soon as the mappers finish their computations and the sufficient number of
communication channels (not exceeding the bisection width [) is available. The
bisection width limitation is obeyed, as well as sequential reading of the mapper
results by the reducers. This schedule can be implemented as in the previous
method with additional precautions not to exceed the bisection width limit /.
For example, whenever the number k of completed load transfers on mapper 1 is
such that £ mod [= 0, mapper 1 waits to be notified by mapper m that kK —1+1
transfers from mapper m are completed.

Let us analyze the number of necessary communication intervals. If [> r,
then the bisection width limit [is not bounding, and the number of intervals
necessary to perform m reads by each of r reducers is m + r — 1. On the other
hand, if the number of simultaneous channels is [< r, then after opening [read
channels by [reducers the (14 1)-th reducer shall wait until the completion of the
read operation of the first reducer from the m-th mapper. This requires m — [

additional communications of reducer 1 with mappers P q,..., P, to release a

122

communication channel. Consequently, m — [idle intervals appear in the reads

from each mapper. Then, at the end of each interval [t,,, t,n11), - - -, [Emet, tmaie1)

a new read operation is started by reducers [+ 1,...,[+[. Thus, after m — [idle

intervals, read operations are performed in the following [intervals. The sequences
r

of m—1[idle intervals are inserted in the schedule [7]—1 times. Overall, there are

([71—=1)(m—1)+m+r—1 intervals in the communication schedule. For simplicity
of notation let us introduce a function itv(, j) which returns the number of the
interval in which reducer j reads output of mapper i (counting starts with value

1 for interval [t1,t5)). The values of itv(i,) can be calculated as follows:

ito(i, j) = (m _ 1) m+i+(j—1)mod! (4.57)

fori=1,...,m,5=1,...,r. Let vti(i) be the set of mappers which are read in
interval 7, i.e.

vti(i) = {a : itv(a,b) =i,be {1,...,r}}. (4.58)

The values of vti(i) can be tabulated in O(mr) time. The partition of the load

can be calculated from the following linear program.

minimize &ipp(m,r)+1 (4.59)
1S+ Aja;=t;, for i=1,....m (4.60)
YC

—oy <ty —t; for i=1,... itv(m,r), k€ vti(i) (4.61)

"
 a=V (4.62)
i=1

In the above linear program «;,t; are variables. We minimize the completion
time of the last communication ¢i;y(m,)41. By constraints (4.60) the computations
finish before reading from the mappers is started. Inequalities (4.61) guarantee
that all communications fit in the time intervals where they are assigned. The

whole load is processed by (4.62). The linear program (4.59)-(4.62) has itv(m,)+

123

1 + m variables, which is O(mr/l), and at most m + 1 + itv(m,r)l constraints,
which is O(mr).

The above linear program can be further simplified. Let us remind that the
reducers read equal size outputs from a certain mapper. For example, all commu-
nications (7, j) from a fixed mapper i to reducers j = 1,...,r have the same size
Yoo /7. Consequently, intervals [tmatis tmatit1), and [Empti, tmpriv1) have equal
length because they comprise read operations from the same set of mappers, for
some positive integers i, a < b such that mb+i < itv(m,r). The block of intervals
[ty tma1)s - - - [t2am—1, t2m) is repeated ([7] — 1) times. After them (r — 1) mod [
intervals follow which repeat the lengths of some earlier intervals. Namely, the
distance between Cito(m, ([21-1)i+1) and ti;y(m,)+1 is equal to the distance between
tm and t,,4 ((r—1) mod 1)+1. Consequently, the length of the schedule until the end

of mapper to reducer communications is

r
b + (Irj—l - 1)(t2m - tm) + (tm-i—((r—l) mod {)+1 — tm) =
r
= ([ﬂ — D) (t2m = tm) + tms((r—1) mod 1)41- (4.63)

The values of variables t4,,1; for 1 < a < [7]—1and 0 <7 < m can be calculated
as tm + a,(tgm — tm) + (tm_ﬂ' — tm) = a,(tgm - tm) + tm-i—z'- Hence, LP (459)—(462)

can be reduced to

e r

minimize ([ﬂ — 1)(tam — tm) + tmt((r—1) mod 1)+1 (4.64)
C

W vy <t —t; for i=1,...,2m,k € vti(i) (4.66)
-

i=1

The functions of the constraints in the above LP are the same as in the earlier one.

The number of variables is 3m, the number of constraints is at most 2ml+m+1.

124

The objective function (4.64) reduces to t,,4, if r <.

The above two methods of scheduling have advantages and disadvantages.
The first algorithm is mathematically simple and easy to implement in practice.
On the other hand it ignores the network bisection width. The second one is
more precise in representing bandwidth limitations. Additionally, since the re-
ducer computations start times are spread in time, the reducer writes are also
spread in time, what allows to avoid network contention while writing the final
results. On the other hand, this method makes specific assumptions (although
not unrealistic) on the structure of the schedule, and requires more careful coor-

dination (synchronization) of communications.

4.5 Performance Analysis

Below we analyze the influence of the system parameters on the performance
of MapReduce computations. All linear programs were solved using lp solve
linear programming library [41]. Unless stated otherwise, we assume the following
reference system and application parameters: (u =16E6, m = 1000, r = [= 100,
S =1 C =" =1E-8, vy = 0.1, a™® = g™ =1E-7, s™%® = "¢ =1E-2,
V' = 1E15. The above values can be interpreted as follows. The size of a load unit
is approximately 16 MB. There are 1000 mappers, 100 reducers, and the bisection
width is not bounding. We will study the influence of the limited bisection width
in the further text. The computation startup time S is 1s. The communication
rate, both for the mappers and for the reducers, is 10ns/B. The computation
startup times for each unit of load on the mapper, and for the reducers are 10ms.
The load size is 1PB.

If the bisection width [is not bounding, then both methods of load parti-
tioning presented in Section 4.4 give similar results (within the range of analyzed

parameter values). Therefore, with the exception of channel number [consider-

125

Table 4.2: MapReduce phase duration vs. problem size V.

mapper to
\% startup mapping reducer reducing T
transfer
1E17 2.10E-04% | 2.43% 0.231% 97.6% | 4.7TTE08
1E16 2.25E-03% | 2.61% 0.249% 97.4% | 4.44E07
1E15 2.44E-02% | 2.83% 0.269% 97.2% | 4.10E06

1E14 0.265% 3.19% 0.291% 96.8% | 3.78E05
1E13 2.87T% 4.73% 0.303% 95.3% | 3.49E04
4.383E12 6.65% 6.64% 0.292% 93.3% | 1.50E04

ations, we will present the results obtained for the first method, which is much
faster.

Let us start with analyzing characteristic schedule features. This will be useful
in understanding the following results. In Table 4.2 we have collected the relative
durations of the MapReduce phases for various problem sizes. Note that the
percentages do not sum to 100% because the phases partially overlap. The last
line is given for the smallest load for which m = 1000 mappers could be effectively
used. For smaller V' some of the a;s become negative. It can be seen in Table 4.2
that the schedule length is dominated by the reducing time, and this domination
grows with the problem size V. This observation remains valid also for higher
complexity functions than 7(x) = a"*¥(xlog,), because then the reduction time
dominates even more.

In Fig. 4.10 the imbalance of the mapper load distribution is presented. On
the horizontal axis the indices of the mappers are shown. A bigger number means
that the mapper is activated later. On the vertical axis the fractions «;/(V/m)
are shown. The dependencies are depicted for instances with one parameter
changed with respect to the reference system. Instances with C' = 1E-9, v, =
0.01,7 = 1000 are shown as one line as they all represent equal load partition.
It can be seen that for some system configurations the load on the mappers

increases, for some other configurations the load fractions decrease. The border

126

14
13
12 \]

1.1

1.0 4

0.9 \\
e ’/x/r
—x— reference configuration \
0.7 —o— C'=1E-9, or 7,=0.01, or r=1000
—&— S=50
—— V=1E13
0.6 *— qMP=1E-8 '\
0.5 T T T T
0 200 400 600 800 1000

Figure 4.10: Skew of mapper loads, for varied system parameters.

cases are systems which satisfy Srm = ~VC. This formula can be derived
analytically for a homogeneous system by calculating by how much the load in
a pair of processors P;, P;y; must differ to satisfy equation (4.50). Precisely, let

a; = a1+ A, Ay = Ay = A. From equation (4.50) we have

(A + ’}/()C/’/’)(Oéi_;_l + A) =5 + Aai—i—l- (468)

From this it can be derived that

A= (S’/’ - Oéi+1’}/00)/(147’ + C’}/()) (469)

By assuming that the load distribution is equal, o1 = V/m and A = 0, we
obtain the above mentioned formula. We observed that the systems with Srm <
Y%V C have increasing load distribution oy < as < ... < «,,, while systems
with Srm > ~,V C have decreasing load distribution a; > as > ... > a,,. The
second case seems advantageous for the overall performance because the mapper

completion times are less scattered in time (see Fig. 4.8). Note that the reference

127

system has the less advantageous, increasing load distribution.

In the following discussion we use speedup as a performance index. Classically,
speedup is calculated as acceleration of computations on a certain number of
processors with reference to the execution time on a single machine. However,
mapping and reducing can be performed on different numbers of processors, what
makes the dependence 2-dimensional, and consequently harder to understand.
For clarity of the following charts it is often more convenient to use different
reference systems than a single-processor configuration. Therefore, we define

speedup in a slightly more general way:

o(a,b) = 22 (4.70)

where T'(a, b) is the schedule length for the reference system with a mappers and b
reducers, and T'(m, r) is the schedule length for the tested system with m mappers
and r reducers. Here m,r are subject to change, and a,b remain constant. In
some tests even m,r remain fixed, and other parameters (e.g. lu, a™ 1) are
varied. According to equation (4.70), ¢(1,1) is equivalent to the classic speedup.
The above definition emphasizes the reference system which may be different for
different charts.

