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Abstract 

The advent of nanotechnology had a significant impact on everyday life and science in general. 

Technological advances and research keep providing novel effects and innovations. When con-

fined to the nanoscale, materials exhibit new properties not present in their bulk counterparts. 

These include unique optical, electrical, magnetic, thermal, and mechanical properties. The eval-

uation of the latter is of indisputable importance in terms of applications. However, to date, it 

remains an experimental challenge that triggers the development of new techniques.    

The thesis is devoted to the mechanical properties of functional nanomaterials of different levels 

of spatial confinement: thin nanocomposite coatings, ultrathin membranes, and colloidal crystals. 

Brillouin light scattering (BLS) was employed to investigate the effect of such parameters as stoi-

chiometry, nanoconfinement (size effect), or high-pressure environment on the mechanical fea-

tures of the nanomaterials.  

For the case of thin nanocomposite coatings, the influence of Ta% content was investigated in the 

mechanical response of the Ta-Hf-C 3D nanocomposites supported by silicon. These nanocompo-

sites consist of crystalline nanoparticles surrounded by amorphous, highly graphitic carbide. This 

structure provides many advantages over single crystalline or polycrystalline films, such as im-

proved mechanical, thermal, and electrical properties. Ta-Hf-C is an ultra-refractory material of 

the highest melting point known to man (> 3900 °C). Furthermore, its chemical stability and high 

inertness allow its use as a corrosion protective layer for high-temperature applications. In this 

work, the Young modulus of Ta-Hf-C/Si with different Ta% was determined from experimentally 

measured dispersion relations of surface acoustic waves by employing finite element method 

(FEM) analysis. The results revealed a higher Young modulus for ternary alloys (TaC)x(HfC)y 

than that of binary TaC or HfC. Moreover, BLS results show good agreement with the data ob-

tained by conventional nanoindentation mechanical tests. 

The elastic size effect in 2D membranes is presented on the example of a member of the transition 

metal dichalcogenides (TMDCs) group, namely MoSe2. The impact of nanoconfinement on me-

chanical properties remains controversial in the scientific community. To date, there is no undeni-

able experimental evidence on the elastic size effect. Thus, it is not clear whether few-layer van 

der Waals (vdW) materials are stiffer or softer than bulk. To address the elastic size effect in vdW 
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materials, micro-BLS measurements for bulk and MoSe2 membranes of different thicknesses were 

performed. An essential advantage of the used experimental approach is the possibility for simul-

taneous assessment of such parameters as elasticity, residual stress, and thickness of a few-layer 

free-standing MoSe2. This work reports anisotropic elastic properties, to date, not available in the 

literature neither for few-layer or bulk MoSe2, although it is a heavily studied vdW material. More-

over, presented experimental results have revealed about 30% elastic softening of MoSe2, while 

decreasing thickness from bulk to two layers. This finding is highly relevant for related research 

fields such as nanoscale thermal transport, electronics, or resonators employing vdW materials. 

Finally, uniform mechanical reinforcement of 3D polystyrene colloidal crystals by employing su-

percritical nitrogen and argon is presented. This method is a synergistic combination of nanoscale 

plasticization of particles’ surface and compressive hydrostatic pressure. It results in permanent 

physical bonds forming between the particles while maintaining their shape and periodic arrange-

ment of the colloidal crystal. This process is named “cold soldering” as it is possible close to room 

temperature. Brillouin light scattering was employed to probe in-situ mechanical vibrations of the 

crystal, allowing the determination of preferential pressure, temperature, and time ranges for sol-

dering, i.e., strong physical bonding among self-assembled nanoparticles. 

Overall, elastic properties of nanomaterials with different structures were studied by BLS. The 

results show that BLS is a powerful tool that allows the mechanical characterization of various 

nanosystems in a contactless and non-destructive manner. Moreover, this technique allows for the 

investigation of novel effects described in this thesis, such as mechanical softening of 2D materials 

and gas pressure-induced plasticization of polymer nanostructures. 
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Streszczenie 

Pojawienie się nanotechnologii miało znaczącywpływ na nasze codzienne życie , jak irozwój wielu 

dziedzin nauki. Rozwój technologii i badania naukowe dostarczają w tym zakresie coraz to 

nowych wyników i innowacji. Materiały występujące w rozmiarach nanoskopowych wykazują 

nowe właściwości nieobecne w ich makroskopowych wersjach. Dotyczy to unikalnych 

właściwości optycznych, elektrycznych, magnetycznych, termicznych i mechanicznych. Ich 

badanie jest niezwykle istotne z punktu widzenia praktycznych zastosowań. Jednakże, ich badanie 

pozostaje wciąż wyzwaniem eksperymentalnym, które napędza rozwój nowych technik 

pomiarowych. 

Niniejsza rozprawa poświęcona jest właściwościom mechanicznym funkcjonalnych 

nanomateriałów o zróżnicowanych poziomach ograniczenia rozmiarów: cienkie pokrycia 

nanokompozytowe, ultracienkie membrany i kryształy koloidalne. W pracy wykorzystano 

zjawisko rozpraszania światła Brillouina (eng. Brillouin light scattering – BLS) do zbadania 

wpływu parametrów takich jak stechiometria, nanoograczenie przestrzenne (efekt rozmiaru) lub 

warunki wysokiego ciśnienia na właściwości mechaniczne nanomateriałów. 

W przypadku cienkich pokryć z nanokompozytów, badano wpływ zawartości procentowej tantalu 

(Ta) na odpowiedź mechaniczną nanokompozytu 3D Ta-Hf-C nałożonego na krzemie. 

Nanokompozyt ten składa się z krystalicznych nanocząstek otoczonych amorficznym, silnie 

grafitowym karbidem. Taka struktura daje wiele korzyści względem monokrystalicznych lub 

polikrystalicznych cienkich warstw, m.in. poprawienie właściwości mechanicznych, termicznych 

i elektrycznych. Ta-Hf-C jest materiałem wybitnieogniotrwałym o jednej z najwyższych znanej 

człowiekowi temperatur topnienia (> 3900 °C). Ponadto, jego stabilność chemiczna i wysoka 

niereaktywność pozwalają na jego użycie jako warstwy chroniącej przed korozją w warunkach 

wysokotemperaturowych. W tej pracy moduł Younga Ta-Hf-C/Si z różną zawartością procentową 

tantalu określany był z użyciem metody elementów skończonych (eng. finite element method – 

FEM) na podstawie doświadczalnie zmierzonych zależności dyspersyjnych akustycznych fal 

powierzchniowych. Wyniki wykazały wyższy moduł Younga dla stopów trójskładnikowych 

(TaC)x(HfC)y niż dla stopów dwuskładnikowych TaC i HfC. Co więcej, wyniki BLS wykazały 

zgodność z danymi uzyskanymi konwencjonalną metodą nanoindentacji. 
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Zależność własności mechanicznych membran 2D od ich rozmiaru jest zaprezentowany na 

przykładzie MoSe2, który jest reprezentantem grupy dichalkogenidów metali przejściowych. 

Wpływ ograniczenia rozmiarów do skali nanometrów na własności mechaniczne w tym przypadku 

wywołuje kontrowersje w środowisku naukowym. Do tej pory, nie ma niepodważalnego 

doświadczalnego dowodu na wpływ rozmiaru na własności mechaniczne w tym układzie. Zatem, 

nie jest jasne czy materiały van der Waalsa o kilku warstwach są bardziej czy mniej sztywne niż 

materiał objętościowy. W celu zbadania tego zagadnienia wykonano doświadczenia mikro-BLS 

dla MoSe2 objętościowego i w postaci membran o różnej grubości. Główną zaletą zastosowanego 

podejścia eksperymentalnego jest możliwość jednoczesnego określenia parametrów takich jak: 

elastyczność, naprężenie resztkowe czy grubość kilku-warstwowych zawieszonych membran 

MoSe2. Wykazano anizotropię właściwości elastycznych, która do tej pory nie była opisywana w 

literaturze, zarówno dla materiału objętościowego jak i cienkich błon, mimo, że jest to szeroko 

badany materiał van der Waalsa. Co więcej, zaprezentowane wyniki doświadczalne wykazały 

około 30 % zmiękczenie MoSe2 po zmniejszeniu grubości z materiału objętościowego do dwóch 

warstw. To odkrycie jest niezwykle istotne dla powiązanych obszarów badawczych, takich jak 

transport energii w nanoskali, elektronice czy rezonatorach wykorzystujących materiały van der 

Waalsa. 

Ponadto w rozprawie zaprezentowano wzmocnienie mechaniczne trójwymiarowych kryształów 

koloidalnych polistyrenu za pomocą azotu i argonu w stanie nadkrytycznym. Metoda ta polega na 

wykorzystaniu współdziałania plastyfikacji powierzchni cząstek w nanoskali oraz nadciśnienia 

hydrostatycznego. Skutkuje ono tworzeniem trwałych fizycznych połączeń pomiędzy cząstkami 

przy zachowaniu ich kształtu i układu periodycznego kryształu koloidalnego. Proces ten nazywany 

jest zimnym spawaniem, gdyż zachodzi w temperaturach bliskich pokojowej. Rozpraszanie 

światła Brillouina zostało wykorzystane do badania in situ drgań mechanicznych kryształu, co 

pozwoliło określić optymalne warunki ciśnienia, temperatury i czasu trwania dla zimnego 

spawania. 

Podsumowując, zbadano elastyczne właściwości nanomateriałów z różnymi strukturami przy 

użyciu rozpraszania światła Brillouina. Wyniki pokazują, że technika ta jest skutecznym 

narzędziem w określaniu mechanicznych właściwości różnych układów w nanoskali w sposób 

nieniszczący i bezdotykowy. Ponadto, metoda ta pozwoliła na zbadanie nieopisanych wcześniej 
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zjawisk zawartych w tej rozprawie, takich jak mechaniczne zmiękczenie dwuwymiarowych 

materiałów czy plastyfikację nanostruktur polimerowych pod wpływem wysokiego ciśnienia. 
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Preface 

Nanomaterials are currently used in many products that have had a life-changing effect on our 

society. Despite current technological advancements, nanomaterials still have a significant poten-

tial for innovation and application. In general, nanomaterials can be fabricated employing top-

down or bottom-up approaches. In the former approach, nanostructures are produced from larger 

pieces of material, for example, by etching or exfoliating bulk materials. In the bottom-up ap-

proach, nanostructures are created from smaller building blocks. In this type of fabrication, build-

ing blocks (atoms, molecules, or particles) are synthesized or self-assembled into nanostructures. 

Based on the number of frustrated dimensions, nanomaterials can be classified into four groups 

(Figure 1): 

I. 3D confinement: zero-dimensional (0D) materials such as nanoparticles or quantum dots. 

II. 2D confinement: one-dimensional (1D) materials such as nanotubes, nanorods, and nan-

owires. 

III. 1D confinement: two-dimensional (2D) materials, having two dimensions outside the na-

noscale. These are plate-like shapes such as films and membranes.  

IV. 0D confinement: three-dimensional (3D) materials, for which all the dimensions are out-

side nanoscale. Nanomaterials belonging to this group, among others, include bundles of 

nanowires and nanotubes, multi-stack of nanolayers, 3D nanocrystalline structures, and 

nanocomposites as well as 3D colloidal crystals (CCs). 

 

Figure 1. Materials confined at nanoscale in different dimensions, namely (a) 0D, (b) 1D, (c) 2D and (d) 

3D materials. This figure was reproduced from Ref. [1]. 



13 
 

When materials are confined at the nanoscale, they can exhibit unique features that significantly 

differ from their bulk counterparts. Two main reasons for that are increased surface-to-volume 

ratio and quantum effects. These can lead to remarkable optical, electrical, magnetic, and thermal 

properties of nanomaterials. Nevertheless, when it comes to implementing nanomaterials in a par-

ticular device, mechanical performance is of crucial importance since it limits or extends the ap-

plicability of a given material. The impact of nanoconfinement on elastic properties, the so-called 

elastic size effect, remains controversial in the scientific community. In various nanostructures, 

different magnitudes and even sign of the elastic size effect were reported. In prior studies, this 

effect was mostly investigated for 1D nanostructures such as nanowires made of Ag,2–5 Pb,5 Au,6 

CuO,7 ZnO8–11, and Si.12–17  In the case of Ag, Pb, and CuO nanowires, there is a critical diameter 

at which elastic modulus increases when further decreasing the nanowire diameter with respect to 

the bulk value.2–5,7 However, the elastic behavior of Au nanowires was shown to be independent 

of diameter.6 Moreover, the experimental results on the elastic modulus of ZnO and Si are scattered 

in the literature showing different elastic behavior with size.18 On the one hand, some studies re-

vealed a significant decrease in the elastic modulus with confinement.13,19 On the other hand, an 

increase in elastic modulus of ZnO and Si nanowires compared to bulk was also reported.9,20,21 

Additionally, for these nanostructures, some works reported elastic modulus close to that of the 

bulk.11,16,17,22 

In the case of 2D nanomaterials, the experimental results on elastic properties in the literature are 

inconsistent. It is generally accepted that 2D graphene exhibits superior elastic properties as com-

pared to graphite (bulk). For example, the Young modulus (𝐸) estimated from Raman spectroscopy 

for single and bilayer graphene was 2.4 ± 0.4 and 2.0 ± 0.5 TPa, respectively,23 being significantly 

larger than the bulk value of about 1 TPa.24,25 However, it was also shown that the 𝐸 of the gra-

phene matches the bulk value.26–29 Moreover, some other experiments found the Young modulus 

of few-layer graphene to be lower than for bulk.30,31  Other vdW materials for which the elastic 

size effect was recently explored include group-III monochalcogenides. On the one hand, it has 

been shown that the decreasing of thickness leads to the Young modulus enhancement in GaS.32 

On the other hand, the Young modulus of GaTe decreases while reducing the thickness.32 Addi-

tionally, the Young moduli of BN29 and GaSe32 were reported to be size-independent. In the case 

of MoS2, the most studied TMDCs, values of Young modulus measured by different techniques 
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are scattered as well. Again, some studies reported the Young modulus for confined MoS2 com-

parable to the bulk value33,34, while the others found it significantly higher.31,35 

In the case of 3D nanomaterials, composed of nanoscale building blocks, the elastic properties are 

slightly more complex. Namely, 3D arrangement of nanoscale motifs can depend on the elasticity 

of the individual elements and interactions between thereof. In nanocrystalline structures, grain 

size can affect elastic properties in different ways. For example, it has been shown that the Young 

modulus reduces with decreasing the grain size in nanocrystalline Ni-P36–38 and Ni-Fe.39  Other 

results obtained for Ni39 and Cu40 have shown no significant change in elastic modulus with the 

grain size. However, the Young modulus varies non-monotonically with the grain size for nano-

crystalline NiTi, showing minima at critical grain size. Below this value, it decreases, and above 

it increases.41 The similar behavior was previously observed in nanocrystalline Se.42 Moreover, 

materials in which different amorphous or crystalline phases co-exist are called nanocomposites.43 

In these systems, the elastic response of the material changes with its nanostructure. However, it 

is not only related to grain size; it is also correlated to the crystalline volume fractions and can be 

additionally affected or controlled by stoichiometric changes of the phases.44–46 For example, in 

NbC nanocomposite films, the elastic modulus shows maxima for the amorphous C-C phase of 

~5% and the crystalline fraction with the grain size of 5-8 nm.47 In the case of TiBCN coatings, 

the elastic modulus showed a maximum when the nitrogen content was below 10%.48 However, a 

monotonic decrease of elastic modulus has also been reported for similar coatings, increasing the 

Si content in the coating due to the stoichiometric changes and creation of TiSi2 phases.49 Further-

more, in the case of HfN coatings, the stoichiometric losses of both nitrogen and hafnium decrease 

the lattice constant of the crystalline phases and reduce the elastic modulus of the coatings.50 

Other types of 3D nanomaterials are colloidal crystals (CCs) realized by the self-assembly of na-

noparticles.51,52 The diameter of particles can affect the Young modulus of CCs. For instance, 

decreasing the diameter of Si spheres in face-centered cubic (fcc) CCs leads to the increased Young 

modulus of this system.53 However, most of the CCs are very fragile due to weak vdW bonding 

among self-assembled particles. Thus, these systems can be easily disassembled, which limits their 

applications. Therefore, various methods have been employed to enhance the bonding among col-
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loidal particles and make robust CCs. The approaches reported in the literature cover the develop-

ment of core-shell structures, nanocomposites, decoration by surfactants, plasma and chemical 

assisted treatments, direct UV irradiation, and temperature treatment, among others.54–61 

 The thesis presents a study on three different effects on elastic properties of nanostructures. 

First, it addresses the influence of Ta% content in the mechanical response of the Ta-Hf-C 3D 

nanocomposites. Next, it discusses the elastic size effect in 2D single-crystal materials on the ex-

ample of a member of TMDCs group, namely MoSe2. Finally, it describes the mechanical rein-

forcement of 3D polystyrene (PS) CCs employing supercritical nitrogen or argon treatment, a 

novel approach that leads to the strong physical bonding between the polymer nanoparticles. We 

used Brillouin light scattering (BLS) to study the elastic properties in these three different nano-

materials and the effects mentioned above. This contactless, non-destructive technique is well es-

tablished for probing the elastic properties of various materials, including bulk, thin sup-

ported/freestanding films, and colloidal crystals.62–67    

Thesis Outline  

  The thesis is divided into 5 Chapters. Chapter 1 serves as a general introduction to the 

elastodynamic theory. Chapter 2 addresses the basics of Brillouin light scattering theory and ex-

periment. Chapters 3, 4, and 5 are dedicated to the discussion of experimental results. In Chapter 

3 influence of Ta% content on the Young modulus of Ta-Hf-C nanocomposites is presented. Chap-

ter 4 addresses the elastic size effect in MoSe2 ultrathin membranes. Chapter 5 reports on mechan-

ical reinforcement of PS CCs after exposure to supercritical nitrogen or argon. Finally, concluding 

remarks and future perspectives are provided. 

 Chapters 3, 4, and 5, dedicated to experimental results, are based on the following publi-

cations with the indicated contribution of the thesis author, respectively: 

 

I. Emerson Coy, Visnja Babacic, Luis Yate, Karol Załęski, Yeonho Kim, Juan Sebastián 

Reparaz, Bernhard Dörling Bartlomiej Graczykowski, Igor Iatsunskyi, KatarzynaSiuzdak, 

Study of nanostructured ultra-refractory Tantalum-Hafnium-Carbide electrodes with wide 

electrochemical stability window, Chemical Engineering Journal, 415, 128987, (2021). 

https://doi.org/10.1016/j.cej.2021.128987 

 

https://doi.org/10.1016/j.cej.2021.128987
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Contribution: 

- BLS measurements and data analysis 

- FEM model development and simulations 

- Preparation of Figure SM1, Figure SM2 and Figure S2 

- discussion of results 

- revision of the manuscript 

 

II. Visnja Babacic, David Saleta Reig, Sebin Varghese, Thomas Vasileiadis, Emerson Coy, 

Klaas-Jan Tielrooij, Bartlomiej Graczykowski, Thickness-Dependent Elastic Softening of 

Few-Layer Free-Standing MoSe2, Adv. Mater.,33, 2008614, (2021). 

https://doi.org/10.1002/adma.202008614 

 

Contribution: 

- BLS measurements  

- BLS and Raman experimental data analysis  

- numerical calculations presented in Figure S7, Figure S9, Figure S11, Figure S12 

Figure S13 and in Table S4 

- preparation of Figure 1, Figure 2, Figure 3, Figure 4, Figure S1, Figure S6, Figure 

S7, Figure S8, Figure S9, Figure S10, Figure S11, Figure S12 and Figure S13.  

- discussion of results 

- writing the first draft of the manuscript 

- writing the first draft of supporting information 

 

III. Visnja Babacic, Jeena Varghese, Emerson Coy, Eunsoo Kang, Mikolaj Pochylski, Jacek 

Gapinski, George Fytas, Bartlomiej Graczykowski, Mechanical reinforcement of polymer 

colloidal crystals by supercritical fluids, Journal of Colloid and Interface Science, 579, 

786–793787, (2020). https://doi.org/10.1016/j.jcis.2020.06.104 

 

Contribution: 

- preparation of samples for BLS  measurements (80 % of used samples) 

- part in BLS measurements (40 % of measurements at given pressure, temperature 

and time conditions) 

- part in BLS experimental data analysis (Results presented in Figure 2, Figure 4, and 

Figure 5) 

- calculations presented in manuscript and supporting information  

- preparation of Figure 1, Figure 2, Figure 3 (d),  Figure 4, Figure 5, Figure S1 and 

Figure S3  

- discussion of results 

- writing the first draft of the manuscript 

- writing the first draft of supporting information 

 

 

https://doi.org/10.1002/adma.202008614
https://doi.org/10.1016/j.jcis.2020.06.104
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Chapter 1 Elastodynamics 

 In this chapter, the principles of wave propagation in solids will be described. The field of 

physics that studies this phenomenon is called elastodynamics. The first section of this chapter 

introduces the formalism of the theory of elasticity, and the second section describes the elastic 

waves in solids, including bulk and surface acoustic waves.  

1.1 Theory of elasticity 

 The theory of elasticity describes the deformation of a solid body upon applied forces. 

Therefore, this section invokes the fundamental definitions of stress, strain, and elastic tensors.68 

For infinitesimally small deformations with respect to the body, solid-state mechanics are well 

described by the linear elasticity, i.e., Hooke’s law. In the case of larger deformations, a more 

general, nonlinear theory of elasticity is required. The latter will be discussed only for the simplest 

case, i.e., for isotropic materials.  

1.1.1 Deformation and strain tensor 

 Let us consider a pre-deformed solid body. The position of any point (labeled as P in Figure 

1.1) in the body is given by its position vector 𝐫 with coordinates 𝑥𝑖, where 𝑖 = 1,2,3. Deformation 

of the body leads to the displacement of every point in it. Therefore, the initial position of the point 

P changes to 𝐫′ with coordinates 𝑥𝑖
′ after deformation, which is denoted as P’ in Figure 1.1. 

Accordingly, the displacement vector is given as 𝐮 = 𝐫′ − 𝐫. Since 𝑥𝑖
′ is a function of 𝑥𝑖 , we can 

describe the displacement as a function of coordinates: 

𝑢𝑖 = 𝑥𝑖
′ − 𝑥𝑖 , (1.1) 

where 𝑢𝑖 are components of the displacement vector.  
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Figure 1.1. Deformation of a continuum body represented in the rectangular Cartesian coordinate system 

𝑥1, 𝑥2, 𝑥3. The position of a point P before deformation is given by 𝐫(𝑥1, 𝑥2,𝑥3). After deformation the 

position of this point, P’ is given by 𝐫′(𝑥1
, , 𝑥2

, , 𝑥3
, ). The neighboring point L is at the distance d𝐫 from 

point P before the deformation. After the deformation L’ is on d𝐫′ distance from P’. Differential 

displacement in a deformed medium is denoted as d𝐮. 

To describe the material deformation, we consider two points in the undeformed body labeled as 

P and L in Figure 1.1. These points are very close to each other so that d𝑥𝑖  denotes the vector that 

joins them before the deformation. The distance between these two points is given as d𝑟 =

√d𝑥1
2 + d𝑥2

2 + d𝑥3
2 = √d𝑥𝑖 d𝑥𝑖  . After the deformation, the vector joining the same two points 

(labeled as P’ and L’ in Figure 1.1) is given as d𝑥𝑖
′ = d𝑥𝑖 + d𝑢𝑖 and their distance as d𝑟′ =

√d𝑥1
′2 + d𝑥2

′2 + d𝑥3
′2 = √d𝑥𝑖

′d𝑥𝑖
′. Hence, we can write: 

d𝑟′2 = d𝑥𝑖
′𝑑𝑥𝑖

′ = (d𝑥𝑖 + d𝑢𝑖)(d𝑥𝑖 + d𝑢𝑖). (1.2) 

Substituting d𝑢𝑖 = (𝜕𝑢𝑖/𝜕𝑥𝑘)d𝑥𝑘 in Eq (1.2) leads to: 

d𝑟′2 = d𝑟2 + 2
𝜕𝑢𝑖
𝜕𝑥𝑘

d𝑥𝑖d𝑥𝑘 +
𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝑢𝑖
𝜕𝑢𝑙

d𝑥𝑘d𝑥𝑙 . (1.3) 

In the second term on the right side of Eq. (1.2), the summation is taken over indices 𝑖 and 𝑘. 

Therefore, this term can be expressed in the symmetrical form as 

(
𝜕𝑢𝑖
𝜕𝑥𝑘

+
𝜕𝑢𝑘
𝜕𝑥𝑖
) d𝑥𝑖d𝑥𝑘 , (1.4) 
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Next, by interchanging 𝑖 and 𝑙 in the third term of Eq. (1.3), we obtain the final form for d𝑟′2: 

d𝑟′2 = d𝑟2 + 2𝑢𝑖𝑘d𝑥𝑖d𝑥𝑘. (1.5) 

Here, 𝑢𝑖𝑘 is the second-order strain tensor defined as: 

𝑢𝑖𝑘 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑘

+
𝜕𝑢𝑘
𝜕𝑥𝑖

+
𝜕𝑢𝑙
𝜕𝑥𝑘

𝜕𝑢𝑙
𝜕𝑥𝑖
). (1.6) 

For small deformations, 𝑢𝑖 and their derivatives are small. Thus, the last term in the above equation 

can be neglected so that for infinitesimal deformations, the strain tensor takes the form:  

𝑢𝑖𝑘 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑘

+
𝜕𝑢𝑘
𝜕𝑥𝑖
). (1.7) 

In the matrix form, we can express the strain tensor as a 3 × 3 matrix: 

𝑢𝑖𝑘 = (

𝑢11 𝑢12 𝑢13
𝑢12 𝑢22 𝑢23
𝑢13 𝑢23 𝑢33

) (1.8) 

The strain tensor is symmetric (𝑢𝑖𝑘 = 𝑢𝑘𝑖) and it can be diagonalized at any point. The diagonal 

components of strain tensor are called principal values of strain and can be named 𝑢(1), 𝑢(2), and 

𝑢(3). The distance dr′2 can then be expressed by the sum of three independent terms as: 

d𝑟′2 = (𝛿𝑖𝑘 + 2𝑢𝑖𝑘)d𝑥𝑖d𝑥𝑘 = (1 + 2𝑢
(1))d𝑥1

2 + (1 + 2𝑢(2))d𝑥2
2 + (1 + 2𝑢(3))d𝑥1

3, (1.9) 

where 𝛿𝑖𝑘 = 1 (𝑖 = 𝑘) or = 0 (𝑖 ≠ 𝑘) is the Kronecker delta function. The relative change of 

elongation along 𝑖-th principal axis can be expressed as: 

d𝑥𝑖
′ − d𝑥𝑖
d𝑥𝑖

= √1 + 2𝑢(𝑖) − 1 ≈ 𝑢(𝑖). (1.10) 

The last approximation in Eq (1.10) is valid for small deformations with respect to the body. With 

that assumption, the relative volume change is given as the trace of the strain tensor: 

d𝑉′ − d𝑉

d𝑉
= 𝑢11 + 𝑢22 + 𝑢33. (1.11) 

Therefore, the change in the volume of the body after deformation is, according to Eq. (1.11), 

given as the sum of 𝑢𝑖𝑖. If this sum is zero, only the shape of the body is altered, with volume 
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staying unchanged. This type of deformation is called pure shear. In the opposite case, deformation 

causes a change in the body’s volume but not its shape. This type of deformation is called hydro-

static compression. Therefore, any deformation can be expressed as the sum of these two types 

through the identity: 

𝑢𝑖𝑘 = (𝑢𝑖𝑘 −
1

3
𝛿𝑖𝑘𝑢𝑙𝑙) +

1

3
𝛿𝑖𝑘𝑢𝑙𝑙. (1.12) 

 

1.1.2 Stress Tensor  

 When a solid body is deformed, forces that tend to return it in a pre-deformed state, i.e., 

mechanical equilibrium, arise. These restoring forces are called internal stresses, and they have a 

short range of action, meaning that they affect only the neighboring points. The total force acting 

on some portion of the body can be expressed as ∫𝐹𝑖d𝑉, meaning the sum of all forces 𝐹𝑖 on all 

volume elements, in considered portion. According to third Newton’s law, the forces within the 

volume cancel each other, and the resultant force is given as the sum of the forces acting on the 

surface. Therefore, we can express 𝐹𝑖 as the divergence of a second-order tensor: 

𝐹𝑖 =
𝜕𝜎𝑖𝑘
𝜕𝑥𝑘

. (1.13) 

The resultant force is then given as an integral over the surface enclosing the considered volume: 

∫𝐹𝑖d𝑉 = ∫
𝜕𝜎𝑖𝑘
𝜕𝑥𝑘

d𝑉 = ∮𝜎𝑖𝑘d𝑓𝑘 . (1.14) 

where, d𝑓𝑘 is the surface element vector and 𝜎𝑖𝑘 is the Cauchy stress tensor. Figure 1.2 illustrates 

a unit cube of the body and the stress tensor components.  
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Figure 1.2. Nine components of the stress tensor in the unit cube of a solid body.  

