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Abstract

The advent of nanotechnology had a significant impact on everyday life and science in general.
Technological advances and research keep providing novel effects and innovations. When con-
fined to the nanoscale, materials exhibit new properties not present in their bulk counterparts.
These include unique optical, electrical, magnetic, thermal, and mechanical properties. The eval-
uation of the latter is of indisputable importance in terms of applications. However, to date, it

remains an experimental challenge that triggers the development of new techniques.

The thesis is devoted to the mechanical properties of functional nanomaterials of different levels
of spatial confinement: thin nanocomposite coatings, ultrathin membranes, and colloidal crystals.
Brillouin light scattering (BLS) was employed to investigate the effect of such parameters as stoi-
chiometry, nanoconfinement (size effect), or high-pressure environment on the mechanical fea-

tures of the nanomaterials.

For the case of thin nanocomposite coatings, the influence of Ta% content was investigated in the
mechanical response of the Ta-Hf-C 3D nanocomposites supported by silicon. These nanocompo-
sites consist of crystalline nanoparticles surrounded by amorphous, highly graphitic carbide. This
structure provides many advantages over single crystalline or polycrystalline films, such as im-
proved mechanical, thermal, and electrical properties. Ta-Hf-C is an ultra-refractory material of
the highest melting point known to man (> 3900 °C). Furthermore, its chemical stability and high
inertness allow its use as a corrosion protective layer for high-temperature applications. In this
work, the Young modulus of Ta-Hf-C/Si with different Ta% was determined from experimentally
measured dispersion relations of surface acoustic waves by employing finite element method
(FEM) analysis. The results revealed a higher Young modulus for ternary alloys (TaC)x(HfC)y
than that of binary TaC or HfC. Moreover, BLS results show good agreement with the data ob-

tained by conventional nanoindentation mechanical tests.

The elastic size effect in 2D membranes is presented on the example of a member of the transition
metal dichalcogenides (TMDCs) group, namely MoSe,. The impact of nanoconfinement on me-
chanical properties remains controversial in the scientific community. To date, there is no undeni-
able experimental evidence on the elastic size effect. Thus, it is not clear whether few-layer van

der Waals (vdW) materials are stiffer or softer than bulk. To address the elastic size effect in vdW
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materials, micro-BLS measurements for bulk and MoSe, membranes of different thicknesses were
performed. An essential advantage of the used experimental approach is the possibility for simul-
taneous assessment of such parameters as elasticity, residual stress, and thickness of a few-layer
free-standing MoSe». This work reports anisotropic elastic properties, to date, not available in the
literature neither for few-layer or bulk MoSe;, although it is a heavily studied vdW material. More-
over, presented experimental results have revealed about 30% elastic softening of MoSe>, while
decreasing thickness from bulk to two layers. This finding is highly relevant for related research
fields such as nanoscale thermal transport, electronics, or resonators employing vdW materials.

Finally, uniform mechanical reinforcement of 3D polystyrene colloidal crystals by employing su-
percritical nitrogen and argon is presented. This method is a synergistic combination of nanoscale
plasticization of particles’ surface and compressive hydrostatic pressure. It results in permanent
physical bonds forming between the particles while maintaining their shape and periodic arrange-
ment of the colloidal crystal. This process is named “cold soldering” as it is possible close to room
temperature. Brillouin light scattering was employed to probe in-situ mechanical vibrations of the
crystal, allowing the determination of preferential pressure, temperature, and time ranges for sol-

dering, i.e., strong physical bonding among self-assembled nanoparticles.

Overall, elastic properties of nanomaterials with different structures were studied by BLS. The
results show that BLS is a powerful tool that allows the mechanical characterization of various
nanosystems in a contactless and non-destructive manner. Moreover, this technique allows for the
investigation of novel effects described in this thesis, such as mechanical softening of 2D materials
and gas pressure-induced plasticization of polymer nanostructures.



Streszczenie

Pojawienie si¢ nanotechnologii mialo znaczacywptyw na nasze codzienne zycie , jak irozwdj wielu
dziedzin nauki. Rozwoj technologii i badania naukowe dostarczaja w tym zakresie coraz to
nowych wynikow 1 innowacji. Materialty wystepujace w rozmiarach nanoskopowych wykazuja
nowe wlasciwosci nieobecne w ich makroskopowych wersjach. Dotyczy to unikalnych
wlasciwosci optycznych, elektrycznych, magnetycznych, termicznych i mechanicznych. Ich
badanie jest niezwykle istotne z punktu widzenia praktycznych zastosowan. Jednakze, ich badanie
pozostaje wcigz wyzwaniem eksperymentalnym, ktére napedza rozwdj nowych technik

pomiarowych.

Niniejsza rozprawa poswigcona jest wihasciwosciom mechanicznym funkcjonalnych
nanomateriatbw o zroéznicowanych poziomach ograniczenia rozmiaréw: cienkie pokrycia
nanokompozytowe, ultracienkie membrany 1 krysztaly koloidalne. W pracy wykorzystano
zjawisko rozpraszania $wiatla Brillouina (eng. Brillouin light scattering — BLS) do zbadania
wplywu parametrow takich jak stechiometria, nanoograczenie przestrzenne (efekt rozmiaru) lub

warunki wysokiego ci$nienia na wlasciwosci mechaniczne nanomaterialow.

W przypadku cienkich pokry¢ z nanokompozytow, badano wptyw zawartosci procentowej tantalu
(Ta) na odpowiedZz mechaniczng nanokompozytu 3D Ta-Hf-C nalozonego na krzemie.
Nanokompozyt ten sktada si¢ z krystalicznych nanoczastek otoczonych amorficznym, silnie
grafitowym karbidem. Taka struktura daje wiele korzysci wzgledem monokrystalicznych lub
polikrystalicznych cienkich warstw, m.in. poprawienie wtasciwos$ci mechanicznych, termicznych
i elektrycznych. Ta-Hf-C jest materiatem wybitnieogniotrwaltym o jednej z najwyzszych znanej
cztowiekowi temperatur topnienia (> 3900 °C). Ponadto, jego stabilno$¢ chemiczna 1 wysoka
niereaktywno$¢ pozwalaja na jego uzycie jako warstwy chronigcej przed korozja w warunkach
wysokotemperaturowych. W tej pracy modut Younga Ta-Hf-C/Si z r6zng zawarto$cig procentowa
tantalu okreslany byt z uzyciem metody elementow skonczonych (eng. finite element method —
FEM) na podstawie do$wiadczalnie zmierzonych zalezno$ci dyspersyjnych akustycznych fal
powierzchniowych. Wyniki wykazaty wyzszy modut Younga dla stopow trojsktadnikowych
(TaC)x(HfC)y niz dla stopéw dwusktadnikowych TaC i HfC. Co wigcej, wyniki BLS wykazaty

zgodnos¢ z danymi uzyskanymi konwencjonalng metodg nanoindentacji.



Zaleznos¢ wlasnosci mechanicznych membran 2D od ich rozmiaru jest zaprezentowany na
przyktadzie MoSe,, ktory jest reprezentantem grupy dichalkogenidow metali przejSciowych.
Wplyw ograniczenia rozmiaréw do skali nanometréw na wtasno$ci mechaniczne w tym przypadku
wywotuje kontrowersje w $rodowisku naukowym. Do tej pory, nie ma niepodwazalnego
doswiadczalnego dowodu na wplyw rozmiaru na wtasnosci mechaniczne w tym uktadzie. Zatem,
nie jest jasne czy materialy van der Waalsa o kilku warstwach sg bardziej czy mniej sztywne niz
material objetosciowy. W celu zbadania tego zagadnienia wykonano do$wiadczenia mikro-BLS
dla MoSe; objetosciowego i w postaci membran o rdznej grubosci. Glowng zaletg zastosowanego
podejscia eksperymentalnego jest mozliwos¢ jednoczesnego okreslenia parametréw takich jak:
elastycznos$¢, napregzenie resztkowe czy grubosé kilku-warstwowych zawieszonych membran
MoSe;. Wykazano anizotropi¢ wlasciwosci elastycznych, ktora do tej pory nie byta opisywana w
literaturze, zarowno dla materiatu objetosciowego jak i cienkich blon, mimo, Ze jest to szeroko
badany materiatl van der Waalsa. Co wigcej, zaprezentowane wyniki doswiadczalne wykazaty
okoto 30 % zmigkczenie MoSe2 po zmniejszeniu grubosci z materialu objg¢tosciowego do dwoch
warstw. To odkrycie jest niezwykle istotne dla powigzanych obszaréw badawczych, takich jak
transport energii w nanoskali, elektronice czy rezonatorach wykorzystujacych materiaty van der

Woaalsa.

Ponadto w rozprawie zaprezentowano wzmocnienie mechaniczne trojwymiarowych krysztatow
koloidalnych polistyrenu za pomocg azotu 1 argonu w stanie nadkrytycznym. Metoda ta polega na
wykorzystaniu wspoldziatania plastyfikacji powierzchni czastek w nanoskali oraz nadci$nienia
hydrostatycznego. Skutkuje ono tworzeniem trwatych fizycznych potaczen pomiedzy czgstkami
przy zachowaniu ich ksztattu 1 uktadu periodycznego krysztatu koloidalnego. Proces ten nazywany
jest zimnym spawaniem, gdyz zachodzi w temperaturach bliskich pokojowej. Rozpraszanie
$wiatta Brillouina zostalo wykorzystane do badania in situ drgan mechanicznych krysztahu, co
pozwolilo okres$li¢ optymalne warunki ci$nienia, temperatury i czasu trwania dla zimnego

spawania.

Podsumowujac, zbadano elastyczne wtasciwo$ci nanomaterialdéw z réznymi strukturami przy
uzyciu rozpraszania $wiatlta Brillouina. Wyniki pokazuja, Ze technika ta jest skutecznym
narzedziem w okres$laniu mechanicznych wlasciwosci roznych uktadéw w nanoskali w sposob

nieniszczacy 1 bezdotykowy. Ponadto, metoda ta pozwolita na zbadanie nieopisanych wczesniej



zjawisk zawartych w tej rozprawie, takich jak mechaniczne zmigkczenie dwuwymiarowych

materiatow czy plastyfikacje nanostruktur polimerowych pod wptywem wysokiego ci$nienia.
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Preface

Nanomaterials are currently used in many products that have had a life-changing effect on our
society. Despite current technological advancements, nanomaterials still have a significant poten-
tial for innovation and application. In general, nanomaterials can be fabricated employing top-
down or bottom-up approaches. In the former approach, nanostructures are produced from larger
pieces of material, for example, by etching or exfoliating bulk materials. In the bottom-up ap-
proach, nanostructures are created from smaller building blocks. In this type of fabrication, build-
ing blocks (atoms, molecules, or particles) are synthesized or self-assembled into nanostructures.
Based on the number of frustrated dimensions, nanomaterials can be classified into four groups
(Figure 1):

I. 3D confinement: zero-dimensional (OD) materials such as nanoparticles or quantum dots.
1. 2D confinement: one-dimensional (1D) materials such as nanotubes, nanorods, and nan-
owires.
I, 1D confinement: two-dimensional (2D) materials, having two dimensions outside the na-
noscale. These are plate-like shapes such as films and membranes.
IV. 0D confinement: three-dimensional (3D) materials, for which all the dimensions are out-
side nanoscale. Nanomaterials belonging to this group, among others, include bundles of
nanowires and nanotubes, multi-stack of nanolayers, 3D nanocrystalline structures, and

nanocomposites as well as 3D colloidal crystals (CCs).

a

b
& B N
i | T |
°Se | N .

Figure 1. Materials confined at nanoscale in different dimensions, namely (a) 0D, (b) 1D, (c) 2D and (d)

3D materials. This figure was reproduced from Ref. [1].
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When materials are confined at the nanoscale, they can exhibit unique features that significantly
differ from their bulk counterparts. Two main reasons for that are increased surface-to-volume
ratio and quantum effects. These can lead to remarkable optical, electrical, magnetic, and thermal
properties of nanomaterials. Nevertheless, when it comes to implementing nanomaterials in a par-
ticular device, mechanical performance is of crucial importance since it limits or extends the ap-
plicability of a given material. The impact of nanoconfinement on elastic properties, the so-called
elastic size effect, remains controversial in the scientific community. In various nanostructures,
different magnitudes and even sign of the elastic size effect were reported. In prior studies, this
effect was mostly investigated for 1D nanostructures such as nanowires made of Ag,%> Pb,®> Au,®
Cu0,” Zn0O® ™ and Si.*?Y" In the case of Ag, Pb, and CuO nanowires, there is a critical diameter
at which elastic modulus increases when further decreasing the nanowire diameter with respect to
the bulk value.?>" However, the elastic behavior of Au nanowires was shown to be independent
of diameter.® Moreover, the experimental results on the elastic modulus of ZnO and Si are scattered
in the literature showing different elastic behavior with size.'® On the one hand, some studies re-
vealed a significant decrease in the elastic modulus with confinement.31° On the other hand, an
increase in elastic modulus of ZnO and Si nanowires compared to bulk was also reported.®202!

Additionally, for these nanostructures, some works reported elastic modulus close to that of the
bU|k.1l’16'17’22

In the case of 2D nanomaterials, the experimental results on elastic properties in the literature are
inconsistent. It is generally accepted that 2D graphene exhibits superior elastic properties as com-
pared to graphite (bulk). For example, the Young modulus (E) estimated from Raman spectroscopy
for single and bilayer graphene was 2.4 + 0.4 and 2.0 + 0.5 TPa, respectively,?® being significantly
larger than the bulk value of about 1 TPa.?#?®> However, it was also shown that the E of the gra-
phene matches the bulk value.?-2® Moreover, some other experiments found the Young modulus
of few-layer graphene to be lower than for bulk.>*3! Other vdwW materials for which the elastic
size effect was recently explored include group-111 monochalcogenides. On the one hand, it has
been shown that the decreasing of thickness leads to the Young modulus enhancement in GaS.*?
On the other hand, the Young modulus of GaTe decreases while reducing the thickness.*? Addi-
tionally, the Young moduli of BN?® and GaSe®? were reported to be size-independent. In the case
of MoS>, the most studied TMDCs, values of Young modulus measured by different techniques
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are scattered as well. Again, some studies reported the Young modulus for confined MoS, com-

parable to the bulk value®*3* while the others found it significantly higher.31-3°

In the case of 3D nanomaterials, composed of nanoscale building blocks, the elastic properties are
slightly more complex. Namely, 3D arrangement of nanoscale motifs can depend on the elasticity
of the individual elements and interactions between thereof. In nanocrystalline structures, grain
size can affect elastic properties in different ways. For example, it has been shown that the Young
modulus reduces with decreasing the grain size in nanocrystalline Ni-P%¢-3 and Ni-Fe.*® Other
results obtained for Ni%® and Cu“® have shown no significant change in elastic modulus with the
grain size. However, the Young modulus varies non-monotonically with the grain size for nano-
crystalline NiTi, showing minima at critical grain size. Below this value, it decreases, and above
it increases.*! The similar behavior was previously observed in nanocrystalline Se.*? Moreover,
materials in which different amorphous or crystalline phases co-exist are called nanocomposites.*®
In these systems, the elastic response of the material changes with its nanostructure. However, it
is not only related to grain size; it is also correlated to the crystalline volume fractions and can be
additionally affected or controlled by stoichiometric changes of the phases.*4® For example, in
NbC nanocomposite films, the elastic modulus shows maxima for the amorphous C-C phase of
~5% and the crystalline fraction with the grain size of 5-8 nm.*’ In the case of TiBCN coatings,
the elastic modulus showed a maximum when the nitrogen content was below 10%.%® However, a
monotonic decrease of elastic modulus has also been reported for similar coatings, increasing the
Si content in the coating due to the stoichiometric changes and creation of TiSi, phases.*® Further-
more, in the case of HfN coatings, the stoichiometric losses of both nitrogen and hafnium decrease

the lattice constant of the crystalline phases and reduce the elastic modulus of the coatings.>°

Other types of 3D nanomaterials are colloidal crystals (CCs) realized by the self-assembly of na-
noparticles.>>? The diameter of particles can affect the Young modulus of CCs. For instance,
decreasing the diameter of Si spheres in face-centered cubic (fcc) CCs leads to the increased Young
modulus of this system.>® However, most of the CCs are very fragile due to weak vdW bonding
among self-assembled particles. Thus, these systems can be easily disassembled, which limits their

applications. Therefore, various methods have been employed to enhance the bonding among col-
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loidal particles and make robust CCs. The approaches reported in the literature cover the develop-
ment of core-shell structures, nanocomposites, decoration by surfactants, plasma and chemical

assisted treatments, direct UV irradiation, and temperature treatment, among others.>*%!

The thesis presents a study on three different effects on elastic properties of nanostructures.
First, it addresses the influence of Ta% content in the mechanical response of the Ta-Hf-C 3D
nanocomposites. Next, it discusses the elastic size effect in 2D single-crystal materials on the ex-
ample of a member of TMDCs group, namely MoSe». Finally, it describes the mechanical rein-
forcement of 3D polystyrene (PS) CCs employing supercritical nitrogen or argon treatment, a
novel approach that leads to the strong physical bonding between the polymer nanoparticles. We
used Brillouin light scattering (BLS) to study the elastic properties in these three different nano-
materials and the effects mentioned above. This contactless, non-destructive technique is well es-
tablished for probing the elastic properties of various materials, including bulk, thin sup-

ported/freestanding films, and colloidal crystals.52-%7

Thesis Outline

The thesis is divided into 5 Chapters. Chapter 1 serves as a general introduction to the
elastodynamic theory. Chapter 2 addresses the basics of Brillouin light scattering theory and ex-
periment. Chapters 3, 4, and 5 are dedicated to the discussion of experimental results. In Chapter
3 influence of Ta% content on the Young modulus of Ta-Hf-C nanocomposites is presented. Chap-
ter 4 addresses the elastic size effect in MoSe> ultrathin membranes. Chapter 5 reports on mechan-
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Chapter 1 Elastodynamics

In this chapter, the principles of wave propagation in solids will be described. The field of
physics that studies this phenomenon is called elastodynamics. The first section of this chapter
introduces the formalism of the theory of elasticity, and the second section describes the elastic

waves in solids, including bulk and surface acoustic waves.

1.1 Theory of elasticity

The theory of elasticity describes the deformation of a solid body upon applied forces.
Therefore, this section invokes the fundamental definitions of stress, strain, and elastic tensors.®
For infinitesimally small deformations with respect to the body, solid-state mechanics are well
described by the linear elasticity, i.e., Hooke’s law. In the case of larger deformations, a more
general, nonlinear theory of elasticity is required. The latter will be discussed only for the simplest

case, i.e., for isotropic materials.

1.1.1 Deformation and strain tensor

Let us consider a pre-deformed solid body. The position of any point (labeled as P in Figure
1.1) in the body is given by its position vector r with coordinates x;, where i = 1,2,3. Deformation
of the body leads to the displacement of every point in it. Therefore, the initial position of the point
P changes to r’ with coordinates x; after deformation, which is denoted as P’ in Figure 1.1.
Accordingly, the displacement vector is given as u = r’ —r. Since x; is a function of x;, we can

describe the displacement as a function of coordinates:

w; = x| — x;, (1.1)

where u; are components of the displacement vector.
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Figure 1.1. Deformation of a continuum body represented in the rectangular Cartesian coordinate system
X1, X5, x3. The position of a point P before deformation is given by r(xl,x21x3). After deformation the
position of this point, P is given by r'(x;, x5, x3). The neighboring point L is at the distance dr from
point P before the deformation. After the deformation L’ is on dr’ distance from P’. Differential
displacement in a deformed medium is denoted as du.

To describe the material deformation, we consider two points in the undeformed body labeled as
Pand L in Figure 1.1. These points are very close to each other so that dx; denotes the vector that

joins them before the deformation. The distance between these two points is given as dr =

Jdx? +dx? + dx? = /dxi dx; . After the deformation, the vector joining the same two points

(labeled as P’ and L’ in Figure 1.1) is given as dx; = dx; + du; and their distance as dr’ =

Vdx? + dxj? + dxi? = |/dx/dx]. Hence, we can write:
dr'? = dx/dx! = (dx; + du;)(dx; + dw;). (1.2)

Substituting du; = (0u;/dx;)dx; in Eq (1.2) leads to:

ou; ou; ou;
dr'2 = dr? + Za—x;dxidxk + lTdekdxl. (1.3)

In the second term on the right side of Eqg. (1.2), the summation is taken over indices i and k.

Therefore, this term can be expressed in the symmetrical form as

(aui + %) dx;dx (1.4)
ax,  ox;) R '
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Next, by interchanging i and [ in the third term of Eq. (1.3), we obtain the final form for dr’'2:
dT'IZ = dr? + Zuikdxidxk. (15)

Here, u;;, is the second-order strain tensor defined as:

(1.6)

_ 1 (aul auk aul aul>
ik =3 ox, 0x; 0xy 0x;/)
For small deformations, u; and their derivatives are small. Thus, the last term in the above equation

can be neglected so that for infinitesimal deformations, the strain tensor takes the form:

1 aui auk
) (axk 0xl-) (L.7)
In the matrix form, we can express the strain tensor as a 3 X 3 matrix:
Uy U1z Ugs
Uj = | Y12 U2z Uz (1.8)
Uiz Uzz Uzz

The strain tensor is symmetric (u;;, = uy;) and it can be diagonalized at any point. The diagonal
components of strain tensor are called principal values of strain and can be named u™, u(®| and

u®. The distance dr'? can then be expressed by the sum of three independent terms as:
dr'2 = (8 + 2ug)dagdx, = (1 + 2u®)da? + (1 + 2uP)dx? + (14 2u®)dx$, (1.9)

where 6;;, =1 (i = k) or =0 (i # k) is the Kronecker delta function. The relative change of

elongation along i-th principal axis can be expressed as:

o T 200 — 1~ ), (1.10)

dxi
The last approximation in Eq (1.10) is valid for small deformations with respect to the body. With
that assumption, the relative volume change is given as the trace of the strain tensor:

dv’ —dv

Qv W + Upz + Uss. (1.11)

Therefore, the change in the volume of the body after deformation is, according to Eq. (1.11),

given as the sum of w;;. If this sum is zero, only the shape of the body is altered, with volume
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staying unchanged. This type of deformation is called pure shear. In the opposite case, deformation
causes a change in the body’s volume but not its shape. This type of deformation is called hydro-
static compression. Therefore, any deformation can be expressed as the sum of these two types
through the identity:

1 1
U = (uik - §6ikull> + §6ikull- (1.12)

1.1.2 Stress Tensor

When a solid body is deformed, forces that tend to return it in a pre-deformed state, i.e.,
mechanical equilibrium, arise. These restoring forces are called internal stresses, and they have a
short range of action, meaning that they affect only the neighboring points. The total force acting
on some portion of the body can be expressed as [ F;dV, meaning the sum of all forces F; on all
volume elements, in considered portion. According to third Newton’s law, the forces within the
volume cancel each other, and the resultant force is given as the sum of the forces acting on the

surface. Therefore, we can express F; as the divergence of a second-order tensor:

_ aO'ik

F, (1.13)

B axk '
The resultant force is then given as an integral over the surface enclosing the considered volume:

do;
fFidV = f *dqv = faikdfk. (1.14)

axk

where, df is the surface element vector and a;;, is the Cauchy stress tensor. Figure 1.2 illustrates

a unit cube of the body and the stress tensor components.
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Figure 1.2. Nine components of the stress tensor in the unit cube of a solid body.