The performance of MapReduce with respect to growing number of mappers m
is shown in Fig. 4.11. It can be observed in Fig. 4.11 that for » > 100 the number
of mappers that can be effectively exploited is smaller than 20000. Moreover,
with growing m the speedup ¢(1,1) levels off around r when m > 7, but it
grows with increasing r. This can be explained in the following way. The whole
processing time has three main components: the time of mapping, the interval
of data transfer from the mappers to the reducers, and the reducing time. For
variable number of mappers m, and the remaining system configuration fixed,
only the first interval is changing its length with m. If m < r then increasing

mapper number m reduces the schedule length, and hence the speedup grows

128

1E5

IS
~§ —a— =1
§ —=— =10
—— =100
14 —>— r=1E3
—%— r=1E4

1E3

1E2

1E0 T T T
1E0 1E1 1E2 1E3 1E4 1E5

Figure 4.11: Speedup ¢(1,1) vs. the number of mappers m for various numbers of
reducers r. Load size V = 1E15.
nearly linearly. For m > r the mapping time becomes much smaller than the
other two intervals. Hence, the reducing time dominates and determines the
speedup for m > r. The reducing time, in turn, decreases with r even faster than
linearly because the complexity function of reducing operations is nonlinear in
V/r. Hence, the speedup increases with r slightly faster than » when m > r. Let
us note that the above observations depend very much on the amount of results
YV produced by the mappers. We discuss it in the further text (cf. Fig. 4.13).
The performance of MapReduce with respect to changing number of mappers
m and problem size V', for fixed number of reducers » = 100, is shown in Fig. 4.12.
Note that in Fig. 4.12 the speedup ¢(1, 100) is shown, i.e. it is calculated according
to (4.70) with respect to the system with a = 1,b = 100. When calculated
with respect to a single machine (i.e. for ¢(1,1)) then with changing V the
speedups differ from each other by not more than 27%, and the lines nearly
overlap in a setting similar to Fig. 4.11. Therefore, we decided to use ¢(1,100)
in Fig. 4.12 to expose better the influence of V' on the performance. It can be

observed in Fig. 4.12 that for smaller problem sizes (V' =1E13, 1E14) the lines end

129

35

kpeedup

//‘
) [
) -

15

30

—— V=1E13
= V=1E14
10 ——V=1E15
——V=1E16
—— V=1E17

m
0

1E0 1E1 1E2 1E3 1E4 1E5

Figure 4.12: Speedup ¢(1,100) vs. the mappers number m and problem size V', for
r = 100.

before 10000 mappers. This means that a system with a certain big number of
mappers cannot be effectively exploited because the load is too small considering
the computation startup times and processing rates. With growing problem size
V' the speedup ¢(1,100) is getting smaller. This is a consequence of the following
facts. The mapping time and the communication time grow nearly linearly with
V. On the other hand, the complexity function of reducing grows with V' faster
than linearly. Hence, when V' grows, the reducing time grows in relation to the
mapping time and the communication time. When V is big, increasing m reduces
the schedule length in a smaller degree than when V' is small. Consequently, the
bigger load sizes V' are, the smaller the speedups that are achievable by changing
mappers number m.

In Fig. 4.13 the dependence of speedup <(1,1) on the multiplicity 7o of the
results produced by the mappers is shown for changing m and fixed r = 100. Let
us remind that on average for each input load unit [u the mappers produce luy
results. Thus, the bigger 7y is, the more data is transferred from the mappers to

the reducers. When 7, is very small, the reducing time and the time of transfer

130

1E4

speedup

1E3

1E2

m

1E0 T T T T
1E0 1E1 1E2 1E3 1E4 1E5

Figure 4.13: Speedup ¢(1,1) vs. mappers number m and result multiplicity factor 7,
for r» = 100.

from the mappers to the reducers are very short, and the mapping time dominates.
On the other hand, for big v the reducing time dominates in the schedule length.
Hence, changes of vy control the speedup in Fig. 4.13 in a two-fold way. The first
is the speedup for m = 1, and the second is the maximum speedup for big
numbers of mappers m. Note that here the speedup is shown for a system with
a fixed number r = 100 of reducers. Thus, already for m = 1 we have some
speedup with respect to the single-machine system (where a = b =1 in equation
(4.70)). For m = 1 the bigger v, is, the more computations shift to the reducers,
and the more the » = 100 reducers have to do. Consequently, for m = 1 (and
r = 100) bigger 7o results in bigger speedup. For very big m the mapping time
is already short, and the schedule length is determined by the reducing time. As
a result, when g is big (79 = 1, or 79 = 0.1) the speedup saturates around the
number of reducers r. On the other hand, when 7, is small, reducing no longer
dominates in the schedule length, while mapping prevails. Then, the mapping
time can be reduced by adding mappers, and the speedup is linear in a far wider

range of mapper numbers m, up to nearly m = 1000 for vy = 1E-3. It can be

131

Table 4.3: Speedup ¢(1,1) vs. load unit size lu, for m = 1000, r = 100.

lu 1E3 1E4 1E5 1E6 1E7 1E8
A; 1.011E-5 | 1.110E-6 | 2.100E-7 | 1.200E-7 | 1.110E-7 | 1.101E-7
s(1,1) 749.9 308.9 160.9 142.5 140.6 140.4

concluded from Fig. 4.13 that vy is a very important parameter for scalability of
MapReduce computations. With small values of 79 MapReduce scales well with
m, and systems with m > r can be effectively used.

Now let us analyze the impact of the load unit size [u on the performance
of MapReduce. In Table 4.3 we show the relation between load unit size [u,
the resulting mapper processing rate A;, and speedup ¢(1,1) for the system with
m = 1000, » = 100 and all parameters fixed except for [u. It can be seen that the
impact of lu is visible only if [u is very small and s;/lu is greater than or close
to max{a™", ¢;}, i.e. when lu is selected extremely badly. It can be concluded
that for reasonable lu sizes (lu > 1E6) the impact of lu is small. We have an
artifact of big speedup when [u is small (lu = 1000). Obviously, bigger speedup
for lu = 1000 does not mean that the computations are finished in a shorter
time. For lu = 1000 the cumulative processing rates A; of mappers are very big,
mappers work slowly, and mapping time is big in the whole schedule length. For
big lu, cumulative processing rates A; of the mappers are smaller (processors are
faster), the mapping time has a smaller contribution to the schedule length, and
using m = 1000 mappers reduces the schedule length relatively fewer times than
when parameters A; are big. Consequently, for m = 1000 we have better speedup
with lu = 1000 than for [u = 1ES.

While reading input for mapping, some machines may access their input data
from local disks. This results in smaller values of s;,c;, what gives some per-
formance advantage. Since the overall influence of s; is minor (cf. Table 4.3),

we analyzed the influence of ¢; only. We depict the performance advantages due

132

1.7
> | —a— a"?=1E-6 /
) 7",()]): _

16 —=—a 1E-7

—— a"=1E-8
¢ a™P=1E-9
15 —%— ™" =1E-10

S/ S
/S)
S
L

0.01 0.1 1

kpeedup

Figure 4.14: Speedup ¢(1000,100) vs. the fraction of fast mappers and microscopic
computing rate . Standard ¢; = 1E-8, fast ¢; = 1E-10.

to the local reads in Fig. 4.14. Since the schedule length is dominated by the
reducing time, we eliminated it in Fig. 4.14 by showing the speedup with respect
to the time by when mapper to reducer communications finish, for m = 1000,
r = 100. To draw Fig. 4.14 we assumed that reading from a local file is 100
times faster than reading from the network. Thus, the standard reading rate is
¢; = 1E-8, and the fast reading rate is ¢; = 1E-10. On the horizontal axis the
fraction of fast processors in the whole pool of mappers is shown. For example,
value 0.1 means that 10% of mappers read their inputs locally. It can be seen
that the smaller the microscopic mapping rate a™ is, the bigger the gain from
having some computers reading their inputs faster. If the microscopic computing
rate a™ is small, then the communication rates are not dominated by the com-
puting rate. On the other hand, another effect can be observed. Note that with
changing a™, the load partition and the schedule proportions also change. The
load distribution resulting from equations (4.50) and (4.51) is very imbalanced
when a™? is very small. Precisely, if ¢ is small, then also A; are small, values

k; in (4.54) quickly decrease, while values of [; stabilize. Consequently, the load

133

speedup

—— V=1E13
1.10 -=—-V=1E14
——V=1E15
— V=1E16
1.05 + —%— V=1E17
1.00 r L
1 10 100

Figure 4.15: Speedup ¢(1000,100) vs. the bisection width [and problem size V.

partitioning is very unequal, and the schedule length is not shorter as one could
expect. This is an artifact caused by assuming a particular schedule structure.
For example, if ™ = 1E-9, or 1E-10 and all mappers (100%) read fast, then the
speedup decreases. For clarity, we removed the corresponding two points from
Fig. 4.14. Let us note that the speedup from fast local reading is smaller than
0.3% when calculated with included reducing time. This means that the reducing
time domination suppresses overall gains from the performance optimizations in
other stages of MapReduce.

Finally, let us discuss the impact of the limited bisection width [. As already
mentioned, if the bisection width is not bounding, the differences between the
load partitioning according to the two methods of scheduling with many reducers
are negligible. However, only the second method takes into account the bisection
width limit. Thus, in the following we report the results obtained using the latter
method. The impact of the bisection width [and problem size V' on the speedup
(1000, 100) is shown in Fig. 4.15. It can be observed that with increasing number

of channels the relative speedup stabilizes. This means that new channels from

134

150

4 ////////‘
100
8]
]
8
&
50 —4—C=1E-6
/ - C=1E-7
——(C=1E-8
—>—(C=1E-9
—*—C=1E-10
1 l
0 T
1 10 100

Figure 4.16: Speedup ¢(1,1) vs. the bisection width [and communication rate C.

the mappers to the reducers have a gradually decreasing impact on the schedule
length which becomes dominated by the mapping and the reducing time. With
increasing problem size V' the gains from additional channels [, and hence bigger
bandwidth, are relatively smaller because the reducing time increases faster than
linearly with V', while the communication time increases only linearly with V.
Therefore, speedup ¢(1000, 100) in Fig. 4.15 decreases with problem size V.

In Fig. 4.16 the impact of the bisection width [and the communication rate C'
is presented. As it can be seen, the faster the communication is (i.e. the smaller
C'is), the smaller the impact of the bisection width. Intuitively, this behavior is
expected. When the speed of communication from the mappers to the reducers
is small, then adding new channels increases the bandwidth and reduces the load
transfer time significantly. Hence, for ' = 1E-6 the speedup increases with
the bisection width /. On the other hand, if the communication speed is high
(C = 1E-9, C' = 1E-10), then the bandwidth from the mappers to the reducers
is sufficient, and adding new channels has no impact on the performance which

is determined by the mapping and the reducing time.

135

4.6 Summary

In this chapter we proposed a mathematical model of MapReduce application.
We proposed two scheduling algorithms of mapper to reducer transfers. The
first one is mathematically simple, but it does not take into account the bisec-
tion width limitations of the data center network. The second method obeys
the bisection width limitation, but requires more careful organization of data
transfers. When the bisection width was not a limiting factor, then the results
obtained from both methods were very similar. Then, we analyzed the influence
of the system parameters on the performance of MapReduce computations. The

following observations have been made:

e The complexity of reducing operation is higher than the other components

of MapReduce computations. This has the following consequences.