As the strain tensor, the stress tensor is also symmetric: 𝜎𝑖𝑘 = 𝜎𝑘𝑖. Therefore, the stress tensor has 

six independent components and, in the matrix representation, it is given as: 

𝜎𝑖𝑘 = (

𝜎11 𝜎12 𝜎13
𝜎12 𝜎22 𝜎23
𝜎13 𝜎23 𝜎33

) (1.15) 

 

The work 𝛿𝑊 done by the internal stresses can be found by multiplying the 𝐹𝑖 by the displacement 

change 𝛿𝑢𝑖 and integration over the volume. The result gives the relation between the work and 

the change in strain:  

𝛿𝑊 = −𝜎𝑖𝑘𝛿𝑢𝑖𝑘 . (1.16) 

The deformation of the body can be elastic or plastic. For the former, material changes back to its 

original state when the stress that causes the deformation is removed. If the body stays deformed 

after the external load is removed, the deformation is called plastic. There are mixed states when 

the deformation can be partially elastic and plastic. 

For the elastic deformations, the Helmholtz free energy of the body is given as 𝐴 = 𝑈 − 𝑇𝑆, where 

𝑇 is the absolute temperature, 𝑆 is the entropy and 𝑈 internal energy of the system. An infinitesimal 

change in internal energy is 𝑑𝑈 = 𝑇d𝑆 − 𝛿𝑊 = 𝑇d𝑆 + 𝜎𝑖𝑘𝛿𝑢𝑖𝑘. Therefore, for the isothermal 

process, the strain and stress are connected through the Helmholtz free energy as: 

𝜎𝑖𝑘 = (
𝜕𝐴

𝜕𝑢𝑖𝑘
)
𝑇

. (1.17) 

Therefore, we will refer to the Helmholtz free energy as free elastic energy in the following text.  
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1.1.3 Generalized Hooke’s law: Linear theory of elasticity 

 The general expression for the free elastic energy density 𝜓 = 𝜌𝐴 (𝜌 is the mass density) 

of an elastically deformed body is obtained by Taylor series expansion about the state of zero 

strain69,70  

𝜓 = 𝜓0 +
1

2
𝐶𝑖𝑗𝑘𝑙𝑢𝑖𝑗𝑢𝑘𝑙 +

1

6
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑢𝑖𝑗𝑢𝑘𝑙𝑢𝑚𝑛, 

(1.18) 

where the terms of higher than of the third order are neglected. Here 𝜓0 = 0 is the free elastic 

energy density in the absence of strain, while 𝐶𝑖𝑗𝑘𝑙 and 𝐶𝑖𝑗𝑘𝑙𝑚𝑛 denote second (SOE) and third 

(TOE) order elastic constants, respectively.  

 For infinitesimally small deformations, the third term on the right side of Eq. (1.18) can be 

neglected, and we get the expression for the free elastic energy density of a linear elastic material: 

𝜓 =
1

2
𝐶𝑖𝑗𝑘𝑙𝑢𝑖𝑗𝑢𝑘𝑙  

(1.19) 

By combining the Eq. (1.19) and Eq. (1.17) we obtain generalized Hooke’s law in the linear elas-

ticity as:71 

𝜎𝑖𝑗 =
𝜕𝜓

𝜕𝑢𝑖𝑗
=
1

2

𝜕

𝜕𝑢𝑖𝑗
(𝐶𝑘𝑙𝑚𝑛𝑢𝑘𝑙𝑢𝑚𝑛) =

1

2
𝐶𝑘𝑙𝑚𝑛(𝛿𝑘𝑖𝛿𝑙𝑗𝑢𝑘𝑙 + 𝑢𝑚𝑛𝛿𝑚𝑖𝛿𝑛𝑗) =

=
1

2
(𝐶𝑖𝑗𝑚𝑛𝑢𝑚𝑛 + 𝐶𝑘𝑙𝑖𝑗𝑢𝑘𝑙). 

(1.20) 

If 𝐶𝑘𝑙𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 generalized Hook’s law in the linear elasticity is given as:71 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑢𝑘𝑙, (1.21) 

where 𝐶𝑖𝑗𝑘𝑙 (𝑖, 𝑗, 𝑘, 𝑙 = {1, 2, 3}) are components of the elastic tensor. In general, this tensor has 

34 = 81 components. However, due to the stress and strain tensors symmetry, 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙 and 

𝐶𝑖𝑗𝑙𝑘 = 𝐶𝑖𝑗𝑘𝑙, and the number of components can be reduced to 62 = 36. Furthermore, the elastic 

tensor is symmetric, and hence the general anisotropic material has 21 independent elastic con-

stants. The Hooke’s law in matrix representation can be expressed as: 
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(

  
 

𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12)

  
 
=

(

 
 
 
 

𝐶1111 𝐶1122 𝐶1133
𝐶2222 𝐶2233

𝐶3333

𝐶1123 𝐶1113 𝐶1112
𝐶2223 𝐶2213 𝐶2212
𝐶3323 𝐶3313 𝐶3312

Symmetric

𝐶2323 𝐶2313 𝐶2312
𝐶1313 𝐶1312

𝐶1212)

 
 
 
 

(

  
 

𝑢11
𝑢22
𝑢33
2𝑢23
2𝑢13
2𝑢12)

  
 

 (1.22) 

In the Voigt notation72–74: 𝐶𝑖𝑗𝑘𝑙 → 𝐶𝐾𝐿(𝑖𝑗 → 𝐾, 𝑘𝑙 → 𝐿;  𝐾, 𝐿 = {1, 2, . . . ,  6}), Eq. (1.22) becomes: 

(

  
 

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6)

  
 
=

(

 
 
 
 

𝐶11 𝐶12 𝐶13
𝐶22 𝐶23

𝐶33

𝐶14 𝐶15 𝐶16
𝐶24 𝐶25 𝐶26
𝐶34 𝐶35 𝐶36

Symmetric

𝐶44 𝐶45 𝐶46
𝐶55 𝐶56

𝐶66)

 
 
 
 

(

  
 

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5
𝑢6)

  
 

 (1.23) 

The further reduction of the independent components of the elastic tensor can be performed by 

employing symmetry elements typical for a material crystallographic class. This includes rotations 

and reflections about specific axes or planes of symmetry, respectively. The symmetry 

transformations from one basis 𝛜𝑖, to the other 𝛜𝛼, is represented by orthogonal second-order tensor 

𝐐 = 𝑄𝑖𝛼𝛜𝑖,∙  𝛜𝛼, such that 𝐐−1 = 𝐐T and |𝑄𝑖𝛼| = 1 (for rotation) or = −1 (for reflection). The 

invariance of the elastic tensor under these transformations is given as:  

𝐶𝑖𝑗𝑘𝑙 = 𝑄𝑖𝛼𝑄𝑗𝛽𝑄𝑘𝛾𝑄𝑙𝛿𝐶𝛼𝛽𝛾𝛿 . (1.24) 

In the crystals of lowest symmetry, triclinic, there are no symmetry planes, and the elastic tensor 

has 21 independent elastic constants. Monoclinic crystals have one symmetry plane, 𝑥1𝑥2 and the 

symmetry transformation is a reflection about 𝑥3 axes. Thus, for this crystal symmetry, there are 

13 independent elastic constants. The higher the symmetry is, the simpler is the structure of the 

elastic tensor.  

Here, only the elastic tensor for crystals with cubic and hexagonal symmetry that are relevant for 

further discussions are presented: 

i) For a crystal with hexagonal symmetry, there are seven planes of symmetry, and there-

fore the elastic tensor has five non-zero independent elastic constants: 
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𝐶𝐾𝐿 =

(

 
 
 

𝐶11 𝐶12 𝐶13 0 0 0

𝐶12 𝐶11 𝐶13 0 0 0

𝐶13 𝐶13 𝐶33 0 0 0

0 0 0 𝐶44 0 0

0 0 0 0 𝐶44 0

0 0 0 0 0 𝐶66

 

)

 
 
 

 , where 𝐶66 =
1

2
(𝐶11 − 𝐶12). (1.25) 

ii) For a crystal with cubic symmetry, there are nine planes of symmetry, and the elastic 

tensor has three non-zero independent elastic constants: 

𝐶𝐾𝐿 =

(

 
 
 

𝐶11 𝐶12 𝐶12 0 0 0

𝐶12 𝐶11 𝐶12 0 0 0

𝐶12 𝐶12 𝐶11 0 0 0

0 0 0 𝐶44 0 0

0 0 0 0 𝐶44 0

0 0 0 0 0 𝐶44

 

)

 
 
 

 (1.26) 

Moreover, we can invert Eq. (1.21) into 𝑢𝐾 = 𝑆𝐾𝐿𝜎𝐿, where 𝑆𝐾𝐿 = 𝐶𝐾𝐿
−1 is called compliance ten-

sor. Young modulus in a given direction is given as 𝐸𝐾𝐿 = 1/𝑆𝐾𝐿. 

For elastically isotropic materials, the elastic tensor has two non-zero components related by 𝐶11 =

𝐶12 + 2𝐶44. The two independent elastic constants can be identified as Lamé coefficients: 𝐶12 =

𝜆 and 𝐶44 = 𝜇. Thus, the general expression for the elastic tensor of isotropic material is given as: 

𝐶𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑗𝑖𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (1.27) 

Replacing Eq. (1.27) in Eq. (1.21) gives: 

𝜎𝑖𝑗 = 𝜆𝑢𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝑢𝑖𝑗  (1.28) 

The Lamé coefficients are related to shear (𝐺) and bulk (𝐵) moduli as: 

𝐺 = 𝜇 (1.29) 

𝐵 = 𝜆 +
2

3
𝜇. (1.30) 

Next, we can express Young modulus 𝐸, and Poisson ratio 𝜈 for isotropic solid as: 

𝐸 =
9𝐵𝐺

3𝐵 + 𝐺
 (1.31) 
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𝜈 =
3𝐵 − 2𝐺

2(3𝐵 + 𝐺)
=
𝐸

2𝐺
− 1 (1.32) 

 

1.1.4  Nonlinear elasticity – isotropic materials 

 When deformations are not infinitesimally small with respect to the body, deviations from 

their linear relation given by Hooke’s law will occur. In this case, the last term in Eq (1.18) cannot 

be neglected, and the TOEs 𝐶𝑖𝑗𝑘𝑙𝑚𝑛 are needed to describe the behavior of the nonlinear elastic 

body. Due to its symmetry, 𝐶𝑖𝑗𝑘𝑙𝑚𝑛 = 𝐶𝑗𝑖𝑘𝑙𝑚𝑛 = 𝐶𝑖𝑗𝑙𝑘𝑚𝑛 = 𝐶𝑖𝑗𝑘𝑙𝑛𝑚 = 𝐶𝑘𝑙𝑖𝑗𝑚𝑛 = 𝐶𝑚𝑛𝑘𝑙𝑖𝑗, TOE 

tensor is characterized by 58 independent components for the material with the lowest symmetry 

and 3 for the isotropic material (highest symmetry). Thus, for an isotropic material, the elastic 

energy density from Eq. (1.17) simplifies to:  

𝜓 =
𝜆 + 2𝜇

2
ℵ1
2 − 2𝜇ℵ2 +

𝛽 + 2𝛾

3
ℵ1
3 − 2𝛾ℵ1ℵ2 + 𝜂ℵ3, (1.33) 

where ℵ1 = 𝑢𝑖𝑖 , ℵ2 = (𝑢𝑖𝑖𝑢𝑗𝑗 − 𝑢𝑖𝑗𝑢𝑗𝑖) and ℵ3 = |𝑢𝑖𝑗|. In Eq (1.33), besides Lamé coefficients, 

TEO constants called Murnaghan coefficients75,76 𝛽 = 𝐶112 2⁄ , 𝛾 =

(𝐶111 − 𝐶112) 4 and 𝜂 = (𝐶111 − 3𝐶112 + 2𝐶123) 4⁄⁄  are introduced. Here, we recall the Voigt 

notation for TOE elastic constants as 𝐶𝑖𝑗𝑘𝑙𝑚𝑛 → 𝐶𝐼𝐽𝐾(𝑖𝑗 → 𝐼, 𝑘𝑙 → 𝐽,𝑚𝑛 → 𝐾;  𝐼, 𝐽, 𝐾 =

{1, 2, . . . ,  6}).69,73 The shear and bulk modulus for nonlinear, isotropic elastic material exposed to 

hydrostatic pressure (𝑝) are given as 75 

𝐺(𝑝) = 𝜇 −
6𝛾 − 𝜂 + 6𝜆 + 6𝜇

6𝜆 + 4𝜇
𝑝 (1.34) 

𝐵(𝑝) = 𝜆 +
2

3
𝜇 −

18𝛽 + 2𝜂

9𝜆 + 6𝜇
𝑝 (1.35) 

The change of Young modulus and Poisson ratio with pressure can then be expressed as: 

𝐸(𝑝) =
9𝐵(𝑝)𝐺(𝑝)

3𝐵(𝑝) + 𝐺(𝑝)
 (1.36) 

𝜈(𝑝) =
𝐸(𝑝)

2𝐺(𝑝)
− 1 

(1.37) 
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1.2 Elastic waves in solids  

1.2.1 Bulk elastic waves 

 According to the second Newton’s law, the general equation of motion can be expressed 

by equalizing the internal stress force, Eq. (1.12) to the product of acceleration and mass den-

sity 𝜌:68 

𝜌
𝜕2𝑢𝑖
𝜕𝑡2

=
𝜕𝜎𝑖𝑘
𝜕𝑥𝑘

. (1.38) 

Therefore, by substituting Eq. (1.21) into Eq. (1.38), we obtain the equation of motion for aniso-

tropic material as:77 

𝜌
𝜕2𝑢𝑗

𝜕𝑡2
= 𝐶𝑖𝑗𝑘𝑙

𝜕2𝑢𝑘
𝜕𝑥𝑖𝜕𝑥𝑙

. (1.39) 

For an infinite medium, we can look for the solutions for the above equation in the form of plane 

waves: 

𝑢𝑖 = 𝑢𝑖0 exp[i𝑞(𝑙𝑗𝑥𝑗 − 𝑣𝑡)], (1.40) 

where 𝑢𝑖0 is the amplitude, 𝑣 is the phase velocity and 𝐪 = 𝑞(𝑙1, 𝑙2, 𝑙3) is the acoustic wave vector. 

Parameters 𝑙𝑖 stand for direction cosines 𝑙𝑖 = cos𝛼𝑖, where 𝛼𝑖 are the angles between the vector 𝐪 

and the positive 𝑥𝑖 axes. By substituting Eq. (1.40) into Eq. (1.39), we obtain the Christoffel’s 

equation that has nontrivial solutions only if:77  

|𝛤𝑖𝑗 − 𝛿𝑖𝑗𝜌𝑣
2| = 0, (1.41) 

where 𝛤𝑖𝑗 = 𝑙𝑖𝐾𝐶𝐾𝐿𝑙𝐿𝑗 is called the acoustic matrix, whose components are the function of propa-

gation directions and elastic constants of the crystal. Here, 𝑙𝑖𝐾 and 𝑙𝐿𝑗 = 𝑙𝑖𝐾
T
 are expressed as 3 ×

6, and 6 × 3 matrixes of direction cosines, respectively, such that: 

𝑙𝑖𝐾 = (

𝑙1 0 0
0 𝑙2 0
0 0 𝑙3

0 𝑙3 𝑙2
𝑙3 0 𝑙1
𝑙2 𝑙1 0

). (1.42) 
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Therefore, for a given direction of propagation and crystal symmetry, Christoffel’s equation gives 

the phase velocities of the acoustic waves. In general, there are three solutions for bulk waves: one 

with quasi-longitudinal and two with quasi-transverse displacement. For propagation along high-

symmetry directions, the solutions are pure longitudinal and transverse waves with displacements 

parallel or perpendicular to the propagation direction, respectively. Since it is relevant for this 

thesis, we will present as an example the solution for phase velocities of bulk acoustic waves 

propagating in high-symmetry [100] direction for hexagonal symmetry. For the considered direc-

tion, direction cosines are 𝑙1 = 1, 𝑙2 = 𝑙3 = 0. Thus, by using 𝐶𝐾𝐿 for hexagonal symmetry given 

in Eq. (1.25), we find the acoustic matrix 𝛤𝑖𝑗 to be 

Γ𝑖𝑗 = (
𝐶11 0 0
0 𝐶66 0
0 0 𝐶44

) (1.43) 

By substituting Eq. (1.43) into Eq. (1.41), we obtain the phase velocities of three types of bulk 

acoustic waves (BAWs) propagating in 𝑥1 direction. The first one is the longitudinal (L) BAW 

with phase velocity 

𝑣L = √
𝐶11
𝜌
, (1.44) 

the second is the transverse (T1) BAW with displacement in 𝑥2 direction and phase velocity  

𝑣T1 = √
𝐶66
𝜌
, (1.45) 

and the third is the transverse (T2) BAW with displacement in 𝑥3 direction and phase velocity 

𝑣T2 = √
𝐶44
𝜌
. (1.46) 

The displacement profiles for these waves are illustrated in Figure 1.3. 
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Figure 1.3. Schematic displacement fields corresponding to longitudinal wave (L), and transverse bulk 

acoustic waves (T1 and T2 BAWs). 

 

1.2.2 Surface acoustic waves 

 Surface acoustic waves (SAWs) propagate parallel to the free surface of an elastic material, 

with their displacement amplitude exponentially decaying with the depth. Lord Rayleigh first pro-

posed their existence in 1885.78 To derivate the phase velocity of SAWs propagating in the surface 

of a homogenous half-space, we recall the equation of motion (Eq. 1.39) and impose stress-free 

boundary condition. The latter can be expressed with the formula:77 

𝜎𝑖3(𝑥3 = 0) = 𝐶𝑖3𝑘𝑙
𝜕𝑢𝑘
𝜕𝑥𝑙

|
𝑥3=0

= 0, (1.47) 

where 𝑥3 = 0 denotes the surface. The solutions for SAW, which decays exponentially with depth 

below 𝑥3 = 0, are assumed to be a linear combination of terms in the form:77 

𝑢𝑖 = 𝑢𝑖0 exp[i𝑞(𝑙3 𝑥3)]  exp[i𝑞(𝑙1𝑥1 + 𝑙2𝑥2 − 𝑣𝑡)] (1.48) 

In the case of surface waves, 𝑙3 must be such that the amplitudes of all the displacement compo-

nents vanish as 𝑥3 → −∞. For SAWs, the propagation vector is always assumed to be parallel to 

the surface, therefore, 𝑥3- dependence can be considered as part of the “amplitude” of its wavelike 

properties. If we substitute Eq. (1.48), with specified 𝑙1 and 𝑙2, into Eq. (1.39) we get to the same 

Christoffel’s equation as in Eq. (1.41). However, the SAWs represented by Eq. (1.48) are inhomo-

geneous, and the value of 𝑙3 is not predefined. Therefore, for any specified 𝑣, any root 𝑙3 of the 

Eq. (1.41) provides a solution of the form of Eq. (1.48), which satisfies the anisotropic wave equa-

tion. These solutions present a wave traveling with a phase velocity 𝑣 in the direction 𝑥1𝑙1 + 𝑥2𝑙2 

and the decay (𝑥3- dependence) governed by the 𝑙3. In general, there are three lower-half-plane 

roots of Eq. (1.41) satisfying the condition that all the displacement components vanish when 𝑥3 →

−∞. Therefore, the assumed solution is a superposition of three waves given as:77  
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𝑢𝑖 =∑𝜚(𝑛o)𝑢𝑖0
(𝑛o) exp [i𝑞 (𝑙3

(𝑛o)𝑥3)]  exp[i𝑞(𝑙1𝑥1 + 𝑙2𝑥2 − 𝑣𝑡)]

3

𝑛o

, (1.49) 

where 𝜚(𝑛o) and 𝑢𝑖0
(𝑛o) are weighting factors and partial wave amplitudes. Substituting Eq. (1.49) 

into Eq. (1.47), we get: 

∑ 𝐶𝑖3𝑘𝑙
3
𝑛o 𝜚(𝑛o)𝑢𝑘0

(𝑛o)𝑙𝑙
(𝑛o) = 0, (1.50) 

This set of equations which can be expressed in matrix form as a multiplication of the 3 × 3 matrix 

of the coefficients and the 3 × 1 column vector 𝛠 of the weighting factors: 

 (

𝐶13𝑘𝑙𝜁𝑘𝑙
(1)

𝐶13𝑘𝑙𝜁𝑘𝑙
(2)

𝐶13𝑘𝑙𝜁𝑘𝑙
(3)

𝐶23𝑘𝑙𝜁𝑘𝑙
(1)

𝐶23𝑘𝑙𝜁𝑘𝑙
(2)

𝐶23𝑘𝑙𝜁𝑘𝑙
(3)

𝐶33𝑘𝑙𝜁𝑘𝑙
(1)

𝐶33𝑘𝑙𝜁𝑘𝑙
(2)

𝐶33𝑘𝑙𝜁𝑘𝑙
(3)

)(

𝜚(1)

𝜚(2)

𝜚(3)
) = (

0
0
0
), (1.51) 

where 𝜁𝑘𝑙
(𝑛o) = 𝑢𝑘0

(𝑛o)𝑙𝑙
(𝑛o). For simplicity, we will denote the matrix of coefficients [first matrix on 

the left side of Eq. (1.51)] as D. This set of equations has nontrivial solutions when the determinant 

of matrix D is |𝐃| = 0. 

Here, we will discuss only the propagation of SAWs in the case of isotropic materials. For the 

direction propagation in 𝑥1, so that 𝑙1 = 1 and 𝑙2 = 0, the acoustic matrix for isotropic material is 

expressed as: 

Γ𝑖𝑗 =

(

 
 
 
𝐶11 +

1

2
(𝐶11 − 𝐶12)𝑙3

2 0
1

2
(𝐶11 + 𝐶12)𝑙3

0
1

2
(𝐶11 − 𝐶12)(1 + 𝑙3

2) 0

1

2
(𝐶11 + 𝐶12)𝑙3 0 𝐶11𝑙3

2 +
1

2
(𝐶11 − 𝐶12))

 
 
 

 

 

(1.52) 

In this case, Christoffel’s equation [Eq. (1.41)] is given as: 

[
1

2
(𝐶11 − 𝐶12)𝑙3

2 +
1

2
(𝐶11 − 𝐶12) − 𝜌𝑣

2]
2
[𝐶11𝑙3

2 + 𝐶11 − 𝜌𝑣
2] = 0, (1.53) 

and has the six roots: 

𝑙3
(1) = 𝑙3

(2) = −i[1−(𝑣 𝑣T)⁄ 2
]
1
2, 𝑙3

(4) = 𝑙3
(5) = i[1−(𝑣 𝑣T)⁄ 2

]
1
2,  

𝑙3
(3) = −i[1−(𝑣 𝑣L)⁄ 2

]
1

2,                  𝑙3
(6) = i[1−(𝑣 𝑣L)⁄ 2

]
1

2 

(1.54) 



30 
 

The three roots in the upper-half of the complex plane can be discarded since they will result in 

wave amplitudes growing with depth. The partial wave amplitudes corresponding to lower half-

plane roots are: 

𝑢10
(1) = 0, 𝑢10

(2) = i 𝑣T 𝑣⁄ [1−(𝑣 𝑣T)⁄ 2
]
1
2,              𝑢10

(3) = 𝑣L 𝑣⁄      

𝑢20
(1) = 1,         𝑢20

(2) = 0,                                            𝑢20
(3) = 0  

𝑢30
(1) = 0,         𝑢30

(2) = 𝑣T 𝑣⁄ ,                                            𝑢30
(3) = −i 𝑣L 𝑣⁄ [1−(𝑣 𝑣L)⁄ 2

]
1

2.          

(1.55) 

Thus, the Eq. (1.51) becomes: 

(

0            𝑢30
(2) + 𝑢10

(2)𝑙3
(2) 𝑢30

(3) + 𝑢10
(3)𝑙3

(3)

𝑙3
(1) 0 0

0 𝐶11𝑢30
(2)𝑙3

(2) + 𝐶12𝑢10
(2) 𝑙3

(3) + 𝐶12𝑢10
(3)

)(

𝜚(1)

𝜚(2)

𝜚(3)
) = (

0
0
0
), (1.56) 

Then, |𝐃| = 0 for two different values of 𝑣. First, if 𝑣 = 𝑣T the solution is the transverse bulk 

wave with displacement parallel to the free surface. The second 𝑣 forces |𝐃| = 0 by making the 

cofactor 𝐷21 zero:  

𝐷21 = |
           𝑢30

(2)
+ 𝑢10

(2)
𝑙3
(2)

𝑢30
(3)
+ 𝑢10

(3)
𝑙3
(3)

𝐶11𝑢30
(2)𝑙3

(2) + 𝐶12𝑢10
(2) 𝑙3

(3) + 𝐶12𝑢10
(3)
| = 0, (1.57) 

The solution of this determinant leads to the equation that describes the Rayleigh surface wave 

(RSW) velocity: 

[2 − (
𝑣RSW
𝑣T

)
2

]

2

= 4 [1 − (
𝑣RSW
𝑣L

)
2

]

1
2

[1 − (
𝑣RSW
𝑣T

)
2

]

1
2

. (1.58) 

Rayleigh surface waves are the type of SAWs, illustrated in Figure 1.4, that are non-dispersive 

waves propagating in the close vicinity of the free surface in both isotropic and anisotropic mate-

rials. For particular material and direction of propagation, there is only one RSW. These waves are 

a superposition of L and T BAWs with the displacement amplitude decaying exponentially to zero 

within only a few wavelengths distance from the free surface. In addition, the particle displacement 

is elliptical such that the major axis of the ellipse is perpendicular to the free surface.  
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Figure 1.4. Schematics of the displacement field corresponding to Rayleigh surface wave (RSW). 