As the strain tensor, the stress tensor is also symmetric: a;;, = ay;. Therefore, the stress tensor has
six independent components and, in the matrix representation, it is given as:

011 012 033
Oijx = | 012 022 0323 (1.15)

013 033 033

The work §W done by the internal stresses can be found by multiplying the F; by the displacement
change du; and integration over the volume. The result gives the relation between the work and

the change in strain:
ow = —JikSuik. (116)

The deformation of the body can be elastic or plastic. For the former, material changes back to its
original state when the stress that causes the deformation is removed. If the body stays deformed
after the external load is removed, the deformation is called plastic. There are mixed states when

the deformation can be partially elastic and plastic.

For the elastic deformations, the Helmholtz free energy of the body is givenas A = U — TS, where
T is the absolute temperature, S is the entropy and U internal energy of the system. An infinitesimal
change in internal energy is dU = TdS — 6W = TdS + g, 6u;,. Therefore, for the isothermal

process, the strain and stress are connected through the Helmholtz free energy as:

o4
Gy = ( auik)T' (1.17)

Therefore, we will refer to the Helmholtz free energy as free elastic energy in the following text.
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1.1.3 Generalized Hooke’s law: Linear theory of elasticity

The general expression for the free elastic energy density ¥ = pA (p is the mass density)
of an elastically deformed body is obtained by Taylor series expansion about the state of zero

strain®70

(1.18)

1 1
Y =19+ Ecijkluijukl + gCijklmnuijuklumn'

where the terms of higher than of the third order are neglected. Here v, = 0 is the free elastic
energy density in the absence of strain, while C;j; and C;jx;my denote second (SOE) and third

(TOE) order elastic constants, respectively.

For infinitesimally small deformations, the third term on the right side of Eq. (1.18) can be

neglected, and we get the expression for the free elastic energy density of a linear elastic material:

(1.19)

Y = > CijriUijur

By combining the Eq. (1.19) and Eq. (1.17) we obtain generalized Hooke’s law in the linear elas-

ticity as:"*
oy 1 0
0ij = 9 =5 (CrimnUkiUmn) = _Cklmn(skidljukl + umndmidnj) =
ul-j 2 auij 2
(1.20)
1
=3 (Cijmnttmn + Craijttir)-
If Cry; i = Cijii 9eneralized Hook’s law in the linear elasticity is given as:’*
0ij = Cijrilii, (1.21)

where C;jy; (i, j, k, 1 ={1, 2, 3}) are components of the elastic tensor. In general, this tensor has
3% = 81 components. However, due to the stress and strain tensors symmetry, Ciiri = Ciji, and
Cijik = Cijr, and the number of components can be reduced to 62 = 36. Furthermore, the elastic

tensor is symmetric, and hence the general anisotropic material has 21 independent elastic con-

stants. The Hooke’s law in matrix representation can be expressed as:
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Ciin1 Cizz Criss Ciizz Ciiiz Craiz\ L u
‘711 11
022 Ca222 C2233 Ca223 (213 Cp212 Uyy
{ 033 | C3333 C3323 C3313 C3312 U3z

. — | [ 2w (1.22)

023 C2323 C2313 Ca312 23

. u
13 Symmetrlc C1313 C1312 13
C 2Uqy

1212

Inthe Voigt notation*™: C;; = C, (i = K, kl » L; K,L ={1,2,..., 6}), Eq. (1.22) becomes:

Ciz €13 Ci4 Cys

o, / C11 \
(02\‘ Caz Ca3 Cas Cps (e / \

I Cs3 C34 Css C36

o5 |~ Cap Cys5 Cye (123)
\65 / Symmetric Css Csg u5
Og u6

Ceo

The further reduction of the independent components of the elastic tensor can be performed by
employing symmetry elements typical for a material crystallographic class. This includes rotations
and reflections about specific axes or planes of symmetry, respectively. The symmetry
transformations from one basis €;, to the other €,, is represented by orthogonal second-order tensor
Q = Q;,€; €4, suchthat Q' = QT and |Q;,| = 1 (for rotation) or = —1 (for reflection). The

invariance of the elastic tensor under these transformations is given as:
l]kl QLaQ]BQkle&CaﬁyS (1-24)

In the crystals of lowest symmetry, triclinic, there are no symmetry planes, and the elastic tensor
has 21 independent elastic constants. Monoclinic crystals have one symmetry plane, x;x, and the
symmetry transformation is a reflection about x5 axes. Thus, for this crystal symmetry, there are
13 independent elastic constants. The higher the symmetry is, the simpler is the structure of the

elastic tensor.

Here, only the elastic tensor for crystals with cubic and hexagonal symmetry that are relevant for

further discussions are presented:

i) For a crystal with hexagonal symmetry, there are seven planes of symmetry, and there-

fore the elastic tensor has five non-zero independent elastic constants:
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Cll C12 C13 0 0 0
C12 C11 C13 0 0 0 \
Cs Cs C 0 0 0 .
Ckr = (1)3 (1)3 83 Co 0 0 , where Cog = > (C11 — Ci2). (1.25)
0 0 0 0 (Y 0
0 0 0 0 0 Ceo

ii) For a crystal with cubic symmetry, there are nine planes of symmetry, and the elastic

tensor has three non-zero independent elastic constants:

|Gz Gy Gy O 0 0 |
Cke=19 0o 0 Cu 0 o | (1.26)
0 0 0 Coo O

o Gl
0 0 0 0 0 Cy

Moreover, we can invert Eq. (1.21) into ux = Sk,0,, Where Si;, = Ci is called compliance ten-

sor. Young modulus in a given direction is given as Ex;, = 1/Sk;.

For elastically isotropic materials, the elastic tensor has two non-zero components related by C;; =
Ci2 + 2C44. The two independent elastic constants can be identified as Lamé coefficients: C;, =

Aand C,, = u. Thus, the general expression for the elastic tensor of isotropic material is given as:

Cijia = 46561 + 1 (6 6j1 + 6116ji) (1.27)

Replacing Eqg. (1.27) in Eqg. (1.21) gives:

O-ij = lukkSij + 2,uuU (128)

The Lamé coefficients are related to shear (G) and bulk (B) moduli as:

G=u (1.29)
2
B=A+zp (1.30)

Next, we can express Young modulus E, and Poisson ratio v for isotropic solid as:

B
g= B¢ (1.31)

3B+G
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1.1.4 Nonlinear elasticity — isotropic materials

When deformations are not infinitesimally small with respect to the body, deviations from
their linear relation given by Hooke’s law will occur. In this case, the last term in Eq (1.18) cannot
be neglected, and the TOESs Cjjx;my, are needed to describe the behavior of the nonlinear elastic
body. Due to its symmetry, Cijximn = Cjikimn = Cijikmn = Cijkinm = Ckiijmn = Cmnkiij» TOE
tensor is characterized by 58 independent components for the material with the lowest symmetry
and 3 for the isotropic material (highest symmetry). Thus, for an isotropic material, the elastic

energy density from Eq. (1.17) simplifies to:

A+ 2u g+ 2y

ll’_z

N2 — 2uR, +

N3 — 2R R, +1R;, (1.33)

where 8; = u;, 8, = (u;w; — wijw;) and X3 = |uy;|. In Eq (1.33), besides Lamé coefficients,
TEO constants called Murnaghan coefficients”>7® B =Ci12/2,7y =
(C111 — C112)/4andn = (Cy11 — 3Cy12 + 2C453) /4 are introduced. Here, we recall the Voigt
notation for TOE elastic constants as Cjjximn — C,]K(ij > Lkl->]mn-K;I,],K =
{1,2,..., 6}).5%7 The shear and bulk modulus for nonlinear, isotropic elastic material exposed to

hydrostatic pressure (p) are given as "

6y —n+ 61+ 6u

=y — 1.34
G(p) =n 61+ 4u (1.34)
2 188 + 2n
— Z— ! 1.
B(p)=1+3zu At 6u " (1.35)
The change of Young modulus and Poisson ratio with pressure can then be expressed as:
9B(p)G(p)
E = 1.36
®) =356+ 6 (139
E(p) (1.37)
vip) =551
P 260
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1.2 Elastic waves in solids

1.2.1 Bulk elastic waves

According to the second Newton’s law, the general equation of motion can be expressed
by equalizing the internal stress force, Eq. (1.12) to the product of acceleration and mass den-
sity p:°8

0%u; doy
Pz = oxy

(1.38)

Therefore, by substituting Eg. (1.21) into Eq. (1.38), we obtain the equation of motion for aniso-

tropic material as:”’

2 2
au]' auk

Y_eo 9T 1.39
Pz = Cumgiay (1.39)

For an infinite medium, we can look for the solutions for the above equation in the form of plane

Waves:
U; = Ujo exp[iq(ljxj - vt)], (1.40)

where u;, is the amplitude, v is the phase velocity and q = q(l;, l,, I3) is the acoustic wave vector.
Parameters [; stand for direction cosines [; = cosa;, where a; are the angles between the vector q
and the positive x; axes. By substituting Eq. (1.40) into Eq. (1.39), we obtain the Christoffel’s

equation that has nontrivial solutions only if:”’
|Fij - Sijpvzl =0, (141)

where I';; = l;xCk, 1, ; is called the acoustic matrix, whose components are the function of propa-

gation directions and elastic constants of the crystal. Here, [;x and [, ; = ll-KT are expressed as 3 X

6, and 6 x 3 matrixes of direction cosines, respectively, such that:
L, 0 0 0 I3 I
liK = (O lz 0 l3 O ll) (142)

0 0 I I, I O
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Therefore, for a given direction of propagation and crystal symmetry, Christoffel’s equation gives
the phase velocities of the acoustic waves. In general, there are three solutions for bulk waves: one
with quasi-longitudinal and two with quasi-transverse displacement. For propagation along high-
symmetry directions, the solutions are pure longitudinal and transverse waves with displacements
parallel or perpendicular to the propagation direction, respectively. Since it is relevant for this
thesis, we will present as an example the solution for phase velocities of bulk acoustic waves
propagating in high-symmetry [100] direction for hexagonal symmetry. For the considered direc-
tion, direction cosines are [; = 1, [, = I3 = 0. Thus, by using Cy,, for hexagonal symmetry given

in Eq. (1.25), we find the acoustic matrix I';; to be

C; 0 O

0 0 C,

By substituting Eq. (1.43) into Eq. (1.41), we obtain the phase velocities of three types of bulk
acoustic waves (BAWS) propagating in x; direction. The first one is the longitudinal (L) BAW
with phase velocity

v, = [—, (1.44)

the second is the transverse (T1) BAW with displacement in x, direction and phase velocity

C66
Vg = [—, (1.45)
T1 p

and the third is the transverse (T2) BAW with displacement in x5 direction and phase velocity

C44
v, = |22 (1.46)
T2 p

The displacement profiles for these waves are illustrated in Figure 1.3.
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Figure 1.3. Schematic displacement fields corresponding to longitudinal wave (L), and transverse bulk
acoustic waves (T1 and T2 BAWS).

1.2.2 Surface acoustic waves

Surface acoustic waves (SAWSs) propagate parallel to the free surface of an elastic material,
with their displacement amplitude exponentially decaying with the depth. Lord Rayleigh first pro-
posed their existence in 1885.7® To derivate the phase velocity of SAWSs propagating in the surface
of a homogenous half-space, we recall the equation of motion (Eq. 1.39) and impose stress-free

boundary condition. The latter can be expressed with the formula:’’

auk
oi3(x3 =0) = Ci3kla_xl

=0, (L.47)

X3=0
where x; = 0 denotes the surface. The solutions for SAW, which decays exponentially with depth

below x; = 0, are assumed to be a linear combination of terms in the form:’’
u; = w expliq(ls x3)] explig(lyx; + Lx, — vt)] (1.48)

In the case of surface waves, [; must be such that the amplitudes of all the displacement compo-
nents vanish as x; —» —oo. For SAWS, the propagation vector is always assumed to be parallel to
the surface, therefore, x3- dependence can be considered as part of the “amplitude” of its wavelike
properties. If we substitute Eq. (1.48), with specified [, and [,, into Eq. (1.39) we get to the same
Christoffel’s equation as in Eq. (1.41). However, the SAWSs represented by Eqg. (1.48) are inhomo-
geneous, and the value of [ is not predefined. Therefore, for any specified v, any root [5 of the
Eqg. (1.41) provides a solution of the form of Eq. (1.48), which satisfies the anisotropic wave equa-
tion. These solutions present a wave traveling with a phase velocity v in the direction x;[; + x,1,
and the decay (x3- dependence) governed by the [5. In general, there are three lower-half-plane
roots of Eq. (1.41) satisfying the condition that all the displacement components vanish when x; —

—oo. Therefore, the assumed solution is a superposition of three waves given as:”’
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u; = Z Q(nO)ui(Z;O) exp [iq (lgn")xg)] expliq(lyx, + Lx, — vt)], (1.49)
No

(no)

where o) and u;,° are weighting factors and partial wave amplitudes. Substituting Eq. (1.49)

into Eq. (1.47), we get:

X Cisk Q(n°)u(n°)l(n0) =0, (1.50)
This set of equations which can be expressed in matrix form as a multiplication of the 3 x 3 matrix

of the coefficients and the 3 x 1 column vector g of the weighting factors:

1 2 3
Cosrtl?  Costall?  Cpzul || 0@ 0},
Q(3) 0

C13kz§;$) C13kl§;g) C13klZIS) Q(l) 0
—< ) (1.51)

1 2 3
Cs3raly  Cssrall?  Cazulsy

where (("") = uko")l(n") For simplicity, we will denote the matrix of coefficients [first matrix on

the left side of Eq. (1.51)] as D. This set of equations has nontrivial solutions when the determinant
of matrix D is |D| = 0.

Here, we will discuss only the propagation of SAWSs in the case of isotropic materials. For the
direction propagation in x4, so that [; = 1 and [, = 0, the acoustic matrix for isotropic material is

expressed as:

1 1
/C11 + E(Cn — ()15 0 5 (C11 + Cip)ls \
| 1 I
Ly = 0 5 (€11 — Ci)(1+13) 0 | (1.52)
1 1
> (Ci1 + Cip)l3 0 C1l5 + 5 (Ci1 — C12)/
In this case, Christoffel’s equation [Eq. (1.41)] is given as:
2
E (€1 — C12)l§ + % (C11 — Cyp) — Pvz] [C11l§ +Ci1 — Pvz] =0, (1.53)
and has the six roots:
1 1
10 =1 = —i[1-(w/v)?)2, P =1 =i[1-(v/vn)?]%
3 -/, 1 =1 =i[1-(o/r)] s

(3) 1[1 (v/vy) ] l§6) = i[l—(v/vL)Z]%
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The three roots in the upper-half of the complex plane can be discarded since they will result in
wave amplitudes growing with depth. The partial wave amplitudes corresponding to lower half-

plane roots are:

1

uﬁ)) =0, uﬁ)) =ivr/v [1_(U/UT)2]2; ui? =v /v

ufg =1, uy =0, u® =0 (1.55)
1

ug%)) =0, ug%) = VT/U; ug%) = —i UL/U [1—(U/UL)2]2.

Thus, the Eq. (1.51) becomes:

0 uld +uDi? uld +uIP\ /oW 0
1§V 0 0 0@ | = (0) (1.56)
Q(3) 0

2),(2 2 3 3
0 CuPi® +c,u? 1P+ u?

Then, |D| = 0 for two different values of v. First, if v = vy the solution is the transverse bulk
wave with displacement parallel to the free surface. The second v forces |D| = 0 by making the
cofactor D,, zero:

@3] (2);(2) 3) 3);3
D, = Usy + Uy ls Uzy + Uy ls -0 (157)

The solution of this determinant leads to the equation that describes the Rayleigh surface wave
(RSW) velocity:

[2 _ (vst>2r _ l - (VRSW)ZF [1 B (URSW)ZF' (1.58)
Ut UL Ut

Rayleigh surface waves are the type of SAWSs, illustrated in Figure 1.4, that are non-dispersive

waves propagating in the close vicinity of the free surface in both isotropic and anisotropic mate-

rials. For particular material and direction of propagation, there is only one RSW. These waves are

a superposition of L and T BAWSs with the displacement amplitude decaying exponentially to zero

within only a few wavelengths distance from the free surface. In addition, the particle displacement

is elliptical such that the major axis of the ellipse is perpendicular to the free surface.
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Figure 1.4. Schematics of the displacement field corresponding to Rayleigh surface wave (RSW).

In anisotropic materials, the propagation of SAWSs is more complex since the velocity and pene-
tration depth strongly depend on the direction and plane of propagation. In this case, the analysis
of SAWSs requires numerical methods. When the material is anisotropic, pseudo-surface acoustic
waves (p-SAWSs), also called leaky waves, appear. The p-SAW is a coupled mode involving sur-
face waves and waves radiating into bulk. Nevertheless, the bulk term disappears for propagation
along the high-symmetry directions, and the p-SAW has all the properties of a normal surface
wave. Both experimental and theoretical studies have reported p-SAWSs and high-frequency
pseudo-surface acoustic waves (HFPSAWS) in anisotropic crystals. For instance, p-SAWSs in cubic
materials were theoretically predicted by Farnell.”” Experimentally, p-SAWSs were observed by
Brillouin scattering (BLS) for directions close to the [110] on the (001) plane of Si’® and (111) of
GaAs.2% The velocity of the p-SAWs lies between the velocities of two transverse bulk waves. The
HFPSAWS, also known as longitudinal resonances® or skimming longitudinal waves,®? have the
velocity that lies between those of the transverse and longitudinal BAWSs. In materials that have a
Poisson ratio, v < 0.33, the velocity of HFPSAW is almost identical to that of the L BAW.®! Car-
lotti et al.® studied the propagation of RSW, p-SAW, and HFPSAW in GaAs(111) both theoreti-
cally and experimentally. Figure 1.5 displays the calculated projected local density of states
(PLDOS) of the surface displacement components u;, u, and us as a function of the frequency f
in [110] and [121] propagation directions. The p-SAW consists of two waves that are confined at
the surface and the third one that is a bulk wave. Therefore, the displacement field of p-SAW has
components both parallel (u,, u3) and perpendicular (u,) to the sagittal plane and depends on the
propagation direction. Moreover, the p-SAW displacement is dominated by the u, component, for
[121] propagation direction. The HFPSAW, has a pure longitudinal nature for any propagation
direction on the (111) plane and consists of three partial waves where only one is confined at the
surface, while the other two are bulk waves. Thus, HFPSAW is much more attenuated when com-
pared to p-SAW.
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Numerically, PLDOS for SAWSs in anisotropic materials can be calculated from the mean-square

displacement:

kgT
(1 (0)*)g0 = ——Im[Gii(q, 0, )] (1.59)

where G;;(q,0,w) =Y, Q(")ul.(g ) is the component of Green’s function tensor.® Thermal occupa-
tion of each mode is given by kgT /mw, where kg is Boltzmann constant, T is temperature, and

w = 2nf is  the angular  frequency. Therefore, (lu1 (0)1*)g,0~G11 and

<|u2(0)|2>q,(u~622 (lus (0)|2)q,w~033-

110]

RSW  [PpSAW HFPSAW |

4 H
RSW glp-SAW HFPSAW

Power Spectrum (a.u.)
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Figure 1.5. Calculated PLDOS for displacements u,, u, and us for [110] and [121] propagation direc-
tion in (111) plane of GaAs. This figure was reproduced from Ref. [80].

The introduction of a thin surface layer that is firmly bonded to the infinite substrate may
lead to the appearance of SAWs that substantially differ from RSWs. One can distinguish two
possible cases in such systems: fast-on-slow (stiffening) or slow-on-fast (loading) systems.3 In
the former case, the velocity of the shear BAW of the layer is greater than that of the substrate,
which in most cases corresponds to an elastically hard film on an elastically soft substrate. Con-
trarily, in the latter case, the velocity of the shear BAW in the substrate is greater than that of the

layer. In the layered media, RSWs are dispersive, i.e., the phase and group velocity depends on the
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wave number (wave-length, frequency). Besides RSWs and p-RSWs, Sezawa waves (SWSs),
pseudo-Sezawa waves (p-SWs), Love waves, and Stoneley waves can be found in thin supported
films. SWs are SAWs with displacements mainly localized in the supported layer and falling off
exponentially in the substrate. p-SWs are Sezawa-like waves that radiate energy into the bulk.
These types of waves can only be observed in slow-on-fast systems. Love waves are in-plane
transverse surface modes in a layered half-space and they also propagate only in slow-on-fast sys-
tems.52818586 Stoneley waves are waves that are localized at the boundary between film and sub-

strate and they are typical for transparent films on opaque substrates.8%8

Sumanya et al.®° studied the propagation of SAWSs in both fast-on-slow and slow-on-fast systems.
As an example of a fast-on-slow system, they discuss the case of titanium carbide (TiC) film on
Ge substrate. The calculated dispersion for TiC/Ge is shown in Figure 1.6 (a). Starting at small
reduced in-plane wavenumbers g, h = 0, (g, stands for the wavenumber corresponding to the wave
vector parallel to the surface) in the absence of the layer, the RSW in Ge substrate is the only mode
observed. With increasing g, h the phase velocity of RSW increases, and at certain g, h merges into
the out-of-plane T BAW continuum of the substrate. Above that threshold, p-SAWSs are observed.
Further increase of g, h leads to the appearance of RSW of the TiC film. In this system, a pre-
Rayleigh feature [indicated in Figure 1.6 (a)], observed only in strong stiffening systems, appears.
Higher mode p-SAWSs are also observed as the layer thickness is increased. TiC film on silicon
carbide (SiC) substrate is an example of a slow-on-fast combination, and the dispersion of SAWs
of this system is shown in Figure 1.6 (b). Similar to the previous case, at q;h =~ 0 RSW of the
substrate is identified with a velocity lower than of shear wave in the substrate. However, in this
system, with increasing g, h the RSW velocity falls off, and for large g,h it asymptotically ap-
proaches the RSW velocity of the film. At a sequence of critical values of g,h additional higher-
order Sezawa modes denoted 1SW, 2"SW in Figure 1.6 (b), appear. For large g,k 19'SW asymp-
totically approaches the shear velocity of the film. These waves have lower velocity than substrate

shear velocity.
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Figure 1.6. Calculated dispersion in form velocity vs. reduced wave vector, g,h for (a) TiC/Ge and (b)
TiC/SiC as examples of fast-on-slow and slow-on-fast systems, respectively. This figure was reproduced
from Ref. [85].