— MapReduce computations scale well with the number of reducers r.
However, each reducer produces one output file and a large number of

output files may be impractical in some applications.

— The amount of results v,V produced by the mappers is a key parameter
controlling the performance of MapReduce, as v,V shifts the bulk of
the computation cost between mapping and reducing. The bigger v,V
is, the smaller the contribution of the mapping time, and the less the
number of mappers m decides about the performance. If 7y ~ 1, then
the number of mappers m need not be greater than the number of

reducers r.

— Reducing time domination can override gains from some optimizations,

e.g. from reading load from local disks by some mappers.

It seems that the reducing operation shall become a bottleneck for the

performance of MapReduce.

136

e Increasing the number of channels [or the communication speed 1/C com-
pensate each other because they both increase the bandwidth between the
mappers and the reducers.

e The influence of the load unit size [u on the performance is marginal.

137

5 Multilayer Divisible Applications

In the previous chapter we introduced a mathematical model and two scheduling
algorithms for MapReduce applications. A MapReduce application consists of
two computational stages: mapping and reducing. It is stated in |23] that the
output of a MapReduce is often the input to another such application. Hence,
it is justified to treat a chain of such divisible computations processing the load
one after another as one application consisting of many stages which we will call
layers. Therefore, in this chapter we study multilayer divisible applications. In
the following, we generalize the mathematical model proposed in the previous
chapter to handle multilayer applications. The generalization consists, e.g., in
allowing for unequal load distribution in all layers. Then, we propose scheduling
algorithms which make fewer assumptions on the schedule structure than in the
previous chapter. Afterwards, the quality and the features of the schedules gen-

erated by our algorithms are analyzed in a series of computational experiments.

5.1 Model of Multilayer Applications

In this section we formulate a mathematical model of multilayer computations.
The notation is summarized in Table 5.1.

In a MapReduce application the mapper layer interleaves reading the data
from some place in the network with computing, while the reducer layer first ob-

tains the whole input from the mapper layer. Thus, there is a significant difference

138

Table 5.1: Summary of notation for scheduling multilayer applications.

red .red
p '°p

Bijk

T
[ti tiv1)

) = a

V

xlog,

the load size processed by mapper i; in bytes;

the computing rate and the computation startup
time for reducers in layer p; in seconds per byte

(a;,ed) and in seconds (s;ed);

the size of the load sent in interval [t;,t;11) from
sender j to receiver k;

computing rate of a processor executing mapper
application;

communication rate for reading data by the reduc-
ers and storing the final results;

bisection width limit, expressed in parallel channels;
number of mapper processors;

Processor i;

number of reducer layers;

mapper result multiplicity fraction;

layer p reducer result multiplicity fraction;

load fraction received by reducer k in layer p;
number of reducer processors in layer p;
computation startup time, equal for all processors;
schedule length;

the ¢-th communication interval in a given layer;

layer p reducer computing time function in load
size x;

the whole load size, in bytes;

139

startup layer 1 reducers read layer 2 reducers read layer p reducers store results
m |

'
P mapper | reducers read reducer computes reducers read reducer computesreducer writes .
1 computes (layer 1) (layer 1) (layer 2) | " (layer p) (layer p) !
' .- . | j ! ,
'
P . mapper 1 reducers read reducer computes reducers read reducer computes| reducer writes '
2 ' computed (layer 1) (layer 1) (layer2) | " (layer p) (layer p) .
'
! i i i] i
I 1 . ' [] !
P T T :
! ! H '
T !
Yo ' ' | ' | ' '
P - mapper freducers read reducer computes reducers read reducer computes | reducer writes
moo computes | (layer 1) (layer 1) (layer 2) | " (layer p) (layer p)
'
Yo ' ' ' ' ' ' ' '
i T T T * : ¥ f >
' 1 ! 1 ' 1 time
' mappers compute ! layer 1 reducers comput \layer p reducers comppte
—_ I—E s |

Figure 5.1: General view of multilayer application schedule structure.

in the way of reading the input load. In a sense, the mappers read "ambient"
data, while the reducers obtain their inputs from specific mappers taking part in
the computations. The mappers data delivery needs no special scheduling, while
the reducers load delivery does need it. Similarly, in a multilayer application
only the initial layer obtains the load from distributed network locations and can
process a part of the data before reading the rest of input. The processors in all
the remaining layers obtain data from the preceding layer. They need to read
all the data and only after that can they start processing. Let us remind that
the reducers have to receive the whole data set before starting the computations
because usually sorting is involved. In the following, we will be saying that a
multilayer application consists of one mapper layer and R > 1 reducer layers.
The number of mappers will be denoted by m, as in Chapter 4. The number
of reducers in layer p, 1 < p < R, will be denoted by r,. For convenience, the
mapper layer will be also referred to as layer 0.

A rough schedule structure of multilayer computations is shown in Fig. 5.1.
Multilayer computations are divided into 2R + 3 stages, which partially overlap.
The first two stages are the same as in MapReduce computations (see Section
4.2). In the startup stage, the code for all applications is loaded on the processors.
The computation startup time of each mapper processor is S.

In the second stage, each of the mappers reads the load, performs computa-

140

tions and saves the results in 7 local files for r; reducers from the first reducer
layer. In the previous chapter we perceived mapper ¢ operations as processing
load with some average rate A;. The mapper processing rates were different, re-
sulting from reading the load locally or from remote locations. However, it turned
out in Section 4.5 that the influence of differences in the mapper parameter s;
was marginal. The influence of differences in ¢; was so small, that to make it
more significant we restricted our considerations to the mapper layer only (cf.
Fig. 4.14). Otherwise, the influence of heterogeneity in ¢; was suppressed by the
reducing duration. For multilayer computations, there are many reducer layers
and the duration of their computations makes an even bigger contribution in the
overall schedule length. It can be expected that also here the influence of the
mapper heterogeneity is small. Hence, for simplicity of presentation, we assume
here that the processing rates of all mappers are equal to A. As before, by «;
we denote the size of the load assigned to mapper ¢, and by v, the mapper result
multiplicity fraction.

In the following 2R stages the reducing operations take place in the consec-
utive reducer layers. More precisely, in stage number 1 + 2p, 1 < p < R, the
reducers in layer p read load from the mappers (if p = 1) or the reducers in layer
p—1 (cf. Fig. 5.1). The partitioning function used in layer p—1 divides the space
of key values into r, not necessarily equal parts. We assume that the partitioning
functions used in all layers of computations are, in a sense, sender-independent.
The proportions between the amounts of load sent to the receivers in the next
layer should be the same for each sender. Were it otherwise, different senders
would distribute the data with the same key to different receivers, thus violating
the integrity of the results. Therefore, we determine the load distribution in a
given layer p > 1 by the fractions of load which should be received by each com-
puter. Let o, denote the fraction of results assigned to reducer k from layer p.

The amount of results produced by the reducers in layer p for the input of size «

141

is ypc. The total amount of load sent to layer p is VH?;O1 v;. Hence, reducer k

in layer p receives input of size roughly equal to d,,V Hf;ol v;- All reducers read
the load with equal rate C'. The bisection width limit is denoted by .

In stages number 2 + 2p, 1 < p < R, the reducers from layer p sort the input
data and perform the computations using a Reduce, function. For a multilayer
application, the function Reduce, in a sense comprises both reducing operations
of the p-th application in the chain and mapping operations of the (p + 1)-st
application in the chain. Because the pattern of communications between the
processors from consecutive layers is unknown in general, and a reducer can only
start computations after it receives the whole assigned load, we assume that all
reducers in layer p start the computations at the same time, after transferring all

data between layer p — 1 and p. We denote the computation startup time of a

red

reducer in layer p by s}

and its processing rate by a;ed. The computation time
of a reducer in layer p, receiving the load of size x, is defined by the function
7p(x) = ajxlogy x. As reducer k in layer p receives input of size 0,V T2 v,
its execution time is s7° + 7,(,,V 122 %)

Finally, in the last, (2R + 3)-rd stage, the reducers in layer R store the results
in the network file system with equal writing rate C'. The output of a MapReduce
application is usually available in multiple files to be used by other MapReduce
applications. However, since we analyze here the whole sequence of such applica-
tions, producing a compact set of results, we assume that the final output should
be saved in a single file. Still, the scheduling algorithms proposed in the further
text can be easily modified to handle other organizations of storing results, e.g.
keeping the data on the reducers from the last layer or parallel writing to the
network file system, confined by the bisection width limit (cf. Section 5.2.1).

A scheduling algorithm for multilayer applications has to choose the fractions

Opr, Of the load received by the reducers in each layer, partition the input load

of size V' into mapper chunks aq, ..., a,,, and schedule mapper to reducer and

142

reducer to reducer communications, as well as storing the results by the reducers

from the last layer, so that the total schedule length 7" is as small as possible.

5.2 Scheduling Algorithms

In this section we propose algorithms for load partitioning and communication
scheduling for multilayer computations. The scheduling problem is complex and
an instance contains a lot of parameters. Therefore, for clarity, we present the
algorithm divided into parts corresponding to the R+ 1 computation layers. This
is possible due to the assumption that all reducers in a given layer start the
computations at the same moment. The computations of different layers are
separated in time from each other and the schedule can be built for one layer at
a time.

Note that the optimum load distribution between the mappers (layer 0) de-
pends on the fractions of the load which should be sent to the first layer of reducers
(01%). Similarly, the load distribution for the reducers in layer p depends on the
fractions of load received by the reducers in layer p + 1. Therefore, we present
the schedule construction starting with the last layer and we proceed to layer 0.
Consequently, while scheduling computations in layer p, the fractions d,.1 are
already known. After presenting the algorithms for separate computation lay-
ers, we show how to construct the scheduling algorithm for the whole multilayer

application.

5.2.1 Load Partitioning for Reducer Layers

Processing in the last reducer layer may seem different than in the previous layers,
because the results are not sent to another set of reducers. Still, storing results
sequentially in the distributed file system can be seen as sending data to one

more layer consisting of a single processor. Hence, we can define rg,; = 1 and

143

0rt+11 = 1, and use similar formulas for obtaining the load distribution in all
reducer layers. The algorithm finding the load distribution in reducer layer p
(p=1,...,R) is described below.

