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Abstract

In 1965 Erdős asked what is the maximum number of edges in k-uniform hyper-
graphs on n vertices in which the largest matching has s edges. He conjectured
that it is maximized either for cliques, or for graphs which consist of all edges
intersecting a set of s vertices. Neither construction is uniformly better than the
other in the whole range of parameter s (1 ≤ s ≤ n/k), so the conjectured bound
is the maximum of these two possibilities.

In this thesis we present results obtained while working on this problem.
In particular, we confirm Erdős’ conjecture in a general k-uniform case for n ≥
2k2s/log k, and, more importantly, settle it in the affirmative for k = 3 and
n large enough. We also derive a stability result which shows that in order to
verify Erdős’ conjecture it is enough to prove it in an asymptotic form.

In the last chapter, we discuss new conjectures and results obtained while
working on Erdős’ problem. In particular, we formulate a structural conjecture
that might be considered as an asymptotic generalization of Tutte’s Theorem
for hypergraphs, and, if true, may bring us closer to solve the Erdős’ matching
problem. Moreover, we state a new probabilistic conjecture on small deviation
inequalities, of a similar flavour as Samuels’ conjecture stated in 1965. We con-
firm it in a few instances, by proving that it is asymptotically equivalent to the
fractional version of Erdős’ matching problem.
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Streszczenie

W 1965 roku Erdős badał rodzinę k-jednostajnych hipergrafów na n wierzchoł-
kach, w których największe skojarzenie zawiera dokładnie s hiperkrawędzi. Za-
pytał wtedy, jaką największą liczbę krawędzi może posiadać hipergraf z takiej
rodziny, wskazując przy tym dwóch naturalnych kandydatów na hipergrafy, które
tę liczbę maksymalizują. Jednym z nich jest hipergraf, którego wszystkie krawę-
dzie zawierają się w pewnym ustalonym (ks + k − 1)-elementowym podzbiorze
wierzchołków; inny gęsty przedstawiciel tej rodziny to hipergraf składający się ze
wszystkich krawędzi przecinających ustalony zbiór s wierzchołków. Gdy s jest
małe drugi z tych hipergrafów ma więcej krawędzi, gdy s jest bliskie n/k zachodzi
sytuacja odwrotna. Erdős postawił hipotezę, że dla każdej wartości parametru s

(1 ≤ s ≤ n/k), w rodzinie hipergrafów na n wierzchołkach, w których największe
skojarzenie wynosi s, nie ma grafu gęstszego od powyższych dwóch hipergrafów.

Główną część rozprawy stanowią wyniki dotyczące sformułowanej powyżej
hipotezy Erdősa. Pokazujemy, że jest ona prawdziwa dla hipergrafów k-jedno-
stajnych jeśli tylko n ≥ 2k2s/log k i, co ważniejsze, dowodzimy jej dla hipergrafów
3-jednostajnych dla n > n0. Prócz tego podajemy również szereg wyników doty-
czących struktury grafów, których gęstość jest zbliżona do grafów najgęstszych.
Pokazują one w szczególności, że aby zweryfikować hipotezę Erdősa wystarczy
pokazać prawdziwość jej słabszej, asymptotycznej wersji.

W ostatnim rozdziale omawiamy nowe hipotezy i wyniki związane z hipo-
tezą Erdősa. Między innymi stawiamy pewną hipotezę strukturalną, która może
być postrzegana jako asymptotyczne uogólnienie Twierdzenia Turána na hiper-
grafy, a której rozwiązanie może przybliżyć nas do udowodnienia hipotezy Erdősa.
Ponadto formułujemy hipotezę dotyczącą rozkładu sumy pewnych niezależnych
zmiennych losowych, podobną do hipotezy Samuelsa z roku 1965, pokazując, że
jest ona asymptotycznie równoważna ułamkowej wersji hipotezy Erdősa.
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Chapter 1

Introduction

The thesis makes a contribution to the field of extremal combinatorics. We study
a number of problems concerning matchings in hypergraphs related to Erdős
conjecture from 1965. We also show how to apply our results to address some
questions on small deviation inequalities for sums of independent random vari-
ables.

Extremal graph theory deals with problems, when we are to minimize or
maximize some of the graph parameters over families of graphs satisfying certain
properties. The fundamental result in this field is Mantel’s theorem, proved in
1907, which states that any graph on n vertices with no triangles contains at most
n2/4 edges. In 1941 Turán [24] generalized this theorem, having determined the
maximum number of edges in a graph on n vertices that does not contain a clique
of a fixed size as a subgraph. This result inspired the development of the theory
of Turán’s type problems, which is now a substantial field of research in extremal
graph theory. For a general graph F the maximum number of edges in a graph
without copies of F is still not determined exactly although a celebrated result
of Erdős and Stone [8] states that it asymptotically depends on the chromatic
number of F , provided F is not bipartite. For bipartite graphs, determining the
order of magnitude of this number is still a major open problem.

1



Chapter 1. Introduction 2

Similar extremal questions can be studied for k-uniform hypergraphs, i.e.
families of k-element sets. More precisely, in a general hypergraph Turán’s type
problem, given a k-uniform hypergraph F , we want to determine the maximum
number of edges ex(n, k; F ) in a k-uniform hypergraph on n vertices that contains
no copies of F . It is well known that, typically, hypergraph problems are qual-
itatively much more difficult than their graphs analogues. This is also the case
with hypergraph Turán’s type problems, since there are very few hypergraphs for
which the problem has been solved exactly, or even asymptotically, and most of
these results are quite recent.

One example of a result of this type is the celebrated Erdős-Ko-Rado Theorem
from 1961 [7], which bounds the number of edges in an intersecting k-uniform
hypergraph, i.e. a hypergraph in which every two edges share a vertex. Note
that, indeed, this is an instance of a Turán’s type problem with two disjoint
edges as a forbidden subgraph. The main problem considered in this thesis is
the natural generalization of Erdős, Ko and Rado result, where instead of two
disjoint edges we consider a matching of a given size as an excluded configuration.
This is actually the well-known and long-standing open problem of Erdős, who
in 1965 asked what is the maximum number of edges in a k-uniform hypergraph
on n vertices whose matching number is exactly s. He conjectured that it is
maximized either for cliques, or for graphs which consist of all edges intersecting
a set of s vertices. Neither construction is uniformly better than the other in
the whole range of parameter s (1 ≤ s ≤ n/k), so the conjectured bound is the
maximum of these two possibilities.

Erdős Conjecture. Every k-uniform hypergraph G on n vertices with matching

number ν(G) = s ≤ n
k

satisfies

e(G) ≤ max

{(

n

k

)

−
(

n − s

k

)

,

(

ks + k − 1
k

)}

. (1.1)

Although this problem has been extensively studied for the last fifty years,
in its full generality, it still remains widely open and only some partial results
have been obtained so far. Erdős Conjecture is known to be true for s = 1,
as in this special case, the problem is equivalent to the Erdős-Ko-Rado Theo-
rem [7]. In 1959, few years before the conjecture was stated in the whole general-
ity, Erdős and Gallai [6] proved it for graphs, i.e. for k = 2. In Chapter 6 of this
thesis we give an alternative proof of this result, based on Tutte’s Theorem (see
Theorem 6.4). For 3-uniform hypergraphs the conjecture has been verified just re-
cently. First, Frankl, Rödl and Ruciński [15] confirmed it for n ≥ 4s. In this range
the conjectured maximum is still achieved by the first term in (1.1). In the main
result of this thesis, by Łuczak and the author [19], we settled the conjecture in



Chapter 1. Introduction 3

the affirmative for 3-uniform hypergraphs and n > n0, having also shown that the
only extremal 3-graphs are of the conjectured form (see Theorem 5.3). Eventually
Frankl [12] got rid of the condition n ≥ n0 and confirmed Erdős Conjecture in
the case of 3-graphs for every n. As for general case k ≥ 4, there have been series
of results which state that the conjecture holds for n ≥ g(k)s, where g(k) is some
function of k. The existence of such g(k) was shown by Erdős [5], then Bollobás,
Daykin and Erdős [3] proved that the conjecture holds whenever g(k) ≥ 2k3, and
Huang, Loh, and Sudakov [16] verified it for g(k) ≥ 3k2. The main result of
author’s joint paper with Frankl and Łuczak [14] slightly improved these bounds
and confirmed the conjecture in a wider range for g(k) ≥ 2k2/log k (see Theo-
rem 5.1). Currently, the best published bound for g(k) is due to Frankl [13] who
showed that the conjecture holds whenever g(k) ≥ 2k − 1.

The asymptotic fractional version of Erdős Conjecture states that every k-
uniform hypergraph G on n vertices with fractional matching number ν∗(G) = xn,
where 0 < x < 1/k, satisfies

e(G) ≤ (1 + o(1)) max
{

1 − (1 − x)k, (kx)k
}

(

n

k

)

.

This conjecture follows from Erdős Conjecture, and thus, it is true for k = 2
and k = 3 for every x, as a consequence of the results from [6], [12] and [19].
In a general case, the best bound is due to Frankl [13] and confirms the conjecture
for x ≤ 1/(2k −1). For k = 4 and x ≤ 1/5, the conjecture in its fractional version
was proved by Alon et al. [2], who observed that it is closely related to an old
probabilistic conjecture of Samuels on the behavior of the sum of independent
random variables. This conjecture, if true, would imply fractional version of
Erdős Conjecture for x ≤ 1/(k + 1), but for bigger values of x this is not the
case anymore, and using Samuels’ conjecture, one gets a bound on the extremal
number of edges larger than the conjectured one. Together with Łuczak and
Šileikis we state a new conjecture, of a similar flavour as Samuels’, that is actually
equivalent to the asymptotic fractional version of Erdős Conjecture and so, if
proved, implies it for every x ≤ 1/k (see Theorem 6.9).

Conjecture (Łuczak, Mieczkowska, Šileikis). Let X1, . . . , Xk be independent,

identically distributed, nonnegative random variables with mean E(X1) = x.

Then,

P(X1 + . . . Xk ≥ 1) ≤ max{1 − (1 − x)k, (kx)k}. (1.2)

This conjecture is a generalization of a result by Hoeffding and Shrinake [17]
from 1955, in which they proved it for a sum of two random variables. In a general
case, the conjecture holds for x < 1/(k +1) whenever Samuels’ conjecture is true.
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Here, thanks to the equivalence result from Theorem 6.9, we confirm it in a few
new instances, i.e. for k = 3 and k ≥ 5 for x ≤ 1/(2k − 1).

Let us remark that there has been a sudden increase of an interest in Erdős
Conjecture for the last few years. In addition to being important in its own
rights, it is mostly because of the results, obtained in Alon et al. [1] and Alon
et al. [2], which revealed close connections of Erdős’ problem to several impor-
tant and seemingly unrelated questions. For instance, it is known (see Daykin and
Häggkvist [4]) that it can be used to study Dirac’s type problems on the minimum
degree that guarantees the existence of a perfect matching in a uniform hyper-
graph. Moreover, it turned out (see Alon et al. [1]) that the fractional version
of Erdős’ problem might be used to attack an old number-theoretical conjecture
of Manickam, Miklós and Singhi about non-negative sums. Furthermore, Erdős’
problem has some interesting applications in information theory. For instance,
results on Erdős Conjecture determine the optimal data allocation for the prob-
lem of data recovery in a uniform model of a distributed storage system studied
by Sardari et al. [23], as it has been recently discovered to be asymptotically
equivalent to the fractional version of Erdős’ problem (see Alon et al. [2]).

The complete solution of a Turán’s type problem usually consists of two steps.
First, we need to show that any k-uniform hypergraph with at least ex(n, k; F )+1
edges contains a copy of F , and then to construct an F -free k-uniform hypergraph
with n vertices and exactly ex(n, k; F ) edges. Therefore, consideration of this kind
of extremal problem usually leads to the study of the structure of extremal hyper-
graphs, i.e. the largest F -free hypergraphs on n vertices. In Chapter 4 we present
a number of results on families of k-uniform hypergraphs with a given matching
number, and satisfying additional properties, e.g. being maximal, or shifted. In
particular, we derive some stability results, which allow us to restrict the subject
of the studies on Erdős Conjecture to the asymptotic properties of matchings in
hypergraphs. Most of all we study a structure of hypergraphs which are extremal
for our problem, what has led us to a new conjecture, stated in Section 6.1,
that might be considered as an asymptotic generalization of Tutte’s Theorem
for hypergraphs, and, if true, might be helpful in proving Erdős Conjecture, for
large n.

The structure of the thesis is as follows.

In the next chapter we recall the definitions and notions we shall use later.
In particular, Section 2.3 introduces the main tool we will be using in the proofs
– the shifting technique, heavily used in extremal set theory. Then, in Chapter 3,
we state Erdős Conjecture in its exact and fractional version.
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Chapter 4 contains preliminary results on families of k-uniform hypergraphs
with a given matching number, and satisfying additional properties, e.g. being
maximal, or shifted. They play an important role in our main results on Erdős
Conjecture, which we introduce in Chapter 5. In Section 5.1, we present the
result for a general k-uniform case, proving that Erdős Conjecture holds for k-
uniform hypergraphs on n vertices whenever n ≥ 2k2s/ log k (see Theorem 5.1).
In Section 5.2, we show that Erdős Conjecture is true for 3-uniform hypergraphs
on n vertices, for n > n0 (see Theorem 5.3).