The dispersion relation of SAWSs can be numerically calculated by the finite element
method (FEM). The FEM modeling requires the definition of 2D or 3D unit cells, meshing, mate-
rial properties, and boundary conditions. For the given problem, FEM solves the equation of mo-
tion searching for the undamped eigenmodes. As an example from literature,®” Figure 1.7 () dis-
plays a schematic representation of studied multilayer structure [NigoFe2o/Au/Co/Au]1o on asilicon
substrate. For the simulation of SAWSs, the boundary condition for the top surface was set free
while the bottom boundary is fixed to zero displacements (u; = u, = u3z = 0). These conditions
were chosen to resemble the exponential decay of SAWs amplitude with depth. Additionally, to
simulate eigenmodes that resemble the propagation of waves parallel to the top surface, for the left
and right surfaces, the Bloch-Floquet periodic boundary conditions were set for each component
of displacement: u;exp[i(q;1x; + g2x2+q3x3)]. The resulting dispersion relation of RSW and SW
obtained by FEM modeling for this system is displayed in Figure 1.6 (b). The FEM result agrees
well with BLS data, also reported in this study.

It is important to note that the FEM solutions include eigenmodes that are not SAW-like. To ex-
clude such solutions, one can use “surface-like” parameter &, related to the center of free elastic

energy density along the axis normal to the free surface, x;, given as &

J, ¥xds

§=1 )
H [ ds

(1.60)
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where s and H denote the unit cell area and height. The SAWs have & in the 0 - 0.2 range. Thus,

calculated points for witch & > 0.2 can be excluded.®
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Figure 1.7. (a) Schematic illustration of [NigoFezo/ Au/Co/Au]io multilayer structure supported by silicon.
(b) Corresponding dispersion relation calculated by FEM (empty squares) and measured by BLS (full
circles). The figure is taken from Ref. [87].

1.2.2.1 Lamb waves in plates

Following the work of Lord Rayleigh, Horace Lamb reported waves in thin plates in 1917
that were named after him: Lamb waves.®° These waves propagate parallel to the surface, and their
dispersion relation can be calculated from Christoffel’s equation (1.41) with two boundary condi-
tions that correspond to the stress-free upper and lower surfaces. For the plate of thickness h (Fig-

ure 1.8), these boundary conditions are given as:

auk

oi3(x3 =0) = Ci3kla_xl| T 0, (1.61)
X3=
9
oi3(x3 = —h) = CiSRIaLx’; T 0. (1.62)
X3=—

x/
th

Figure 1.8. A plate of thickness h. For the upper and lower surface of the plate x; = 0 and x; = —h,
respectively.

X2
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For simplicity, we consider the propagation in the elastically isotropic plate/slab in the x; direction,

so that [; = 1 and [, = 0. In the case of thin plates, Eq. (1.41) has n, = 6 solutions for l§”°) for

any value of v. Therefore, the general solution for displacement is a superposition of six waves:

6
u; = Z Q(nO)ui((T;O) exp [iq (l§n°)x3)] expliq(lyx; + vt)]. (1.63)

No
By substituting Eq. (1.63) into equations (1.61) and (1.62) we get:
Zno i3kl Q(nO)u(nO)l(nO) =0, (164)

%6, Ciza 0 e 1" exp [~ (igls" )| = 0. (1.65)
Similarly, as for SAWSs, we can express this set of equations as:

C13k151$) C13kl<;§?) Q(l) (0)
: K : B (1.66)

1 6 -6 i
C33kl§;(d) C33le() 0® 0

where (' = 41" and g("") = u,(:é")l(%)exp( —iglzh). The problem has nontrivial solu-
tions when the determinant of the matrix of coefficients is zero, |D| = 0. As shown in Table 1.1,
the solutions can be sorted concerning displacement in terms of their mid-plane (x5 = —h/2)

symmetry to the corresponding Lamb waves:

Table 1.1. Types of acoustic waves in membranes/plates.

Wave Symmetry  Symmetry relation
Symmetric Lamb S uz(—h) = —u3(0)
Antisymmetric _
Camb A u3(~h) = u3(0)
Shear-Horizontal SH us(—h) =u3(0)=0

The displacement profiles corresponding to zero-order (fundamental) Lamb modes are illustrated

in Figure 1.9.
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Figure 1.9. Deformations corresponding to antisymmetric (AO) symmetric and shear horizontal (SHO)
zero-order (fundamental) Lamb waves.

The dispersion relations of Lamb waves in the form v(q) can be calculated using the numerical
approach. For that purpose, the material of consideration is defined by its thickness, elastic con-
stants, and mass density. To obtain the dispersion of Lamb waves in such material, v is firstly
swept in Christoffel’s equation [Eq. (1.41)] at a given q to find the minima of the matrix of coef-
ficients |D| from Eqg. (1.66). This minimum corresponds to phase velocities of Lamb waves. Next,
the same procedure is repeated for variated g, allowing to plot the Lamb wave velocity as a func-

tion of wavenumber. The v(q) dispersions can easily be converted to the f(q) form.

1.2.2.2 Spheroidal Lamb waves

In 1881 Horace Lamb reported spheroidal waves in the publication entitled “On the Vibra-
tions of an Elastic Sphere”.?® In the spherical coordinate system, the displacement vector can be
expressed as the sum of angular (I, m) and radial (n) dependence of sphere displacement: u =1+
m + n. Therefore, the equation of motion can be separated into three independent Helmholtz equa-

tions:

(V2 +qgdHl =0, (V2+g¢gim=0, (V2+qg?>n=0, (1.67)
where 1 represents the displacement associated with longitudinal wave and n and m represent the
transverse displacements, which are orthogonal to each other. The vibrational modes of a free
homogenous elastic sphere can be classified into torsional and spheroidal modes. The torsional
modes are entirely tangential, i.e., they involve only shear motions and do not cause changes in
the sphere shape. Modes that usually involve both shear and stretching motions are called spheroi-
dal, and they can be noted by two indices (n, [). Only spheroidal modes with [ = 0 have purely

radial displacement, and they are called breathing modes. Figure 1.10 illustrates breathing (1,0),
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dipolar (1,1) and quadrupolar (1,2) spheroidal Lamb modes. The frequency of these (n, 1) modes

are given as:>>%

Ap 1V

fonD ==

where 4,, ; is the dimensionless constant that depends on Poisson’s ratio, and d is the diameter of

(1.68)

the sphere.

Figure 1.10. Schematic illustration of (a) breathing, (b) dipolar, and (c) quadrupolar spheroidal Lamb
modes.
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Chapter 2 Principles of Brillouin light scattering

Brillouin light scattering (BLS) refers to the inelastic scattering of monochromatic laser
light by thermally populated elastic waves/phonons in a medium, i.e., acoustic phonons. This chap-

ter briefly introduces the theory and experiment of spontaneous BLS.

2.1 Light scattering

Let us consider the scattering of the incident light, with wave vector k; and angular fre-

quency w; in a medium. The incident electric field can be expressed as:
Ei(r, t) = eiEO exp l(kl r— a)it), (21)

where E, and e; denote electric field amplitude and unit vector of incident electric field polariza-

tion, respectively. The medium at which scattering takes place has a local dielectric constant given
.91,92
as:”"

e(r,t) = el + 6¢(r, t), (2.2)

where ¢ is an average dielectric constant (defining the refractive index n, = ), I is the second
rank unit tensor and §e(r, t) is the dielectric fluctuation tensor. Moreover, as it has been demon-
strated in the literature, the scattered electric field at a large distance L from the scattering volume

V can be derived from Maxwell equations as %

E
E,(R,t) = 47‘[28 exp ikSLJ d3rexpi(q-r— wit)[es - [ks X (ks X (8&(r,t) - e)]], (2.3)
v

where e, and K are the scattered field polarization and propagation vector, respectively. The dif-
ference between the incident and scattered light vector defines the scattering wave vector q (Figure
2.1):

q=k; — k.. (2.4)
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Figure 2.1. Schematic illustration of general light scattering setup. Incident light with e;, k; and w; is
scattered on the acoustic waves. The scattered light with e, kg and w reaches the detector. The scattering
wave vector is denoted as g.

The angle between k; and K is the scattering angle 6 and the magnitudes of these wave vectors
are respectively 2mn./A; and 2mn. /A, where 4; and A denote wavelengths of the incident and
scattered light, respectively. Usually, scattering does not result in a significant change in wave-
length of incident light and |Kk;| = |k¢|. Therefore, as follows from Figure 2.1, we can get the

magnitude of q as:

0
q? = |k — k|* = ki + k* = 2K, - kg = 2k” + 2k, cost) = 4k”sin” 5, (2.5)
_Zk_0_4nnr_9 ’6
q= ismz— 7 sz' (2.6)

Eqg. (2.6) gives the Bragg condition. Applying the spatial Fourier transform of the dielectric fluc-
tuation: 6&(q,t) = f, d*rexp iqrée(r,t), Eq. (2.3) simplifies to **

2

47:L£° expi(ks L — wit)deis(q,t), (2.7)

Es(R,t) =

where d¢;(q,t) = esde(q, t)e; denotes the component of the dielectric fluctuation tensor along
the initial and final polarization directions. From Eq. (2.7), we can write the time-correlation func-

tion of £, as:™

k$|Eo|? .
(Es(L,0)Es(L, b)) = #2282 (6i5(q, 0)d¢i5(q, t))exp(—i w;t). (2.8)

The spectral density is given as:

40



Ir(w) = %fw dt (E*(t)E(t + T)exp(—iwT), (2.9)

where 7 stands for correlation time of the property called the relaxation time. Therefore, substitut-
ing Eq. (2.8) into Eq. (2.9) gives the spectral density of light scattered into detector with e, Kq
and wy:

Lk¥ 1

Iis(CI; (l), L) = 167TZL2£2 E

f " dt {8 (0,0)5e(q, D)expi( s — wit), (2.10)

where I, = |E,|%. From the above equation, we see that spectral density depends only on the dif-

ference in angular frequencies of the incident and scattered light, w = w; — ws.

2.2 Brillouin light scattering

An acoustic wave propagation causes a periodic change in the local dielectric constant
(refractive index) in a material. Thus, producing a traveling grating with a spacing equal to the
wavelength of acoustic wave A, as illustrated in Figure 2.2. We can describe BLS considering

multiple reflections of the incident light from so-formed traveling grating. 89

SABM 21)SNOOY

Figure 2.2. BLS scattering as constructive interference of the multiple reflections of the incident light
beam (4;, k;) from an elastic wave of wavelength A.

According to Bragg's law, the condition for constructive interference for multiply reflected light

IS given as:

0
A = 2n,.Asin > (2.11)
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where 4;, 8, and n, stand for the wavelength of the incident light, the angle between the incident
and reflected light, and the refractive index of the medium, respectively. Substitution of Eq. (2.11)
into Eqg. (2.6) gives the magnitude of scattering wave vector, i.e., acoustic wavenumber:

_2m _ 4mne 6
q= T = /11 Slnz. (212)

Since the acoustic wave travels with a phase velocity v, the scattered light frequency f; =

w/2m, seen by the detector experiences a Doppler shift £:%

0 v 4nn, 0

v .
fs=fiif=fii2fia51n§=fii§ gy smi, (2.13)

where f, stands for the frequency of incident light and vy, for the light velocity in the medium. The
plus and minus signs correspond to two possible propagation directions of the sound wave. The
first one is for propagation toward the detector leading to an increase in the frequency of the scat-
tered light, i.e., anti-Stokes scattering. The latter is the opposite, i.e., Stokes scattering. Therefore,

as illustrated in Figure 2.3, the BLS spectrum consists of a doublet centered at frequencies:

v
f=%5-4 (2.14)
or, in terms of angular frequency:
w = tvq. (2.15)
Stokes Anti-Stokes
— f f—

fi=f K AtS

Figure 2.3. Schematic representation of BLS spectrum.
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From the quantum mechanical point of view, the Brillouin scattering process is described
as photon-phonon interaction, where the photon is the quantum of the electromagnetic field, and
the phonon is the quantum of the acoustic field. An incident photon with energy Aw; and momen-
tum #AK; is inelastically scattered on a phonon of energy 2w and momentum hq in the scattering
medium. During this process, the phonon is either created (Stokes event) or annihilated (anti-
Stokes event), as illustrated in Figure 2.4. In the Stokes event, the scattered photon loses energy
for phonon creation. Contrarily, in the anti-Stokes event, the scattering photon gains energy due to
phonon annihilation. Conservations of energy and momentum in the scattering process require:®?

Stokes event: Ws = Wj — W
ki=k,—q (2.16)

Anti-Stokes event: ws = w; + w
k.=k;+q (2.17)

Figure 2.4. (a) Phonon creation: Stokes event and (b) phonon annihilation: anti-Stokes event.

2.2.1 Brillouin light scattering geometries

The scattering geometry has a significant role in the BLS experiment since it defines the
acoustic vector g. Figure 2.5 illustrates commonly used BLS geometries. In the transmission ge-

ometry [Figure 2.5 (a)] it has been shown that, according to Snell's law, the magnitude of q is:%*

47an . 1 =1 1 . =1 1 .
q= 7 sin E[sm (—sma)+sm (n—sm(e—a))], (2.18)

nr T

where a and 8 denote incident and scattering angle, respectively. For the special case, when a =

6/2, the probed q is parallel to the surface of the sample, and its magnitude is given as:%
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4t 0
qQ = )TiSIHE» (2.19)
As follows from the above, the acoustic wave number does not depend on the refractive index of
the sample. In the reflection geometry [Figure 2.5 (b)], the scattering vector is perpendicular to the
surface of the sample when condition a = (m — 0)/2 is fulfilled. In this case the g, is given re-
fractive index dependent and it is given as:%
41
q. = N n.? — sin’a (2.20)
Another geometry commonly used for probing SAWSs or spheroidal Lamb waves in colloidal crys-
tals (CCs) is backscattering geometry, schematically shown in Figure 2.5 (c). In BLS experiments,
scattering on acoustic phonons/waves originates from the surface ripple (SR) mechanism (or mov-
ing interface mechanism) and the photo-elastic (PE) mechanism. In the SR mechanism, scattering
occurs on the surface or near-surface region where incident light can penetrate. Thus, this mecha-
nism is typical for semi-opaque and opaque materials. For the SR mechanism, the conservation of
the momentum holds only for in-plane components parallel to the surface. Therefore, in this case,
the acoustic wave vector q lies in the free surface, and its magnitude for backscattering geometry

[as illustrated in Figure 2.5 ()] is given as®?

_ i
q = 2k;sinf = Tsm 0. (2.21)

1
In transparent and semi-transparent solids, scattering from bulk acoustic waves through PE mech-
anism is dominant. In backscattering BLS geometry, bulk waves have refractive index dependent
wave number given as 2

4nn,
Q =2nck; = P (2.22)
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Figure 2.5. (a)Transmission, (b) reflection, and (c) backscattering BLS geometries. Symbols k; and Kk
denote wave vectors of incident and scattered light, respectively. « and 6 stand for incident and scattering
angle, respectively. The direction of acoustic wave vector in (a) is parallel to the surface q; or in (b)
normal to the surface q, . In (c) q and Q denote wave vectors of SAWSs and BAWS, respectively.

2.2.2 Photo-elastic coupling: selection rules

The scattered intensity due to the fluctuations of the dielectric constant in a medium can be
accessed through the PE coupling phenomenon, where the local dielectric constant can be altered

by the local strain. The inverse dielectric fluctuation tensor is related to strain tensor according
t092,97

8eij" = PijraOua, (2.23)
where Py, is Pockel's photo-elastic tensor. Due to the strain and dielectric tensors symmetry
(urr = wyk and Sg;; = Sg;;), the Pockel's tensor can be expressed by a 6 X 6 matrix. As it was in
the case of the elastic tensor (Chapter 1), the number of independent elements of Pockel's tensor
depends on the material symmetry. The multiplication of the 6-components strain by the 6 X 6
Pockel's tensor (Eq. 2.28) P;;u; gives a 6-components Se; ! that can be expressed as 3 x 3 matrix.

Next, we introduce tensor T! as:

0g; Ogg Oées
T =| e b, ey |, (2.24)
0es Ogy O3

This tensor is related to the Rayleigh ratio RJ, quantity used to represent the intensity of the com-
ponents in the scattering spectrum, according to:
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o kgTm? 1 o g
R == (eTe) = (2.25)

where kgT is thermal energy (kj is the Boltzmann constant and T is the temperature), pv? is the

elastic constant of the j-th mode.
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Figure 2.6. The schematic view of the backscattering BLS experiment with the plane of incidence for

incident/scattered light is normal to the sample surface. Light with p (TM) and s (TE) polarization is

parallel and normal to the plane of incidence, respectively.
The selection rules for BLS are governed by the product (e, T'e;) in Eq (2.25). In our experiments,
as illustrated in Figure 2.6, we used p-p (s-s) and s-p (p-s) polarization regarding incident-scattered
light. Here, p and s correspond to the polarization of the light being parallel (TM polarization) and
normal (TE polarization) to the sagittal plane (plane of incidence), respectively. In the backscat-
tering BLS geometry, polarization unit vector e=(1 0 0) corresponds to p and e =
(0 1 0) to s polarization. The PE tensors for longitudinal and two transverse phonon modes

for crystals of different symmetry and specific phonon propagation can be found in the literature.®2
Here, only the T’ tensors and velocities for longitudinal (L) and two transverse waves (T1, T2) for

the [100] phonon in hexagonal crystal belonging to space groups Cey, Dg, D31, and Dy, are shown

in Table 2.1, since they are relevant for the experiments in this thesis (Chapter 4).

Table 2.1. Velocities and T’ tensors for [100] phonon in a material with hexagonal symmetry. Pockel's
coefficients are denoted as P;;, while £, and &, stand for ordinary and extraordinary dielectric constants,
respectively.

L T1 T2
v = (Ci1/p)/? v = (Cee/p)*/? v = (Caa/p)'/?
&Py 0 0 0 €2(Py; — P12)/2 0 0 0 £&Pu
Tb=| 0 &P, © T™ = &2(p,, — P,,)/2 0 0 TT? = ( 0 0 0 )
0 0  &2Pyy 0 0 0 co€ePys O 0
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2.2.3 Experimental setup: Tandem Fabry-Perot interferometer

A single Fabry-Perot interferometer (FPI) consists of two plane mirrors that are parallel to
each other. One of these mirrors is fixed while the other is movable, and the distance between them
is denoted as L. When a light beam enters the interferometer, it undergoes multiple internal reflec-
tions between these mirrors. Therefore, the reflected beams interfere and only the wavelengths that
satisfy constructive interference condition will be transmitted. The constructive interference oc-

curs when:

bA; = 2n.Lcosé, (2.26)

where b is an integer, n, is the refractive index of the medium between the mirrors and 6 is the
angle between the normal to the mirrors and the light beam. Typically, the space between the
mirrors is filled with air so n,. = 1. Therefore, when the light enters normal to the mirrors (cos8 =
1) the Eq. (2.26) becomes:

2L
A= (2.27)

The separation between two neighboring transmission maxima for a given L (Figure 2.7) is called

the free spectral range (FSR = AA) and it can be defined from the equality

A b’ (2.28)
where Ab = 1. By combining Eq. (2.27) and (2.28), we can express FSR in the form:

At A7
b2 (2.29)

or in terms of frequency as:

Af =20
f=5p (2.30)

with v, denoting the velocity of light in vacuum.
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Figure 2.7. Transmission vs wavelength where the spacing between two adjacent transmission maxima,

A is the free spectral range FSR. The linewidth §A is the width of the peak at half maximum. This figure
was reproduced from Ref. [98].

The linewidth 64 (FWHM — full width at half maximum) of the transmitted line (Figure 2.7),
depends on the reflectance, R. To show this, we start from the relation between transmission func-
tion of the FPI and reflectance given by Airy function:*

. 1 (2.31)
L1 + cpsin?(8,/2)

Here, 6, = 4mL/4; is the phase difference between each successive transmitted pair and cp =
4R? /(1 — R?)? is called the contrast. The latest is related to the FWHM as:
Y
A= ——
\/Cg 2h (2.32)
Now we can define the finesse F as the ratio of FSR to the FWHM: %

_ AL Ajyep2mb  mcg . mR
“SA b 4 A 2 1-Rr% (2.33)

In practice, higher finesse translates into a better resolution of the Fabry-Perot interferometer.

However, a single FP interferometer has been shown to have too low contrast to allow weak Bril-
louin signals to be observed due to the presence of intense elastically scattered light. To solve this
problem, J. R. Sandercock used a multipass FP interferometer.*®® However, a multipass FP inter-
ferometer still suffers from the overlapping of neighboring interference orders, leading to unclear
interpretations of experimental spectra. Later on, Sandercock found that the suppression of this
effect can be achieved by using a tandem arrangement, i.e. two FP interferometers (FP1 and FP2)
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in series with slightly different mirror spacing, i.e., FSR.1%° The wavelengths transmitted by the

FP1 and FP2 combination must simultaneously satisfy:

bl/‘{i = 2L1 fOF FP].
(2.34)

Due to the slight difference in their FSRs, neighboring order transmission peaks of the two FP
interferometers cannot coincide, as illustrated in Figure 2.8 (a). As a result, significant suppression
of interference higher-order transmission is achieved. This is because one of the FP interferometers

blocks the adjacent interference orders of the other.

For the tandem interferometer, it is necessary to scan FP1 and FP2 synchronously by changing L,
and L, simultaneously. From Eq. (2.34) it is clear that the condition for the synchronized scanning
of the two FP interferometers is that the changes AL; and AL, satisfy:

ALy Ly
AL, L, (2.39)

This is achieved by using the scanning stage that Sandercook has designed.'%%!%! The principle of
the tandem operation is illustrated in Figure 2.8 (b). The first interferometer FP1 lies in the direc-
tion of the translation stage movement (scan direction) such that one mirror sits on this stage while
the other sits on a separate angular orientation device. The second interferometer FP2 is positioned
such that its axis is at angle ¢ with respect to the scan direction. The relative spacing of the mirrors
is set so that a movement of the translation stage to the left would bring both sets of mirrors into
contact simultaneously. A movement of the translation stage to the right sets the spacings to L,
and L, = L,cos¢. Also, the movement of the translation stage AL, leads to the change of spacing
AL, in FP1 and AL, = AL;cosg in FP2. Therefore, the condition given in Eq. (2.35) is satisfied.
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Figure 2.8. (a) Transmission spectra for two single (FP1, FP2) interferometers with different FSR and
the tandem Fabry-Perot interferometer. (b) Schematic illustration of Sandercock's multipass tandem-
Fabry- Perot interferometer. This figure was reproduced from Ref. [100].