We assume that all reducers in layer p start computations at time ty, = 0. Let
us denote by ¢; < ... < ¢, the moments when reducers in layer p finish their
computations. As all reducers are identical and start computations at ty = 0, we
can assume that the reducers are ordered by their computation completion times.
Thus, reducer £ finishes computations at time ;. Let ¢, 1 be the moment when
all reducers finished writing their results. The amount of load sent in interval
[ti,tiy1) from reducer j in layer p to reducer k in layer p+1 will be denoted by ;.
The following mathematical program computes the optimum values of variables
ti, 0p; and f;;,. Note that the load fractions d,1 are constants computed in the

previous step of the optimization.

minimize ¢, 41 (5.1)
p—1
s;"fd + Tp(éinHVq) <t; for i=1,...,7, (5.2)
q=0
CZ/szk < ti+1 -t for ¢ = 17---7Tp7k:17---7rp+1 (53)
=1
-
CY Bigr <t —tifori=1,...r, j=1. i (5.4)
k=1
rp Tptl
CZZﬁZ]kSZ(tl—i—l_tl) for ’izl,...,Tp (55)
j=1 k=1
Bijk =0 forj=1,...,ri=1,...,5—1, k=1,...,71 (5.6)

Tp p
Zﬁijk = 5p+1’k(5ijH’}/q fOI‘ j = 1, Ce ,Tp,]{Z = 1, Ce 7Tp+1 (57)
i=1 q=0

> 6y=1 (5.8)
j=1

144

In the above formulation, we minimize the length of the schedule from the
moment when the reducers in layer p start computations to the moment when
they finish communicating with the reducers in layer p + 1. By inequalities (5.2)
reducer ¢ in layer p finishes computations no later than at the moment t;, for
1 < i <, Constraints (5.3)-(5.5) guarantee that all communications fit in the
communication intervals together and that the bisection width limit is observed.
By (5.6) no reducer sends its results before finishing the computations. Each
reducer in layer p sends all its results by (5.7) and the whole load is processed by
(5.8). There are 121, 142r,+1 variables and 7172 /241, (3rp1+71) /2457 /2+1
constraints in the given program.

As we mentioned in Section 5.1, the above mathematical program can be
easily modified for layer p = R to handle different methods of storing the final
results. For example, if parallel writing confined only by the bisection width limit
[is possible, it is enough to omit constraints (5.3). If the results are stored locally
on each of the reducers from the last layer, constraints (5.3) should be omitted
and additionally [should be changed to rg in constraints (5.5). Alternatively,
the latter case may be handled in an even simpler way, by including the results
writing in function 7,, and substituting constraints (5.3)-(5.7) with ¢; < ¢, for
1=1,...,7rg.

Let us note that constraints (5.2) are not linear because of the form of the
function 7,. In order to provide a practical method of solving (5.1)-(5.8), we
transform this program into a linear program. We approximate the function 7,
with a piecewise linear convex function 7,. For each interval [2¥,2Y%"), for 0 <
y < log, V, the values a, = (7,(2v™') — 7,,(2¥))/(2¢" — 2¥) and b, = 7,,(2¥) — a,2¥
are calculated. Then, we set 7)(z) = ayx + b, for z € [2¢,2¢"!). Thus, the
constraints (5.2) are changed to

p—1

sI,EdjLayéinH'yquby <t for i=1,...,1,y=0,...,log,V, (5.9)

q=0

145

what increases the number of constraints in the mathematical program by r, log, V.
The relative error caused by this approximation decreases with growing z. In our
experiments (which will be described in Section 5.3), the sizes of load obtained
by the reducers are larger than 1E5. For such values the approximation error is
less than 1%. Such a range of error is on par with typical accuracy of measuring
system parameters such as A, C, a"¢, s7?. Hence, it should be sufficient for prac-
tical purposes. If necessary, a better approximation accuracy can be achieved by
considering intervals shorter than [2¥,2¢%1). As 7/(x) > 7,(x) for # <V, the load
partitioning obtained for the function 7, allows to create a feasible solution with

the original function 7,,.

5.2.2 Load Partitioning for Mapper Layer

In this section we analyze scheduling the mapper computations and the commu-
nications between the mappers and the first layer of reducers, so that this phase
of processing is as short as possible. The optimum load partitioning between the
reducers in the first layer, given by fractions d1x, has been already found by the
mathematical program described in the previous section. As the optimum order of
finishing computations by the mappers is not known, we will use binary variables
zij (1 <4,7 < 'm) to define this order. Precisely, if mapper j finishes processing
as the k-th of all mappers, then we set z;; =0 for 1 <¢ <k —1 and z; =1 for
E <4 < m. Thus, z; = 1 means that mapper j has finished computations by
time ¢;, and consequently, can send some load in interval [t;,¢;11).

Let t; < ... <t,, be the times when the mappers finish their computations.
Let t,,41 be the moment when the mapper to reducer communications finish.
We will denote by 3;; the amount of results read by reducer k from mapper
J in time interval [t;, ¢;11). Let M denote a big constant. For example, M >
mS + (C + A)V. The optimum load partitioning and the sequence of finishing

computations by the mappers can be computed from the following linear program.

146

minimize 41 (5.10)

jS 4+ Aa; >t —zy; M for i=1,....m,7=1....m (5.11)

JS+Aa; <ti+(1—z;)M for i=1,....m,j=1...,m (5.12)
C’Zﬁijk§ti+1—tiforz'zl,...,m,k:zl,...,rl (513)
j=1

CY Byp <t —tifori=1,...m, j=1...m, (5.14)
k=1

CZZ@Z]]QSZ(E_H—E) for izl,...,m (515)
j=1 k=1

Bijk < 2V fori=1,....m,j=1,....om, k=1,...,n (5.16)
Zﬁijk:(slk’}/ooéj for j:]_,...,m,k‘:]_,...,’l"l (517)
i=1

> a;=V (5.18)
i=1

zi—i-l,jzzij for izl,...,m—l,jzl,...,m (519)
Y zy=i for i=1,....m (5.20)
j=1

In the above program, z;; are binary variables, and «;, B;;x,t; are rational
variables. We minimize ¢,,.1 which is the length of the schedule until the end of
the mapper to reducer communications. Inequalities (5.11) and (5.12) guarantee
that the mappers finish computations in the order defined by variables z;;. By
(5.13) and (5.14) no mapper or reducer communicates longer than the commu-
nication interval. By (5.15) the bisection width limit is observed. Inequalities
(5.16) guarantee that no load is sent by a mapper which has not finished compu-
tations. Each reducer receives the appropriate amount of results by (5.17) and
the whole load is processed by (5.18). Constraints (5.19)-(5.20) ensure that there
is one-to-one correspondence between the mappers and moments t;, 1 <1 < m,

when they finish computations. There are m?r, + 2m + 1 rational variables, m?

147

binary variables and m?r; + 4m? 4+ 2mr, + m + 1 constraints in the above linear

program.

5.2.3 The Complete Load Partitioning Algorithm

In order to create a load partitioning algorithm for the whole multilayer appli-
cation, the mathematical programs described above should be put together and
solved as one program. However, this leads to many practical difficulties. Firstly,
such a program contains Zle(rf)rp“ +2r, + 1) + m?ry 4+ 2m + 1 rational vari-
ables and m? binary variables. The number of constraints is Zle <7’p+17’§ /2 +
7o (3rpr14+1,)/245r,/2+ 141, log, V) +m?ry +4m?+2mr; + m+ 1. Hence, the
mathematical program is very large even for very small instances. Secondly, all
values o and 6, are variables in the compound mathematical program. Hence,
in the constraints corresponding to (5.7) and (5.17) the variables are multiplied
and the program is not linear. Thus, it is very hard to solve this program in
practice. Therefore, in the computational experiments presented in Section 5.3
an algorithm solving the problem separately for each layer was used. The load
distribution obtained in this way for a given layer may be suboptimal from the
point of view of the whole multilayer application execution time. Still, it can be

used as an approximation of the solutions to start a study of the problem features.

5.2.4 Finishing Mapper Computations Order

The order in which the mappers should finish their computations is unknown in
general. This resulted in using binary variables in the mathematical program
for the load partitioning in the mapper layer. However, if the startup time S
is negligible, then the mappers are not distinguished by the order of starting
them. Consequently, the binary variables are not needed in formulation (5.10)-
(5.20), which becomes similar to (5.1)-(5.8). Furthermore, we prove below that

if the load is distributed equally between the reducers in the first layer, then the

148

comm. | c c.|C comm.

. 0) TToTe
by S A Aai” | ol ol @)

COINIT COININ COIMIM
Py S A (3) 3) 3)
time >
a)
1 COININ comi, c. C. COITIN
P]S Aal) ® | | ® ol)
comim. C. comi.
Pit1 S Aoy | Ao [@ @
time >
b)

Figure 5.2: Communication pattern in schedules a) o1 and b) oo. Labeling (i) of the
communication intervals is explained in the main text.

mappers should finish computations in the FIFO order. Also in this case the
binary variables can be removed from the LP (5.10)-(5.20).

Theorem 5.1. If 1, = % for k =1,...,r, then the FIFO order of finishing

mapper computations s optimum.

Proof. We will show that FIFO is a dominating structure by calculating the
amount of load processed in a given time, and by the interchange argument. As-
sume that in a schedule o; of the mapper phase processor P, finishes computa-
tions before P;. The amount of load processed by P, in this schedule is a; 1, and
the amount of load processed by P; is a; = agl) + aZ@), where Aaz(l) =S+ Ao
(see Fig. 5.2). Since S > 0, A > 0, we have ol > ;1. We will construct a

(1

schedule o, in which processor F; is assigned load of size «;) and processor Py
receives load of size a; 1 + a§2). Therefore, processor P; finishes computations
before P;,; in 05. The amounts of load assigned to processors other than P; and
P; .1 remain the same as in ;. We will show that it is possible to schedule the
mapper to reducer communications in oy so that the total length of o5 is not
greater than the length of o;.

Let us choose a set Z of time intervals in which P; sent load to the reducers in

149

schedule o; and which did not overlap with any communications from P, in oy,
such that Y, |I| = %C’(ozgl) —a;11). This operation is possible because the total
length of the intervals in which P; communicates in o1, and which do not overlap

@ _ Oéz'+1) >

with communications from P, is equal to at least 'yoC(agl) + «; >
%C’(ozgl) — a;41). Note that this set usually may be chosen in many different
ways. The total length of the intervals in set Z allows for sending load of size
agl) — Qigq.

Let us introduce the following labeling of the communication intervals in which
at least one of processors P; and P, sends load in ;. The intervals from Z receive
label 1, the other communication intervals in which P; sends load get label 2, and
all communication intervals containing communications from P;,; receive label 3
(cf. Fig. 5.2).

We schedule the communications in g5 so that processor P; performs all com-
munications in intervals labeled with 1 or 3, and P, sends load in intervals
labeled with 2. The total length of intervals marked with 2 is %C'(ozgl) + aZ@)) -
Yorer |l = %C(aigyr + OéZ@)). The total length of intervals labeled with 3 is
YoCa;i1. The intervals marked with 1 and 3 do not overlap. Therefore, proces-
sors P, and P;,; have enough time to send the required amount of data to the
reducers. The communications from processors other than P, and P;;; remain
scheduled in the same way as in schedule o,. The bisection width limit is still ob-
served, because we only swapped some communication slots between processors
P; and P;.

