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Abstract

In the thesis is developed an invariant quantization procedure of classical Hamil-
tonian mechanics. The procedure is based on a deformation quantization theory,
which is used to introduce quantization in arbitrary canonical coordinates as well as
in a coordinate independent way. In this approach to quantization a classical Poisson
algebra of a classical system is deformed to an appropriate non-commutative alge-
bra of smooth functions on a phase space. The non-commutative product from this
quantum Poisson algebra is called a star-product. In addition to the star-product,
on the quantum Poisson algebra is introduced a deformed Poisson bracket and an
involution being a deformation of the complex-conjugation of functions. To each
measurable quantity corresponds a function from the quantum Poisson algebra,
self-conjugated with respect to the quantum involution, i.e. quantum observable.
Thus, a quantization is fixed by a choice of a deformation of the classical Poisson
algebra, and an assignment to measurable quantities quantum observables. It is
discussed that for a given classical system its quantization is not specified uniquely
and there may exist many different quantizations. A notion of equivalent quan-
tizations is introduced, which allows for a systematic characterization of different
quantizations.

The developed formalism of quantum mechanics uses a mathematical language
similar to that of classical Hamiltonian mechanics. This allows to introduce in
quantum theory analogs of many concepts from classical theory. For instance, in the
thesis are introduced quantum canonical (Darboux) coordinates and transformations
between them. Moreover, a notion of almost global coordinates is defined. These
are the only coordinates in which it is meaningful to consider quantum systems.

For particular examples of phase spaces are introduced canonical star-products.
In particular, on a cotangent bundle to a general Riemannian manifold is defined a
two-parameter family of star-products, which reproduces most of the results received
by different approaches to quantization found in the literature. The introduced star-
products were written in a covariant form. Moreover, it was proved that for a given
coordinate system, which is at the same time classical and quantum canonical, a
general star-product on a general phase space is equivalent with the Moyal product.

The operator representation of quantum mechanics is constructed for a general
quantization and arbitrary canonical coordinates. A very general family of order-
ings of operators of position and momentum (containing all orderings found in the
literature) is introduced. It is shown that for different quantizations and canonical
coordinates correspond different orderings. This fact allowed to construct an op-
erator representation of quantum mechanics in a consistent way for any canonical
coordinates as well as in a coordinate independent way. The construction is illus-
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trated with examples of quantum mechanical operators corresponding to observables
linear, quadratic and cubic in momenta. Moreover, as an another example, a quan-
tization of the hydrogen atom is presented.

Finally, using the developed formalism, a quantum analog of classical trajectories
in phase space is introduced. Quantum trajectories are defined as integral curves
of quantum Hamiltonian vector fields. A quantum action of a quantum flow on
observables, which is a deformation of the respective classical action, is presented
in an explicit form. Then, it is shown that a set of quantum flows has a structure
of a group with multiplication being a deformation of the ordinary composition of
flows. The theory of quantum trajectories is illustrated with examples of quantum
Systems.



Streszczenie — Abstract in Polish

W pracy rozwijana jest niezmiennicza procedura kwantowania klasycznych uktadow
hamiltonowskich. Procedura ta bazuje na teorii kwantyzacji deformacyjnej, ktora
zostata uzyta do wprowadzenia kwantyzacji w dowolnych wspotrzednych kanonicz-
nych, jak rowniez w sposob niezalezny od uktadu wspotrzednych. W tym podejséciu
do kwantyzacji klasyczna algebra Poissona uktadu klasycznego jest deformowana
do odpowiedniej niekomutatywnej algebry funkcji gtadkich na przestrzeni fazowe;j.
Niekomutatywny iloczyn z tej kwantowe] algebry Poissona nazywany jest gwiazdka-
iloczynem. Poza gwiazdka-iloczynem na kwantowej algebrze Poissona wprowadzany
jest zdeformowany nawias Poissona i inwolucja bedaca deformacjag sprzezenia zespo-
lonego funkcji. Kazdej wielko$ci mierzalnej odpowiada funkcja z kwantowej algebry
Poissona, samosprzezona ze wzgledu na kwantowa inwolucje, tzn. kwantowa ob-
serwabla. Tak wiec kwantyzacja jest zadana poprzez wybor deformacji klasycznej
algebry Poissona oraz przyporzadkowania wielko$ciom mierzalnym obserwabli kwan-
towych. Dyskutowane jest, ze dla danego uktadu klasycznego jego kwantyzacja nie
jest okreslona jednoznacznie i moze istnie¢ wiele réznych kwantyzacji. Ponadto
wprowadzone zostalo pojecie rownowaznych kwantyzacji, pozwalajace na systema-
tyczna charakteryzacje réznych kwantowan.