Besides the tandem interferometer, the BLS experimental setup consists of many optical
components, including beam splitters, polarizers, lenses, and mirrors. Therefore, the experiments

described in the thesis required slightly different elements and will be discussed for each case.
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Chapter 3 Mechanical characterization of thin

supported nanocomposite films by BLS

In coating technology, one architecture that is much appreciated is the nanocomposite coat-
ing. Typically, these coatings are composed of nanoparticles embedded in an amorphous matrix.
The nanoparticles can be of the similar chemical composition of the amorphous matrix or utterly
different. The advantages these coatings provide are their enhanced tribological properties. In
some cases, the coatings become highly elastic,*’ super hard,'%? highly resistant to wear,*® or cor-
rosion.% In general, the enhancement is typically described in the engineering parameter called
hardness, which is understood as the ability of materials to resist plastic deformation. Nanocom-
posites have improved mechanical properties over single crystalline and fully amorphous materials
since crack propagation is hindered by the granular nanostructure, preventing the failure of the
material under loading or operation.

Transition metal carbides (TMCs) are a family of mechanically resilient and electrically conduc-
tive materials with several applications in electronics, coatings, and energy fields.*%12 TMCs are
refractory materials with superior thermal stability. Their high-temperature operation has made
them a crucial material for the aerospace and the protective coatings industry.'3!1 The extraordi-
nary refractory properties of TMCs are exemplified by some binary carbides, which can reach
melting points well above 3000 °C.1%°

Ta-Hf-C is a ternary alloy that is of high interest among the TMCs family. This is because of its
unique mechanical and physicochemical properties. Ta-Hf-C is a relatively strong material (Young
modulus E = 523.82 + 7.03 GPaand hardness H, = 17.15 + 1.1 GPa) and possesses the high-
est melting point known (3990-4226 °C),''® which has only been theoretically surpassed by Hf-
CN.17 Previously, it has been shown that the Ta% content can tune the properties of nanocompo-
site Ta-Hf-C films. For instance, earlier studies showed the changes in corrosion resistance,*8
hardness, and electrochemical activity.''° The mechanical properties of these materials have been
evaluated using nanoindentation. Typically, nanoindentation provides the effective Young modu-
lus (or reduced Young modulus) of the material, which is obtained by subtracting elastic properties
of the indenter itself. This method was found to be very useful for determining tribological aspects

and the hardness of the coatings.
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Here, we investigate the influence of Ta% content on the Young modulus of Ta-Hf-C nano-
composite supported films utilizing BLS. The elastic properties of the thin supported films and
composite materials can be extracted from the dispersion relations of SAWs measured by BLS.12%-
123 To determine the Young modulus of Ta-Hf-C films from the experimental dispersion relations,
we employed a finite element method (FEM) analysis. The obtained results were in good agree-

ment with the values from the conventional nanoindentation mechanical test.

3.1 Materials and methods

Samples were prepared in collaboration with dr hab. Emerson Coy, Prof UAM using an
AJA-ATC 1800 co-sputtering system with a base pressure of 1-10°*2 bar. The deposition was per-
formed in a confocal configuration from three separate targets of high purity elements Hf, Ta, and
C (> 99.95%, Demaco-Holland). The deposition pressure was 4-10 bar of Ar gas (99.9%) and in
order to obtain the elemental variation of the Ta and Hf the target power of each element was
changed according to the following relationship (Pta+Pnf) =100 W, while the C target was kept at
380 W for all the samples. The power applied for each samples is as follows, TaC (Pta=100 W),
(TaC)o.7(HfC)os (P1a=70 W, Pnx=30 W), (TaC)o3(HfC)o7 (P1a=30 W, P=70 W), and HfC
(Pr=100 W).118 The electrodes were deposited simultaneously on commercial (001) Si wafer and
stainless steel discs AISI 316LVM substrates.

The stoichiometry and phase composition of the samples were evaluated by X-ray photoelectron
spectroscopy (XPS) using a Sage HR100 with a non-monochromatic source (Mg Ka=1283.6 V).
The measurement protocol included a soft sputtering cleaning using Ar* at 3 kV to remove any
adventitious contamination of carbon/oxygen and record an accurate stoichiometric value of the
species. The high-resolution measurements were performed at 7 eV of Pass Energy at a 0.15 eV
step. The quantification analysis of the Ta, Hf, and C regions was performed in CasaXPS software,
using the Gaussian-Lorentzian asymmetric peak fitting options after a Shirley Background correc-
tion for each component. The FWHM of the peaks was constrained, leaving the area and position
free during the fitting. The XPS results showed that the composition of the films, followed the
target applied power, with the samples showing compositions as follow, TaC (Ta=58.8 % C=33.4
%), (TaC)o.7(HfC)o.3 (Ta=41.6 %, Hf=14.1 %, C=37.8 %), (TaC)o3(HfC)o7 (Ta=12.2 %, Hf=46.1
%, C=35.1 %), and HfC (Hf=63 %, C=29.1 %). Additionally, the fittings performed on the C1s,
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Ta, and Hf 4f peaks, showed that the electrodes were composed of pure Ta-Carbide and Hf-Car-
bide, with a small contribution of C-C bonds. Samples were highly reproducible, giving compara-
ble stoichiometric and elemental content results in independent re-runs of the deposition experi-
ments.'*® Furthermore, grazing incident X-ray diffraction experiments (Gi-XRD) performed in
PANalytical X-pert® diffractometer working with a Cu-Kal (1.540598 A) x-ray source at the
Nanobiomedical Centre, Poznan, Poland, showed the presence of TaC and HfC crystalline phases
in the cubic Fm3-m structure. The samples showed a smooth transition between pure elements,
with (TaC)o.7(HfC)o.3 resembling the structure and lattice constant of TaC, and (TaC)o.3(HfC)o.7,
that of HfC.

Cross-sectional scanning electron microscopy (SEM) images (Figure 3.1), were collected by using
a JEOL JSM-6490LV microscope. The samples deposited on Si(001) were mechanically cracked
in order to avoid contamination by oils or artifacts arising from spinning diamond saw. The cross-

section SEM images were used to estimate the thickness of the samples.

TaC

(TaC), 5(HFC), , HfC

Figure 3.1. SEM images of TaC, (TaC)o.7(HfC)o.3, (TaC)o.3(HfC)o.7, and HfC films supported on Si(001).
The scale bars are 0.5 um. This figure was reproduced from Ref. [124].
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3.1.1 Brillouin light scattering setup: Ta-Hf-C/Si supported films

To probe the surface acoustic waves (SAWSs) in Ta-Hf-C/Si supported films, we performed
BLS experiments in the backscattering geometry (discussed in Chapter 2, Figure 2.6). As a light
source, we employed a single-mode laser (Spectra-Physics, Excelsior 300) operating at the wave-
length 4; = 532 nm. The incident light of p polarization, set by placing a half-wave (1/2) plate on
its path, was partially reflected from the pellicle beamsplitter (BS R:T,45:55) and then focused on
the sample by a microscope objective with 10x magnification, working distance WD = 10.6 mm
and numerical aperture NA = 0.25. The rotation stage with a sample holder was used to set the
incident angle 6. The same objective was used to collect the light scattered from the sample. Next,
the scattered light was cut by the iris, with an adjustable aperture that was placed on its path in
order to improve the resolution of the spectra. The scattered light of p polarization, set by A/2 plate
placed on its way, was sent to the BLS spectrometer that is based on tandem-type Fabry-Perot
interferometer (Table Stable Ltd. Vibration Isolation and JRS Optical Instruments) by the achro-
matic focusing lens (L). The schematic of the BLS experiment is illustrated in Figure 3.2. Since
Ta-Hf-C films are non-transparent, the incident light penetrates a depth &, = 4;/4mn,, < 21 nm,
where n, is the imaginary part of the refractive index (extinction coefficient) of the sample that
for TaC and HfC was reported to be in the range between 2 and 4 in the literature.*?>26 Therefore,

light scatters on the surface acoustic phonons/waves due to the surface ripple mechanism.84127

pinhole
Sample

H , l H TANDEM
—_ Fabry-Perot
7. |  Fabry 6

—— interferometer

PC and
control units Rotation

stage

CW Laser
532 nm

Figure 3.2. Brillouin light scattering experimental setup. The optics used include beamsplitter (BS),
mirror (M), half-wave plate A/2, iris, microscope objective, and focusing lens (L).
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3.2 Results and discussion

To obtain the dispersion relations of SAWSs propagating in Ta-Hf-C/Si, we performed BLS
measurements for different angles of incidence 6 (from 25° to 65° with a step of 5°). Figure 3.3 (a)
displays BLS spectra at three exemplary 6 recorded for HfC, TaC, (TaC)o3(HfC)o.7, and
(TaC)o.7(HfC)o.s supported films shown in panels | - IV, respectively. In the spectra of HfC,
(TaC)o.3(HfC)o.7, and (TaC)o.7(HfC)o3, we resolved four different peaks associated with RSW,
18'SW, 2"SW, and 3"“SW. In the case of TaC, we observed only two peaks corresponding to RSW
and 1%'SW. These waves propagate with a wave vector of magnitude g = 4msind/4;. Hence, we
determined the dispersion relation in the form f(q) by variating 8. Here, f is the frequency ob-
tained from the BLS spectra as the central position of a given peak, fitted with the Lorentzian
function. The f(q) dispersions obtained for HfC, TaC, (TaC)o.3(HfC)o.7 are shown in Figure 3.3
(b) in panels I — 1V, respectively.

Moreover, according to the relation v = 2rtf /q where v stands for the phase velocity of SAWS,
we transformed the dispersion relation to the v(q) form [Figures 3.3 (c), panels | - IV]. In the case
of all samples, the velocities of the SAWSs are lower when compared to that of the fast bulk trans-
verse wave propagating in the [110] direction of the bare Si substrate, vy, = 5843 m s, indicated
with the dashed line.*?® Therefore, the considered samples correspond to slow-on-fast systems
(discussed in Chapter 1).8512® Similar behavior was previously shown for the case of thin carbide
films grown on Si. For instance, WC/Si films were characterized as slow-on-fast systems due to
the high mass density (p =13000 kg m~3) of WC.12 The mass densities for Ta-Hf-C films that we
investigated are comparable, estimated to be in the 12000 - 13000 kg m range by X-Ray reflec-
tometry (XRR).
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Figure 3.3. (a) BLS spectra obtained at several incident angles for HfC, TaC, (TaC)o3(HfC)o7 and
(TaC)o.7(HfC)os are shown in panels I — 1V, respectively. Arrows indicate the peaks corresponding to
RSWs and higher-order SWs. Corresponding dispersion relations are shown in (b) f(gq) and (c) v(q). In
(c) vpq Si[110], indicated with the dashed line, denotes the velocity of the fast transverse acoustic wave
with in-plane displacement with respect to the free surface of Si substrate propagating in the [110] direc-
tion.
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In order to calculate Young modulus E of Ta-Hf-C/Si from experimentally determined
dispersion relations of SAWSs, we employed a finite element method (FEM) (COMSOL Multiphys-
ics). Figure 3.4 (a) illustrates the 2D FEM unit cell oriented with respect to the crystallographic
orientation of the silicon substrate. The model assumes zero strain in the x5 direction. The width
of the unit cell w was arbitrarily selected to be much smaller than the acoustic wave wavelength A
(w = 50 nm) to avoid artificial folding of dispersion branches in the g region of interest (typically
probed by BLS). The height of Si substrate was defined as H = 5A where A = 2m/q. The height
for the substrate was chosen to be five wavelengths since it was shown that the SAWSs do not
penetrate depths exceeding few wavelengths.*?® The thickness of the Ta-Hf-C film is denoted as
h. To ensure that the amplitude of SAWSs decays with depth, we applied free and fixed boundary
conditions (BCs) to the top and the bottom edges of the unit cell, respectively, as shown in Figure
3.4 (3).12%130 The latter was implemented by setting displacement in x; and x, asu; = u, = 0. To
simulate SAWSs parallel to the free top surface, we applied Bloch-Floguet periodic BCs to the

vertical edges of the unit cell.8312%1% These conditions for u; and u, are u;exp(igx;), where j =

{1,2).88

Eigenfrequencies, given as f = w/2m where w is the angular frequency, are calculated from the
elastic wave equation (Eq. 1.39) introduced in Chapter 1. To obtain the dispersion relation in the
form f(q) we calculated frequencies of undamped mechanical eigenmodes of the unit cell with g

swept in the 1.26 — 31.4 pm™* range with the step of 0.1 um™.
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Figure 3.4. (a) Finite element method unit cell used for calculation of dispersion relations of SAWs
propagating in Ta-Hf-C/Si. (b) 2D displacement fields of RSW, 18SW, 2MSW, and 3"SW at q =
19.35 pm™1,

The elastic tensor of crystalline Si has three non-zero, independent elastic components due to the
cubic symmetry (Chapter 1, Eq. 1.26). In the conventional coordinate system, where x; |l
[100],x, Il [010] and x5 Il [001], the elastic constants of Si are: C;; = 165.7 GPa, C;, = 63.9
GPa and C,, = 79.6 GPa.’*! However, we consider specified crystallographic orientation with
respect to the coordinates of the model, namely, x, |l [110] and x, || [001] as illustrated in Figure
3.4 (a). Therefore, it requires the transformation of Cy;, using the formula C' = ZCZ™ where Z is

6 x 6 matrix with the components of the rotation matrix composed of I;; direction cosines: 83132138

1 1z, 135 211515 2143l 20141y,
l§1 l%z l%g 2155053 2155154 215415,
7=| G 13, 13, 2135133 2133131 213113,

(3.1)

ls1lin l3olyp laslis lislsy + liglss liglsy +liglss Liglsy + lplsg

lanlsy loplsy  laglss lpplsz + lxslsy  laglss + lpslsy Ippls + l21l32).
lirler liglyy lislys liglys + lislay lislys + liglas liglag + Liglsg

For the considered orientation, conventional coordinate system (x;,x,,x3) needs to be trans-

formed through two consecutive rotation operations, Z; and Z,, leading to (xj,x3,x3) and
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(x1, x5, x5, respectively (Figure 3.5). First is counterclockwise rotation for the angle of 45 ®about
the x5 axis that results in x; = x;c0s45° + x,sin45°, x;, = —x;sin45° + x,c0s45° , x5 = x5 ac-

cording to Z; rotation matrix given as:

cos45%  sin45° 0
Zy = | —sin45° cos45° 0 | (3.2)

0 0 1

The second is the counterclockwise rotation for the angle of 90 ° about the x; axis resulting in

x{ = x1, X3 = X3, x5 = —x3. Accordingly, the Z, rotation matrix is given as:

1 0 0
Zy, = (0 cos90°  sin90° |. (3.3)
0 —sin90% co0s90°

I r
x3=x§i x3=xzi

0 .
\‘ 90 "" 4"'-\900
' r *,
450;: xér :* ‘:: JCé
: > < >
X2
S / 2
x!
X 1
L xp= X}

Figure 3.5. Illustration for rotation of coordinate system (x;, x5, x3) t0 (x1’, x5, x5'). The Left and right
sides show the Z; and Z, rotation about x5 and x; axis, respectively.

n

Thus, the described rotation transformation from (xy, x5, x3) to (x, x5, x5), leading to x; Il

[110] and x, Il [001], is given as the product of these two rotations:
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(3.4)

where non-zero I;; are: Iy = b, = l3; =V2/2, l,3 = 1and I3, = —V2/2. The elastic constants

after the transformation to new coordinates are: C;; = 194.4 GPa, C{; = 35.2 GPa, C3; = 194.4

GPa and Cis = 50.9 GPa. The mass density of Si is p = 2331 kg m=.% The parameters used for
Ta-Hf-C films in the FEM model are gathered in Table 3.1.

Table 3.1. Parameters used to define Ta-Hf-C films in FEM calculation.

Sample h(nm) p(kg/m®) Poisson ratio  Nanoindentation E (GPa) 11811°
TaC 168 12000 0.25 16020
HfC 292 12000 0.25 180+20
(TaC)os(HfC)o7 295 12000 0.25 240+20
(TaC)os(HfC)os 284 12000 0.25 230+40

Notably, the applied FEM model is a finite plate that only resembles a half-space. Thus, not all the

calculated eigenmodes have to be SAW-like solutions with elastic energy localized near the free

surface. Figure 3.6 (a) displays f(q) dispersion of all FEM solutions on the example of HfC/Si

system. It shows a high number of modes with frequencies between those of longitudinal (L) and

fast transverse (T1) bulk waves propagating in the [110] direction of the Si substrate. To exclude

the solutions which are not SAWs, we use a “surface-like” parameter ¢, related to the center of

elastic energy in the x, axis, given by Eq. (1.60). We calculated ¢ over the whole unit cell (both

substrate and the film). Assuming that ¢ is in the 0 - 0.2 range for SAW-like solutions, all plotted

data points for which & > 0.2 are excluded, and the result is shown in Figure 3.6 (b).
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Figure 3.6. (a) Dispersion relation of acoustic modes calculated by FEM (gray lines) for HfC/Si. Dis-
persions of longitudinal, L (red line), fast T1 (blue line), and slow T2 (green line) transverse bulk waves
propagating in the [110] direction of Si are denoted by solid lines.*?® (b) Dispersion relation of SAW-
like solutions of FEM model for which the surface-like parameter is ¢ < 0.2.

To extract the Young modulus of thin Ta-Hf-C films, we fitted the experimental BLS data by FEM
model with E as the fitting parameter. The Poisson ratio was set to 0.25 for all samples as a medium
value between Hf-C and Ta-C,"** because the exact values for such nanocomposites were not re-
ported before. The Young modulus of the samples was determined by finding the minimum value

of Chi-square:

exp __ vgal)z
i

n (v
2 _ Z i 3.3)
X = cal ’ (
i Vi

l

which defines the goodness of fit,'*> where v;** and v are measured and calculated wave ve-
locities, respectively. Calculated dispersion relations, compared with experimentally obtained data
for RSW and higher-order SWs are displayed in Figure 3.7. The values of Young modulus obtained
in this way are listed in Table 3.2. Figure 3.4 (b) illustrates FEM 2D displacement fields obtained
for exemplary wave number g = 19.35 um~? that correspond to RSW, 18SW, 2"SW, and 3"SW
in HfC/Si.
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Figure 3.7. Dispersion relations of SAWSs propagating in Ta-Hf-C/Si. Black lines represent calculated
data, while colored circles denote the BLS results. Dashed lines indicate the velocity, vy, of the fast
transverse wave, with in-plane displacement with respect to the free surface of Si substrate, propagating
in the [110] direction. This figure was reproduced from Ref. [124].

Table 3.2. Young modulus of Ta-Hf-C nanocomposite films obtained by BLS.

Sample BLS E (GPa)
TaC 195
HfC 295
(TaC)os(HfC)os 255
(TaC)o7(HfC)o 285
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The values of Young modulus obtained by BLS (Table 3.2) are slightly higher when compared to
previously reported for the same samples, obtained by nanoindentation!'®t° (Table 3.1). In previ-
ous studies, when comparing E obtained by these two techniques, the values showed certain dis-
crepancies.**~143 For instance, the value of E for organosilicate glass films obtained by nanoinden-
tation was reported to be 11 GPa, while BLS result for the same samples yield E = 8.4 GPa.1#?
The higher E obtained by nanoindentation was assigned to the convolution of the elastic constants
of organosilicate glass film and the Si substrate. In another study, the Young modulus of Tungsten-
carbide containing amorphous-hydrogenated-carbon films was investigated by both nanoindenta-
tion and BLS, with matching results.'?? In our study, the small discrepancies between the methods
can be explained by the lack of knowledge of the real Poisson ratio and the measurement of the

reduced Young modulus by nanoindentation.

It is not straightforward to compare our results to data reported in the literature. First, it is essential
to remark that the results obtained from the nanoindentation experiments are broadly scattered,
ranging from 270 GPa to 720 GPa for both TaC and HfC coatings.*** The significant discrepancies
are the results of micro/nanostructural differences between the carbides prepared, different tech-
niques used for deposition or sintering, stoichiometry variations, and thermal treatments. Not to
mention the different testing instrumentation and protocols used in the literature.3® Therefore, we
can consider that variations in elastic modulus between 40-60 GPa are not dramatically different
among different reported data. More importantly, hardness is considered the main parameter for
assessing the applicability of coatings in the field of hard coatings. Relative smaller variations in
hardness make the difference between hard > 25 GPa and super hard coatings > 40 GPa,21¥7
while significant variations in the elastic modulus are needed for dramatically affecting the re-
sistance to plastic deformation of the coating (wear).**® Considering this, the values obtained by
both BLS and nanoindentation are relatively similar to those reported in the literature for TaC and
HfC, specifically for nanocomposite coatings deposited by the sputtering technique. On the one
hand, HfC coatings showed a maximum elastic modulus of 255 GPa, when the atomic percent of
carbon reached 60 %.'%° This value quickly decreased, depending on the amorphous phase and
carbon stoichiometry. In our case, the elastic modulus is slightly below this value. However, it is
essential to remark that our HfC has only 30 % of carbon content. The value reported for HfC with

30 % of carbon is much smaller, ~167 GPa, than the reported in our work.'® This suggests that
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our HfC has a superior microstructural arrangement, which results in a high elastic response. On
the other hand, TaC coatings have also been studied in the literature, showing variations in elastic
properties with composition and stoichiometry. The elastic modulus for TaC was determined as
274.4 GPa for a 50 % carbon content coating.*° This value is much higher than the one reported
here. However, the elastic modulus measured in our studies is similar to the value reported for a
34 % carbon content composition ~190 GPa. Therefore, the results show that our HfC and TaC
coatings have competitive elastic properties similar or superior to those previously reported in the

literature for nanocomposite coatings according to our composition.