However, further changes in the communication schedule are needed to guar-
antee that each reducer receives a proper amount of load from processors P; and
P; 1. Note that the previous transformations do not guarantee that the com-
munication schedule for reducers (reading) remains unchanged. Since the load

assignments change, some reducer may have to read from two mappers simul-

taneously. The communication schedule will be changed globally, not only for

150

Pl I—1|1—=2(1—=3¢y & | | % .

P2 25222321 251 | 252 | 223 ¢ ...
PS 353|351(352 352 | 353 | 3511 ...
Ti Ti+1 Ti+2 Ti+3 time

Figure 5.3: Scheduling mapper to reducer computations in oq, for m = 3, r1 = 3.
Notation 5 — k stands for: mapper j communicates with reducer k in layer 1.
processors P; and P;i;. Let us define ¢; < ... < t, as all distinct moments in
schedule o; when any mapper to reducer communication starts or finishes. Thus,
in each interval I; = [t;,t;+1) each mapper either communicates all the time with
the same reducer, or it does not communicate at all. As the schedule is feasible,
in each interval I; there are at most min(l,) mappers sending some load.

Let us divide each interval I; into r; subintervals Iy, ..., I;, of equal length
(cf. Fig. 5.3). Let P/,..., P!, be the processors which send some load in interval
I;. Note that necessarily m’ < [and m’ < rq. In schedule o, processor PJ’ will
communicate with reducers 7,7 +1,...,7,1,...,7 — 1 in intervals [, ..., [y,
correspondingly (cf. Fig. 5.3). As m’ < ry, no reducer reads more than one
mapper at a time in schedule o,. The bisection width limit is not violated in o5
because m’ < [. Furthermore, all mappers send the same amount of load as in
schedule oy and each reducer receives the same amount of load from any given
mapper. Therefore, the obtained schedule oy is feasible and its length is not
larger then the length of .

Repeating the above procedure for each pair of processors P;, Pj.1, such that
Pj;, finished computations before P;, we prove that there exists an optimum

schedule in which the mappers finish the computations in the FIFO order. O

Whether the FIFO schedule structure is generally optimum, remains an open

question. Some computational experiments indicate that it may be the case.

151

5.2.5 Scheduling Communications

After solving the mathematical programs given in Sections 5.2.1 and 5.2.2, the
amounts of data to be sent between each pair of computers in each time interval
are known. A feasible communication schedule can be built for each interval
[ti,tir1) between two layers using a two-stage approach similar to the one used
for problem R|pmtn|Cq. [15, 19, 36]. Then, a schedule for all load transfers
can be built by the concatenation of the partial schedules for the consecutive
intervals. However, let us observe that here the algorithm for R|pmitn|Cyu. is
not sufficient because we have the bisection width constraints, not present in
problem R|pmtn|C,,.... Hence, we generalize the former approach. Below we give
the scheduling method in detail, and prove its feasibility.

Consider one of the intervals [t;, t;11) with the load transfers 3;;;, from sender j
to receiver k delivered by formulations (5.1)-(5.8) or (5.10)-(5.20). Let us denote
the number of the load senders for the given interval by n; and the number of the
receivers by ng, i.e. ny = |[{j : Bijr > 0}], no = [{k : Bijr > 0}|. Let W = [w,y]
be the ny X ny matrix defined by wj, = Cp;jx/At, where At = ;41 — t; is the
length of the time interval. Thus, w;, < 1 is the fraction of the length of the
current time interval used to transfer load from sender j to receiver k. Note that
> i 2ol wik < Uby (5.5), (5.15).

Row j of matrix W, corresponding to sender j, will be called critical if
S, wjr = 1. Similarly, the k-th column of W, corresponding to receiver £,
will be called critical if Z?;l wj = 1. We will be saying that the bisection width
limitation is active for matrix W if 371, 372 wj, = I. Let us define a set F of
positive elements of matrix W, containing:

e exactly one element from each critical row or column, and

e at most one element from each non-critical row or column, and

e exactly [elements in total if the bisection width limitation is active for W,

or at most [elements in the opposite case.

152

Thus, F corresponds to a set of concurrent communications in a feasible schedule.
Algorithm 5.1 constructs the optimum schedule for interval [¢;,t;,1) by concate-

nating partial schedules of length ¢ > 0 for a given set F.

Algorithm 5.1 MULTILAYER-COMMUNICATIONS
At = ti-l—l - tz

while At > 0 do

construct set F

Urlm'n = minwjkEJ:{wjk}

1 . n2
Upmaw -= mane{j/;wj,kgé]-‘ for all kzl,...,nz}{Zk:l wjk}

2 . ni
VUnaz = mane{k':wjk,¢}‘ for all j:l,...,nl}{ijl wjk}

if |F| < then

o2 e TR T v
min T 1—|F]
else
2 —
Uinin *= 1
end if
. 1 1 2 2
g = Il’llIl{Umm, 1— Unaz> I- Umaz» Umin}

for each w;;, € F do
schedule communication from sender j to receiver k in interval
[tiv1 — At tisy — At + eAb)
end for
for each w;;, € F do
Wik 1= Wi — €
end for
At = At(l —¢)
if At > 0 then
for each wj;, do
wjk = wir/(1 —¢€)
end for
end if

end while

153

senders receivers

bisection
Wldth Siﬂk

(O[, 1)

source

@ (0,1) ’@

Figure 5.4: Network for finding set F. Arcs are labeled with (lower, upper) bounds.
Notation a|b is used for non-critical|critical nodes (see the explanation in the main text).

In this algorithm ¢ is defined so that the elements of W:

1

e never become negative by the choice of v, . , which means that a commu-
nication is not performed after the proper amount of load is sent,
e the constraints on the sums of elements of W in any row or column are not

violated by the choice of v} . v2 _ and hence the critical communications

mazx?’ “max’

are always executed,

e the constraint on the sum of elements of W is not violated by the choice of

2

Usin, and the active bisection width limitation is also obeyed.

In each iteration of the while loop either a row or column of W becomes
critical, or an element of W is decreased to 0, or the bisection width limit becomes
active. Hence, the algorithm consists of at most n; + ny + nins + 1 iterations.

It remains to give an algorithm that finds set F for a given matrix W. This
can be done by using network flow formulation (see Fig. 5.4). Beyond the sink
and the source, the network has n; nodes corresponding to the senders, n, nodes
corresponding to the receivers, and a node representing the bisection width limi-
tation. There is an arc between sender j and receiver k if and only if w;; > 0. The

arcs from the source to the senders, from the senders to the receivers, and from

154

the receivers to the bisection width limitation node have capacities bounded from
above by 1. The arcs from the source to the non-critical senders, all arcs from
the senders to the receivers, and the arcs from the non-critical receivers to the
bisection width limitation have lower bound of capacity equal to 0. For the arcs
from the source to the critical senders and for the arcs from the critical receivers
to the bisection width limitation node the flows are bounded from below by 1.
The arc from the bisection width limit node to the sink has capacity [. If the
bisection width limit is active then its flow is bounded from below by [, and by 0
otherwise. For conciseness, in Fig. 5.4 the notation a|b is used for lower bounds
on the flow of arcs which lead from or to the non-critical|critical nodes. Finding
a feasible flow in the above network is equivalent to finding the set F: the arc
from sender node j to receiver node k with positive flow indicates w;, € F.

We will now prove that a feasible flow, and hence the set F, always exist.
Consider a weighted bipartite graph G = (X U Y, E,w), such that there are
ny vertices in X, corresponding to the rows of matrix W and nsy vertices in Y,
representing the columns of W. The set E comprises an edge between vertices
u; € X and vy € Y if and only if wj; > 0, and the weight of this edge is equal to
wj,. Note that the sum of the weights of all edges incident to any given vertex is
not greater than 1, and the sum of all edge weights in G is at most [. We will say
that a vertex is critical if it corresponds to a critical row or column in W. Thus,
the sum of weights of edges incident to a critical vertex in G is equal to 1. Let
us denote the number of critical vertices in X by cx and the number of critical
vertices in Y by cy. The subsets of critical vertices in X and Y will be denoted
by X, and Y, correspondingly. Let G denote a subgraph of G induced by the set
of critical vertices, i.e. G. = G[X.UY,]. Let w. be the sum of the edge weights
in subgraph G..

In order to prove that a feasible flow in the network described above always

exists, we need to show that there is always a matching M, in G such that

155

1) M. covers all critical vertices,
2) M, has size at most [, and

3) if the bisection width limit is active, then the size of M. is exactly .

We prove it in Theorems 5.4 and 5.5 eventually, but for this we need some prelim-
inary results. First, in Lemma 5.2 we show that a matching satisfying the above

condition 1) always exists.
Lemma 5.2. A matching in G covering all critical vertices always exists.

Proof. This follows directly from the proof given in [15, 36| for the algorithm

solving problem R|pmitn|C\a- O

Note that if cx + ¢y < [then the above result implies that there exists a
matching in G of size at most [covering all critical vertices. For the opposite
case, such a matching must contain at least cx + cy — [pairs of critical vertices
matched with each other, in order not to violate condition 2). We prove in Lemma
5.3 that a matching consisting of cx + ¢y — [pairs of critical vertices exists in
this case. In Theorem 5.4 we use this fact to prove that there exists a matching
satisfying both conditions 1) and 2) given above. Finally, in Theorem 5.5 it
is proved that if the bisection width limit is active, then a matching satisfying

conditions 1), 2) and 3) exists.

Lemma 5.3. If cx+cy > [, then there exists a matching of size at least cx +cy —1

in the graph G..

Proof. The sum of all edge weights in graph G is not smaller than ZjEXC Wik +
> key, Wik — We. Hence, by (5.5), (5.15)

> wp+ > wip—we <L (5.21)

jeXe keYe

156

As the sum of weights of edges incident to a critical vertex in G is equal to 1, we
obtain from (5.21)

w, > cx +cy — 1. (5.22)

Now consider the minimum vertex cover of G.. Since the sum of weights of
edges incident to any vertex in G, is not greater than 1, at least w, vertices are
necessary in the G. vertex cover. Thus, by (5.22) the minimum vertex cover of G,
has at least cx + cy — [elements. By Konig’s theorem, the size of the maximum
matching in G, is equal to the size of the minimum vertex cover. Hence, there

exists a matching of size at least cx + ¢y — [in G.. O

Theorem 5.4. There exists a matching in G of size at most | covering all critical

vertices.