O strukturze algebraicznej kwantowej algebry Poissona mozna mysleé¢ jak o wy-
znaczajacej kwantowa geometrie przestrzeni fazowej, podobnie jak klasyczna algebra
Poissona wyznacza klasyczng przestrzen fazowa. Ponadto struktura kwantowej al-
gebry Poissona uzyta zostata do zdefiniowania stanéw kwantowych oraz ewolucji
czasowe] uktadow kwantowych, poprzez analogie z przypadkiem klasycznym.

Rozwijany formalizm mechaniki kwantowej uzywa jezyka matematyki podobnego
do tego opisujacego klasyczna mechanike hamiltonowska. Pozwala to wprowadzi¢
w teorii kwantéw analogi wielu poje¢ z teorii klasycznej. Przykladowo w pracy
wprowadzone zostaly kwantowo kanoniczne wspotrzedne (kwantowe wspolrzedne
Darboux) oraz transformacje pomiedzy nimi. Ponadto zdefiniowane zostato pojecie
prawie globalnego uktadu wspoétrzednych. Sa to jedyne wspétrzedne, w ktorych ma
sens rozpatrywac¢ uktady kwantowe.

Dla szczeg6lnych przykladow przestrzeni fazowych skonstruowane zostaly kano-
niczne gwiazdka-iloczyny. Jako pierwszy przyklad rozpatrzona zostata przestrzen
R*N 7 gwiazdka-iloczynem Moyala zdefiniowanym na niej. Nastepnie wiazka ko-
styczna do przestrzeni Euklidesowej, na ktorej wprowadzona zostala rodzina gwiazd-
ka-iloczynow. W dalszej kolejnosci rozwazona zostata wiazka kostyczna do ptaskiej
rozmaitos$ci Riemanna z kanonicznym gwiazdka-iloczynem zadanym poprzez konek-
sje liniowag Levi-Civita. Ostatecznie, dla wiazki kostycznej do ogélnej rozmaito-
$ci Riemanna wprowadzona zostala dwu-parametrowa rodzina gwiazdka-iloczynow,

vil



viil STRESZCZENIE — ABSTRACT IN POLISH

ktora odtwarza wiekszos¢ rezultatow otrzymanych réznymi podejsciami do kwan-
tyzacji spotykanymi w literaturze. Skonstruowane gwiazdka-iloczyny zostaly zapi-
sane w postaci kowariantnej. Ponadto udowodniono, ze dla uktadu wspolrzednych,
ktory jest jednocze$nie klasycznie i kwantowo kanoniczny, ogélny gwiazdka-iloczyn
na ogolnej przestrzeni fazowej jest rownowazny z iloczynem Moyala.

W dalszej cze$ci pracy skonstruowana zostata operatorowa reprezentacja dla
ogo6lnej kwantyzacji i dowolnych wspotrzednych kanonicznych. Punktem wyjscia
byta konstrukcja operatorowej reprezentacji w przestrzeni Hilberta nad przestrzenia
fazowa. Pozwolito to uzyska¢ w naturalny sposéb bardzo ogo6lng rodzine uporzad-
kowarn operatoréw potozenia i pedu (zawierajaca wszystkie porzadki spotykane w
literaturze). W nastepnym kroku zaprezentowana zostata konstrukcja operatorowej
reprezentacji w przestrzeni Hilberta nad przestrzenia konfiguracyjng. Odtworzony
zostal w ten sposéb standardowy opis mechaniki kwantowej w ujeciu przestrzeni Hil-
berta. Pokazane zostato, ze réoznym kwantowaniom i wspoétrzednym kanonicznym
odpowiadajg rézne porzadki operatoréw polozenia i pedu. Ten fakt pozwolil na
konstrukcje operatorowej reprezentacji mechaniki kwantowej w spojny sposob, dla
dowolnych wspotrzednych kanonicznych. Mianowicie operatory odpowiadajace da-
nej obserwabli kwantowej zapisanej w dwoch réznych kanonicznych uktadach wspot-
rzednych bedg unitarnie rownowazne. Ponadto uzyskane rezultaty wyrazone zostaty
w sposOb niezalezny od ukladu wspoétrzednych. Konstrukcja zilustrowana zostala
przyktadami kwantowo-mechanicznych operatorow odpowiadajacych obserwablom
liniowym, kwadratowym i kubicznym w pedach. Co wiecej, jako kolejny przyktad,
zaprezentowana zostata kwantyzacja atomu wodoru.

