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ABSTRACT

The critical dynamics of sound is a very interesting field in which we can test modern
concepts of the phase transition theory such as the universality of critical exponents,
scaling or the crossover to another universality class etc. It is the aim of the study to
present a general theory of critical sound propagation, which takes also into account
some important nonasymptotic effects. In metallic magnets the critical anomalies in
the sound attenuation coefficient are of different types than in magnetic insulators.
The difference in the critical exponents used to be explained by the occurrence of
different kinds of magnetoelastic coupling in the two classes of magnets mentioned.
We will show in this chapter that one should assume coexistence of both types of
coupling in all magnets. A very important role is played by the ratio of the spin-
lattice relaxation time to the characteristic time of spin fluctuations. It is a crucial
parameter determining whether the sound attenuation coefficient reveals a strong
or a weak singularity in a given material.

After a short introduction the fundamental concepts of the phase transition
theory such as critical exponents, the scaling and universality hypothesis etc are
reviewed in Section 2 of this chapter. Section 3 presents the idea of critical slowing
down, dynamic scaling as well as the presentation of the basic dynamic universality
classes. In Section 4, the model describing the static behavior of acoustic degrees of
freedom is investigated. The expressions for the adiabatic and the isothermal sound
velocity are also derived. The phenomenological theory of critical sound propagation
is presented in very intuitive way in Section 5, while Section 6 contains a detailed
description of the dynamic model based on the coupled nonlinear Langevin equations
of motion. Three basic regimes characterized by different critical exponents and
scaling functions are distinguished in the sound attenuation coefficient. Crossover
effects from the insulator-type regime to the metallic-type regime and to the high-
frequency regime are demonstrated on the example of the ultrasonic data for MnF2.
The concept of the effective sound attenuation exponent is introduced using the
data reported for FeF2 and RbMnF3. The frequency dependent longitudinal sound
velocity and its relation to the static quantities are discussed. Finally, the unsolved
questions and future prospects in this field are outlined.
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1 Introduction

The sound attenuation coefficient and the sound velocity show anomalous behav-
ior near the critical point of the magnetic systems. The singular behavior of these
quantities is connected with very strong fluctuations of the magnetic order para-
meter near the critical temperature. These fluctuations give rise to a characteristic
attenuation peak whose position is correlated with that of the minimum in the
sound velocity. In Fig. 1 we show the temperature dependence of the longitudinal
ultrasonic attenuation and changes in the sound velocity in Gd (Moran and Luthi
[1]). The problem of strongly interacting fluctuations cannot be reduced to the

Figure 1 Temperature dependence of the ultrasonic attenuation and changes in the sound velocity
for the longitudinal waves along c-axis with f=50 MHz (Moran and Luthi [1]).

problem of ideal gas even in the lowest order approximation. The general method
of treating such issues has been shown by Wilson [2, 3] to be the renormalization
group theory. Using this method we can find not only the critical exponents and the
scaling functions but we can also study the nonasymptotic effects as the crossover
from one universality class to another (crossover phenomena). Later it was possible
to generalize the renormalization group formalism to the dynamic phenomena [4]
such as transport coefficients and the relaxation rates. The studies of the critical
dynamics of sound is a very important field where we can test the modern concepts
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of phase transition theory such as scaling, universality of the critical exponents
or the crossover to another universality class. Moreover, the measurements of the
sound attenuation coefficient and the sound velocity permit determination of the
phase diagram or the symmetry of the coupling between the order parameter and
the elastic degrees of freedom. It is the class of magnetic materials which is es-
pecially important from this point of view (although it is still not fully recognized
in many details), being a prototype for many other systems. In magnets we meet
in general three types of magneto-elastic coupling (in this paper they will also be
called the spin-phonon couplings) [5] but usually only one called the volume mag-
netostriction dominates. In spite of this ostensible simplification we observe there a
whole variety of possible behaviors which sometimes cannot be explained. This fact
is connected with the coexistence in magnets of many different spin interactions of
different symmetry and range and with very rich and complicated dynamics in some
systems [6, 7]. These factors can be manifested over different temperature ranges,
which sometimes makes it impossible to describe the system’s dynamics with the
aid of one set of critical exponents. In the magnets being electric insulators the
acoustic singularities encountered are different than in those showing metallic prop-
erties [6, 7]. In insulators we usually observe a weak singularity characterized by a
small sound attenuation exponent. Sometimes the singularity is even not observed
in a given experimental frequency range. In magnetic metals the singularity is much
more noticeable and the critical exponent is much higher (usually higher than one).
It was initially explained by the fact that in insulators the spin exchange interac-
tions are of short range nature and in this case the spin-phonon Hamiltonian which
arises mostly via the strain modulation of the exchange interaction [6] is propor-
tional to the exchange Hamiltonian1. This mechanism was proposed by Kawasaki [8]
who noticed also that the energy fluctuations should decay only by the spin lattice
relaxation. In this case we say that the sound wave couples to the energy fluctua-
tions contrary to the metallic magnetic systems in which the long range exchange
interactions generate a more general spin-phonon interaction which is linear in the
sound mode and bilinear in the order parameter (spin) fluctuations. The different
couplings should lead to different sound attenuation exponents. However, it was a
simplified point of view as it was later shown [9, 10] that the energy fluctuations
couple to the same bilinear combination of the order parameter fluctuations as for
the magnetic metals. The general theory [9] which takes into account both types
of magnetoelastic couplings as well as the proper coupling of energy to the order
parameter fluctuations shows that both singularities: typical of the metallic as well
as insulating systems appear in the acoustic self energy with the same effective cou-
pling constant and the parameter which distinguishes the two types of behavior is
the ratio of the spin-lattice relaxation time to the characteristic time of spin fluctu-

1However, it is true only when we can neglect the next nearest neighbor exchange coupling and
only in the case of propagation along some symmetry directions. In general the sound mode couples
only to the part of the spin energy density [6].
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ations2. For insulators this ratio is very high as the spin-lattice relaxation times are
much longer than for metals. The long spin-lattice relaxation time favors the weak
singularity. If these times are comparable, the strong singularity dominates. We
will show also the existence of another high-frequency regime which is expected for
some materials. The nonasymptotic effects showing the crossover from insulator-
type regime to the metallic-type regime and to the high-frequency regime will be
demonstrated on the example of the ultrasonic data for MnF2. We will also show
the usefulness of the concept of the effective sound attenuation exponent which is
introduced using the experimental data for FeF2 and RbMnF3. Finally a summary
of the sound attenuation exponents in magnetic metals and insulators will be given
as well as an outlook for the future progress in this field will be outlined.

2 The fundamental concepts of the phase transition
theory

There is a huge variety of physical3 systems which undergo phase transitions. The
most interesting class of phase transformations seems to be that of the continuous
phase transitions which show no latent heat but at which many physical quantities
diverge to infinity or tend to zero when approaching the critical temperature Tc.
The behavior of the specific heat of a ferromagnet near the critical temperature
is shown in Fig. 2. The free energy in such systems is a nonanalytical function

Tc

T

C

Figure 2 Specific heat C vs. temperature T in a ferromagnet.

2It will be shown explicitly in Section 6 of this chapter.
3In general the phase transitions can be found in economic, biological, social and many other

systems. For example the collective motion of large groups of biological organisms like flocks of
birds or fish schools (self-driven organisms) can develop a kinetic phase transition from an ordered
to chaotic motion [13, 14].
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of its arguments which is a manifestation of very strong fluctuations of a quantity
called the order parameter. Usually, we define the order parameter as the quantity
which is space and time dependent. It will be denoted by S(x, t) for anisotropic
ferromagnets, and sometimes we will refer to it as the spin. The prototype of the
continuous phase transition is that from the paramagnetic phase (disordered spins)
to the ferromagnetic phase with nonzero average magnetization. In this case, the
order parameter is the local magnetic moment whose average (magnetization) tends
to zero when approaching the Curie temperature as shown in Fig. 3. For antiferro-
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Figure 3 Magnetization as a function of temperature.

magnets the order parameter is given by the staggered local magnetization; in the
case of gas-liquid transition it is proportional to the deviation of the mass density
from its critical value, and for the superconducting transition it is a wave function of
the Cooper pairs [12]. The order parameter can have more than one components as
for example for isotropic ferromagnets in which it is a vector with three components.
We say that in this case the order parameter dimension is three: n = 3. If there
is an anisotropy in the system such that the magnetization (staggered magnetiza-
tion) vector is forced to lie within a given plane we deal with the XY ferromagnet
(antiferromagnet) for which n = 2. For a magnet with only one easy axis n = 1
and we talk about the scalar order parameter. The order parameter can have much
more components and a nature more complicated than a vector as for example in
liquid He3 [12]. In the theory of phase transitions and critical phenomena the key
problem is the identification of the order parameter since the same system of atoms
may exhibit in different temperature ranges the liquid-gas transition, many struc-
tural and/or liquid crystals transitions, paramagnet-ferromagnet transition etc. The
physical intuition plays here a very important role indicating the most important
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features of a given phase transformation.

2.1 Critical exponents

The rate at which physical quantities diverge to infinity or converge to zero when
approaching a critical point is described by critical exponents. If the distance from
the critical point is measured by the reduced temperature

t =
T − Tc

Tc
, (1)

than the critical exponent, describing the quantity z(t) is defined by:

xz = − lim
t→ 0+

ln z(t)
ln t

. (2)

We say that for t → 0+ the function z(t) diverges (with a positive exponent xz) as
t−xz . We can also define the low-temperature exponent

x′z = − lim
t→ 0−

ln z(t)
ln t

, (3)

which corresponds to the ordered (low-temperature phase), or other critical expo-
nents describing the power-law behavior with respect to the other thermodynamic
quantities, distance or the wave vector etc. For some quantities like the average of
the order parameter the corresponding exponent is defined with the minus sign in
Eq. 3. We define the basic static critical exponents on the example of the Ising type
ferromagnet (n = 1). In such a simple system the critical behavior of all thermo-
dynamic quantities is controlled by only two parameters: the reduced temperature
t and the magnetic field h. Let us consider the following quantities:

1. The specific heat Ch under constant magnetic field. Near Tc it is described
by the relations:

Ch ≈ A+t−α + B, t > 0, h = 0, (4)

Ch ≈ A− |t|−α′ + B, t < 0, h = 0. (5)

In the case of two dimensional Ising model α = 0 and the specific heat diverges
logarithmically

Ch ≈ −A± ln |t|. (6)

The coefficients A+ i A− are called the critical amplitudes and α i α′ are known
as the specific heat critical exponents.

2. Susceptibility χ (the derivative of the magnetization with respect to the
magnetic field). We observe the following power-law behavior:

χ ≈ C+t−γ , t > 0, h = 0, (7)
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χ ≈ C− |t|−γ′ , t < 0, h = 0. (8)

For the systems with vector order parameter (n ≥ 2) below Tc the susceptibility is
infinite in agreement with the famous Goldstone theorem [15] which says that for
the system with broken continuous symmetry n−1 transversal modes appear whose
frequencies tend to zero as the wave vector goes to zero. These massless modes
imply that the transversal susceptibility diverges for a vanishing external field.

3. The order parameter

M ≈ B′(− t)β, t < 0, h = 0. (9)

Another interesting critical exponent is the one connected with approaching the
critical point for T = Tc with h → 0. Then the order parameter is described by the
following scaling law:

M ≈ Bc h1/δ , t = 0. (10)

4. Two-point correlation function

C(x) = 〈S(x )S(0)〉 − 〈S(0)〉2 , (11)

where 〈...〉 denotes an average and S(x ) is a local value of the order parameter at
point x. At the critical point (T = Tc) it is characterized by the power-law behavior
at large distances:

C(x) ∝ x−d +2− η , t = 0, h = 0, (12)

where d is the space dimension and η is an anomalous critical exponent which
measures the deviation from the classical Ornstein-Zernike behavior where η = 0.

In the neighborhood of the critical point (but not exactly at it) the correlation
function decays exponentially

C(x) ∝ exp(−x/ξ), (13)

where ξ denotes a correlation length of the system which diverges when approaching
the critical temperature:

ξ ≈ ξ+
0 t−ν , t > 0, h = 0, (14)

ξ ≈ ξ−0 (−t)−ν′ , t < 0, h = 0. (15)

2.2 Scaling hypothesis

Already at very early stage of development of the phase transition theory, it was
realized that the critical exponents are not fully independent of each another and
fulfill a number of relations called the ,,scaling laws” [17]. These relations can
be derived from the scaling hypothesis which says that near the critical point the
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correlation length ξ is the only characteristic length scale in terms of which all other
quantities with dimensions of length are to be measured. In general a system has
usually many intrinsic length scales, as for example the length of a system or the
mean distance between nearest lattice points in a crystal. We say that the system
near a critical point shows a scale invariance. Using the scaling hypothesis one can
derive the above mentioned scaling laws which are in very good agreement with
experiment. A mathematical manifestation of the scaling hypothesis is that the
singular parts of the thermodynamic potentials or the correlation function etc. are
generalized homogeneous4 functions of their arguments [17–19]. For example the
free energy of the magnetic system Fsing(T, h) obeys the relation:

Fsing(λxtt, λxhh) = λFsing(t, h), (16)

where λ is a rescaling factor (any real number) and xt and xh are the characteristic
exponents of the phase transition. Choosing λ = t−1/xt we obtain Fsing(t, h) =
t1/xtφ(h/txh/xt) where φ is a scaling function. Also a derivative of one homogeneous
function is another homogeneous function. Thus differentiating expression (16) with
respect to the reduced temperature or magnetic field and comparing it with the
corresponding definitions of critical exponents we can express the critical exponents
α, β, γ and δ by only two independent ones xt and xh. Analogous considerations
applied to the correlation function [19] shows that also the exponents η and ν can be
obtained from the two mentioned independent ones. A consequence of the scaling
hypothesis is also the equality of low-temperature and high-temperature exponents:
α = α′, γ = γ′ and ν = ν ′. Eliminating xt and xh from the relations between the
critical exponents one can obtain a number of exponent identities called the scaling
laws [17]:

α + 2β + γ = 2, Rushbrooke’s law, (17)

α + β (δ + 1) = 2, Griffiths’ law, (18)

γ = (2− η)ν, Fisher’s law, (19)

α = 2− dν, Josephson’s law. (20)

The Josephson’s identity is the only one which involves the space dimension.
Such identities are known as hyperscaling relations. They are true only for d < dc

where dc is the upper critical dimension (dc = 4 for models with n-vector order-
parameter) above which the mean-field critical exponents are exact:

α = 0, γ = 1, ν =
1
2
, η = 0, β =

1
2
, δ = 3. (21)

4In general, a function f(y1, y2, ...) is homogeneous if f(bx1y1, b
x2y2, ···) = bxf f(y1, y2, ···) for

any b. By a proper choice of the rescaling factor b one of the arguments of f can be removed,
leading to a scaling forms used in this subsection. An important consequence of the scaling ideas
is that the critical system has an additional dilatation symmetry.
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The scaling laws were confirmed in many experiments, whereas the theoretical
explanation was given by the renormalization group theory [3, 17, 23]. Moreover,
this theory provided us also with the efficient tools for calculating the critical ex-
ponents and the scaling functions. Within this formalism one can also calculate
the corrections to the asymptotic (t → 0) power laws and assess their magnitude
[22, 24]. As will be shown in the next section it is possible to generalize the scaling
hypothesis onto the dynamic phenomena.