Proof. 1f cx+cy < [, the thesis follows from Lemma 5.2. Assume that cx+cy > I.
Consider the maximum matching M in G,.. Suppose that not all critical vertices

are matched by M. We will show that for each critical vertex v € ¥ unmatched

by M either

a) there exists an even length M-alternating path m; starting in v and ending
with a non-critical vertex v € Y (cf. Fig. 5.5a), or

b) there exists an odd length M-augmenting path 7 starting from v (Fig. 5.5b).

Suppose that there is no M-alternating path m; starting in v and ending with
a non-critical vertex v' € Y. Consider the graph G, induced by the set of all
M-alternating paths starting in v € Y. Since no alternating path m; ending in
non-critical v' € Y exists, all vertices of G, contained in Y are critical. Graph
G, contains also all neighbors in X of these vertices. By Lemma 5.2, there exists
a matching in G, covering all its critical vertices from the set Y. As v is the
only critical vertex in G, contained in Y and not matched by M, there exists

an M-augmenting path starting in v. In other words, we necessarily have case

157

X/X/X X/xf\
Y’ v Yv © 9

a)

X [\ O X
Y @ Y
v v
b)

Figure 5.5: Augmenting matching M. Black nodes are critical, non-critical nodes are
white, gray nodes may be critical or not. The bold edges are in M. The left figure is the
initial matching M, the right figure is the augmented matching. a) Case a - alternating
path starting in critical v and finishing in non-critical v’ € Y. b) Case b - augmenting
path starting in critical v.
b (Fig. 5.5b). Analogous reasoning can be applied to the unmatched critical
vertices in X.

Thus, for each unmatched critical vertex v we can find either an M-alternating
path m; or an M-augmenting path m. We set M/ = M @& m or M' = M & 7,
correspondingly, where the symbol & denotes the symmetric difference. In both
cases, no critical vertices become unmatched by M’, we gain at least one critical
vertex matched by M’, and the number of edges in M’ is increased by at most
1 (see Fig. 5.5a,b). The size of the initial matching M was e,, > cx + ¢y — [
by Lemma 5.3. At most cx + ¢y — 2¢, critical vertices in G were unmatched

in M. Thus, we obtain a matching covering all critical vertices, with at most

ém + cx + ¢y — 2e,, < [edges. O

The last thing to prove is the existence of a matching satistying conditions 1),

2) and 3) in the case when the bisection width limit is active.

158

Theorem 5.5. If the sum of edge weights in G is equal to l, then there exists a

matching in G of size [, covering all critical vertices.

Proof. We can apply the same procedure as in the proof of Theorem 5.4 to obtain
a matching M of size at most [, covering all critical vertices. The sum of weights
of the edges incident to any vertex in GG is at most 1. Hence, if the sum of all
edge weights in G is [, then the minimum vertex cover in G contains at least [
vertices. By Konig’s theorem, the size of the maximum matching in G is at least
[. Therefore, if |[M| < [, we can further augment the matching M until it has

exactly [edges. O

5.3 Computational Experiments

In this section the influence of the instance parameters on the schedules for mul-
tilayer applications is analyzed. Unless written to be otherwise, the reference
system configuration used in the experiments is the following. There are R = 2
reducer layers. Each layer consists of 5 processors (m = r; = ry = 5). The size of
the test instances is a result of both high complexity of the scheduling algorithm
and the achievable numerical precision. The reducer layers are characterized by
parameters s;ed = 1E-2, a;ed = 1E-7, 7, = 0.1 (for p = 1,2), The mapper param-
eters are A = 1E-7, S = 1 and vy = 0.1. The communication rate is C' = 1E-8,
and the bisection width limit [= 5 is not restricting the communication. The

initial amount of load is V = 1E15.

5.3.1 Speedup of Multilayer Applications

In Chapter 4 we analyzed the influence of the number of processors in the two
computational layers and the other system parameters on the relative length of
the obtained schedules. Qualitatively, the results obtained for the mathematical

model presented in this chapter do not differ much from the previous ones. As an

159

11 11

S[—— w=1Lm=1 S| —— w=1Lm=1 i
S| = v=1v=1E3 S| = w=1m=1E3 /
9’§+%:1E-3,»ﬂ:1 9"§T+vo:1E—3,v1:1
—m— 4, =1E-3, v, = 1E-3 —a— 70 = 1E-3, ’lelE'?’/
7

Figure 5.6: Speedup for different ~g, 71, a) vs. m, for 4 = ro = 5, b) vs. 7y, for
m =19 = 5.

example, we present in Fig. 5.6 the speedup for changing m and r (in relation
to the system with m = r; = ry = 1). We analyzed cases with big (v, = 1) and
small (7, = 1E-3) load multiplicity fractions in each layer. It turned out that
the value of 75 has almost no impact on the speedup. This can be explained by
the fact that v, influences only the time needed to store the final results, which
is very short in comparison to the whole schedule length. Therefore, we present
only the instances with 75 =1 in Fig. 5.6.

As it could be expected, the fractions 7 and ~; influence the performance of
the application. It can be seen that the application scales well with the mapper
number m if 4o is small (see Fig. 5.6a). In this case, the reducers receive little
load and do not dominate in the computations. On the other hand, if -, is big,
then the number of mappers has a small impact on the speedup because the bulk
of computations takes place in layer 1, and the application scales better with the
number of reducers m (cf. Fig. 5.6a and Fig. 5.6b). The range of the speedup
is determined not only by 7y, but also by 7. If 74 is big, then the reducers in
the second layer receive big load and their contribution to the schedule length
is comparable with the first layer. On the other hand, if v, is small, then the
execution time of the whole application is dominated by the first reducer layer.

Then, r; has the greatest influence on the schedule length. The influence of r

160

on the performance of the application is significant for the speedup only if both
Yo and 7; are big. We do not show these results here because they follow the
pattern of Fig. 5.6a,b.

In the previous chapter we presented scheduling algorithms for 2-layer appli-
cations. The algorithms for r; > 1 assumed a specific communication schedule
structure, which could be an obstacle to finding the optimum solution. In par-
ticular, the amounts of load assigned to different processors could be biased. In
this chapter we relaxed the assumptions on the communication pattern, as well
as on the load partitioning in the reducer layers. Therefore, in the further text

we concentrate on the load distribution between the processors in a given layer.

5.3.2 Load Distribution between Reducers

This section is dedicated to analyzing the load distribution in the reducer layers.
The number of the reducers in the first layer is set to r; = 10. Since ry = 5,
the bisection width limit [= 5 is not restricting the communication between the
first and the second layer. We present the load distribution in reducer layer p
as the load fractions received by the consecutive processors relative to the equal
distribution, i.e. the values d,;/(1/r,). As the fractions of load received by the
reducers in the first layer depend on the load sent to the reducers in the next
layer, we start our study with the second layer.

The values of load fractions s, for different values of communication rate C
are shown in Fig. 5.7. Let us remind that according to the model from Section
5.1, the reducers in a given layer start computations at the same moment and
finish them in the order of their indices. Hence, the fractions ds are always
nondecreasing. It can be seen in Fig. 5.7a that for very fast communication the
load distribution in the second layer of reducers is very equal. For C' = 1E-7 the
differences are more significant than for smaller values of C', but the fractions d,

still grow nearly linearly. This can be explained by the fact that for very fast

161

1.006 4
—&— C=1E-7 /L —*— (C=1E-4
1.004 +—a— C=1E-8 —— (C=1E-5 /
—— C=1E-9 / T —c=1E6
1.002 -
1.000
4
0.998
/r 1 - N
o o
A k
0.994 | : ; ‘ h 07 ‘ ‘

a) b)

-
N
w
N
o
N
N
w
~
&)1

Figure 5.7: Relative load fractions da4/(1/r2) vs. communication rate C, a) fast com-
munication (small C), b) slow communication (big C').
communication, the time of computations dominates in the schedule length for
a given layer. Therefore, to make this time shorter, the load should be divided
equally, so that the computations finish around the same time on all processors.
The situation becomes different for slow communication (cf. Fig. 5.7b). For very
big values of C' (C' = 1E-4, C' = 1E-5) the time needed for storing the results
dominates in the schedule length. Thus, it is profitable to start communications
from some reducers very early, while other processors are still computing. This
leads to great inequalities in the load distribution between the reducers. The
first processors receive very small load, while the last reducer has to process more
than a half (for C' = 1E-5) or even more than 90% (for C' = 1E-4) of all data.
The load distribution between the processors in the first reducer layer is pre-
sented in Fig. 5.8. As in the second layer, the distribution is balanced for fast
communication and very unequal for slow communication. Another interesting
phenomenon can be observed. For fast communication, the reducers can be di-
vided into two groups comprising 5 processors each (see Fig. 5.8a). The processors
in a given group receive similar amounts of load. As there are 5 processors in
layer 2 which receive data from the reducers in the first layer, we infer that the
processors in a given group can use a similar communication pattern, but com-

municate with the reducers from the second layer in different order. Precisely,

162

1.0015 5

—m— C=1E-7 —x— C=1E-4
1.0010 H—&— C=1E-8 4 || C=1E5

—o— C=1E-9 —— C'=1E-6
1.0005 -H—%— C'=1E-10
1.0000
0.9995
0.9990

k

0.9985

Figure 5.8: Relative load fractions 01 /(1/r1) vs. communication rate C, a) fast com-
munication (small C), b) slow communication (big C').

for very fast communication, the reducers in layer 1 constitute rectangular blocks
of computations of roughly the same time on 7y processors. The processors in
a given group finish computations around the time when the previous group
finished sending the results to the next layer of reducers. Thus, it seems that
the optimum communication pattern in this case is similar to the first method
of scheduling MapReduce computations proposed in Chapter 4. The difference
is that in Chapter 4 we synchronized the computations and communications of
consecutive processors, and not consecutive groups of several workers. The in-
equalities in the load distribution between the processors in a given group become
larger when C' gets larger. This can be caused by a more unequal load distribu-
tion in the second reducer layer. It can be seen in Fig. 5.8b that in the case of
slow communication the groups of 5 processors cannot be distinguished anymore.
It can be inferred that the pattern of communications is very different for slow
communications.

In the test instances described above the number r; was divisible by r5. Thus,
for fast communication the reducers in the first layer could be divided into groups,
each of which comprised 7, computers. In Fig. 5.9 we show the load distribution
in the first reducer layer for r; = 10 and ro = 4. In this case, one group of size 4

and three groups of size 2 can be distinguished for C' = 1E-7, and groups of sizes

163

1.002 5
—a— C=1E-7 —%— (O'=1E-4
—— C=1E-8 4 L |—C=1E5

—&— (C=1E-6 /

Figure 5.9: Load fractions d1 ; vs. communication rate C for ry = 10, ro = 4, a) fast
communication (small C'), b) slow communication (big C).