Na zakoniczenie, uzywajac rozwijanego formalizmu, wprowadzony zostal kwan-
towy analog klasycznych trajektorii na przestrzeni fazowej. Kwantowe trajektorie
zdefiniowane zostaly jako krzywe catkowe kwantowych po6l hamiltonowskich. Za-
prezentowana zostata posta¢ kwantowego dziatania kwantowych potokéw fazowych
na obserwable, ktore jest deformacja klasycznego dziatania. Nastepnie pokazane zo-
stato, ze zbior kwantowych potokéw fazowych posiada strukture grupy z mnozeniem
bedacym deformacja zwyktego sktadania potokow. Teoria trajektorii kwantowych
zilustrowana zostata réznymi przyktadami uktadow kwantowych.
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Chapter 1

Introduction

Quantum mechanics proved to be a proper theory to describe physical systems in
a micro scale. However, after over 100 years of development there is still lack of a
consistent quantization procedure of classical systems. The most common approach
to quantum theory is the Hilbert space approach. In this approach we associate
with every measurable quantity a self-adjoint operator defined on a Hilbert space.
If we have some classical system and we would like to quantize it, then first we have
to find a correspondence between classical observables and operators on a certain
Hilbert space. In a Hamiltonian description of classical mechanics observables are
defined as real-valued functions on a phase space, and the passage to quantum
mechanics is done using Weyl quantization rule. The Weyl quantization rule states
that to functions on a phase space one associates operators by formally replacing
q' and p; coordinates in classical observable with operators §’, p; of position and
momentum, and symmetrically ordering them. By such procedure one can quantize
every classical Hamiltonian system. Note however, that this procedure works only
for systems whose phase space is R*¥. Moreover, quantization has to be performed in
Cartesian coordinates. Even in that well recognized case a natural question appears:
whether the Weyl quantization is a unique choice? In other words, whether there
are other quantization procedures which are consistent with physical experiments.

The proper quantization procedure should be possible to perform for a system
defined on a general phase space and in any coordinate system. However, if we would
take a classical system and naively perform a quantization according to the Weyl
quantization rule, for two different canonical coordinates, then in general we would
not get equivalent quantum systems. As an example let us consider a hydrogen
atom which Hamiltonian in Cartesian coordinates is given by the formula

2 2 2 2
H(xvyaz7pwapy7p2) - 2m B 47760 /x2 +y2 + 22.

In accordance to the Weyl quantization rule to this function will correspond the
following operator

HAAAAAA_hQAl e?
(q$7Qy7QZ7p$7py7pZ) - _% - 47T€0 \/ma

where A = 92 + 85 + 02 is the Laplace operator in the Cartesian coordinates. If we
will now consider this system in spherical polar coordinates then the Hamiltonian
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H takes the form

1 P 2
H(T,Q,Qﬁ,pr,p@,p(z)) = — (pz_|__9+ )

2m r2  r2sin’4

1 e?

dmeg 1’

and operators of position and momentum corresponding to spherical polar coordi-
nates are given by

qr =T, q@zea qA¢:¢7
) , 1 . _ 1 . .
P, = —ih (& + ;) , po = —ih (89 + ) , Py = —ih0,.