2.3 Universality hypothesis

The main goal of the theory of phase transitions is to permit the calculations of the
scaling exponents and the scaling functions. According to the universality hypothe-
sis, diverse physical systems that share the same essential symmetry properties will
exhibit the same physical behavior close to their critical points and the values of their
critical exponents do not depend on the thermodynamic parameters, the strength
of interactions, atomic structure of the system and other microscopic details of the
interactions. For example a uniaxial ferromagnet is characterized by the same set
of critical exponents as the liquid-gas phase transition and the planar ferromagnet’s
exponents are the same as for the liquid helium near the transition to superfluid
phase. Very close to the critical point the most of the detailed information about
the interactions in the system becomes irrelevant and even highly idealized models
(and much simpler than the real system), which possess the important symmetries
of the real system, can be used to describe real systems accurately. These symme-
tries determine the type of critical behavior (values of the critical exponents) known
as the universality class. The fact that every system undergoing a continuous phase
transition belongs to one of such universality classes and that the universality classes
constitute relatively not numerous set is probably the most unusual feature of the
phase transitions. The renormalization group theory predicts that the universality
classes are determined by the spatial dimensionality d, dimension of the order pa-
rameter n or more generally its symmetry, and the range of interactions. In some
systems the presence of some kinds of impurities may influence the critical exponents
leading to a new universality class. Besides the critical exponents also the scaling
functions and some combinations of critical amplitudes like A+/A− or ξ+

0 /ξ−0 are
universal i.e. are the same for different sometimes quite dissimilar systems. The
critical amplitudes alone are nonuniversal quantities and depend on a given system.
In Table 1 we present the theoretical estimations of the most important (static)
critical exponents and some universal amplitude ratios for three dimensional systems
with n-vector order parameter and short range interactions. From the analysis of
these data we can see that the change in the critical exponents from one class to
another is not very impressive. Much greater variability is observed in the critical
amplitude ratios and sometimes these ratios are better suited to identify the uni-
versality classes. Also the investigation of dynamic properties of the system as will
be shown in the next section may be useful in solving this issue.
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Table 1 The theoretical estimations of the critical exponents and the universal amplitude ratios for
three dimensional Ising (n = 1), XY (n = 2) and Heisenberga (n = 3) systems.

n 1 2 3

α 0.110(1) −0.0146(8)∗ −0.133(6 )∗

β 0.3265(3) 0.348 5(2)∗ 0.3689(3)∗

γ 1.2372(5) 1.3177(5) 1.3960(9)

δ 4.789(2) 4. 780 (7)∗ 4.783(3)∗

η 0.0364(5) 0.0380(4) 0.0375(5)

ν 0.6301(4) 0.67155(27) 0.7112(5)

A+/A− 0.532(3) 1.062(4) 1.56(4)

ξ+
0 /ξ−0 1.956(7) 0.33 0.38

αA+C+/B2 0.0567(3) 0.127(6) 0.185(10)

References [22] [25] [26]

The star (*) denotes the estimations obtained from the scaling laws α = 2− 3ν, β = ν(1 + η)/2 and δ = (β + γ)/γ

3 Critical dynamics

We recall in this section the basic ideas which have contributed to the development
of the modern theory of dynamic critical phenomena.

3.1 Critical slowing down

In description of the critical anomalies which are met in dynamic characteristics
of the system like the linear response functions, we need an equation of motion
describing the order parameter field. The most simple equation used in irreversible
thermodynamics is that describing the rate of change in the quantity relaxing to its
equilibrium state

ψ̇ = −L
dΦ
dψ

, (22)

where the dot over ψ denotes the time derivative and L is a kinetic coefficient. The
function Φ [ψ] is an increase in the corresponding thermodynamic potential related
to the deviation of ψ from the equilibrium value (ψeq = 0). The probability of
fluctuation ψ is proportional to

peq ∝ exp {−Φ [ψ] /kBT} (23)
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If we assume that the probability distribution is Gaussian than we have

Φ [ψ] =
ψ2

2χ
, (24)

where

χ =

〈
ψ2

〉

kBT
(25)

is a susceptibility. The solution of (22) is given by

ψ(t) = ψ(0)e−t/τ , (26)

where τ = χ/L is known as the relaxation time of quantity ψ. In this section the
symbol t refers to the time not to the reduced temperature and the distance to
the critical point will be denoted by (T − Tc). We have seen in the last section
that an increase in the fluctuations near the critical point leads to the divergence
of the susceptibility χ ∝ (T − Tc)−γ . According the conventional theory of critical
dynamics proposed by Van Hove [31] the kinetic coefficients stay finite at the critical
point so the relaxation time goes to infinity at the critical point. We say that the
system needs more and more time to get back to equilibrium. This phenomenon is
known as the critical slowing down. The Van Hove’s theory turns to be incorrect in
most cases and the kinetic or transport coefficients diverge to infinity (or go to zero
in some cases) but in no case does the kinetic coefficient diverge so strongly as the
susceptibility [4] so the critical slowing down appears in all cases.

3.2 Dynamical scaling

In the physics of dynamic phenomena another critical exponent known as dynamic
critical exponent z must be defined. In the dynamic scaling hypothesis we assume
that the characteristic frequency (known also as the critical frequency) of the order
parameter mode Sk scales as

ωc(k) = kzf(kξ), (27)

where k is the wave vector and f is the scaling function. The characteristic frequency
is defined as the half width of the dynamic correlation function CS(k, ω)

ωc(k)∫

−ωc(k)

dω

2π
CS(k, ω) =

1
2

CS(k) (28)

where

CS(k, ω)=
∫

ddx

∫
dt e−i(k · x−ωt)[〈S(x, t)S(0, 0)〉 − 〈S(x, t)〉〈S(0, 0)〉]. (29)
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The characteristic frequency may be also defined [4] by

ωc(k) =
2CS(k)
CS(k, 0)

=
LS(k)
χS (k)

. (30)

C(k) denotes here the Fourier transform of the static correlation function and
χS (k) = CS(k)/kB is the susceptibility, LS(k) is the effective kinetic coefficient

1
LS(k)

=
i∂χ−1

S (k, ω)
∂ω

|ω =0, (31)

where χS (k, ω) is the linear response (dynamic susceptibility) to the infinitesimal
field. We define the dynamic susceptibility χS (k, ω) by the relation

δ 〈S (k, ω)〉h = χS (k, ω) h (k, ω) . (32)

Fourier transforms in wave vector and frequency are given by

S(x, t) =
∫

ddk

(2π)d

∫
dω

2π
ei(k · x−ωt)S(k, ω).

The fluctuation-dissipation theorem for the classical systems says that the linear
response and the correlation function are not independent:

CS(k, ω) =
2kBT

ω
ImχS (k, ω). (33)

If the correlation function has a Lorentzian peak centered about ω = 0 the definitions
(28) and (30) are equivalent. If there is a propagating mode in the system which is
reflected in the correlation function C(k, ω) as a sharp peak at a finite frequency,
the definition (30) is not appropriate [4].

Within the dynamical scaling hypothesis [32, 33] we assume that the linear
response function is homogenous:

χS (k, ω;T − Tc) = b2−ηχS

(
bk, bzω; b1/ν(T − Tc)

)
.

With a proper substitution for b we obtain

χS (k, ω;T − Tc) = (T − Tc)−γY (kξ,
ωξz

Ω0
), (34)

where Y is a scaling function and Ω0 is a constant setting the time scale in the
system. It is assumed that the wave vector and the frequency are much smaller than
the inverse of the microscopic length (e.g. the lattice constant) and the microscopic
relaxation time.

In the simple model of relaxational dynamics described in last subsection we
have

ωc(k → 0) → L/χ ∝ |T − Tc|−γ ∝ ξ−γ/ν, (35)
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as in this model the kinetic coefficient L does not depend on k for k → 0. The
scaling function f from Eq. (27) has to behave as

f(x) ∝ x−z, (36)

in order that ωc(k → 0) was wave vector independent. It gives the relation ωc ∝ ξ−z

which can be compared with the Van Hove’s dynamic exponent z = γ/ν = 2 − η
where we have exploited the Fisher identity (19).

3.3 Mode coupling and the equations of motion

Moreover, if we would like to take into account the fast movement associated with
the other modes, we should add to Eq. (22) a stochastic Gaussian noise ζ(t) which
mimics the thermal excitation

ψ̇ = −L
dΦ
dψ

+ ζ, (37)

where the correlation function of the noise obeys the Einstein relation
〈
ζ(t)ζ(t′)

〉
= 2kBTLδ(t− t′), (38)

and δ(t) is the Dirac function. We assume that

〈ζ(t)〉 = 0.

Both ψ and ζ should be regarded as the stochastic processes. Eq. (37) is known as
a linear Langevin equation [30].

Generalizing Eq. (37) to include n-vector non uniform processes S and taking
into consideration also (static) nonlinear couplings present in the thermodynamic
potential as a term proportional to S4, we obtain a model of dissipative dynamics
known as the time-dependent Landau-Ginzburg model [34]

Ṡi(x ) = −Γi
δH

δSi(x)
+ ζi(x ), (39)

where the potential (called the Landau-Ginzburg Hamiltonian or free energy)

H =
1
2

∫
ddx{r0S

2 + (∇S)2 +
u

2
S4}, (40)

includes also nonlinear couplings between modes. In an external magnetic field h
the term −∫

ddxh ·S(x ) should be added to (40). In Eq. (40) we used the following
abbreviations:

S2 =
n∑

i =1

S2
i (x ),
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(∇S)2 =
n∑

i =1

(∇Si(x ))2,

S4 = (S2)2.

The symbol δH
δSi(x) denotes a functional derivative [12, 35]. The noises fulfill the

relations 〈
ζi(x, t)ζj(x′, t′)

〉
= 2Γiδijδ(x− x′)δ(t− t′). (41)

Usually it is assumed that the kinetic coefficients for different components of the
order-parameter are equal: Γi = Γ.

The equation of motion (39) does not contain the nonlinear mode-coupling terms
which in a crucial way decide on whether the kinetic coefficients diverge or tend to
zero when approaching the critical point. For an isotropic ferromagnet for example,
Eq. (39) should be modified by a term describing the precession of the spins around
the local magnetic field:

Ṡ = λS× δH

δS
+ D∇2 δH

δS
+ ζ, (42)

where the Onsager kinetic coefficient Γ was replaced by the term −D∇2 which guar-
antees that the total spin Sk = 0 (t) =

∫
ddxS(x, t) is a conserved quantity5 (which

does not change its value during the motion) analogously to microscopic models and
to hydrodynamics [60]. The first term in Eq. (42) describes the precession around
the local field hloc = − δH

δS and is known in literature as the mode-coupling term or
the streaming term. It is a non dissipative term i.e. it does not change the total
energy of the system when the noise and the damping force are absent

dH

dt
=

∫
ddx

δH

δS(x, t)
· ∂S(x, t)

∂t
=

∫
ddx

δH

δS(x, t)
·
[
λS(x, t)× δH

δS(x, t)

]
= 0. (43)

When we investigate the critical dynamics we are not usually interested in com-
plicated microscopic descriptions of the evolution of the system. Usually we tend to
obtain the equations of motion for long-wavelength components of the so-called slow
variables such as the conserved quantities, Goldstone modes and the order parame-
ter. The fast variables are eliminated by a projection procedure on the subspace of
slow variables [36, 37]. The reader can find the description of this procedure in the
works of Mori et al. [38, 39]. The effective equations of motion for slow variables
φα are reduced to nonlinear Langevin equations [38, 39]

d

dt
φα(t) = Vα({φα(t)})−

∑

β

Γαβ
δH({φα(t)})

δφ∗β(t)
+ ζα(t), (44)

5It is easy to see this performing a Fourier transform S(x, t) = 1√
V

X
k < Λ

eik · xSk(t). Then

D∇2 → −Dk2 and the damping coefficient for the total spin tends to zero for k → 0. In this
equation Λ is a cutoff parameter which is usually chosen in such a way that Λ−1 is much larger than
the lattice constant and simultaneously much shorter than the correlation length. Models which
describe the fluctuations in such a scale are known as mesoscopic models.
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where
H({φα(t)}) = −kBT ln(Peq({φα(t)})), (45)

and Peq({φα(t)}) is an equilibrium distribution function. The first term in Eq. (44)
is the streaming term

Vα({φα(t)}) = −λ
∑

β

[
δ

δφβ
Qαβ({φα})−Qαβ({φα})δH({φα})

δφ∗β

]
, (46)

with λ being a constant; and Qαβ = −Qβα are some functions constructed from
the Poisson brackets or the commutators of slow variables {φα}. The second contri-
bution describes the dumping and the last term is the stochastic force representing
the effect of fast variables. The white noises have zero means and variations:

〈
ζα(t)ζβ(t′)

〉
= 2Γαβδ(t− t′).

It can be shown that the equations of motion have the correct stationary state (the
long-time limits of the one-time correlation functions are the same as the static
quantities obtained from the equilibrium distribution function).

It should be noted that the Poisson brackets and the detailed form of the damping
coefficients are not determined by the functional H, which implies that with each
static universality class usually a few dynamic universality classes (determined by
the static critical exponents as well the dynamic one) can be associated. In general,
we can say that the dynamic universality class is determined by the number of slow
variables and the structure of the Poisson brackets.

3.4 Dynamic universality classes

In this section we consider a few of the most important models used in the study of
critical dynamics. We begin with the models describing the relaxational dynamics.
The description of other models can be found in the excellent reviews [4, 42, 43, 85,
86].

3.4.1 Model A

In this model there is no conserved quantity and the only slow variable is the order
parameter of n components. It is described by simple equations [44, 45]:

Ṡi(x ) = −Γ
δH

δSi(x )
+ ζi(x ), (47)

where H is the Ginzburg-Landau Hamiltonian of the form (40). The static exponents
are determined in all dynamic models by the spatial dimensionality d and the order-
parameter dimension. The dynamic critical exponent differs only slightly from that
from the Van Hove’s theory. The renormalization group theory gives the value:

z = 2 + cη, (48)
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where η is the correlation function exponent (12) and c is a function of d and n. One
of the tools of this theory is the ε-expansion [3] of the critical exponents (and the
scaling functions) where ε = 4−d. It was obtained that c = 0.7261(1−1.687ε)+O(ε2)
[46, 47]. Another useful expansion is that in 1/n (exact for n → 0), it gives the
following estimate c = 1/2 for d = 3 [46]. According to Eq. (48) the renormalized
(by interactions) kinetic coefficient ΓR

6 goes slowly to zero [4] as t → 0 and it is
actually finite to first order in ε.

3.4.2 Model B

It is a simple modification of Model A with the order parameter being a conserved
quantity. In Eq. (47) the kinetic coefficient Γ is replaced by −λ∇2 and the same
replacement is made in Eq. (41). We find for this model

ωc(k) = λk2/χS ,

as the transport coefficient λ is not renormalized by the nonlinear interactions
present in the Hamiltonian [4]. Thus we obtain the classical result from the Van
Hove’s theory

z = zcl = 4− η.

The characteristic frequency ωc(k) tends to zero for a given k as a result of the
critical slowing down.