Figure 3.8 displays the effect of the stoichiometry, namely the Ta content (%) on the Young mod-
ulus, measured by BLS and previously reported nanoindentation result.!'®'° In the literature, stud-
ies on the elastic properties of nanocomposite coatings are plentiful, with many studies exploring
the stoichiometric and microstructural effects on binary,*"103144-1%6 ternary, 147-152 or even higher-
order alloy coatings.'>3*% In the case of ternary alloys, it has been shown that the mixture of two
binary phases can result in partial increment,*>81%° or decrement!®*-163 of elastic properties. Alt-
hough, to our best knowledge, no studies have been conducted on nanocomposite mixtures of TaC-
HfC, these materials have been studied in bulk. In bulk, the increment of Ta% results in improved
elastic modulus from HfC (E = 490.47 GPa) to a maximum at Hfo75Tao2sC (E = 593.46 GPa)®
in one study. In another study, the increment is recorded from HfC (E = 458 + 6 GPa) to a max-
imum at HfosTaosC (E = 549 + 11 GPa).’® In our results, although the elastic constants rec-
orded are much lower than those reported in bulk, we show that the mixtures of TaC and HfC have
higher elastic properties than the binary alloys. This trend is observed for both nanoindentation
and BLS experiments. However, these two techniques show a slightly different result when it
comes to Ta% for which the Young modulus shows maximum, being ~55 % and ~65 % by
nanoindentation and BLS, respectively. Nevertheless, the results show that BLS can be used as
an alternative to commonly used nanoindentation for measuring the Young modulus of thin sup-
ported films in a contact-less and non-destructive manner, even for coatings with complex internal

structure, such as nanocomposite coatings.
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Figure 3.8. Young modulus according to the Ta content (%), obtained by nanoindentation (red circles)
and BLS (blue circles). Solid lines are a guide to the eye. This figure was reproduced from Ref. [124].

In summary, we examined the influence of Ta% content in the mechanical response of the
Ta-Hf-C nanocomposites on Si (001) substrate by BLS. We showed that for this system, velocities
of SAWs are lower than the velocity of the transverse bulk acoustic wave in the [110] direction of
Si, which is typical behavior in slow-on-fast systems. Therefore, the observed peaks in BLS spectra
correspond to RSWSs and higher-order SWs. To calculate the Young modulus of Ta-Hf-C/Si we
obtained dispersion relations of these waves and employed FEM model. While conventionally
used nanoindentation provides the reduced Young modulus of the material, BLS combined FEM
allows to determine the intrinsic Young modulus of isotropic Ta-Hf-C by fitting the dispersion
relations of SAWSs. Here, we compared the result obtained by BLS with previously reported
nanoindentation data for the same samples. In general, we found good agreement of the results
obtained by these two techniques, showing that the Young modulus of (TaC)x(HfC)y is higher
when compared to that of TaC or HfC.
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Chapter 4 Characterization of elastic properties
of bulk and 2H-MoSe; membranes by p-BLS

The discovery of graphene by Novoselov et al.,*®® almost two decades ago, launched a new
field of research focused on two-dimensional (2D) van der Waals (vdW) layered materials. With
thicknesses down to a single molecular layer, these materials can be prepared by liquid*®” or me-
chanical exfoliation®® from bulk crystal. Recently, there has been growing interest in 2D transition
metal dichalcogenides (TMDCs), which share the layered structure and easy exfoliation as for
graphene. The electrical, thermal, and optical properties of TMDCs, which are different from those
observed in bulk, make them attractive for application in electronics, energy storage, catalysis,
photonics, and phononics.*%°174 For example, it has been shown that the strong spatial confinement
of TMDCs can result in the change from indirect to direct bandgap semiconductors which makes
them useful as transistors, photodetectors, and light emitters. % The anisotropic optical properties
of TMDCs make them ideal materials for studying light-matter interaction, exciton-polariton
transport, and developing next-generation photonic devices.!’>*"® Moreover, ultrathin TMDC
membranes have been used as mechanical resonators for sensors due to their high-quality factor at

low temperatures and high elastic moduli.}*17°

To be applied in everyday devices, it is crucial to know the mechanical and thermal durability of
TMDCs. Interestingly, in the case of vdW materials, these properties are expected to be highly
anisotropic and, potentially, size-dependent.?®33180-182 A complete evaluation of the elastic tensor
of TMDCs remains a challenge due to sample preparation and the limitations of experimental
techniques. In the case of the bulk TMDC:s, it is challenging to prepare volumetric samples with
flat surfaces, except for the cleavage (vdW) plane. Nevertheless, specific components of the elastic
tensor for bulk TMDCs were measured by different techniques, including ultrasounds?83184, tran-
sient grating spectroscopy®, inelastic X-ray!®, Raman®’, and neutron scattering®. However,
investigating the elastic properties of few-layer vdW is difficult due to the small lateral size of the
samples, which tend not to exceed a few hundreds of micrometers. Previously, the average elastic
properties of such materials were measured by using different techniques such as atomic force
microscopy (AFM) nanoindentation,® buckling-based metrology method,®® bulge test?3, and non-

linear dynamic response®. Moreover, other techniques allowed accessing specific components of
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the elastic tensor, mainly scattering techniques, such as Raman spectroscopy,*®” Brillouin light

191 and picosecond acoustics.!? The literature re-

scattering (BLS),'®® pump-probe experiments
garding vdW materials and their experimentally determined elastic properties is limited. Addition-
ally, the effect of material thickness on elastic properties is still debated, without a consen-
sus.29:32,3335.180,181,191,193-195 \joreover, whether the thickness reduction results in softening or stiff-
ening remains elusive. The prior studies on the elastic size effect in vdW materials, employing
various techniques, have shown scattered results of the averaged Young modulus.?325-31:33-
35.186,188,196 Moreover, the literature on the size effect on various vdW materials show contradictory
results. On the one hand, it has been shown that the decreasing of the thickness leads to the Young
modulus enhancement for the graphene,?® MoS,* as well for the group-11l monochalcogenide
GaS.*2 On the other hand, the Young modulus of GaTe decreases when reducing the thickness.®?
Additionally, the Young moduli of BN?® and GaSe*? were reported to be size-independent. Similar
contradictions are with components of the elastic tensor reported in the literature. For instance,
experimental work using Raman spectroscopy revealed that C,, and C35 constants remain the same
for 2D MoS; with respect to the bulk material.*** For the similar MoSe,, femtosecond pump-probe
measurements have shown the size effect on C35.1°! Theoretical studies showed thickness-depend-
ent elastic constants, where both softening and stiffening were demonstrated, depending on the
surface effects.’®® If the surface relaxation manifests as the surface expansion, the elastic constants
decrease for decreasing number of layers and the opposite for the case of surface contraction.'%
Overall, experimental studies on the direct influence of thickness on the elastic properties of ma-
terials, using a large experimental sampling and controlled thicknesses over a wide range, have
not been performed. Moreover, the available experimental data, which could give an idea of this
phenomenon, does not allow to draw any meaningful conclusions and besides, contradict each

other.

Molybdenum diselenide (MoSey) is a typical member of the TMDCs family. For this material,
elastic constants of bulk and thin films are not fully known. For bulk MoSe, Raman studies?®"%
provided C,, and pump-probe experiment Cs3, % while the rest of the components of elastic tensor
remained unknown. For multilayered MoSe; thin films, the C5; component of the elastic tensor
was measured by a pump-probe experiment.®t Additionally, the Young modulus of 2D MoSe;
was measured using buckling-based metrology®® or in-situ tensile testing®®, providing quite dif-

ferent values.

67



This chapter presents the results of an experimental study on the elastic constants C;; of
both bulk and ultrathin MoSe, membranes employing micro-Brillouin light scattering (u-BLS).
We determined C;4, C;,, and C,, for bulk as well as C;; and C;, for few-layer membranes of
different thicknesses. The results revealed elastic softening with decreasing the number of layers.
Additionally, we show that p-BLS can measure the thickness of ultrathin membranes in a broad

range.

4.1 Materials and methods

2H-MoSe is a vdW material with a hexagonal crystal structure and belongs to DZ;, space
group. The crystal lattice of this material is illustrated in Figure 4.1 (a). The lattice constants in
[100] and [001] are a = 0.33 nm and ¢ = 23 = 1.29 nm, respectively,’*® where 3 = 0.645 nm is
the thickness of a single molecular layer. According to its crystallographic symmetry, the elastic
properties of MoSe> are described by five independent elastic constants, C;4, C;2, C13, C33, and
C,4. Additionally, the sixth elastic constant can be expressed as: Cgg = (€11 — C12)/2 [Chapter 1,
Eqg. (1.25)].

b
% X
— G, MoSe. h oy,
S 4 —
Au =
Si3N4 15 um
[100] X, X,

Figure 4.1. (a) lllustration of MoSe; crystal lattice, where h = N¢/2 stands for the membrane thickness,
N being the number of layers and ¢ = 1.29 nm,*® the lattice constant for [001] direction. (b) Graphic
representation for the side view of the MoSe, membrane suspended over a single hole (15 pm in diam-
eter) in gold-coated SisNa4 substrate. The biaxial residual stress ( oy, = 055) isindicated by arrows. Figure
was reproduced from Ref. [200].

Bulk single crystal 2H-MoSe> was purchased from HQ Graphene. MoSe> membranes of
different thicknesses h were prepared by collaborators from ICN2 in Barcelona, Spain. In the prep-

aration approach, MoSe: flakes were first mechanically exfoliated from bulk by Scotch tape onto
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an about 1 mm thick PDMS stamp. Next, the clean, transparent PDMS allowed optical thickness
identification, alignment, and transfer of suitable flakes over single-hole (15 um), gold-coated sil-
icon nitride windows (Norcada, NTPR005D-C15).2% The exception was the thickest MoSe, mem-
brane that was freely suspended over 50 x 50 um? area. The scheme of the sample side view with
respect to the crystallographic orientation and Cartesian coordinates is shown in Figure 4.1 (b).
Due to the preparation method, MoSe> membranes can exhibit biaxial residual stress. This stress
can be described as the Cauchy stress tensor that has two equal, non-zero, and equal components:
011 = 05, = ¢°. In the matrix representation, biaxial residual stress is given as:

d® 0 0

o) = ( 0 o° 0)- (4.1)
0 0 O

Figure 4.2. (a) Optical and (b) scanning electron microscopy images of MoSe, membranes used in this
work (thickness indicated in the figure were determined by BLS). Scale bars in (a) and (b) are 20 um
and 5 um, respectively. Figure was reproduced from Ref. [200].

Figures 4.2 (a) and (b) display the optical microscopy and SEM images, respectively, of all MoSe>

membranes used in this work. The membranes were typically pre-stressed, hence wrinkling and

69



buckling were suppressed. However, in Figures 4.2 (a) and (b), we observe regions in some of the
suspended flakes that are not flat. This is not an issue for the u-BLS that has micrometer spatial
resolution and allows visualization of the sample in camera mode. Therefore, it allowed probing a
region of the suspended flakes that was flat according to the optical and SEM images. High-reso-
lution transmission electron microscopy (TEM) was used to examine the samples and their crys-
tallographic structure. Figure 4.3 displays a TEM image confirming the single crystalline structure
with an interplanar distance ~ 0.28 nm, which is in good agreement with the literature reported

value.?01

Figure 4.3. Transmission electron microscopy image with an atomic resolution of exemplary MoSe;
membrane used in this study. The scale bar is 1 nm. Figure was reproduced from Ref. [200].

Atomic force micrographs of supported regions of different MoSe> samples are displayed in Figure
4.4. We determined the thicknesses at the step-like border region of the MoSe: flakes from the
height profiles (insets in Figure 4.4) along the profile collection area indicated by arrows. Thick-
ness values obtained by AFM are gathered in Table 4.1 where they are compared with values
reported by our collaborators who fabricated the samples. We observe discrepancies for values
obtained by AFM and optical method for samples with thicknesses below 8L. These discrepancies
can be attributed to the non-ideal interface between MoSe> and the support and polymeric residues,
typically present due to the preparation process, which could affect the AFM measurements. Nev-
ertheless, the topography of the investigated regions suggests a relatively low roughness, repre-

sented as the measurement error, with no visible wrinkling.
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Table 4.1. Thicknesses of MoSe; membranes.

Optical contrast, h (hm) AFM, h (nm)

1.9 (3L) NA

2.9+0.4 (4-5L) 6.3+1.9
4.2+0.4 (6-7L) NA

4.5(7L) 6.7£1.5

5.2(8L) 5.1£1.6

5.5+ 0.4(8-9L) 5.2+1.2

NA 8.84£0.7

NA 24.7£1.3

o ©
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Figure 4.4. AFM |mages of the step- I|ke border regions of MoSe, samples collected from the supported
region. Dashed arrows indicate the area for which the height profiles (insets) were collected. The thick-
nesses at the step-like borders are (a) 6.31.9 nm, (b) 6.7£1.5 nm, (¢) 5.1+£1.6 nm, (d) 5.2+1.2 nm, (e)
8.8+0.7 nm, and (f) 24.7+1.3 nm, where the roughness (Rq) stands as the error of the measurement. Scale
bars in (a-f) are 4 um. Figure was reproduced from Ref. [200].

1}
!

4.1.1 Micro-Brillouin light scattering

To determine the specific components of elastic tensor for bulk and few-layer MoSe,, we
performed p-BLS experiments in the backscattering geometry, described in Chapter 2 [Figures 2.5
(c) and 2.6]. The schematic illustration of the used setup is displayed in Figure 4.5. As a light
source, we used a CW single-mode laser (Spectra-Physics, Excelsior 300) of wavelength A; = 532
nm and low power (about 100 pW for thin up to 750 uW for the thickest MoSe> membranes) to
avoid overheating and damage of the membranes. In the case of the bulk sample, the laser power

was set to be about 1 mW. For both bulk and MoSe, membranes, we performed the measurements
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in p-p and p-s configurations regarding the incident and scattered light polarization. The incident
beam of p polarization (set by 1/2), partially reflected from the pellicle beamsplitter (BS, R:T,8:92
for membranes or 45:55 for bulk samples) was focused on the sample by a microscope objective
with 20x magnification, WD = 10.2 mm and NA = 0.4. The same objective was used to collect
the scattered light, which was next cut with the iris with an adjustable aperture (set to 3 mm). The
scattered light of p or s polarization, set by A1/2 plate placed on its way, was sent to the BLS
spectrometer that is based on tandem-type Fabry-Perot interferometer (Table Stable Ltd. Vibration
Isolation and JRS Optical Instruments) by the achromatic focusing lens (L). The incident angle 6
was set on the rotation stage. For the used wavelength, the penetration depth is 8, = A;/4nn,, =
20 nm, where n., = 2.0796 is the imaginary part of the refractive index of MoSe; taken from the
literature.?%? In the case of the membranes, camera mode allowed observation of wrinkles, if pre-
sent, and focusing on the non-wrinkled free-standing area. For bulk, camera mode helped in find-
ing large, flat terraces of the sample favorable for measurements. To resolve peaks corresponding
to different acoustic waves, we performed the measurements for various free spectral ranges (up
to 90 GHz) adjusted by setting the required spacing between the mirrors of the interferometer [EqQ.
(2.30)].

camera mode
S camera

pinhole
/ Sample
i

A =

spectra m(c;de TAN DEM
f Fabry-Perot 9
_&’JL\J interferometer
L Rotation
P and stage
PC and

control units

CW Laser
532 nm

Figure 4.5. Brillouin light scattering experimental setup. The setup includes CW laser, beamsplitters
(BS), mirror (M), half-wave plates (1/2), iris, microscope objective, rotation stage with sample holder,
focusing lens (L), Tandem Fabry-Perot interferometer with CMOS camera, and computer with control
units.
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4.2 Elastic constants of bulk MoSe;

BLS spectra recorded for bulk MoSe; at 8 = 45° and light polarized in p-p and p-s config-
urations are shown in Figure 4.6 (a) and (b), respectively. As follows from Figure 4.6 (a), for the
p-p polarization, we observed two peaks indicated by arrows, which we assigned to RSW and
high-frequency pseudo-surface acoustic wave (HFPSAW) introduced in Chapter 1. The detection
of HFPSAWs by BLS due to sub-surface photo-elastic (PE) coupling® is possible only for mate-
rials with high opacity. It requires strong suppression of typical BLS backscattering [Figure 2.5
(c)] from bulk acoustic waves which propagate with wave number Q. To demonstrate the im-
portance of opacity for this condition, we performed backscattering BLS experiments in (p-p) con-
figuration where we extended the free spectral range to 90 GHz. Besides MoSe>, we measured two
other bulk TMDCs with different complex refractive indexes, namely MoTe, and WS,. The re-
sulting BLS spectra are shown in Figure 4.6 (c). Multiple sharp peaks observed in the spectral
region 27-44 GHz can be assigned to the backscattering BLS from the glass optics elements in-
cluded in the experimental setup. Moreover, in the spectra of bulk WS, and MoTe>, broad peaks at
~47 and ~49 GHz, respectively, are resolved. These peaks correspond to L BAWs that propagate
in [001] direction and their spectral position is in good agreement with C55 reported in the litera-
ture?°3204 However, in the spectra of the MoSe>, the peak corresponding to L BAW that was ex-
pected at ~51 GHz, according to the literature (indicated by arrow),*** was not resolved. The ab-
sence of this peak can be explained by the broadening of BLS peaks due to the opacity of the
medium. The broadening of BLS peaks can be calculated according to the relative width given by
the formula Af/f = 2n,, /n.,1°®, where n,,and n,, denote the real and imaginary parts of the
refractive index, respectively. Truly, the relative width is the highest for the bulk MoSe> leading
to strong suppression of the typical backscattering BLS. This allowed the detection of surface-like

waves through the sub-surface photoelastic mechanism.?%
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Figure 4.6. Experimental and calculated BLS spectra for bulk MoSe, acquired for (a) p-p and (b) s-p
polarization configuration and & = 45°. Here, I, I,, and I; stand for calculated BLS intensity for the
acoustic waves with polarization in x4, x,, and x5 axes, respectively. (¢c) Experimental BLS spectra meas-
ured at 8 = 45° (to avoid the saturation due to intense back-reflected light) for bulk MoSe;, MoTe,, and
WS, with FSR up to 90 GHz. The peaks observed in the 27-44 GHz region are assigned to the backscat-
tering BLS from the used glass optics. Symbols n,.; and n., denote the real and imaginary components
of the complex refractive index, respectively. Graphical illustration of the BLS geometry used in the
experiments, where k;, kg, and Q stand for incident light, scattered light, and bulk acoustic wave vectors
is shown in the inset of (c). Figure was reproduced from Ref. [200].

Changing polarization to s-p allowed detection of the fast transverse wave (T1) wave due to sub-
surface PE coupling [Figure 4.6 (b)]. Interestingly, the HFPSAW and T1 waves have been previ-
ously observed by BLS in GaAs® and other vdwW materials.?®® Additionally, the acoustic wave
vectors of HFPSAW and T1 waves are identical to that of RSW, with magnitude g = 4msin6/4;.
By changing the 6, we measured the dispersion relation of RSW, HFPSAW and T1, i.e., their
frequency f as a function of q that is plotted in Figure 4.7 (a). Here, from the BLS data linear fit,
we determined the phase velocities of these waves as vggyw = 1620 + 13 m s™%, vyppsaw =
5256 + 38 m s~ and vp; = 3209 + 19 ms~1.

The phase velocities of L, T1, and T2 waves propagating in (001) of hexagonal crystal (Dg;, space
group) are determined as vy, = (C11/p)Y?, vr1 = (Css/p)Y? and v, = (Cha/p) %% respec-
tively according to Eq. (1.44 - 1.46) in Chapter 1. Here, we assume that the HFPSAW velocity is
identical to that of the L BAW (vgppsaw = vy.).841% Therefore, the velocities obtained from meas-

ured dispersions can be used to determine elastic contracts: C;; = pvéippsaw = 191 & 3 GPa and

Ces = pvi, = 71 £ 1 GPa. Knowing C;; and Cg, We calculated C;, = C;; — 2Ce = 49 +
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4 GPa. Even though T2 could not be resolved in BLS experiment due to selection rules for PE

mechanism flowing Eqg. (2.25), we obtained C,, from the phase velocity of RSW. The velocity of

RSW propagating in any direction of (001) plane of hexagonal crystal satisfies equation:2%’

2 2
C33 (UIZ{SW - %) (vﬁsw - % + pCC1333) = C4aVRsw (Vﬁsw - %) (4.2)
According to this equation, vggy IS mostly sensitive to variations in C,, while variations in C;3
and C3 show significantly smaller influence.®® This is illustrated in Figure 4.7 (b), where the de-
pendence of vggy 0N the relative change of these elastic constants is shown. Therefore, we calcu-
lated the elastic constant C,, = 18.8 + 0.7 GPa from Eq. (4.2), by using BLS determined C11 and
taking for consistency C;; = 9.8 GPa and C3; = 54.9 GPa from the literature.'®12% In Figure 4.7
(@), the light blue shading stands for the range of dispersion relations that correspond to the
Vrsw» VHFPsaws V1, and vy, calculated from previously reported theoretical elastic constants of
MoSe». As we can notice, experimentally determined vygpsaw, and v, and therefore C;; and Cgg,
are in a good agreement with the theoretical literature data. The elastic constant C,4 (vgsw) devi-
ates from the theoretically predicted values in the literature, namely C,, = 32.9 GPa**® and C,, =
15.9 GPa.?®® However, the C,, we determined by BLS agrees well with previously reported data
from Raman experiments, C,, = 17.75 + 1.9 GPa.'®"*% Previously reported theoretical and ex-
perimental elastic constants of bulk MoSe,, including the values from this work are listed in Table
4.2.

Table 4.2. Elastic constants of bulk MoSe; reported in the literature and obtained in this work. Experi-
mental and theoretical values found in the literature are indicated with superscripts ¢ and*.

Ci1 (GPa) Cy, (GPa) (33 (GPa) (.4 (GPa) (i3 (GPa) Ref.

196.10 42.30" 44.70" 32.90¢ 9.80¢ 208

/ / / 16.80° / 187
179.81" 40.75" 35.49 15.90 8.46" 209

/ / 54.90° / / 101

/ / / 18.70¢ / 107
19143 49+4 / 18.8+0.7 / this work

The elastic constants obtained in this work are all positive and of values that satisfy the thermody-
namic stability criteria, given as C;; > |C3],2C% < C33(C11 + C13),Cas > 0 and Ceg > 0.22°
When compared to other vdW materials (Table 4.3), the elasticity of bulk MoSe: is typical for the
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TMDCs family. In principle, in-plane elastic constant C,; is significantly larger than the out-of-

plane component given by Cs5. This is due to the nature of these materials that exhibit strong in-

plane covalent bonding and weak out-of-plane vdW interactions.