4, 2, 4 are visible for C' = 1E-8. Thus, there is no simple repetitive pattern in
the load distribution, which could be easily generalized to any system configura-
tion. Additionally, the number and the sizes of the obtained groups depend on
parameter C'. This suggests that in the systems with fast communication it may
be profitable to use the numbers of reducers r; divisible by r5. In such a case,
the assumption that the processors are divided into r1/ry groups can be used to
base the scheduling algorithm on a predetermined load partitioning pattern. This
would result in the design of simpler and faster scheduling heuristics.

The amount of time necessary to send the load from one reducer layer to
another depends not only on parameter C, but also on the bisection width limit
[. Let us remind that the load distribution in the last layer does not depend on [,
as the results are stored sequentially. In Fig. 5.10 we present the load distribution
in the first reducer layer for different values of [. The value C' = 1E-8 in Fig. 5.10
can be considered fast communication. The results shown in Fig. 5.10a confirm
that the groups of processors receiving similar amounts of load are connected
with the number of processors which can communicate at the same time. When
[= 2, groups of 2 processors can be observed in Fig. 5.10a. For [= 1 each
processor constitutes a separate group. Similarly, for [= 5 five-processor groups

can be observed. If r is not divisible by [(Fig. 5.10b), then no clear groups of

164

1.0015 1.0004

—o—[]=5 - [=4
1.0010 - [=2 —a]=3
= 1.0002
1.0005
1.0000 | { 1.0000
0.9995
0.9998
0.9990
k k
0.9985 N — 09996 4 —— —
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
a) b)

Figure 5.10: Relative load fractions 6 ,/(1/r1) vs. the bisection width limit [, a) ry
divisible by I, b) r; not divisible by .
processors can be distinguished. It seems that the pattern of communication is

not so simple anymore.

5.3.3 Load Distribution between Mappers

In this section we analyze the load distribution in the mapper layer. In the fol-
lowing simulations we assumed the FIFO structure of the mapper computations.
Whether it is generally optimum, remains an open question. However, we chose
this structure for several practical reasons. The startup times are short in relation
to the whole schedule, and hence, the order of starting processors and startup
procedure have small impact in differentiating the processors. Mixed integer lin-
ear programming is computationally hard, and only very small instances can be
solved to optimality in acceptable time. The choice of the FIFO order allowed us
to solve larger instances of the problem: the number of mappers was m = 50 in
the experiments presented in this section.

In the first series of experiments we analyzed the load distribution between the
mappers for relatively small startup times S = 1. The results of the experiments
with changing C' and [are presented in Fig. 5.11. The load distribution in the
mapper layer was shown as the fractions «;/(V/m). As could be intuitively

expected, the results are very similar to the distributions for the first reducer

165

—— C=1E-6 —1l=1
544 . c—1E7 12— 1=3 /
—— (C=1E-8 [——1=5 ‘/
4 1.1
3 1.0
2 0.9 A/“‘_r
1 0.8 =z
J
0 : : : : 07 : : : :
0 10 20 30 40 50 0 10 20 30 40 50
a) b)

Figure 5.11: Mapper load fractions a;/(V/m) for S =1, a) vs. C, b) vs. L.

layer. The difference between the computations in the mapper and the reducer
layers is the presence of startup time S, but its influence was almost negligible in
this set of experiments. Thus, we observed the same phenomena as were described
in Section 5.3.2. For example, groups of min{ry,/} mappers with nearly equal
load assignments can be distinguished when C' is small and m is divisible by
min{ry,[}. When C'is big, the majority of the load is processed by the machines
activated as the last ones.

In order to better expose the differences between the mapper and the reducer
layers we increased the startup time S to 1E4. The results of the experiments with
changing communication rate C' are shown in Fig. 5.12. For fast communication
we observed a qualitative difference in the load distribution (see Fig. 5.12a).
The mapper loads are now generally decreasing. Similarly to the reducer layer,
the mappers can be divided into groups of consecutive 5 processors (we have
rp = =5). However, the fractions of load obtained by the processors in a given
group are far from equal. The difference between the amounts of load received by
two consecutive processors from the same group is about 1E11 for C' = 1E-8, 1E-
9, 1E-10. The time needed to process load of this size on a mapper is 1E4, which
is equal to the startup time S. Thus, the processors in a given group receive such

amounts of data that they finish computations at approximately the same time.

166

k —— C=1E-6
1.10 5 1

: -\ —— C=1E-7 F«
1.05 e, 4

1.00 3
0.95 H—— C=1E-8 2)
—— O=1E-9 -""n.:.:\
0.90 H—— C=1E-10] T
j J
0.85 ‘ ‘ ‘ ‘ : 0 : : : :
0 10 20 30 40 50 0 10 20 30 40 50

a) b)

Figure 5.12: Mapper load fractions «;/(V/m) for S = 1E4 vs. C, a) fast communication
(small C), b) slow communication (big C').

Then, they use the available communication channels to send the results to the
reducers. The first computer in the next group of mappers receives such amount
of load that it still performs computations while all communication channels are
used by the previous group. For C' = 1E-8 this means that the load obtained by
the first processor in a given group is larger than the load assigned to the last
processor in the preceding group. Hence comes the characteristic saw-like pattern
in Fig. 5.12a.

When the communications gets slower (C'is bigger) the situation changes and
is more similar to the reducer layer distribution (cf. Fig. 5.12b). The sizes of
load assigned to consecutive mappers are increasing and the groups of 5 mappers
receiving similar amounts of load can be seen. This can be explained by the
fact that for slow communication the startup time S = 1E4 is not significant in
the schedule length. Hence, the results obtained here are similar to the reducer
layers.

The load distributions in the mapper layer for different bisection width limits
[are presented in Fig. 5.13. When the number of mappers m is divisible by [
(Fig. 5.13a), then groups comprising [mappers can be observed again. Different
tendencies can be seen for different values of [. When [= 5, the amount of load

assigned to the mappers in a given group and the amounts of load obtained by

167

. *«\ —— =1)x"x} 1.05 S

1.05

1.00 1.00 %

0.95 \‘\ —— =4 X
- j_,-'"xr 095 +———1=3 =]

j J
0.85 T T T T J 0.90 T T T T
0 10 20 30 40 50 0 10 20 30 40 50

a) b)

x*x'“

Figure 5.13: Mapper load fractions «;/(V/m) for S = 1E4 vs. [, a) m divisible by [, b)
m not divisible by .
consecutive groups are decreasing. For [= 2, the first mapper in a given pair
receives more load than the second, but there are no visible differences between
the groups. For [= 1, the load sizes assigned to the mappers are increasing.
Although these three patterns seem different, they are in fact instantiation of the
same type of communication organization. The [mappers in a given group finish
the computations around the same moment. The mappers from each following
group finish the computations when the preceding group finishes sending results
and the communication channels can be used by the next group of processors.
Such an organization of processing is not possible when m is not divisible by
[(Fig. 5.13b). In this case, the groups of [mappers can be seen at the beginning
of the mapper sequence, but for the mappers activated later, the group pattern
gradually disappears. Thus, the schedule starts with blocks of [mappers, which

gradually dismantle to single-mapper "groups".

5.4 Summary

In this chapter we introduced multilayer divisible applications and proposed
scheduling algorithms for all computation layers. The order in which the mappers

should finish their computations was analyzed. We proved that the FIFO order

168

is optimum in some special cases.

The load distribution between the processors in different computation layers
was analyzed. It turned out that it is to a large degree determined by the com-
putation rate C. When (' is small, the computation time dominates the schedule
length. Hence, the load distribution is rather balanced, so that all processors fin-
ish computing around the same time. If C' is very big, the communication time
dominates the schedule length and it is profitable to start the communications as
soon as possible. This leads to big inequalities in the load distribution.

Another important parameter influencing the load distribution is the bisec-
tion width limit [. If the number of senders (mappers or reducers) is divisible
by [and the communication is fast, then the computers form groups of size [.
The computers in a given group finish the computations around the same mo-
ment and send their results during the same time interval, using the [available
communication channels. The next group finishes the computations almost ex-
actly when the communication channels are released. If the number of senders is
not divisible by [, the groups of [computers are visible at the beginning of the
sender sequence, but then they disappear. Thus, it may be profitable to use the
numbers of mappers or reducers divisible by /. In this case, due to the additional
information about the schedule structure, faster scheduling algorithms may be

devised.

169

6 Summary and Conclusions

In this work we analyzed scheduling divisible loads in heterogeneous distributed
systems. First, we studied classical single-round divisible load scheduling prob-
lems in star networks. We proposed fully polynomial time approximation schemes
for the problems with infinite bandwidths. This result complements computa-
tional complexity analysis of this problem. The obstacles in approaching the
more general problem with finite bandwidths were presented. Future research
may include further analysis of the approximability of this problem. Another di-
rection is the construction of approximation algorithms for single-round divisible
load scheduling with limited memory.

The second problem analyzed in this work was multi-round scheduling in
star networks. Such an organization of communications allows for decreasing the
initial communication delays and for taking into account the practical memory
limitations. We proposed a genetic algorithm solving the corresponding schedul-
ing problem and used it to perform an experimental study of the properties of the
near-optimum solutions. Analytically obtained results were also provided. The
results were used to construct fast and simple heuristics for our scheduling prob-
lem. We analyzed them experimentally and compared with the algorithms known
from the earlier literature. The heuristics proposed in this work obtained substan-
tially better results in much shorter time. Some classes of inefficient heuristics
were singled out. These results can be used as a base for future research on

approximation algorithms for the analyzed problem.

170

The following parts of this thesis were dedicated to scheduling divisible MapRe-
duce and multilayer computations. Scheduling divisible loads with precedence
constraints was not studied before. We proposed mathematical models and
scheduling algorithms for the analyzed organization of computations. On the
basis of a series of computational experiments we analyzed the influence of the sys-
tem parameters on the performance of MapReduce applications and the structure
of the schedules. These results can be helpful in constructing effective computer
networks as well as in designing efficient MapReduce and multilayer divisible
applications in practice. The analysis of the load distribution in multilayer com-
putations showed that the communication parameters in a great extent influence
the amounts of load which should be assigned to the particular processors. We
pointed out that adjusting the number of computers used for processing to other
system parameters (e.g. the bisection width limit) may lead to simplifications in
the scheduling algorithms and in the structure of the optimum schedule. This
fact can be useful both for designing multilayer applications and for controlling
their execution. A future research direction is better modeling of MapReduce
and multilayer applications. Several problems posed in this work, like finding the
optimum order of finishing mapper computations or constructing fast approxi-
mation algorithms for scheduling multilayer applications, are also open areas for

further study.