In Chapter 6 we consider new conjectures and results obtained while working
on Erdős Conjecture. In Section 6.1 we give a new proof of Erdős Conjecture
for graphs based on Tutte’s Theorem. We also formulate a structural conjecture
that might be considered as an asymptotic generalization of Tutte’s result for
hypergraphs. In Section 6.2 we state a new probabilistic conjecture on small
deviation inequalities and confirm it in a few new instances, by proving that it is
asymptotically equivalent to the fractional version of Erdős’ matching problem.



Chapter 2

Preliminaries

The aim of this chapter is to give an overview of the basic notions that are
frequently used in extremal hypergraph theory and in this thesis.

We first introduce some notation we shall use throughout the thesis. Then
we give basic definitions related to hypergraphs, paying particular attention to
the notions concerning matchings in hypergraphs, as well as to their fractional
analogues. In particular, we recall the idea of duality of linear programming, using
which we can consider fractional vertex covers instead of fractional matchings,
whenever convenient. Finally, in the last section, we discuss the shifting technique
which is a widely used tool in extremal set theory, and which is crucial for most
of the arguments presented in the thesis.

2.1 Notation

Here, we collect a list of frequently used notation and terminology.

• R denotes the set of real numbers.

• If a, b ∈ R and a < b, then [a, b] := {x ∈ R : a ≤ x ≤ b}.

6



Chapter 2. Preliminaries 7

• [n] := {1, 2, . . . , n}.

• ∅ denotes the empty set.

• |X| denotes the cardinality of X.

• When writing X = {x1, . . . , xn}, elements xi are assumed to be distinct.

• {X1, . . . , Xk} is a partition of X if X =
⋃k

i=1 Xi and Xi ∩ Xj = ∅ for every
1 ≤ i < j ≤ k.

• 2X is the family of all subsets of X.

• Y ⊂ 2X denotes a family of subsets of X.

•
(

X
k

)

denotes the family of all k-element subsets of X. Note that for |X| = n

we have
∣

∣

∣

(

X
k

)∣

∣

∣ =
(

n
k

)

.

2.2 Matchings in hypergraphs

A hypergraph is a pair G = (V, E), where V = V (G) is a finite set of vertices and
E = E(G) ⊂ 2V is a family of subsets of V , which are called edges of G. We say
that a hypergraph G = (V, E) is a k-uniform hypergraph, or briefly, a k-graph, if
every edge of G consists of precisely k elements. By v(G) = |V | and e(G) = |E|
we denote the number of vertices and edges of G = (V, E), respectively. In this
thesis we usually assume that V = [n] and identify a hypergraph G with its edge
set E. Therefore, whenever we write |G|, we mean e(G), and by e ∈ G we mean
e ∈ E. For a given set S ⊂ V the number of edges containing S is the degree

of the set S and is denoted by degG(S). A complete k-uniform hypergraph, or
a clique, is a k-graph on a vertex set V with all possible edges, i.e. for which
E =

(

V
k

)

. Note that whenever we say a graph, we mean a 2-uniform hypergraph,
i.e. a hypergraph in which every edge consists of exactly two vertices.

We say that a k-uniform hypergraph G is maximal with respect to property
A, if G has property A, and for every k-tuple e /∈ E a k-graph G ∪ {e} does
not have A. A k-uniform hypergraph G is the maximum k-graph with respect to
property A, if no k-graph with property A has more edges than G.

A matching in G is a family of disjoint edges of G. We say that a matching M

saturates vertex v ∈ V if one of its edges contains v. A matching M is maximal if
there is no edge e ∈ E such that M ∪{e} is a matching in G, and it is a maximum

matching, if G contains no matching of a bigger size. The size of the largest
matching contained in G is denoted by ν(G), and is called the matching number

of G. We say that a matching is perfect if it is of size v(G)/k. A hypergraph
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G in which each two edges intersect, i.e. for which ν(G) = 1, is an intersecting

hypergraph.

A fractional matching in a k-uniform hypergraph G = (V, E) is a function

w : E → [0, 1] such that
∑

e∋v

w(e) ≤ 1 for every vertex v ∈ V.

Then,
∑

e∈E w(e) is the size of matching w and the size of the largest fractional
matching in G, denoted by ν∗(G), is the fractional matching number of G. Ob-
serve that if w(e) ∈ {0, 1} for every edge e, then w is just a matching, or more
precisely, the indicator function of a matching. Thus, every integral matching is
also a fractional matching and hence, ν∗(G) is always greater or equal than ν(G).

Finding the fractional matching number is clearly a linear programming prob-
lem. Its dual problem is to find the size of the minimum fractional vertex cover.
A fractional vertex cover in a k-uniform hypergraph G = (V, E) is a function

w : V → [0, 1] such that

for each e ∈ E we have
∑

v∈e

w(v) ≥ 1.

Then,
∑

v∈V w(v) is the size of w and the size of the smallest fractional vertex
cover in G is denoted by τ ∗(G). By Duality Theorem (see, for instance, Nering
et al. [20]), for every k-uniform hypergraph G we have ν∗(G) = τ ∗(G). Let us
also recall that a vertex cover of G is a set of vertices S ⊂ V such that each
edge of G has at least one vertex in S, i.e. it is a solution of the above system
of inequalities with the restriction that all vertex weights are either 0 or 1. Let
τ(G) denote the minimum number of vertices in a vertex cover of G. Note that
since any integral vertex cover is also a fractional vertex cover, τ ∗(G) is always
smaller or equal than τ(G), so we have

ν(G) ≤ ν∗(G) = τ ∗(G) ≤ τ(G).

2.3 Shifting technique

The shifting technique, also known as compression, is used in all of our results on
Erdős Conjecture. The method was introduced by Erdős, Ko, and Rado [7] and
is one of the most important and widely-used tools in extremal set theory (see
an extensive survey of Frankl [11] on this subject).

Generally speaking, the shift operator transforms our original hypergraph
G into a more structured one, which still preserves a lot of properties of G.
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In many cases such an attempt makes the argument much simpler and shorter.
In particular, the basic fact we shall use about the shift operator is that it does
not change the size of a hypergraph and does not increase its matching number.
Therefore, in the main problem considered in this thesis: to maximize e(G), given
v(G) and ν(G), it is enough to work with shifted hypergraphs. We start with
sketching the main ideas which the method is based on.

Let G = (V, E), V = [n] be a k-graph. For vertices i < j, the graph shij(G),
called the (i, j)-shift of G, is obtained from G by replacing each edge e ∈ E,
such that j ∈ e, i /∈ e, and f = (e \ {j}) ∪ {i} /∈ E, by f . From the definition
of the (i, j)-shift it is clear that this operation preserves the number of edges of
a hypergraph and the following holds.

Proposition 2.1. For any n-vertex hypergraph G and 1 ≤ i < j ≤ n we have

|G| = | shij(G)|.

The following is another simple and well known result (see Frankl [11]), the
proof of which we give here for the completeness of the argument.

Proposition 2.2. For any n-vertex hypergraph G and 1 ≤ i < j ≤ n we have

ν(shij(G)) ≤ ν(G).

Proof. Let us assume that M = {e1, . . . , eℓ} is a matching in shij(G) but not in G.
Then, one of the edges of M , let say e1, is not an edge in G. Clearly, we must have
i ∈ e1, j /∈ e1, and f = (e1 \{i})∪{j} ∈ E. We distinguish two cases. If j /∈ ⋃

r er,
then M ′ = {(e1 \{i})∪{j}, e2, . . . , eℓ} is a matching in G. If vertex j is saturated
by M , say j ∈ e2, then M ′′ = {(e1 \ {i}) ∪ {j}, (e2 \ {j}) ∪ {i}, e3, . . . , eℓ} is
a matching in G. Hence ν(shij(G)) ≤ ν(G).

Now let us define Sh(G) as a hypergraph which is obtained from G by a series
of shifts and which is invariant under all possible shifts, i.e. shij(Sh(G)) = Sh(G)
for all 1 ≤ i < j ≤ n. A graph G is called shifted if G = Sh(G). Although it is
not hard to construct examples where the order of shifting can affect the struc-
ture of the final shifted hypergraph, one can check that

(

n
2

)

shifts are sufficient
to make a hypergraph shifted, if we do it in the right order. The following is
a straightforward consequence of the definition of a shifted hypergraph that we
use in our argument. It states that any k-tuple that precedes some edge of G in
the lexicographical order is also an edge in G.

Proposition 2.3. Let G = (V, E) be a shifted k-graph, i.e. Sh(G) = G, and let

{v1, . . . , vk} ∈ E. For any f = {w1, . . . , wk}, such that wi ∈ V and wi ≤ vi for

every i = 1, . . . , k, we have f ∈ E.
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Due to the above fact, instead of G itself very often we can work with a highly
structured shifted hypergraph obtained from G, which typically greatly simplifies
the whole argument.



Chapter 3

Number of edges in hypergraphs with

a given matching number

In this chapter we state Erdős Conjecture which, as we have already mentioned,
inspired most of the results presented in this thesis. First, we describe the problem
for integral matchings, as it was originally stated by Erdős in 1965, then we discuss
its fractional relaxation.

3.1 Integral matchings

The main problem considered in this thesis is to determine the maximum number
of edges in a k-uniform hypergraph on n vertices whose matching number is
exactly s. More formally, let Hk(n, s) denote the set of all k-graphs G = (V, E)
such that v(G) = n and ν(G) = s; moreover let

µk(n, s) = max{e(G) : G ∈ Hk(n, s)}, (3.1)

and let
Mk(n, s) = {G ∈ Hk(n, s) : e(G) = µk(n, s)} (3.2)

11
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be the family of the extremal hypergraphs for this question. In 1965 Erdős [5]
stated the following problem.

Problem 3.1. For every k, s, and n ≥ k(s+1) determine µk(n, s) and Mk(n, s).

Note that for n ≤ ks + k − 1 the question is trivial, as then, the only hyper-
graphs in Mk(n, s) are cliques.

Let us describe two types of k-graphs from Hk(n, s) which are natural candi-
dates for members of Mk(n, s). By Covk(n, s) we denote the family of k-graphs
G1 = (V1, E1) such that |V1| = n and for some subset S ⊆ V1, |S| = s, we have

E1 = {e ⊆ V1 : e ∩ S 6= ∅ and |e| = k} .

Note that every edge of G1 contains at least one vertex from the set S, and hence
ν(G1) ≤ s. Thus, clearly, if n ≥ ks, then Covk(n, s) ⊆ Hk(n, s). Notice also that
every hypergraph in Covk(n, s) is actually a k-graph obtained from a clique on n

vertices by removing edges of a smaller clique on n − s vertices. Hence,

e(G1) =

(

n

k

)

−
(

n − s

k

)

.

Now let Clk(n, s) be the family of all k-graphs G2 = (V2, E2) which consist of
a complete subgraph on ks + k − 1 vertices and some isolated vertices, i.e. if for
some subset T ⊆ V2, |T | = ks + k − 1, we have

E2 = {e ⊆ T : |e| = k} .

It is easy to see that Clk(n, s) ⊆ Hk(n, s) and

e(G2) =

(

ks + k − 1
k

)

.

In 1965 Erdős [5] conjectured that, indeed, the function µk(n, s) is fully deter-
mined by the behavior of k-graphs from families Covk(n, s) and Clk(n, s). Since
neither construction is uniformly better than the other in the whole range of pa-
rameter s (1 ≤ s ≤ (n − k + 1)/k), the conjectured bound is the maximum of
these two possibilities.

Erdős Conjecture. For every k, s, and n ≥ ks + k − 1, the following holds

µk(n, s) = max

{(

n

k

)

−
(

n − s

k

)

,

(

ks + k − 1
k

)}

. (3.3)

Moreover, for n ≥ 2k + 1, we have

Mk(n, s) = Covk(n, s) ∪ Clk(n, s).
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Note that the second part of the statement does not hold when n = 2k, k ≥ 3,
and s = 1. Indeed, in such a case one can pair every k-tuple with its complement.
Thus, every maximal graph contains exactly one k-tuple from each of 1

2

(

2k
k

)

such

pairs, so µk(2k, 1) = 1
2

(

2k
k

)

and

|Mk(2k, 1)| = 2
1
2(2k

k ),

while
| Covk(2k, 1)| = | Clk(2k, 1)| = 2k .

Let us now comment briefly on the formula (3.3). If by s0(n, k) we define the
smallest s for which

(

n

k

)

−
(

n − s

k

)

≤
(

ks + k − 1
k

)

,

then it is easy to see that

lim
n→∞

s0(n, k)
n

= αk ,

where αk ∈ (0, 1/k) is the solution of the equation

1 − (1 − αk)k = kkαk
k .

One can check that for all k ≥ 2 we have
1
k

− 1
2k2

< αk ≤ 1
k

− 2
5k2

; (3.4)

in fact, (1−kαk)k → − ln(1−e−1) = 0.4586... as k → ∞. Note that, in particular,
for k ≥ 2 and n ≥ (k + 1)s we have

(

n

k

)

−
(

n − s

k

)

>

(

ks + k − 1
k

)

.

Although Problem 3.1 has been extensively studied for the last fifty years, in
its full generality, it still remains widely open. However, a few partial results have
been obtained in this direction and we list them briefly below.