Table 4.3. Elastic constants of several bulk vdW materials determined by different experimental tech-
niques found in literature as well as of bulk MoSe; determined in this work.

material Technique C.1 (GPa) (C,,(GPa) C,53(GPa) (535 (GPa) (4, (GPa) Ref.
. Inelastic x- t-
graphite o oone X-Tay sca 1109 139 0(3) 38.7 5.0 2%
tering
Ultrasonic+sonic
resonance+static 1056 180 15 36.5 0.18-5 25,211,212
test+BLS
Neutron scattering 1440 520 / 37.1 4.6 213
MoS; Neutron scattering 238 -54 23 52 19 188
TaSe; Neutron scattering 229 107 / 54 18.5 214
. 194 91 / 42 17.6 214
NbSe; Neutron scattering 171 79 2 62 19 188
WS, Neutron scattering 150 / / 60 16 208
Thi
MoSe; BLS 19123 49+4 / / 18.8+0.7 'S
work
20 2000
a  HrPsAw b
18 i
O BLS
16 —datafit
= theory [208,209], 1800
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Figure 4.7. (a) The dispersion relations of RSW, HFPSAW, and T1 waves measured by angle-resolved
BLS (circles) and corresponding fitting (solid lines). The dispersions calculated according to theoretical
data available in the literature?®2% are denoted by shaded regions. (b) The dependence of the velocity of
RSW, vrsw On the relative change in different elastic constants. Experimentally determined vgrsw =
1620 ms™! (C,, = 18.8 GPa) is indicated with black arrow. Figures were reproduced from Ref. [200].

Knowing the elastic constants of bulk MoSe> allowed the calculation of BLS spectra employing

the elastodynamic Green's functions (introduced in Chapter 1).8125216 The BLS intensity for the
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acoustic waves that are propagating in the free surface (x; = 0) with polarization in the i-th direc-
tion can be calculated from the projected local density of states (PLDOS), given by Eg. (1.59) in
Chapter 1. In the case of the surface ripple mechanism (SR), BLS intensity I; is proportional to
(luz(0)|*)q,w~G3s. Likewise, the BLS intensity for the PE mechanism is proportional to

(lu1(0)[?)g,w~G11 and (Ju;(0)|?)4,,~G2, for bulk longitudinal and transverse waves, respec-

tively. Moreover, G,; and G,, have to be scaled according to the Rayleigh ratio, Rf~(eSTfei),
considering BLS selection rules for PE mechanism described in Chapter 2 [see Eq.(2.25) and Table
(2.1)]. Calculated PLDOS for bulk MoSe: as a function of the phase velocity is shown in Figure
4.8. The peak corresponding to RSW that tends to infinity, since this wave satisfies the stress
boundary condition, is present in both longitudinal in-plane, I, and transverse out-of-plane, I5,
PLDOS. Accordingly, this mode is active in BLS measurements for p-p polarization configuration
due to the superposition of SR and PE effects that contribute to BLS spectra. The transverse out-
of-plane PLDOS also reveals the Lamb shoulder, a surface-like continuum of waves, which comes
from propagating bulk transverse and evanescent longitudinal waves.?%¢2!" In the experimental
BLS spectra of the bulk MoSe;, the dip at T2 (indicated by the arrow in Figure 4.8) is overwhelmed
by the RSWs peak, and we observe the Lamb shoulder as the high-frequency tail of the RSW peak
[Figure 4.6 (a)]. Additionally, in transverse out-of-plane PLDOS a sharp dip located at the L
threshold is indicated by an arrow. In longitudinal in-plane PLDOS we observe a sharp peak cor-
responding to the HFPSAW. This wave does not satisfy the stress-free boundary condition. There-
fore, HFPSAW radiates energy into the bulk, which is the reason they are also called leaky (skim-
ming) surface waves. In BLS spectra, this causes asymmetric broadening of the corresponding
peak [Figure 4.6 (a)]. From the PLDOS for the bulk MoSe>, we see that the velocity HFPSAWS is

almost identical to that of L BAW, justifying above previously mentioned asummption.?%
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Figure 4.8. Projected local density of states (PLDOS) as a function of the phase velocity of acoustic
waves in bulk MoSe,. RSW denotes Rayleigh surface wave, HFPSAW stands for high-frequency
pseudo-surface acoustic wave, L for longitudinal bulk wave, T1 for fast transverse wave, and T2 for slow

transverse wave. Figure was reproduced from Ref. [200].

In the transverse in-plane PLDOS, I,, we observe the peak corresponding to the fast transverse T1
wave, which is BLS-active for the p-s (or s-p) polarization configuration according to the selection
rules for PE effect. As in the case of RSW, T1 satisfies the stress-free boundary condition and the

corresponding peak shows infinite intensity (Figure 4.8).

To calculate BLS spectra shown in Figures 4.6 (a) and (b), we considered factors such as instru-
mental broadening, finite optical aperture, and phonon attenuation.®® Typically, these aspects lead
to peak broadening and asymmetry. Comparing the calculated and experimental spectra in Figures

4.6 (a) and (b), we found consistency regarding the peak positions and spectral lineshapes.
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4.3 Few-layer MoSe, membranes

For MoSe2 membranes, with thicknesses in the nanometer range, the BAWSs turn into fam-
ilies of symmetric (S), antisymmetric (A), and shear-horizontal (SH) Lamb waves. These waves
have been discussed in Chapter 1 where Figure 1.9 illustrates the zero-order (fundamental)
modes,?*8-2% relevant for this work. The magnitude of the acoustic wave vector for these waves is
again given as q = 4 sin 0 /1;.9%221222 Measured and calculated BLS spectra for exemplary, 6.9
nm thick MoSe> membrane are displayed in Figure 4.9. Here we note that most of the membranes
exhibited residual stress given by Eq. (4.1) due to the preparation method. Therefore, the equation
of motion for anisotropic material given by Eq. (1.38) has to be modified to the form for pre-
stressed material:

d ( " Oaui)_ Ozui (43)
ax; \7 T N x,) T P a2 '

Then, the acoustic matrix in Eq. (1.41) becomes I;; = (Cyji; + 6ikcrj‘{)ljll. The solutions can be
found by employing the numerical approach described in Section 1.2.2.1 of Chapter 1. Next, the
BLS spectra can be calculated employing the elastodynamic Green's functions, as in the case of
bulk. The determination of parameters needed for numerical calculations that include elastic con-
stants, residual stress, and thicknesses of the membranes by BLS will be discussed later in this

Chapter.

BLS spectra obtained for p-p polarization [Figures 4.9 (a) and (b)] revealed peaks corresponding
to A0 and SO waves, respectively. Changing polarization to p-s or s-p allowed resolving the peak
corresponding to SHO wave [Figure 4.9 (c)]. To determine the spectral position of the detected

peaks, we fitted them with Lorentzian functions.
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Figure 4.9. Experimental and calculated BLS spectra in (a-b) p-p and (c) p-s polarization for 6.9 nm
thick MoSe, membrane obtained at 8 = 45°, Figure was reproduced from Ref. [200].

Logarithm of BLS intensity

4.3.1 Elastic constants

To determine the elastic constants of the membranes, we performed angle-resolved BLS
experiments. Figure 4.10 (a) displays the dispersion relations f(g) of A0, SHO, and SO waves
propagating in the 6.9 nm MoSe2 membrane. For the range of wave numbers accessible in the BLS
experiment, SO and SHO waves have linear dispersions which are not directly dependent on the
sample thickness. Consequently, for this g range, SO and SHO waves are identical to L and T1
BAWs of bulk MoSez. Thus, their phase velocities are expressed as vg, = (C11/p)Y? and vgyo =
(Ces/P)Y?, respectively. To further justify the assumption regarding the equality of velocities for
S0 and SHO to L and T1 BAWSs, we used the numerical approach for pre-stressed material to
calculate the dispersion relation for 6.9 nm thick MoSe». Figure 4.10 (b) displays the calculated
dispersion of Lamb waves for a large range of reduced wave numbers (gh). Moreover, the plot
contains the dispersions of L and T1 BAWSs, calculated according to C;; and Cg determined from
the BLS experiment for the same sample. Clearly, within gh range that is accessible in the BLS
experiment (shaded area), L BAW overlaps with SO and T1 BAW overlaps with SHO dispersion.
Table 5.4 gathers C;, and C;, determined by BLS for membranes of different thicknesses. To have
the complete elastic tensor, we include C; from pump-probe experiment,'®* and C;5 from DFT
calculations,?® available in the literature, as well as C,, we determined for bulk MoSe; by BLS
(Chapter 4.3).
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Figure 4.10. (a) Experimental and theoretical dispersion relations obtained for exemplary MoSe; mem-
brane (h = 6.9 nm) are denoted by circles and solid lines, respectively. (b) Calculated dispersion for
large reduced wave number (qh) range. Symbols AO, SO, and SHO denote zero-order symmetric, anti-
symmetric, and shear horizontal Lamb waves, respectively. Longitudinal wave (L) and fast transverse
(T1) wave dispersion calculated from the experimentally determined C;, and Cgg, are indicated with red
and blue solid lines, respectively. The shaded area demonstrates the range of gh that is available in BLS
experiment. Figure was reproduced from Ref. [200].

Table 5.4. Elastic constants for bulk and MoSe> membranes of different thicknesses determines by BLS
experiment. To complete the elastic tensor, C35 and C; 5 are taken from the literature.

Optical contrast h (nm)  C;1 (GPa)  C;, (GPa) (33 (GPa)'®'  C,4 (GPa) (i3 (GPa)*®

1.9(3L) 131+2 29+3 27.0

2.9+0.4 (4-5L) 150+3 34+4 49.0

4.240.4 (6-7L) 163+3 37+4 51.0
4.5(7L) 158+2 363 52.0 18.8+0.7 9.8
5.2(8L) 164+3 40+4 52.0

5.5+ 0.4(8-9L) 169+2 43+3 53.0
NA 17143 39+4 53.0
NA 183+2 43+3 54.9
Bulk 19143 49+4 54.9

81



4.3.2 Thickness and residual stress of MoSe2 membranes determined
by BLS

In the absence of the residual stress, for gh — 0, the dispersion relation f(q) of the A0
mode can be represented as a parabolic function ( f o g?). This behavior would correspond to a
linear v(q) dispersion of the A0 mode.%®"3?%! Nevertheless, the v(q) of the A0 mode measured
by BLS for the exemplary (h = 6.9 nm) membrane, displayed in Figure 4.11 (a), shows deviation
from expected linear function (indicated by dashed line). This behavior is related to the presence
of biaxial residual stress in the membrane. Overall, the dispersion relation of A0 wave depends on
Cy1, Ci3, Ci3, C33, Cag, 09, h and p. Since the mass density p of MoSe; is known, the residual
stress ¢© that is parallel to q can be estimated from the cut-off phase velocity v,(qd — 0) =

(6°/p)*/? obtained from the dispersion v(q) plotted in Figure 4.11 (a).5¢

Number of layers

Cr C“Cr

Css I

< ! — 0 'l—_ P P
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Wave number g (m’) £.C,/C; (%) ahlh (%)

Figure 4.11. (a) The v(q) dispersion relation of the A0 mode obtained from the BLS experiment (circles)
and calculations (solid line). The cut-off phase velocity v, for gd — 0 is indicated with a red arrow. The
dashed line represents the calculated v(q) dispersion relation of AQ wave in the absence of residual stress
(a% = 0). The influence of the relative change in (b) different elastic constants individually and (c) the
thickness (number of layers) of the membrane on the dispersion of the AO. Figures were reproduced from
Ref. [200].
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To examine how the change in C;; and h influence the dispersion of A0, we used the numerical
approach in the absence of residual stress (Section 1.2.2.1). The resulting f(q) dispersion of AQ,
calculated for the specified parameters, was fitted according to the parabolic function: f = gq?2.
Figures 4.11 (b) and (c) illustrate the dependence of the relative change of Ag/g on the relative

change of elastic constants and the thickness of the membrane, respectively. Among the elastic
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constants, the C;; has the main impact, while the influence of the rest of elastic constants on A0
dispersion is negligible. Conveniently, C;; is obtained from the dispersion of SO mode inde-
pendently. Nevertheless, the membrane thickness has the largest impact on the dispersion of AO,
as demonstrated in Figure 4.11 (c). Therefore, the v(q) dispersion relation of A0 mode at small
reduced wave numbers (gh — 0) can be used to identify the membrane thickness. Figure 4.12 (a)
compares experimental dispersion of A0 mode of an exemplary membrane with dispersions cal-
culated for five thicknesses differing by 1L and the same stress. Evidently, the change in the thick-
ness even by a single layer has a notable impact on the calculated dispersion. To determine the
values of membrane thickness and residual stress simultaneously, we repeated the numerical ap-
proach described for pre-stressed membrane where we swept h and ¢° at fixed C;; and p. Next,
for n, wave numbers (experimental points), we compared the calculated, f;° to experimentally, f;®

determined frequencies by employing the reduced chi-square statistics:

, i "to (f< _fie)z
TN L @aFOT+ (AF)F

X (4.4)

Here, Af¢ and Af*® represent the errors for calculated and experimental frequency, respectively.
The former was obtained from the difference of calculated frequencies for lower and upper limits
of C;; + AC;4, while the latter is given by the Lorentzian fit of the BLS peak. The degree of free-
dom, V' = n, — o, is given as the difference between n, and number of fitted parameterso = 2,
being h and ¢°. The exceptions were the membranes with ® = 0 MPa and thickness as the single
fitting parameter, o = 1. For a particular range of h and ¢°, we calculated the y?(h,s°) and
found the minimum value, yZ;,. The 95 % and 68.3 % confidence regions for exemplary pre-
stressed membrane (h = 5.2 nm) characterized with y2(h, %) — 2, < 5.991 and x2(h,c°) —
X2, < 2.6, respectfully are illustrated in Figure 4.12 (b). We note that for the case of membranes
that had no stress (¢ = 0 and o = 1), the 95 % and 68.3 % confidence regions are determined
with y2(h) — xZ;, < 3.84 and y2(h) — x2:, < 1, respectively. The values of membrane thick-

ness and stress with errors obtained from confidence regions are gathered in Table 4.5.
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Figure 4.12. (a) Experimentally determined dispersion relation for exemplary (h =5.2nm = 81L)
MoSe, membrane (empty circles). The dispersion relations calculated for different thicknesses given as
a number of layers (solid lines). (b)The 95% and 68.3% confidence regions for determining the h and ¢°
are indicated by blue and red rectangular, respectively. The confidence regions correspond to the mem-
brane of h = 5.2 nm and ¢° = 65 MPa. Figure was reproduced from Ref. [200].

Additionally, we performed Raman spectroscopy experiment to confirm the membrane
thicknesses obtained by BLS. The measurements were performed with the incident light of 1 =
633 nm. Raman spectra obtained for all MoSe, membranes used in this study, as well as for the
bulk sample, are displayed in Figure 4.13 (a). In all spectra, we observed one peak that corresponds
to thickness-dependent Aig mode. Since we used very low power (< 50 pW), the E1zg mode was not
resolved. In our experiment, it was of high importance to avoid an additional redshift of Aigdue
to the temperature rise that could lead to misleading results. The peaks corresponding to Aig mode
were fitted with the Lorentzian function to determine their spectral position. The Raman shift as
the function of the membrane thickness (obtained by BLS) is plotted in Figure 4.13 (b) and com-
pared with the data available in the literature.?® Here, we show that our results qualitatively follow
the same trend as the previously reported data. This confirms the proper sorting of the membrane
thicknesses from the lowest to the highest value, obtained from BLS. In order to analyze the Raman
data quantitatively, the spectral position of A1ig mode has to be corrected with respect to a reference
frequency from the literature data. Since the frequency of Aig mode for the bulk MoSe> was not
reported in Ref. [223] was not reported, as the reference, we use the value for 3L thick membrane.
Thus, we correct our data so that the frequency of Aig for membrane, for which the thickness was

determined by the optical contrast as 3L, matches the reference value. Moreover, we took into
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account the redshift due to the stress that we estimated using the coefficient Aw (Az)/e = —1 for

similar MoS,, taken from the literature??* (this coefficient was not reported for MoSe,). Here, ¢

symbolizes strain in % and it can be determined according to Hooke's law that gives the relation

between the stress and strain, and BLS results on elastic tensor and stress. We find that the effect

of stress on the Raman shift of Aig mode is relatively minor, with the exception in the case of the

membrane (4.9 nm thick) for which we measured the highest stress (188 MPa).

To estimate the membrane thicknesses from corrected Raman results, we first fitted the literature
data with a function: w(A,z) = (Oh + P)/(Xh +Y), where O, P, X, and Y are free fitting param-

eters. Knowing these fitting parameters allowed the evaluation of the thicknesses of MoSe, mem-

branes from Aig Raman shift. The values are listed in Table 4.5, showing well agreement with

values obtained by BLS, which is illustrated in the inset in Figure 4.13 (b).

Table 4.5. Thicknesses determined by various techniques and residual stress determined by BLS.

Optical contrast  AFM h E?‘S h (nm) 0 Raman Aqgq Raman BLOS a? (MPaO)
h (nm) (nm) 68.3% 95% (cm) h (nm) 68.3% 95%
conf. conf. conf. conf.
1.9 (3L) NA 1.240.3 1.3+0.3  241.82+0.05 2.01+0.25 1033 103+3
2.9+0.4 (4-5L) 6.3x1.9 3.3x0.4 3.310.6  242.31+0.08  3.5%0.8 27+8 27+14
4.2+0.4 (6-7L) NA 4.5+0.1 45+0.2 242.40+0.07 3.9+0.7 0 0
4.5(7L) 6.7£1.5  4.9+0.3 49+04 242.35+0.06 4.35+0.5  188+6 188+9
5.2(8L) 5.1+1.6 5.2+0.4 5.240.7 242.51+0.08 5.15+15  65%11 65+17
55+0.4(8-9L) 5.2+1.2 5.8+0.3 5.8+0.4 24254+0.08 5.4+1.6 4617 46+10
NA 8.8+0.7 6.9+0.5 6.9+0.7 242.61+0.07 6.1+1.7 22+15 22122
NA 24.7+1.3 19.1+0.2 19.1+0.5  243.0+0.1 21+8 0 0
Bulk / / / 243.07£0.09 / / /
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Figure 4.13. (a) Experimental (circles) and fitted (solid lines) Raman spectra of A1y mode for bulk and
MoSe, membranes of various thicknesses obtained from BLS experiment. (b) The dependence of the
Raman shift of Aig on the membrane thickness. Open circles denote the experimental data obtained in
this work. Black squares stand for the experimental data reported in the literature.?? Full red circles
symbolize corrected experimental data from this work (reference line, residual stress) as explained in the
text. The shaded area denotes the Raman shift for the bulk MoSe; obtained in this work. The fit of liter-
ature data (as described in the text) is denoted by the solid line. The comparison of thicknesses obtained
from BLS and Raman experiments is shown in the inset of (b). Figure was reproduced from Ref. [200].

4.4 Thickness dependent elastic constants of MoSe, mem-

branes

After determining the elastic constants of both bulk and MoSe> membranes, as well as
thicknesses of the membranes, we explored how the thickness affects the elastic properties. Figures
4.14 (a) and (b) display measured C;;, C¢ as a function of the membrane thickness (number of
layers), respectively. Measured bulk values are indicated by shaded regions. For comparison, the
plots contain theoretical values for both bulk and monolayer MoSe; available in the litera-
ture,198.208209.225226 Tq the pest of our knowledge, the elastic constants of a few-layer and bulk
MoSe> presented here are measured experimentally for the first time. Moreover, the elastic con-
stants C;; and Cgx¢ decreased with reducing the membrane thickness in the order of 10 and 30%

for 10 and 2 layers (obtained by BLYS), respectively when compared to bulk (Figure 4.14). Notably,

86



such elastic softening can shed new light on the debated topic of elastic size effects in vdW mate-
rials,29:32:33:35.180,181,.193 T (ate, this phenomenon remains controversial in the scientific community
since there is no consensus on whether the nanoconfinement affects the elastic properties and if it
results in softening or stiffening. Overall, experimental studies on the direct influence of thickness
on the elastic properties of vdW materials, using a large experimental sampling and controlled
thicknesses over a wide range, have not been performed. Moreover, the available experimental
data, which could give an idea of this phenomenon, do not allow to draw any meaningful conclu-
sions and besides contradict each other. For instance, experimental work based on Raman spec-
troscopy a conclusion was drawn that C,, and C55 remain the same for 2D MoS; with respect to
the bulk material.’®* However, for the similar MoSe;, femtosecond pump-probe measurements
have shown size effects on C;3.1%! The last revealed the softening of C55 with decreasing the thick-
ness of MoSe; films from about 54.9 GPa for bulk down to about 27.6 GPa for two-layer sample.*%

This finding is supported with our results on size-influenced elastic constants C;; and Cgg.
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Figure 4.14. Change of elastic constants (a) C;1, and (b) Cgg, With the membrane thickness (number of
layers top axes). The experimentally determined values in this work are denoted by open circles in (a)
and (b). Star-like symbols stand for the single-layer values according to theoretical data found in the
literature. 198225226 The elastic constants obtained for bulk MoSe; in this work, and theoretical data re-
ported in the literature?®®2% are denoted by shaded areas and symbols (triangles, squares), respectively.
Solid lines are guides to the eye. Figure was reproduced from Ref. [200].
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When describing elastic properties of materials in literature, the Young modulus is much more
common than the elastic tensor. Hence, this elastic parameter is more convenient for comparison
with the values reported in the literature. Therefore, we used experimentally determined C;; to
calculate the in-plane component E;; of the Young modulus. The latter can be expressed as E;; =
1/S,1 where S;, is the element of the compliance matrix that is defined as the inverse of elastic

tensor. The compliance matrix for a hexagonal crystal is given as:

Cy1C53 — C123 C123 — (12033 (€2 — C11)Cy3 0 0 0
Cf3 — C15C33 C11C33 = Cfz (C12—C11)Cy3 0 0 0
(Ci2 = C11)C3 (€ — C11)Co3 CH —Ch 0 0 0
_pr-1__1 0 0 0 ICkLl
Sk = Cxi = ICrLl Cas 0 0 , (45)
0 0 0 0 Ikl 0
Cas

0 0 0 o o ekl
C11—C12

where |Cx|=(C11 — C12)(C11C33 + C12C33 — 2C) is the determinant of elastic tensor for crystal
with hexagonal symmetry [Eq. (1.25) in Chapter 1]. Therefore, we calculate in-plane Young mod-

ulus from the formula:

E. = (C11 = C12)(C11C33 + C12C33 — 2CF5)
H (C11C33 — CF)

(4.6)

According to Eq. (4.6), the in-plane Young modulus depends on four elastic constants, namely
Ci11, C12, Cy3, and Cs4. Figure 4.15 illustrates the impact of the relative change of these constants
on the E;,. The main impact comes from C;; and C;,, that are conveniently determined by BLS in
this work. The values of E;; determined in this way for all MoSe> membranes as well as bulk are
listed in Table 4.6.
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Figure 4.15. The influence of the relative change in C;; on the in-plane Young modulus E 4. Figure was
reproduced from Ref. [200].