3.4.3 Model C

The nonconserved order parameter can be coupled to a conserved (noncritical) quan-
tity such as the energy (or the magnetization in the case of uniaxial antiferromagnet).
The static Landau-Ginzburg functional depends then on two quantities: the order
parameter S and the additional conserved quantity m:

H =
1
2

∫
ddx{r0S

2 + (∇S)2 +
u

2
S4 + χ−1

m m2 + fmS2}, (49)

where f is a new coupling constant and χm is the bare (i.e. without taking into
considerations the effect of interactions which means for f = 0) susceptibility of
m. Because m is a noncritical quantity it can be eliminated from statics by an
integration over m [44]. This procedure leads to an effective Hamiltonian with the
renormalized coupling constant u. Thus the static critical exponents are the same
as for Hamiltonian (40).

The dynamics is described by two coupled equations:

Ṡi(x ) = −Γ
δH

δSi(x )
+ ζi(x ), (50)

6The renormalized kinetic coefficient is usually defined by the relation ΓR = ωcχ where χ is the
susceptibility of the system.
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ṁ(x ) = λm∇2 δH

δm(x )
+ ξm(x ), (51)

where the additional noise obeys the relation

〈
ξm(x, t)ξm(x′, t′)

〉
= −2λm∇2δ(x− x′)δ(t− t′). (52)

The coupling with the conserved quantity leads to a new dynamic critical exponent
for the systems with positive specific heat critical exponent (which happens for the
Ising like systems with n = 1)

z = 2 +
α

ν
(53)

where α is the specific heat critical exponent. The renormalized kinetic coefficient
goes to zero more rapidly than in model A, and then ΓR ∝ tα. For α < 0 (or n > 1)
the coupling with the conserved quantity is irrelevant and this model is equivalent to
model A. It is worth noting that the exponent α/ν is rather small so it is difficult to
distinguish the predictions of models A and C experimentally, but for the tricritical
point7 we have αt = 1/2 and νt = 1/2 so the dynamic tricritical exponent zt = 3 for
model C is significantly different from model A where zt = 2 [11, 52].

3.4.4 Model D

In this model the conserved order parameter is coupled with the conserved non-
critical quantity. The dynamics of this model is described by Eqs. (50) and (51)
where Γ = −λS∇2. The model’s dynamics is reduced to that of model B (indepen-
dently of the order parameter dimensionality n) with z = zcl = 4− η.

3.4.5 Models E and F

Let’s consider a planar magnet described by the following equations [48] (model
F)

ψ̇ = −2Γ
δH

δψ∗
− igψ

δH

δm
+ θ, (54)

ṁ = λm∇2 δH

δm
+ 2g Im(ψ∗

δH

δψ∗
) + ξm, (55)

where ψ is a complex order parameter representing Sx − iSy and m is the z-th
component of magnetization (the z-axis is chosen to be perpendicular to the easy
plane). The Landau-Ginzburg functional is given by

H =
1
2

∫
ddx{r0 |ψ|2 + |∇ψ|2 +

u

2
|ψ|4 + χ−1

m m2 + fm |ψ|2 − hm}.

7At the tricritical point a change from the continuous to the first order transition occurs [51].
The tricritical exponents are classical ones for d > 3 with logarithmic corrections for d = 3.
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In easy plane ferromagnets the order parameter is not conserved but the z-th
component of magnetization is the conserved quantity which is also the generator of
rotations in the order parameter space. So there is a non-vanishing Poisson bracket

{ψ, M} = igψ, (56)

where g is the mode-coupling and M =
∫

ddxm(x ).

The static properties of this model are the same as those of model C but the
dynamic behavior is different due to the nondissipative coupling g and the complex
value of the damping coefficient Γ. It was shown by Halperin and Hohenberg [49]
that below Tc there is a spin-wave of the frequency cswk. Model F is significantly
simplified in the situation when the external magnetic field vanishes. In such a case
the total magnetization 〈M〉 also vanishes and we have the symmetric planar model
denoted as model E. In this model we put f = 0 and assume a real Γ.

The propagating mode below Tc permits determination of the dynamic expo-
nent z only by means of the static exponents and the spatial dimension. For the
antisymmetric planar model (F) which also describes the liquid helium transition
we obtain

z =
d

2
+

α̃

2ν
, (57)

where α̃ ≡ max(α, 0) and α is the specific-heat exponent. For model E

z =
d

2
, (58)

thus z = 3/2 for d = 3. In both models the kinetic coefficient Γ diverges for T → T+
c

(but not so strongly as the susceptibility, so the critical slowing down takes place).

3.4.6 Model G

The isotropic antiferromagnet is also the system with the mode coupling. We
have there the nonconserved order parameter (the staggered magnetization) which
is a three-dimensional vector. The second field describes the local magnetization.
The equations of motion can be written as

Ṅ = −Γ
δH

δN
+ gN × δH

δm
+ θ, (59)

ṁ = λ∇2 δH

δm
+ gN × δH

δN
+ gm × δH

δm
+ ζ, (60)

H =
1
2

∫
ddx{r0N

2 + (∇N)2 +
u

2
N4 + χ−1

m m2}, (61)

where θ and ζ are white noises. There are non-vanishing Poisson brackets:

{Ni,Mj} = gεijkNk, (62)
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{Mi,Mj} = gεijkMk, (63)

where M =
∫

ddxm(x ) and εijk is the antisymmetric tensor.

In this model we have also a propagating spin-wave mode and the dynamic
critical exponent is the same as in model E: z = d/2 but some universal amplitude
ratios are different [50].

3.4.7 Model J

The dynamics of this model is determined by spin precession and the conserva-
tion of the total magnetization:

Ṡ = λS× δH

δS
+ D∇2 δH

δS
+ ζ,

where the Hamiltonian is given by (40). Below Tc we have the spin wave of the
frequency cFM

sw k2 and the transport coefficient D diverges above Tc as

D ∝ ξ
( 6− d− η)/2
+ , (64)

revealing also the upper dynamic critical dimension ddyn
c = 6 [53] which is the

dimension above which the Van Hove theory applies. Below ddyn
c = 6 the dynamic

fluctuations become important and the kinetic coefficients diverge or vanish when
approaching T c. Thus in model J the dynamic critical dimension ddyn

c differs from
the static one dstat

c , which equals four for the statics described by the Ginzburg–
Landau model [3].

The dynamic critical exponent is determined only by the static exponent and
the spatial dimension

z =
1
2

(d + 2− η) . (65)

In three dimensions z ' 5/2. According to the renormalization group theory η = 0
for d ≥ 4 so the critical exponent takes its classical value zcl = 4− η for d = 6.

3.4.8 Summary of the universality classes

In Table 2 the basic information about the dynamic universality classes is given.
As shown [4] by the renormalization group theory, the addition of any number of
nonconserved fields (which do not change the structure of the Poisson brackets)
to the models specified in Table 2 does not change the critical dynamics in that
sense that it does not change the critical exponents and other universal quantities.
Sometimes it may be difficult to decide which dynamic universality class the real
magnetic system belongs to. Many factors matter. For example in the real magnet
also phonons contribute to the spin dynamics and model A with nonconserved energy
may be a better description than model C. If however, the spin-lattice relaxation rate
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Table 2 Summary of the dynamic universality classes in magnets.

Magnetic Order Non- Conserv. Poisson
Model system parameter conserved brackets z

dimension fields fields

anizotropic
A magnets, n S none none 2 + cη

uniaxial
antiferro-
magnets

B uniaxial n none S none 4− η
ferromagn.
anisotropic

C magnets, 1 S m none 2 + α
ν

uniaxial
antiferro-
magnets

D uniaxial n none S, m none 4− η
ferro-
magnets
easy

E plane 2 ψ m {ψ,m} d
2

magnets
hz= 0
easy

F plane 2 ψ m {ψ,m} d
2 + α̃

2ν
magnets
hz 6= 0

G isotropic 3 N m {N,m} d
2

antiferro-
magnets

J isotropic 3 none S {S,S} d+2−η
2

ferro-
magnets

is low compared to the spin exchange frequency model C which is an idealization of
thermally isolated spins is a better description of the system [44]. Moreover, in real
spin systems there is always anisotropy. In this case one or more terms should be
added to the Hamiltonian (40) and the crossover effects from the isotropic behavior
(n = 3) to that described by anisotropic models (n = 2 or n = 1) should be studied.
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In such crossovers we generally observe the so-called effective8 critical exponents
[54]. The universality classes which take into account the dipolar interactions are
not included in Table 2.

4 Isothermal and adiabatic elastic moduli

The sound velocity exhibits sharp dip near the critical temperature. Fig. 4 presents
exemplary sound velocities for rare earth metals: Gd, Tb, Dy and Ho (Luthi et al.
[62]). It is well known that the static isothermal and adiabatic elastic moduli are
related to the corresponding sound velocities in the zero frequency limit. Let us

Figure 4 Temperature dependence of the sound velocity changes for rare earth metals. × Ho; +
Dy; • Tb. The inset shows an expanded plot near TN in Ho (Luthi at al. [62]).

assume that the elastic medium is isotropic and nondissipative. The equation of
motion for an elastic wave has a simple form [63]

ρ0ü = (C11 − C44)∇(∇ · u) + C44∆u, (66)

where u is a local displacement vector, ρ0 is the mass density of the system and C11

and C44 are elastic constants, ∆ denotes the Laplacian and ∇ the Nabla operator.
8The effective exponent depends on the reduced temperature or magnetic field. It will be

discussed in Section 6.
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Decomposing u into a longitudinal part uL for which ∇× uL = 0 and a transverse
part uT for which (∇·uT = 0), Eq. (66) splits into two independent wave equations:

ρ0ü L = C11∆uL, ρ0ü T = C44∆uT . (67)

The solution of each equation is a planar wave u = u0 exp i(k ·x−ωt) with the wave
vector k and the frequency ω related by the dispersion relation

ρ0ω
2 = Ceffk2, (68)

where Ceff is an effective elastic constant for a given mode. The phase velocity
c = ω/k is equal

√
C11/ρ0 for the longitudinal mode and

√
C44/ρ0 for the transverse

modes. In the general case of anisotropic crystal, the sound velocity is given by
a similar formula c =

√
Ceff/ρ0 where the effective elastic constant is a linear

combination of the elastic constants Cij . We can take for Cij both the isothermal
as well as the adiabatic elastic constants depending on the conditions of propagation
of the elastic mode. The adiabatic elastic constant is greater than the isothermal
one. It is evident from the last equation that the static isothermal and adiabatic
elastic moduli are related to the sound velocities in the zero frequency limit, so we
can find the sound velocity singularities directly from the thermodynamics. In this
section we will investigate the relations between adiabatic or isothermal moduli (or
equivalently the sound velocities) and some correlation functions appearing in our
model.

4.1 Model

All thermodynamic quantities can be obtained from the corresponding thermo-
dynamic potential

F (T, P, h) = F 0(T, P, h)− kBT

V
ln Z, (69)

where T is temperature, P - pressure and h - an external magnetic field. F 0(T, P, h)
is the background part which is assumed to be smooth in the temperature and the
magnetic field and

Z =
∫

D[Sα, eαβ, q] exp(−H) (70)

is the sum over the states which in our case is the sum over all paths
{Sα(x), eαβ(x), q(x)} which can be written as a functional integral. The fields
Sα(x), eαβ(x) and q(x) are the complete set of slow variables in our problem [49, 61].
In addition to the order parameter Sα(x ), which for the magnetic phase tran-
sition is the local magnetization (or staggered one), we have the strain tensor:
eαβ(x ) = 1

2(∇αuβ +∇βuα), connected with the displacement field u (x ) [61] and the
fluctuations of entropy per mass q(x ). The functional H determines the probabil-
ity distribution of equilibrium fluctuations p ∝ exp(−H) and for a magnetoelastic
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system of the Ising type (n = 1) it can be written as

H = HS + Hel + Hq + Hint, (71)

where
HS =

1
2

∫
ddx{r0S

2 + (∇S)2 +
ũo

2
S4}

is the Landau-Ginzburg Hamiltonian for the order parameter fluctuations with r0 ∝
T − T 0

c , where T 0
c is the mean field transition temperature. The elastic part

Hel =
1
2

∫
ddx{C0

12(
∑
α

eαα)2 + 4C0
44

∑

α, β

e2
αβ + 2(P − P0)eαα}

describes the elastic energy in the harmonic approximation (the bare elastic con-
stants C0

αβ contain the factor (kBT )−1). We assume that the crystal is isotropic so
only two elastic constants appear C0

12 and C0
44. P0 is the pressure of a referential

equilibrium state with respect to which we determine the strain. We assume that
entropy fluctuations are Gaussian

Hq =
1

2C0
V

∫
ddxq2

where C0
V is bare specific heat. The last term in (71) describes the interactions

Hint =
∫

ddx

{
g0

∑
α

eααS2 + f0qS
2 + w0q

∑
α

eαα

}

where the first term is the volume magnetostriction [6] with the coupling constant
g0. The second term is responsible for the divergence of the specific heat and last
term mimics the mentioned coupling of sound mode to energy fluctuations proposed
by Kawasaki [8].

The first step in analysis of such a system is the decomposition of a given elastic
configuration into a uniform part and a phonon part which is a periodic function of
the position [64]

eαβ(x) = e0
αβ +

1√
ρ0V

∑

k 6=0, λ

kβeα(k, λ)Qk, λ exp(ik · x), (72)

where Qk, λ is the normal coordinate9 of the sound mode with the polarization λ,
wave vector k and the polarization vector e(k, λ). e0

αβ is the uniform deformation.
For simplicity we will assume that the mass density is equal unity. In the new
variables the elastic Hamiltonian takes the form

Hel = Hel(e0
αβ) +

1
2

∑

k 6=0, λ

k2c2
0(k̂, λ) |Qk, λ|2, (73)

9The factor i was incorporated into the variable Q.
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where c0(k̂, λ) is the bare sound velocity for polarization λ and the versor k̂.
Analogously for the interaction Hamiltonian we obtain

Hint = Hint(e0
αβ) +

∑

k

{
f0qkS

2
−k +

∑

λ

[k · e(k, λ)]Qk, λ(g0S
2
−k + w0q−k)

}
, (74)

where S2
k = 1√

V

∑
k1

Sk1Sk− k1
is the Fourier transform of the square of the order

parameter. For the isotropic system only the longitudinal sound modes are coupled
to the order parameter and the entropy fluctuations and k · e(k, λ = L) = k. As a
result the transverse modes do not show any critical anomaly in this model. This is
what one observes normally in experiment [62] at least for high-symmetry propaga-
tion directions. It is clearly manifested in Fig. 5 where the results for longitudinal

Figure 5 Ultrasonic attenuation of longitudinal and shear waves propagating along the tetragonal
axis (symmetry direction) near the Neel temperature (Ikushima and Feigelson [120])

and shear sound attenuation for FeF2 in the vicinity of Neel temperature are shown
(Ikushima and Feigelson [120]).

The next step is the integration over the homogenous deformations and the
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transverse modes

exp[−H(Sk, Qk, qk)] =
∫

D[e0
αβ, Qk, T ] exp[−H(Sk, Qk, λ, qk, e

0
αβ), (75)

where index T refers to the transverse modes. From this point on we can forget
about the transverse modes and homogenous deformations. The effect of homoge-
nous deformations is only the renormalization of the parameters ũ, f0 and C0

V [71].
It leads in principle to a non-analyticity (with respect to the wave vector) in the
couplings u(k), f(k), CV (k) but because in magnetic systems the coupling constants
g and w are usually very small we can argue that the first order phase transi-
tion expected for the Ising systems with positive specific-heat exponent [65] can be
seen only extremely close to the critical point and in the experimentally accessible
temperature range the transition is continuous, which is in perfect agreement with
experimental observations. The problem was thoroughly investigated in the 1970s
and the reasonable conclusion is to neglect the additional contributions generated by
the homogenous deformations [54, 65–67]. So our effective Hamiltonian expressed
by the Fourier components of the fields is

H =
1
2

∑

k

{
(r0 + k2) |Sk|2 + k2c2

0L |Qk|2 +
1

C0
V

|qk|2
}

+ Hint, (76)

with

Hint = w0

∑

k

kQkq−k +
∑

k, k1, k2

(f0qk + g0kQk) Sk1S−k−k1+

(77)

+
u0

2V

∑

k, k1, k2

SkSk1Sk2S−k−k1−k2

where c0L =
√

C0
11 is the bare sound velocity of the longitudinal modes and the

normal coordinate Q refers only to the longitudinal modes.