Erdős Conjecture is known to be true for s = 1. Note that then, family
Covk(n, 1) consists of intersecting k-graphs and

(

n
k

)

−
(

n−1
k

)

=
(

n−1
k−1

)

. In this spe-
cial case, the problem is equivalent to the celebrated Erdős-Ko-Rado Theorem [7],
proved already in 1961.

Theorem 3.2 (Erdős-Ko-Rado). Let n ≥ 2k. Every intersecting k-uniform hy-

pergraph on n vertices satisfies

|G| ≤
(

n − 1
k − 1

)

.

Moreover, if n > 2k then the equality holds if and only if G consists of all

k-element subsets containing i, for some i ∈ V .
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In 1959, few years before the conjecture was stated in the whole generality,
Erdős and Gallai [6] proved it in a graph case, i.e. for k = 2. In the last part
of the thesis we give an alternative proof of this result for n large enough (see
Theorem 6.4).

For 3-uniform hypergraphs the conjecture has been verified just recently.
First, Frankl, Rödl and Ruciński [15] confirmed it for n ≥ 4s. In this range
the conjectured maximum is achieved by the first term in (3.3). Some time
later, Łuczak and Mieczkowska [19] settled the conjecture in the affirmative for
3-uniform hypergraphs and n > n0, having also shown that the only extremal
3-graphs are of the conjectured form.

Theorem. Erdős Conjecture holds for 3-uniform hypergraphs, for n > n0.

We give the proof of this result in Section 5.2. Eventually Frankl [12] got rid of
the condition n ≥ n0 and confirmed Erdős Conjecture in the case of 3-graphs for
every n.

As for general case k ≥ 4, there have been series of results, dealing mostly
with the case when n is large compared to s, and proving that

µk(n, s) =

(

n

k

)

−
(

n − s

k

)

for n ≥ g(k)s, (3.5)

where g(k) is some function of k. The existence of such g(k) was shown by
Erdős [5], then Bollobás, Daykin and Erdős [3] proved that (3.5) holds whenever
g(k) ≥ 2k3, and Huang, Loh, and Sudakov [16] verified (3.5) for g(k) ≥ 3k2. The
main result of author’s joint paper with Frankl and Łuczak [14] slightly improved
these bounds and confirmed the conjecture in a wider range for g(k) ≥ 2k2/log k.

Theorem. Erdős Conjecture holds for k-uniform hypergraphs, for n ≥ 2k2s
log k

.

Currently, the best published bound for g(k) is due to Frankl [13] who showed
that (3.5) holds whenever g(k) ≥ 2k − 1.

3.2 Fractional matchings

In this section we formulate the fractional version of Erdős Conjecture, in which
the matching number ν(G) is replaced by the fractional matching number ν∗(G).
In order to do that, for a real number 0 ≤ s ≤ (n − k + 1)/k, let us define the
fractional equivalent of function µk(n, s) as follows

µ∗
k(n, s) = max

{

e(G) : V = [n], E ⊂
(

[n]
k

)

, ν∗(G) < s + 1

}

.
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Note that since ν(G) ≤ ν∗(G), we get trivially that for ⌈s⌉ ≤ (n − k + 1)/k

we have
µ∗

k(n, s) ≤ µk(n, ⌈s⌉). (3.6)

In order to get the lower bound for µ∗
k(n, s) let us consider again the families of

k-graphs Covk(n, ⌈s⌉) and Clk(n, ⌈ks⌉ /k).

Proposition 3.3. Let G ∈ Covk(n, ⌈s⌉) ∪ Clk(n, ⌈ks⌉ /k). Then, ν∗(G) < s + 1.

Proof. Since, by duality, we have ν∗(G) = τ ∗(G), we can switch to the dual
problem, and thus, it suffices to find a fractional vertex cover in G of size smaller
than s + 1. Let G1 ∈ Covk(n, ⌈s⌉) and let S ⊂ V1, |S| = ⌈s⌉ be the set which
covers all edges of G1. Observe that a function w : V1 → [0, 1] such that w(i) = 1
if i ∈ S, and w(i) = 0 otherwise, is a fractional vertex cover in G1 of size ⌈s⌉.
Thus, ν∗(G1) = τ ∗(G1) ≤ ⌈s⌉ < s + 1.

Let now G2 ∈ Clk(n, ⌈ks⌉ /k) and let W ⊂ V2, |W | = ⌈ks⌉+k−1 be the vertex
set of the largest clique in G2. Note again that a function w : V2 → [0, 1] such that
w(i) = 1/k for every i ∈ W , and w(i) = 0 otherwise, is a fractional vertex cover
in G2 of size (⌈ks⌉ + k − 1)/k < s + 1. Thus, again ν∗(G2) = τ ∗(G2) < s + 1.

The above fact, together with (3.6), shows that for integer values of s we have

µ∗
k(n, s) = µk(n, s),

and thus, the following is conjectured to be the right bound on µ∗
k(n, s).

Conjecture 3.4. Let k ≥ 2, n, and s be integers such that 0 < s ≤ (n−k +1)/k.

Then,

µ∗
k(n, s) = max

{(

n

k

)

−
(

n − ⌈s⌉
k

)

,

(

⌈ks⌉ + k − 1
k

)}

.

It is not hard (see Leong et al. [18]) to give an example of a (small) hypergraph
which shows that Conjecture 3.4 does not hold for fractional s. Note that, in such
a case, for G ∈ Clk(n, ⌈ks⌉ /k) we have

|G| =

(

⌈ks⌉ + k − 1
k

)

≤
(

k ⌈s⌉ + k − 1
k

)

,

which does not always match the upper bound, following from (3.6) and Erdős
Conjecture. It also seems that there is no obvious guess what should be the right
bound in the precise version of this conjecture for non-integer s. Note however,
that then, from Conjecture 3.4 it follows that the bound should be asymptotically
true, whenever n is large enough. Thus, the asymptotic version of the fractional
matching conjecture can be stated as follows (here and below by o(1) we denote
the quantity which tends to 0 as n → ∞).
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Conjecture 3.5. Every k-uniform hypergraph G on n vertices with fractional

matching number ν∗(G) = xn, where 0 < x < 1/k, satisfies

|G| ≤ (1 + o(1)) max
{

1 − (1 − x)k, (kx)k
}

(

n

k

)

.

Since Conjecture 3.5 is weaker than Erdős Conjecture, it is true for k = 2
and k = 3, for every x, as a consequence of the Erdős-Gallai theorem from [6]
and the latest results on 3-uniform hypergraphs of Frankl [12], and Łuczak and
Mieczkowska [19]. For k = 4, Conjecture 3.5 was confirmed for x ≤ 1/5 by Alon
et al. [2]. In a general k-uniform case, the best bound on µ∗

k(n, s) follows from
the result of Frankl [13], and confirms the conjecture for x ≤ 1/(2k − 1). For this
range of parameters the maximum is achieved by the first term.

Alon et al. [2] observed that the fractional version of Erdős Conjecture is
closely related to an old conjecture of Samuels on the behavior of the sum of
independent random variables. This conjecture, if proved, would imply Conjec-
ture 3.5 for x ≤ 1/(k + 1). In this range of parameters, the maximum is still
achieved by the first term. It is also known (see [2]) that for bigger values of x

this is not the case anymore, and using Samuels’ conjecture, one gets a bound on
µ∗

k(n, s) larger than that in Conjecture 3.5. In Section 6.2 we state a new conjec-
ture, of a similar flavour as Samuels’, that is actually equivalent to Conjecture 3.5,
and so, if true, implies it for every x ≤ 1/k.



Chapter 4

Preliminary results

In this chapter we discuss some results on families of k-graphs with matching
number s satisfying additional properties, e.g. being maximal, or shifted. They
will play an important role in the proofs of our results on Erdős Conjecture (see
Chapter 5).

4.1 Degrees of maximal hypergraphs Lk(n, s)

Let Lk(n, s) be the family of k-graphs G on n vertices which are maximal with
respect to the property ν(G) = s, i.e. G cannot be extended without increasing
ν(G). More precisely, let

Lk(n, s) =
{

G ∈ Hk(n, s) : ∀e∈(V

k),e/∈E ν(G ∪ {e}) = s + 1
}

.

We start with the following result on degrees of maximal graphs, which is a ge-
neralization of a similar result by Łuczak and Mieczkowska from [19].

Lemma 4.1. Let 1 ≤ i < k and G ∈ Lk(n, s). If for a subset f ⊂ V , |f | = i, we

have deg(f) >
(

n−i
k−i

)

−
(

n−ks−i
k−i

)

, then deg(f) =
(

n−i
k−i

)

.

17
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Proof. First let us observe that for n ≤ ks + k − 1 the only graphs in Lk(n, s)
are cliques, so in such a case the statement follows easily. Thus, we may assume
that n ≥ k(s + 1). Let f ⊂ V be a subset of a large degree in G and let us
suppose that e is a k-subset of V such that f ( e and e /∈ E. Then, by the
definition of Lk(n, s), graph G ∪ {e} contains a matching M of size s + 1, where,
clearly, e ∈ M . However, the degree of f is chosen to be so large that for some
(k − i)-element subset g ⊆ V \ (

⋃

M \ e) the set e′ = f ∪ g is an edge of G. But
then, M ′ = (M \ {e}) ∪ {e′} is a matching of size s + 1 in G. This contradiction
shows that each k-element subset of V which contains f is an edge of G and thus,
deg(f) =

(

n−i
k−i

)

.

For shifted hypergraphs G ∈ Lk(n, s), a similar result can be derived from
a bit weaker assumption.

Lemma 4.2. Let 1 ≤ i < k and let G ∈ Lk(n, s) be such that Sh(G) = G. If for

some f ⊂ [ks + i], |f | = i there exists e ∈ G such that e ∩ [ks + i] = f , then

deg(f) =
(

n−i
k−i

)

.

Proof. As in the previous proof, for n ≤ ks + k − 1 the statement holds trivially.
Let now n ≥ k(s + 1). Take a subset f ⊂ V such that f = [ks + i] ∩ e for
some e ∈ G, and let us suppose that deg(f) <

(

n−i
k−i

)

. Then, as G is shifted,
e′ = f ∪ {n − k + i + 1, . . . , n} is not an edge in G. Since G is maximal, the
graph G ∪ {e′} contains a matching M ∪ {e′} of size s + 1. Observe that M ⊂ E

is contained in [n] \ e′. Thus, since G is shifted, there is a matching M ′ of size s

in G, which is contained in the set [ks + i] \ f . But then, M ′ ∪ {e} is a matching
of size s + 1 in G, contradicting the fact that ν(G) = s. Thus, we must have
deg(f) =

(

n−i
k−1

)

.

4.2 Families of hypergraphs Ak(n, s; l)

In Section 3.1 we have discussed two families of k-graphs: Covk(n, s) and Clk(n, s).
Here we come up with a more generalized notion of hypergraphs, that emerges
naturally while asking about k-uniform hypergraphs with a given matching num-
ber. They were first defined in the Ph.D. dissertation of Frankl in 1976. For
l = 1, 2, . . . , k by Ak(n, s; l) we denote the family of k-graphs Gl = (Vl, El) such
that |Vl| = n and for some subset Sl ⊆ Vl, |Sl| = l(s + 1) − 1, called the ℓ-center

of Gl, we have

El =

{

e ∈
(

Vl

k

)

: |e ∩ Sl| ≥ l

}

.
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Observe that then, for n ≥ ks,

ν(Gl) = s,

and if n ≥ k(s+1), then Gl are maximal. Notice also that Ak(n, s; l) is a common
generalization of families Covk(n, s) and Clk(n, s), since

Ak(n, s; 1) = Covk(n, s) and Ak(n, s; k) = Clk(n, s).

Since most of the arguments in this work are done for the shifted k-graphs,
let Ak(n, s; l) denote the shifted representative for the family Ak(n, s; l), i.e. for
l = 1, . . . , k we set

Ak(n, s; l) =

{

e ∈
(

[n]
k

)

: |e ∩ [l(s + 1) − 1)]| ≥ l

}

.

Whenever k, s, and n are fixed, we denote Ak(n, s; l) just by Al.

4.3 Shifting properties of Mk(n, s) and Ak(n, s; l)

Let us start with the following easy consequence of Propositions 2.1 and 2.2.

Proposition 4.3. Let 1 ≤ i < j ≤ n. If G ∈ Mk(n, s), then shij(G) ∈ Mk(n, s).

Proof. Since the operator shij does not change the size of a hypergraph, we
have that | shij(G)| = |G| = µk(n, s). Moreover, for fixed k and n the function
µk(n, s) is strictly increasing, hence ν(shij(G)) ≥ ν(G) = s. On the other hand,
from Proposition 2.2 we know that ν(shij(G)) ≤ ν(G) = s, and thus we have
shij(G) ∈ Mk(n, s).

The main result of this section states that the families Ak(n, s; l) are invari-
ant under the shift operator, and moreover, that the only k-graphs the shifts of
which are members of Ak(n, s; l) are hypergraphs from Ak(n, s; l). The following
theorem is a generalization of a similar results from [19], obtained for families
Covk(n, s) and Clk(n, s).