Table 4.6. In-plane Young modulus E;; for bulk and MoSe, membranes of different thicknesses.
BLS, h (hm) E;; (GPa)

1.2+0.3 122+3
3.3+0.4 141+4
4.5+0.1 153+4
4.9+0.3 149+3
5.2+0.4 153+4
5.8+0.3 157+3
6.9+0.5 161+4
19.1+0.2 172+3

bulk 177+4

Figure 4.16 displays the in-plane Young modulus obtained by BLS as a function of MoSe; thick-
ness. Similar to the case of elastic constants C;; and Cy¢ (Figure 4.14), E;; systematically de-
creased with a reducing number of layers from 177 + 4 GPa for bulk to 122 + 3 GPa for 2L
MoSe>. We note that the behavior of elastic constants observed in Figures 4.14 and 4.16 cannot be
related to membranes' residual stress, as it does not correlate with the membrane thickness, and it
is too low (maximum ~188 MPa) to have a significant effect on the elastic constants due to the

elastic nonlinearity.”32%’

Compared to the literature values, our results significantly differ from the Young modulus E =
224 + 41 GPa obtained by the buckling metrology for 5-10L MoSe..1® In this study, the authors
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do not report size effect on elastic properties. However, these measurements were carried on sup-
ported flakes that are more predisposed to introduce artifacts. Due to the substrate influence on the
intrinsic properties of the material, measurements on supported samples are more complex than
those carried on suspended samples. In-plane Young modulus of single- and two-layer thick
MoSe> membranes, evaluated by in-situ tensile testing was reported to be E = 177.2 + 9.3 GPa
in a recent study (star symbol in Figure 5.15).1% This result matches E;, of bulk MoSe; obtained

in our study, however, it is quite higher when compared to the value we obtained for the thinnest
membranes.

Overall, BLS experiments revealed a significant reduction of elastic constants when decreasing
the thickness of MoSe> (Figure 4.14 and 4.16). It is important to remark that this trend goes hand
in hand with a red-shift in the Aig Raman mode [Figure 4.13 (b)]. The decreased vdW interlayer
interactions explained such Raman shift and the associated softening of the effective restring forces
acting on the atoms due to decreased number of layers,?28229
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Figure 4.16. The change of in-plane Young modulus E;; with the membrane thickness (number of lay-
ers). The experimentally determined values in this work are denoted by open circles. The experimentally
determined Young modulus for a free-standing 1-2L MoSe; found in the literature is indicated by the
star symbol.1*® The E;; of bulk MoSe; obtained in this work, and according to theoretical data in the
literature.2%®2%° are denoted by shaded area and symbols (triangle, square), respectively. A solid line is a
guide to the eye. Figure was reproduced from Ref. [200].
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In summary, we employed micro-Brillouin light scattering to obtain dispersion relations of
acoustic waves that propagate in the single-crystal bulk and few-layer MoSe, membranes. For the
bulk MoSe,, we determined the elastic constants C;; and Cgg that are in good agreement with prior
theoretical results reported in the literature. Additionally, we obtained C,, that is consistent with
the values that are previously reported in Raman studies. Following, we employed p-BLS to in-
vestigate the dispersion relations of fundamental Lamb acoustic waves that propagate in MoSe;
membranes, allowing for the determination of C, 4, C¢¢. E11, 0°and membrane thickness. The elas-
tic constants we report here, for both bulk and MoSe, membranes, have been directly measured
for the first time, to the best of our knowledge. Moreover, we present experimental results that
have revealed about 30% elastic softening of a model vdW material, i.e., MoSe;, while decreasing
thickness from bulk to two layers. This negative elastic size effect is already clearly noticeable for
10L. Our findings are highly important for related research fields such as nanoscale thermal
transport, electronics, or resonators employing vdW materials. Furthermore, the reported softening
at the nanoscale has profound implications in designing and developing nanodevices, where me-
chanical properties are essential for their durability and robust performance. Finally, the elastic
size effects here presented might also exist in other TMDCs, and this possibility should be explored

experimentally in the near future.
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Chapter 5 Mechanical reinforcement of polysty-
rene colloidal crystals studied by Brillouin light

scattering

Colloidal crystals (CCs) are realized by the self-assembly of monodisperse micro/nano
particles. According to their dimensionality, they can be classified into 1D chain structures, 2D
single layer of particles, and 3D multilayered structures.>>%° CCs made of nanoparticles (NPs) can
exhibit unique properties enabled at the nanoscale.?®-233 Owing to their periodic structure, which
can allow or forbid the propagation of certain frequencies of electromagnetic or elastic waves, CCs
have been widely applied as photonic (PhCs), and phononic crystals (PnCs). 242¢ Among the
wide variety of materials available, self-assembled polymer CCs have significant advantages, in-
cluding their cost-effectiveness, superhydrophobicity, and easy tunability of particle size and
shape.?3-2% Polymer-based CCs are of special importance for coatings*"24%241 and nanolithogra-

phy applications.?*?

When it comes to their application, the robustness of polymer CCs is of critical importance. Most
polymer CCs are fragile due to the weak vdW interactions between the self-assembled particles.>
This can limit the performance of the devices made of these materials since the particles can get
easily detached, which results in device malfunctioning. What is even more significant concern is
that when these fragile micro/nanoparticles disassemble, they are released into the environment.
These contaminants can accumulate in the bodies of marine animals, causing many health issues
and increasing the mortality of these animals.?*32*® To this day, several approaches are developed
to make robust polystyrene CCs, including the development of core-shell structures, decoration by
surfactants, plasma and chemical assisted treatments, making PS based nanocomposites, direct UV
irradiation, among others.5>°6:246247 Additionally, temperature treatment of polymer CCs, below
their glass transition temperature Ty, is probably one of the most straightforward approaches to
achieve strong physical bonding between the self-assembled NPs while retaining their shape and
periodicity. However, temperature treatments are slow and not always suitable, since some archi-

tectures might not tolerate high temperatures. It is important to remark that at the nanoscale, T
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changes when compared with bulk values. The T, modulation is influenced by confinement effect
which comes from the change in surrounding environment given by particle-particle interaction
and their contact area.2*4-2%° Moreover, many authors showed proof for the existence of a mobile
layer at the surface of thin PS films, which has a major role in the observed change in T,. The
temperature at which this surface mobile layer appears is the so-called softening temperature, T,
and is below the T,.>*?® The change in particle mobility above T; influences the physical prop-
erties of the CCs built from polymers including density, mechanical properties, acoustic properties,

and the diffusion rate of gases in the polymer.?>*

We proposed a novel route for improving the robustness of polymer CCs by exposure to a
supercritical fluid. This state can be achieved by applying high hydrostatic gas pressure at elevated
temperatures (Figure 5.1). Such treatment does not require the use of any chemicals, high temper-
atures, or other sophisticated treatments. It was previously shown that by exposing polystyrene to
gas pressure, T, of this material can be modified as a result of the plasticizing effect.?>2% |n liter-
ature, several studies have already reported the effect of different gases, including nitrogen, carbon
dioxide, and hydrofluorocarbons on the T, of bulk polymers.2>2%¢ Additionally, it was reported
that the methane pressure could modify the T, of bulk PS in an irreversible way, leading to en-

hancement of mechanical properties.?’

1 1
Supercritical!
Fluid

______

Pressure (bar)

Temperature (K)

Figure 5.1. Pressure-temperature phase diagram of a pure component where the region corresponding to
supercritical fluid, above its critical temperature and critical pressure (dark blue circle), is indicated by
the shaded area.

We studied the behavior of polystyrene nanoparticles (268 nm in diameter: PS-268) upon exposure
to elevated temperature T and high hydrostatic gas pressure p by Brillouin light scattering (BLS).

The aim was to investigate the impact of gas pressure on the T and T, of PS nanoparticles self-
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assembled into fcc clusters in order to find favorable (p, T) conditions for making a robust struc-
ture. BLS is a non-destructive, contactless spectroscopy technique that allows data collection with-
out exposing the sample to an external environment, i.e., in-situ measurement. Using this tech-
nique, we recorded the vibrational spectra of interacting NPs, which enabled the estimation of NP-
NP contact area resulting from exposure to supercritical nitrogen or argon. Moreover, we deter-
mined the (p, T) conditions favorable for strong physical bonding between NPs while maintaining
their spherical shape and periodic structure of CC. We named this process cold soldering as we
show that it is possible well below the glass transition of the bulk PS, even close to room temper-
ature (RT). Opposite to high temperature treatment, cold soldering is local effect starting from the
surface and it does not influence the particle core. This leads to a core-shell like NPs where the
shell is plasticized layer while the core remains in glassy state. Additionally, in order to observe
the changes in the morphology of the PS CC when exposed to (p, T), we performed SEM study.
We showed that gas pressure-driven cold soldering is a suitable method for improving the robust-
ness of PS CCs.

5.1 Materials and methods

Polystyrene nanoparticles (PS NPs) were synthesized according to the previously devel-
oped procedure described elsewhere?®1:2582% jn collaboration with the Max Planck Institute for
Polymer Research in Mainz, and Prof. George Fytas. The prepared nanoparticles (PS-268) had
diameter d = 268 nm.

a 4
,Drop Vacuum
@ casting drying
Substrate | 4 Substrate \ <4 | Substrate |

Figure 5.2. (a) Illustration of sample preparation by drop-casting and subsequent vacuum drying. (b)
Image of an exemplary sample prepared in this way.

For the BLS study, samples were prepared by drop-casting PS-268 nanoparticles dispersion in
water onto a glass substrate, previously cleaned in ethanol using an ultrasonic cleaner. Next, the

samples were placed in a vacuum bell jar and dried under a low vacuum at room temperature (RT)
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for a minimum of one hour. In order to avoid cracking of fragile polystyrene clusters, we started
applying vacuum slowly. This process is illustrated in Figure 5.2 (a), and the image of the exem-
plary sample is shown in Figure 5.2 (b). The SEM image of drop-casted PS-268 3D CCs with fcc
structure before any treatment (pristine sample) is displayed in Figure 5.3 (a).

To study soldering of NPs resulting from exposure to supercritical N2 or Ar by SEM, we prepared
colloidal monolayers by spin coating PS-268 dispersion in water on a silicon wafer substrate, with
a spinning rate of 4000 rpm over 60 s, and subsequently drying them in a vacuum (< 2 mbar at
room temperature for minimum 1h). Figure 5.3 (b) shows the SEM image of a spin-coated sample
before any treatment. The SEM imaging was performed using a SEM JEOL 8001TTLS (30 kV)

system. Our experiments were carried out at 5 kV and close focal distance (5 mm).

b

Figure 5.3. Scanning electron microscope images of pristine (a) drop-casted 3D PS-268 CC and (b)
single layer spin-coated sample. Scale bars in (a) and (b) are 1 um and 100 nm, respectively.

5.1.1 Brillouin light scattering

In the BLS experiments, we used CW laser (COHERENT Verdi 5) of wavelength A; =532
nm as a light source. We performed the measurements in backscattering geometry [illustrated in
Figure. 2.5 (c)] using a crossed-polarization arrangement regarding the incident and scattered light.
The BLS setup we used is illustrated in Figure 5.4. On the path of the laser light, we placed a
polarizing cube beam splitter (PCBS). This beam splitter transmits horizontally and reflects verti-
cally polarized light. The light reflected from the PCBS was focused on the sample by a focusing
lens. In the used geometry, the same lens was used to collect the light backscattered from the

sample. The backscattered light then passes through the PCBS. Next, the scattered light passes
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through a half-wave plate was placed on its path, which is used to rotate its polarization by 90 °.
Finally, the backscattered light is sent to the BLS spectrometer that is based on tandem-type Fabry-
Perot interferometer (Table Stable Ltd. Vibration Isolation and JRS Optical Instruments) by the
focusing lens. The used crossed-polarization arrangement allowed to minimize the signal coming
from the inelastic light scattering on the pressure waves, which propagate in gasses.?®® Such an
effect could have overwhelmed the BLS signal from the PS samples, making the analysis way
more difficult or even impossible. The scattered light was depolarized since the incident light un-
dergoes multiple scattering from the sample. As a result, the phonon wave vector was ill-defined.>

For controlling the gas pressure and the temperature to which the sample was exposed, we used a
custom-made system. As illustrated in Figure 5.4 this system has several elements, namely a high-
pressure cell with transparent windows, gas bottle, gas compressor, and temperature controller.
The sample, mounted on the sample holder, was placed inside the high-pressure cell so that the
incident light could be focused on it through the teflon window. For applying pressures of less
than 200 bar, the gas was supplied directly from the gas bottle. To achieve higher gas pressures,
from 200 to 1000 bar, a gas compressor was used. In experiments, two gases were used, N> and
Ar. Finally, in order to control the temperature of the samples a circulating Bath Chiller (HAAKE
K35) was used, capable of operating from -35 °C to +200 °C.

gas bottle

temperature CW 532 nm laser PC + controll units
controller
compressor

Figure 5.4. lllustration of the setup used for in-situ Brillouin light scattering measurements upon expo-
sure of the PS sample to controlled temperatures (p, T) conditions. The optics used include polarizing
cube beamsplitter (PCBS), focusing/collecting lenses, half-wave plate 1/2. The system for controlling
(p, T) conditions includes a high-pressure cell, temperature controller, gas bottle, and compressor. This
figure was reproduced from Ref. [261].
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5.2 Results and discussion

The normalized BLS spectra recorded for drop-casted PS-268 samples that were exposed
to different temperatures and hydrostatic gas pressure of N2 or Ar are shown in Figure 5.5 (a-d).
The spectra obtained for pristine sample, i.e. before any treatment (for ambient conditions T = 300
K and p = 1 bar), is displayed in Figure 5.5 (a). Here, we resolved two broad asymmetric
peaks,>®262.263 that correspond to dipolar (1,1) and quadrupolar (1,2) spheroidal Lamb modes [in-
troduced in Chapter 1 of this thesis, (Figure 1.10)]. The frequency of these modes is given by Eq.
(1.68). It is important to note that when spherical particles are close-packed, as in the case of CCs
we study, the interactions between NPs (NP-NP contacts) reduce the spherical symmetry. As a
result, all Lamb modes split into weakly dispersive m = 21 + 1 modes, where m refers to the
azimuthal number. In the case of a free sphere, the (1,1) mode has zero frequency since is not
related to any deformation. However, in the case of clusters built of NPs, their contacts allow
transferring of vibrational energy. As a result of this, the (1,1) mode has a non-zero frequency.
Therefore, this mode is related to interactions among close-packed NPs and its spectral position at
f11 can be related to the effective stiffness of the NP-NP contact, K. If we approximate these
contacts as circular interfaces, the contact area radius can be expressed according to Johnson-Ken-
dall-Roberts (JKR) model:2645°

1
B!
KR _ (3mdTWa\* (5.1)
0 8E.fr

Here, d stands for sphere (NP) diameter, W, = 0.0636 ] m~2 is the work of adhesion for PS?% and

E.s is effective elastic modulus given by as:

4(1—v2 1-—v2\"
Eoce = — ] 5.2
off = 3 ( E, + E, (5.2)

where v and E denote the Poisson ratio and Young modulus. Since the PS NPs that are in contact
are identical, v; = v, = 0.32 and E; = E, = 4.1 GPa.?®2 Thus, Eq. (5.2) simplifies to:
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2 E
Eoff = =——— = 3.0452 GPa. 5.3
eff 3(1—1})2 3.0452 GPa ( )
Therefore, according to the JKR we calculated a{,KR = 12 nm for the pristine sample. We note that

the validity of the JKR model is limited to NP-NP contacts much smaller than the NP size.?®®

Next, we need to relate the NP-NP contact area radius to the frequency of the (1,1) Lamb mode.
The calculated phonon density of states (DOS) for the fcc CC reported in the literature reveals a
sharp peak at wy,, associated with longitudinal phonons.?® This angular frequency is given as w;, =

2(K100/M)Y?, where K, denotes the effective spring constants between (100) planes and M =

%d3p is the mass of NPs. In the CC with fcc crystal lattice, each NP has 12 neighbors in [110]

direction (4 in the same (100) plane and 4 in each adjacent plane). Therefore, for such a case,
K100 = 2Keg and the angular frequency of longitudinal mode is given as w;, = 2(2Kqg/M)Y/?. In
the same study, it was shown that the spectral position of the (1,1) Lamb mode observed in BLS
spectra can be associated to the wy, in the DOS. Thus, the relation between the f; ;and K is given

by formula:?®3

1
2Ko6\2
According to the JKR model, the effective stiffness of NP-NP contact is given as: 26226
1
9 (3nW,R*E%? (5.5)
= e

Therefore, by combining Eq’s. (5.5), (5.4), and (5.1) we find the relation between f; ; and the

radius of contact area a, as:

_ SmPMf

= 5.6
o 9Et¢ (6)
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Figure 5.5. Normalized BLS spectra (anti-Stokes side) for a PS CC obtained at (a) room temperature
and 1 bar, (b) 338 K and 1bar (c) 338 K and 400 bar of N, and (d) 338K and 400 bar of Ar. The SEM
images taken after exposure of spin-coated PS samples to conditions in (a-d) are shown in (e-h), respec-
tively. The scale bar in SEM images (e-h) is 200 nm. This figure was reproduced from Ref. [261].

The following discussions of BLS results will focus on the (1,1) mode as its frequency allows
direct in-situ probing of the physical bonding among NPs resulting from the (p, T) treatments. Due
to interaction among NPs, the (1,2) quadrupolar mode is represented by two Gaussian line shapes
[Figure 5.5 (a-d)]. This mode is an additional indicator that confirms the uniform size and the

spherical shape of NPs.

To obtain the frequency of (1,1) mode, we fitted the corresponding BLS peak using Asym2Sig
function [Figure 5.5 (a-d)]. For the pristine sample, i.e., as prepared, [figure 6.5 (a)] from the cor-
responding f; ; we calculated a, = 49 nm using Eq. (5.6). This value is close to the one estimated
from the SEM image of the pristine sample (about 40 nm) displayed in Figure 5.5 (e). However, it
is quite higher when compared to the a)" predicted by JKR model. This discrepancy can be ex-
plained by the presence of fabrication impurities that contribute to the physical bonding of
NPs?67:268 after accumulating at the NP-NP contacts during the drying process.
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Figure 5.5 (b) displays the BLS spectra for the sample that was exposed to the temperature of 338
K at 1 bar. In this case, the peak corresponding to the (1,1) mode shows a slight red-shift with
respect to the reference spectrum at ambient conditions. Such behavior can be related to the weak
thermal softening of PS. This temperature increase was not sufficient to have a noticeable effect
on NP-NP contacts, as indicated by both BLS spectra and the corresponding SEM image in Figure
5.5 (f). However, we observed different behavior in BLS spectra when exposing PS samples to
400 bar of N2 or Ar at the same temperature of 338 K shown in Figures 5.5 (c) and (d), respectively.
In both spectra, the peak corresponding to the inelastic scattering of light from the acoustic wave
that propagates in compressed gas overlaps with that of the (1,1) mode.?®® These peaks were fitted
by a Lorentz function, and in Figures 5.5 (c) and (d) they are represented by dashed curves. Com-
pared to the BLS spectrum in Figure 5.5 (b), f; ; is blue-shifted indicating increased NP-NP con-
tacts. Moreover, this shift is more pronounced for the case when we applied Ar pressure. Thus,
this effect is gas-specific and it cannot be attributed only to the compressive forces appearing when
the sample is exposed to high pressure. The homogeneity of the treatment effect and preserved
spherical shape of NPs is evidenced by the resolved (1,2) mode, which is not present in a contin-
uous PS film. The SEM images in Figures 5.5 (g) and (h) show enhanced physical bonding be-
tween neighboring NPs while retaining their spherical shape after exposure to the high pressure of
the gas. The SEM observation agrees with the BLS result showing that the physical bonding is

more pronounced when Ar pressure is applied.

Next, we investigated the influence of the temperature on the spectral position of (1,1) mode at
fixed gas pressure by BLS. In the experiments, the temperature was increased from room temper-
ature (RT, 300 K), with the rate of 0.25 K min!, up to the value higher than T, of bulk PS (373 K).

The f(T) dependence obtained at ambient pressure is displayed in Figure 5.6 (a).

100



air 1 bar N, 400 bar Ar 400 bar

5.0
a b c
4.5 5 SN
N 40% 000 P00
I N (1,2)
O 35 S
S
)
S 3.0
)
& 25
o
. 4"
15 D) (1.1
CM ...... * L vlr

300 320 340 360 300 320 340 360 300 320 340 360
Temperature T (K)

Figure 5.6. The change in the frequency of the dipolar mode (1,1) and quadropolar mode (1,2) with
increasing the temperature at (a) 1 bar (b) 400 bar of N, and (c) 400 bar of Ar. The softening and the
glass transition temperature are denoted by T and Ty, respectively. The region between Tg and Ty is
indicated by the shaded area. This figure was reproduced from Ref. [261].

We observe a strong jump of f; ; at a specific temperature. This turnover in f; 1 (T) slope indicates
the softening temperature, T at which the formation of the mobile surface layer starts. After reach-
ing T; PS NPs, previously bonded via weak vdW interactions, exhibit strong physical bonding,
more pronounced with a further increase in temperature.>® Another temperature that we identified
from this plot is the T, of PS NPs [Figure 5.6 (a)]. After reaching this temperature, PS NPs lose
their spherical shape and the vibrational modes in the BLS spectrum vanish due to the formation
of a continuous PS film. Therefore, at ambient pressure, from Figure 5.6 (a) we find T, = 344 +
3Kand T, = 367 + 3 K. Figures 5.6 (b) and (c) display f(T) dependence obtained at 400 bar of
N2 or Ar gas, respectively. We observed a decrease of the glass transition temperature to 360 + 3
K for N2 and to 351 + 3 K for Ar gas. Comparing with literature, this behavior seems inconsistent
as it has been shown that T, of bulk PS should increase by about 13 K at 400 bar of hydrostatic
pressure due to the reduction of the polymer free volume.?°® However, in our experiment, the re-
duction of T, was gas specific being stronger when Ar gas pressure is applied when compared to

the N2 case. This gas-specific effect can be assigned to plasticization of NPs surfaces resulting
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from gas diffusion, which is higher for Ar when compared to N.. The amount of gas that can be
dissolved in a polymer at a specific gas p is given by Henry’s law constant, H = C/p, where C
denotes the gas concentration. The values of Henry constants reported for the amount of N> and
Ar dissolved in PS at 298 K (< T,) are H = 0.087-10~> mol g™* bar" and # = 0.261-10~> mol

g bar™, respectively.2® At 461 K (> Ty), these values were reported to be H = 0.213-10° mol g°

Lbarland H = 0.404-10° mol gt bar.2"* Gases above their critical point, i.e., supercritical fluids,

behave as solvents for polymers.272-274

If we compare f; ; at RT before [Figure 5.6 (a)] and after exposure to 400 bar [Figures 5.6 (b) and
(c)], we see that it increases from ~1.72 GHz to ~1.9 GHz independent on which gas was used.
This behavior cannot be attributed only to the nonlinear elastic response of the material but also to
the increase of NP-NP contact due to the elastic deformation. To support this, we calculated the
f1,1 that would result solely from hardening of PS at 400 bar and RT according to the nonlinear
theory of elasticity described in Chapter 1. From Equations. (1.36) and (1.37), using previously
reported Murnaghan coefficients for PS,2”° we obtain E(1 bar) = 3.70 GPa, E(400 bar) = 3.92 GPa
and v(1 bar) = 0.34, v(400 bar) = 0.35, respectively. Next, by combining Eqg. (5.4) and Eq. (5.5)
we caclulated f; 1= 1.73 GHz related to the hardening of PS at 400 bar and RT, being significantly
lower than the corresponding value determined from the experiment [Figure 5.6 (b) and (c)]. We
note that in this calculation, we neglected the minor changes in d and p of the NPs at 400 bar that
we find to be Ad = 1 nmand Ap = 10 kg m™ from the bulk modulus (B = —V Ap/AV = p Ap/Ap,

where V denotes the volume).