4.2 Isothermal sound velocity

The isothermal elastic constant or equivalently the isothermal sound velocity
of the longitudinal modes can be determined from the corresponding correlation
function

〈QkQ−k〉 =
1

c2
isk

2
, (78)

where k 6= 0 is assumed. It is easy to calculate this correlation function by a simple
separation of variables in the Hamiltonian

qk = q′k − w0kC0
V Qk − f0C

0
V (S2)k,
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Qk = Q′
k − (g0 − w0f0C

0
V )c−2

0r k−1(S2)k, (79)

where c2
0r = c2

0(1− r2) and r2 = w2
0C

0
V c−2

0 . In these new variables the Hamiltonian
takes a form

H =
1
2

∑

k

{
k2c2

0r

∣∣Q′
k

∣∣2 +
1

C0
V

∣∣q′k
∣∣2

}
+ HT

eff (S), (80)

with the effective spin Hamiltonian of the Landau-Ginzburg form

HT
eff (S) =

1
2





∑

k

(r0 + k2) |Sk|2 +
uT

0

V

∑

k, k1, k2

SkSk1Sk2S−k−k1−k2



, (81)

where uT
0 = u0− vph

T − vq
T , vph

T = g2c−2
0r , g0 = (g0−w0f0C

0
V ) and vq

T = f2
0 C0

V . The
non-analyticity mentioned earlier is neglected here.

With such Hamiltonian we can write

〈QkQ−k〉 = 〈Q′
kQ

′
−k〉+ vph

T c−2
0r k−2〈S2

kS
2
−k〉HT

eff
. (82)

or

c2
is =

c2
0(1− r2)

1 + vph
T 〈S2

kS
2
−k〉HT

eff

. (83)

The index HT
eff at the second average in Eq. (82) means that this average does not

contain the elastic and entropic variables. The scaling behavior of 〈S2
kS

2
−k〉HT

eff
is

well known [12, 35, 54]. This function behaves as the specific-heat

〈S2
kS

2
−k〉HT

eff (S) ∝ At−αΦ(kξ)−B, (84)

where A and B are the some nonuniversal constants and Φ is a scaling function
(usually we assume that Φ(0) = 1); ξ is the correlation length and t is the reduced
temperature. In ultrasonic experiments the wavelength is much greater than the
correlation length so we can take kξ = 0. The specific-heat exponent α is positive for
the Ising universality class and equal to about 0.11 so in this case the denominator
in Eq. (83) tends to infinity and the isothermal sound velocity must go to zero

cis ∝ tα/2 ↘ 0. (85)

as we approach the critical temperature. We can say that the isothermal sound
mode is softening at the critical point of Ising type systems. Otherwise, for the
Heisenberg universality class n = 3, we have α < 0 and the isothermal sound
velocity stays finite at Tc.

The experimental observation of the relation (85) is extremely difficult for the
two reasons. The first is that the critical exponent of the sound velocity, α/2, is
very small of an order of 0.05 and we must be very close to the critical temperature
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in order to observe a significant changes in the sound velocity. The second is that
the coupling constant vph

T = (g0 − w0f0C
0
V )2c−2

0r , which precedes the singular term
in the denominator of Eq.(83), depends on the coupling constants g0 and w0 which
are usually very small in magnets (contrary to e.g. the structural phase transitions
[11]). Because vph

T is a small quantity it is reasonable to expand the expression (83)
obtaining

c2
is ' c2

0r −AT t−α. (86)

This expression is a very good approximation to the experimentally observed mea-
surements of isothermal sound velocity [7, 62, 116] (isothermal elastic moduli CT

11).
The expressions (85) and (86) were given independently by Dengler and Schwabl
[69] and by the author [54, 70].

4.3 Adiabatic sound velocity

Another static quantity of interest is the adiabatic elastic constant. In our case it
is the modulus Cad

11 or the related quantity cad. From the theory of fluctuations [29]
we know that the adiabatic compressibility is given by the correlation function of
pressure fluctuations. The pressure fluctuations are defined as the quantity which is
orthogonal to the entropy fluctuations. The orthogonality is understood as vanishing
of the corresponding correlation function 〈Pkq−k〉 = 0 (where Pk is a fluctuation of
pressure). Looking at the Hamiltonian (76) we see that the variables Qk and the
entropy fluctuations qk are not orthogonal as a result of the coupling between these
quantities in Hint. In order to get a quantity which is orthogonal to qk we have to
perform the Schmidt orthogonalization procedure (choosing as the first variable the
entropy fluctuations)

Pk = Qk − 〈Qk q−k〉 qk
〈qkq−k〉 . (87)

or in other words we must subtract from the acoustic variable Qk a part linear in
qk. Immediately we get that

〈PkP−k〉 =
1

c2
adk

2
= 〈QkQ−k〉 − 〈Qk q−k〉2

〈qkq−k〉 . (88)

By a shift of variables Qk and qk we can separate these variables in the Hamiltonian
obtaining

H =
1
2

∑

k

{
k2c2

0

∣∣Q′′
k

∣∣2 +
1

C
0
V

∣∣q′′k
∣∣2

}
+ Had

eff (S),

where q′′ and Q′′
k are the shifted variables, C

0
V = C0

V (1− r2)−1 and

Had
eff (S) =

1
2





∑

k

(r0 + k2) |Sk|2 +
uad

0

V

∑

k, k1, k2

SkSk1Sk2S−k−k1−k2



, (89)
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is effective adiabatic Hamiltonian with uad
0 = ũ0 − vph

ad − vq
ad, vph

ad = g0
2c−2

0 and
vq
ad = f

2
0C

0
V , where f0 = (f0 − w0g0c

−2
0 ).

Now we can find the correlation functions in (88). A simple algebra shows that

c2
ad = c2

0

1 + vq
ad〈S2

kS
2
−k〉Had

eff

1 + vad
+ 〈S2

kS
2
−k〉Had

eff

, (90)

where vad
+ = vq

ad + vph
ad .

Straightforward calculations show that

vph
ad + vq

ad = vph
T + vq

T ≡ v+, (91)

therefore uT
0 = uad

0 ≡ u0 and the effective spin Hamiltonians Had
eff and HT

eff and
identical. As a consequence, the correlation function 〈S2

kS
2
−k〉Had

eff
is identical with

the function 〈S2
kS

2
−k〉HT

eff
which shows a specific-heat singularity as was discussed

earlier (84). The expression (90) can be given in more transparent form

c2
ad = c2

0(1−
vph
ad

v+
) + c2

0

vph
ad

v+

1
1 + v+〈S2

kS
2
−k〉

, (92)

where we have omitted the Hamiltonian index. It is seen from this equation that
there is a constant term and a correction which tends to zero at Tc

c2
ad = c2

0(1−
vph
ad

v+
) + Aadt

α. (93)

The critical amplitude of the singular term Aad = c2
0

vph
ad

v2
+

A−1, where A is the critical

amplitude of the specific heat from Eq. (84), is very small for magnets because
vph
ad ¿ vq

ad ' v+, which explains small sound velocity changes near the magnetic
phase transition [6].

It should be noted that this result for the adiabatic sound velocity obtained by
the author [71] differs from that obtained by Drossel and Schwabl [72] who obtained
for the adiabatic sound velocity a result similar to Eq. (83) for the isothermal
velocity (only vph

T should be replaced by vph
ad in this equation). The reason for

this discrepancy is a different choice of the pressure variable. Drossel and Schwabl
took for the pressure a variable which is orthogonal to entropy only in the Gaussian
approximation and it leads to non-vanishing correlation function of pressure-entropy.
The correlation function of such ,,pressure” containing a non-zero entropy component
is similar to that obtained for isothermal sound.

On the other hand, the expression (92) shows a close analogy to the adiabatic
sound velocity in liquid He4, obtained by Pankert and Dohm [73, 74]. A similar
result was also obtained by Folk and Moser [75] for binary liquids.
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5 Phenomenological theory of sound attenuation and
dispersion

The sound wave propagation through the medium disturbs the existing balance as a
consequence of the temperature (or pressure) changes in a wave of successive com-
pressions and dilatations. Let the molecular equilibrium of the system be described
by a parameter ψ called the reaction coordinate (or the degree of advance) [77]
which can correspond to the extent of the chemical reaction or to the temperature
of some internal degrees of freedom. For gases such internal degrees of freedom are
the rotational or vibrational modes of many-atomic molecules. The parameter ψ
does not follow the temperature and pressure changes and this delay is described
by the relaxation equation

ψ̇ = − ψ − ψ̄

τ
, (94)

where τ is the relaxation time characterizing the rate at which the coordinate y
approaches the equilibrium value ψ̄(p, T ) determined by temporary pressure and
temperature in the ultrasonic wave. The lag between the oscillations of the tem-
perature and pressure, and the excitation of a given mode leads to the dynamic
hysteresis, to dissipation of energy and dispersion of the sound wave.

The Eq. (94) is the simplest equation of the irreversible thermodynamics. His-
torically the method of irreversible thermodynamics was first applied to the sound
dynamics by Herzfeld and Rice [78] in 1928. They postulated that the medium
through which the sound waves propagates is characterized by two temperatures:
one of them is called the external temperature and determines the energy distri-
bution of translational degrees of freedom of molecules and the other one is the
internal temperature connected with the energy distribution in internal degrees of
freedom (e.g. the rotational or vibrational modes in a gas of many-atom molecules).
Herzfeld and Rice assumed that the rate at which the internal temperature changes
is proportional to the difference between these temperatures and the coefficient of
proportionality is the inverse of the relaxation time. They noticed that each process
in which the energy is transferred with some delay from translational motion (the
sound wave) to other (internal) degrees of freedom, is connected with a dissipation
of acoustic energy or in other words to the attenuation of the sound wave. As a
result we obtain a complex effective elastic constant (and sound velocity) in the
dispersion relation Ĉeff , where for the single relaxational process we obtain

Ĉeff = C∞
eff −

∆′

1− iωτ
, (95)

The constant C∞
eff is the high frequency limit of (95), where the reaction coordinate

does not follow the stress changes. The symbol τ stands for the relaxation time
and ∆′ is a parameter describing the coupling of the sound to the relaxing variable
known as the relaxation strength. In the ultrasonic experiments the sound frequency
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is a real-valued quantity and for the propagation wave vector we assume a complex
value k = kr +iα, where α is the sound attenuation coefficient. A single relaxational
process results in a frequency dependent sound velocity

c2(ω) =
ω2

k2
r

= c2
∞ − ∆

1 + ω2τ2
= c2(0) +

∆ω2τ2

1 + ω2τ2
(96)

and the sound attenuation

α(ω) =
∆

2c3∞

ω2τ

1 + ω2τ2
= B

ω2τ

1 + ω2τ2
, (97)

where c∞ =
√

C∞
eff/ρ0 is the high-frequency limit of (96) and ∆ = ∆′/ρ0 and

B = ∆/2c3∞. It was assumed that the frequency dependence of the sound velocity
is weak.

Figure (6) shows these dependencies in the logarithmic scale for frequency. It
should be noted that the sound velocity increases from the value c(0) for ωτ = 0
to the value c∞ for ωτ → ∞. The velocity c(0) corresponds to the situation when
the temperature and the pressure of the sound wave change so slowly that system
remains at the thermodynamic equilibrium (the reaction coordinate has the same
phase as the pressure applied). The sound attenuation coefficient α(ω) increases
from zero for low frequencies to the ,,saturation” value B/τ for very high frequencies.
In the low-frequency regime the attenuation coefficient is proportional to the square
of frequency and to the relaxation time: α(ω) = Bω2τ . For many relaxational
processes with the relaxation times τj and the relaxation strengths ∆j the equations
(96) and (97) change into

c2(ω) = c2
∞ −

∑

j

∆j

1 + ω2τ2
j

(98)

and
α(ω) = ω2

∑

j

Bjτj

1 + ω2τ2
j

. (99)

In Fig. 7 the dependences described by Eqs. (98) and (99) are shown for two
relaxational processes with the relaxation times τ1 and τ2. In the classical theory, the
relaxational processes do not interact and if the relaxation times are well separated
from each other one can see something like a staircase (with slightly rounded stairs).
The height of the j-th stair for the sound velocity is ∆j , and ∆j/2c3∞τj for the sound
attenuation.

At the magnetic phase transition we have a quasi continuum10 of the relaxation
times. They are attributed to the internal degrees of freedom which are the Fourier

10The index j at τj in the case of phase transitions denotes the wave vector which is a quasi
continuous variable for the finite volume of the crystal.



Critical sound propagation in magnets 31

-log Τ
log Ω0

bL

B�Τ

Α HΩL

-log Τ
log Ω0

c
¥

2

aL

c
2
H0L

c
2
HΩL

Figure 6 The sound velocity (a) and the attenuation coefficient (b) for a single relaxational process;
c2(0) = c2

∞ −∆, α(∞) = B/τ .

components of the order parameter11. Their relaxation times are typically i.e. far
from the critical point, very short of the order of 10−12 s, so their inverses are much
lower than the ultrasound frequencies used in the study of the acoustic properties
of solids. They are typically in the range from 1 MHz to 1000 MHz. Due to the
critical slowing down the relaxation times are getting longer and longer and some of
them may become comparable with the period of the ultrasonic wave. The longest
of the relaxation times may diverge even to infinity. It is illustrated in Fig. (7). Also
the relaxation strengths increase when approaching the critical point. It is easily
seen if we consider the contribution to the acoustic linear response function in the
Gaussian12 approximation for the order parameter fluctuations. In this approxima-

11To be precise they are usually the Fourier components of the square of the order parameter
field for the magnetostrictive coupling.