Theorem 4.4. Let l ∈ [k], s ≥ 2, n ≥ k(s + 1) and G ∈ Hk(n, s). Then, for

every 1 ≤ i < j ≤ n,

G ∈ Ak(n, s; l) if and only if shij(G) ∈ Ak(n, s; l).

The following simple fact will be useful in our further argument.
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Claim 4.5. Let Gl = (Vl, El) be a (k − 1)-graph with a vertex set Vl = V1 ∪ V2,

where |V1| ≥ 3(l − 1), |V2| ≥ 3(k − l) and the edge set is defined as follows

El = {e ⊂ V : |e ∩ V1| = l − 1, |e ∩ V2| = k − l}.

If we color all edges of Gl with two colors, then either we find two disjoint edges

colored with different colors, or all of them are of the same color.

Proof. Let us color edges of Gl with two colors and let us assume that not all of
them are of the same color, i.e. there exist e, f ∈ E colored with different colors.
If e ∩ f = ∅, then the claim holds. Otherwise, consider an edge g ∈ E such that
it is disjoint with e and f . Observe that since both V1 and V2 are large such an
edge always exists. Then, g is of a different color than one of the edges e and f .
Since g is disjoint with both of them, the assertion follows.

Proof of Theorem 4.4. Let us first observe that if G ∈ Ak(n, s; l) then the op-
erator shij(·) clearly transform the l-center of G into l-center of shij(G) and so
shij ∈ Ak(n, s; l). Thus it is enough to show the implication in the opposite
direction.

To this end let shij(G) ∈ Ak(n, s; l) and let S be the l-center of shij(G). If
either i /∈ S or j ∈ S, then clearly S is an l-center for G and so G ∈ Ak(n, s; l).
Thus, let us assume that i ∈ S and j /∈ S. Note also that all edges e of shij(G)
which contain neither i nor j remain invariant under shij(·) operation; in partic-
ular all of them intersect S \ {i, j} on at least l vertices. In order to deal with the
remaining edges of shij(G) let us color all (k − 1)-element subsets f of V \ {i, j}
for which |f ∩ (S \ {i})| = l − 1 with two colors: red if {i} ∪ f ∈ G and blue if
{j} ∪ f ∈ G. Observe first that each such (k − 1)-element subset is colored with
exactly one color. Indeed, if it is not the case, then both {i} ∪ f and {j} ∪ f are
edges of G and hence also {j} ∪ f ∈ shij(G). But then |({j} ∪ f) ∩ S| = l − 1,
contradicting the fact that S is the l-center of shij(G). Furthermore, if for a pair
of disjoint subsets f ′ and f ′′, f ′ is red and f ′′ is blue, then the edges {i} ∪ f ′ and
{j} ∪ f ′′ can be completed to a matching of size s + 1 in G, contradicting the fact
that ν(G) = s. Indeed, since n ≥ k(s + 1) and |S \ ({i} ∪ f ′ ∪ f ′′)| ≥ l(s − 1),
it is easy to see that one can find s − 1 disjoint edges e ∈ E, contained in
V \ ({i} ∪ f ′ ∪ {j} ∪ f ′′), and such that |e ∩ (S \ ({i} ∪ f ′ ∪ f ′′))| = l. Ob-
serve also that for s ≥ 2 we have |S \ {i}| ≥ l(s + 1) − 2 > 3(l − 1) and
|V \ (S ∪ {j})| ≥ n − l(s + 1) ≥ (k − l)(s + 1) ≥ 3(k − l). Thus, by Claim 4.5, all
such sets are colored with one color and either S or (S \ {i}) ∪ {j} is the l-center
of G. Consequently, G ∈ Ak(n, s; l).
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Let us recall that Sh(G) is a hypergraph obtained from G by a series of
shifts and is invariant under all possible shifts, i.e. shij(Sh(G)) = Sh(G) for all
1 ≤ i < j ≤ n. Thus, from Proposition 4.3 and Theorem 4.4 we get the following
result (see [19]).

Theorem 4.6.

(i) If G ∈ Mk(n, s) then Sh(G) ∈ Mk(n, s).

(ii) If n 6= 2k, G ∈ Mk(n, s), and Sh(G) ∈ Covk(n, s), then G ∈ Covk(n, s).

(iii) If n 6= 2k, G ∈ Mk(n, s), and Sh(G) ∈ Clk(n, s), then G ∈ Clk(n, s).

Proof. Let us just remark that for n ≤ ks+k−1, the only hypergraphs in Mk(n, s)
are cliques, and for s = 1 and n ≥ 2k + 1 we have Mk(n, 1) = Covk(n, 1) by the
Erdős-Ko-Rado Theorem. Thus, for n ≤ ks + k − 1 the assertion follows. Then,
we may assume that n ≥ k(s + 1), s ≥ 2, and use Theorem 4.4 to derive all three
statements.

Note that in view of the last theorem, in order to confirm Erdős Conjecture
it suffices to prove it for hypergraphs G for which Sh(G) = G.

4.4 Structure of shifted Hk(n, s)

The best general bound on µk(n, s), true for all k, s and n ≥ ks, is due to
Frankl [10].

Theorem 4.7. Let n ≥ ks, then

µk(n, s) ≤ s

(

n

k − 1

)

. (4.1)

We present the proof of the above statement below, as we use a similar ideas
in the proof of Theorem 4.10. Let us recall that Al is the only shifted graph in
the family A(n, s; l). We start with the following observation.

Lemma 4.8. If G ∈ Hk(n, s) is such that Sh(G) = G, then

G ⊆ A1 ∪ A2 ∪ · · · ∪ Ak .

Proof. First observe that for n ≤ ks + k − 1 the assertion holds trivially, as
then G ⊂ Ak. Thus let us assume that n ≥ k(s + 1) and note that the set
e0 = {s + 1, 2s + 2, . . . , ks + k} is not an edge of G. Indeed, if it was the case,
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then each of the edges {i, i + s + 1, . . . , i + (k − 1)(s + 1)}, i = 1, 2, . . . , s + 1,
belongs to G, due to the fact that G = Sh(G). Clearly, they form a matching of
size s + 1, contradicting the fact that ν(G) = s. Thus, e0 /∈ G and it is enough
to observe that all k-tuples which do not dominate e0 in a lexicographical order
must belong to

⋃k
l=1 Al.

Let A =
⋃k

l=1 Al. It turns out that the size of A can be easily found.

Lemma 4.9. If n ≥ k(s + 1), then |A| = s
(

n
k−1

)

.

Proof. We prove the statement using induction on k and n. For k ≥ 1 and
n = k(s + 1) − 1 we have clearly |A| =

(

n
k

)

= s
(

n
k−1

)

. Now let k ≥ 2, n ≥ k(s + 1)
and split all the sets of A into those which contain n and those which do not, i.e.
A = An∈ ∪ An/∈. Then, ν(An/∈) ≤ s and for A′

n∈ =
{

e ⊂
(

[n]
k−1

)

: e ∪ {n} ∈ G
}

we
have |A′

n∈| = |An∈| and ν(A′
n∈) ≤ s. Thus, the inductional hypothesis gives

|A| = |An∈| + |An/∈| ≤ s

(

n − 1
k − 2

)

+ s

(

n − 1
k − 1

)

= s

(

n

k − 1

)

,

so the assertion follows.

Proof of Theorem 4.7. Note first that for n ≤ ks + k − 1 the only k-graphs in
Mk(n, s) are cliques, so it is easy to check that then clearly

(

n
k

)

≤ s
(

n
k−1

)

. For
n ≥ k(s + 1) the assertion is an immediate consequence of Lemmas 4.8 and 4.9,
and part (i) of Theorem 4.6.

In [14], together with Frankl and Łuczak, we derive the following numerical
consequence of Lemmas 4.8 and 4.9 that is crucial for our argument in Section 5.1.

Theorem 4.10. If G ∈ Hk(n, s) is such that Sh(G) = G, then all except at most
s(s+1)

2

(

n−1
k−2

)

edges of G intersect [s].

Proof. Let A =
⋃k

l=1 Al. From Lemma 4.8 and the proof of Lemma 4.9 we know
that G ⊂ A and |A| = s

(

n
k−1

)

. Observe also that
(

n
k

)

=
∑s

i=1

(

n−i
k−1

)

+
(

n−s
k

)

, which

is a direct consequence of the identity
(

n
k

)

=
(

n−1
k−1

)

+
(

n−1
k

)

. Thus, the number of
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edges of G which do not intersect {1, 2, . . . , s} can be bounded from above by:

|G| − |G ∩ A1| ≤ |A| − |A1| = s

(

n

k − 1

)

−
[(

n

k

)

−
(

n − s

k

)]

= s

[

s
∑

i=1

(

n − i

k − 2

)

+

(

n − s

k − 1

)]

−
s
∑

i=1

(

n − i

k − 1

)

= s
s
∑

i=1

(

n − i

k − 2

)

−
s
∑

i=1

s−i
∑

j=1

(

n − i − j

k − 2

)

= s
s
∑

i=1

(

n − i

k − 2

)

−
s
∑

i=2

(i − 1)

(

n − i

k − 2

)

=
s
∑

i=1

(s − i + 1)

(

n − i

k − 2

)

≤
s
∑

i=1

i

(

n − 1
k − 2

)

=
s(s + 1)

2

(

n − 1
k − 2

)

.

4.5 Stability of Covk(n, s) and Clk(n, s)

The aim of this section is to show that if a k-graph G ∈ Mk(n, s) is, in a way,
similar to the hypergraphs from Covk(n, s) [or Clk(n, s)], then in fact it belongs
to this family. From such a stability result it follows that to prove Erdős Con-
jecture it is enough to show that the k-graphs from Mk(n, s) look similar to the
conjectured ones. This fact allows us to restrict our studies on Erdős’ problem
to the asymptotic properties of matchings in hypergraphs.

In order to make it precise let us introduce families of graphs Covk(n, s; ε)
and Clk(n, s; ε). Let us recall that if G = (V, E) belongs to Covk(n, s), then
there exists a set S ⊆ V , |S| = s, which covers all edges of G. We say that
G ∈ Covk(n, s; ε) for some ε > 0, if there exists a set S ⊆ V , |S| = s, which
covers all but at most ε|E| edges of G. Moreover, we define Clk(n, s; ε) as the
set of all k-graphs G which contain a complete subgraph on at least (1 − ε)ks

vertices. Then the main result of this section, by Łuczak and Mieczkowska [19],
can be stated as follows.

Theorem 4.11. For every k ≥ 2 there exists ε > 0 such that for every n and s

such that 1 ≤ s ≤ n/k, and G ∈ Mk(n, s), the following holds:

(i) if G ∈ Covk(n, s; ε), then G ∈ Covk(n, s);

(ii) if G ∈ Clk(n, s; ε), then G ∈ Clk(n, s).
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Proof. Let us start with the observation that for every n0 we can choose ε > 0
small enough such that for every n ≤ n0 and 1 ≤ s ≤ n/k, we have Covk(n, s; ε) =
Covk(n, s) and Clk(n, s; ε) = Clk(n, s). Consequently, we may and shall verify the
assertion for n ≥ n0 for some sufficiently large n0.

For the proof of (i), let us assume that G = (V, E) ∈ Mk(n, s) belongs to
Covk(n, s; ε) and let S be the set which covers all but at most ε|E| edges of G.
Let T ⊆ S be the set of vertices which are not contained in

(

n−1
k−1

)

edges of G and
let t = |T |. We need to show that t = 0.

Observe first that, because of (3.4), we may and shall assume that for n large
enough s ≤ n(1/k−2/(5k2)), since otherwise there exists a k-graph G′ ∈ Clk(n, s)
with more edges than G, contradicting the fact that G ∈ Mk(n, s). Thus, by
Lemma 4.1, each vertex v ∈ T is contained in at most

(

n − 1
k − 1

)

−
(

n − ks − 1
k − 1

)

≤
(

1 −
( 1

5k

)k−1)
(

n − 1
k − 1

)

edges. Now let Ḡ denote the k-graph obtained from G by deleting all vertices from
S \ T and all edges intersecting them. It is easy to see that Ḡ ∈ Mk(n − s + t, t).
Now, for any k-graph Ĝ ∈ Covk(n − s + t, t), we have

|E(Ĝ) \ E(Ḡ)| ≥ t

k

( 1
5k

)k−1
(

n − 1
k − 1

)

.

Furthermore, from the assumption G ∈ Covk(n, s; ε) for ε ≤ 1
2

we get

|E(Ḡ) \ E(Ĝ)| ≤ ε

1 − ε
e(Ĝ) ≤ 2εs

(

n − 1
k − 1

)

.

Hence, if t ≥ n/(10k5) ≥ s/(10k4) we have

e(Ĝ) − e(Ḡ) ≥ t

k

( 1
5k

)k−1
(

n − 1
k − 1

)

− 2εs

(

n − 1
k − 1

)

≥
(( 1

5k

)k−1

− 20k5ε
)

t

k

(

n − 1
k − 1

)

.