In anisotropic materials, the propagation of SAWs is more complex since the velocity and pene-

tration depth strongly depend on the direction and plane of propagation. In this case, the analysis 

of SAWs requires numerical methods. When the material is anisotropic, pseudo-surface acoustic 

waves (p-SAWs), also called leaky waves, appear. The p-SAW is a coupled mode involving sur-

face waves and waves radiating into bulk. Nevertheless, the bulk term disappears for propagation 

along the high-symmetry directions, and the p-SAW has all the properties of a normal surface 

wave. Both experimental and theoretical studies have reported p-SAWs and high-frequency 

pseudo-surface acoustic waves (HFPSAWs) in anisotropic crystals. For instance, p-SAWs in cubic 

materials were theoretically predicted by Farnell.77 Experimentally, p-SAWs were observed by 

Brillouin scattering (BLS) for directions close to the [110] on the (001) plane of Si79 and (11̅1) of 

GaAs.80 The velocity of the p-SAWs lies between the velocities of two transverse bulk waves. The 

HFPSAWs, also known as longitudinal resonances81 or skimming longitudinal waves,82 have the 

velocity that lies between those of the transverse and longitudinal BAWs. In materials that have a 

Poisson ratio, 𝜈 < 0.33, the velocity of HFPSAW is almost identical to that of the L BAW.81 Car-

lotti et al.80 studied the propagation of RSW, p-SAW, and HFPSAW in GaAs(11̅1) both theoreti-

cally and experimentally. Figure 1.5 displays the calculated projected local density of states 

(PLDOS) of the surface displacement components 𝑢1, 𝑢2 and 𝑢3 as a function of the frequency 𝑓 

in [110] and [121] propagation directions. The p-SAW consists of two waves that are confined at 

the surface and the third one that is a bulk wave. Therefore, the displacement field of p-SAW has 

components both parallel (𝑢1, 𝑢3) and perpendicular (𝑢2) to the sagittal plane and depends on the 

propagation direction. Moreover, the p-SAW displacement is dominated by the 𝑢2 component, for 

[121] propagation direction. The HFPSAW, has a pure longitudinal nature for any propagation 

direction on the (11̅1) plane and consists of three partial waves where only one is confined at the 

surface, while the other two are bulk waves. Thus, HFPSAW is much more attenuated when com-

pared to p-SAW.  
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Numerically, PLDOS for SAWs in anisotropic materials can be calculated from the mean-square 

displacement: 

〈|𝑢𝑖(0)|
2〉𝐪,𝜔 =

𝑘B𝑇

𝜋𝜔
Im[𝐺𝑖𝑖(𝑞, 0, 𝜔)], (1.59) 

where 𝐺𝑖𝑖(𝑞, 0, 𝜔) = ∑ 𝜚(𝑛)𝑢𝑖0
(𝑛)

𝑛  is the component of Green’s function tensor.83 Thermal occupa-

tion of each mode is given by 𝑘B𝑇/𝜋𝜔, where 𝑘B is Boltzmann constant, 𝑇 is temperature, and 

𝜔 = 2𝜋𝑓 is the angular frequency. Therefore, 〈|𝑢1(0)|
2〉𝑞,𝜔~𝐺11 and 

〈|𝑢2(0)|
2〉𝑞,𝜔~𝐺22 〈|𝑢3(0)|

2〉𝑞,𝜔~𝐺33.  

 
Figure 1.5. Calculated PLDOS for displacements 𝑢1, 𝑢2 and 𝑢3 for [110] and [121] propagation direc-

tion in (11̅1) plane of GaAs. This figure was reproduced from Ref. [80]. 

 

 The introduction of a thin surface layer that is firmly bonded to the infinite substrate may 

lead to the appearance of SAWs that substantially differ from RSWs. One can distinguish two 

possible cases in such systems: fast-on-slow (stiffening) or slow-on-fast (loading) systems.84 In 

the former case, the velocity of the shear BAW of the layer is greater than that of the substrate, 

which in most cases corresponds to an elastically hard film on an elastically soft substrate. Con-

trarily, in the latter case, the velocity of the shear BAW in the substrate is greater than that of the 

layer. In the layered media, RSWs are dispersive, i.e., the phase and group velocity depends on the 
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wave number (wave-length, frequency). Besides RSWs and p-RSWs, Sezawa waves (SWs), 

pseudo-Sezawa waves (p-SWs), Love waves, and Stoneley waves can be found in thin supported 

films. SWs are SAWs with displacements mainly localized in the supported layer and falling off 

exponentially in the substrate.  p-SWs are Sezawa-like waves that radiate energy into the bulk. 

These types of waves can only be observed in slow-on-fast systems. Love waves are in-plane 

transverse surface modes in a layered half-space and they also propagate only in slow-on-fast sys-

tems.62,81,85,86 Stoneley waves are waves that are localized at the boundary between film and sub-

strate and they are typical for transparent films on opaque substrates.81,85  

Sumanya et al.85 studied the propagation of SAWs in both fast-on-slow and slow-on-fast systems. 

As an example of a fast-on-slow system, they discuss the case of titanium carbide (TiC) film on 

Ge substrate. The calculated dispersion for TiC/Ge is shown in Figure 1.6 (a). Starting at small 

reduced in-plane wavenumbers 𝑞∥ℎ ≈ 0, (𝑞∥ stands for the wavenumber corresponding to the wave 

vector parallel to the surface) in the absence of the layer, the RSW in Ge substrate is the only mode 

observed. With increasing 𝑞∥ℎ the phase velocity of RSW increases, and at certain 𝑞∥ℎ merges into 

the out-of-plane T BAW continuum of the substrate. Above that threshold, p-SAWs are observed. 

Further increase of 𝑞∥ℎ leads to the appearance of RSW of the TiC film. In this system, a pre-

Rayleigh feature [indicated in Figure 1.6 (a)], observed only in strong stiffening systems, appears. 

Higher mode p-SAWs are also observed as the layer thickness is increased. TiC film on silicon 

carbide (SiC) substrate is an example of a slow-on-fast combination, and the dispersion of SAWs 

of this system is shown in Figure 1.6 (b). Similar to the previous case, at 𝑞∥ℎ ≈ 0 RSW of the 

substrate is identified with a velocity lower than of shear wave in the substrate. However, in this 

system, with increasing 𝑞∥ℎ the RSW velocity falls off, and for large 𝑞∥ℎ it asymptotically ap-

proaches the RSW velocity of the film. At a sequence of critical values of 𝑞∥ℎ additional higher-

order Sezawa modes denoted 1stSW, 2ndSW in Figure 1.6 (b), appear. For large 𝑞∥ℎ 1stSW asymp-

totically approaches the shear velocity of the film. These waves have lower velocity than substrate 

shear velocity.  
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Figure 1.6. Calculated dispersion in form velocity vs. reduced wave vector, 𝑞∥ℎ for (a) TiC/Ge and (b) 

TiC/SiC as examples of fast-on-slow and slow-on-fast systems, respectively. This figure was reproduced 

from Ref. [85]. 

The dispersion relation of SAWs can be numerically calculated by the finite element 

method (FEM). The FEM modeling requires the definition of 2D or 3D unit cells, meshing, mate-

rial properties, and boundary conditions. For the given problem, FEM solves the equation of mo-

tion searching for the undamped eigenmodes. As an example from literature,87 Figure 1.7 (a) dis-

plays a schematic representation of studied multilayer structure [Ni80Fe20/Au/Co/Au]10 on a silicon 

substrate. For the simulation of SAWs, the boundary condition for the top surface was set free 

while the bottom boundary is fixed to zero displacements (𝑢1 = 𝑢2 = 𝑢3 = 0). These conditions 

were chosen to resemble the exponential decay of SAWs amplitude with depth. Additionally, to 

simulate eigenmodes that resemble the propagation of waves parallel to the top surface, for the left 

and right surfaces, the Bloch-Floquet periodic boundary conditions were set for each component 

of displacement: 𝑢𝑖exp [i(𝑞1𝑥1 + 𝑞2𝑥2+𝑞3𝑥3)]. The resulting dispersion relation of RSW and SW 

obtained by FEM modeling for this system is displayed in Figure 1.6 (b). The FEM result agrees 

well with BLS data, also reported in this study. 

It is important to note that the FEM solutions include eigenmodes that are not SAW-like. To ex-

clude such solutions, one can use “surface-like” parameter 𝜉, related to the center of free elastic 

energy density along the axis normal to the free surface, 𝑥𝑖, given as 88 

𝜉 = 1 −
∫ 𝜓𝑥𝑖ds𝑠

𝐻 ∫ 𝜓ds
𝑠

, (1.60) 
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where 𝑠 and 𝐻 denote the unit cell area and height. The SAWs have 𝜉 in the 0 - 0.2 range. Thus, 

calculated points for witch 𝜉 > 0.2 can be excluded.88 

 
Figure 1.7. (a) Schematic illustration of [Ni80Fe20/Au/Co/Au]10 multilayer structure supported by silicon. 

(b) Corresponding dispersion relation calculated by FEM (empty squares) and measured by BLS (full 

circles). The figure is taken from Ref. [87].  
 

1.2.2.1 Lamb waves in plates 

 Following the work of Lord Rayleigh, Horace Lamb reported waves in thin plates in 1917 

that were named after him: Lamb waves.89 These waves propagate parallel to the surface, and their 

dispersion relation can be calculated from Christoffel’s equation (1.41) with two boundary condi-

tions that correspond to the stress-free upper and lower surfaces. For the plate of thickness ℎ (Fig-

ure 1.8), these boundary conditions are given as: 

𝜎𝑖3(𝑥3 = 0) = 𝐶𝑖3𝑘𝑙
𝜕𝑢𝑘

𝜕𝑥𝑙
|
𝑥3=0

= 0, (1.61) 

𝜎𝑖3(𝑥3 = −ℎ) = 𝐶𝑖3𝑘𝑙
𝜕𝑢𝑘

𝜕𝑥𝑙
|
𝑥3=−ℎ

= 0.  (1.62) 

 

 
Figure 1.8. A plate of thickness h. For the upper and lower surface of the plate 𝑥3 = 0 and 𝑥3 = −ℎ, 

respectively. 
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For simplicity, we consider the propagation in the elastically isotropic plate/slab in the 𝑥1 direction, 

so that 𝑙1 = 1 and 𝑙2 = 0. In the case of thin plates, Eq. (1.41) has 𝑛o = 6 solutions for 𝑙3
(𝑛o) for 

any value of 𝑣. Therefore, the general solution for displacement is a superposition of six waves: 

𝑢𝑖 =∑𝜚(𝑛o)𝑢𝑖0
(𝑛o) exp [i𝑞 (𝑙3

(𝑛o)𝑥3)]  exp[i𝑞(𝑙1𝑥1 + 𝑣𝑡)]

6

𝑛o

. (1.63) 

By substituting Eq. (1.63) into equations (1.61) and (1.62) we get: 

∑ 𝐶𝑖3𝑘𝑙
6
𝑛o 𝜚(𝑛o)𝑢𝑘0

(𝑛o)𝑙𝑙
(𝑛o) = 0, (1.64) 

∑ 𝐶𝑖3𝑘𝑙
6
𝑛o 𝜚(𝑛o)𝑢𝑘0

(𝑛o)𝑙𝑙
(𝑛o) exp [−(i𝑞𝑙3

(𝑛o)ℎ)] = 0. (1.65) 

Similarly, as for SAWs, we can express this set of equations as: 

 (
𝐶13𝑘𝑙𝜁𝑘𝑙

(1)
⋯ 𝐶13𝑘𝑙𝜁𝑘𝑙

(6)

⋮ ⋱ ⋮

𝐶33𝑘𝑙𝜍𝑘𝑙
(1)

⋯ 𝐶33𝑘𝑙𝜍𝑘𝑙
(6)
)(

𝜚(1)

⋮
𝜚(6)

) = (
0
⋮
0
), (1.66) 

where 𝜁𝑘𝑙
(𝑛o) = 𝑢𝑘0

(𝑛o)𝑙𝑙
(𝑛o) and 𝜍𝑘𝑙

(𝑛o) = 𝑢𝑘0
(𝑛o)𝑙𝑙

(𝑛o)exp(−i𝑞𝑙3ℎ). The problem has nontrivial solu-

tions when the determinant of the matrix of coefficients is zero, |𝐃| = 0. As shown in Table 1.1, 

the solutions can be sorted concerning displacement in terms of their mid-plane (𝑥3 = −ℎ/2) 

symmetry to the corresponding Lamb waves: 

Table 1.1. Types of acoustic waves in membranes/plates.  

Wave Symmetry Symmetry relation 

Symmetric Lamb S 𝑢3(−ℎ) = −𝑢3(0) 

Antisymmetric 

Lamb 
A 𝑢3(−ℎ) = 𝑢3(0) 

Shear-Horizontal SH 𝑢3(−ℎ) = 𝑢3(0) = 0 

 

The displacement profiles corresponding to zero-order (fundamental) Lamb modes are illustrated 

in Figure 1.9.   
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Figure 1.9. Deformations corresponding to antisymmetric (A0) symmetric and shear horizontal (SH0) 

zero-order (fundamental) Lamb waves. 
 

The dispersion relations of Lamb waves in the form 𝑣(𝑞) can be calculated using the numerical 

approach. For that purpose, the material of consideration is defined by its thickness, elastic con-

stants, and mass density. To obtain the dispersion of Lamb waves in such material, 𝑣 is firstly 

swept in Christoffel’s equation [Eq. (1.41)] at a given 𝑞 to find the minima of the matrix of coef-

ficients |𝐃| from Eq. (1.66). This minimum corresponds to phase velocities of Lamb waves. Next, 

the same procedure is repeated for variated 𝑞, allowing to plot the Lamb wave velocity as a func-

tion of wavenumber. The 𝑣(𝑞) dispersions can easily be converted to the 𝑓(𝑞) form.  

 

1.2.2.2 Spheroidal Lamb waves 

 In 1881 Horace Lamb reported spheroidal waves in the publication entitled “On the Vibra-

tions of an Elastic Sphere”.90 In the spherical coordinate system, the displacement vector can be 

expressed as the sum of angular (𝑙, 𝑚) and radial (𝑛) dependence of sphere displacement: 𝐮 = 𝐥 +

𝐦+ 𝐧. Therefore, the equation of motion can be separated into three independent Helmholtz equa-

tions: 

(∇2 + 𝑞L
2)𝐥 = 0,        (∇2 + 𝑞T

2)𝐦 = 0,       (∇2 + 𝑞T
2)𝐧 = 0, (1.67) 

where 𝐥 represents the displacement associated with longitudinal wave and 𝐧 and 𝐦 represent the 

transverse displacements, which are orthogonal to each other. The vibrational modes of a free 

homogenous elastic sphere can be classified into torsional and spheroidal modes. The torsional 

modes are entirely tangential, i.e., they involve only shear motions and do not cause changes in 

the sphere shape. Modes that usually involve both shear and stretching motions are called spheroi-

dal, and they can be noted by two indices (𝑛, 𝑙). Only spheroidal modes with 𝑙 = 0 have purely 

radial displacement, and they are called breathing modes. Figure 1.10 illustrates breathing (1,0), 
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dipolar (1,1) and quadrupolar (1,2) spheroidal Lamb modes. The frequency of these (𝑛, 𝑙) modes 

are given as:59,90 

𝑓(𝑛, 𝑙) =
𝐴𝑛,𝑙𝑣T
𝑑

, (1.68) 

where 𝐴𝑛,𝑙 is the dimensionless constant that depends on Poisson’s ratio, and 𝑑 is the diameter of 

the sphere.  

 
Figure 1.10. Schematic illustration of (a) breathing, (b) dipolar, and (c) quadrupolar spheroidal Lamb 

modes.  
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Chapter 2 Principles of Brillouin light scattering 

 Brillouin light scattering (BLS) refers to the inelastic scattering of monochromatic laser 

light by thermally populated elastic waves/phonons in a medium, i.e., acoustic phonons. This chap-

ter briefly introduces the theory and experiment of spontaneous BLS. 

2.1 Light scattering 

 Let us consider the scattering of the incident light, with wave vector 𝐤i and angular fre-

quency 𝜔i in a medium. The incident electric field can be expressed as: 

𝐄i(𝐫, 𝑡) = 𝒆i𝐸0 exp i(𝐤i ∙ 𝐫 − 𝜔i𝑡), (2.1) 

where 𝐸0 and 𝐞i denote electric field amplitude and unit vector of incident electric field polariza-

tion, respectively. The medium at which scattering takes place has a local dielectric constant given 

as:91,92 

𝛆(𝐫, 𝑡) = 𝜀𝐈 + 𝛿𝛆(𝐫, 𝑡), (2.2) 

where 𝜀 is an average dielectric constant (defining the refractive index 𝑛r = √𝜀), 𝐈 is the second 

rank unit tensor and 𝛿𝛆(𝐫, 𝑡) is the dielectric fluctuation tensor. Moreover, as it has been demon-

strated in the literature, the scattered electric field at a large distance 𝐋 from the scattering volume 

V can be derived from Maxwell equations as 91 

𝐸s(𝑅, 𝑡) =
𝐸0
4𝜋𝐿𝜀

exp i𝑘s𝐿 ∫ 𝑑
3𝑟

𝑉

exp i(𝐪 ∙ 𝐫 − 𝜔i𝑡)[𝐞s ∙ [𝐤s × (𝐤s × (δ𝛆(𝐫, t) ∙ 𝐞i)]], (2.3) 

where 𝐞s and 𝐤s are the scattered field polarization and propagation vector, respectively. The dif-

ference between the incident and scattered light vector defines the scattering wave vector 𝐪 (Figure 

2.1): 

𝐪 = 𝐤i − 𝐤s. (2.4) 

 



40 
 

 
Figure 2.1. Schematic illustration of general light scattering setup. Incident light with 𝐞i, 𝐤i and 𝜔i is 

scattered on the acoustic waves. The scattered light with 𝐞s, 𝐤s and 𝜔s reaches the detector. The scattering 

wave vector is denoted as q.  

The angle between 𝐤i and 𝐤s is the scattering angle 𝜃 and the magnitudes of these wave vectors 

are respectively 2𝜋𝑛r 𝜆i⁄  and 2𝜋𝑛r 𝜆s⁄ , where 𝜆i and 𝜆s denote wavelengths of the incident and 

scattered light, respectively. Usually, scattering does not result in a significant change in wave-

length of incident light and |𝐤i| ≅ |𝐤s|. Therefore, as follows from Figure 2.1, we can get the 

magnitude of 𝐪 as: 

𝑞2 = |𝐤i − 𝐤s|
2 = 𝑘i

2 + 𝑘s
2 − 2𝐤i ∙ 𝐤s = 2𝑘i

2 + 2𝑘i
2cos𝜃 = 4𝑘i

2sin2
𝜃

2
, (2.5) 

𝑞 = 2𝑘isin
𝜃

2
=
4𝜋𝑛r
𝜆i

sin
𝜃

2
. (2.6) 

Eq. (2.6) gives the Bragg condition. Applying the spatial Fourier transform of the dielectric fluc-

tuation: 𝛿𝜀(𝐪, 𝑡) = ∫ 𝑑3𝑟exp i𝐪𝐫𝛿𝜀(𝐫, 𝑡)
𝑉

, Eq. (2.3) simplifies to 91 

𝐸s(𝑅, 𝑡) =
−𝑘𝑠

2𝐸0
4𝜋𝐿𝜀

exp i(𝑘𝑠 𝐿 − 𝜔i𝑡)𝛿𝜀is(𝐪, 𝑡), (2.7) 

where 𝛿𝜀is(𝐪, 𝑡) = 𝐞s𝛿𝜀(𝐪, 𝑡)𝐞i denotes the component of the dielectric fluctuation tensor along 

the initial and final polarization directions. From Eq. (2.7), we can write the time-correlation func-

tion of 𝐸s as:91 

〈𝐸s
∗(𝐿, 0)𝐸s(𝐿, 𝑡)〉 =

𝑘𝑠
4|𝐸0|

2

16𝜋2𝐿2𝜀2
〈𝛿𝜀is(𝐪, 0)𝛿𝜀is(𝐪, 𝑡)〉exp(−i𝜔i𝑡). (2.8) 

The spectral density is given as: 
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𝐼𝐸(𝜔) =
1

2𝜋
∫ 𝑑𝜏
∞

−∞

〈𝐸∗(𝑡)𝐸(𝑡 + 𝜏)exp (−𝑖𝜔𝜏〉, (2.9) 

where 𝜏 stands for correlation time of the property called the relaxation time. Therefore, substitut-

ing Eq. (2.8) into Eq. (2.9) gives the spectral density of light scattered into detector with 𝐞s, 𝐤s 

and 𝜔s:  

𝐼𝑖𝑠(𝑞, 𝜔, 𝐿) =
𝐼0𝑘𝑠

4

16𝜋2𝐿2𝜀2
1

2𝜋
∫ 𝑑𝑡
∞

−∞

〈𝛿𝜀𝑖𝑠(𝐪, 0)𝛿𝜀𝑖𝑠(𝐪, 𝑡)〉exp i(𝜔s − 𝜔i𝑡), (2.10) 

where 𝐼0 ≡ |𝐸0|
2. From the above equation, we see that spectral density depends only on the dif-

ference in angular frequencies of the incident and scattered light, 𝜔 ≡ 𝜔i − 𝜔s. 

2.2 Brillouin light scattering  

 An acoustic wave propagation causes a periodic change in the local dielectric constant 

(refractive index) in a material. Thus, producing a traveling grating with a spacing equal to the 

wavelength of acoustic wave Λ, as illustrated in Figure 2.2. We can describe BLS considering 

multiple reflections of the incident light from so-formed traveling grating. 81,92  

 
Figure 2.2. BLS scattering as constructive interference of the multiple reflections of the incident light 

beam (𝜆i, 𝐤i) from an elastic wave of wavelength Λ.  

According to Bragg's law, the condition for constructive interference for multiply reflected light 

is given as: 

𝜆i = 2𝑛rΛsin
θ

2
, (2.11) 
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where 𝜆i, 𝜃, and 𝑛r stand for the wavelength of the incident light, the angle between the incident 

and reflected light, and the refractive index of the medium, respectively. Substitution of Eq. (2.11) 

into Eq. (2.6) gives the magnitude of scattering wave vector, i.e., acoustic wavenumber: 

𝑞 =
2𝜋

Λ
=
4𝜋𝑛r
𝜆i

sin
𝜃

2
. (2.12) 

Since the acoustic wave travels with a phase velocity 𝑣, the scattered light frequency 𝑓s =

𝜔 2𝜋⁄ , seen by the detector experiences a Doppler shift 𝑓:93  

𝑓s = 𝑓i ± 𝑓 = 𝑓i ± 2𝑓i
𝑣

𝑣m
sin
𝜃

2
= 𝑓i ±

𝑣

2𝜋

4𝜋𝑛r
𝜆i

sin
𝜃

2
, (2.13) 

where 𝑓
i
 stands for the frequency of incident light and 𝑣m for the light velocity in the medium. The 

plus and minus signs correspond to two possible propagation directions of the sound wave. The 

first one is for propagation toward the detector leading to an increase in the frequency of the scat-

tered light, i.e., anti-Stokes scattering. The latter is the opposite, i.e., Stokes scattering. Therefore, 

as illustrated in Figure 2.3, the BLS spectrum consists of a doublet centered at frequencies: 

𝑓 = ±
𝑣

2𝜋
𝑞, (2.14) 

or, in terms of angular frequency: 

𝜔 = ±𝑣𝑞. (2.15) 

 

 
Figure 2.3. Schematic representation of BLS spectrum.  
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 From the quantum mechanical point of view, the Brillouin scattering process is described 

as photon-phonon interaction, where the photon is the quantum of the electromagnetic field, and 

the phonon is the quantum of the acoustic field. An incident photon with energy ℏ𝜔i and momen-

tum ℏ𝐤i is inelastically scattered on a phonon of energy ℏ𝜔 and momentum ℏ𝐪 in the scattering 

medium. During this process, the phonon is either created (Stokes event) or annihilated (anti-

Stokes event), as illustrated in Figure 2.4. In the Stokes event, the scattered photon loses energy 

for phonon creation. Contrarily, in the anti-Stokes event, the scattering photon gains energy due to 

phonon annihilation. Conservations of energy and momentum in the scattering process require:92 

                                                         Stokes event:           𝜔s = 𝜔i − 𝜔 

                                                                                                𝐤s = 𝐤i − 𝐪 (2.16) 

                                                          Anti-Stokes event:    𝜔s = 𝜔i +𝜔 

                                                                                                  𝐤s = 𝐤i + 𝐪 (2.17) 

 
Figure 2.4. (a) Phonon creation: Stokes event and (b) phonon annihilation: anti-Stokes event. 

 

2.2.1 Brillouin light scattering geometries 

 The scattering geometry has a significant role in the BLS experiment since it defines the 

acoustic vector q. Figure 2.5 illustrates commonly used BLS geometries. In the transmission ge-

ometry [Figure 2.5 (a)] it has been shown that, according to Snell's law, the magnitude of q is:94 

𝑞 =
4𝜋𝑛r
𝜆i

sin [
1

2
[sin−1 (

1

𝑛r
sin𝛼) + sin−1 (

1

𝑛r
sin (𝜃 − 𝛼))]] , (2.18) 

where 𝛼 and 𝜃 denote incident and scattering angle, respectively. For the special case, when 𝛼 =

𝜃/2, the probed 𝐪∥ is parallel to the surface of the sample, and its magnitude is given as:95 



44 
 

𝑞∥ =
4𝜋

𝜆i
sin
𝜃

2
, (2.19) 

As follows from the above, the acoustic wave number does not depend on the refractive index of 

the sample. In the reflection geometry [Figure 2.5 (b)], the scattering vector is perpendicular to the 

surface of the sample when condition 𝛼 = (𝜋 − 𝜃)/2 is fulfilled. In this case the 𝑞⊥ is given re-

fractive index dependent and it is given as:96 

𝑞⊥ =
4𝜋

𝜆i
√𝑛r2 − sin2𝛼 (2.20) 

Another geometry commonly used for probing SAWs or spheroidal Lamb waves in colloidal crys-

tals (CCs) is backscattering geometry, schematically shown in Figure 2.5 (c). In BLS experiments, 

scattering on acoustic phonons/waves originates from the surface ripple (SR) mechanism (or mov-

ing interface mechanism) and the photo-elastic (PE) mechanism. In the SR mechanism, scattering 

occurs on the surface or near-surface region where incident light can penetrate. Thus, this mecha-

nism is typical for semi-opaque and opaque materials. For the SR mechanism, the conservation of 

the momentum holds only for in-plane components parallel to the surface. Therefore, in this case, 

the acoustic wave vector 𝐪 lies in the free surface, and its magnitude for backscattering geometry 

[as illustrated in Figure 2.5 (c)] is given as62 

𝑞 = 2𝑘isin𝜃 =
4𝜋

𝜆i
sin 𝜃. (2.21) 

In transparent and semi-transparent solids, scattering from bulk acoustic waves through PE mech-

anism is dominant. In backscattering BLS geometry, bulk waves have refractive index dependent 

wave number given as 62 

𝑄 = 2𝑛r𝑘i =
4𝜋𝑛r
𝜆i
. (2.22) 
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Figure 2.5. (a)Transmission, (b) reflection, and (c) backscattering BLS geometries. Symbols 𝐤i and 𝐤s 
denote wave vectors of incident and scattered light, respectively. 𝛼 and 𝜃 stand for incident and scattering 

angle, respectively. The direction of acoustic wave vector in (a) is parallel to the surface 𝐪∥ or in (b) 

normal to the surface 𝐪⊥. In (c) 𝐪 and 𝐐 denote wave vectors of SAWs and BAWs, respectively.   