12The Gaussian approximation assumes that the Fourier components of the order parameter do
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Figure 7 The sound velocity (a) and the attenuation coefficient (b) for two relaxational processes
with the relaxation times τ1 and τ2.

tion the complex sound velocity has a simple form [79]

ĉ2(ω) = c2
∞ − g2

∫
d3p

(ξ−2 + p2)2[1− iωτ(p)]
, (100)

where τ(p) = [2Γ(ξ−2 + p2)]−1 is a relaxation time of the product of two Fourier
components of the order parameter SpS−p, and the integration is over the wave
vectors inside a sphere |p| ≤ Λ. The coefficients g2 and Γ are some constants and
Λ is a cutoff wave-vector. ξ−2 ∝ T − Tc is the correlation length in the Gaussian
approximation. It is evident that the summation over j in Eqs. (98) and (99) is
replaced by the integration over the wave vector p in Eq. (100). The relaxation
strength ∆j corresponds to (ξ−2+ p2)−2 which is a contribution of the mode Sp to the

not interact and there is only the first term in the spin Hamiltonian (89).
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Figure 8 The effect of the critical slowing down on the relaxation times of the order parameter.

specific heat in the Gaussian approximation [34]. The correspondence τj ←→ τ(p)
is also obvious so Eq. (100) is a continuous version of Eqs. (98) and (99) written in
the complex form. From the expression for τ(p) we find that the relaxation times
for small wave vectors will diverge roughly as ξ2 when T → Tc. It is a quite strong
divergence which is the principal cause of the divergence of the attenuation coefficient
in the so-called hydrodynamic regime i.e. for ωτ(p) ¿ 1. In the hydrodynamic
regime we have α(ω) ∝ ∫

p ∆(p)τ(p) and the sound attenuation strongly increases
when we come near the critical temperature. It is visualized in Fig. 9. Very far from
the critical temperature all modes are in the hydrodynamic regime, as illustrated in
Fig. 9a and the attenuation is very small. As we approach the critical temperature,
the attenuation starts to increase due to an increase in τ(p) (the main factor) and
∆(p). Only when the slowest modes’ relaxation times become longer than the period
of the sound wave or in other words the inverses of the relaxation times ,,get across”to
the left of the ultrasonic frequency, only then the slowest modes with ωultrτ(p) > 1
get into the ,,saturated”state and the curve of the sound attenuation coefficient
starts to level off. It is illustrated in Fig. 9b where for the sake of the figure
transparency, only the frequencies close to the ultrasonic frequency are shown. Not
all the relaxational modes could get across ωultr, because the relaxation times τ(p)
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depend not only on temperature (through ξ2) but also on the square of the wave
vector which does not change for T → Tc. For p2 > ξ−2 the relaxation time is not
very sensitive to temperature changes, similarly as the relaxation strength ∆(p).
The crossover of the slowest modes (and simultaneously those giving the largest
contribution to α(ω, T )) into the saturated state and the smaller sensibility (to the
temperature change) of the other modes leads ultimately to the levelling off the
sound attenuation coefficient.
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Figure 9 It demonstrates in intuitive way how the sound attenuation changes when approaching
the critical temperature. In Fig. 9(b) the frequency was rescaled in order to show more precisely
the situation around the ultrasonic frequency.

For the sound velocity in the hydrodynamic regime we have c2(ω) = c2∞−
∫
p ∆(p).
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Thus we observe a weaker singularity as the integral
∫
p ∆(p) is less singular than the

corresponding integral
∫
p ∆(p)τ(p) for the sound attenuation coefficient. It is well

known that it is a singularity of the specific heat type. As shown in Fig. 10, some
of the relaxational modes get into the saturated state as the critical temperature
is approached. At the first sight it would seem that the sound velocity should
increase (for a given frequency) as we get closer Tc because more and more ,,stairs”
(contributions) from saturated modes are added to c2(0). It is however, not so as
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Figure 10 The sound velocity changes when approaching the critical temperature.

equation (96) only describes the way the sound velocity changes relatively to c2(0)
or c2∞. It gives no clue about the temperature dependence of these parameters near
Tc. We know from the previous section that the sound velocity in the limit of zero
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frequency is a thermodynamic quantity which is singular near the critical point so
it is not a good reference level to measure the critical sound velocity changes. Such
a good reference level turns out to be c2∞. It is a quantity corresponding to the
infinite frequency so it is measured far from the critical point which corresponds
to ξ−1 = k = ω = 0 as we know from the phase transition theory. Such uncritical
quantity does not depend strongly on temperature and can to a good approximation
be taken as a constant near Tc. Having decided which quantity c2∞ or c2(0) is a
constant near the phase transition we see that the sound velocity can only decrease
with T → Tc. Of course this decrease is eventually stopped by the crossover of the
slowest modes in the saturated state like for the sound attenuation. The higher the
sound frequency the larger is the sound velocity as more modes will get across this
frequency. It should be also noted that the difference c2∞−c2(0) increases as T → Tc

because the sum of the relaxational strengths increases as the specific heat.
The presented here phenomenological theory of sound attenuation and disper-

sion has only a qualitative character as it does not take into account the interaction
between the relaxational processes (modes). It is well known [3, 4] that these very
interactions between the modes are the origin of the nontrivial singularities encoun-
tered in many physical quantities near the critical point. We need a more elaborated
theory of the dynamic phenomena to obtain a precise form of the sound attenuation
coefficient and dispersion. It will be presented in the next section.

6 Model of critical sound propagation

In order to build a detailed theory of sound propagation near the critical point
we need the equations of motion. We use the phenomenological hydrodynamic
description in terms of nonlinear Langevin equations for slow variables described
in Sect. 3. Our choice of the slow variables depends mainly on the nature of the
physical system we want to describe (e.g. whether it is a ferro- or antiferromagnet,
isotropic or anisotropic system, etc.) and on the quantity of interest. It depends
additionally on the frequency range (the time scale used to investigate the system)
and in some cases we should add also some fast variables important in the time scale
considered to the system of slow variables. In practice in each universality class
we would need a different system of equations. Fortunately, some of the aspects of
critical attenuation and dispersion presented in this chapter can be easily generalized
over other magnetic dynamic universality classes.

6.1 Anisotropic magnet with the spin-lattice relaxation

As mentioned in the Introduction, in magnetic materials which are also insulators
we observe a weak divergence of the sound attenuation coefficient. The critical
exponent characterizing this initial increase (in the hydrodynamic region) is usually
very small of an order of 0.2. It was postulated by Kawasaki [8] that the origin of
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such a weak divergence (or even the lack of any singularity) is connected with the
linear coupling of the sound mode with the spin energy density which decays through
spin-lattice relaxation process. With such assumptions the sound attenuation can
be written as a quantity proportional to the square of the specific heat

α(ω, T ) ∝ ω2C2 ∝ ω2t−2α.

The other group of magnets, these which are conductors of the electric current such
as for example the rare earth metals, we observe a much stronger increase in α(ω, T )
for T → Tc, with the sound attenuation critical exponent ρs > 1 [80–82]. It was
recognized [62] that for such a strong singularity another coupling which involves
one acoustic mode and two fluctuations of the order parameter is responsible. As
we noted in the Introduction, both types of the coupling arise from the dependence
of the exchange integral on the distance between the interacting magnetic ions (we
call this general interaction a volume magnetostriction) and both are present in all
magnets. Only when the interactions with the next nearest neighbors are neglected
and only for some sound propagation directions the other part of the coupling typical
of metals can be neglected. Therefore, a general model which involves both couplings
was proposed [9]. The Hamiltonian comprising all important interactions is of the
form Eq. (71) and the dynamics is given by the Langevin equations

Ṡk = −Γ
δH

δS−k
+ ζk, (101)

Q̈k = − δH

δQ−k
−Θk2Q̇k + ξk, (102)

q̇k = − γ
δH

δq−k
+ ϕk, (103)

where Sk, Qk and qk denote similarly as in Sect. 4 the Fourier components of the
order parameter, longitudinal acoustic mode and entropy. ζk, ξk and ϕk are white
Gaussian noises simulating the thermal agitation forces. They have zero means and
their variances are connected with the bare damping terms by relations

〈
ζk(t)ζ−k(t′)

〉
= 2Γδ(t− t′), (104)

〈
ξk(t)ξ−k(t′)

〉
= 2Θk2δ(t− t′), (105)

〈
ϕk(t)ϕ−k(t′)

〉
= 2γδ(t− t′), (106)

where now t denotes a time not the reduced temperature13. Equation (101) describes
the relaxation of the order parameter fluctuation which is a non-conserved quantity

13Unfortunately, it is well established manner to denote time and the reduced temperature by
the same symbol t but it is easy to find out from the context whether t refers to time or to the
temperature. We will need the first meaning only in Sect. 6.1 for the definition of the dynamic
model and in Sect. 6.2 in formulation of the functional representation of the equations of motion.
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and this equation corresponds to the model A dynamic universality class [4, 44,
45]. This class comprises e.g. the anisotropic magnets. Eq. (102) describes the
longitudinal sound mode and the damping coefficient Θk2 is responsible for all other
interactions of the sound mode except those with the long-wavelength fluctuations
of the order parameter. The last equation (103) characterizes the non-conserved
quantity q(x ) which decays by the spin-lattice relaxation. The rate of the spin-lattice
relaxation is γ/C0

V . In this equation the heat conduction process is neglected. It
describes an idealized situation when the lattice is characterized by infinite thermal
capacity or infinite thermal conductivity. The problem of the heat conduction will
be touched in Sect. 6.2 It can be shown that Eqs. (102) and (103) do not change
the dynamic critical exponent z which corresponds to the model A universality class
z = 2 + cη.

6.1.1 Functional form of the equations of motion

There are a few ways of constructing the perturbation expansion for the dynamic
model [84–87]. One of the most frequently used is the path-integral formalism
called also the functional form of the equations of motion which uses the dynamic
functional known also as Lagrangian or Onsager-Machlup functional [84]. This
functional determines the probability of the whole trajectory {Sk, Qk, qk}t∈ [−t0, t0]

in some time interval. Let us forget for a moment about the fields Q and q and
the indexes k. The stochastic process e.g. ζ(t) is characterized by the set of the
probability densities

P1(ζ1, t1),

P2(ζ1, t1; ζ2, t2),

.................

Pn(ζ1, t1; ζ2, t2, ...., ζn, tn),

with Pi having the sense of the probability density to find the system in the state
ζ1 at the time moment t1, ζ2 at time t2 etc. The probability density P∞[ ζ ] for
the whole trajectory {ζ(t)}t∈ [−t0, t0] is obtained in the limit where the differences
between the successive times go to zero. It is a function of the infinite number of
variables ζ(t), for all times in the interval [−t0, t0]. For the Gaussian noise it has
the form

P∞[ ζ ]Dζ =
1
Z

exp



−

t0∫

−t0

dt

[
ζ2(t)
4Γ

]

Dζ ≡ (107)

≡ 1
Z

lim
∆t→0

exp

{
−

∑
σ

∆t

[
ζ2
σ

4Γ

]}
N∏

σ =0

(
∆t

4Γ
)

1
2 dζσ,
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where the time interval was divided into N = 2t0/∆t sub-intervals, and Z is a
normalization factor. The second part of this expression defines the functional
differential Dζ. We can interpret P∞[ ζ ]Dζ as the probability density of a given
trajectory passing through the infinite set of time windows at times tσ = −t0 +σ∆t
of the width dζσ.

If we want to determine the time-dependent correlation function which depends
on S not on the noise, it is favorable to have the functional P∞[ S ], instead of P∞[ ζ ].
The transformation which allow us to change the variables in P∞[S ] is the equation
of motion (101) which in the discrete form is given by

1
∆t

(Sσ − Sσ−1) + Γ
δH

δSσ
= ζσ. (108)

By eliminating ζσ we obtain

P∞[S ] =
1
Z

exp




−

t0∫

−t0

dt




∣∣∣Ṡ + Γ δH
δS

∣∣∣
2

4Γ








, (109)

where the Jacobian of the transformation, 1
2Γ δ2H

δS2 , was omitted as it is compensated
in the perturbation expansion by some acausal terms which are also usually omitted
[84, 85, 87]. The exponent in (109) is known as the Onsager-Machlup functional.
Its form is not very useful for the two reasons. The first is that it involves the
interactions of the high order and the second is that for the conserved quantities we
have Γ → Dk2 so the functional becomes infinite for k → 0. In order to avoid such
problems we perform a Gaussian transformation

P∞[ S ] =
1
Z

∫
D[iS̃] expJ {S̃, S}, (110)

with

J {S̃, S} =

t0∫

−t0

dtL(S̃, S) =

t0∫

−t0

dt

[
S̃ΓS̃ − S̃

(
Ṡ + Γ

δH

δS

)]
, (111)

where a new functional L(S̃, S) known as the dynamic functional or Lagrangian (by
analogy to the quantum field theory) is introduced. It is a function of an artificial
imaginary field S̃ known as the response field because an additional term related to
the external magnetic field hS in the Hamiltonian, gives the contribution ΓhS̃ in
the Lagrangian and the linear response function which is defined as the derivative
〈S(t)〉 over the external field h(t′) is given by

δ〈S(t)〉
δh(t′)

= Γ〈S(t)S̃(t′)〉. (112)
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The angular brackets denote nonequilibrium average

〈O(S, S̃)〉 =
1
Z

∫
D[iS̃]D[S] O[S, S̃] expJ {S̃, S}. (113)

In this formalism all the correlation and response functions are obtained as
path integrals weighted with the favorite exponential factor exp(J ) which permits
expressing the dynamics in a form analogous to that in statics [85, 86]. The dynamic
diagram technique is a simple generalization of the diagram technique used in statics.
We have two kinds of propagators. In the Fourier representation the free response
propagator GS

0 (k, ω) has the form

Γ〈Sk, ωS̃−k′, ω′〉0 = δk, k′δ(ω + ω′)
Γ

−iω + Γ (r0 + k2)
= δk, k′δ(ω + ω′)GS

0 (k, ω), (114)

and the free two-point correlation function KS
0 (k, ω)) is given by

〈Sk, ωS−k′, ω′〉0 = δk, k′δ(ω + ω′)
2Γ

ω2 + Γ2 (r0 + k2)2
= δk, k′δ(ω + ω′)KS

0 (k, ω). (115)

The lower index 0 denotes that the average is taken over the free Lagrangian with
u0 = g0 = f0 = w0 = 0. The upper index indicates the field which the propagator is
referred to. Another important advantage of this formalism is the possibility to carry
out the Gaussian transformations decoupling different modes in the Lagrangian and
a simple generalization of the renormalization group into the dynamics.