Thus, if ε > 0 is small enough, then Ĝ has more edges than Ḡ contradicting the
fact that Ḡ ∈ Mk(n − s + t, t). Hence, t ≤ n/(10k5) ≤ (n − s + t)/2k3. But
in such a case, Erdős Conjecture holds by the result of Bollobás, Daykin, and
Erdős [3], thus

Ḡ ∈ Mk(n − s + t, t) = Covk(n − s + t, t)

and, since by the definition no vertex of T has a full degree, t = 0. Consequently,
G ∈ Covk(n, s) and (i) follows.
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Now assume that G = (V, E) ∈ Mk(n, s) belongs to Clk(n, s; ε). Let U be the
set of vertices of the largest complete k-subgraph of G such that |U | ≥ (1 − ε)ks.
Furthermore, let M be a matching in G of size s which maximizes |⋃M ∪ U |,
and let M ′ = {e ∈ M : e 6⊆ U}. Then, for n large enough, the following holds.

Claim 4.12.

(i) |⋃M ∪ U | = ks + k − 1.

(ii) |M ′| ≤ 2εks.

(iii) each edge of G either is contained in U , or intersects an edge of M ′.

Proof. Observe that at most k − 1 vertices of U are unsaturated by M , thus
|⋃M ∪ U | ≤ ks + k − 1. On the other hand, since U induces the largest clique
in G, there exists a k-element subset e /∈ E such that |e ∩ U | = k − 1. Then,
since G ∈ Mk(n, s), the graph G ∪ {e} contains a matching M∗ ∪ {e} of size
s + 1. Thus, M∗ is a matching of size s, in which precisely k − 1 vertices from
U are unsaturated, so |⋃M ∪ U | ≥ |⋃M∗ ∪ U | ≥ ks + k − 1, and (i) follows.
To prove (ii), observe that |M ′| ≤ |V (M ′) \ U | = |⋃M ∪ U | − |U | and use (i),
obtaining |M ′| ≤ εks + k − 1 ≤ 2εks for n large enough. Finally, (iii) is a direct
consequence of the choice of M .

Let G′ = (V, E ′) denote the k-graph which consists of the clique with vertex
set

⋃

M ∪ U and isolated vertices. Clearly, the size of the largest matching in G′

is s. We shall show that G′ has more edges than G provided |M ′| > 0. Thus, we
must have M ′ = ∅ and the assertion (ii) of Theorem 4.11 follows.

In order to show that e(G′) > e(G) we need to introduce some more defini-
tions. We say that a subset f ⊆ V of ℓ vertices is thick if it is contained in more
than 3εk3

(

|U |
k−ℓ

)

edges e ∈ G such that e ⊆ U ∪ f ; otherwise we call it thin.

Claim 4.13. If a subset f of ℓ elements is thick, then each k-element subset of

U ∪ f containing f is an edge of G.

Proof. Let us suppose that for a thick f there exists a k-element set e such
that f ⊆ e ⊆ U ∪ f and e /∈ E. Then, since G ∈ Mk(n, s), graph G ∪ e

contains a matching M ′′ of size s + 1, where e ∈ M ′′. Furthermore, at most
2εk3s

(

|U |
k−l−1

)

≤ 3εk3
(

|U |
k−l

)

of the (k − ℓ)-element subsets of U intersect sets from
M ′′ not contained in U ∪ f . Since f is thick, there exists a (k − ℓ)-subset h of U

which intersects only the edges of M ′′ contained in U and such that f ∪ h ∈ E.
But then one can modify (M ′′ \{e})∪{f ∪h}, replacing each edge g of M ′′ which
intersects h by (g \ {h}) ∪ fg, where fg is a subset of e \ f of size |g ∩ h|, and
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fg, fg′ are disjoint for g 6= g′. The matching obtained in such a way is of size
s + 1, contradicting the fact that G ∈ Mk(n, s). Hence, all edges e for which
f ⊆ e ⊆ U ∪ f must already belong to G.

Now let W =
⋃

M \ U , and a = |W |. Our aim is to show that a = 0.
To this end we suppose that a > 0 and show that this assumption will lead to
contradiction.

Observe first that no singleton from W is thick. Indeed, if w ∈ W is thick,
then due to Claim 4.13 all k-element subsets of U ∪ {w} belong to G, so U ∪ {w}
is a clique larger than U , what contradicts the maximality of U . Consequently,
all {w} such that w ∈ W are thin. Using this fact one can estimate from below
the number of edges of G′ which do not belong to G in the following way:

|E ′ \ E| ≥ (1 − 3εk3)a

(

|U |
k − 1

)

. (4.2)

Now we estimate the number of edges in |E \E ′|. First, we bound the number
|E1| of edges which have at least two vertices in

⋃

M by

|E1| ≤
(

ka

2

)(

n − 2
k − 2

)

≤ εk4a

(

n

k − 1

)

. (4.3)

Now we look at the edges e such that e ∩ ⋃

M = {w} and the set (e \ U) ∪ {w}
is thin. Then, for the number |E2| of such edges, we get

|E2| ≤
(

ka

1

)

k−1
∑

l=1

(

n − |U | − a

l

)

3εk3

(

|U |
k − l − 1

)

≤ 3εk4a

((

n

k − 1

)

−
(

|U |
k − 1

))

.

(4.4)

Finally let us consider the set E3 of all edges e such that e ∩⋃M = {w} and the
set ē = (e\U)∪{w} is thick. Note that then, by Claim 4.13, all possible extensions
of ē to the k-element sets contained in U ∪ ē are edges of G. In particular, all
edges e for which |ē| = |{w}| = 1 are contained in U , and thus do not belong
to E \ E ′. Moreover, it is easy to see that if the set E3 contains a matching
consisting of more than a edges, then it can be used to construct a matching of
size larger than s in G and thus, it is impossible. Now let us consider two cases,
depending on the size of the set U \ ⋃M ′.

Case 1. n − |U \ ⋃M ′| ≤ 2k3a.



Chapter 4. Preliminary results 27

Then |E3| can be crudely bounded from above by

|E3| ≤
(

ka

1

)

k−1
∑

ℓ=1

(

n − |U | − a

ℓ

)(

|U \ ⋃M ′|
k − ℓ − 1

)

≤ k2a(n − |U \
⋃

M ′|)
(

|U \ ⋃M ′|
k − 2

)

≤ 2k5a2

(

|U \ ⋃M ′|
k − 2

)

≤ 8εk7a

(

|U |
k − 1

)

.

(4.5)

From (4.2), (4.3), (4.4), and (4.5), we get

e(G′) − e(G) ≥ a

((

|U |
k − 1

)

− 8εk7

(

|U |
k − 1

)

− 6εk4

(

n

k − 1

))

. (4.6)

Case 2. n − |U \ ⋃M ′| ≥ 2k3a.

In this case we apply the result on Erdős Conjecture of Bollobás, Daykin and
Erdős [3] for the subset of edges e for which |ē| = ℓ, for each ℓ = 2, . . . , k. Each
of these sets of edges is an l-uniform hypergraph on n − |U \⋃M ′| vertices which
contains no matchings of size larger than a. Thus, for ε small enough, we have

|E3| ≤
k
∑

ℓ=2

a

(

n − |U \ ⋃M ′|
ℓ − 1

)(

|U \ ⋃M ′|
k − ℓ

)

= a

((

n

k − 1

)

−
(

|U \ ⋃M ′|
k − 1

))

≤ a

((

n

k − 1

)

− 0.99

(

|U |
k − 1

))

.

(4.7)

From (4.2), (4.3), (4.4), and (4.7), we get

e(G′) − e(G) ≥ (1 − 3εk3)a

(

|U |
k − 1

)

− εk4a

(

n

k − 1

)

− 3εk4a

((

n

k − 1

)

−
(

|U |
k − 1

))

− a

((

n

k − 1

)

− 0.99

(

|U |
k − 1

))

≥ a

(

1.99

(

|U |
k − 1

)

−
(

n

k − 1

)

− 4εk4

(

n

k − 1

))

. (4.8)

Now note that due to (3.4) we may assume that |U |/n ≥ 1 − 1/(2k) and so
(

|U |
k−1

)

≥ 0.6
(

n
k−1

)

. Hence, for ε > 0 small enough and a > 0, from (4.6) and (4.8)
we infer that e(G′) > e(G). Thus we must have a = 0 and, consequently, the
assertion follows.
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Results on Erdős Conjecture

In this chapter we present author’s main results, in which we verify Erdős Con-
jecture in some special cases.

In Section 5.1, we present the result from [14], by Frankl, Łuczak and Miecz-
kowska, for a general k-uniform case, proving that Mk(n, s) = Covk(n, s) for
n ≥ 2k2s

log k
.

In Section 5.2, we show that Erdős Conjecture is true for 3-uniform hyper-
graphs whenever n > n0, where n0 is a constant independent of s.

5.1 k-uniform hypergraphs and n ≥ 2k2s
log k

The main result of this section slightly improves the best bound known at the
time of its publishing, and confirms Erdős Conjecture for n ≥ 2k2s

log k
. The following

theorem is due to Frankl, Łuczak and the author [14]].

Theorem 5.1. If k ≥ 3 and

n >
2k2s

log k
, (5.1)

then Mk(n, s) = Covk(n, s).

28
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The main idea of the proof of Theorem 5.1 is based on the numerical estimate
obtained in Theorem 4.10 and Lemma 4.1 which says that that degrees of vertices
in a maximal graph are either full or not too big.

Proof of Theorem 5.1. Let us assume that (5.1) holds for G ∈ Mk(n, s). Then,
by part (i) of Theorem 4.6, the hypergraph H = Sh(G) belongs to Mk(n, s). We
shall show that H ∈ Covk(n, s) which, due to part (ii) of Theorem 4.6, would
imply that G ∈ Covk(n, s). Here and below by deg(i) we mean the degree of
a vertex i, and by V and E we denote the sets of vertices and edges of H,
respectively. Our argument is based on the following observation.

Claim 5.2. If s ≥ 2, then deg(1) =
(

n−1
k−1

)

.

Proof. Let us assume that the assertion does not hold. We shall show that then
H has fewer edges than the graph H ′ = (V, E ′) whose edge set consists of all
k-subsets intersecting {1, 2, . . . , s}. Since H is maximal, from Lemma 4.1 we
know that deg(1) ≤

(

n−1
k−1

)

−
(

n−ks−1
k−1

)

. Moreover, since H = Sh(H), we have

deg(i) ≤
(

n−1
k−1

)

−
(

n−ks−1
k−1

)

for every i ∈ [n]. Thus,

|E ′ \ E| ≥ s

(

n − ks − 1
k − 1

)

≥ s(n − 1)k−1

(k − 1)!

(

1 − ks

n − k + 1

)k−1

,

(5.2)

while from Theorem 4.10 we get

|E \ E ′| ≤ s(s + 1)
2

(

n − 1
k − 2

)

=
s(n − 1)k−1

(k − 1)!
(s + 1)(k − 1)
2(n − k + 1)

≤ s(n − 1)k−1

(k − 1)!
ks

n − k + 1
.

(5.3)

Hence

e(H ′) − e(H) ≥ s(n − 1)k−1

(k − 1)!

(

(

1 − ks

n − k + 1

)k−1

− ks

n − k + 1

)

.

Let x = ks/(n−k+1). It is easy to check that for all k ≥ 3 and x ∈ (0, 0.7 log k/k)
we have

(1 − x)k−1 > x .

Thus, e(H ′)−e(H) > 0, provided k2s < 0.7 log k(n−k+1), which holds whenever
n ≥ 2sk2/ log k. Since clearly ν(H ′) = s, we arrive at contradiction with the
assumption that H ∈ Mk(n, s).
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Since n ≥ ks, the hypergraph H−, obtained from H by deleting vertex 1
together with all edges it is contained in, belongs to Mk(n − 1, s − 1). Now
Theorem 5.3 follows easily from the observation that, since s−1

n−1
≤ s

n
, if (5.1)

holds then it holds also when n is replaced by n − 1 and s is replaced by s − 1.
Hence, we can reduce the problem to the case when s = 1 and use Erdős-Ko-Rado
Theorem (note that then n > 2k2/ log k > 2k + 1).

5.2 3-uniform hypergraphs and n > n0

This section is mostly an adjusted and somewhat simplified copy of the material
as it appears in article [19], by Łuczak and Mieczkowska. Below we prove the
following theorem.

Theorem 5.3. There exists n0 such that for n ≥ n0 large enough and each s,

1 ≤ s ≤ (n − 2)/3, we have

µ3(n, s) = max
{

(

n

3

)

−
(

n − s

3

)

,

(

3s + 2
3

)

}

. (5.4)

Furthermore, for such parameters n and s, we have

M3(n, s) ⊆ Cov3(n, s) ∪ Cl3(n, s) .

The crucial part of the proof of Theorem 5.3 is the following lemma.

Lemma 5.4. Let ε > 0. There exists n0 such that for every n ≥ n0, 1 ≤ s ≤ n/3,

and G ∈ M3(n, s) we have

Sh(G) ∈ Cov3(n, s; ε) ∪ Cl3(n, s; ε) .

We shall show Lemma 5.4 by a detailed analysis of the structure of Sh(G)
but before we do it we argue that it implies Theorem 5.3.

Proof of Theorem 5.3. Let G ∈ M3(n, s). Then, by Theorem 4.6(i), we know
that Sh(G) ∈ M3(n, s). Thus, using Theorem 4.11 and Lemma 5.4, for n large
enough we get

Sh(G) ∈ Cov3(n, s) ∪ Cl3(n, s) ,

and so, by Theorem 4.6(ii),(iii)

G ∈ Cov3(n, s) ∪ Cl3(n, s) .