2tan 6

The function H of symmetrically ordered operators ¢, g, 44, Dr, Do, Dy Of position
and momentum will not be an operator unitarily equivalent with the operator
H(4x, Gy, G2+ Dus Dy, D) derived for Cartesian coordinates.

As we will show later on this apparent inconsistency of quantization can be solved
by a proper choice of quantum observables in new coordinates, i.e. by performing
an appropriate deformation of classical observables written in new coordinates, or
alternatively by using different ordering rules of position and momentum operators
for different coordinates. The situation gets even more complicated when we con-
sider non-flat configuration spaces. In such case there are very few experiments
which could distinguish quantization rules.

The problem of quantization in arbitrary coordinates on a configuration space
was evident in early days of quantum mechanics. The majority of efforts was related
to an invariant quantization of Hamiltonians quadratic in momenta. The construc-
tion of a quantum Hamiltonian in flat and non-flat cases was considered by many
authors (see for example several relevant papers [1-9]). Much less results concern an
invariant quantization of Hamiltonians cubic in momenta [10, 11]. However, to our
knowledge, there does not exist general solution valid for any classical observable
and canonical coordinates.

Possibility of considering quantum systems in different canonical coordinates is
connected with the theory of canonical transformations in quantum mechanics. The
development of the theory of canonical transformations of coordinates in quantum
mechanics is mainly contributed to Jordan, London and Dirac back in 1925 [12-18]
and it is still an area of intense research.

In the usual approach to canonical transformations in quantum mechanics one
identifies canonical transformations with unitary operators defined on a Hilbert
space. Such approach was used by Mario Moshinsky and his collaborators in a series
of papers [19-23]. Also other researchers used such approach [24-26]. Worth noting
are also papers of Anderson [27, 28] where an extension of canonical transformations
to non-unitary operators is presented. Nevertheless, after so many years of efforts,
there is still lack of a general theory of coordinate transformations in quantum
mechanics, including a satisfactory complete theory of canonical transformations.

Although, the usual Hilbert space approach to quantum mechanics is very pop-
ular it is not the best approach for developing a theory of quantization in any
canonical coordinate systems and to characterize different quantizations. It seems
that the bast approach to quantum theory to achieve these tasks is the phase space
quantum mechanics. This approach is also very natural for introducing quantization



and is described by a mathematical language similar to that of a classical Hamil-
tonian mechanics. This allows to introduce many concepts from classical theory to
its quantum counterpart, like coordinate systems, coordinate transformations and
trajectories on phase space. The standard Hilbert space approach to quantum me-
chanics is then reproduced as an appropriate operator representation of phase space
quantum mechanics.

The theory of trajectories on phase space plays an important role in a descrip-
tion of time evolution of classical systems. From the very beginning of quantum
physics, efforts have been taken to formulate some kind of an analogue of phase
space trajectories in quantum mechanics [18]. The most common approaches to
quantum dynamics are the de Broglie-Bohm approach [29-33| and the average value
approach [34, 35]. Worth noting is also the paper [36] written by Rieffel where he
considers a classical limit of a quantum time evolution in the framework of a strict
deformation quantization.

Furthermore, the phase space approach to quantum mechanics makes it possi-
ble to introduce, in a natural way, an analog of classical trajectories in quantum
mechanics (see |37, 38] and references therein). In this approach one considers the
Heisenberg evolution of fundamental observables of position and momentum, being
h-deformation of the classical Hamiltonian evolution. Moreover, the deformation to
an arbitrary order can be calculated by an h-hierarchy of recursive first order linear
partial differential equations [37-39]. The time evolution of observables cannot be
given as a simple composition of observables with a quantum flow. For this reason
Dias and Prata [37], and Krivoruchenko and Faessler [38] considered observables
as x-functions and a quantum phase space as a plane of non-commuting variables.
Then the action of a flow on observables was given as a x-composition.

The thesis is organized as follows. In Chapter 2 we review classical Hamiltonian
mechanics. The theory is described in a language of differential geometry. The
definitions of basic objects of the theory are given including a phase space, Poisson
algebra, observables, states, and canonical coordinates. We present characteriza-
tion of states which will be used when defining quantum states. Also we introduce a
concept of almost global coordinates which will be intensively used during a quan-
tization process. Moreover, the thorough description of time evolution of classical
systems is presented including a definition of trajectories on a phase space which
quantum counterpart will be developed in Chapter 5.