6.1.2 The acoustic response function

In the studies of the sound propagation we are interested primarily in the acoustic
response function

〈Qk, ωQ̃−k′, ω′〉 = δk, k′δ(ω + ω′)GQ(k, ω). (116)

The imaginary part of GQ(k, ω) determines the sound damping and the real part -
the sound dispersion. The perturbation expansion for GQ(k, ω) can be represented
by the Dyson equation

G−1(k, ω) = G−1
0 (k, ω)− Σ(k, ω), (117)

where the index Q was omitted and

G−1
0 (k, ω) = −ω2 − iΘk2ω + c2

0k
2,

with c0 being the bare longitudinal sound velocity. The self-energy Σ(k, ω) is an
infinite sum of one-particle irreducible Feynman diagrams [84–87]. Performing the
dynamic Gaussian transformations [9, 10] and extracting an irreducible, with respect
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to the acoustic propagators as well as to the entropy propagators, part of the four-
spin response function we are able to preserve also relevant nonasymptotic effects
in the critical sound attenuation coefficient. The acoustic self-energy after these
transformations can be written as [9]

Σ(k, ω) =
c2
0k

2
[
(vph

T − iω̃vph
ad)Π(A)(k, ω)− r2

]

1 + vph
T Π(A)(k, ω)− iω̃

[
1 + v+Π(A)(k, ω)

] , (118)

where the coefficients vph
T , vph

ad , v+ and r2 are defined in Sect. 4, ω̃ = ωC0
V /γ is the

ratio of the sound frequency to the bare spin-lattice relaxation time. The function

Π(A)(k, ω) = 2Γ

∞∫

−∞
dt eiωt

〈
S2

k(t)S̃2−k(0)
〉
L(A)

S (S, S̃)
(119)

is the response function of the square of the order parameter. S̃2
k(t) =

1√
V

∑
k1

S̃k1(t)Sk−k1
(t) is the reaction field coupled to S2

k . The index L(A)
S (S, S̃)

denotes the effective spin Lagrangian of the model A. The function Π(A)(k, ω) de-
pends on the spin variables only and does not contain any irrelevant parameters, so it
can be relatively easily calculated by the perturbation technique [54, 69, 88]. In the
limit ω = 0 the function Π(A) becomes the static correlation function 〈S2

kS
2
−k〉H(A)

which is well known from the Sect.4. For k = 0 the last quantity is proportional
to the specific heat so we can interpret Π(A)(k, ω) as the frequency and wave-vector
dependent specific heat of the system. It is worth noting at this point that the
structure of the self-energy described by Eq.(118) does not depend on the order-
parameter dimension nor on the detailed form of the equation of motions so it has
a quite universal character. The dynamic universality class, i.e. the fact whether
we study an isotropic antiferromagnet or a planar ferromagnet, influences only the
form of the function Π(A)(k, ω). Also the fact whether the system is below or above
the critical temperature influences only the shape of the function Π(A)(k, ω). Of
essential importance is the fact if the entropy is a conserved quantity or not. The
case of conserved entropy14 will be discussed later. As already mentioned, the sound
attenuation coefficient and the sound dispersion are easily obtained from self energy:

α(ω) =
1

2c(ω)
Im

Σ(k, ω)
ω

, (120)

c2(ω)− c2(0) = Re [Σ(k, ω)− Σ(k, 0)] . (121)

14It is well known that in all irreversible processes, entropy must increase. However, the terms
describing the entropy production are of higher order and can be shown to be irrelevant (in the
language of renormalization group theory) parameters in the equation of motion.
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In the last equation the noncritical contribution to the sound attenuation αnc =
Θω2/2c3 was omitted. Also the temperature dependence of these quantities was
not displayed. The self-energy depends on the temperature through the four spin
response function Π(A) which in the static limit turns into the specific-heat. The
scaling theory predicts that

Π(A)(k, ω; t) = At−αΦ′(kξ, ωτc) + B, (122)

where A and B are some constants and t denotes the reduced temperature, α and ν
are the critical exponents of the specific-heat and the correlation length, respectively.
τc = 1

2Γ t−zν is a characteristic relaxation time of the order parameter fluctuations,
which diverges to infinity at the critical point. The dynamic critical exponent z
determines the dynamic universality class. We will focus on the high-temperature
phase of the Ising type magnets (n = 1) which are usually described by the univer-
sality class of model A with z = zA = 2 + cη where c is a constant of an order of
unity and η is the critical exponent of the correlation function [4].

For the ultrasonic frequencies the wavelength is much longer than the correlation
length, kξ ¿ 1, so we usually put kξ = 0 in the function Φ′. The scaling function
Φ′ can be obtained by the exponentiation procedure [3] or by integration of the
recursion relations of the renormalization group [54]. In the leading order in the
expansion parameter ε = 4− d it is given by

Φ′(y) =
[
1 + (y/2)2

]−α/2zν
{

ν

α
+

i

y
[i (1− iy/2) arctan(y/2)+

−1
2

ln
(
1 + (y/2)2

)]}
K4, (123)

where y = ωτc is the reduced frequency and K4 is a constant. Substituting (122)
into Eq. ((120)) and neglecting the irrelevant terms we obtain

α(ω, t)c3
0

ω2
=

W1(ω)t−(α + zν)Im(Φ(y)/y) + W2t
−2α |Φ(y)|2

|1− iω̃[1 + t−αΦ(y)]|2 , (124)

where: W1(ω) = 1
2v+Γ(g2

0 + ω̃2g2
0), W2 = g2

0C0
V

v+γ and Φ = Av+Φ′.

Eqs. (120) and (121) show many different types of behavior depending on the
relative size of the reduced temperature, frequency and the bare relaxation times:
for the order parameter τ0

c = 1/(2Γ) and the spin lattice one τ0
SL = C0

V /γ.

6.1.3 Low-frequency regime

Sound Attenuation Let’s assume at the beginning that the sound frequency
is very low, so that ωτ0

SL ¿ 1 is satisfied. It is true if the sound frequency is much
lower than the spin-lattice relaxation rate. Than the denominator of Eq.(124) can
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be approximated by unity and the term proportional to ω̃2 can be neglected so we
obtain

α(ω, t)c3
0

ω2
=

g2
0

v+

{
τ0
c t−(α + zν)Im(Φ(y)/y) + τ0

SLt−2α |Φ(y)|2
}

. (125)

We can see two competing terms with different exponents but also with different
amplitudes which are proportional to the relaxation times τ0

c and τ0
SL. It is worth

noting here that the effective coupling constant g0 is identical for both terms, so
the second term is present in the sound attenuation even if the initial coupling
constant ,,entropy-sound” w0 is equal zero. Asymptotically, i.e. for very small
reduced temperature the first term dominates because of the larger the critical
exponent ρs = zν + α, as long as the sound frequency is sufficiently low.

α(ω, t) ∝ ω2t−(zν + α)g1(y). (126)

The scaling function for the sound attenuation coefficient g1(y) = Im(Φ(y)/y) was
introduced in Eq. (126). This strong singularity with the sound attenuation critical

g1

g2
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Figure 11 The scaling functions of the sound attenuation coefficient for the low frequency, g1, and
high frequency, g2, regimes. The normalization g1(0) = g2(0) = 1 was used.

exponent ρs = zν+α was predicted for all systems with the magnetoelastic coupling
of the type QS2 by Murata [82] and Iro and Schwabl [88]. For the Ising type systems
α ' 0.110, ν ' 0.630 and z ' 2.013 so ρs ' 1.38. The scaling function g1(y) (after
the normalization to unity in the hydrodynamic region) is shown in Fig. 11.

The reduced frequency can vary from the values much lower to those much higher
than unity. As mentioned above, the range of the reduced frequency y ¿ 1 is known
as the hydrodynamic region and that for which y À 1 is called the critical region.
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In the hydrodynamic region g1(y) ' g1(0) = const so α(ω, t) ∝ ω2t−ρs . In the
critical region g1(y → ∞) ∝ y−ρs/zν thus α(ω, t) reach a saturation value which
is independent of temperature: αsat(ω) ∝ ω1−α/zν . In Fig. 12 the temperature
dependence of the sound attenuation coefficient given by Eq. (126) is shown for a few
ultrasonic frequencies. The crossover from the strong increase region (hydrodynamic
region) for not very small t to the saturation region (critical region) is seen. Note
that in the double logarithmic scale used in this figure the power law behavior is
seen as a straight line.
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Figure 12 The sound attenuation coefficient as a function of the reduced temperature and frequency
in the regime described by Eq. (126).

For τ0
SL À τ0

c despite the smaller exponent, the second term in (125) dominates
as long as the reduced temperature is much higher than the crossover temperature
tcross = ( vK4τ0

c

4a2τ0
SL

)
1

zν−α where a = v+/v∗+ and v∗+K4 = α/ν + O(ε2) is a fixed point
value of this coupling in the renormalization group analysis. In this regime known
as the Kawasaki regime a weaker singularity is expected:

α(ω, t) ∝ ω2t−2α, (127)

where for the scaling function suitable for this case we have taken a constant because
we have here y < ωτ0

c ¿ 1. The critical sound attenuation exponent ρs = 2α ' 0.22
(n = 1) is relatively small in comparison with the one for the Murata-Iro-Schwabl
(MIS) regime described previously. It should be noted that this analysis implies that
the crucial factor which decides which singularity dominates in this low frequency
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region is the ratio of the relaxation times τ0
SL/τ0

c not the ratio of the coupling
constants w0/g0.

One may ask now why the measured sound attenuation exponents are usually
small in insulators and large in metallic magnets. It seems that it is connected
with the fact that in metals due to the coupling to the conduction electrons the
spin-lattice relaxation times are generally shorter than in the insulators. For some
dielectric magnets like MnF2, RbMnF3, Fe5O12 and RbMnF3 the spin-lattice
relaxation time is known from the ultrasonic measurements. It is τSL = 3×10−9 s for
MnF2 [89], whereas the critical relaxation time for order parameter fluctuations τc is
of an order of 10−11 s for this compound. For RbMnF3 a relatively short spin-lattice
relaxation time was measured near the critical point [89] varying from 2 × 10−10 s
to 4 × 10−10 s whereas τc measured in the inelastic neutron scattering varied from
0.08×10−10 s do 3×10−10 s [90]. For both these compounds the inequality τ0

SL À τ0
c

held in the experimental temperature range which allowed the experimental obser-
vation of the Kawasaki singularity in the sound attenuation coefficient. Much longer
spin-lattice relaxation time of an order of 10−8 s was observed for Y3Fe5O12 [91].
The experimental values for MnF2 and RbMnF3 agree (to the order of magnitude
) with the theoretical estimations of for insulating antiferromagnets of reported by
Huber [92] and Itoh [93].

While for insulators the ultrasonic measurements seem to be a good tool in deter-
mining the spin-lattice relaxation time, for conducting magnets this method is less
suitable as the high sound attenuation critical exponents measured in these magnets
suggest that the sound attenuation is dominated by the first term in Eq.(125) which
is connected with τc rather than τSL. Unfortunately, there are only very few methods
permitting studies of the spin-lattice relaxation in metals. Recently, Vaterlaus et al.
[95] were the first who measured τSL in rare earth metals. They used a pioneering
technique of time resolved spin-polarized photoemission. Applying strong 10 ns laser
heating pulses followed by 60 ps weak probe pulses they determined τSL in gadolin-
ium. This result τSL = 100 ± 80 ps (averaged in the temperature interval 45 < T
< 225 K) is in satisfactory agreement with a theoretical estimation by Hübner and
Bennemann [96] who obtained τSL = 48 ps for Gd. Furthermore Bloembergen ob-
tained τSL = 4× 10−11 s for nickel by extrapolating the magnetic resonance data to
the Curie temperature. These results confirm the expectations that the spin-lattice
relaxation times in metals can be even a few orders of magnitude shorter than in
insulators and that this is the reason why the strong Murata-Iro-Schwabl singularity
dominates in metallic magnets. However, it would be of a great interest to get more
experimental data on the spin-lattice relaxation time in metals.
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The sound velocity It is useful to write Eqs. (117) and (118) in terms of the
complex sound velocity ĉ2(ω) = 1

k2

[
G−1(k, ω)− ω2

]
, where

ĉ2(ω) = c2
0

(1− r2)− iω̃
[
1 + vq

adΠ
(A)(k, ω)

]

1 + vph
T Π(A)(k, ω)− iω̃

[
1 + v+Π(A)(k, ω)

] . (128)

In the limit ω → 0 the last equation becomes the static relation

ĉ2(0) = c2(0) = c2
0

(1− r2)

1 + vph
T

〈
S2

kS
2
−k

〉 , (129)

which is exactly the isothermal sound velocity (83) obtained in Sect.4, if the effective
spin Hamiltonians used in the calculations of the average

〈
S2

kS
2
−k

〉
are identical. We

have thus obtained a proof of the internal consistency of this theory.
In the low-frequency regime (but for the finite frequencies) Eq. (128) becomes

the ,,isothermal” relation

ĉ2(ω) = c2
0

(1− r2)

1 + vph
T Π(A)(k, ω)

= c2
0

(1− r2)

1 + vph
T

v+
t−αΦ(y)

, (130)

whose structure is similar to Eq. (129). The complex sound velocity (130) depends
on frequency through y. As a measure of dispersion we take c2(ω) − c2(0). In the
low-frequency regime it is given by

c2(ω)− c2(0) ∝ t−αf1(y), (131)

where f1(y) = Re Φ(0)−ReΦ(y) is a new scaling function shown in Fig.13. In the
hydrodynamic limit (y → 0) this function behaves as f1(y) ∝ y2 and then we can
write c2(ω) − c2(0) ∝ t−(2zν + α)ω2. Thus the sound dispersion is characterized by
a high critical exponent 2zν + α and a quadratic sound frequency dependence. In
the critical range f1(y) behaves as 1 − y−α/zν , so it reaches a constant value for
T = Tc.

The experiments on the critical sound velocity [62] reveal that the sound changes
are usually very small so the coupling constants vph

T and vph
ad are expected also to be

very small. That is the reason why the term vph
T

v+
t−αΦ(y) in the denominator of Eq.

(124) was neglected in the paragraph concerning the sound attenuation. However,
it is worth noting here that this term leads to qualitatively different behavior of
the sound attenuation coefficient in the strong-coupling limit i.e. for such strong

magnetoelastic couplings that vph
T

v+
t−αΦ(y) can be greater than one [11, 54]. For

such strong-coupling regime the sound velocity tends to zero as tα/2 and the sound
attenuation exponent ρs = zν + α/2. The behavior of sound characteristics in the
strong-coupling limit is very similar to the that of the sound velocity and attenuation
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Figure 13 The plot of the scaling functions for the sound dispersion for low-frequency, f1, and
high-frequency, f2, regimes. The normalization f1(0) = f2(0) and f1(∞) = 1 was used.

in liquids near a critical point [54]. Although it is hard to be expected in magnets
(because of the smallness of the coupling constants) it is believed that it takes place
at some structural phase transitions as for example the order-disorder transition
in ammonium halides [11]. In the tricritical points in NH4Cl and NH4Br at which
the high tricritical specific-heat exponent αt = 0.5 favors the revealing of the term
vph

T
v+

t−αΦ(y) the tricritical sound attenuation exponents 1.2 and 1.1 were found [97],
to be compared with the theoretical strong-coupling tricritical value ρt

s = ztνt +
αt/2 = 1.25.

6.1.4 High-frequency regime

Sound attenuation For the sound frequencies much higher than the spin-
lattice relaxation rate (ωτ0

SL À 1), the denominator of Eq. (124) becomes singular
and the term proportional to ω̃2 dominates the numerator so α(ω, t) can be written
as

α(ω, t) =
(

g2
0

c3
0v+

)
ω

t−αImΦ(y)
|1 + t−αΦ(y)|2 (132)

or in the form analogous to the Eq. (126) as

α(ω, t) ∝ ω2t−(zν−α)g2(y), (133)
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where the scaling function g2(y) = ImΦ(y)

y|Φ(y)|2 = − ImΦ−1(y)
y is shown in Fig. 11.

The new regime with the critical sound attenuation exponent zν − α ' 1.16, is
obtained. This exponent is about 0.22 smaller than that in the MIS regime. The
coupling constant is also different: g2

0 instead of g2
0. The scaling function in the

critical range behaves as g2(y) ∝ y−ρs/zν , so the value at which the attenuation
saturates is αsat(ω) ∝ ω1+ α/zν a little different from αsat(ω) ∝ ω1−α/zν for the one
in the low-frequency regime.

The sound attenuation exponent for the high-frequency regime is given by the
same formula (ρs = zν − α) as for binary liquids [69, 98, 99], where of course the
numerical value of ρs is different from that for the Ising magnet considered here,
because of different dynamic universality class (z ' 3.06 in the critical mixtures).
It is related to the structure of the expression for in the high-frequency region.
Eq. (132) resembles the well known expression for the sound attenuation coefficient
introduced by Ferrell and Bhattacharjee

α(ω, t) ∝ −ω Im[CFB(ω)]−1 ' ω ImCFB(ω)
(ReCFB(ω))2

, (134)

where CFB(ω) is a phenomenological frequency dependent specific heat15 [100, 101].
This expression applies also to the λ phase transition in the liquid helium [73, 74,
100, 101], to the binary mixtures [75] and to some extend to the liquid crystals
[102]. The essential factor for the change of the attenuation critical exponent from
zν + α to zν − α is the divergence of ReCFB

p near a critical temperature.
In liquid helium the order parameter dimensionality is two and the specific heat
exponent is very close to zero. For the Heisenberg systems (n = 3) this exponent
is negative so there is no change in the sound attenuation exponent in the high-
frequency regime. However, the singularity in the denominator of (124) will influence
the nonasymptotic behavior of the sound attenuation coefficient. It may also happen
that the background part of the specific heat will be much higher than its singular
part and the high-frequency exponent ρs = zν − α, will not be observed for some
Ising type systems in experimentally accessible temperature range.