Let us remark that in order to show Theorem 5.3, it is enough to show
Lemma 5.4 for some given absolute constant ε > 0.



Chapter 5. Results on Erdős Conjecture 31

Proof of Lemma 5.4. Let ε > 0 and G ∈ M3(n, s). By Theorem 4.6(i), we get
Sh(G) ∈ M3(n, s). To simplify the notation, by writing (i, j, k) we always mean
that an edge {i, j, k} is such that i < j < k. Whenever a picture of the edge
(i, j, k) appears, the lower vertex is meant to be i, j is in the middle, and k is the
upper one. Hence, if we draw an edge, each edge which lies “below it" appears in
the graph as well. Let M = {(il, jl, kl) : l = 1, . . . , s} be the largest matching in

Fig. 1.

Sh(G), and let us partition its vertex set into three parts V (M) = I ∪J ∪K such
that for every edge (i, j, k) ∈ M we have i ∈ I, j ∈ J , and k ∈ K. Moreover, let
vertices of K be labeled in such a way that kl < km for every l < m, and denote
L = {il, jl, kl : l ≤ (1 − ε)s}. We shall show that for n large enough either I

covers all but at most ǫ|E| edges of Sh(G) or {e ∈ Sh(G) : e ⊂ L} is a clique.

In order to study the structure of Sh(G) we introduce an auxiliary (non-
uniform!) hypergraph H. Denote by V ′ the set of vertices which are not saturated
by M . Obviously, none of the edges of Sh(G) is contained in V ′. In this proof,
we use degV ′(v) to denote the number of unordered pairs u, w ∈ V ′ such that
{v, u, w} is an edge in Sh(G). Similarly, the number of vertices w ∈ V ′ such that
{v, u, w} ∈ Sh(G) is denoted by degV ′(v, u). Finally, we use e(v) to denote the
unique edge of M containing vertex v. Let H = (W, F ) be a hypergraph with
vertices W = V (M) and the edge set F = M ∪ F1 ∪ F2 ∪ F3, where

F1 = {v ∈ W : degV ′(v) ≥ n − 3s},

F2 = {{v, w} ∈ W (2) : e(v) 6= e(w) and degV ′(v, w) ≥ 3},

F3 = {{v, w, u} ∈ W (3) : e(v), e(w) and e(u) are pairwise different}.

Let us remark that due to Lemma 4.2, for all v ∈ F1 we have degV ′(v) =
(

n−3s
2

)

and for each {v, w} ∈ F2 we have, in fact, degV ′(v, w) = n − 3s. Note also that
since Sh(G) is shifted, hypergraphs F1, F2, F3 are shifted as well. We shall call an
edge e of Sh(G) traceable if e ∩ V (M) ∈ F , and untraceable otherwise. Observe
also that the number of untraceable edges of Sh(G) is bounded from above by
3s · (n − 3s) +

(

s
2

)

· 9 · 2 + s · 3 · n ≤ 2n2, so we can afford to ignore them.

We call a triple T of edges from M bad, if in
⋃

T there are three disjoint edges
of H whose union intersects I on at most 2 vertices, and good otherwise. We show



Chapter 5. Results on Erdős Conjecture 32

first that there are only few bad triples in M , since otherwise one could increase
the matching number.

Claim 5.5. No three disjoint triples are bad. Consequently, there exists a set B

which consists of at most six edges from M such that each bad triple contains an

edge from B.

Proof. Let us suppose for a contradiction that there exist nine disjoint edges
{(il, jl, kl) : l = 1, . . . , 9} ⊂ M such that in {il, jl, kl : l = 1, . . . , 9} one can find
a set of nine disjoint edges H ′ ⊂ H, which do not cover vertices i3, i6 and i9. One
can easily see that for any ordering of the sets {j3, j6, j9} and {k3, k6, k9} there
exists a permutation σ(3), σ(6), σ(9) such that jσ(9) > jσ(6) and kσ(9) > kσ(3); to
simplify the notation let us assume that j9 > j6 > i6 and k9 > k3 > i3. Replace in
H ′ an edge e which contains j9 by e′ = (e\{j9})∪{i6} and the edge f containing
k9 by f ′ = (e\{k9})∪{i3}; note that both e′ and f ′ belong to H since H = Sh(H).
Thus, we obtain the family of nine disjoint edges of H ′′ ⊆ H, all of which are
contained in eight edges of M . Furthermore, since edges from F1 ∪ F2 have large
degrees in V ′, all edges from H ′′ which belong to F1 ∪ F2 can be simultaneously
extended to disjoint edges of Sh(G) by adding to them vertices from V ′. But this
would lead to a matching M ′ of size s+1 in Sh(G), contradicting the assumption
Sh(G) ∈ M3(n, s).

Now we study properties of good triples. We start with the following simple
observation.

Claim 5.6. Let T be a good triple.

(i) (F1 ∩ ⋃T ) ⊂ I.

(ii) For any two edges of T there are at most 5 edges in F2 contained in their

vertex set. Moreover, the only possible configuration with exactly 5 edges

from F2 is when all these edges intersect I (see Fig. 2).

Fig. 2.
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Proof. Let T = {(i1, j1, k1), (i2, j2, k2), (i3, j3, k3)} be a good triple.

(i) Let j1 < j2 < j3 and assume that (F1 ∩ ⋃T ) 6⊂ I. Then, since hypergraph
F1 is shifted, {j1} ∈ F1 and T is a bad triple because of the edges {j1}, (i2, j2, k2),
(i3, j3, k3), a contradiction.

(ii) Let us assume by contradiction that there are 6 edges from F2 which are
contained in {i1, j1, k1, i2, j2, k2}. Then {j1, j2} ∈ F2 and at least one of the edges
{i1, k2}, {i2, k1} is in F2. Let us assume that {i1, k2} ∈ F2. Then, T is bad because
of the edges {j1, j2}, {i1, k2}, (i3, j3, k3).

For a triple T ∈ M (3) and for i = 1, 2, 3, let fi(T ) be the number of edges
of Fi contained in

⋃

T . Clearly, f1(T ) ≤ 9, f2(T ) ≤ 27 and f3(T ) ≤ 27 for any
triple T . However, if T is good, then, by Claim 5.6, we immediately infer that
f1(T ) ≤ 3 and f2(T ) ≤ 15. Our next result shows how to estimate f1(T ) and
f2(T ) more precisely for good triples for which f3(T ) is large. We will later use it
to bound the number of edges in Sh(G), using the facts that there are only few
bad triples T ∈ M (3), and that fi(T ) cannot be all too large for good triples.

Claim 5.7. Let T be a good triple.

(i) If f3(T ) ≥ 24, then f1(T ) = f2(T ) = 0.

(ii) If f3(T ) = 20, then f1(T ) ≤ 1 and f2(T ) ≤ 12.

(iii) If f3(T ) ≤ 19, then f1(T ) ≤ 3 and f2(T ) ≤ 15. Moreover, the only triples

for which f3(T ) = 19, f2(T ) = 15, and f1(T ) = 3, are those in which each

edge of H contained in
⋃

T intersects I.

(iv) If f3(T ) = 21, then f1(T ) ≤ 1 and f2(T ) ≤ 10.

(v) If 22 ≤ f3(T ) ≤ 23, then f1(T ) = 0 and f2(T ) ≤ 7.

Proof. Let T = {(i1, j1, k1), (i2, j2, k2), (i3, j3, k3)} be a good triple.

(i) Observe that since f3(T ) ≥ 24, one of the pairs of edges presented in Fig. 3
must be in H. Let e, f ∈ F3 be disjoint edges such that e, f ⊂ {j1, j2, j3, k1, k2, k3},

Fig. 3.
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and let us assume that i1 < i2 < i3. If f1(T ) 6= 0, then i1 ∈ F1 and so T is bad
because of {i1, e, f}. Similarly, if f2(T ) 6= 0, then {i1, i2} ∈ F2 and again T is
bad, while we assumed that T is good.

(ii) Observe that if {j1, j2, j3} /∈ F3, then every edge in F3 intersects I and
we have f3(T ) ≤ 19. Thus, if f3(T ) ≥ 20, then {j1, j2, j3} ∈ F3, and be-
cause T is good, we must have f1(T ) ≤ 1. Now assume by contradiction that
f2(T ) ≥ 13. Then, there are two edges in T , let say (i1, j1, k1), (i2, j2, k2), such
that at least five edges of F2 are contained in their set of vertices. By Claim 5.6,
we know that {i1, k2}, {k1, i2} ∈ F2 and thus, T is bad because of the edges
{i1, k2}, {k1, i2}, {j1, j2, j3}.

(iii) It is a direct consequence of Claim 5.6. Furthermore, if f2(T ) = 15, then
we must have {j1, j2, j3} /∈ F3 (otherwise, as we argued in (ii) above, f2(T ) ≤ 12).

(iv) Since f3(T ) = 21, we know that {j1, j2, j3} ∈ F3 and {k1, k2, k3} /∈ F3.
Therefore, at least one pair of edges from Fig. 4. and Fig. 5. is in F3.

Fig. 4.

Fig. 5.

Since each such a pair saturates only one vertex from I, we have f1(T ) ≤ 1.
To estimate f2(T ) let us assume that j2 is not saturated by such a pair of
edges. Then, {i1, j2}, {j2, i3} /∈ F2, because T is good. Consequently, none of
the sets {i1, k2}, {j1, j2}, {j2, j3}, {k2, i3} is in F3, and thus at most six edges
of F2 are contained in {i1, j1, k1, i2, j2, k2} or in {i2, j2, k2, i3, j3, k3}. Now, since
{j1, j2, j3} ∈ F3, using the same argument as in (ii), we conclude that at most
four edges of F2 are contained in {i1, j1, k1, i3, j3, k3}. Hence, f2(T ) ≤ 10.

(v) From (i) we know that if in T we can find one of the pairs of edges marked
on Fig. 3, then f1(T ) = f2(T ) = 0. Thus, let us assume that for each of these
pairs at least one edge is not in F3 and 22 ≤ f3(T ) ≤ 23. Hence {j1, j2, j3} ∈ F3

and {k1, k2, k3} /∈ F3. Now consider {j1, j2, k3}, {j1, k2, j3}, {k1, j2, j3}. It is easy
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to check that if at most one of them is in F3, then f3(T ) ≤ 21. Thus, we split
our further argument into two cases.

Case 1. All three edges {j1, j2, k3}, {j1, k2, j3}, {k1, j2, j3} are in F3.

Then, {j1, k2, k3}, {k1, j2, k3}, {k1, k2, j3}, {k1, k2, k3} /∈ F3. Therefore, as
f3(T ) ≥ 22, at least two pairs of edges shown on Fig. 4. are in F3. Let say
these are {i1, k2, k3}, {k1, j2, j3} and {k1, k2, i3}, {j1, j2, k3}. Since T is good, edges
{j1, i2}, {j1, i3}, {i2, j3}, {i1, j3} are not in F2, and because F2 is shifted, the edges
of F2 contained in

⋃

T are contained in the set {{i1, i2}, {i1, j2}, {i1, k2}, {i2, i3},
{j2, i3}, {k2, i3}, {i1, i3}}. Hence, f2(T ) ≤ 7. It is also easy to observe that in
that case f1(T ) = 0.

Case 2. Exactly two of the edges {j1, j2, k3}, {j1, k2, j3}, {k1, j2, j3} are in F3.

Without loss of generality let {j1, j2, k3}, {j1, k2, j3} ∈ F3. Then, {k1, j2, j3},
{k1, j2, k3}, {k1, k2, j3}, {k1, k2, k3} /∈ F3. Therefore, if f3(T ) = 23, then all other
edges are in F3, and so two pairs of edges shown on Fig. 4. are in F3. Thus,
as we have shown in the proof of Case 1, f2(T ) ≤ 7. Let now consider the case
when f3(T ) = 22. If both pairs of edges {j1, k2, j3}, {k1, i2, k3} and {k1, k2, i3},
{j1, j2, k3} are in F3, then again f2(T ) ≤ 7. Let now assume that only one
of these pairs is in F3, let say {j1, k2, j3}, {k1, i2, k3} ∈ F3. Then also a pair
{j1, k2, k3}, {k1, j2, i3} is in F3. Thus, {i1, j2}, {j2, i3}, {i1, j3}, {i2, j3} /∈ F2, and
therefore, f2(T ) ≤ 7. In that case we also have f1(T ) = 0.

Now we bound the number of edges in Sh(G). First of all let us remove from
M six edges so that in the remaining matching M̄ we have only good triples (see
Claim 5.5). In this way we omit at most 9n2 edges of Sh(G). Let us recall also
that the number of untraceable edges of Sh(G) is at most 2n2. Finally, since for
each edge f ∈ Fi there are

(

n−3s
3−i

)

edges e ∈ Sh(G) such that e ∩ V (M) = f , the
number of edges in Sh(G) is given by

e(Sh(G)) = |F1|
(

n − 3s

2

)

+ |F2|(n − 3s) + |F3| + O(n2).

To bound |Fi|, let us sum fi(T ) over all T ∈ M̄ (3). Observe that in such a sum
each edge from Fi is counted exactly

(

s−i
3−i

)

times. Thus,

e(Sh(G)) =
∑

T ∈M̄(3)



f1(T )

(

n−3s
2

)

(

s−1
2

) + f2(T )
n − 3s

s − 2
+ f3(T )



+ O(n2).