171

Bibliography

[1]

2]

3]

4]

5]

6]

R. Agrawal, H.V. Jagadish, Partitioning Techniques for Large-Grained Par-
allelism, IEEE Transactions on Computers 37 (1988) 1627-1634.

T. Badics, E. Boros, Minimization of Half-Products, Mathematics of Oper-

ations Research 23(3) (1988) 649-660.

O. Beaumont, H. Casanova, A. Legrand, Y. Robert, Y. Yang, Scheduling
Divisible Loads on Star and Tree Networks: Results and Open Problems,
IEEE Transactions on Parallel and Distributed Systems 16 (2005) 207-218.

O. Beaumont, A. Legrand, L. Marchal, Y. Robert, Independent and Divis-
ible Tasks Scheduling on Heterogeneous Star-Shaped Platforms with Lim-
ited Memory, Laboratoire de I'Informatique du Parallélisme, Ecole Normale

Supérieure de Lyon, Technical Report 2004-22 (2004).

O. Beaumont, A. Legrand, Y. Robert, Scheduling Divisible Workloads on
Heterogeneous Platforms, Parallel Computing 29(9) (2003) 1121-1152.

J. Berliniska, Fully Polynomial Time Approximation Schemes for Schedul-
ing Divisible Loads, in: R. Wyrzykowski, J. Dongarra, K. Karczewski, J.
Wasniewski (Eds.), Parallel Processing and Applied Mathematics: 8th In-
ternational Conference PPAM 2009, Part II, Lecture Notes in Computer
Science 6068 (2010) 1-10.

172

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

J. Berlinska, M. Drozdowski, Dominance Properties for Divisible MapReduce
Computations, Institute of Computing Science, Poznan University of Tech-
nology, Research Report RA-09/09 (2009), http://www.cs.put.poznan.

pl/mdrozdowski/rapIIn/ra0909.pdf.

J. Berlinniska, M. Drozdowski, Heuristics for Divisible Loads Scheduling in
Systems with Limited Memory, Proceedings of the 4th Multidisciplinary In-
ternational Scheduling Conference: Theory & Applications (2009) 321-329.

J. Berlinska, M. Drozdowski, Heuristics for Multi-Round Divisible Loads
Scheduling with Limited Memory, Parallel Computing 36(4) (2010) 199-211.

J. Berlinska, M. Drozdowski, Scheduling Divisible MapReduce Computa-
tions, Journal of Parallel and Distributed Computing 71(3) (2011) 450-459.

J. Berlinska, M. Drozdowski, M. Lawenda, Multi-Installment Divisible Loads
Scheduling in Systems with Limited Memory, Institute of Computing Sci-
ence, Poznan University of Technology, Research Report RA-07/08 (2008),

http://www.cs.put.poznan.pl/mdrozdowski/rapIIn/ra0708.pdf.

J. Berlinska, M. Drozdowski, M. Lawenda, Experimental Study of Scheduling
with Memory Constraints Using Hybrid Methods, Journal of Computational
and Applied Mathematics 232 (2009) 638-654.

V. Bharadwaj, D. Ghose, V. Mani, Optimal Sequencing and Arrangement in
Distributed Single-Level Tree Networks with Communication Delays, IEEE
Transactions on Parallel and Distributed Systems 5(9) (1994) 968-976.

V. Bharadwaj, D. Ghose, V. Mani, T.G. Robertazzi, Scheduling Divisible
Loads in Parallel and Distributed Systems, IEEE Computer Society Press,
Los Alamitos, CA, (1996).

173

[15] J. Blazewicz, W. Cellary, R. Stowinski, J. Weglarz, Scheduling Under Re-
source Constraints - Deterministic Models, Annals of Operations Research 7

(19836).

[16] J. Blazewicz, M. Drozdowski, Scheduling Divisible Jobs on Hypercubes, Par-
allel Computing 21 (1995) 1945-1956.

[17| J. Blazewicz, M. Drozdowski, Distributed Processing of Divisible Jobs With
Communication Startup Costs, Discrete Applied Mathematics 76 (1997) 21-
41.

[18] J. Blazewicz, M. Drozdowski, M. Markiewicz, Divisible Task Scheduling -
Concept and Verification, Parallel Computing 25 (1999) 87-98.

[19] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, J. Weglarz, Scheduling Com-

puter and Manufacturing Processes, Springer, Heidelberg (1996).

[20] Y.-C. Cheng, T.G. Robertazzi, Distributed Computation with Communi-
cation Delay, IEEE Transactions on Aerospace and Electronic Systems 24

(1988) 700-712.

[21] Y.-C. Cheng, T.G. Robertazzi, Distributed Computation for a Tree Network
with Communication Delays, IEEE Transactions on Aerospace and Elec-

tronic Systems 26 (1990) 511-516.

[22] N. Comino, V.L. Narasimhan, A Novel Data Distribution Technique for
Host-Client Type Parallel Applications, IEEE Transactions on Parallel and
Distributed Systems 13 (2002) 97-110.

[23| J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large
Clusters, in: OSDI’04: Sixth Symposium on Operating System Design and
Implementation, San Francisco, CA (2004) 137-150, http://labs.google.

com/papers/mapreduce.html.

174

[24]

[25]

26]

[27]

28]

29]

130]

M. Drozdowski, Scheduling for Parallel Processing, Springer, London (2009).

M. Drozdowski, W. Gtazek, Scheduling Divisible Loads in a Three-
Dimensional Mesh of Processors, Parallel Computing 25 (1999) 381-404.

M. Drozdowski, M. Lawenda, Multi-Installment Divisible Load Processing
in Heterogeneous Systems with Limited Memory, in: R. Wyrzykowski, J.
Dongarra, N. Meyer, J. Wasniewski (Eds.), Parallel Processing and Applied
Mathematics: 6th International Conference PPAM 2005, Lecture Notes in

Computer Science 3911 (2006) 847-854.

M. Drozdowski, M. Lawenda, A New Model of Multi-Installment Divisible
Loads Processing in Systems with Limited Memory, in: R. Wyrzykowski,
J. Dongarra, K. Karczewski, J. Wasniewski (Eds.), Parallel Processing and
Applied Mathematics: 7th International Conference PPAM 2007, Lecture
Notes in Computer Science 4967 (2008) 1009-1018.

M. Drozdowski, P. Wolniewicz. Experiments with Scheduling Divisible Tasks
in Clusters of Workstations, in: A. Bode, T. Ludwig, W. Karl, R. Wismuller
(Eds.), Euro-Par 2000 Parallel Processing: 6th International Euro-Par Con-
ference, Lecture Notes in Computer Science 1900 (2000) 311-319.

M. Drozdowski, P. Wolniewicz, Processing Time and Memory Requirements
for Multi-Installment Divisible Job Processing, in: R. Wyrzykowski, J. Don-
garra, M. Paprzycki, J. Wasniewski (Eds.), Parallel Processing and Applied
Mathematics: 4th International Conference PPAM 2001, Lecture Notes in

Computer Science 2328 (2002) 125-133.

M. Drozdowski, P. Wolniewicz, Divisible Load Scheduling in Systems with
Limited Memory, Cluster Computing 6 (2003) 19-29.

175

[31]

[32]

3]

[34]

[35]

136]

[37]

[38]

139]

M. Drozdowski, P. Wolniewicz, Optimum Divisible Load Scheduling on Het-
erogeneous Stars with Limited Memory, European Journal of Operational

Research 172 (2006) 545-559.

D. Ghose, H.J. Kim, Load Partitioning and Trade-Off Study for Large
Matrix-Vector Computations in Multicast Bus Networks with Communica-

tion Delays, Journal of Parallel and Distributed Computing 55 (1998) 32-59.
C. Gini, Variabilita e mutabilita, C. Cuppini, Bologna (1912).

D. Hochbaum, D. Shmoys, Using Dual Approximation Algorithms for
Scheduling Problems: Theoretical and Practical Results, Journal of the ACM
34(1) (1987) 144-162.

H.J. Kim, G. Jee, J.G. Lee, Optimal Load Distribution for Tree Network
Processors, IEEE Transactions on Aerospace and Electronic Systems 32(2)

(1996) 607-612.

E.L. Lawler, J. Labetoulle, On Preemptive Scheduling of Unrelated Parallel
Processors by Linear Programming, Journal of the ACM 25(4) (1978) 612-
619.

X. Li, V. Bharadwaj, C.C. Ko, Processing Divisible Loads on Single-Level
Tree Networks with Buffer Constraints, IEEE Transactions on Aerospace

and Electronic Systems 36 (2000) 1298-1308.

X. Li, V. Bharadwaj, C.C. Ko, Distributed Image Processing on a Network
of Workstations, International Journal of Computers and Applications 25

(2003) 1-10.

T. Lim, T.G. Robertazzi, Efficient Parallel Video Processing through Con-
current Communication on a Multi-Port Star Network, in: 2006 Conference

on Information Sciences and Systems, Princeton, NJ (2006) 458-463.

176

[40]

[41]

[42]

[43]

[44]

[45]

|46]

147]

48]

J. Lin, C. Dyer, Data-Intensive Text Processing with MapReduce, Morgan
& Claypool (2010).

Lp_solve reference guide (2010), http://1psolve.sourceforge.net/5.5/.

R. Pike, S. Dorward, R. Griesemer, S. Quinlan, Interpreting the Data: Par-
allel Analysis with Sawzall, Scientific Programming 13 (2005) 277-298.

K. van der Raadt, Y. Yang, H. Casanova, Practical Divisible Load Scheduling
on Grid Platforms with APST-DV, Proceedings of the 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’05) (2005)
29.b.

C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, C. Kozyrakis, Eval-
uating MapReduce for Multi-Core and Multiprocessor Systems, HPCA ’07:
Proceedings of the 13th International Symposium on High-Performance

Computer Architecture (2007) 13-24.

T.G. Robertazzi, Ten Reasons to Use Divisible Load Theory, IEEE Computer
36 (2003) 63-68.

J. Sohn, T.G. Robertazzi, S. Luryi, Optimizing Computing Costs Using Di-
visible Load Analysis, IEEE Transactions on Parallel and Distributed Sys-

tems 9 (1998) 225-234.

H.M. Wong, V. Bharadwaj, Aligning Biological Sequences on Distributed
Bus Networks: A Divisible Load Scheduling Approach, IEEE Transactions
on Information Technology in Biomedicine, 9(4) (2005) 489-501.

Y. Yang, H. Casanova, M. Drozdowski, M. Lawenda, A. Legrand, On the
Complexity of Multi-Round Divisible Load Scheduling, INRTA Rhone-Alpes,
Research Report 6096 (2007), http://hal.inria.fr/inria-00123711/

en/.

177