 

2.2.2 Photo-elastic coupling: selection rules 

 The scattered intensity due to the fluctuations of the dielectric constant in a medium can be 

accessed through the PE coupling phenomenon, where the local dielectric constant can be altered 

by the local strain. The inverse dielectric fluctuation tensor is related to strain tensor according 

to92,97 

𝛿𝜀𝑖𝑗
−1 = 𝑃𝑖𝑗𝑘𝑙𝛿𝑢𝑘𝑙, (2.23) 

where 𝑃𝑖𝑗𝑘𝑙 is Pockel's photo-elastic tensor. Due to the strain and dielectric tensors symmetry 

(𝑢𝑘𝑙 = 𝑢𝑙𝑘 and 𝛿𝜀𝑖𝑗 = 𝛿𝜀𝑗𝑖), the Pockel's tensor can be expressed by a 6 × 6 matrix. As it was in 

the case of the elastic tensor (Chapter 1), the number of independent elements of Pockel's tensor 

depends on the material symmetry. The multiplication of the 6-components strain by the 6 × 6 

Pockel's tensor (Eq. 2.28) 𝑃𝑖𝑗𝑢𝑗 gives a 6-components 𝛿𝜀𝑖
−1 that can be expressed as 3 × 3 matrix. 

Next, we introduce tensor 𝐓j as: 

𝐓j = (

𝛿𝜀1 𝛿𝜀6 𝛿𝜀5
𝛿𝜀6 𝛿𝜀2 𝛿𝜀4
𝛿𝜀5 𝛿𝜀4 𝛿𝜀3

), (2.24) 

This tensor is related to the Rayleigh ratio 𝑅j, quantity used to represent the intensity of the com-

ponents in the scattering spectrum, according to: 
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𝑅j =
𝑘𝐵𝑇𝜋

2

2𝜆𝑠4
1

𝜌𝑣2
(𝐞s𝐓

j𝐞i)
2 𝑛rs
𝑛ri
, (2.25) 

where 𝑘𝐵𝑇 is thermal energy (𝑘𝐵 is the Boltzmann constant and 𝑇 is the temperature), 𝜌𝑣2 is the 

elastic constant of the j-th mode.  

 
Figure 2.6. The schematic view of the backscattering BLS experiment with the plane of incidence for 

incident/scattered light is normal to the sample surface. Light with p (TM) and s (TE) polarization is 

parallel and normal to the plane of incidence, respectively. 

The selection rules for BLS are governed by the product (𝐞s𝐓
j𝐞i) in Eq (2.25). In our experiments, 

as illustrated in Figure 2.6, we used p-p (s-s) and s-p (p-s) polarization regarding incident-scattered 

light. Here, p and s correspond to the polarization of the light being parallel (TM polarization) and 

normal (TE polarization) to the sagittal plane (plane of incidence), respectively. In the backscat-

tering BLS geometry, polarization unit vector 𝐞 = (1 0 0) corresponds to p and 𝐞 =

(0 1 0) to s polarization. The PE tensors for longitudinal and two transverse phonon modes 

for crystals of different symmetry and specific phonon propagation can be found in the literature.92 

Here, only the 𝐓j tensors and velocities for longitudinal (L) and two transverse waves (T1, T2) for 

the [100] phonon in hexagonal crystal belonging to space groups 𝐶6v, 𝐷6, 𝐷3h, and 𝐷6h are shown 

in Table 2.1, since they are relevant for the experiments in this thesis (Chapter 4).  

Table 2.1. Velocities and 𝐓j tensors for [100] phonon in a material with hexagonal symmetry. Pockel's 

coefficients are denoted as 𝑃𝑖𝑗, while 𝜀o and 𝜀𝑒 stand for ordinary and extraordinary dielectric constants, 

respectively. 

L T1 T2 

𝑣 = (𝐶11/𝜌)
1/2 𝑣 = (𝐶66/𝜌)

1/2 𝑣 = (𝐶44/𝜌)
1/2 

𝐓L = (

𝜀o
2𝑃11 0 0

0 𝜀o
2𝑃12 0

0 0 𝜀o
2𝑃31

) 𝐓T1 = (
0 𝜀o

2(𝑃11 − 𝑃12)/2 0

𝜀o
2(𝑃11 − 𝑃12)/2 0 0

0 0 0

) 𝐓T2 = (
0 0 𝜀o𝜀𝑒𝑃44
0 0 0

𝜀o𝜀e𝑃44 0 0
) 
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2.2.3 Experimental setup: Tandem Fabry-Perot interferometer 

 A single Fabry-Perot interferometer (FPI) consists of two plane mirrors that are parallel to 

each other. One of these mirrors is fixed while the other is movable, and the distance between them 

is denoted as 𝐿. When a light beam enters the interferometer, it undergoes multiple internal reflec-

tions between these mirrors. Therefore, the reflected beams interfere and only the wavelengths that 

satisfy constructive interference condition will be transmitted. The constructive interference oc-

curs when: 

𝑏𝜆i = 2𝑛r𝐿cos𝜃, (2.26) 

where 𝑏 is an integer, 𝑛r is the refractive index of the medium between the mirrors and 𝜃 is the 

angle between the normal to the mirrors and the light beam. Typically, the space between the 

mirrors is filled with air so 𝑛r = 1. Therefore, when the light enters normal to the mirrors (cos𝜃 =

1) the Eq. (2.26) becomes: 

𝜆i =
2𝐿

𝑏
, (2.27) 

The separation between two neighboring transmission maxima for a given 𝐿 (Figure 2.7) is called 

the free spectral range (FSR = Δ𝜆) and it can be defined from the equality 

Δ𝜆

𝜆i
=
Δ𝑏

𝑏
, 

(2.28) 

where Δ𝑏 = 1. By combining Eq. (2.27) and (2.28), we can express FSR in the form: 

Δ𝜆 =
𝜆i
𝑏
=
λi
2

2𝐿
, (2.29) 

or in terms of frequency as:  

Δ𝑓 =
𝑣0
2𝐿
, 

(2.30) 

with 𝑣0 denoting the velocity of light in vacuum.  
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Figure 2.7. Transmission vs wavelength where the spacing between two adjacent transmission maxima, 

Δ𝜆 is the free spectral range FSR. The linewidth 𝛿𝜆 is the width of the peak at half maximum. This figure 

was reproduced from Ref. [98]. 

The linewidth 𝛿𝜆 (FWHM – full width at half maximum) of the transmitted line (Figure 2.7), 

depends on the reflectance, ℛ. To show this, we start from the relation between transmission func-

tion of the FPI and reflectance given by Airy function:99 

𝑇FPI =
1

1 + 𝑐Fsin2(𝛿p 2)⁄
. 

(2.31) 

Here, 𝛿p = 4𝜋𝐿 𝜆i⁄  is the phase difference between each successive transmitted pair and 𝑐F =

4ℛ2 (1 − ℛ2)2⁄  is called the contrast. The latest is related to the FWHM as: 

𝛿𝜆 =
4

√𝑐F

𝜆i
2𝜋𝑏

. (2.32) 

Now we can define the finesse ℱ as the ratio of FSR to the FWHM:99 

ℱ =
∆𝜆

𝛿𝜆
=
𝜆i
𝑏

√𝑐F
4

2𝜋𝑏

𝜆i
=
𝜋√𝑐F
2

=
𝜋ℛ

1 − ℛ2
. (2.33) 

In practice, higher finesse translates into a better resolution of the Fabry-Perot interferometer. 

However, a single FP interferometer has been shown to have too low contrast to allow weak Bril-

louin signals to be observed due to the presence of intense elastically scattered light. To solve this 

problem, J. R. Sandercock used a multipass FP interferometer.100 However, a multipass FP inter-

ferometer still suffers from the overlapping of neighboring interference orders, leading to unclear 

interpretations of experimental spectra. Later on, Sandercock found that the suppression of this 

effect can be achieved by using a tandem arrangement, i.e. two FP interferometers (FP1 and FP2) 
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in series with slightly different mirror spacing, i.e., FSR.100 The wavelengths transmitted by the 

FP1 and FP2 combination must simultaneously satisfy:  

𝑏1𝜆i = 2𝐿1    for FP1 

𝑏2𝜆i = 2𝐿2     for FP2 
(2.34) 

Due to the slight difference in their FSRs, neighboring order transmission peaks of the two FP 

interferometers cannot coincide, as illustrated in Figure 2.8 (a). As a result, significant suppression 

of interference higher-order transmission is achieved. This is because one of the FP interferometers 

blocks the adjacent interference orders of the other. 

For the tandem interferometer, it is necessary to scan FP1 and FP2 synchronously by changing 𝐿1 

and 𝐿2 simultaneously. From Eq. (2.34) it is clear that the condition for the synchronized scanning 

of the two FP interferometers is that the changes Δ𝐿1 and Δ𝐿2 satisfy: 

Δ𝐿1
Δ𝐿2

=
𝐿1
𝐿2
. 

(2.35) 

This is achieved by using the scanning stage that Sandercook has designed.100,101 The principle of 

the tandem operation is illustrated in Figure 2.8 (b). The first interferometer FP1 lies in the direc-

tion of the translation stage movement (scan direction) such that one mirror sits on this stage while 

the other sits on a separate angular orientation device. The second interferometer FP2 is positioned 

such that its axis is at angle 𝜑 with respect to the scan direction. The relative spacing of the mirrors 

is set so that a movement of the translation stage to the left would bring both sets of mirrors into 

contact simultaneously. A movement of the translation stage to the right sets the spacings to 𝐿1 

and 𝐿2 = 𝐿1cos𝜑. Also, the movement of the translation stage Δ𝐿1 leads to the change of spacing 

Δ𝐿1 in FP1 and Δ𝐿2 = Δ𝐿1cos𝜑 in FP2. Therefore, the condition given in Eq. (2.35) is satisfied. 
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Figure 2.8. (a) Transmission spectra for two single (FP1, FP2) interferometers with different FSR and 

the tandem Fabry-Perot interferometer. (b) Schematic illustration of Sandercock's multipass tandem-

Fabry- Perot interferometer. This figure was reproduced from Ref. [100]. 
 

 Besides the tandem interferometer, the BLS experimental setup consists of many optical 

components, including beam splitters, polarizers, lenses, and mirrors. Therefore, the experiments 

described in the thesis required slightly different elements and will be discussed for each case.  
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Chapter 3 Mechanical characterization of thin 

supported nanocomposite films by BLS 

 In coating technology, one architecture that is much appreciated is the nanocomposite coat-

ing. Typically, these coatings are composed of nanoparticles embedded in an amorphous matrix. 

The nanoparticles can be of the similar chemical composition of the amorphous matrix or utterly 

different. The advantages these coatings provide are their enhanced tribological properties. In 

some cases, the coatings become highly elastic,47 super hard,102 highly resistant to wear,103 or cor-

rosion.104 In general, the enhancement is typically described in the engineering parameter called 

hardness, which is understood as the ability of materials to resist plastic deformation. Nanocom-

posites have improved mechanical properties over single crystalline and fully amorphous materials 

since crack propagation is hindered by the granular nanostructure, preventing the failure of the 

material under loading or operation.  

Transition metal carbides (TMCs) are a family of mechanically resilient and electrically conduc-

tive materials with several applications in electronics, coatings, and energy fields.105–112 TMCs are 

refractory materials with superior thermal stability. Their high-temperature operation has made 

them a crucial material for the aerospace and the protective coatings industry.113,114 The extraordi-

nary refractory properties of TMCs are exemplified by some binary carbides, which can reach 

melting points well above 3000 °C.115  

Ta-Hf-C is a ternary alloy that is of high interest among the TMCs family. This is because of its 

unique mechanical and physicochemical properties. Ta-Hf-C is a relatively strong material (Young 

modulus 𝐸 =  523.82 ± 7.03 GPa and hardness 𝐻a =  17.15 ± 1.1 GPa) and possesses the high-

est melting point known (3990-4226 °C),116 which has only been theoretically surpassed by Hf-

CN.117 Previously, it has been shown that the Ta% content can tune the properties of nanocompo-

site Ta-Hf-C films. For instance, earlier studies showed the changes in corrosion resistance,118 

hardness, and electrochemical activity.119 The mechanical properties of these materials have been 

evaluated using nanoindentation. Typically, nanoindentation provides the effective Young modu-

lus (or reduced Young modulus) of the material, which is obtained by subtracting elastic properties 

of the indenter itself. This method was found to be very useful for determining tribological aspects 

and the hardness of the coatings. 



52 
 

 Here, we investigate the influence of Ta% content on the Young modulus of Ta-Hf-C nano-

composite supported films utilizing BLS. The elastic properties of the thin supported films and 

composite materials can be extracted from the dispersion relations of SAWs measured by BLS.120–

123 To determine the Young modulus of Ta-Hf-C films from the experimental dispersion relations, 

we employed a finite element method (FEM) analysis. The obtained results were in good agree-

ment with the values from the conventional nanoindentation mechanical test. 

 

3.1 Materials and methods  

 Samples were prepared in collaboration with dr hab. Emerson Coy, Prof UAM using an 

AJA-ATC 1800 co-sputtering system with a base pressure of 1·10-12 bar. The deposition was per-

formed in a confocal configuration from three separate targets of high purity elements Hf, Ta, and 

C (> 99.95%, Demaco-Holland). The deposition pressure was 4·10-5 bar of Ar gas (99.9%) and in 

order to obtain the elemental variation of the Ta and Hf the target power of each element was 

changed according to the following relationship (PTa+PHf) =100 W, while the C target was kept at 

380 W for all the samples. The power applied for each samples is as follows, TaC (PTa=100 W), 

(TaC)0.7(HfC)0.3 (PTa=70 W, PHf=30 W),  (TaC)0.3(HfC)0.7 (PTa=30 W, PHf=70 W), and HfC 

(PHf=100 W).118 The electrodes were deposited simultaneously on commercial (001) Si wafer and 

stainless steel discs AISI 316LVM substrates.  

The stoichiometry and phase composition of the samples were evaluated by X-ray photoelectron 

spectroscopy (XPS) using a Sage HR100 with a non-monochromatic source (Mg Kα=1283.6 eV). 

The measurement protocol included a soft sputtering cleaning using Ar+ at 3 kV to remove any 

adventitious contamination of carbon/oxygen and record an accurate stoichiometric value of the 

species. The high-resolution measurements were performed at 7 eV of Pass Energy at a 0.15 eV 

step. The quantification analysis of the Ta, Hf, and C regions was performed in CasaXPS software, 

using the Gaussian-Lorentzian asymmetric peak fitting options after a Shirley Background correc-

tion for each component. The FWHM of the peaks was constrained, leaving the area and position 

free during the fitting. The XPS results showed that the composition of the films, followed the 

target applied power, with the samples showing compositions as follow, TaC (Ta=58.8 % C=33.4 

%), (TaC)0.7(HfC)0.3 (Ta=41.6 %, Hf=14.1 %, C=37.8 %), (TaC)0.3(HfC)0.7 (Ta=12.2 %, Hf=46.1 

%, C=35.1 %), and HfC (Hf=63 %, C=29.1 %). Additionally, the fittings performed on the C1s, 
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Ta, and Hf 4f peaks, showed that the electrodes were composed of pure Ta-Carbide and Hf-Car-

bide, with a small contribution of C-C bonds. Samples were highly reproducible, giving compara-

ble stoichiometric and elemental content results in independent re-runs of the deposition experi-

ments.119 Furthermore, grazing incident X-ray diffraction experiments (Gi-XRD) performed in 

PANalytical X-pert3 diffractometer working with a Cu-Kα1 (1.540598 Å) x-ray source at the 

Nanobiomedical Centre, Poznan, Poland, showed the presence of TaC and HfC crystalline phases 

in the cubic Fm3-m structure. The samples showed a smooth transition between pure elements, 

with (TaC)0.7(HfC)0.3 resembling the structure and lattice constant of TaC, and (TaC)0.3(HfC)0.7, 

that of HfC.  

Cross-sectional scanning electron microscopy (SEM) images (Figure 3.1), were collected by using 

a JEOL JSM-6490LV microscope. The samples deposited on Si(001) were mechanically cracked 

in order to avoid contamination by oils or artifacts arising from spinning diamond saw. The cross-

section SEM images were used to estimate the thickness of the samples. 

 
Figure 3.1. SEM images of TaC, (TaC)0.7(HfC)0.3, (TaC)0.3(HfC)0.7, and HfC films supported on Si(001). 

The scale bars are 0.5 µm. This figure was reproduced from Ref. [124].  
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3.1.1 Brillouin light scattering setup: Ta-Hf-C/Si supported films  

 To probe the surface acoustic waves (SAWs) in Ta-Hf-C/Si supported films, we performed 

BLS experiments in the backscattering geometry (discussed in Chapter 2, Figure 2.6). As a light 

source, we employed a single-mode laser (Spectra-Physics, Excelsior 300) operating at the wave-

length 𝜆i = 532 nm. The incident light of p polarization, set by placing a half-wave (𝜆/2) plate on 

its path, was partially reflected from the pellicle beamsplitter (BS R:T,45:55) and then focused on 

the sample by a microscope objective with 10× magnification, working distance WD = 10.6 mm 

and numerical aperture NA = 0.25. The rotation stage with a sample holder was used to set the 

incident angle 𝜃. The same objective was used to collect the light scattered from the sample. Next, 

the scattered light was cut by the iris, with an adjustable aperture that was placed on its path in 

order to improve the resolution of the spectra. The scattered light of p polarization, set by 𝜆/2 plate 

placed on its way, was sent to the BLS spectrometer that is based on tandem-type Fabry-Perot 

interferometer (Table Stable Ltd. Vibration Isolation and JRS Optical Instruments) by the achro-

matic focusing lens (L). The schematic of the BLS experiment is illustrated in Figure 3.2. Since 

Ta-Hf-C films are non-transparent, the incident light penetrates a depth 𝛿p = 𝜆i/4𝜋𝑛r2 < 21 nm, 

where 𝑛r2 is the imaginary part of the refractive index (extinction coefficient) of the sample that 

for TaC and HfC was reported to be in the range between 2 and 4 in the literature.125,126 Therefore, 

light scatters on the surface acoustic phonons/waves due to the surface ripple mechanism.84,127 

 

Figure 3.2. Brillouin light scattering experimental setup. The optics used include beamsplitter (BS), 

mirror (M), half-wave plate 𝜆/2, iris, microscope objective, and focusing lens (L).  
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3.2 Results and discussion 

 To obtain the dispersion relations of SAWs propagating in Ta-Hf-C/Si, we performed BLS 

measurements for different angles of incidence 𝜃 (from 250 to 650 with a step of 50). Figure 3.3 (a) 

displays BLS spectra at three exemplary 𝜃 recorded for HfC, TaC, (TaC)0.3(HfC)0.7, and 

(TaC)0.7(HfC)0.3 supported films shown in panels I - IV, respectively. In the spectra of HfC, 

(TaC)0.3(HfC)0.7, and (TaC)0.7(HfC)0.3, we resolved four different peaks associated with RSW, 

1stSW, 2ndSW, and 3rdSW. In the case of TaC, we observed only two peaks corresponding to RSW 

and 1stSW. These waves propagate with a wave vector of magnitude 𝑞 = 4𝜋sin𝜃 𝜆i⁄ . Hence, we 

determined the dispersion relation in the form 𝑓(𝑞) by variating 𝜃. Here, 𝑓 is the frequency ob-

tained from the BLS spectra as the central position of a given peak, fitted with the Lorentzian 

function. The 𝑓(𝑞) dispersions obtained for HfC, TaC, (TaC)0.3(HfC)0.7 are shown in Figure 3.3 

(b) in panels I – IV, respectively.  

Moreover, according to the relation 𝑣 = 2𝜋𝑓/𝑞 where 𝑣 stands for the phase velocity of SAWs, 

we transformed the dispersion relation to the 𝑣(𝑞) form [Figures 3.3 (c), panels I - IV]. In the case 

of all samples, the velocities of the SAWs are lower when compared to that of the fast bulk trans-

verse wave propagating in the [110] direction of the bare Si substrate, 𝑣T1 = 5843 m s-1, indicated 

with the dashed line.128 Therefore, the considered samples correspond to slow-on-fast systems 

(discussed in Chapter 1).85,123 Similar behavior was previously shown for the case of thin carbide 

films grown on Si. For instance, WC/Si films were characterized as slow-on-fast systems due to 

the high mass density (𝜌 =13000 kg m- 3) of WC.123 The mass densities for Ta-Hf-C films that we 

investigated are comparable, estimated to be in the 12000 - 13000 kg m-3 range by X-Ray reflec-

tometry (XRR). 
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Figure 3.3. (a) BLS spectra obtained at several incident angles for HfC, TaC, (TaC)0.3(HfC)0.7 and 

(TaC)0.7(HfC)0.3 are shown in panels I – IV, respectively. Arrows indicate the peaks corresponding to 

RSWs and higher-order SWs. Corresponding dispersion relations are shown in (b) 𝑓(𝑞) and (c) 𝑣(𝑞). In 

(c) vT1 Si[110], indicated with the dashed line, denotes the velocity of the fast transverse acoustic wave 

with in-plane displacement with respect to the free surface of Si substrate propagating in the [110] direc-

tion. 
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 In order to calculate Young modulus 𝐸 of Ta-Hf-C/Si from experimentally determined 

dispersion relations of SAWs, we employed a finite element method (FEM) (COMSOL Multiphys-

ics). Figure 3.4 (a) illustrates the 2D FEM unit cell oriented with respect to the crystallographic 

orientation of the silicon substrate. The model assumes zero strain in the 𝑥3 direction. The width 

of the unit cell 𝑤 was arbitrarily selected to be much smaller than the acoustic wave wavelength Λ 

(𝑤 = 50 nm) to avoid artificial folding of dispersion branches in the 𝑞 region of interest (typically 

probed by BLS). The height of Si substrate was defined as 𝐻 = 5Λ where Λ = 2𝜋/𝑞. The height 

for the substrate was chosen to be five wavelengths since it was shown that the SAWs do not 

penetrate depths exceeding few wavelengths.129 The thickness of the Ta-Hf-C film is denoted as 

ℎ. To ensure that the amplitude of SAWs decays with depth, we applied free and fixed boundary 

conditions (BCs) to the top and the bottom edges of the unit cell, respectively, as shown in Figure 

3.4 (a).129,130 The latter was implemented by setting displacement in 𝑥1 and 𝑥2 as 𝑢1 = 𝑢2 = 0. To 

simulate SAWs parallel to the free top surface, we applied Bloch-Floquet periodic BCs to the 

vertical edges of the unit cell.88,129,130 These conditions for 𝑢1 and 𝑢2 are 𝑢𝑗exp(i𝑞𝑥1), where 𝑗 =

{1,2}.88 

Eigenfrequencies, given as 𝑓 = 𝜔 2𝜋⁄  where 𝜔 is the angular frequency, are calculated from the 

elastic wave equation (Eq. 1.39) introduced in Chapter 1. To obtain the dispersion relation in the 

form 𝑓(𝑞) we calculated frequencies of undamped mechanical eigenmodes of the unit cell with 𝑞 

swept in the 1.26 – 31.4 µm-1 range with the step of 0.1 µm-1. 
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Figure 3.4. (a) Finite element method unit cell used for calculation of dispersion relations of SAWs 

propagating in Ta-Hf-C/Si. (b) 2D displacement fields of RSW, 1stSW, 2ndSW, and 3rdSW at 𝑞 =
19.35 μm−1. 

The elastic tensor of crystalline Si has three non-zero, independent elastic components due to the 

cubic symmetry (Chapter 1, Eq. 1.26). In the conventional coordinate system, where 𝑥1 ∥

[100], 𝑥2 ∥ [010] and 𝑥3 ∥ [001], the elastic constants of Si are: 𝐶11 = 165.7 GPa, 𝐶12 = 63.9 

GPa and 𝐶44 = 79.6 GPa.131 However, we consider specified crystallographic orientation with 

respect to the coordinates of the model, namely, 𝑥1 ∥ [110] and 𝑥2 ∥ [001] as illustrated in Figure 

3.4 (a). Therefore, it requires the transformation of 𝐶𝐾𝐿 using the formula 𝐂′ = 𝐙𝐂𝒁T where 𝐙 is 

6 x 6 matrix with the components of the rotation matrix composed of 𝑙𝑖𝑗 direction cosines: 88,132,133 

𝐙 =

(

 
 
 
 

𝑙11
2        𝑙12

2        𝑙13
2

𝑙21       
2 𝑙22

2       𝑙23
2

𝑙31
2      𝑙32

2       𝑙33
2

2𝑙12𝑙13                2𝑙13𝑙11                 2𝑙11𝑙12
2𝑙22𝑎23               2𝑙23𝑙21                 2𝑙21𝑙22
2𝑙32𝑙33               2𝑙33𝑙31                 2𝑙31𝑙32

𝑙21𝑙31 𝑙22𝑙32 𝑙23𝑙33
𝑙31𝑙11 𝑙32𝑙12 𝑙33𝑙13
𝑙11𝑙21 𝑙12𝑙22 𝑙13𝑙23

𝑙22𝑙33 + 𝑙23𝑙32 𝑙21𝑙33 + 𝑙23𝑙31 𝑙22𝑙31 + 𝑙21𝑙32
𝑙13𝑙32 + 𝑙12𝑙33 𝑙13𝑙31 + 𝑙11𝑙33 𝑙11𝑙32 + 𝑙12𝑙31
𝑙12𝑙23 + 𝑙13𝑙22 𝑙13𝑙21 + 𝑙11𝑙23 𝑙11𝑙22 + 𝑙12𝑙21)

 
 
 
 

. (3.1) 

For the considered orientation, conventional coordinate system (𝑥1, 𝑥2, 𝑥3) needs to be trans-

formed through two consecutive rotation operations, 𝑍1 and 𝑍2, leading to (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) and 
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(𝑥1
′′, 𝑥2

′′, 𝑥3
′′), respectively (Figure 3.5). First is counterclockwise rotation for the angle of 45 0 about 

the 𝑥3 axis that results in 𝑥1
′ = 𝑥1cos45

0 + 𝑥2sin45
0, 𝑥2

′ = −𝑥1sin45
0 + 𝑥2cos45

0 , 𝑥3
′ = 𝑥3 ac-

cording to 𝑍1 rotation matrix given as: 

𝑍1 = (
cos450 sin450 0
−sin450 cos450 0
0 0 1

). (3.2) 

The second is the counterclockwise rotation for the angle of 90 0 about the 𝑥1
′  axis resulting in 

𝑥1
′′ = 𝑥1

′ , 𝑥2
′′ = 𝑥3, 𝑥3

′′ = −𝑥2
′ . Accordingly, the  𝑍2 rotation matrix is given as: 

𝑍2 = (
1 0 0
0 cos900 sin900

0 −sin900 cos900
). (3.3) 

 

Figure 3.5. Illustration for rotation of coordinate system (𝑥1, 𝑥2, 𝑥3) to (𝑥1
′′, 𝑥2

′′, 𝑥3
′′). The Left and right 

sides show the 𝑍1 and 𝑍2 rotation about 𝑥3 and 𝑥1
′  axis, respectively.  