The sound velocity In the high-frequency regime the sound frequency takes
a familiar ,,adiabatic” form

ĉ2(ω) = c2
0

1 + vq
adΠ

(A)(k, ω)
1 + v+Π(A)(k, ω)

= c2
0(1−

vph
ad

v+
) + c2

0

vph
ad

v+

1
1 + t−αΦ(y)

. (135)

In the limit y → 0 the Eqs. (92) and (93) are recovered. The above should be
expected because for the long spin-lattice relaxation times the fluctuations of tem-
perature of the spin system do not decay by a fast process of energy relaxation to

15The correspondence between (132) and (134) is obtained if we interpret C0
V [1 + v+Π(A)(ω)] as

the Ferrell-Bhattacharjee specific heat. Note however that it is not exactly the specific heat even
in ω → 0 limit as v+ differs slightly from vq

T .
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the lattice. The sound dispersion is also easily obtained

c2(ω)− c2(0) ∝ tαf2(y), (136)

where the scaling function f2(y) = Re Φ−1(y) − ReΦ−1(0) is shown in Fig. 13. It
behaves as f2(y) ∝ y2 in the hydrodynamic range and as f2(y) ∝ yα/zν in the
critical range so in the hydrodynamic region c2(ω)− c2(0) ∝ t−(2zν−α)ω2, and the
critical exponent for the sound dispersion is lowered by 2α in comparison to the
low-frequency regime.

6.2 Low temperature phase and other dynamic models

In the low-temperature phase only the four-spin response function Π(k, ω) has to
be obtained. The theory becomes more complicated as there is spontaneous polar-
ization 〈S〉 and introducing S = 〈S〉 + δS where δS is the spin fluctuation we can
write this function as [69]

Π = 2〈(δSδS)(ΓS̃δS)〉+ 4〈S〉〈(δS)(ΓS̃δS)〉+ 2〈S〉〈(δSδS)(ΓS̃)〉+ 2〈S〉2〈δSΓS̃〉
(137)

The last term is the analogue of the Landau-Khalatnikov sound damping [105] which
is the only one which contributes to in the mean-field theory. The first term in (137)
is known as a fluctuation contribution to the sound attenuation and the other two
terms are sometimes called the mixing contribution [5]. Considered separately, the
three contributions are characterized by different critical exponents and for example
the Landau-Khalatnikov term diverges with the critical exponent equal to 2(γ − β)
[5]. As was noted by Halperin and Hohenberg [4] in the scaling region there should
be cancellations between different contributions and the critical sound attenuation
exponent should be the same as in the disordered phase. It was shown explicitly by
Dengler and Schwabl [69] that this was the case. They calculated also the scaling
function g−1 (y) in the MIS low frequency regime to the second order in ε. The
upper index indicates the low-temperature phase. Interestingly, this scaling function
showing the same asymptotic properties (for y → 0 and y → ∞) as g+

1 (y) exhibits
a characteristic maximum below the transition temperature at y ' 1 as shown in
Fig. (14). This maximum is due to the Landau-Khalatnikov term. The authors
were also able to calculate the universal amplitude ratios for ultrasonic attenuation
coefficient above and below the critical point [69]. For uniaxial magnets investigated
in this section the critical amplitude ratio

α+/α− =
ε

72
2zν+α(1 +

29
27

ε) + O(ε2) (138)

is small, of an order of 0.05 as a reminiscent of the LK theory (for which this ratio
is zero).

Another point is the calculations of the scaling functions in other universality
classes. There a substantial progress has been made due to the renormalization
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Figure 14 The scaling functions of the sound attenuation coefficient for the low temperature phase,

g−1 (continuous line), in comparison with that for the high temperature phase, g+
1 (dashed line).

The normalization g+
1 (0) = 1 was used.

group theory. Referring the reader to the original works [69, 106, 107] we focus
only shortly on the model C with conserved energy field as it is a limiting case for
the model with spin-lattice relaxation considered here. In the limit of very slow
spin-lattice relaxation the spin energy is a conserved quantity. Assuming that the
fluctuations of q decay due to diffusion the kinetic coefficient Γ in Eq. (103) should
be replaced by κk2 where k is the wave vector and κ is the thermal conductivity.
Analysis of this model [108] gives the following expressions for the sound attenuation
and dispersion

α(ω, t) =∝ ω2t−ρsgC(y), (139)

c2(ω)− c2(0) ∝ tαfC(y), (140)

with the sound attenuation exponent ρs = zν − α = 2ν ' 1.26, and gC(y) =
ImΨ(y)/y and fC(y) = Re Ψ(y) as the scaling functions, where

Ψ(y)=
[
1 +

(y

2

)2
] α

2zν

{
1 +

α

ν

[
1− iy

2

y
arctan

y

2
+ i

ln(1+(y
2 )2)

2y

]}
. (141)

The scaling functions in the one-loop approximation differ from g2 and f2 only
by the value of the dynamic critical exponent (z ' 2.175 for the model C). We can
also express the complex sound velocity as

ĉ(ω)2 = c2
0(1−

vph
ad

v+
) +

const
CFB(ω)

. (142)
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with a Ferrell–Bhattacharjee function16 CFB(ω) which diverges as the static specific
heat near a critical point. In the limit y → 0, the adiabatic formula (90) for the
sound velocity is recovered again. The sound attenuation behavior in model C is
very similar to that in the high-frequency regime of model A and Eqs. (139) and
(140) appear as the high-frequency regime expressions of model A (133) and (131)
in which the crossover to another dynamic class has taken place (at least in the
one-loop approximation).

The formula 142 seems to have quite general character (magnets, liquid helium,
binary mixtures and liquid crystals). However, for the liquid-gas critical point we
have different expression ĉ(ω)2 = const/CFB(ω) which induces different behavior of
the sound velocity and different sound attenuation exponent ρs = zν + α/2 [69].
The difference originates from the different role played by the order parameter in
this system [74]. In magnets, liquid helium, binary mixtures the order parameter
couples to heat and sound modes by two static couplings f0 and g0, whereas in the
liquid-gas system there is only one static coupling between the heat (which is the
order parameter) and the sound modes.

7 Eksperiment

There are many experimental works on the ultrasonic propagation near a critical
point. It is beyond the scope of this review to discuss them all and we refer the
reader to the excellent reviews devoted the experimental results [6, 7, 62, 91] focusing
only on some questionable problems. First of all it is worth considering the question
of how do the measured sound attenuation critical exponents compare with the
theoretical estimations: ρs ' 1.26 for the model with conserved energy and the
Kawasaki singularity ρs ' 0.22, MIS singularity ρs ' 1.38 as well as for the high-
frequency singularity (ρs ' 1.16) in the Ising type model (n=1) with nonconserved
energy (spin-lattice relaxation). In table 5 we present also the theoretical estimations
for the other universality classes in the MIS regime. In real systems e.g. for isotropic
Heisenberg (n = 3) magnets the cubic anisotropy destroys the conservation of the
order parameter leading to the purely dissipative dynamics described by model A.
Therefore, in Table 5 this possibility is also taken into account. Other anisotropies
can induce the crossover to the Ising universality class (n = 1). In real systems it is
not clear a priori whether the total spin energy is conserved or not. It is connected
with the strength of the spin-lattice interactions and in some cases model A may
be a better description of the magnetic system and in other cases model C will be
more suitable.

16The Ferrell–Bhattacharjee function can be expressed (CFB(ω) = C0
V /Γm2m2(ω)) in terms of a

vertex function of an idealised phonon-free model [108].
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7.1 Insulators

For the most of insulators the exponent ρs takes small vales from zero for eu-
ropium oxide (EuO) to 0.75 for FeF2. In Table 3 the values of ρs defined for the
hydrodynamic range are presented for magnetic insulators. A conspicuous exception
is the chromium oxide (Cr2O3) for which ρs = 1.3. This value is very close to those
observed in metals (see Table 4). This compound will be discussed later. First we
discuss typical magnets from this group. The small values of the critical sound at-
tenuation exponents in insulators are commonly interpreted as an evidence that the
Kawasaki regime is realized there. Two questions arise here: how the exponent 0.77,
observed in FeF2 corresponds to the value ρKAW

s = 2αI ' 0.22 obtained for the
Ising like magnets (here αI denotes the specific heat exponent for the Ising systems).
What is the connection of ρs ' 0.32 for the isotropic antiferromagnet RbMnF3 with
the negative value 2αH ' −0.27 obtained from ρKAW

s = 2αI by replacing αI with
αH? It could be explained by the inaccuracy in determining the critical tempera-
ture which can influence the values of the critical exponents measured [91]. In our

Table 3 Critical sound attenuation exponents for insulators.

Exponent Anisotropy Frequency Reduced
Compound ρs parameter range temperature Refer.

(MHz) range

[114, 115]

MnF2 0.14(1) 1.4·10−2 10− 110 10−4−10−1 [62, 116]

RbMnF3 0.32(2) 5·10−6 30− 150 10−4−6·10−2 [117]

EuO 0 4·10−4 50, 170 10−4−10−1 [62, 118]

Y3Fe5O12 0.5(1) 10−5 5, 30 2·10−4-3·10−2 [91]

Gd3Fe5O12 0,42(10) 10−5 5, 30 2·10−4-5·10−1 [91]

FeF2 0.77(7) 0.6 10− 70 3·10−4-2·10−2 [120]

Cr2O3 1.3(1) 3·10−4 100− 1500 3·10−5−10−3 [123]

opinion the cause of this apparent contradiction rests with the fact that in exper-
iment only an effective critical exponent is measured from the slope of the sound
attenuation curve vs. the reduced temperature (shown in the double-logarithmic
scale) in the hydrodynamic range. The effective sound attenuation exponent can be
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defined [54, 124] as

ρs(t) = −∂ ln [α(ω, t)]ω→0

∂ ln t
. (143)

It was shown in the last section that the Kawasaki singularity is proportional to the
square of the specific heat so the asymptotic value for this exponent in Ising systems
is ρKaw

s = 2αI . It should be noted that this is only an asymptotic approximation
because the specific heat behaves near Tc as

C = At−α + B, (144)

The constant term B can be neglected for Ising systems only infinitesimally close to
Tc. In the Heisenberg model where A < 0 this constant is necessary to assure the
positivity of the specific heat. Only the two terms assure a peak in the specific heat
[34]. In real systems we should take into account also the first correction to scaling
[112, 113, 125] writing

C = At−α(1 + Et∆1) + B + Ft, (145)

where ∆1 is the exponent of the first correction to scaling equal about 0.52 [22]
for the one-component order parameter systems. A regular term proportional to t
is also added. The effective attenuation exponent can be found from (144) in the
Kawasaki regime as

ρs(t) = 2α
At−α

At−α + B
. (146)

For the Heisenberg magnets (n = 3) we have α < 0, A < 0 and B > 0
(|A| < B) so the effective exponent is positive because the product αA is positive.
Moreover, its absolute value can be higher than 2|αH | ' 0.27 which could explain
the experimental data in ferrites Gd3Fe5O12 and Y3Fe5O12.

7.1.1 FeF2

In this strongly anisotropic antiferromagnet, both the specific heat exponent and
its amplitude are positive and the constant B is negative [125]. In Figure 15 the
experimental data [120] in the symmetric phase are fitted to the general formula
(145) and in Fig. 16 the effective attenuation exponent is shown for B/A = −1.59,
E = 1.2, F/A = 0.1, α = 0.11 and ∆1 = 0.52 (Pawlak and Fechner [119]).
The solid line in Fig. (15) is the plot of the square of specific heat. The dotted
line represents a simple power law behavior α(ω, t) ∝ t−ρs with the exponent
ρs = 0.73. Remembering about stochastic scatter of data it is not hard to imagine
that the exponent ∼ 0.73 could be obtained in the temperature range 10−2 − 10−3.
The lower value of this exponent in the low-temperature phase of FeF2 ρs ' 0.5
[120] should be connected to the greater amplitude A− because for the Ising systems
we have A+/A− ' 0.53 . The greater amplitude A− implies a lower value of the
ratio B/A− so also the smaller deviation of ρs from the value 2αI .
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Figure 15 The ultrasonic attenuation vs the
reduced temperature for f = 50 MHz in FeF2

along [0, 0, 1] direction (the data are from
[120]). The solid curve is the plot of Eq.
(145). The dotted line is the fit to the single
power law with exponent ρs = 0.73 (Pawlak
and Fechner [119]).
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Figure 16 The effective sound attenuation ex-
ponent in the Kawasaki regime for the spe-
cific heat characterized by Eq.(145) (Pawlak
and Fechner [119]). The dotted line corre-
sponds to ”experimental” value ρs = 0.73.

7.1.2 RbMnF3

Because RbMnF3 is the isotropic antiferromagnet with very small anisotropy its
specific-heat exponent is negative [121]. The analysis is restricted to relatively low
frequencies at which the saturation effects (appearing when the reduced frequency
y is comparable to unity) can be neglected in the explored temperature range. In
Fig. (17) the experimental data [93] in the high-temperature phase are fitted to the
expression (145). The Heisenberg critical exponents α = −0.133, ∆1 = 0.5 [22] and
A = −0.372, B = 0.292, E = −0.0273, F = 0.25 are used (Pawlak and Fechner
[119]). The critical amplitudes for the high temperature specific heat are consistent
with the experimental estimations obtained by Marinelli et al. [121]. In Fig. (18)
the effective sound attenuation exponent versus the reduced temperature is shown.
It is seen that it is positive for the Heisenberg type antiferromagnet RbMnF3 and its
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Figure 17 The high temperature ultrasonic
attenuation vs the reduced temperature for
low frequencies: f = 92 and 133 MHz in
RbMnF3 along [1,0,0] direction. The solid
curve is the plot of Eq. (145) with α =
−0.133, ∆1 = 0.5 and A = −0.372, B =
0.292, E = −0.0273, F = 0.25 (Pawlak and
Fechner [119]).
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Figure 18 The effective sound attenuation
critical exponent for RbMnF3 (Pawlak and
Fechner [119]).
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average value in the experimental range of reduced temperature is about 0.25−0.35
as is observed in experiment (see Table 4). That explains also the positive sound
attenuation exponents in Heisenberg magnets like Y3Fe5O13 and Gd3Fe5O13.