Now we divide good triples into 27 groups, depending on f3(T ). If

Ti = {T ∈ M̄ (3) : f3(T ) = i}
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for i = 1, . . . , 27, then

e(Sh(G)) =
27
∑

i=1

∑

T ∈Ti

(

f1(T )
(n − 3s)2

s2
+ f2(T )

n − 3s

s
+ f3(T )

)

+ O(n2).

Let us now denote x1 =
∑19

i=1 |Ti|, x2 = |T20|, x3 = |T21|, x4 = |T22| + |T23|,
x5 =

∑27
i=24 |Ti|. By Claim 5.7, we get the following bound.

e(Sh(G)) ≤ (3x1 + x2 + x3)
(n − 3s)2

s2

+ (15x1 + 12x2 + 10x3 + 7x4)
n − 3s

s

+ (19x1 + 20x2 + 21x3 + 23x4 + 27x5) + O(n2).

Now it sufficies to maximize the above function under the conditions
∑5

i=1 xi ≤
(

s−6
3

)

and xi ≥ 0 for every i = 1, . . . , 5. Then, we are to maximize a function

fs,n(x1, x2, x3, x4, x5) =
5
∑

i=1

αi(s, n)xi,

where

α1(s, n) = 3(n − 3s)2/s2 + 15(n − 3s)/s + 19

α2(s, n) = (n − 3s)2/s2 + 12(n − 3s)/s + 20

α3(s, n) = (n − 3s)2/s2 + 10(n − 3s)/s + 21

α4(s, n) = 7(n − 3s)/s + 23

α5(s, n) = 27 ,

over the domain
∑5

i=1 xi ≤
(

s−6
3

)

, xi ≥ 0 for i = 1, . . . , 5. This is a particularly
simple case of linear programming: it is easy to see that in order to maximize
fs,n it is enough to check which of the coefficients αi(s, n) is the largest one and
set the variable xi which corresponds to this coefficient to be maximum, while
the rest of the variables should be equal to zero.

It is easy to verify that if s = an and a < a0, where a0 = (
√

321 − 3)/52, then
α1(s, n) dominates, and so for s = an, a < a0, we have

e(Sh(G)) ≤
(

3
(1 − 3a)2

a2
− 15

15(1 − 3a)
a

+ 19
)(an)3

6
+ O(n2)

= (3a − 3a2 + a3)
n3

6
+ O(n2),

which nicely matches the lower bound for e(Sh(G)) given by

e(Cov3(n, s)) =

(

n

3

)

−
(

n − s

3

)

= (3a − 3a2 + a3)
n3

6
+ O(n2) .
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Furthermore, in order to achieve this bound for all but O(n2) triples T we must
have f3(T ) = 19, f2(T ) = 15, f1(T ) = 3, which is possible only if all edges of such
triple intersect I (see Claim 5.7(iii)). Consequently, for this range of s, in Sh(G)
there is a subset I, |I| = s, which covers all but at most O(n2) edges of Sh(G).

For a > a0 the dominating coefficient is α5(s, n) = 27, which gives

e(Sh(G)) ≤ 27
(an)3

6
+ O(n2) =

9
2

a3n3 + O(n2) ,

matched by the lower bound

e(Clk(n, s)) =

(

3s + 2
3

)

=
9
2

a3n3 + O(n2) .

Again, to achieve this bound for all but O(n2) triples we must have f3(T ) = 27.
Let us now recall that k1 < . . . < ks and let {ki−2, ki−1, ki} ∈ Sh(G) be such
that {ki+1, ki+2, ki+3} /∈ Sh(G). Then, because of shifting, {ki+1, . . . , ks} is an
independent set and thus, there are at least

(

s−i
3

)

triples T of edges from M

such that f3(T ) < 27. Since
(

s−i
3

)

= O(n2) we have i = s − O(n2/3). But then,
{k1, . . . , ki} is a clique of size i = s − O(n2/3) = s − O(s2/3) in Sh(G).

In order to complete the proof we need to consider the remaining case when
s = (a0 + o(1))n. Since α1(a0n, n) = α5(a0n, n) > αi(a0n, n) for i = 2, 3, 4, we
infer that in Sh(G) all triples, except for at most O(n2), must be of one of two
types: either for such a triple T we have f3(T ) = 27, f2(T ) = f1(T ) = 0, or
f3(T ) = 19, f2(T ) = 15, f3(T ) = 3. It is easy to see that it is possible only when
one of these two types of triples dominates. Indeed, let M ′ ⊆ M denote the set
of edges of M which contain a singleton edge from F1. Since all but O(s2) triples
must be of either of the two types, for the number of triples which are contained
neither in M ′, nor in M \ M ′ is O(s2), we get the following estimate

(

|M ′|
2

)

|M \ M ′| +

(

|M \ M ′|
2

)

|M ′| = O(s2) .

Consequently, min{|M ′|, |M \ M ′|} = O(s1/2), so

Sh(G) ∈ Cov3(n, s; O(n−1)) ∪ Cl3(n, s; O(n−1/3))

⊆ Cov3(n, s; ε) ∪ Cl3(n, s; ε) ,

and the assertion follows.
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Variations on Erdős Conjecture

In this chapter we discuss several possible approaches for solving Erdős Conjecture
and present new conjectures and results, obtained while working on this problem.

In Section 6.1 we give a new proof of Erdős Conjecture for graphs based on
Tutte’s Theorem. We also state a new conjecture that might be considered as
a weak version of Tutte’s Theorem for hypergraphs, and, if true, might be helpful
in proving Erdős Conjecture, for large n.

In Section 6.2 we discuss the connections between Erdős’ matching problem
to an old probabilistic conjecture of Samuels. Inspired with this relation, we
state a new conjecture, which, as it turns out, is asymptotically equivalent to
the fractional version of Erdős’ matching problem. In particular, we prove the
following result, which is due to Łuczak, Šileikis and the author.

Theorem 6.1. Let X1, X2, X3 be independent, identically distributed and non-

negative random variables with expected value E(X1) = x. Then,

P(X1 + X2 + X3 ≥ 1) ≤ max{1 − (1 − x)3, (3x)3}.

38
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6.1 Erdős Conjecture and Tutte’s Theorem

Let us recall that Erdős Conjecture for graphs was proven first by Erdős and
Gallai [6] in 1959. Since then, some other proofs, much shorter and more elegant,
have been presented. Here we give a new proof of this result, the main part of
which is based on a structural lemma of Figaj and Łuczak from [9].

In this section we need a few more definitions concerning graphs. Let us recall
that a graph is a pair G = (V, E), where V = V (G) is a finite set of vertices and
E = E(G) ⊂

(

V
2

)

is a family of edges of G. A subgraph G′ ⊂ G is a graph
G′ = (V ′, E ′) such that V ′ ⊂ V and E ′ ⊂ E. We say that G′ ⊂ G is an induced

subgraph if for every edge e ∈ E contained in V ′, we have e ∈ E ′. By G[V ′] we
denote an induced subgraph G′ ⊂ G with vertex set V ′ ⊂ V . We say that two
vertices v, w ∈ V are connected if there exists a path between them, i.e. a sequence
of vertices

(v0, v1, . . . , vk−1, vk),

where v = v0, vk = w, vi ∈ V , i = 0, . . . , k, are such that {vi, vi+1} ∈ E for
every i = 0, . . . , k − 1. A graph G is connected if every two of its vertices are
connected. A component C of a graph G is a maximal connected subgraph, i.e.
it is not a proper subgraph of any other connected subgraph. The number of
odd components of G, i.e. of components having an odd number of vertices, is
denoted by q(G). A vertex w ∈ V is a neighbor of a vertex v ∈ V if {v, w} ∈ E.
The number of neighbors of vertex v ∈ V is called the degree of vertex v, and the
largest degree of G is denoted by ∆(G).

Let us first recall Tutte’s Theorem which we shall use in the following form.

Theorem 6.2. Let G = (V, E) be a graph with n vertices such that ν(G) ≤ s.

Then, there exists a set S ⊂ V such that q(G[V \ S]) ≥ |S| + n − 2s.

As noticed by Figaj and Łuczak [9], one can easily derive from Theorem 6.2
the following structural result.

Lemma 6.3. Let G = (V, E) be a graph with n vertices such that ν(G) ≤ s.

Then, there exists a partition {S1, S2, S3} of V such that:

(i) each vertex v ∈ S3 has at most
√

n − 1 neighbors in S3,

(ii) there are no edges between the sets S2 and S3,

(iii) 2|S1| + |S2| < 2s +
√

n.
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Proof. Let G = (V, E) be an n-vertex graph such that ν(G) ≤ s. Then, by
Theorem 6.2, there exists a subset S1 ⊂ V such that

q(G[V \ S1]) ≥ |S1| + n − 2s.

Let V1, V2, . . . , Vk be vertex sets of the odd components of a graph G[V \ S1] with
at most

√
n vertices, and let S3 =

⋃k
i=1 Vi and S2 = V \ (S1 ∪ S3). It is easy to see

that for such a partition {S1, S2, S3} conditions (i) and (ii) clearly hold. Since
there are fewer than

√
n components in G[V \ S1] of size larger than

√
n, and

because of Tutte’s condition we have

|S3| ≥ k > q(G[V \ S1]) − √
n ≥ |S1| + n − 2s − √

n.

Therefore, since |S2| = n − |S1| − |S3|, we get

2|S1| + |S2| = n + |S1| − |S3| < 2s +
√

n

and (iii) holds.

Now we can prove Erdős Conjecture for graphs, which is an immediate con-
sequence of Lemma 6.3 and Theorem 4.11.

Theorem 6.4. Let s ≥ 1 and n > n0. Then,

M2(n, s) = Cov2(n, s) ∪ Cl2(n, s).

Proof. Let G = (V, E) ∈ M2(n, s). By Lemma 6.3, there exists a partition
{S1, S2, S3} of V such that each vertex of S3 has at most

√
n − 1 neighbors in S3,

there are no edges between the sets S2 and S3, and

2|S1| + |S2| < 2s +
√

n.

Thus,
|S2| < 2s − 2|S1| +

√
n and |S1| < s +

√
n.

Now, the number of edges of G can be bounded from above by

|E| ≤
(

|S1|
2

)

+

(

|S2|
2

)

+
1
2

|S3|∆(G[S3]) + |S1||S2| + |S1||S3|

<
|S1|2

2
+

(2s − 2|S1| +
√

n)2

2
+

1
2

|S3|
√

n + |S1|(n − |S1|)

=
3
2

|S1|2 + (n − 4s)|S1| + 2s2 + o(n2).

Since the last expression is a quadratic function of |S1|, it achieves the maximum
value either for |S1| = 0 or |S1| = s. Hence,

|E| ≤ max

{

2s2, ns − s2

2

}

+ o(n2),
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and either G ∈ Cl2(n, s; ε) or G ∈ Cov2(n, s; ε) for some ε > 0 and n > n0.
Consequently, by Theorem 4.11, G ∈ Cov2(n, s) ∪ Clk(n, s), for n big enough.

The proof of Lemma 6.3 is based on Tutte’s Theorem, but this result can
be also shown in a different way, using the switching technique similar to the
one employed in the proof of Lemma 5.4. Although the new proof is neither
simpler nor shorter, we believe that it might be generalized and used to obtain
analogous structural result for hypergraphs. Not being able to prove it in the
whole generality, we state it below as a new conjecture. This conjecture describes
a structure of k-uniform hypergraphs with a bounded matching number and might
be considered as a generalization of Tutte’s Theorem for k-uniform hypergraphs.

Conjecture 6.5. Let k ≥ 2, s ≥ 1 and n ≥ k(s + 1). Moreover, let G = (V, E)
be a k-uniform hypergraph with n vertices and ν(G) ≤ s. Then, one can remove

o(nk) edges from G so that the graph G′ = (V, E ′) obtained in this way admits

a partition {S1, S2, . . . , Sk, Sk+1} of the vertex set V such that:

(i) for every e ∈ E ′ there exists i ∈ [k] such that |e ∩ Si| ≥ i,

(ii) k|S1| + k
2
|S2| + . . . + k

k−1
|Sk−1| + |Sk| ≤ ks.

The proof that Conjecture 6.5 implies Erdős Conjecture in a general case
seems to be very technical. Note however that the problem is just to maximize
the sum

k
∑

j=1

k
∑

i=j

(

|Sj|
i

)(

∑k+1
l=j+1 |Sl|
k − i

)

,

which bounds the number of edges in a k-graph G, under the conditions

(i) k|S1| + k
2
|S2| + k

3
|S3| + · · · + k

k−1
|Sk−1| + |Sk| ≤ ks,

(ii) |S1| + |S2| + · · · + |Sk+1| = n,

(iii) |Si| ≥ 0 for i = 1, . . . , k + 1.

But even this task does not seem possible along these lines. Note just that,
unless Erdős Conjecture is false, the maximum should occur either for |S1| = s,
or for |Sk| = ks.
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6.2 Erdős Conjecture and probabilistic

inequalities

Let us remind that the fractional version of Erdős Conjecture gives the bound on
the number of edges of a k-uniform hypergraph in terms of fractional matching
number. Alon et al. [2] observed that this conjecture is closely related to the
following probabilistic conjecture, proposed by Samuels [21] in 1966.