Thus, the described rotation transformation from (𝑥1, 𝑥2, 𝑥3) to (𝑥1
′′, 𝑥2

′′, 𝑥3
′′), leading to 𝑥1 ∥

[110] and 𝑥2 ∥ [001], is given as the product of these two rotations: 
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𝑍2𝑍1 = (

𝑙11 𝑙12 0
0 0 𝑙23
𝑙31 𝑙32 0

), (3.4) 

where non-zero 𝑙𝑖𝑗 are: 𝑙11 = 𝑙12 = 𝑙31 = √2 2⁄ , 𝑙23 = 1 and 𝑙32 = −√2 2⁄ . The elastic constants 

after the transformation to new coordinates are: 𝐶11
′ = 194.4 GPa, 𝐶13

′ = 35.2 GPa, 𝐶33
′ = 194.4 

GPa and 𝐶55
′ = 50.9 GPa. The mass density of Si is 𝜌 = 2331 kg m-3.88 The parameters used for 

Ta-Hf-C films in the FEM model are gathered in Table 3.1.  

Table 3.1. Parameters used to define Ta-Hf-C films in FEM calculation.  

Sample h(nm) 𝜌(kg/m3) Poisson ratio Nanoindentation 𝐸 (GPa) 118,119 

TaC 168 12000 0.25 160±20 

HfC 292 12000 0.25 180±20 

(TaC)0.3(HfC)0.7 295 12000 0.25 240±20 

(TaC)0.7(HfC)0.3 284 12000 0.25 230±40 

 

Notably, the applied FEM model is a finite plate that only resembles a half-space. Thus, not all the 

calculated eigenmodes have to be SAW-like solutions with elastic energy localized near the free 

surface. Figure 3.6 (a) displays 𝑓(𝑞) dispersion of all FEM solutions on the example of HfC/Si 

system. It shows a high number of modes with frequencies between those of longitudinal (L) and 

fast transverse (T1) bulk waves propagating in the [110] direction of the Si substrate. To exclude 

the solutions which are not SAWs, we use a “surface-like” parameter 𝜉, related to the center of 

elastic energy in the 𝑥2 axis, given by Eq. (1.60). We calculated 𝜉 over the whole unit cell (both 

substrate and the film). Assuming that 𝜉 is in the 0 - 0.2 range for SAW-like solutions, all plotted 

data points for which 𝜉 > 0.2 are excluded, and the result is shown in Figure 3.6 (b). 
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Figure 3.6. (a) Dispersion relation of acoustic modes calculated by FEM (gray lines) for HfC/Si. Dis-

persions of longitudinal, L (red line), fast T1 (blue line), and slow T2 (green line) transverse bulk waves 

propagating in the [110] direction of Si are denoted by solid lines.128 (b) Dispersion relation of SAW-

like solutions of FEM model for which the surface-like parameter is 𝜉 < 0.2.  

To extract the Young modulus of thin Ta-Hf-C films, we fitted the experimental BLS data by FEM 

model with 𝐸 as the fitting parameter. The Poisson ratio was set to 0.25 for all samples as a medium 

value between Hf-C and Ta-C,134 because the exact values for such nanocomposites were not re-

ported before. The Young modulus of the samples was determined by finding the minimum value 

of Chi-square: 

𝜒2 =∑
(𝑣𝑖
exp
− 𝑣𝑖

cal)
2

𝑣𝑖
cal

,

𝑛

𝑖

 (3.3) 

which defines the goodness of fit,135 where 𝑣𝑖
exp

 and 𝑣𝑖
cal are measured and calculated wave ve-

locities, respectively. Calculated dispersion relations, compared with experimentally obtained data 

for RSW and higher-order SWs are displayed in Figure 3.7. The values of Young modulus obtained 

in this way are listed in Table 3.2. Figure 3.4 (b) illustrates FEM 2D displacement fields obtained 

for exemplary wave number 𝑞 = 19.35 μm−1 that correspond to RSW, 1stSW, 2ndSW, and 3rdSW 

in HfC/Si. 
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Figure 3.7. Dispersion relations of SAWs propagating in Ta-Hf-C/Si. Black lines represent calculated 

data, while colored circles denote the BLS results. Dashed lines indicate the velocity, 𝑣𝑇1 of the fast 

transverse wave, with in-plane displacement with respect to the free surface of Si substrate, propagating 

in the [110] direction. This figure was reproduced from Ref. [124]. 

 

Table 3.2. Young modulus of Ta-Hf-C nanocomposite films obtained by BLS. 

Sample BLS 𝐸 (GPa)  

TaC 195  

HfC 225 

(TaC)0.3(HfC)0.7 255 

(TaC)0.7(HfC)0.3 285 
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The values of Young modulus obtained by BLS (Table 3.2) are slightly higher when compared to 

previously reported for the same samples, obtained by nanoindentation118,119 (Table 3.1). In previ-

ous studies, when comparing 𝐸 obtained by these two techniques, the values showed certain dis-

crepancies.141–143 For instance, the value of 𝐸 for organosilicate glass films obtained by nanoinden-

tation was reported to be 11 GPa, while BLS result for the same samples yield 𝐸 = 8.4 GPa.142 

The higher E obtained by nanoindentation was assigned to the convolution of the elastic constants 

of organosilicate glass film and the Si substrate. In another study, the Young modulus of Tungsten-

carbide containing amorphous-hydrogenated-carbon films was investigated by both nanoindenta-

tion and BLS, with matching results.122 In our study, the small discrepancies between the methods 

can be explained by the lack of knowledge of the real Poisson ratio and the measurement of the 

reduced Young modulus by nanoindentation.  

It is not straightforward to compare our results to data reported in the literature. First, it is essential 

to remark that the results obtained from the nanoindentation experiments are broadly scattered, 

ranging from 270 GPa to 720 GPa for both TaC and HfC coatings.134 The significant discrepancies 

are the results of micro/nanostructural differences between the carbides prepared, different tech-

niques used for deposition or sintering, stoichiometry variations, and thermal treatments. Not to 

mention the different testing instrumentation and protocols used in the literature.136 Therefore, we 

can consider that variations in elastic modulus between 40-60 GPa are not dramatically different 

among different reported data. More importantly, hardness is considered the main parameter for 

assessing the applicability of coatings in the field of hard coatings. Relative smaller variations in 

hardness make the difference between hard > 25 GPa and super hard coatings > 40 GPa,112,137 

while significant variations in the elastic modulus are needed for dramatically affecting the re-

sistance to plastic deformation of the coating (wear).138 Considering this, the values obtained by 

both BLS and nanoindentation are relatively similar to those reported in the literature for TaC and 

HfC, specifically for nanocomposite coatings deposited by the sputtering technique. On the one 

hand, HfC coatings showed a maximum elastic modulus of 255 GPa, when the atomic percent of 

carbon reached 60 %.139 This value quickly decreased, depending on the amorphous phase and 

carbon stoichiometry. In our case, the elastic modulus is slightly below this value. However, it is 

essential to remark that our HfC has only 30 % of carbon content. The value reported for HfC with 

30 % of carbon is much smaller, ~167 GPa, than the reported in our work.139 This suggests that 



64 
 

our HfC has a superior microstructural arrangement, which results in a high elastic response. On 

the other hand, TaC coatings have also been studied in the literature, showing variations in elastic 

properties with composition and stoichiometry. The elastic modulus for TaC was determined as 

274.4 GPa for a 50 % carbon content coating.140 This value is much higher than the one reported 

here. However, the elastic modulus measured in our studies is similar to the value reported for a 

34 % carbon content composition ~190 GPa. Therefore, the results show that our HfC and TaC 

coatings have competitive elastic properties similar or superior to those previously reported in the 

literature for nanocomposite coatings according to our composition.  

Figure 3.8 displays the effect of the stoichiometry, namely the Ta content (%) on the Young mod-

ulus, measured by BLS and previously reported nanoindentation result.118,119 In the literature, stud-

ies on the elastic properties of nanocomposite coatings are plentiful, with many studies exploring 

the stoichiometric and microstructural effects on binary,47,103,144–146 ternary,147–152 or even higher-

order alloy coatings.153–157 In the case of ternary alloys, it has been shown that the mixture of two 

binary phases can result in partial increment,158–160 or decrement161–163 of elastic properties. Alt-

hough, to our best knowledge, no studies have been conducted on nanocomposite mixtures of TaC-

HfC, these materials have been studied in bulk. In bulk, the increment of Ta% results in improved 

elastic modulus from HfC (𝐸 = 490.47 GPa) to a maximum at Hf0.75Ta0.25C (𝐸 = 593.46 GPa)164 

in one study. In another study, the increment is recorded from HfC (𝐸 = 458 ± 6 GPa) to a max-

imum at Hf0.5Ta0.5C (𝐸 =  549 ± 11 GPa).165 In our results, although the elastic constants rec-

orded are much lower than those reported in bulk, we show that the mixtures of TaC and HfC have 

higher elastic properties than the binary alloys. This trend is observed for both nanoindentation 

and BLS experiments. However, these two techniques show a slightly different result when it 

comes to Ta% for which the Young modulus shows maximum, being ~55 % and ~65 % by 

nanoindentation and BLS, respectively.  Nevertheless, the results show that BLS can be used as 

an alternative to commonly used nanoindentation for measuring the Young modulus of thin sup-

ported films in a contact-less and non-destructive manner, even for coatings with complex internal 

structure, such as nanocomposite coatings. 
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Figure 3.8. Young modulus according to the Ta content (%), obtained by nanoindentation (red circles) 

and BLS (blue circles). Solid lines are a guide to the eye. This figure was reproduced from Ref. [124].  

 In summary, we examined the influence of Ta% content in the mechanical response of the 

Ta-Hf-C nanocomposites on Si (001) substrate by BLS. We showed that for this system, velocities 

of SAWs are lower than the velocity of the transverse bulk acoustic wave in the [110] direction of 

Si, which is typical behavior in slow-on-fast systems. Therefore, the observed peaks in BLS spectra 

correspond to RSWs and higher-order SWs. To calculate the Young modulus of Ta-Hf-C/Si we 

obtained dispersion relations of these waves and employed FEM model. While conventionally 

used nanoindentation provides the reduced Young modulus of the material, BLS combined FEM 

allows to determine the intrinsic Young modulus of isotropic Ta-Hf-C by fitting the dispersion 

relations of SAWs. Here, we compared the result obtained by BLS with previously reported 

nanoindentation data for the same samples. In general, we found good agreement of the results 

obtained by these two techniques, showing that the Young modulus of (TaC)x(HfC)y is higher 

when compared to that of TaC or HfC.  
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Chapter 4 Characterization of elastic properties 

of bulk and 2H-MoSe2 membranes by µ-BLS 

 The discovery of graphene by Novoselov et al.,166 almost two decades ago, launched a new 

field of research focused on two-dimensional (2D) van der Waals (vdW) layered materials. With 

thicknesses down to a single molecular layer, these materials can be prepared by liquid167 or me-

chanical exfoliation168 from bulk crystal. Recently, there has been growing interest in 2D transition 

metal dichalcogenides (TMDCs), which share the layered structure and easy exfoliation as for 

graphene. The electrical, thermal, and optical properties of TMDCs, which are different from those 

observed in bulk, make them attractive for application in electronics, energy storage, catalysis, 

photonics, and phononics.169–174 For example, it has been shown that the strong spatial confinement 

of TMDCs can result in the change from indirect to direct bandgap semiconductors which makes 

them useful as transistors, photodetectors, and light emitters.169 The anisotropic optical properties 

of TMDCs make them ideal materials for studying light-matter interaction, exciton-polariton 

transport, and developing next-generation photonic devices.175–178 Moreover, ultrathin TMDC 

membranes have been used as mechanical resonators for sensors due to their high-quality factor at 

low temperatures and high elastic moduli.171,179 

To be applied in everyday devices, it is crucial to know the mechanical and thermal durability of 

TMDCs. Interestingly, in the case of vdW materials, these properties are expected to be highly 

anisotropic and, potentially, size-dependent.29,33,180–182 A complete evaluation of the elastic tensor 

of TMDCs remains a challenge due to sample preparation and the limitations of experimental 

techniques. In the case of the bulk TMDCs, it is challenging to prepare volumetric samples with 

flat surfaces, except for the cleavage (vdW) plane. Nevertheless, specific components of the elastic 

tensor for bulk TMDCs were measured by different techniques, including ultrasounds183,184, tran-

sient grating spectroscopy185, inelastic X-ray186, Raman187, and neutron scattering188. However, 

investigating the elastic properties of few-layer vdW is difficult due to the small lateral size of the 

samples, which tend not to exceed a few hundreds of micrometers. Previously, the average elastic 

properties of such materials were measured by using different techniques such as atomic force 

microscopy (AFM) nanoindentation,33 buckling-based metrology method,189 bulge test28, and non-

linear dynamic response31. Moreover, other techniques allowed accessing specific components of 
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the elastic tensor, mainly scattering techniques, such as Raman spectroscopy,187 Brillouin light 

scattering (BLS),190 pump-probe experiments191, and picosecond acoustics.192 The literature re-

garding vdW materials and their experimentally determined elastic properties is limited. Addition-

ally, the effect of material thickness on elastic properties is still debated, without a consen-

sus.29,32,33,35,180,181,191,193–195 Moreover, whether the thickness reduction results in softening or stiff-

ening remains elusive. The prior studies on the elastic size effect in vdW materials, employing 

various techniques, have shown scattered results of the averaged Young modulus.23,25–31,33–

35,186,188,196 Moreover, the literature on the size effect on various vdW materials show contradictory 

results. On the one hand, it has been shown that the decreasing of the thickness leads to the Young 

modulus enhancement for the graphene,29 MoS2
33 as well for the group-III monochalcogenide 

GaS.32 On the other hand, the Young modulus of GaTe decreases when reducing the thickness.32 

Additionally, the Young moduli of BN29 and GaSe32 were reported to be size-independent. Similar 

contradictions are with components of the elastic tensor reported in the literature. For instance, 

experimental work using Raman spectroscopy revealed that 𝐶44 and 𝐶33 constants remain the same 

for 2D MoS2 with respect to the bulk material.194 For the similar MoSe2, femtosecond pump-probe 

measurements have shown the size effect on 𝐶33.191 Theoretical studies showed thickness-depend-

ent elastic constants, where both softening and stiffening were demonstrated, depending on the 

surface effects.195 If the surface relaxation manifests as the surface expansion, the elastic constants 

decrease for decreasing number of layers and the opposite for the case of surface contraction.195 

Overall, experimental studies on the direct influence of thickness on the elastic properties of ma-

terials, using a large experimental sampling and controlled thicknesses over a wide range, have 

not been performed. Moreover, the available experimental data, which could give an idea of this 

phenomenon, does not allow to draw any meaningful conclusions and besides, contradict each 

other.  

Molybdenum diselenide (MoSe2) is a typical member of the TMDCs family. For this material, 

elastic constants of bulk and thin films are not fully known. For bulk MoSe2 Raman studies187,197 

provided 𝐶44 and pump-probe experiment 𝐶33,191 while the rest of the components of elastic tensor 

remained unknown. For multilayered MoSe2 thin films, the 𝐶33 component of the elastic tensor 

was measured by a pump-probe experiment.191 Additionally, the Young modulus of 2D MoSe2 

was measured using buckling-based metrology189 or in-situ tensile testing198, providing quite dif-

ferent values.  
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 This chapter presents the results of an experimental study on the elastic constants 𝐶𝑖𝑗 of 

both bulk and ultrathin MoSe2 membranes employing micro-Brillouin light scattering (µ-BLS). 

We determined 𝐶11, 𝐶12, and 𝐶44 for bulk as well as 𝐶11 and 𝐶12 for few-layer membranes of 

different thicknesses. The results revealed elastic softening with decreasing the number of layers. 

Additionally, we show that µ-BLS can measure the thickness of ultrathin membranes in a broad 

range.  

 

4.1 Materials and methods 

 2H-MoSe2 is a vdW material with a hexagonal crystal structure and belongs to 𝐷6h
4  space 

group. The crystal lattice of this material is illustrated in Figure 4.1 (a). The lattice constants in 

[100] and [001] are 𝑎 ≈ 0.33 nm and 𝑐 = 2ℷ ≈ 1.29 nm, respectively,199 where ℷ = 0. 645 nm is 

the thickness of a single molecular layer. According to its crystallographic symmetry, the elastic 

properties of MoSe2 are described by five independent elastic constants, 𝐶11, 𝐶12, 𝐶13, 𝐶33, and 

𝐶44. Additionally, the sixth elastic constant can be expressed as: 𝐶66 = (𝐶11 − 𝐶12) 2⁄  [Chapter 1, 

Eq. (1.25)]. 

 
Figure 4.1. (a) Illustration of MoSe2 crystal lattice, where ℎ = 𝑁𝑐/2 stands for the membrane thickness, 

N being the number of layers and 𝑐 = 1.29 nm,199 the lattice constant for [001] direction. (b) Graphic 

representation for the side view of the MoSe2 membrane suspended over a single hole (15 μm in diam-

eter) in gold-coated Si3N4 substrate. The biaxial residual stress ( 𝜎11 = 𝜎22) is indicated by arrows. Figure 

was reproduced from Ref. [200]. 

 Bulk single crystal 2H-MoSe2 was purchased from HQ Graphene. MoSe2 membranes of 

different thicknesses ℎ were prepared by collaborators from ICN2 in Barcelona, Spain. In the prep-

aration approach, MoSe2 flakes were first mechanically exfoliated from bulk by Scotch tape onto 
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an about 1 mm thick PDMS stamp. Next, the clean, transparent PDMS allowed optical thickness 

identification, alignment, and transfer of suitable flakes over single-hole (15 µm), gold-coated sil-

icon nitride windows (Norcada, NTPR005D-C15).200 The exception was the thickest MoSe2 mem-

brane that was freely suspended over 50 × 50 µm2 area. The scheme of the sample side view with 

respect to the crystallographic orientation and Cartesian coordinates is shown in Figure 4.1 (b). 

Due to the preparation method, MoSe2 membranes can exhibit biaxial residual stress. This stress 

can be described as the Cauchy stress tensor that has two equal, non-zero, and equal components: 

𝜎11 = 𝜎22 = 𝜎
0. In the matrix representation, biaxial residual stress is given as: 

𝜎𝑖𝑗
0 = (

𝜎0 0 0
0 𝜎0 0
0 0 0

). (4.1) 

 

 
Figure 4.2. (a) Optical and (b) scanning electron microscopy images of MoSe2 membranes used in this 

work (thickness indicated in the figure were determined by BLS). Scale bars in (a) and (b) are 20 µm 

and 5 µm, respectively. Figure was reproduced from Ref. [200]. 

Figures 4.2 (a) and (b) display the optical microscopy and SEM images, respectively, of all MoSe2 

membranes used in this work. The membranes were typically pre-stressed, hence wrinkling and 



70 
 

buckling were suppressed. However, in Figures 4.2 (a) and (b), we observe regions in some of the 

suspended flakes that are not flat. This is not an issue for the µ-BLS that has micrometer spatial 

resolution and allows visualization of the sample in camera mode. Therefore, it allowed probing a 

region of the suspended flakes that was flat according to the optical and SEM images. High-reso-

lution transmission electron microscopy (TEM) was used to examine the samples and their crys-

tallographic structure. Figure 4.3 displays a TEM image confirming the single crystalline structure 

with an interplanar distance ≈ 0.28 nm, which is in good agreement with the literature reported 

value.201  

 
Figure 4.3. Transmission electron microscopy image with an atomic resolution of exemplary MoSe2 

membrane used in this study. The scale bar is 1 nm. Figure was reproduced from Ref. [200]. 

Atomic force micrographs of supported regions of different MoSe2 samples are displayed in Figure 

4.4. We determined the thicknesses at the step-like border region of the MoSe2 flakes from the 

height profiles (insets in Figure 4.4) along the profile collection area indicated by arrows. Thick-

ness values obtained by AFM are gathered in Table 4.1 where they are compared with values 

reported by our collaborators who fabricated the samples. We observe discrepancies for values 

obtained by AFM and optical method for samples with thicknesses below 8L. These discrepancies 

can be attributed to the non-ideal interface between MoSe2 and the support and polymeric residues, 

typically present due to the preparation process, which could affect the AFM measurements. Nev-

ertheless, the topography of the investigated regions suggests a relatively low roughness, repre-

sented as the measurement error, with no visible wrinkling. 
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Table 4.1. Thicknesses of MoSe2 membranes. 

Optical contrast, ℎ (nm)  AFM, ℎ (nm) 

1.9 (3L) NA 

2.9±0.4 (4-5L) 6.3±1.9 

4.2±0.4 (6-7L) NA 

4.5(7L) 6.7±1.5 

5.2(8L) 5.1±1.6 

5.5± 0.4(8-9L) 5.2±1.2 

NA 8.8±0.7 

NA 24.7±1.3 

 

 
Figure 4.4. AFM images of the step-like border regions of MoSe2 samples collected from the supported 

region. Dashed arrows indicate the area for which the height profiles (insets) were collected. The thick-

nesses at the step-like borders are (a) 6.3±1.9 nm, (b) 6.7±1.5 nm, (c) 5.1±1.6 nm, (d) 5.2±1.2 nm, (e) 

8.8±0.7 nm, and (f) 24.7±1.3 nm, where the roughness (Rq) stands as the error of the measurement. Scale 

bars in (a-f) are 4 µm. Figure was reproduced from Ref. [200]. 
 

4.1.1 Micro-Brillouin light scattering 

 To determine the specific components of elastic tensor for bulk and few-layer MoSe2, we 

performed µ-BLS experiments in the backscattering geometry, described in Chapter 2 [Figures 2.5 

(c) and 2.6]. The schematic illustration of the used setup is displayed in Figure 4.5. As a light 

source, we used a CW single-mode laser (Spectra-Physics, Excelsior 300) of wavelength 𝜆i = 532 

nm and low power (about 100 µW for thin up to 750 µW for the thickest MoSe2 membranes) to 

avoid overheating and damage of the membranes. In the case of the bulk sample, the laser power 

was set to be about 1 mW. For both bulk and MoSe2 membranes, we performed the measurements 
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in p-p and p-s configurations regarding the incident and scattered light polarization. The incident 

beam of p polarization (set by 𝜆/2), partially reflected from the pellicle beamsplitter (BS, R:T,8:92 

for membranes or 45:55 for bulk samples) was focused on the sample by a microscope objective 

with 20× magnification, WD = 10.2 mm and NA = 0.4. The same objective was used to collect 

the scattered light, which was next cut with the iris with an adjustable aperture (set to 3 mm). The 

scattered light of p or s polarization, set by 𝜆/2 plate placed on its way, was sent to the BLS 

spectrometer that is based on tandem-type Fabry-Perot interferometer (Table Stable Ltd. Vibration 

Isolation and JRS Optical Instruments) by the achromatic focusing lens (L). The incident angle 𝜃 

was set on the rotation stage. For the used wavelength, the penetration depth is 𝛿p = 𝜆i/4𝜋𝑛r2 ≈

20 nm, where 𝑛r2 = 2.0796 is the imaginary part of the refractive index of MoSe2 taken from the 

literature.202 In the case of the membranes, camera mode allowed observation of wrinkles, if pre-

sent, and focusing on the non-wrinkled free-standing area. For bulk, camera mode helped in find-

ing large, flat terraces of the sample favorable for measurements. To resolve peaks corresponding 

to different acoustic waves, we performed the measurements for various free spectral ranges (up 

to 90 GHz) adjusted by setting the required spacing between the mirrors of the interferometer [Eq. 

(2.30)].  

 

 
Figure 4.5. Brillouin light scattering experimental setup. The setup includes CW laser, beamsplitters 

(BS), mirror (M), half-wave plates (𝜆/2), iris, microscope objective, rotation stage with sample holder, 

focusing lens (L), Tandem Fabry-Perot interferometer with CMOS camera, and computer with control 

units.  
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4.2 Elastic constants of bulk MoSe2  

 BLS spectra recorded for bulk MoSe2 at 𝜃 = 450 and light polarized in p-p and p-s config-

urations are shown in Figure 4.6 (a) and (b), respectively. As follows from Figure 4.6 (a), for the 

p-p polarization, we observed two peaks indicated by arrows, which we assigned to RSW and 

high-frequency pseudo-surface acoustic wave (HFPSAW) introduced in Chapter 1. The detection 

of HFPSAWs by BLS due to sub-surface photo-elastic (PE) coupling81 is possible only for mate-

rials with high opacity. It requires strong suppression of typical BLS backscattering [Figure 2.5 

(c)] from bulk acoustic waves which propagate with wave number 𝑄. To demonstrate the im-

portance of opacity for this condition, we performed backscattering BLS experiments in (p-p) con-

figuration where we extended the free spectral range to 90 GHz. Besides MoSe2, we measured two 

other bulk TMDCs with different complex refractive indexes, namely MoTe2 and WS2. The re-

sulting BLS spectra are shown in Figure 4.6 (c). Multiple sharp peaks observed in the spectral 

region 27-44 GHz can be assigned to the backscattering BLS from the glass optics elements in-

cluded in the experimental setup. Moreover, in the spectra of bulk WS2 and MoTe2, broad peaks at 

⁓47 and ⁓49 GHz, respectively, are resolved. These peaks correspond to L BAWs that propagate 

in [001] direction and their spectral position is in good agreement with 𝐶33 reported in the litera-

ture203,204 However, in the spectra of the MoSe2, the peak corresponding to L BAW that was ex-

pected at ⁓51 GHz, according to the literature (indicated by arrow),191 was not resolved. The ab-

sence of this peak can be explained by the broadening of BLS peaks due to the opacity of the 

medium. The broadening of BLS peaks can be calculated according to the relative width given by 

the formula ∆𝑓 𝑓⁄ = 2𝑛r2/𝑛r1
205, where 𝑛r1and 𝑛r2 denote the real and imaginary parts of the 

refractive index, respectively. Truly, the relative width is the highest for the bulk MoSe2 leading 

to strong suppression of the typical backscattering BLS. This allowed the detection of surface-like 

waves through the sub-surface photoelastic mechanism.206 



74 
 

 
Figure 4.6. Experimental and calculated BLS spectra for bulk MoSe2 acquired for (a) p-p and (b) s-p 

polarization configuration and 𝜃 = 450. Here, 𝐼1, 𝐼2, and 𝐼3 stand for calculated BLS intensity for the 

acoustic waves with polarization in 𝑥1, 𝑥2, and 𝑥3 axes, respectively. (c) Experimental BLS spectra meas-

ured at 𝜃 = 45° (to avoid the saturation due to intense back-reflected light) for bulk MoSe2, MoTe2, and 

WS2 with FSR up to 90 GHz. The peaks observed in the 27-44 GHz region are assigned to the backscat-

tering BLS from the used glass optics. Symbols 𝑛r1 and 𝑛r2 denote the real and imaginary components 

of the complex refractive index, respectively. Graphical illustration of the BLS geometry used in the 

experiments, where 𝐤i, 𝐤s, and 𝐐 stand for incident light, scattered light, and bulk acoustic wave vectors 

is shown in the inset of (c). Figure was reproduced from Ref. [200]. 