Figure 5.7 illustrates schematically the NP-NP bonding upon exposure of PS CC to given (p,T)
conditions. At ambient pressure and RT, the bonding among NPs is of weak vdW nature. The rise
of temperature above T, at ambient p leads to the appearance of NP surface mobile layer increasing
NP-NP contacts. After reaching Ty, the periodic structure of CC is destroyed due to the coalescence
of NPs. When the high gas pressure (of N2 or Ar) is applied, initially NPs undergo elastic defor-
mation due to compressive hydrostatic pressure, which increases NP-NP contact. At this point, the
response of the material to pressure is reversible. With the rise in temperature permeation of gas
into NPs increases and progresses with time which results in the plasticized surface layer. There-

fore the synergistic combination of nanoscale plasticization of particles’ surface and compressive
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hydrostatic pressure lead to irreversible soldering, i.e., strong physical bonding between PS NPs
while maintaining their shape and periodic arrangement. The (p, T) conditions favorable for this

effect lie between T and T, (shaded regions in Figure 5.6).
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Figure 5.7. Schematic diagram illustrating the behavior of CC upon temperature assisted gas pressure
treatment. This figure was reproduced from Ref. [261].

It is important to note that in our approach, we determined the T, (p) of the surface shell that gas
permeates and not of the core of NP. At temperatures that are lower than T of bulk polystyrene,
the core of NPs is in the glassy state. So formed structure is similar to core-shell NPs, such as PS-
PBMA [poly(butylmethacrylate)], for which it has been shown that the soft PBMA shell had a
thickness-dependent T, lower than that of polystyrene.?’® The softening temperatures we deter-
mined from Figures 5.6 (b) and (c), as the values at which soldering starts followed by a jump in
f11(T) are Ty = 335 £ 3 Kand Ty = 322 + 3 K for 400 bar of N2 or Ar at 400, respectively. Both
values decrease with respect to Ty = 344 + 3 K at 1 bar due to plasticization of NPs surface. As
previously shown for Tg, the gas specific reduction of T; is associated to the solubility of the gas

in PS (higher for Ar).

To determine the dependence of T, and T on the pressure of N2 or Ar, we repeated the same studies
as presented in Figure 5.6, where we variated the gas pressure in 1 - 1000 bar range. The resulting
phase diagrams (p, T) are displayed in Figures 5.8 (a) and (b). For both gases, we identify three

different regions: below T the polymer is in a glassy state, above Ty it is in a rubbery state, and in

between T and T, we find the region favorable for NPs soldering. The values of T, and Ty at
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different N2 and Ar pressure obtained from the BLS experiments are gathered in Table 5.1. Dashed
lines in Figures 5.8 (a) and (b) denote the increase in T, of PS resulting from applied hydrostatic
pressure (thermodynamic effect) in the absence of plasticization effect.?®® In our experiments, the
latter is included, and for both gases, we observe a decrease of T; and T, with pressure up to a
certain crossover pressure. At this point thermodynamic effect dominates over plasticization. In
the phase diagram obtained for N> as plasticizer [Figure 5.8 (a)], we observed the crossover at
p~700 bar, for which we find T, and T to be 356 + 3 K and 320 + 3 K, respectively. In the case

when Ar was used as a plasticizer [Figure 5.8 (b)] the crossover occurs at p ~ 850 bar at which T,

and Ty are 337 £ 3 K and 303 + 3 K, respectively. Therefore, the soldering resulting from the
treatment with supercritical Ar treatment is possible at lower temperatures than for the supercritical
N2 case. Moreover, our results show that soldering is possible even at temperatures close to RT

when Ar is used as a plasticizer.
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Figure 5.8. Temperature-pressure phase diagrams obtained for (a) N2 and (b) Ar plasticizers. Filled red
circles denote glass transition T, and the softening temperature T; determined by BLS experiment.

Dashed line indicates the increase of T, with p resulting from the thermodynamic effect. (c) SEM images

of spin-coated PS samples obtained after treatment at (p, T') conditions indicated by empty circles labeled
by letters A-1 in Ar phase diagram. The scale bar in (c) is 100 nm. This figure was reproduced from Ref.
[261].
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Table 5.1. Glass transition (T,) and softening temperature () for treatment of PS CC at different pres-
sure of N, or Ar.

b N> Ar
p (oan) LK LK LK LK
1 3673 344+3 367+3 344+3
100 NA NA 359+3 341+3
200 367+3 344+3 359+3 3363
300 3633 342+3 NA NA
400 360+3 335+3 351+3 322+3
550 359+3 3273 NA NA
600 NA NA 347+3 3163
700 356+3 3203 345+3 305+3
850 360+3 326+3 337+3 303+3
1000 3603 329+3 344+3 3063

Additionally, we performed SEM imaging on spin-coated PS samples to visualize the soldering of
NPs after exposure to Ar pressure at a given temperature. The SEM images displayed in Figure
5.8 (c) were taken after exposing the samples to selected (p, T) conditions indicated by empty
circles in Figure 5.8 (b). After the treatment at conditions corresponding to the glassy region in Ar
phase diagram (labeled as D and E), NP-NP contacts do not exhibit noticeable change when com-
pared to the pristine sample [Figure 5.5 (e)]. In contrast, the SEM images of samples treated at
(p, T) conditions that belong to the soldering region (A-C, F-1) clearly show enhanced NP-NP
contacts. As we can see on the example of sample A, soldering is possible in the absence of plas-
ticizer at elevated temperature, namely T = 348 + 3 K (> T at p = 1 bar). For the same tem-
perature, soldering is much more efficient when plasticization by Ar is included (sample B). More-
over, we see that the treatment of CCs at moderate Ar pressure leads to well-pronounced soldering
at lower temperatures than T, at p = 1 bar (Samples C, G, F, H, and I). However, at 700 bar

(samples H and I) the NPs do not have a spherical but hexagonal-like shape.

It is important to note that the phase diagrams shown in Figures 5.8 (a) and (b) depend on the rate
of p and T increase upon (p, T) treatments and the time of exposure to these conditions. Therefore,
we performed a time-dependent BLS study at fixed (p, T) that allowed us to quantify the efficiency
and dynamics for NPs soldering. For this purpose, we exposed the samples to the same (p, T)
conditions as indicated by A-I in Figure 5.8 (b) by instant heating and pressure increase (that took
about 1 min). Figure 5.9 shows the change in the frequency of the (1,1) with time for four samples

exposed to constant (p, T) conditions over t = 90 minutes. Additionally, we performed the BLS
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measurements 12 h after the treatments, i.e., at 1 bar and RT. In the case of pure temperature
treatment at 348 K and 1 bar, the f; ; shows a lower value at ¢ = 0 with respect to the f; ; of the
as-fabricated sample at RT (black arrow). This is due to the elastic softening of PS resulting caused
by increasing the temperature from 300 K to 348 K. In the case of samples treated at elevated Ar
pressure, we observed an initial jJump in f; 1 (t = 0) due to two different effects, namely pressure-
induced nonlinear stiffening of PS and elastic deformation causing the increase in NP-NP contacts
(Figure 5.7). For all samples, the f; 1 blue shifts with time and f; ; (t) can be well fitted using
exponential growth functions f; 1 (t) = f;1(t = 0) + Rexp(—t/t), where T and R stand for the
time constant and the asymptotic frequency shift, respectively. After 12 h of relaxation at ambient
pressure and RT, f; ; drops as indicated by the dashed arrows in Figure 5.9 (a), attributed to the

gas removal from PS.
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Figure 5.9. (a) Time dependence of the f;, at fixed (p,T) conditions indicated in the figure (open
circles). A full black circle labeled by the letter P denotes the f; ; of as-prepared (pristine) sample. The
axis on the right side denotes the contact area radius calculated from f; ;. Full circles indicated with
letters K-N stand for f; ; and ag, 12 h after indicated treatments, i.e., at RT and 1 bar (dashed arrows).
Solid lines denote the fits of experimental points corresponding to the exponential decay function. This
figure was reproduced from Ref. [261]. (b) SEM images after the (p, T) treatments corresponding to P
and K-N samples. The scale bar is 100 nm.
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The f; 1 measured after the (p, T') treatments allowed calculation of the resulting contact area radius
a, [right panel in Figure 5.9 (a)] by using the Eq. (5.6). Our results clearly show that increase of
a, With respect to as-fabricated sample depends on (p, T) conditions. This result is supported by
SEM images displayed in Figure 5.9 (b). The dynamics of the soldering also depend on (p, T)
conditions to which the sample is exposed since the corresponding exponential growth is charac-
terized with different t. The variation of = for exposure to various (p, T) conditions is illustrated
by the 3D bar plot of Figure 5.10 (a). We see that at constant gas pressure, the soldering process
speeds up (time constant is decreasing) with temperature increment. The thermal activation of
soldering can be described by the Arrhenius representation of ©(T) = Bexp[E,/(RT)], indicated
with solid black lines. Here, E, = 43 + 2K] mol ! is the activation energy at 400 and 700 bar,
R is the gas constant and pre-factor B = 2 + 0.7-107*s. Similarly, at constant T, soldering

speeds up with p increment, [decay of 7 in Figure 5.10 (a)] due to the domination of the enhanced
plasticization over thermodynamic effect.

a

Contact area increse (%)

Figure 5.10. (a) 3D bar plot for the time constants t dependence on (p, T) conditions belonging to the
soldering region. Solid black lines are the Arrhenius plots for 7(T) at 400bar and 700 bar. (b) Relative

contact area increase determined after selected (p, T) treatments. This figure was reproduced from Ref.
[261].

To quantify the effectiveness of the soldering, we calculated the relative increase in contact area
from experimentally determined a, after and before (p, T') treatments. The result is shown in the
3D bar plot of Figure 5.10 (b). For instance, the treatment at p = 200 bar and T = 348 K leads

to about a 530 % increase of the NP-NP contact area, while exclusively thermal treatment at the
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same temperature results only in about 12 %. Moreover, the treatments at even lower temperatures
but elevated gas pressures still lead to the higher NP-NP contact area. Therefore, we show that the
soldering by supercritical gases is significantly more efficient than solely temperature treatment at
ambient pressure. This is due to the combination of increment of NP-NP contact by hydrostatic
force in high gas pressure environment and accompanied plasticization of the NPs surface. Fur-
thermore, as illustrated by Figures. 5.9 (a) and 5.10 (a) the duration of the (p, T) treatment plays

an additional role when it comes to the extent of soldering.

To confirm that the gas does not remain inside PS after treatments at (p, T) conditions, we carried
out transmission electron microscopy (TEM) studies on an instrument equipped with an electron
energy loss spectroscopy (EELS) detector. Figures 5.11 (a) and (c) display the TEM images of the
pristine PS sample and after the treatment at 323 K and 1000 bar of N>, respectively. The regions
examined by EELS are shown by the yellow rectangles. EELS analysis of the PS sample prior and
after the (p, T) treatment shown in Figures 5.11 (b) and (d), respectively, revealed a similar amount
of nitrogen for both samples, about 1 %. Therefore, we can conclude that nitrogen does not get
trapped inside PS after (p, T) treatment. Although argon is not easily measurable in EELS, we

expect similar behavior for the samples treated with this gas.

a C

Figure 5.11. TEM image (a) of the pristine PS sample and (c) after exposure to 1000 bar of N at 323 K
Yellow frames show the region for which EELS spectra were acquired. The scale bar is 100 nm. (b)
and (d) display EELS result for the carbon K edge (bottom), nitrogen K edge (middle), and combined
(top) for pristine PS sample and after exposure to given (p, T) conditions, respectively. This figure was
reproduced from Ref. [261].
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To evaluate the change in elastic properties of PS CCs resulting from (p, T) treatments, we calcu-
lated the effective elastic constant CEIT from f,;. Assuming that there is no change in the mass

density of both PS and fcc packed PS CC, we calculated CEf according to formula;2%3277
Cf{f = Peff(UEioo])z' (5.7)

where v[Lloo] = dnf,1/V2 is the longitudinal velocity in [100] direction and peg = 0.74p +

0.26p,i. = 777 kg m~3 denotes the effective mass density of fcc PS CC, where 0.74 is the packing
factor and p,;. = 1.2 kg m~3 is the mass density of air at 1bar and 293 K.2'8 For pristine sample
we obtained C£ff ~ 0.71 GPa. After exposing PS CCs to conditions as in Figure 5.9 , effective
elastic constant are about 0.75 GPa, 1.08 GPa, 1.24 GPa and 1.38 GPa, for (1 bar,348 K), (400
bar,318 K), (400 bar,328 K) and (200 bar,338 K), respectively. Therefore, the described treatments
result in increased stiffness of PS CCs. For instance, the relative change in C£T after exposure to
200 bar of Ar at 338 K indicates nearly twice higher stiffness. Additionally, to confirm the me-
chanical reinforcement of the PS CC, we tested the resilience to mechanical impact of the pristine
sample and the one treated with supercritical Ar. Figures 5.12 (a) and (b) show the images of two
different pristine samples. These fragile samples exhibited cracks after the drying process (Figure
5.2). The sample displayed in Figure 5.12 (b) was next treated with supercritical Ar at 338 K and
400 bar. The resilience tests were performed by hitting the lateral side of the glass substrates
against a solid surface. Figure 5.12 (c) and (d) display the result of the resilience test for the pristine
sample and the one treated with supercritical Ar, respectively. Here, it is important to note that
some amount of PS sample fell off the glass substrate before the resilience test due to handling,
i.e., mounting it on the sample holder and the high-pressure cell experiment. The inset of Figure
5.12 (d) shows the image of the sample after it was taken from the high-pressure cell. Therefore,
a comparison of Figures 5.12 (c) and (d) show that the treatment with the supercritical gas at the
soldering (p, T) conditions [T (p) phase diagram in Figure 5.8], results in mechanical reinforce-

ment of the PS CC.
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Figure 5.12. (a-b) PS sample prepared by drop-casting the PS dispersion in water onto a glass substrate
and by subsequent vacuum drying. (c) Pristine sample and (d) the one exposed to 400 bar of Ar at 338 K
for 3h, after the resilience test. Inset in (d) shows the sample after the treatment at (p, T) conditions,
before the resilience test. This figure was reproduced from Ref. [261].

In summary, we investigated the enhancement in inter-particle bonding among PS nano-
particles in 3D CC after exposure to supercritical N2 or Ar by in-situ BLS. In this approach, the
strong physical bonding between nanoparticles results from the synergistic combination of com-
pressive hydrostatic pressure and plasticization effect caused by gas diffusion into PS. We demon-
strate that this treatment leads to gas-specific lowering of the glass transition temperature, soften-
ing temperature for the surface of nanoparticles. From BLS results, we obtained the T'(p) phase
diagrams for both gases used as plasticizers. Here, we identified the soldering region, i.e., (p,T)
conditions at which NPs exhibit strong physical bonding while maintaining their spherical shape
and the periodicity of CC. We have shown that soldering is possible close to room temperature at
high gas pressures. Additionally, apart from pressure and temperature, we showed that the extent
of the soldering also depends on the duration of the treatment at (p, T). Overall, the treatment with
supercritical fluids presents a route for efficient, chemical-free and simple approach for enhancing

the robustness of polymer colloidal crystals.
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Concluding remarks and outlook

This thesis is dedicated to the experimental investigation of several effects influencing the
elastic properties of different nanostructures. For that purpose, the Brillouin light scattering (BLS)
technique was employed. This technique allows for a contactless and non-destructive approach for
the evaluation of elastic properties, as well as the possibility for in-situ studies.

Chapter 3 reports on the influence of Ta% content on the elastic properties of the Ta-Hf-C
nanocomposites on Si (001) substrate. The Young modulus of these systems was determined from
experimental dispersion relations of Rayleigh surface waves (RSWSs) and high-order Shezawa
waves (SWs) by employing the Finite element method (FEM) model. The results revealed higher
Young modulus for ternary (TaC)x(HfC)y nanocomposites when compared to that of binary TaC
or HfC, with maximum corresponding to stoichiometry with ~65 % of Ta. The values of Young

modulus obtained from BLS agree well with previously reported nanoindentation results.

The results show the superior mechanical response of ternary alloys and their applicability in the
aerospace industry or drilling equipment due to the combination of high elastic response, refractory
properties, and low corrosion. One of the main advantages that these composites offer is their
operation at ultra-high temperatures since Ta-Hf-C is the highest melting point material achieved
by humankind. In this sense, BLS allows for the future monitoring of temperature softening effects
at temperatures well above 1000 °C and a broad range of aggressive environments, where other

techniques, such as nanoindentation, cannot be applied.

In Chapter 4 the elastic size effect, i.e., the change of elastic properties with reducing the
thickness of the material to the nanoscale, was demonstrated for the member of vdW materials,
namely MoSe>. To explore this effect, micro-BLS measurements were performed for both bulk
and ultrathin MoSe, membranes of different thicknesses. For the bulk MoSe;, the detection of
high-frequency pseudo-surface acoustic wave (HFPSAW) and fast transverse acoustic wave (T1)
allowed the determination of elastic constants C;; and Cgq, respectively, directly from the
experiment. Additionally, C,, was calculated from the dispersion of Rayleigh surface wave
(RSW), also resolved in the experiments. For the case of thin MoSe> membranes, C,; and Cg¢ Were
determined from the experimentally obtained dispersions of zero-order symmetric Lamb (S0) and

shear-horizontal (SHO) waves, respectively. Additionally, the dispersion of the zero-order
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asymmetric Lamb wave (A0) was used to determine the residual stress and thicknesses of MoSe;
membranes. The elastic constants of both bulk and few-layer MoSe> reported in this work are
determined directly from the experiment for the first time. Moreover, the results presented in this
chapter demonstrated a substantial softening of MoSe> induced by the decreasing in thickness, i.e.,
negative elastic size effect. In particular, elastic constants C;;, C¢ and E;; reduced for about 30
% while decreasing thickness from bulk to two layers, with the negative elastic size effect already
noticeable for 10L.

These findings contradict the common assumption that relative mechanical strength increases at
the nanoscale, based on previous results for graphene. Therefore, the elastic size effect in other 2D
van der Waals materials should be explored in the future. For this type of study, BLS has shown
to be an ideal technique since it can be used not only for determining the elastic properties but also
to extract the thickness of the materials, a feature not available in other commonly used techniques.
Moreover, BLS allows for evaluating a broad range of thicknesses (here shown from 2 to 30 lay-
ers). The evaluation of elastic size effect is essential for the design and development of any
nanodevice employing such 2D materials, where elastic properties are essential for their durability
and robust performance. The observed size-dependent softening is especially important for the
field of thermoelectrics, giving the possibility of tuning the decrease in thermal conductivity, with

respect to bulk analog, by controlling the material thickness.

Chapter 5 presents the approach for mechanical reinforcement of 3D fcc polystyrene (PS)
colloidal crystals (CCs) by treatment with supercritical N2 or Ar at high pressure and elevated
temperature. In this approach, structural strengthening is possible at temperatures significantly
lower than the glass transition, which is especially important for thermosensitive systems. The
method here presented is a synergistic approach that profits from nanoscale plasticization of par-
ticles’ surfaces while being compressed by hydrostatic pressure. The result of this effect is the
creation of permanent physical bonds between particles while retaining their periodic arrangement
and shape, i.e., soldering. As external plasticizers, N> and Ar were used, which are inert gases,
preventing any reaction from taking place. After the treatment is completed, the gases are entirely
removed, leaving the particles unaffected chemically. In this chapter, the temperature vs. pressure
phase diagrams for each gas are presented, which allowed us to determine the preferential pressure

and temperature for soldering. In the case of Ar, it was shown that soldering was possible even
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close to room temperature for suitable gas pressure. Additionally, the soldering was found to be
depending on the time of treatment. By monitoring the frequency of the dipolar spheroidal Lamb
mode, before and after the treatments by supercritical fluids, it was shown that the relative contact
area between the particles can be increased by more than 500 %, which is significantly larger when
compared to pure temperature treatment (about 12 %). These findings indicate the mechanical

reinforcement of the colloidal crystal, which was also confirmed by the resilience test.

Therefore, treatment with supercritical fluids offers a highly efficient solution, without the use of
any hazardous chemicals, for the fabrication and tuning of durable devices made of polymer col-
loids. This approach could be adopted for various polymeric systems and architectures, especially
for those in which high temperature or chemical treatments are not suitable. Furthermore, the basic
idea behind this approach, plasticization of polymer nanostructures upon exposure to supercritical
fluids, offers numerous research opportunities. Among those, the investigation of different gasses
as plasticizers, and the effect of different particle sizes on the soldering effect or general response
in various polymer CCs, can be explored. In perspective, reinforced CC structures can be prepared
as single free-standing 2D layers and used as skeletons for fragile ultrathin membranes in order to
provide an extra level of robustness to the systems. Such hybrid materials composed of membranes
with the ability to convert light into mechanical motion and polymer particles have the potential
to be used as durable photo-actuators. Moreover, due to the periodicity of CCs, these composites

could be employed as light-tunable acoustic filters.

Overall, the unique capabilities of BLS for measuring elastic properties, membrane thick-
ness, and in-situ monitoring of the contact mechanics of nanomaterials, presented in this thesis,
are highly useful for developments in nanotechnology. Such measurements are important for both
fabrication and research of nanomaterials' behavior in complex environments. In further work,
Brillouin light scattering opens opportunities for the research of novel materials and effects. For
instance, photoelastic properties of novel nanomaterials and architectures and the size dependence

of photoelastic constants should be investigated.
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