Conjecture 6.6. Let λ, x1, . . . , xk be real numbers, satisfying 0 ≤ x1 ≤ . . . ≤ xk

and
∑k

i=1 xi < λ. Moreover, let X1, . . . , Xk be independent, nonnegative random

variables with expectations x1, . . . , xk, respectively. Then,

P(X1 + . . . + Xk ≥ λ) ≤ max
l=0,...,k−1

{Pl(λ; x1, . . . , xk)} ,

where

P0(λ; x1, . . . , xk) = 1 −
k
∏

i=1

(

1 − xi

λ

)

,

and

Pl(λ; x1, . . . , xk) = 1 −
k
∏

i=l+1

(

1 − xi

λ −∑l
j=1 xj

)

for l = 1, . . . , k − 1.

Observe that for k = 1 Conjecture 6.6 is equivalent to the Markov’s inequality.
It was also confirmed for k ≤ 4 by Samuels [21], [22], but for all k ≥ 5 this problem
is still widely open. Note also that the value P0(λ; x1, . . . , xk) is attained when
Xi ∈ {0, λ}, for every i. For l ≥ 1, the value Pl(λ; x1, . . . , xk) is equal exactly
to the value of P(X1 + . . . + Xk ≥ λ) when Xi is identically xi for all i ≤ l, and
Xi ∈

{

0, λ −∑l
j=1 xj

}

for all i ≥ l + 1.

In [2] it was proved that Conjecture 6.6, if true, implies asymptotically the
fractional version of Erdős’ problem for x ≤ 1/(k + 1).

Theorem 6.7. If Conjecture 6.6 holds for λ = 1, k ≥ 3 and 0 < x1 = . . . = xk ≤
1

k+1
, then

µ∗
k(n, xn) = (1 + o(1))

(

1 − (1 − x)k
)

(

n

k

)

.

The proof of Theorem 6.7 is based on the fact that

µ∗
k(n, xn) ≤ (1 + o(1))

(

n

k

)

{P(X1 + . . . Xk ≥ 1)},

for some identically distributed random variables Xi, satisfying assumptions of
Conjecture 6.6 for λ = 1 and 0 < x1 = . . . = xk ≤ 1

k+1
, and the observation that



Chapter 6. Variations on Erdős Conjecture 43

in such a case we have

max
l=0,...,k−1

Pl(1; x, . . . , x) = P0(1; x, . . . , x) = 1 − (1 − x)k.

By combining Samuels’ results for k = 3, 4 with Theorem 6.7, Alon et al. [2]
confirmed Conjecture 3.5 for k = 3, x < 1/4 and for k = 4, x < 1/5. As noted
in [2], Samuels’ conjecture for 1

k+1
< x ≤ 1

k
, gives a bound on the number of edges

which is larger than that in Conjecture 3.5. Here, we state a new conjecture which,
if true, should provide an appropriate bound for every 0 < x ≤ 1/k, since it is
asymptotically equivalent to the fractional version of Erdős Conjecture.

Conjecture 6.8 (Łuczak, Mieczkowska, Šileikis). Let X1, . . . , Xk be indepen-

dent, identically distributed, nonnegative random variables with a common mean

E(X1) = x. Then,

P(X1 + . . . Xk ≥ 1) ≤ max{1 − (1 − x)k, (kx)k}. (6.1)

Let us mention that for k = 2, Conjecture 6.8 follows from an old result of
Hoeffding and Shrikande [17]. For x < 1/(k + 1), it holds whenever Samuels’
conjecture is true, as then the bound in Conjecture 6.8 is equal to the one from
Samuels’ conjecture. Here we confirm Conjecture 6.8 in a few new instances, i.e.
for k = 3 and k ≥ 5 for x ≤ 1/(2k−1). The following unpublished result is due to
Łuczak, Šileikis and the author, and proves that the fractional Erdős Conjecture
is asymptotically equivalent to Conjecture 6.8.

Theorem 6.9. For x ∈ [0, 1/k] Conjecture 3.5 holds if and only if Conjecture 6.8

holds as well.

Before proving Theorem 6.9, for the sake of simplicity, let

M(x) = max{1 − (1 − x)k, (kx)k},

and observe that function M is continuous and increasing. We will use this
observation while proving the following lemma, in which we show that it is enough
to confirm Conjecture 6.8 just for some specific random variables. Here and below,
by supp(X) we denote the support of random variable X, i.e. the set of values
which X attains with a non-zero probability.

Lemma 6.10. It suffices to prove Conjecture 6.8 for independent, identically

distributed, nonnegative random variables Xi with a common mean E(Xi) = x

such that

(i) x < 1
k
;
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(ii) Xi ≤ 1;

(iii) supp(Xi) < ∞;

(iv) min{supp(Xi)} = 0;

(v) P(Xi = aj) ∈ Q for every aj ∈ supp(Xi).

Proof. (i) Note that for x ≥ 1/k we have M(x) ≥ 1 and then the bound (6.1)
holds trivially. Therefore, from now on, we assume that x < 1/k.

(ii) Let us assume that Conjecture 6.8 holds for random variables with values
less or equal to 1. We shall show that then it also holds for every random variable
Xi. In order to do this, let us define

Yi = min{Xi, 1}.

Then, P
(

∑k
i=1 Xi ≥ 1

)

= P
(

∑k
i=1 Yi ≥ 1

)

and y = E(Yi) ≤ E(Xi). Since the
function M is increasing, we get

P

(

k
∑

i=1

Xi ≥ 1

)

= P

(

k
∑

i=1

Yi ≥ 1

)

≤ M(y) ≤ M(x).

Thus, from now on, we assume that Xi ≤ 1.

(iii) Let us assume that Conjecture 6.8 holds for random variables attaining
finite number of values from the interval [0, 1]. For every natural m we define

Y
(m)

i = ⌈mXi⌉ /m.

Then, we have Xi ≤ Y
(m)

i ≤ Xi + 1/m. Since M is an increasing function,
ym = E(Y (m)

i ) ≤ E(Xi) + 1
m

, and Y
(m)

i attains finite number of values from the
interval [0, 1], the following holds:

P

(

k
∑

i=1

Xi ≥ 1

)

≤ P

(

k
∑

i=1

Y
(m)

i ≥ 1

)

≤ M(ym) ≤ M(x + 1/m).

Now, as the previous inequalities hold for every natural m and function M is
continuous, we get

P

(

k
∑

i=1

Xi ≥ 1

)

≤ M(x).

Thus, from now on, we assume that supp(Xi) = {a1, . . . , am} for some aj ∈ [0, 1].

(iv) Let a1 = min{supp(Xi)}. First observe that if a1 = x then Xi ≡ x and
then Conjecture 6.8 clearly holds. Thus, we may assume that a1 6= x. Suppose
now that a1 6= 0 and let

Yi = (Xi − x)
x

x − a1

+ x.
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Then, E(Yi) = x and since 0 ∈ supp(Yi), we have

P

(

k
∑

i=1

Xi ≥ 1

)

≤ P

(

k
∑

i=1

Xi ≥ 1 − a1(1 − kx)
x

)

= P

(

k
∑

i=1

Yi ≥ 1

)

≤ M(x).

Thus, we may only consider random variables for which a1 = 0.

(v) Let us now assume that Conjecture 6.8 holds for random variables attain-
ing finite number of values from interval [0, 1], each with rational probability, and
attaining value 0 with non-zero probability. Let pj = P (Xi = aj), j = 1, . . . , m.
For every n define random variable Y

(n)
i ∈ {a1, . . . , am} such that

P
(

Y
(n)

i = aj

)

= p
(n)
j ,

where p
(n)
j = ⌈npj⌉/n for j = 2, . . . , m, and p

(n)
1 = 1 −∑m

j=2 p
(n)
j . Then, for j ≥ 2

we have
pj ≤ p

(n)
j ≤ pj + 1/n,

and thus,
yn = E(Y (n)

i ) ≤ E(Xi) + 1/n.

Moreover, since P(Y (n)
i ≥ a) ≥ P(Xi ≥ a) for every a ∈ R, Xi is stochastically

dominated by Yi, and the same applies to their sums. Thus, we get

P

(

k
∑

i=1

Xi ≥ 1

)

≤ P

(

k
∑

i=1

Y
(n)

i ≥ 1

)

≤ M(yn) ≤ M(x + 1/n).

As the last inequalities hold for every n, by continuity of function M , we conclude
that

P

(

k
∑

i=1

Xi ≥ 1

)

≤ M(x).

Proof of Thorem 6.9. First, let us assume that Conjecture 6.8 is true for some
k and x < 1/k. Following the argument of Alon et al. [2], we will show that it
implies the asymptotic fractional version of Erdős Conjecture.

Let G be a k-uniform hypergraph on a vertex set V , |V | = n such that
ν∗(G) = xn. By duality we know that τ ∗(G) = xn, hence there exists a weight
function w : V → [0, 1] such that

∑

v∈V

w(v) = xn,

and
∑

v∈e w(v) ≥ 1 for every e ∈ G. Let (v1, . . . , vk) be a sequence of random
vertices, chosen independently and uniformly at random from the vertices of G.
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For each i = 1, . . . , k, define Xi to be the weight of the i-th chosen vertex, i.e.
Xi = w(vi). Note that X1, . . . , Xk are independent and identically distributed
random variables, attaining value w(v) with probability 1/n for each v ∈ V . By
the definition, for every i = 1, . . . , k we have that

E(Xi) =
1
n

∑

v∈V

w(v) =
1
n

xn = x.

Our goal now is to express the number of edges in hypergraph G in terms of
the probability that such a randomly chosen sequence of k vertices corresponds
to an edge in G. First of all, notice that for every edge e = {vi, . . . , vk} ∈ G,
there are k! possible sequences corresponding to this edge that might have been
obtained as a result of such a random choice. Therefore, if (v1, . . . , vk) is a random
sequence obtained in our process, then

P({v1, . . . , vk} ∈ G) =
k!e(G)

nk
. (6.2)

On the other hand we know that for every edge {v1, . . . , vk} ∈ G we have
∑k

i=1 w(vi) ≥ 1 and thus

P({v1, . . . , vk} ∈ G) ≤ P

(

k
∑

i=1

Xi ≥ 1

)

. (6.3)

From (6.2), (6.3) and the assumption that Conjecture 6.8 is true, we eventually
conclude that

e(G) ≤nk

k!
P

(

k
∑

i=1

Xi ≥ 1

)

≤(1 + o(1))

(

n

k

)

max{(1 − (1 − x)k, (kx)k}.

To prove the equivalence of the conjectures now we need to prove the reverse
implication. Therefore, let us assume that Conjecture 3.4 is valid for some k,
x < 1/k and n large enough. Let Xi, i = 1, . . . , k be independent and identically
distributed nonnegative random variables such that

P(Xi = aj) =
pj

qj

for some aj ∈ [0, 1] and positive co-prime integers pj and qj, j = 1, . . . , m.
Moreover, let n be the smallest common multiple of the numbers {q1, . . . , qm},
p′

j = npj/qj and let us assume that

x = E(Xi) =
m
∑

j=1

aj
pj

qj

=
1
n

m
∑

j=1

ajp
′
j <

1
k

.
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Now we will use variables Xi to define hypergraphs with a small fractional
matching number. Let Vr = [rn] and let wr : Vr → [0, 1] be a function such that

wr(v) = aj for every v ∈ Vr such that
j−1
∑

l=1

rp′
l < v ≤

j
∑

l=1

rp′
l.

We define Gr = (Vr, Er) to be a sequence of k-uniform hypergraphs with vertex
sets Vr and edge sets defined as follows:

Er =

{

e ∈
(

Vr

k

)

:
∑

v∈e

wr(v) ≥ 1

}

.

Note that, for such defined hypergraphs Gr, the function wr is actually a fractional
vertex cover of size

∑rn
v=1 wr(v) =

∑m
j=1 ajrp′

j = xrn. Therefore, by the duality, we
claim that ν∗(Gr) = τ ∗(Gr) < xrn. Now from the assumption that Conjecture 3.5
is true, we get the following bound on the number of edges of Gr:

e(Gr) ≤ (1 + o(1))

(

rn

k

)

max{1 − (1 − x)k, (kx)k}.

Let now Nr denote the number of k-element sequences (v1, . . . , vk) of vertices
vi ∈ Vr with at least two equal elements and such that

∑k
1=1 wr(vi) ≥ 1. As

Nr = o((rn)k), we have

P(X1 + . . . + Xk ≥ 1) =

∣

∣

∣

{

(v1, . . . , vk) ∈ V (k)
r :

∑k
i=1 w(vi) ≥ 1

}∣

∣

∣

(rn)k

=
k!e(Gr) + Nr

(rn)k

≤ (1 + o(1)) max{1 − (1 − x)k, (kx)k}.

Finally, since the probability on the left hand side depends neither on r, nor
on n, we conclude that

P(X1 + . . . + Xk ≥ 1) ≤ max{1 − (1 − x)k, (kx)k}.

The following theorem is an immediate consequence of Theorem 6.9, combined
with the known results on Erdős Conjecture from [2, 6, 13, 12, 19].

Theorem 6.11. Conjecture 6.8 holds for k = 2, 3, for k = 4 and x ≤ 1/5, and

finally when k ≥ 5 and x ≤ 1/(2k − 1).
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