Changing polarization to s-p allowed detection of the fast transverse wave (T1) wave due to sub-

surface PE coupling [Figure 4.6 (b)]. Interestingly, the HFPSAW and T1 waves have been previ-

ously observed by BLS in GaAs81 and other vdW materials.190 Additionally, the acoustic wave 

vectors of HFPSAW and T1 waves are identical to that of RSW, with magnitude 𝑞 = 4𝜋sin𝜃 𝜆i⁄ . 

By changing the 𝜃, we measured the dispersion relation of RSW, HFPSAW and T1, i.e., their 

frequency 𝑓 as a function of 𝑞 that is plotted in Figure 4.7 (a). Here, from the BLS data linear fit, 

we determined the phase velocities of these waves as 𝑣RSW = 1620 ± 13 m s
−1, 𝑣HFPSAW =

5256 ± 38 m s−1 and 𝑣T1 = 3209 ± 19 m s
−1.  

The phase velocities of L, T1, and T2 waves propagating in (001) of hexagonal crystal (𝐷6h
4  space 

group) are determined as 𝑣L = (𝐶11/𝜌)
1/2, 𝑣T1 = (𝐶66/𝜌)

1/2 and 𝑣T2 = (𝐶44/𝜌)
1/2,92 respec-

tively according to Eq. (1.44 - 1.46) in Chapter 1. Here, we assume that the HFPSAW velocity is 

identical to that of the L BAW (𝑣HFPSAW = 𝑣L).81,190 Therefore, the velocities obtained from meas-

ured dispersions can be used to determine elastic contracts: 𝐶11 = 𝜌𝑣HFPSAW
2 = 191 ± 3 GPa and 

𝐶66 = 𝜌𝑣T2
2 = 71 ± 1 GPa. Knowing 𝐶11 and 𝐶66, we calculated 𝐶12 = 𝐶11 − 2𝐶66 = 49 ±
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4 GPa. Even though T2 could not be resolved in BLS experiment due to selection rules for PE 

mechanism flowing Eq. (2.25), we obtained 𝐶44 from the phase velocity of RSW. The velocity of 

RSW propagating in any direction of (001) plane of hexagonal crystal satisfies equation:207  

𝐶33 (𝑣RSW
2 −

𝐶44
𝜌
) (𝑣RSW

2 −
𝐶11
𝜌
+
𝐶13
2

𝜌𝐶33
)

2

= 𝐶44𝑣RSW
4 (𝑣RSW

2 −
𝐶11
𝜌
). (4.2) 

According to this equation, 𝑣RSW is mostly sensitive to variations in 𝐶44 while variations in 𝐶13 

and 𝐶33 show significantly smaller influence.65 This is illustrated in Figure 4.7 (b), where the de-

pendence of 𝑣RSW on the relative change of these elastic constants is shown. Therefore, we calcu-

lated the elastic constant 𝐶44 = 18.8 ± 0.7 GPa from Eq. (4.2), by using BLS determined C11 and 

taking for consistency 𝐶13 = 9.8 GPa and 𝐶33 = 54.9 GPa from the literature.191,208 In Figure 4.7 

(a), the light blue shading stands for the range of dispersion relations that correspond to the 

𝑣RSW, 𝑣HFPSAW, 𝑣T1, and 𝑣T2 calculated from previously reported theoretical elastic constants of 

MoSe2. As we can notice, experimentally determined 𝑣HFPSAW, and 𝑣T1 and therefore 𝐶11 and 𝐶66, 

are in a good agreement with the theoretical literature data. The elastic constant 𝐶44 (𝑣RSW) devi-

ates from the theoretically predicted values in the literature, namely 𝐶44 = 32.9 GPa208 and 𝐶44 = 

15.9 GPa.209 However, the 𝐶44 we determined by BLS agrees well with previously reported data 

from Raman experiments, 𝐶44  =  17.75 ± 1.9 GPa.187,197 Previously reported theoretical and ex-

perimental elastic constants of bulk MoSe2, including the values from this work are listed in Table 

4.2. 

Table 4.2. Elastic constants of bulk MoSe2 reported in the literature and obtained in this work. Experi-

mental and theoretical values found in the literature are indicated with superscripts e and t. 

𝐶11 (GPa) 𝐶12 (GPa) 𝐶33 (GPa)  𝐶44 (GPa) 𝐶13 (GPa)  Ref. 

196.10t 42.30t 44.70t 32.90t 9.80t 208 

/ / / 16.80e / 187 

179.81t  40.75t 35.49t 15.90t 8.46t 209 

/ / 54.90e  / / 191 

/ / / 18.70e  / 197 

191±3 49±4 / 18.8±0.7 / this work 

The elastic constants obtained in this work are all positive and of values that satisfy the thermody-

namic stability criteria, given as 𝐶11 > |𝐶12|, 2𝐶13
2 < 𝐶33(𝐶11 + 𝐶12), 𝐶44 > 0 and 𝐶66 > 0.210 

When compared to other vdW materials (Table 4.3), the elasticity of bulk MoSe2 is typical for the 
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TMDCs family. In principle, in-plane elastic constant 𝐶11 is significantly larger than the out-of-

plane component given by 𝐶33. This is due to the nature of these materials that exhibit strong in-

plane covalent bonding and weak out-of-plane vdW interactions.  

Table 4.3. Elastic constants of several bulk vdW materials determined by different experimental tech-

niques found in literature as well as of bulk MoSe2 determined in this work. 
material Technique 𝐶11 (GPa) 𝐶12 (GPa) 𝐶13 (GPa) 𝐶33 (GPa) 𝐶44 (GPa) Ref. 

graphite 
Inelastic x-ray scat-

tering 
1109 139 0(3) 38.7 5.0 24 

 

Ultrasonic+sonic 

resonance+static 

test+BLS 

1056 180 15 36.5 0.18- 5 25,211,212 

 Neutron scattering 1440 520 / 37.1 4.6 213 

MoS2 Neutron scattering  238 -54 23 52 19 188 

TaSe2 Neutron scattering 229 107 / 54 18.5 214 

NbSe2 Neutron scattering 
194 91 / 42 17.6 214 

171 79 -2 62 19 188 

WS2 Neutron scattering 150 / / 60 16 203 

MoSe2 BLS 191±3 49±4 / / 18.8±0.7 
This 

work 

  

 
Figure 4.7. (a) The dispersion relations of RSW, HFPSAW, and T1 waves measured by angle-resolved 

BLS (circles) and corresponding fitting (solid lines). The dispersions calculated according to theoretical 

data available in the literature208,209 are denoted by shaded regions. (b) The dependence of the velocity of 

RSW, 𝑣RSW on the relative change in different elastic constants. Experimentally determined 𝑣RSW =
1620 m s−1 (𝐶44 = 18.8 GPa) is indicated with black arrow. Figures were reproduced from Ref. [200]. 

Knowing the elastic constants of bulk MoSe2 allowed the calculation of BLS spectra employing 

the elastodynamic Green's functions (introduced in Chapter 1).81,215,216 The BLS intensity for the 
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acoustic waves that are propagating in the free surface (𝑥3 = 0) with polarization in the 𝑖-th direc-

tion can be calculated from the projected local density of states (PLDOS), given by Eq. (1.59) in 

Chapter 1. In the case of the surface ripple mechanism (SR), BLS intensity 𝐼𝑖 is proportional to 

〈|𝑢3(0)|
2〉𝑞,𝜔~𝐺33. Likewise, the BLS intensity for the PE mechanism is proportional to 

〈|𝑢1(0)|
2〉𝑞,𝜔~𝐺11 and 〈|𝑢2(0)|

2〉𝑞,𝜔~𝐺22 for bulk longitudinal and transverse waves, respec-

tively. Moreover, 𝐺11 and 𝐺22 have to be scaled according to the Rayleigh ratio, 𝑅𝑗~(𝐞s𝐓
𝑗𝐞i), 

considering BLS selection rules for PE mechanism described in Chapter 2 [see Eq.(2.25) and Table 

(2.1)]. Calculated PLDOS for bulk MoSe2 as a function of the phase velocity is shown in Figure 

4.8. The peak corresponding to RSW that tends to infinity, since this wave satisfies the stress 

boundary condition, is present in both longitudinal in-plane, 𝐼1, and transverse out-of-plane, 𝐼3, 

PLDOS. Accordingly, this mode is active in BLS measurements for p-p polarization configuration 

due to the superposition of SR and PE effects that contribute to BLS spectra. The transverse out-

of-plane PLDOS also reveals the Lamb shoulder, a surface-like continuum of waves, which comes 

from propagating bulk transverse and evanescent longitudinal waves.206,217 In the experimental 

BLS spectra of the bulk MoSe2, the dip at T2 (indicated by the arrow in Figure 4.8) is overwhelmed 

by the RSWs peak, and we observe the Lamb shoulder as the high-frequency tail of the RSW peak 

[Figure 4.6 (a)]. Additionally, in transverse out-of-plane PLDOS a sharp dip located at the L 

threshold is indicated by an arrow. In longitudinal in-plane PLDOS we observe a sharp peak cor-

responding to the HFPSAW. This wave does not satisfy the stress-free boundary condition. There-

fore, HFPSAW radiates energy into the bulk, which is the reason they are also called leaky (skim-

ming) surface waves. In BLS spectra, this causes asymmetric broadening of the corresponding 

peak [Figure 4.6 (a)]. From the PLDOS for the bulk MoSe2, we see that the velocity HFPSAWs is 

almost identical to that of L BAW, justifying above previously mentioned asummption.206  
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Figure 4.8. Projected local density of states (PLDOS) as a function of the phase velocity of acoustic 

waves in bulk MoSe2. RSW denotes Rayleigh surface wave, HFPSAW stands for high-frequency 

pseudo-surface acoustic wave, L for longitudinal bulk wave, T1 for fast transverse wave, and T2 for slow 

transverse wave. Figure was reproduced from Ref. [200]. 

In the transverse in-plane PLDOS, 𝐼2, we observe the peak corresponding to the fast transverse T1 

wave, which is BLS-active for the p-s (or s-p) polarization configuration according to the selection 

rules for PE effect. As in the case of RSW, T1 satisfies the stress-free boundary condition and the 

corresponding peak shows infinite intensity (Figure 4.8).  

To calculate BLS spectra shown in Figures 4.6 (a) and (b), we considered factors such as instru-

mental broadening, finite optical aperture, and phonon attenuation.66 Typically, these aspects lead 

to peak broadening and asymmetry. Comparing the calculated and experimental spectra in Figures 

4.6 (a) and (b), we found consistency regarding the peak positions and spectral lineshapes. 
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4.3 Few-layer MoSe2 membranes 

 For MoSe2 membranes, with thicknesses in the nanometer range, the BAWs turn into fam-

ilies of symmetric (S), antisymmetric (A), and shear-horizontal (SH) Lamb waves. These waves 

have been discussed in Chapter 1 where Figure 1.9 illustrates the zero-order (fundamental) 

modes,218–220 relevant for this work. The magnitude of the acoustic wave vector for these waves is 

again given as 𝑞 = 4𝜋 sin 𝜃 𝜆i⁄ .66,221,222 Measured and calculated BLS spectra for exemplary, 6.9 

nm thick MoSe2 membrane are displayed in Figure 4.9. Here we note that most of the membranes 

exhibited residual stress given by Eq. (4.1) due to the preparation method. Therefore, the equation 

of motion for anisotropic material given by Eq. (1.38) has to be modified to the form for pre-

stressed material: 

𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗 + 𝜎𝑗𝑙

0 𝜕𝑢𝑖
𝜕𝑥𝑙
) = 𝜌

𝜕2𝑢𝑖
𝜕𝑡2

, (4.3) 

Then, the acoustic matrix in Eq. (1.41) becomes Γ𝑖𝑗 = (𝐶𝑖𝑗𝑘𝑙 + 𝛿𝑖𝑘𝜎𝑗𝑙
0)𝑙𝑗𝑙𝑙. The solutions can be 

found by employing the numerical approach described in Section 1.2.2.1 of Chapter 1. Next, the 

BLS spectra can be calculated employing the elastodynamic Green's functions, as in the case of 

bulk. The determination of parameters needed for numerical calculations that include elastic con-

stants, residual stress, and thicknesses of the membranes by BLS will be discussed later in this 

Chapter.  

BLS spectra obtained for p-p polarization [Figures 4.9 (a) and (b)] revealed peaks corresponding 

to A0 and S0 waves, respectively. Changing polarization to p-s or s-p allowed resolving the peak 

corresponding to SH0 wave [Figure 4.9 (c)]. To determine the spectral position of the detected 

peaks, we fitted them with Lorentzian functions.  
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Figure 4.9. Experimental and calculated BLS spectra in (a-b) p-p and (c) p-s polarization for 6.9 nm 

thick MoSe2 membrane obtained at 𝜃 = 450. Figure was reproduced from Ref. [200]. 

 

4.3.1 Elastic constants   

 To determine the elastic constants of the membranes, we performed angle-resolved BLS 

experiments. Figure 4.10 (a) displays the dispersion relations 𝑓(𝑞) of A0, SH0, and S0 waves 

propagating in the 6.9 nm MoSe2 membrane. For the range of wave numbers accessible in the BLS 

experiment, S0 and SH0 waves have linear dispersions which are not directly dependent on the 

sample thickness. Consequently, for this 𝑞 range, S0 and SH0 waves are identical to L and T1 

BAWs of bulk MoSe2. Thus, their phase velocities are expressed as 𝑣S0 = (𝐶11/𝜌)
1/2 and 𝑣SH0 =

(𝐶66/𝜌)
1/2, respectively. To further justify the assumption regarding the equality of velocities for 

S0 and SH0 to L and T1 BAWs, we used the numerical approach for pre-stressed material to 

calculate the dispersion relation for 6.9 nm thick MoSe2. Figure 4.10 (b) displays the calculated 

dispersion of Lamb waves for a large range of reduced wave numbers (𝑞ℎ). Moreover, the plot 

contains the dispersions of L and T1 BAWs, calculated according to 𝐶11 and 𝐶66 determined from 

the BLS experiment for the same sample. Clearly, within 𝑞ℎ range that is accessible in the BLS 

experiment (shaded area), L BAW overlaps with S0 and T1 BAW overlaps with SH0 dispersion. 

Table 5.4 gathers 𝐶11 and 𝐶12 determined by BLS for membranes of different thicknesses. To have 

the complete elastic tensor, we include 𝐶33 from pump-probe experiment,191 and 𝐶13 from DFT 

calculations,208 available in the literature, as well as 𝐶44 we determined for bulk MoSe2 by BLS 

(Chapter 4.3).  
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Figure 4.10. (a) Experimental and theoretical dispersion relations obtained for exemplary MoSe2 mem-

brane (ℎ = 6.9 nm) are denoted by circles and solid lines, respectively. (b) Calculated dispersion for 

large reduced wave number (𝑞ℎ) range. Symbols A0, S0, and SH0 denote zero-order symmetric, anti-

symmetric, and shear horizontal Lamb waves, respectively. Longitudinal wave (L) and fast transverse 

(T1) wave dispersion calculated from the experimentally determined 𝐶11 and 𝐶66, are indicated with red 

and blue solid lines, respectively. The shaded area demonstrates the range of 𝑞ℎ that is available in BLS 

experiment. Figure was reproduced from Ref. [200]. 

  

Table 5.4. Elastic constants for bulk and MoSe2 membranes of different thicknesses determines by BLS 

experiment. To complete the elastic tensor, 𝐶33 and 𝐶13 are taken from the literature. 

Optical contrast ℎ (nm) 𝐶11 (GPa) 𝐶12 (GPa) 𝐶33 (GPa)191 𝐶44 (GPa) 𝐶13 (GPa)208 

1.9 (3L) 131±2 29±3 27.0 

18.8±0.7 

 

9.8 

 

2.9±0.4 (4-5L) 150±3 34±4 49.0 

4.2±0.4 (6-7L) 163±3 37±4 51.0 

4.5(7L) 158±2 36±3 52.0 

5.2(8L) 164±3 40±4 52.0 

5.5± 0.4(8-9L) 169±2 43±3 53.0 

NA 171±3 39±4 53.0 

NA 183±2 43±3 54.9 

Bulk 191±3 49±4 54.9 
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4.3.2 Thickness and residual stress of MoSe2 membranes determined 

by BLS 

 In the absence of the residual stress, for 𝑞ℎ → 0, the dispersion relation 𝑓(𝑞) of the A0 

mode can be represented as a parabolic function ( 𝑓 ∝ 𝑞2). This behavior would correspond to a 

linear 𝑣(𝑞) dispersion of the A0 mode.66,73,221 Nevertheless, the 𝑣(𝑞) of the A0 mode measured 

by BLS for the exemplary (ℎ = 6.9 nm) membrane, displayed in Figure 4.11 (a), shows deviation 

from expected linear function (indicated by dashed line). This behavior is related to the presence 

of biaxial residual stress in the membrane. Overall, the dispersion relation of A0 wave depends on 

𝐶11, 𝐶12, 𝐶13, 𝐶33, 𝐶44, 𝜎0, ℎ and 𝜌. Since the mass density 𝜌 of MoSe2 is known, the residual 

stress 𝜎0 that is parallel to 𝐪 can be estimated from the cut-off phase velocity 𝑣0(𝑞𝑑 → 0) =

(𝜎0/𝜌)1/2 obtained from the dispersion 𝑣(𝑞) plotted in Figure 4.11 (a).66  

 
Figure 4.11. (a) The 𝑣(𝑞) dispersion relation of the A0 mode obtained from the BLS experiment (circles) 

and calculations (solid line). The cut-off phase velocity 𝑣0 for 𝑞𝑑 → 0 is indicated with a red arrow. The 

dashed line represents the calculated 𝑣(𝑞) dispersion relation of A0 wave in the absence of residual stress 

( 𝜎0 = 0). The influence of the relative change in (b) different elastic constants individually and (c) the 

thickness (number of layers) of the membrane on the dispersion of the A0. Figures were reproduced from 

Ref. [200]. 

To examine how the change in 𝐶𝑖𝑗 and ℎ influence the dispersion of A0, we used the numerical 

approach in the absence of residual stress (Section 1.2.2.1). The resulting 𝑓(𝑞) dispersion of A0, 

calculated for the specified parameters, was fitted according to the parabolic function: 𝑓 = 𝑔𝑞2. 

Figures 4.11 (b) and (c) illustrate the dependence of the relative change of ∆𝑔/𝑔 on the relative 

change of elastic constants and the thickness of the membrane, respectively. Among the elastic 
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constants, the 𝐶11 has the main impact, while the influence of the rest of elastic constants on A0 

dispersion is negligible. Conveniently, 𝐶11 is obtained from the dispersion of S0 mode inde-

pendently. Nevertheless, the membrane thickness has the largest impact on the dispersion of A0, 

as demonstrated in Figure 4.11 (c). Therefore, the 𝑣(𝑞) dispersion relation of A0 mode at small 

reduced wave numbers (𝑞ℎ → 0) can be used to identify the membrane thickness. Figure 4.12 (a) 

compares experimental dispersion of A0 mode of an exemplary membrane with dispersions cal-

culated for five thicknesses differing by 1L and the same stress. Evidently, the change in the thick-

ness even by a single layer has a notable impact on the calculated dispersion. To determine the 

values of membrane thickness and residual stress simultaneously, we repeated the numerical ap-

proach described for pre-stressed membrane where we swept ℎ and 𝜎0 at fixed 𝐶𝑖𝑗 and 𝜌. Next, 

for 𝑛o wave numbers (experimental points), we compared the calculated, 𝑓𝑖
c to experimentally, 𝑓𝑖

e 

determined frequencies by employing the reduced chi-square statistics: 

𝜒2 =
1

𝒩
∑

(𝑓𝑖
c − 𝑓𝑖

e)2

(∆𝑓𝑐)2 + (∆𝑓𝑒)2

𝑛o

𝑖

. (4.4) 

Here, ∆𝑓𝑐 and ∆𝑓𝑒 represent the errors for calculated and experimental frequency, respectively. 

The former was obtained from the difference of calculated frequencies for lower and upper limits 

of 𝐶11 ± ∆𝐶11, while the latter is given by the Lorentzian fit of the BLS peak. The degree of free-

dom, 𝒩 = 𝑛o − 𝑜, is given as the difference between 𝑛o and number of fitted parameters 𝑜 =  2, 

being ℎ and 𝜎0. The exceptions were the membranes with 𝜎0 = 0 MPa and thickness as the single 

fitting parameter, 𝑜 =  1. For a particular range of ℎ and 𝜎0, we calculated the 𝜒2(ℎ, 𝜎0) and 

found the minimum value, 𝜒min
2 . The 95 % and 68.3 % confidence regions for exemplary pre-

stressed membrane (ℎ = 5.2 nm) characterized with 𝜒2(ℎ, 𝜎0) − 𝜒min
2 < 5.991 and 𝜒2(ℎ, 𝜎0) −

𝜒min
2 < 2.6, respectfully are illustrated in Figure 4.12 (b). We note that for the case of membranes 

that had no stress (𝜎0 = 0 and 𝑜 = 1), the 95 % and 68.3 % confidence regions are determined 

with 𝜒2(ℎ) − 𝜒min
2 < 3.84 and 𝜒2(ℎ) − 𝜒min

2 < 1, respectively. The values of membrane thick-

ness and stress with errors obtained from confidence regions are gathered in Table 4.5.  
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Figure 4.12. (a) Experimentally determined dispersion relation for exemplary (ℎ = 5.2 nm ≈ 8 L) 

MoSe2 membrane (empty circles). The dispersion relations calculated for different thicknesses given as 

a number of layers (solid lines). (b)The 95% and 68.3% confidence regions for determining the ℎ and 𝜎0 

are indicated by blue and red rectangular, respectively. The confidence regions correspond to the mem-

brane of ℎ = 5.2 nm and 𝜎0 = 65 MPa. Figure was reproduced from Ref. [200]. 

 Additionally, we performed Raman spectroscopy experiment to confirm the membrane 

thicknesses obtained by BLS. The measurements were performed with the incident light of 𝜆 =

633 nm. Raman spectra obtained for all MoSe2 membranes used in this study, as well as for the 

bulk sample, are displayed in Figure 4.13 (a). In all spectra, we observed one peak that corresponds 

to thickness-dependent A1g mode. Since we used very low power (< 50 µW), the E1g mode was not 

resolved. In our experiment, it was of high importance to avoid an additional redshift of A1g due 

to the temperature rise that could lead to misleading results. The peaks corresponding to A1g mode 

were fitted with the Lorentzian function to determine their spectral position. The Raman shift as 

the function of the membrane thickness (obtained by BLS) is plotted in Figure 4.13 (b) and com-

pared with the data available in the literature.223 Here, we show that our results qualitatively follow 

the same trend as the previously reported data. This confirms the proper sorting of the membrane 

thicknesses from the lowest to the highest value, obtained from BLS. In order to analyze the Raman 

data quantitatively, the spectral position of A1g mode has to be corrected with respect to a reference 

frequency from the literature data. Since the frequency of A1g mode for the bulk MoSe2 was not 

reported in Ref. [223] was not reported, as the reference, we use the value for 3L thick membrane. 

Thus, we correct our data so that the frequency of A1g for membrane, for which the thickness was 

determined by the optical contrast as 3L, matches the reference value. Moreover, we took into 
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account the redshift due to the stress that we estimated using the coefficient ∆𝜔(A1g)/𝜀 ≅ −1 for 

similar MoS2, taken from the literature224 (this coefficient was not reported for MoSe2). Here, 𝜀 

symbolizes strain in % and it can be determined according to Hooke's law that gives the relation 

between the stress and strain, and BLS results on elastic tensor and stress. We find that the effect 

of stress on the Raman shift of A1g mode is relatively minor, with the exception in the case of the 

membrane (4.9 nm thick) for which we measured the highest stress (188 MPa). 

To estimate the membrane thicknesses from corrected Raman results, we first fitted the literature 

data with a function: 𝜔(A1g) = (𝑂ℎ + 𝑃)/(𝑋ℎ + 𝑌), where 𝑂, 𝑃, 𝑋, and 𝑌 are free fitting param-

eters. Knowing these fitting parameters allowed the evaluation of the thicknesses of MoSe2 mem-

branes from A1g Raman shift. The values are listed in Table 4.5, showing well agreement with 

values obtained by BLS, which is illustrated in the inset in Figure 4.13 (b).  

Table 4.5. Thicknesses determined by various techniques and residual stress determined by BLS. 

Optical contrast 

ℎ (nm) 

AFM ℎ 

(nm) 

BLS ℎ (nm) 
Raman A1g 

(cm-1) 

Raman 

 ℎ (nm) 

BLS 𝜎0 (MPa) 

68.3% 

conf. 

95% 

conf. 

68.3% 

conf. 

95% 

conf. 

1.9 (3L) NA 1.2±0.3 1.3±0.3 241.82±0.05 2.01±0.25 103±3 103±3 

2.9±0.4 (4-5L) 6.3±1.9 3.3±0.4 3.3±0.6 242.31±0.08 3.5±0.8 27±8 27±14 

4.2±0.4 (6-7L) NA 4.5±0.1 4.5±0.2 242.40±0.07 3.9±0.7 0 0 

4.5(7L) 6.7±1.5 4.9±0.3 4.9±0.4 242.35±0.06 4.35±0.5 188±6 188±9 

5.2(8L) 5.1±1.6 5.2±0.4 5.2±0.7 242.51±0.08 5.15±1.5 65±11 65±17 

5.5± 0.4(8-9L) 5.2±1.2 5.8±0.3 5.8±0.4 242.54±0.08 5.4±1.6 46±7 46±10 

NA 8.8±0.7 6.9±0.5 6.9±0.7 242.61±0.07 6.1±1.7 22±15 22±22 

NA 24.7±1.3 19.1±0.2 19.1±0.5 243.0±0.1 21±8 0 0 

Bulk / / / 243.07±0.09 / / / 
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Figure 4.13. (a) Experimental (circles) and fitted (solid lines) Raman spectra of A1g mode for bulk and 

MoSe2 membranes of various thicknesses obtained from BLS experiment. (b) The dependence of the 

Raman shift of A1g on the membrane thickness. Open circles denote the experimental data obtained in 

this work. Black squares stand for the experimental data reported in the literature.223 Full red circles 

symbolize corrected experimental data from this work (reference line, residual stress) as explained in the 

text. The shaded area denotes the Raman shift for the bulk MoSe2 obtained in this work. The fit of liter-

ature data (as described in the text) is denoted by the solid line. The comparison of thicknesses obtained 

from BLS and Raman experiments is shown in the inset of (b). Figure was reproduced from Ref. [200]. 
 