In Chapter 3 we present the general theory of quantization base on deforma-
tion of classical Hamiltonian mechanics. Although the deformation approach to
quantization is not new and has a long history, usually in the literature one does
not find quantum mechanics introduced in a fully invariant form. The deformation
quantization is considered either from purely mathematical perspective, or in some
particular coordinates, usually Cartesian on R*Y. In the thesis we develop a fully
invariant deformation quantization procedure of classical mechanics.

In the first section of Chapter 3 we review the theory of deformations of sym-
plectic manifolds. A symplectic manifold represents a phase space of the system.
The geometric structure of a symplectic manifold M is fully specified by its Pois-
son algebra C°°(M). By deforming the algebra C°°(M) to some non-commutative
algebra we can think of it as describing a non-commutative symplectic manifold
(non-commutative phase space). By a deformation of the Poisson algebra C'*°(M)
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is understood a space C*°(M)[v] of formal power series in v with coefficients in
C*(M), together with a non-commutative product %, called a star-product, which
in the limit v — 0 reduces to the ordinary point-wise product of functions. In
addition, on the space C*°(M)[v] we introduce a deformed Poisson bracket given
by

[F.g) = ~(f*9— g% ) = 1f.0) + o0,

and an involution % which in the limit v — 0 reduces to the complex-conjugation of
functions. As the deformation parameter v is taken ¢h. The deformation of a phase
space is the main ingredient of the process of quantization.

A star-product on a given symplectic manifold is not defined uniquely. This
is one of the sources of the existence of different quantizations of a given classical
system. However, some star-products are equivalent in the sense that there exists a
morphism S on C(M)[v] intertwining them.

Section 3.2 contains a detailed description of a quantization procedure. A quan-
tization of a given classical Hamiltonian system is performed first by deforming a
phase space of the system to a non-commutative phase space in accordance to the
theory of deformations of symplectic manifolds described in the previous section.
That is, the classical Poisson algebra Ac(M) = (C*(M),-,{-, - },7) is deformed to
a quantum Poisson algebra Ag(M) = (C*°(M)[h],*,[-, -], *). The second step of
the quantization process is assignment to every measurable quantity an element of
C>°(M)[R] self-adjoint with respect to the involution * from Aq (M), i.e. an observ-
able. Usually in the literature as observables are taken the same functions as in the
classical case, even when the involution * is not the complex-conjugation. However,
we use a different approach and take as quantum observables A-deformations of clas-
sical observables. This crucial innovation allowed to characterize quantizations in
a concise way. In particular, equivalent star-products can give equivalent quanti-
zations if we appropriately assign to measurable quantities elements of C'*°(M)[R].
Also, as an interesting consequence, for some involutions * observables may be
complex-valued functions.

Quantum states and time evolution of a quantum system are defined in an ana-
logical way as in the classical case. The point-wise product - of functions and the
Poisson bracket { -, - } have to be replaced by the x-product and the deformed Pois-
son bracket [-, -]. This is a consequence of the fact that the algebraic structure of
the algebra of observables (Poisson algebra) defines states and time evolution.

The mathematical language used to introduce quantum mechanics is similar to
that of classical Hamiltonian mechanics. As a consequence we can introduce to
quantum theory coordinate systems and coordinate transformations in a straight-
forward way. All this is described in Section 3.3. Moreover, in this section are
introduced quantum canonical coordinates and transformations in a total analogy
with the classical case.

In Section 3.4 are constructed canonical star-products on particular examples
of symplectic manifolds. We start with a simplest symplectic manifold, R*", and
introduce on it a Moyal star-product. It is well known how in this simplest case
create an operator representation of a quantum system. We also prove that a wide
family of star-products on a general symplectic manifold is equivalent with the
Moyal product, for a given classical and quantum canonical coordinate system. This



observation and the fact that the operator representation for the Moyal product is
known is a key point for introducing an operator representation of a general quantum
system for arbitrary canonical coordinates.