7.1.3 EuO

Another source of concern is the lack of the critical attenuation observed in
isotropic ferromagnet EuO (ρs = 0) although a singularity in the specific heat is
observed in this compound [126]. It is however connected with a very long spin-
lattice relaxation time which is of an order of milliseconds (τ−1

SL ≈ 1.5 ·106 s−1 [127]).
The lack of singularity in the sound attenuation for EuO was commonly explained
with the aid of simple formula (97) which for this case was usually written as

α(ω, t) ∝ Cp
ω2τ

1 + ω2τ2
, (147)

where τ ∝ Cp and Cp is the specific heat. For ωτ À 1 this relation leads to
α(ω, t) ∝ const. For the frequency f = 50 MHz and τ = τSL ' 10−6 s we have
ωτ ' 300 so the assumption ωτ À 1 is well satisfied. However, there is a small
problem with the formula (147) based on only one relaxation time. Namely, the
sound velocity change ∆c ≡ c(ω)− c∞ on the grounds of Eq. (96) is given by

∆c ' Cp

2c∞(1 + ω2τ2)
. (148)

For ωτ À 1 ∆c it is very small and depends on the frequency as ω−2. It is very
difficult to reconcile with a small anomaly observed in the sound velocity in EuO
which practically does not depend on the sound frequency [127]. The lack of the
ω−2 dependence seems to be unquestionable. So the lack of the critical attenuation
and the anomaly in the sound velocity cannot be simultaneously explained. It can
be easily done with the aid of formula (118) if we assume that

ω2τ2
SL

τc

τSL
¿ vph

T

vph
ad

¿ ω2τ2
SL. (149)

Then the imaginary part of (118) gives the equation analogous to (147)

α(ω, t) ∝ ω2τ0
SL ReΠ(A)(ω; t)(1 + v+ ReΠ(A)(ω; t))
1 + ω2(τ0

SL(1 + v+ ReΠ(A)(ω; t)))2
, (150)

where Π(A)(k, ω; t) = t−αΦ′(ωτc) + B is the discussed four spin response function
which turns into the static specific heat in the ωτc → 0 limit. The role of the
relaxation time τ in Eq. (147) is played here by the product τ0

SL(1+v+ ReΠ(A)(ω; t))
which for ωτc ¿ 0 behaves as the specific heat. The real part of Eq. (118)
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Figure 19 The temperature dependence of the attenuation coefficient for longitudinal waves in
[1, 1, 0] direction for MnF2 (T > TN ) (Pawlak [122]). The continuous curves represent the imaginary
part of Eq. (118).

becomes the adiabatic sound velocity described by Eq. (135) with the singular term
proportional to the inverse of the specific heat. Thus both aspects of the sound
propagation in EuO can be explained with the aid of formula (118).

Because the spin-lattice relaxation time in EuO is extremely long (much longer
than τc) the inequality (149) is probably satisfied for very wide range of frequencies.
It should be however expected that for very low as well as for very high frequencies
anomalous sound attenuation should be observed. Actually, it was mentioned [127]
that the critical attenuation was observed in vibrating reeds experiments EuO for
the very low frequency range 0.4–3 kHz.

7.1.4 MnF2

The critical sound attenuation in magnets was for the first time observed in
the antiferromagnet MnF2 [128]. As shown by the experimental investigation of
the specific heat [129] the magnet shows a crossover from the isotropic Heisenberg
behavior (n = 3) to the Ising type behavior at t of an order of 10−2. The sound
velocity and attenuation coefficient of manganese fluoride have been studied by
many authors [62, 114–116, 123, 128, 130–132] and it is the best known (from the
experimental point of view) magnetic compound so far. In Fig. 19 the longitudinal
sound attenuation dependence on the reduced temperature is shown (Pawlak [122]).
The experimental data are taken from Ikushima’s work [114]. The continuous curves
represent the expression (124) for the frequencies f = 10, 30, 50 and 70 MHz.
The acoustic self energy is taken in the most general form (118) for the model

with the spin-lattice relaxation, with τ0
SL = 3 · 10−9 s, τ0

c = 10−13 s, vph
ad

vph
T

= 1.9,
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Figure 20 The contribution of different terms to the total attenuation of the longitudinal wave along
the [1, 1, 0] direction in MnF2 for f = 10 MHz (Pawlak [122]). The MIS, Kawasaki, high-frequency
and the background terms are denoted as αMIS , αKAW , αHF and αB , respectively.

(AνK4/αB) = −1.03. It can be seen from this plot that for low frequencies e.g. for
f = 10 MHz, α(ω, t) exhibits a typical Kawasaki behavior with a small slope of the
curve and only for the reduced temperatures of an order of 10−4 the curve starts
to climb up and soon saturates. It is connected with the fact that τ0

SL À τ0
c in

MnF2, and although the critical relaxation time for the order parameter fluctuations
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Figure 21 The temperature dependence of the attenuation coefficient for longitudinal waves in
[1, 0, 0] direction for MnF2 (T > TN ). The continuous curves represent the imaginary part of Eq.
(118). The experimental point are taken from [115].
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Figure 22 The contribution of different terms to the total attenuation of the longitudinal wave along
the [1, 0, 0] direction in MnF2 for f = 110 MHz. The MIS, Kawasaki, high-frequency and the
background terms are denoted as αMIS , αKAW , αHF and αB , respectively.

increases much faster than the spin-lattice relaxation time the MIS term exceeds the
Kawasaki term only for t close to 10−4. The crossover to the critical range (y À 1)
is observed when ω−1 becomes comparable with τc.

Fig. 20 shows the contributions of different terms to the total sound attenuation
coefficient (Pawlak [122]). The background noncritical term is also included. It
should be noted that every contribution saturates at roughly the same temperature
at which ωτc ∼ 1. For higher frequencies the MIS term cannot exceed the Kawasaki
term (αKAW ) because the saturation of both terms takes place before.

Fig. 21 and 22 present analogous plots for the longitudinal sound waves along the
[1, 0, 0] direction for T > TN . The experimental points are from [115]. This time the
range of the ultrasonic frequencies is wider (10-110 MHz). Generally, it is expected
that in the systems without full isotropic (elastic) symmetry the effective coupling

constants will depend on the direction of propagation and this time vph
ad

vph
T

= 0.8

is assumed. The share of the individual terms in the total attenuation is seen in
Fig. 22 for the highest frequency f = 110 MHz. This time αKAW significantly
exceeds αMIS term and competes with αHF for the small reduced temperatures.
The background term is very high now (about 50% of the total attenuation) and
suppresses the relative magnitude of the attenuation peak.

7.1.5 Cr2O3

From Table 3 it is seen that this antiferromagnet does not match the other
insulators because of its high exponent ρs = 1.3. The experiment [113] shows
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that this system is characterized by Ising specific-heat exponent for t < 3 · 10−3,
despite only small anisotropy. As follows from our analysis, high sound attenuation
exponent ρs can appear in three cases. One is typical of metals where τ0

SL ∼ τ0
c

and then due to the critical slowing down the MIS behavior is observed with the
exponent ρs = zν + α where z = zA and the nonconserved energy is assumed. For
this universality class another high-frequency regime is also characterized by large
attenuation exponent ρs = zν − α and it is the second case. The third case is that
the energy is conserved and the attenuation exponent is given by ρs = zCν−α with
zC = 2 + α/ν for the model C. In model A we have ρs ' 1.38 for the MIS regime
and ρs ' 1.16 for the high-frequency regime. The experimental value 1.3 measured
for Cr2O3 is closest to the value for model C ρs ' 1.26.

It should be noted that the sound attenuation was measured for very high fre-
quencies, 100–1500 MHz, in this compound. Assuming even very short spin-lattice
relaxation time of an order of one nanosecond we have 1 ≤ ωτSL ≤ 15 which in-
dicates the crucial role of the denominator in Eq. (124) which rather excludes the
MIS regime. Further measurements of the sound attenuation coefficient in the low-
frequency range as well as an experimental estimation of the spin-lattice relaxation
time are desirable for this magnet in order to recognize the source of its exception-
ality.

7.2 Metals

In Table 4 the critical exponents for conducting magnets are given. They are
equal or greater than one, which confirms the hypothesis that the spin-lattice relax-
ation time are shorter than in insulators and the Kawasaki regime is less important
in these compounds. Taking into account that the ultrasonic frequencies used were
not very high i.e. such that ωτ0

SL ∼ 1 could be met, we can suppose that in the inves-
tigated frequency interval the MIS term dominates with the exponent ρs = zν + α.
What is the source of so large differences in the attenuation exponents measured
in metals? Of course, they follow from the fact that these compounds belong to
different static (n) and dynamic universality classes as explains Table 5 [4].

7.2.1 Ni

The attenuation exponent observed in this isotropic ferromagnet ρs = 1.4± 0.2
suggests that the earlier mentioned cubic anisotropy terms are important in this
ferromagnet, which indicates the crossover to the relaxational dynamics with z ' 2.
Below TC a temperature interval was observed in which ρs ' 0.3 [139]. Such a
small value of this exponent suggests that the Kawasaki regime is important here
for not very small reduced temperature.
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Table 4 Critical sound attenuation exponents for magnetic metals.

Exponent Anisotropy Frequency Reduced
Metal ρs parameter range temperature Refer.

(MHz) range

Gd 1.2(1) 5·10−4 30−180 10−3−10−1 [134]
1.63(10) 10−70 10−3−10−1 [62]
1.8(2) 5 3.4·10−3−2.4·10−2 [135]
1.15(10) 5−30 10−4−10−1 [91]

Tb 1.24(10) −0.4 30−170 7·10−3−7·10−2 [136]

Dy 1.37(10) −0.3 30−170 3·10−3−10−1 [136]
1.26(10) 3·10−3−10−1 [62]

Ho 1.0(1) −7·10−2 30−170 3·10−4−10−1 [136]

MnP 1.1(1) 30−210 10−4−10−2 [137]
1.1(1) 10−520 10−4−10−2 [138]

Ni 1.4(2) ∼10−4 20, 60 10−6−3·10−3 [139]

7.2.2 Gd

The most interesting metal is the ferromagnetic gadolinium. Is it possible to
explain such great differences in the sound attenuation exponent shown in Table
4? It seems that yes. Firstly, the four experiments mentioned in Table 4 have
been performed for different samples and the structure and the symmetry of the
crystal depend on the number and character of impurities. Secondly, in Gd be-
sides the anisotropy the dipole interactions are very important. It follows from the
renormalization group analysis [140] that in such system there are four fixed points:
Heisenberg (H), anisotropic Ising (I), anisotropic dipolar (AD) and isotropic dipo-
lar (ID) fixed points. Depending on the ratio of the anisotropy to the parameter
describing the strength of the dipolar interactions we have a series of the crossovers
between these fixed points which can be seen as transitions from one set of critical
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Table 5 Theoretical estimations of ρs in the MIS regime for different universality classes.

n
Magnetic
system

Model ρs

1
anisotropic magnets,
uniaxial antiferromagnets

A 1.38

1
uniaxial
ferromagnets

B 2.50

1
anisotropic magnets,
uniaxial antiferromagnets

C 1.48

1
uniaxial
ferromagnets

D 2.50

2
easy plane
magnets, hz = 0

A
E

1.35
1.00

3
isotropic
antiferromagnets

A
G

1.31
0.94

3
isotropic
ferromagnets

A
J

1.31
1.65

exponents to another. One of the possible series is H→ I→AD and the second
one is H→ ID→AD. For the sequence H→ I→AD the behavior of the isotropic
ferromagnet with ρs = 1.65 will be observed for high reduced temperatures. The
exponents reported in [62] and [135] probably refer to this temperature range. For
smaller reduced temperatures the Ising behavior with relaxational dynamics and
ρs = 1.38 can be expected in such a sample (or in other sample in different tem-
perature interval). Eventually, the system will be found in the temperature range
controlled by the anisotropic dipolar fixed point where also the relaxational dynam-
ics and the mean-field critical exponents with ρs = 1 are expected. Because the
upper critical dimension for such system is d = 3 [20, 21] fractal powers of log-
arithms also appear [69, 141, 142]. For the sequence H→ ID→AD we should
observe first ρs = 1.65 (for Heisenberg fixed point) then a crossover to the isotropic
dipolar fixed point (ρs = 1.31) is expected with the static exponents only slightly
different from the Heisenberg exponents. However, the dipolar interactions do not
conserve the order parameter so zID ' 2. Smaller dynamic critical exponent implies
smaller sound attenuation exponent ρs = 1.31 in this regime. The asymptotically
stable fixed point for this sequence is again the anisotropic dipolar fixed point with
ρs = 1 and the logarithmic factors [69, 141, 142]. As follows from this discussion
gadolinium is such a complex system that it is very difficult to describe it with the
aid of one fixed point (and one value of ρs). Instead a sequence of crossovers between
different exponents is expected and the effective exponents are measured in different
temperature ranges and for different samples.
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7.3 Conclusion

This chapter deals with the theoretical and experimental studies of ultrasonic wave
attenuation and velocity in magnets. It begins with a short description of the
basic concepts of the statics of the phase transitions such as critical exponents,
universality etc. Then a short introduction to the critical dynamics is presented,
in which dynamical scaling, critical slowing down and main universality classes are
described. It was shown that the adiabatic longitudinal sound velocity remains finite
at the magnetic phase transition temperature. Additionally, an extensive discussion
of the phenomenological theory of sound attenuation and dispersion is given. The
effect of spin-lattice relaxation on the sound propagation is investigated on the
basis of the stochastic model. Three asymptotic regimes for sound attenuation are
discussed. Two of them: MIS and Kawasaki regime refer to the low-frequency
range. The additional regime refers to the high-frequency range and corresponds
to the adiabatic sound propagation. It transforms into the sound propagation in
model C (with conserved energy) in the limit of vanishing spin-lattice relaxation
frequency. An overview of experimental and theoretical sound attenuation exponents
both for magnetic insulators as well as magnetic metals is given. The concept of
the effective sound attenuation exponent is discussed and illustrated on the example
of FeF2 and RbMnF3. The crossovers between different regimes are shown for the
antiferromagnet MnF2.

However some unsolved questions still remain. In future the experimental
measurements should cover a wider frequency range. For example the measurements
for frequencies lower than 10 MHz in MnF2 would be extremely important in verifi-
cation of the theory. The same applies to Cr2O3 for which only high frequency mea-
surements are accessible so far. The critical sound propagation in low-dimensional
systems is a very interesting topic both from theoretical and experimental point
of view. Another challenge is the construction of critical sound attenuation in an
external magnetic field. For the ferromagnets the magnetic field is coupled to the
order parameter so the non-zero magnetic field destroys the phase transition and
the scaling relation for the attenuation takes a form

α(t, ω, h) = ω2t−ρsf(ωt−zν , ht−∆)

or
α(t, ω, h) = ω2h−ρs/∆g(ωh−zν/∆, th−1/∆)

where ∆ = γ+β is the gap exponent and f, g are scaling functions [143]. Additional
variable in the scaling function induces the existence of six asymptotic regions in the
space (ω, t, h) instead of two (hydrodynamic and critical ones) in the space (ω, t).
The scaling functions need to be determined theoretically as well as experimentally.
So far only some mean-field results have been obtained [144–147] and the measure-
ments far from critical temperature were carried out in MnP [148]. In particular
the sound attenuation and velocity exactly at the Curie temperature would be of
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importance. In antiferromagnets the magnetic field does not destroy the continuous
transition and only shifts the Neel temperature in a similar way as the transverse
field shifts the Curie temperature in anisotropic ferromagnets. The effects of the
external field on the critical sound propagation in antiferromagnets need a further
theoretical and experimental studies.
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[62] Lüthi B., Moran T.J., Pollina R.J., J. Phys. Chem. Solids 31, 1741 (1970).

[63] Cheeke J.D.N., Fundamentals and Applications of Ultrasonic Waves, CRC
Press, Boca Raton 2002.



66 Andrzej Pawlak

[64] Larkin A.I., Pikin S.A., Ż.E.T.F. 56, 1664 (1969).
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