4.4 Thickness dependent elastic constants of MoSe2 mem-

branes 

  After determining the elastic constants of both bulk and MoSe2 membranes, as well as 

thicknesses of the membranes, we explored how the thickness affects the elastic properties. Figures 

4.14 (a) and (b) display measured 𝐶11, 𝐶66 as a function of the membrane thickness (number of 

layers), respectively. Measured bulk values are indicated by shaded regions. For comparison, the 

plots contain theoretical values for both bulk and monolayer MoSe2 available in the litera-

ture.198,208,209,225,226 To the best of our knowledge, the elastic constants of a few-layer and bulk 

MoSe2 presented here are measured experimentally for the first time. Moreover, the elastic con-

stants 𝐶11 and 𝐶66 decreased with reducing the membrane thickness in the order of 10 and 30% 

for 10 and 2 layers (obtained by BLS), respectively when compared to bulk (Figure 4.14). Notably, 
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such elastic softening can shed new light on the debated topic of elastic size effects in vdW mate-

rials.29,32,33,35,180,181,193 To date, this phenomenon remains controversial in the scientific community 

since there is no consensus on whether the nanoconfinement affects the elastic properties and if it 

results in softening or stiffening. Overall, experimental studies on the direct influence of thickness 

on the elastic properties of vdW materials, using a large experimental sampling and controlled 

thicknesses over a wide range, have not been performed. Moreover, the available experimental 

data, which could give an idea of this phenomenon, do not allow to draw any meaningful conclu-

sions and besides contradict each other. For instance, experimental work based on Raman spec-

troscopy a conclusion was drawn that 𝐶44 and 𝐶33 remain the same for 2D MoS2 with respect to 

the bulk material.194 However, for the similar MoSe2, femtosecond pump-probe measurements 

have shown size effects on 𝐶33.191 The last revealed the softening of 𝐶33 with decreasing the thick-

ness of MoSe2 films from about 54.9 GPa for bulk down to about 27.6 GPa for two-layer sample.191 

This finding is supported with our results on size-influenced elastic constants 𝐶11 and 𝐶66. 

 
Figure 4.14. Change of elastic constants (a) 𝐶11, and (b) 𝐶66, with the membrane thickness (number of 

layers top axes). The experimentally determined values in this work are denoted by open circles in (a) 

and (b). Star-like symbols stand for the single-layer values according to theoretical data found in the 

literature.198,225,226 The elastic constants obtained for bulk MoSe2 in this work, and theoretical data re-

ported in the literature208,209 are denoted by shaded areas and symbols (triangles, squares), respectively. 

Solid lines are guides to the eye. Figure was reproduced from Ref. [200]. 
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When describing elastic properties of materials in literature, the Young modulus is much more 

common than the elastic tensor. Hence, this elastic parameter is more convenient for comparison 

with the values reported in the literature. Therefore, we used experimentally determined 𝐶𝑖𝑗 to 

calculate the in-plane component 𝐸11 of the Young modulus. The latter can be expressed as 𝐸11 =

1/𝑆11 where 𝑆11 is the element of the compliance matrix that is defined as the inverse of elastic 

tensor. The compliance matrix for a hexagonal crystal is given as: 

𝑆𝐾𝐿 = 𝐶𝐾𝐿
−1 =

1

|𝐶𝐾𝐿|

(

 
 
 
 
 
 
 

𝐶11𝐶33 − 𝐶13
2 𝐶13

2 − 𝐶12𝐶33 (𝐶12 − 𝐶11)𝐶13
𝐶13
2 − 𝐶12𝐶33 𝐶11𝐶33 − 𝐶13

2 (𝐶12 − 𝐶11)𝐶13
(𝐶12 − 𝐶11)𝐶13 (𝐶12 − 𝐶11)𝐶13 𝐶11

2 − 𝐶12
2

    0       0            0      
0   0            0      
0   0            0      
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  0
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  0
   
  0

|𝐶𝐾𝐿|

𝐶44
0 0

0
|𝐶𝐾𝐿|

𝐶44
0

0 0
2|𝐶𝐾𝐿|

𝐶11−𝐶12 )

 
 
 
 
 
 
 

, (4.5) 

 

where |𝐶𝐾𝐿|=(𝐶11 − 𝐶12)(𝐶11𝐶33 + 𝐶12𝐶33 − 2𝐶13
2 ) is the determinant of elastic tensor for crystal 

with hexagonal symmetry [Eq. (1.25) in Chapter 1]. Therefore, we calculate in-plane Young mod-

ulus from the formula: 

𝐸11 =
(𝐶11 − 𝐶12)(𝐶11𝐶33 + 𝐶12𝐶33 − 2𝐶13

2 )

(𝐶11𝐶33 − 𝐶13
2 )

. (4.6) 

According to Eq. (4.6), the in-plane Young modulus depends on four elastic constants, namely 

𝐶11, 𝐶12, 𝐶13, and 𝐶33. Figure 4.15 illustrates the impact of the relative change of these constants 

on the 𝐸11. The main impact comes from 𝐶11 and 𝐶12, that are conveniently determined by BLS in 

this work. The values of 𝐸11 determined in this way for all MoSe2 membranes as well as bulk are 

listed in Table 4.6.   
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Figure 4.15. The influence of the relative change in 𝐶𝑖𝑗 on the in-plane Young modulus 𝐸11. Figure was 

reproduced from Ref. [200]. 
 

Table 4.6. In-plane Young modulus 𝐸11 for bulk and MoSe2 membranes of different thicknesses. 

BLS, ℎ (nm) 𝐸11 (GPa) 

1.2±0.3 122±3 

3.3±0.4 141±4 

4.5±0.1 153±4 

4.9±0.3 149±3 

5.2±0.4 153±4 

5.8±0.3 157±3 

6.9±0.5 161±4 

19.1±0.2 172±3 

bulk 177±4 

 

Figure 4.16 displays the in-plane Young modulus obtained by BLS as a function of MoSe2 thick-

ness. Similar to the case of elastic constants 𝐶11 and 𝐶66 (Figure 4.14), 𝐸11 systematically de-

creased with a reducing number of layers from 177 ± 4 GPa for bulk to 122 ± 3 GPa for 2L 

MoSe2. We note that the behavior of elastic constants observed in Figures 4.14 and 4.16 cannot be 

related to membranes' residual stress, as it does not correlate with the membrane thickness, and it 

is too low (maximum ~188 MPa) to have a significant effect on the elastic constants due to the 

elastic nonlinearity.73,227  

Compared to the literature values, our results significantly differ from the Young modulus 𝐸 =

224 ± 41 GPa obtained by the buckling metrology for 5-10L MoSe2.
189 In this study, the authors 
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do not report size effect on elastic properties. However, these measurements were carried on sup-

ported flakes that are more predisposed to introduce artifacts. Due to the substrate influence on the 

intrinsic properties of the material, measurements on supported samples are more complex than 

those carried on suspended samples. In-plane Young modulus of single- and two-layer thick 

MoSe2 membranes, evaluated by in-situ tensile testing was reported to be 𝐸 = 177.2 ±  9.3 GPa 

in a recent study (star symbol in Figure 5.15).198 This result matches 𝐸11 of bulk MoSe2 obtained 

in our study, however, it is quite higher when compared to the value we obtained for the thinnest 

membranes.  

Overall, BLS experiments revealed a significant reduction of elastic constants when decreasing 

the thickness of MoSe2 (Figure 4.14 and 4.16). It is important to remark that this trend goes hand 

in hand with a red-shift in the A1g Raman mode [Figure 4.13 (b)]. The decreased vdW interlayer 

interactions explained such Raman shift and the associated softening of the effective restring forces 

acting on the atoms due to decreased number of layers.228,229  

 
Figure 4.16. The change of in-plane Young modulus 𝐸11 with the membrane thickness (number of lay-

ers). The experimentally determined values in this work are denoted by open circles. The experimentally 

determined Young modulus for a free-standing 1-2L MoSe2 found in the literature is indicated by the 

star symbol.198 The 𝐸11 of bulk MoSe2 obtained in this work, and according to theoretical data in the 

literature.208,209 are denoted by shaded area and symbols (triangle, square), respectively. A solid line is a 

guide to the eye. Figure was reproduced from Ref. [200]. 
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 In summary, we employed micro-Brillouin light scattering to obtain dispersion relations of 

acoustic waves that propagate in the single-crystal bulk and few-layer MoSe2 membranes. For the 

bulk MoSe2, we determined the elastic constants 𝐶11 and 𝐶66 that are in good agreement with prior 

theoretical results reported in the literature. Additionally, we obtained 𝐶44 that is consistent with 

the values that are previously reported in Raman studies. Following, we employed µ-BLS to in-

vestigate the dispersion relations of fundamental Lamb acoustic waves that propagate in MoSe2 

membranes, allowing for the determination of 𝐶11, 𝐶66, 𝐸11, 𝜎0and membrane thickness. The elas-

tic constants we report here, for both bulk and MoSe2 membranes, have been directly measured 

for the first time, to the best of our knowledge. Moreover, we present experimental results that 

have revealed about 30% elastic softening of a model vdW material, i.e., MoSe2, while decreasing 

thickness from bulk to two layers. This negative elastic size effect is already clearly noticeable for 

10L. Our findings are highly important for related research fields such as nanoscale thermal 

transport, electronics, or resonators employing vdW materials. Furthermore, the reported softening 

at the nanoscale has profound implications in designing and developing nanodevices, where me-

chanical properties are essential for their durability and robust performance. Finally, the elastic 

size effects here presented might also exist in other TMDCs, and this possibility should be explored 

experimentally in the near future. 
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Chapter 5 Mechanical reinforcement of polysty-

rene colloidal crystals studied by Brillouin light 

scattering 

 Colloidal crystals (CCs) are realized by the self-assembly of monodisperse micro/nano 

particles. According to their dimensionality, they can be classified into 1D chain structures, 2D 

single layer of particles, and 3D multilayered structures.52,230 CCs made of nanoparticles (NPs) can 

exhibit unique properties enabled at the nanoscale.231–233 Owing to their periodic structure, which 

can allow or forbid the propagation of certain frequencies of electromagnetic or elastic waves, CCs 

have been widely applied as photonic (PhCs), and phononic crystals (PnCs). 234–236 Among the 

wide variety of materials available, self-assembled polymer CCs have significant advantages, in-

cluding their cost-effectiveness, superhydrophobicity, and easy tunability of particle size and 

shape.237–239 Polymer-based CCs are of special importance for coatings237,240,241 and nanolithogra-

phy applications.242  

When it comes to their application, the robustness of polymer CCs is of critical importance. Most 

polymer CCs are fragile due to the weak vdW interactions between the self-assembled particles.51 

This can limit the performance of the devices made of these materials since the particles can get 

easily detached, which results in device malfunctioning. What is even more significant concern is 

that when these fragile micro/nanoparticles disassemble, they are released into the environment. 

These contaminants can accumulate in the bodies of marine animals, causing many health issues 

and increasing the mortality of these animals.243–245 To this day, several approaches are developed 

to make robust polystyrene CCs, including the development of core-shell structures, decoration by 

surfactants, plasma and chemical assisted treatments, making PS based nanocomposites, direct UV 

irradiation, among others.55,56,246,247 Additionally, temperature treatment of polymer CCs, below 

their glass transition temperature 𝑇g, is probably one of the most straightforward approaches to 

achieve strong physical bonding between the self-assembled NPs while retaining their shape and 

periodicity. However, temperature treatments are slow and not always suitable, since some archi-

tectures might not tolerate high temperatures. It is important to remark that at the nanoscale, 𝑇g 
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changes when compared with bulk values. The 𝑇g modulation is influenced by confinement effect 

which comes from the change in surrounding environment given by particle-particle interaction 

and their contact area.248–250 Moreover, many authors showed proof for the existence of a mobile 

layer at the surface of thin PS films, which has a major role in the observed change in 𝑇g. The 

temperature at which this surface mobile layer appears is the so-called softening temperature, 𝑇s, 

and is below the 𝑇g.
251–253 The change in particle mobility above 𝑇s influences the physical prop-

erties of the CCs built from polymers including density, mechanical properties, acoustic properties, 

and the diffusion rate of gases in the polymer.254  

 We proposed a novel route for improving the robustness of polymer CCs by exposure to a 

supercritical fluid. This state can be achieved by applying high hydrostatic gas pressure at elevated 

temperatures (Figure 5.1). Such treatment does not require the use of any chemicals, high temper-

atures, or other sophisticated treatments. It was previously shown that by exposing polystyrene to 

gas pressure, 𝑇g of this material can be modified as a result of the plasticizing effect.255,256 In liter-

ature, several studies have already reported the effect of different gases, including nitrogen, carbon 

dioxide, and hydrofluorocarbons on the 𝑇g of bulk polymers.255,256 Additionally, it was reported 

that the methane pressure could modify the 𝑇g of bulk PS in an irreversible way, leading to en-

hancement of mechanical properties.257  

 

Figure 5.1. Pressure-temperature phase diagram of a pure component where the region corresponding to 

supercritical fluid, above its critical temperature and critical pressure (dark blue circle), is indicated by 

the shaded area.  

We studied the behavior of polystyrene nanoparticles (268 nm in diameter: PS-268) upon exposure 

to elevated temperature 𝑇 and high hydrostatic gas pressure 𝑝 by Brillouin light scattering (BLS). 

The aim was to investigate the impact of gas pressure on the 𝑇s and 𝑇g of PS nanoparticles self-
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assembled into fcc clusters in order to find favorable (𝑝, 𝑇) conditions for making a robust struc-

ture. BLS is a non-destructive, contactless spectroscopy technique that allows data collection with-

out exposing the sample to an external environment, i.e., in-situ measurement. Using this tech-

nique, we recorded the vibrational spectra of interacting NPs, which enabled the estimation of NP-

NP contact area resulting from exposure to supercritical nitrogen or argon. Moreover, we deter-

mined the (𝑝, 𝑇) conditions favorable for strong physical bonding between NPs while maintaining 

their spherical shape and periodic structure of CC. We named this process cold soldering as we 

show that it is possible well below the glass transition of the bulk PS, even close to room temper-

ature (RT). Opposite to high temperature treatment, cold soldering is local effect starting from the 

surface and it does not influence the particle core. This leads to a core-shell like NPs where the 

shell is plasticized layer while the core remains in glassy state. Additionally, in order to observe 

the changes in the morphology of the PS CC when exposed to (𝑝, 𝑇), we performed SEM study. 

We showed that gas pressure-driven cold soldering is a suitable method for improving the robust-

ness of PS CCs. 

 

5.1 Materials and methods 

 Polystyrene nanoparticles (PS NPs) were synthesized according to the previously devel-

oped procedure described elsewhere251,258,259, in collaboration with the Max Planck Institute for 

Polymer Research in Mainz, and Prof. George Fytas. The prepared nanoparticles (PS-268) had 

diameter 𝑑 = 268 nm.   

 

Figure 5.2. (a) Illustration of sample preparation by drop-casting and subsequent vacuum drying. (b) 

Image of an exemplary sample prepared in this way.  

For the BLS study, samples were prepared by drop-casting PS-268 nanoparticles dispersion in 

water onto a glass substrate, previously cleaned in ethanol using an ultrasonic cleaner. Next, the 

samples were placed in a vacuum bell jar and dried under a low vacuum at room temperature (RT) 
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for a minimum of one hour. In order to avoid cracking of fragile polystyrene clusters, we started 

applying vacuum slowly. This process is illustrated in Figure 5.2 (a), and the image of the exem-

plary sample is shown in Figure 5.2 (b). The SEM image of drop-casted PS-268 3D CCs with fcc 

structure before any treatment (pristine sample) is displayed in Figure 5.3 (a). 

To study soldering of NPs resulting from exposure to supercritical N2 or Ar by SEM, we prepared 

colloidal monolayers by spin coating PS-268 dispersion in water on a silicon wafer substrate, with 

a spinning rate of 4000 rpm over 60 s, and subsequently drying them in a vacuum (< 2 mbar at 

room temperature for minimum 1h). Figure 5.3 (b) shows the SEM image of a spin-coated sample 

before any treatment. The SEM imaging was performed using a SEM JEOL 8001TTLS (30 kV) 

system. Our experiments were carried out at 5 kV and close focal distance (5 mm). 

 

Figure 5.3. Scanning electron microscope images of pristine (a) drop-casted 3D PS-268 CC and (b) 

single layer spin-coated sample. Scale bars in (a) and (b) are 1 𝜇m and 100 nm, respectively. 

 

5.1.1 Brillouin light scattering 

 In the BLS experiments, we used CW laser (COHERENT Verdi 5) of wavelength 𝜆i = 532 

nm as a light source. We performed the measurements in backscattering geometry [illustrated in 

Figure. 2.5 (c)] using a crossed-polarization arrangement regarding the incident and scattered light. 

The BLS setup we used is illustrated in Figure 5.4. On the path of the laser light, we placed a 

polarizing cube beam splitter (PCBS). This beam splitter transmits horizontally and reflects verti-

cally polarized light. The light reflected from the PCBS was focused on the sample by a focusing 

lens. In the used geometry, the same lens was used to collect the light backscattered from the 

sample. The backscattered light then passes through the PCBS. Next, the scattered light passes 
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through a half-wave plate was placed on its path, which is used to rotate its polarization by 90 0. 

Finally, the backscattered light is sent to the BLS spectrometer that is based on tandem-type Fabry-

Perot interferometer (Table Stable Ltd. Vibration Isolation and JRS Optical Instruments) by the 

focusing lens. The used crossed-polarization arrangement allowed to minimize the signal coming 

from the inelastic light scattering on the pressure waves, which propagate in gasses.260 Such an 

effect could have overwhelmed the BLS signal from the PS samples, making the analysis way 

more difficult or even impossible. The scattered light was depolarized since the incident light un-

dergoes multiple scattering from the sample. As a result, the phonon wave vector was ill-defined.59 

For controlling the gas pressure and the temperature to which the sample was exposed, we used a 

custom-made system. As illustrated in Figure 5.4 this system has several elements, namely a high-

pressure cell with transparent windows, gas bottle, gas compressor, and temperature controller. 

The sample, mounted on the sample holder, was placed inside the high-pressure cell so that the 

incident light could be focused on it through the teflon window. For applying pressures of less 

than 200 bar, the gas was supplied directly from the gas bottle. To achieve higher gas pressures, 

from 200 to 1000 bar, a gas compressor was used. In experiments, two gases were used, N2 and 

Ar. Finally, in order to control the temperature of the samples a circulating Bath Chiller (HAAKE 

K35) was used, capable of operating from -35 °C to +200 °C. 

 

Figure 5.4. Illustration of the setup used for in-situ Brillouin light scattering measurements upon expo-

sure of the PS sample to controlled temperatures (𝑝, 𝑇) conditions. The optics used include polarizing 

cube beamsplitter (PCBS), focusing/collecting lenses, half-wave plate 𝜆/2. The system for controlling 

(𝑝, 𝑇) conditions includes a high-pressure cell, temperature controller, gas bottle, and compressor. This 

figure was reproduced from Ref. [261]. 
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5.2 Results and discussion 

 The normalized BLS spectra recorded for drop-casted PS-268 samples that were exposed 

to different temperatures and hydrostatic gas pressure of N2 or Ar are shown in Figure 5.5 (a-d). 

The spectra obtained for pristine sample, i.e. before any treatment (for ambient conditions 𝑇 = 300 

K and 𝑝 = 1 bar), is displayed in Figure 5.5 (a). Here, we resolved two broad asymmetric 

peaks,59,262,263 that correspond to dipolar (1,1) and quadrupolar (1,2) spheroidal Lamb modes [in-

troduced in Chapter 1 of this thesis, (Figure 1.10)]. The frequency of these modes is given by Eq. 

(1.68). It is important to note that when spherical particles are close-packed, as in the case of CCs 

we study, the interactions between NPs (NP-NP contacts) reduce the spherical symmetry. As a 

result, all Lamb modes split into weakly dispersive 𝑚 =  2 𝑙 +  1 modes, where 𝑚 refers to the 

azimuthal number. In the case of a free sphere, the (1,1) mode has zero frequency since is not 

related to any deformation. However, in the case of clusters built of NPs, their contacts allow 

transferring of vibrational energy. As a result of this, the (1,1) mode has a non-zero frequency. 

Therefore, this mode is related to interactions among close-packed NPs and its spectral position at 

𝑓1,1 can be related to the effective stiffness of the NP-NP contact, 𝐾eff. If we approximate these 

contacts as circular interfaces, the contact area radius can be expressed according to Johnson-Ken-

dall-Roberts (JKR) model:264,59 

𝑎0
JKR = (

3𝜋𝑑2𝑊a
8𝐸eff

)

1
3

. (5.1) 

Here, 𝑑 stands for sphere (NP) diameter, 𝑊a = 0.0636 J m
−2 is the work of adhesion for PS262 and 

 𝐸eff is effective elastic modulus given by as: 

𝐸eff =
4

3
(
1 − 𝜈1

2

𝐸1
+
1 − 𝜈2

2

𝐸2
)

−1

. (5.2) 

where 𝜈 and 𝐸 denote the Poisson ratio and Young modulus. Since the PS NPs that are in contact 

are identical, 𝜈1 = 𝜈2 = 0.32 and 𝐸1 = 𝐸2 = 4.1 GPa.262 Thus, Eq. (5.2) simplifies to: 
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𝐸eff =
2

3

𝐸

(1 − 𝜈)2
= 3.0452 GPa. (5.3) 

Therefore, according to the JKR we calculated 𝑎0
JKR ≅ 12 nm for the pristine sample. We note that 

the validity of the JKR model is limited to NP-NP contacts much smaller than the NP size.265 

Next, we need to relate the NP-NP contact area radius to the frequency of the (1,1) Lamb mode. 

The calculated phonon density of states (DOS) for the fcc CC reported in the literature reveals a 

sharp peak at 𝜔L, associated with longitudinal phonons.263 This angular frequency is given as 𝜔L =

2(𝐾100/𝑀)
1/2, where 𝐾100 denotes the effective spring constants between (100) planes and 𝑀 =

𝜋

6
𝑑3𝜌 is the mass of NPs. In the CC with fcc crystal lattice, each NP has 12 neighbors in [110] 

direction (4 in the same (100) plane and 4 in each adjacent plane). Therefore, for such a case, 

𝐾100 = 2𝐾eff and the angular frequency of longitudinal mode is given as 𝜔L = 2(2𝐾eff/𝑀)
1/2. In 

the same study, it was shown that the spectral position of the (1,1) Lamb mode observed in BLS 

spectra can be associated to the 𝜔L in the DOS. Thus, the relation between the 𝑓1,1and 𝐾eff is given 

by formula:263 

2𝜋𝑓1,1 = 2(
2𝐾eff
𝑀
)

1
2
 (5.4) 

According to the JKR model, the effective stiffness of NP-NP contact is given as:262,266  

𝐾eff =
9

5
(
3𝜋𝑊a𝑅

2𝐸eff
2

4
)

1
3

 (5.5) 

Therefore, by combining Eq’s. (5.5), (5.4), and (5.1) we find the relation between 𝑓1,1 and the 

radius of contact area 𝑎0 as: 

𝑎0 =
5𝜋2𝑀𝑓1,1

2

9𝐸eff
 (5.6) 
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Figure 5.5. Normalized BLS spectra (anti-Stokes side) for a PS CC obtained at (a) room temperature 

and 1 bar, (b) 338 K and 1bar (c) 338 K and 400 bar of N2, and (d) 338K and 400 bar of Ar. The SEM 

images taken after exposure of spin-coated PS samples to conditions in (a-d) are shown in (e-h), respec-

tively. The scale bar in SEM images (e-h) is 100 nm. This figure was reproduced from Ref. [261]. 

The following discussions of BLS results will focus on the (1,1) mode as its frequency allows 

direct in-situ probing of the physical bonding among NPs resulting from the (𝑝, 𝑇) treatments. Due 

to interaction among NPs, the (1,2) quadrupolar mode is represented by two Gaussian line shapes 

[Figure 5.5 (a-d)]. This mode is an additional indicator that confirms the uniform size and the 

spherical shape of NPs. 

To obtain the frequency of (1,1) mode, we fitted the corresponding BLS peak using Asym2Sig 

function [Figure 5.5 (a-d)]. For the pristine sample, i.e., as prepared, [figure 6.5 (a)] from the cor-

responding 𝑓1,1 we calculated 𝑎0 ≅ 49 nm using Eq. (5.6). This value is close to the one estimated 

from the SEM image of the pristine sample (about 40 nm) displayed in Figure 5.5 (e). However, it 

is quite higher when compared to the 𝑎0
JKR

 predicted by JKR model. This discrepancy can be ex-

plained by the presence of fabrication impurities that contribute to the physical bonding of 

NPs267,268 after accumulating at the NP-NP contacts during the drying process. 
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Figure 5.5 (b) displays the BLS spectra for the sample that was exposed to the temperature of 338 

K at 1 bar. In this case, the peak corresponding to the (1,1) mode shows a slight red-shift with 

respect to the reference spectrum at ambient conditions. Such behavior can be related to the weak 

thermal softening of PS. This temperature increase was not sufficient to have a noticeable effect 

on NP-NP contacts, as indicated by both BLS spectra and the corresponding SEM image in Figure 

5.5 (f). However, we observed different behavior in BLS spectra when exposing PS samples to 

400 bar of N2 or Ar at the same temperature of 338 K shown in Figures 5.5 (c) and (d), respectively. 

In both spectra, the peak corresponding to the inelastic scattering of light from the acoustic wave 

that propagates in compressed gas overlaps with that of the (1,1) mode.260 These peaks were fitted 

by a Lorentz function, and in Figures 5.5 (c) and (d) they are represented by dashed curves. Com-

pared to the BLS spectrum in Figure 5.5 (b), 𝑓1,1 is blue-shifted indicating increased NP-NP con-

tacts. Moreover, this shift is more pronounced for the case when we applied Ar pressure. Thus, 

this effect is gas-specific and it cannot be attributed only to the compressive forces appearing when 

the sample is exposed to high pressure. The homogeneity of the treatment effect and preserved 

spherical shape of NPs is evidenced by the resolved (1,2) mode, which is not present in a contin-

uous PS film. The SEM images in Figures 5.5 (g) and (h) show enhanced physical bonding be-

tween neighboring NPs while retaining their spherical shape after exposure to the high pressure of 

the gas. The SEM observation agrees with the BLS result showing that the physical bonding is 

more pronounced when Ar pressure is applied. 

Next, we investigated the influence of the temperature on the spectral position of (1,1) mode at 

fixed gas pressure by BLS. In the experiments, the temperature was increased from room temper-

ature (RT, 300 K), with the rate of 0.25 K min-1, up to the value higher than 𝑇g of bulk PS (373 K). 

The 𝑓(𝑇) dependence obtained at ambient pressure is displayed in Figure 5.6 (a).  
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Figure 5.6. The change in the frequency of the dipolar mode (1,1) and quadropolar mode (1,2) with 

increasing the temperature at (a) 1 bar (b) 400 bar of N2 and (c) 400 bar of Ar. The softening and the 

glass transition temperature are denoted by 𝑇s and 𝑇g, respectively. The region between 𝑇s and 𝑇g is 

indicated by the shaded area. This figure was reproduced from Ref. [261]. 

We observe a strong jump of 𝑓1,1 at a specific temperature. This turnover in 𝑓1,1(𝑇)  slope indicates 

the softening temperature, 𝑇s at which the formation of the mobile surface layer starts. After reach-

ing 𝑇s PS NPs, previously bonded via weak vdW interactions, exhibit strong physical bonding, 

more pronounced with a further increase in temperature.59 Another temperature that we identified 

from this plot is the 𝑇g of PS NPs [Figure 5.6 (a)]. After reaching this temperature, PS NPs lose 

their spherical shape and the vibrational modes in the BLS spectrum vanish due to the formation 

of a continuous PS film. Therefore, at ambient pressure, from Figure 5.6 (a) we find 𝑇s = 344 ±

3 K and 𝑇g = 367 ± 3 𝐾. Figures 5.6 (b) and (c) display 𝑓(𝑇) dependence obtained at 400 bar of 

N2 or Ar gas, respectively. We observed a decrease of the glass transition temperature to 360 ± 3 

K for N2 and to 351 ± 3 K for Ar gas. Comparing with literature, this behavior seems inconsistent 

as it has been shown that 𝑇g of bulk PS should increase by about 13 K at 400 bar of hydrostatic 

pressure due to the reduction of the polymer free volume.269 However, in our experiment, the re-

duction of 𝑇g was gas specific being stronger when Ar gas pressure is applied when compared to 

the N2 case. This gas-specific effect can be assigned to plasticization of NPs surfaces resulting 



102 
 

from gas diffusion, which is higher for Ar when compared to N2. The amount of gas that can be 

dissolved in a polymer at a specific gas 𝑝 is given by Henry’s law constant, ℋ = 𝐶/𝑝, where 𝐶 

denotes the gas concentration. The values of Henry constants reported for the amount of N2 and 

Ar dissolved in PS at 298 K (< 𝑇g) are ℋ = 0.08710−5 mol g-1 bar-1 and ℋ = 0.26110−5 mol 

g-1 bar-1, respectively.270 At 461 K (> 𝑇g), these values were reported to be ℋ = 0.21310-5 mol g-

1 bar-1and ℋ = 0.40410-5 mol g-1 bar-1.271 Gases above their critical point, i.e., supercritical fluids, 

behave as solvents for polymers.272–274  

If we compare 𝑓1,1 at RT before [Figure 5.6 (a)] and after exposure to 400 bar [Figures 5.6 (b) and 

(c)], we see that it increases from ~1.72 GHz to ~1.9 GHz independent on which gas was used. 

This behavior cannot be attributed only to the nonlinear elastic response of the material but also to 

the increase of NP-NP contact due to the elastic deformation. To support this, we calculated the 

𝑓1,1 that would result solely from hardening of PS at 400 bar and RT according to the nonlinear 

theory of elasticity described in Chapter 1. From Equations. (1.36) and (1.37), using previously 

reported Murnaghan coefficients for PS,275 we obtain 𝐸(1 bar) = 3.70 GPa, 𝐸(400 bar) = 3.92 GPa 

and 𝜈(1 bar) = 0.34, 𝜈(400 bar) = 0.35, respectively. Next, by combining Eq. (5.4) and Eq. (5.5) 

we caclulated 𝑓1,1= 1.73 GHz related to the hardening of PS at 400 bar and RT, being significantly 

lower than the corresponding value determined from the experiment [Figure 5.6 (b) and (c)]. We 

note that in this calculation, we neglected the minor changes in 𝑑 and 𝜌 of the NPs at 400 bar that 

we find to be ∆𝑑 ≅ 1 nm and ∆𝜌 ≅ 10 kg m-3 from the bulk modulus (𝐵 = −𝑉 ∆𝑝 ∆𝑉⁄ = 𝜌∆𝑝 ∆𝜌⁄ , 

where V denotes the volume). 

Figure 5.7 illustrates schematically the NP-NP bonding upon exposure of PS CC to given (𝑝, 𝑇) 

conditions. At ambient pressure and RT, the bonding among NPs is of weak vdW nature. The rise 

of temperature above 𝑇s at ambient 𝑝 leads to the appearance of NP surface mobile layer increasing 

NP-NP contacts. After reaching 𝑇g, the periodic structure of CC is destroyed due to the coalescence 

of NPs. When the high gas pressure (of N2 or Ar) is applied, initially NPs undergo elastic defor-

mation due to compressive hydrostatic pressure, which increases NP-NP contact. At this point, the 

response of the material to pressure is reversible. With the rise in temperature permeation of gas 

into NPs increases and progresses with time which results in the plasticized surface layer. There-

fore the synergistic combination of nanoscale plasticization of particles’ surface and compressive 
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hydrostatic pressure lead to irreversible soldering, i.e., strong physical bonding between PS NPs 

while maintaining their shape and periodic arrangement. The (𝑝, 𝑇) conditions favorable for this 

effect lie between 𝑇s and 𝑇g (shaded regions in Figure 5.6). 

 

Figure 5.7. Schematic diagram illustrating the behavior of CC upon temperature assisted gas pressure 

treatment. This figure was reproduced from Ref. [261]. 

It is important to note that in our approach, we determined the 𝑇g(𝑝) of the surface shell that gas 

permeates and not of the core of NP. At temperatures that are lower than 𝑇g of bulk polystyrene, 

the core of NPs is in the glassy state. So formed structure is similar to core-shell NPs, such as PS-

PBMA [poly(butylmethacrylate)], for which it has been shown that the soft PBMA shell had a 

thickness-dependent 𝑇g lower than that of polystyrene.276 The softening temperatures we deter-

mined from Figures 5.6 (b) and (c), as the values at which soldering starts followed by a jump in 

𝑓1,1(𝑇) are 𝑇s = 335 ± 3 K and 𝑇s = 322 ± 3 K for 400 bar of N2 or Ar at 400, respectively. Both 

values decrease with respect to 𝑇s = 344 ± 3 K at 1 bar due to plasticization of NPs surface. As 

previously shown for 𝑇g, the gas specific reduction of 𝑇s is associated to the solubility of the gas 

in PS (higher for Ar). 

To determine the dependence of 𝑇g and 𝑇s on the pressure of N2 or Ar, we repeated the same studies 

as presented in Figure 5.6, where we variated the gas pressure in 1 - 1000 bar range. The resulting 

phase diagrams (𝑝, 𝑇) are displayed in Figures 5.8 (a) and (b). For both gases, we identify three 

different regions: below 𝑇s the polymer is in a glassy state, above 𝑇g it is in a rubbery state, and in 

between 𝑇s and 𝑇g we find the region favorable for NPs soldering. The values of 𝑇g and 𝑇s at 
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different N2 and Ar pressure obtained from the BLS experiments are gathered in Table 5.1. Dashed 

lines in Figures 5.8 (a) and (b) denote the increase in 𝑇g of PS resulting from applied hydrostatic 

pressure (thermodynamic effect) in the absence of plasticization effect.269 In our experiments, the 

latter is included, and for both gases, we observe a decrease of 𝑇s and 𝑇g with pressure up to a 

certain crossover pressure. At this point thermodynamic effect dominates over plasticization. In 

the phase diagram obtained for N2 as plasticizer [Figure 5.8 (a)], we observed the crossover at 

𝑝~700 bar, for which we find 𝑇g and 𝑇s to be 356 ± 3 K and 320 ± 3 K, respectively. In the case 

when Ar was used as a plasticizer [Figure 5.8 (b)] the crossover occurs at 𝑝 ~ 850 bar at which 𝑇g 

and 𝑇s are 337 ± 3 K and 303 ± 3 K, respectively. Therefore, the soldering resulting from the 

treatment with supercritical Ar treatment is possible at lower temperatures than for the supercritical 

N2 case. Moreover, our results show that soldering is possible even at temperatures close to RT 

when Ar is used as a plasticizer.  

 

Figure 5.8. Temperature-pressure phase diagrams obtained for (a) N2 and (b) Ar plasticizers. Filled red 

circles denote glass transition 𝑇g and the softening temperature 𝑇s determined by BLS experiment. 

Dashed line indicates the increase of 𝑇g with 𝑝 resulting from the thermodynamic effect. (c) SEM images 

of spin-coated PS samples obtained after treatment at (𝑝, 𝑇) conditions indicated by empty circles labeled 

by letters A-I in Ar phase diagram. The scale bar in (c) is 100 nm. This figure was reproduced from Ref. 

[261]. 
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Table 5.1. Glass transition (𝑇g) and softening temperature (𝑇s) for treatment of PS CC at different pres-

sure of N2 or Ar. 

𝑝 (bar) 
N2 Ar 

𝑇g (K) 𝑇s (K) 𝑇g (K) 𝑇s (K) 

1 367±3 344±3 367±3 344±3 

100 NA NA 359±3 341±3 

200 367±3 344±3 359±3 336±3 

300 363±3 342±3 NA NA 

400 360±3 335±3 351±3 322±3 

550 359±3 327±3 NA NA 

600 NA NA 347±3 316±3 

700 356±3 320±3 345±3 305±3 

850 360±3 326±3 337±3 303±3 

1000 360±3 329±3 344±3 306±3 

Additionally, we performed SEM imaging on spin-coated PS samples to visualize the soldering of 

NPs after exposure to Ar pressure at a given temperature. The SEM images displayed in Figure 

5.8 (c) were taken after exposing the samples to selected (𝑝, 𝑇) conditions indicated by empty 

circles in Figure 5.8 (b). After the treatment at conditions corresponding to the glassy region in Ar 

phase diagram (labeled as D and E), NP-NP contacts do not exhibit noticeable change when com-

pared to the pristine sample [Figure 5.5 (e)]. In contrast, the SEM images of samples treated at 

(𝑝, 𝑇) conditions that belong to the soldering region (A-C, F-I) clearly show enhanced NP-NP 

contacts. As we can see on the example of sample A, soldering is possible in the absence of plas-

ticizer at elevated temperature, namely 𝑇 =  348 ±  3 K (> 𝑇s at 𝑝 = 1 bar). For the same tem-

perature, soldering is much more efficient when plasticization by Ar is included (sample B). More-

over, we see that the treatment of CCs at moderate Ar pressure leads to well-pronounced soldering 

at lower temperatures than 𝑇s at 𝑝 = 1 bar (Samples C, G, F, H, and I). However, at 700 bar 

(samples H and I) the NPs do not have a spherical but hexagonal-like shape.  

It is important to note that the phase diagrams shown in Figures 5.8 (a) and (b) depend on the rate 

of 𝑝 and 𝑇 increase upon (𝑝, 𝑇) treatments and the time of exposure to these conditions. Therefore, 

we performed a time-dependent BLS study at fixed (𝑝, 𝑇) that allowed us to quantify the efficiency 

and dynamics for NPs soldering. For this purpose, we exposed the samples to the same (𝑝, 𝑇) 

conditions as indicated by A-I in Figure 5.8 (b) by instant heating and pressure increase (that took 

about 1 min). Figure 5.9 shows the change in the frequency of the (1,1) with time for four samples 

exposed to constant (𝑝, 𝑇) conditions over 𝑡 = 90 minutes. Additionally, we performed the BLS 
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measurements 12 h after the treatments, i.e., at 1 bar and RT. In the case of pure temperature 

treatment at 348 K and 1 bar, the 𝑓1,1 shows a lower value at 𝑡 = 0 with respect to the 𝑓1,1 of the 

as-fabricated sample at RT (black arrow). This is due to the elastic softening of PS resulting caused 

by increasing the temperature from 300 K to 348 K. In the case of samples treated at elevated Ar 

pressure, we observed an initial jump in 𝑓1,1(𝑡 = 0) due to two different effects, namely pressure-

induced nonlinear stiffening of PS and elastic deformation causing the increase in NP-NP contacts 

(Figure 5.7). For all samples, the 𝑓1,1 blue shifts with time and 𝑓1,1(𝑡) can be well fitted using 

exponential growth functions 𝑓1,1(𝑡) = 𝑓1,1(𝑡 = 0) + ℜexp(−𝑡/𝜏), where 𝜏 and ℜ stand for the 

time constant and the asymptotic frequency shift, respectively. After 12 h of relaxation at ambient 

pressure and RT, 𝑓1,1 drops as indicated by the dashed arrows in Figure 5.9 (a), attributed to the 

gas removal from PS.  

 

Figure 5.9. (a) Time dependence of the 𝑓1,1 at fixed (𝑝, 𝑇) conditions indicated in the figure (open 

circles). A full black circle labeled by the letter P denotes the 𝑓1,1 of as-prepared (pristine) sample. The 

axis on the right side denotes the contact area radius calculated from 𝑓1,1. Full circles indicated with 

letters K-N stand for 𝑓1,1 and 𝑎0, 12 h after indicated treatments, i.e., at RT and 1 bar (dashed arrows). 

Solid lines denote the fits of experimental points corresponding to the exponential decay function. This 

figure was reproduced from Ref. [261]. (b) SEM images after the (𝑝, 𝑇) treatments corresponding to P 

and K-N samples. The scale bar is 100 nm. 
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The 𝑓1,1 measured after the (𝑝, 𝑇) treatments allowed calculation of the resulting contact area radius 

𝑎0 [right panel in Figure 5.9 (a)] by using the Eq. (5.6). Our results clearly show that increase of 

𝑎0 with respect to as-fabricated sample depends on (𝑝, 𝑇) conditions. This result is supported by 

SEM images displayed in Figure 5.9 (b). The dynamics of the soldering also depend on (𝑝, 𝑇) 

conditions to which the sample is exposed since the corresponding exponential growth is charac-

terized with different 𝜏. The variation of 𝜏 for exposure to various (𝑝, 𝑇) conditions is illustrated 

by the 3D bar plot of Figure 5.10 (a). We see that at constant gas pressure, the soldering process 

speeds up (time constant is decreasing) with temperature increment. The thermal activation of 

soldering can be described by the Arrhenius representation of 𝜏(𝑇) = ℬexp[𝐸a/(𝑅𝑇)], indicated 

with solid black lines. Here, 𝐸a =  43 ±  2 kJ mol
−1

 is the activation energy at 400 and 700 bar, 

𝑅 is the gas constant and pre-factor ℬ =  2 ±  0.7 ∙ 10−4 s. Similarly, at constant 𝑇, soldering 

speeds up with 𝑝 increment, [decay of 𝜏 in Figure 5.10 (a)] due to the domination of the enhanced 

plasticization over thermodynamic effect. 

 

Figure 5.10. (a) 3D bar plot for the time constants 𝜏 dependence on (𝑝, 𝑇) conditions belonging to the 

soldering region. Solid black lines are the Arrhenius plots for 𝜏(T) at 400bar and 700 bar. (b) Relative 

contact area increase determined after selected (𝑝, 𝑇) treatments. This figure was reproduced from Ref. 

[261].  

To quantify the effectiveness of the soldering, we calculated the relative increase in contact area 

from experimentally determined 𝑎0 after and before (𝑝, 𝑇) treatments. The result is shown in the 

3D bar plot of Figure 5.10 (b). For instance, the treatment at 𝑝 =  200 bar and 𝑇 = 348 K leads 

to about a 530 % increase of the NP-NP contact area, while exclusively thermal treatment at the 
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same temperature results only in about 12 %. Moreover, the treatments at even lower temperatures 

but elevated gas pressures still lead to the higher NP-NP contact area. Therefore, we show that the 

soldering by supercritical gases is significantly more efficient than solely temperature treatment at 

ambient pressure. This is due to the combination of increment of NP-NP contact by hydrostatic 

force in high gas pressure environment and accompanied plasticization of the NPs surface. Fur-

thermore, as illustrated by Figures. 5.9 (a) and 5.10 (a) the duration of the (𝑝, 𝑇) treatment plays 

an additional role when it comes to the extent of soldering. 

To confirm that the gas does not remain inside PS after treatments at (𝑝, 𝑇) conditions, we carried 

out transmission electron microscopy (TEM) studies on an instrument equipped with an electron 

energy loss spectroscopy (EELS) detector. Figures 5.11 (a) and (c) display the TEM images of the 

pristine PS sample and after the treatment at 323 K and 1000 bar of N2, respectively. The regions 

examined by EELS are shown by the yellow rectangles. EELS analysis of the PS sample prior and 

after the (𝑝, 𝑇) treatment shown in Figures 5.11 (b) and (d), respectively, revealed a similar amount 

of nitrogen for both samples, about 1 %. Therefore, we can conclude that nitrogen does not get 

trapped inside PS after (𝑝, 𝑇) treatment. Although argon is not easily measurable in EELS, we 

expect similar behavior for the samples treated with this gas.  

 

Figure 5.11. TEM image (a) of the pristine PS sample and (c) after exposure to 1000 bar of N2 at 323 K 

Yellow frames show the region for which EELS spectra were acquired. The scale bar is 100 nm. (b) 

and (d) display EELS result for the carbon K edge (bottom), nitrogen K edge (middle), and combined 

(top) for pristine PS sample and after exposure to given (𝑝, 𝑇) conditions, respectively. This figure was 

reproduced from Ref. [261].  
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To evaluate the change in elastic properties of PS CCs resulting from (𝑝, 𝑇) treatments, we calcu-

lated the effective elastic constant 𝐶11
eff from 𝑓11. Assuming that there is no change in the mass 

density of both PS and fcc packed PS CC, we calculated 𝐶11
eff

 according to formula:263,277 

𝐶11
eff = 𝜌eff(𝜐[100]

L )2, (5.7) 

 where 𝜐[100]
L = 𝑑𝜋𝑓1,1 √2⁄  is the longitudinal velocity in [100] direction and 𝜌eff = 0.74𝜌 +

0.26𝜌air = 777 kg m
−3 denotes the effective mass density of fcc PS CC, where 0.74 is the packing 

factor and 𝜌air = 1.2 kg m
−3 is the mass density of air at 1bar and 293 K.278 For pristine sample 

we obtained 𝐶11
eff ≈ 0.71 GPa. After exposing PS CCs to conditions as in Figure 5.9 , effective 

elastic constant are about 0.75 GPa, 1.08 GPa, 1.24 GPa and 1.38 GPa, for (1 bar,348 K), (400 

bar,318 K), (400 bar,328 K) and (200 bar,338 K), respectively. Therefore, the described treatments 

result in increased stiffness of PS CCs. For instance, the relative change in 𝐶11
eff after exposure to 

200 bar of Ar at 338 K indicates nearly twice higher stiffness. Additionally, to confirm the me-

chanical reinforcement of the PS CC, we tested the resilience to mechanical impact of the pristine 

sample and the one treated with supercritical Ar. Figures 5.12 (a) and (b) show the images of two 

different pristine samples. These fragile samples exhibited cracks after the drying process (Figure 

5.2). The sample displayed in Figure 5.12 (b) was next treated with supercritical Ar at 338 K and 

400 bar. The resilience tests were performed by hitting the lateral side of the glass substrates 

against a solid surface. Figure 5.12 (c) and (d) display the result of the resilience test for the pristine 

sample and the one treated with supercritical Ar, respectively. Here, it is important to note that 

some amount of PS sample fell off the glass substrate before the resilience test due to handling, 

i.e., mounting it on the sample holder and the high-pressure cell experiment. The inset of Figure 

5.12 (d) shows the image of the sample after it was taken from the high-pressure cell. Therefore, 

a comparison of Figures 5.12 (c) and (d) show that the treatment with the supercritical gas at the 

soldering (𝑝, 𝑇) conditions [𝑇(𝑝) phase diagram in Figure 5.8], results in mechanical reinforce-

ment of the PS CC.  
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Figure 5.12. (a-b) PS sample prepared by drop-casting the PS dispersion in water onto a glass substrate 

and by subsequent vacuum drying. (c) Pristine sample and (d) the one exposed to 400 bar of Ar at 338 K 

for 3h, after the resilience test. Inset in (d) shows the sample after the treatment at (𝑝, 𝑇) conditions, 

before the resilience test. This figure was reproduced from Ref. [261]. 

 In summary, we investigated the enhancement in inter-particle bonding among PS nano-

particles in 3D CC after exposure to supercritical N2 or Ar by in-situ BLS. In this approach, the 

strong physical bonding between nanoparticles results from the synergistic combination of com-

pressive hydrostatic pressure and plasticization effect caused by gas diffusion into PS. We demon-

strate that this treatment leads to gas-specific lowering of the glass transition temperature, soften-

ing temperature for the surface of nanoparticles. From BLS results, we obtained the 𝑇(𝑝) phase 

diagrams for both gases used as plasticizers. Here, we identified the soldering region, i.e., (𝑝, 𝑇) 

conditions at which NPs exhibit strong physical bonding while maintaining their spherical shape 

and the periodicity of CC. We have shown that soldering is possible close to room temperature at 

high gas pressures. Additionally, apart from pressure and temperature, we showed that the extent 

of the soldering also depends on the duration of the treatment at (𝑝, 𝑇). Overall, the treatment with 

supercritical fluids presents a route for efficient, chemical-free and simple approach for enhancing 

the robustness of polymer colloidal crystals.  
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Concluding remarks and outlook 

 This thesis is dedicated to the experimental investigation of several effects influencing the 

elastic properties of different nanostructures. For that purpose, the Brillouin light scattering (BLS) 

technique was employed. This technique allows for a contactless and non-destructive approach for 

the evaluation of elastic properties, as well as the possibility for in-situ studies. 

 Chapter 3 reports on the influence of Ta% content on the elastic properties of the Ta-Hf-C 

nanocomposites on Si (001) substrate. The Young modulus of these systems was determined from 

experimental dispersion relations of Rayleigh surface waves (RSWs) and high-order Shezawa 

waves (SWs) by employing the Finite element method (FEM) model. The results revealed higher 

Young modulus for ternary (TaC)x(HfC)y nanocomposites when compared to that of binary TaC 

or HfC, with maximum corresponding to stoichiometry with ~65 % of Ta. The values of Young 

modulus obtained from BLS agree well with previously reported nanoindentation results.  

The results show the superior mechanical response of ternary alloys and their applicability in the 

aerospace industry or drilling equipment due to the combination of high elastic response, refractory 

properties, and low corrosion. One of the main advantages that these composites offer is their 

operation at ultra-high temperatures since Ta-Hf-C is the highest melting point material achieved 

by humankind. In this sense, BLS allows for the future monitoring of temperature softening effects 

at temperatures well above 1000 oC and a broad range of aggressive environments, where other 

techniques, such as nanoindentation, cannot be applied. 

 In Chapter 4 the elastic size effect, i.e., the change of elastic properties with reducing the 

thickness of the material to the nanoscale, was demonstrated for the member of vdW materials, 

namely MoSe2. To explore this effect, micro-BLS measurements were performed for both bulk 

and ultrathin MoSe2 membranes of different thicknesses. For the bulk MoSe2, the detection of 

high-frequency pseudo-surface acoustic wave (HFPSAW) and fast transverse acoustic wave (T1) 

allowed the determination of elastic constants 𝐶11 and 𝐶66, respectively, directly from the 

experiment. Additionally, 𝐶44 was calculated from the dispersion of Rayleigh surface wave 

(RSW), also resolved in the experiments. For the case of thin MoSe2 membranes, 𝐶11 and 𝐶66 were 

determined from the experimentally obtained dispersions of zero-order symmetric Lamb (S0) and 

shear-horizontal (SH0) waves, respectively. Additionally, the dispersion of the zero-order 
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asymmetric Lamb wave (A0) was used to determine the residual stress and thicknesses of MoSe2 

membranes. The elastic constants of both bulk and few-layer MoSe2 reported in this work are 

determined directly from the experiment for the first time. Moreover, the results presented in this 

chapter demonstrated a substantial softening of MoSe2 induced by the decreasing in thickness, i.e., 

negative elastic size effect. In particular, elastic constants 𝐶11, 𝐶66 and 𝐸11 reduced for about 30 

% while decreasing thickness from bulk to two layers, with the negative elastic size effect already 

noticeable for 10L.  

These findings contradict the common assumption that relative mechanical strength increases at 

the nanoscale, based on previous results for graphene. Therefore, the elastic size effect in other 2D 

van der Waals materials should be explored in the future. For this type of study, BLS has shown 

to be an ideal technique since it can be used not only for determining the elastic properties but also 

to extract the thickness of the materials, a feature not available in other commonly used techniques. 

Moreover, BLS allows for evaluating a broad range of thicknesses (here shown from 2 to 30 lay-

ers). The evaluation of elastic size effect is essential for the design and development of any 

nanodevice employing such 2D materials, where elastic properties are essential for their durability 

and robust performance. The observed size-dependent softening is especially important for the 

field of thermoelectrics, giving the possibility of tuning the decrease in thermal conductivity, with 

respect to bulk analog, by controlling the material thickness.  

 Chapter 5 presents the approach for mechanical reinforcement of 3D fcc polystyrene (PS) 

colloidal crystals (CCs) by treatment with supercritical N2 or Ar at high pressure and elevated 

temperature. In this approach, structural strengthening is possible at temperatures significantly 

lower than the glass transition, which is especially important for thermosensitive systems. The 

method here presented is a synergistic approach that profits from nanoscale plasticization of par-

ticles’ surfaces while being compressed by hydrostatic pressure. The result of this effect is the 

creation of permanent physical bonds between particles while retaining their periodic arrangement 

and shape, i.e., soldering. As external plasticizers, N2 and Ar were used, which are inert gases, 

preventing any reaction from taking place. After the treatment is completed, the gases are entirely 

removed, leaving the particles unaffected chemically. In this chapter, the temperature vs. pressure 

phase diagrams for each gas are presented, which allowed us to determine the preferential pressure 

and temperature for soldering. In the case of Ar, it was shown that soldering was possible even 
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close to room temperature for suitable gas pressure. Additionally, the soldering was found to be 

depending on the time of treatment. By monitoring the frequency of the dipolar spheroidal Lamb 

mode, before and after the treatments by supercritical fluids, it was shown that the relative contact 

area between the particles can be increased by more than 500 %, which is significantly larger when 

compared to pure temperature treatment (about 12 %). These findings indicate the mechanical 

reinforcement of the colloidal crystal, which was also confirmed by the resilience test. 

Therefore, treatment with supercritical fluids offers a highly efficient solution, without the use of 

any hazardous chemicals, for the fabrication and tuning of durable devices made of polymer col-

loids. This approach could be adopted for various polymeric systems and architectures, especially 

for those in which high temperature or chemical treatments are not suitable. Furthermore, the basic 

idea behind this approach, plasticization of polymer nanostructures upon exposure to supercritical 

fluids, offers numerous research opportunities. Among those, the investigation of different gasses 

as plasticizers, and the effect of different particle sizes on the soldering effect or general response 

in various polymer CCs, can be explored. In perspective, reinforced CC structures can be prepared 

as single free-standing 2D layers and used as skeletons for fragile ultrathin membranes in order to 

provide an extra level of robustness to the systems. Such hybrid materials composed of membranes 

with the ability to convert light into mechanical motion and polymer particles have the potential 

to be used as durable photo-actuators. Moreover, due to the periodicity of CCs, these composites 

could be employed as light-tunable acoustic filters.  

 Overall, the unique capabilities of BLS for measuring elastic properties, membrane thick-

ness, and in-situ monitoring of the contact mechanics of nanomaterials, presented in this thesis, 

are highly useful for developments in nanotechnology. Such measurements are important for both 

fabrication and research of nanomaterials' behavior in complex environments. In further work, 

Brillouin light scattering opens opportunities for the research of novel materials and effects. For 

instance, photoelastic properties of novel nanomaterials and architectures and the size dependence 

of photoelastic constants should be investigated.   
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