Next we move to a symplectic manifold in the form of a cotangent bundle T*EY
to an Euclidean space EV and introduce on it a family of star-products. Each
star-product is parametrized by a sequence of pair-wise commuting vector fields

Xi1,..., XN, Y1,..., Yy from a decomposition of a Poisson tensor P on T*EY
N
i=1

One of the star-products from this family is distinguished, namely the one for which
the vector fields X;,Y; in Cartesian coordinates are coordinate vector fields. We
then write this canonical star-product in a covariant form. The covariant form of
the star-product is given in terms of a linear connection on E™.

The equation for the star-product on T*EY written in the covariant form can
be generalized in a straightforward way to a case of a symplectic manifold T Q over
a flat Riemannian manifold Q. That way we introduced a canonical star-product
on 77Q. We also derived the form (to the second order in %) of the equivalence
morphism S intertwining this star-product with the Moyal product, for a given
classical and quantum canonical coordinate system.

Finally, we consider a general symplectic manifold T*Q over a non-flat Rieman-
nian manifold @ and propose a two-parameter family of star-products defined on it.
In this general case there is no single distinguished star-product, which shows that
in the non-flat case there is a problem of choosing a physically admissible quan-
tization. In Section 4.3 we show that for this general case to functions quadratic
in momenta correspond operators with an extra term added to the potential and
dependent on the curvature tensor. The form of this operator, for particular val-
ues of the quantization parameters, was received by many authors using different
approaches to quantization. The approach to quantization developed in the thesis
reproduces all results present in the literature.

In Chapter 4 we describe the construction of an operator representation of quan-
tum mechanics for an arbitrary canonical coordinate system, as well as, in a coor-
dinate independent way. In the first section of this chapter we consider a quantum
system over a phase space RV with the Moyal product defined on it. We construct
a representation of the algebra Ag(R*V) = (C®(R*Y)[A], ) in the Hilbert space
L*(R*M) according to the formula

J =[x

We show that operators f*,; can be written as functions f of symmetrically ordered
operators G, = = q' *ur , Dxyj = Pj *m of position and momentum in accordance to
a Weyl correspondence rule:

fru = f(é*zwﬁ*M)'

Next we propose a generalization of the ordering of operators of position and mo-
mentum. The introduced generalization covers all orderings found in the literature,
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including symmetric, normal, and anti-normal orderings, as well as a wide family
of orderings considered by L. Cohen. But it also extends to types of orderings not
considered before. Using this general concept of the ordering we show that for every
x-product on R?" operators f « can be written as appropriately ordered functions
f of operators of position and momentum. As a result every star-product on R?V
gives rise to an ordering of operators g, Ds«; and a quantization can be fixed either
by choosing a star-product on a phase space R*Y or equivalently, on a level of the
operator representation, by choosing an ordering.

Section 4.2 contains a description of the \-Weyl correspondence rule for a case
of a symplectic manifold 7" Q over a general Riemannian manifold Q, and for a
Hilbert space L*(Q,dw,). The results received in this section are used in the next
section when introducing an operator representation of quantum mechanics in the
Hilbert space L*(Q, dw,).

In Section 4.3 we present a detailed description of the operator representation of
quantum mechanics over a configuration space. We start with a Moyal quantization
of a system defined over a phase space T*U where U is some open subset of RY.
First we construct a tensor product ®y of the Hilbert space L*(T*U) in terms of
Hilbert spaces (L*(U,dp))* and L*(U,du). Then we show that for every element f
of C>°(R*M)[A] and state p the operators f x5, and pxy; take the form

f*m =1®w f(a,p),
P *M :i®Wﬁ7

where ¢’, p; are canonical operators of position and momentum, and p is a density
operator. This way we received an operator representation in the Hilbert space
LA(U,dp):

[ f(@p), prep.

Next we move to a general quantum system. Using the fact that such system
in some classical and quantum canonical coordinates is equivalent with the Moyal
quantization of the corresponding classical system we received the operator repre-
sentation of the given quantum system. Similarly as in the operator representation
over a phase space also in this case the symmetric ordering had to be replaced by
some other ordering of operators qi,ﬁj. The received theory allowed to describe
quantum mechanics in the Hilbert space formalism in a consistent way for any co-
ordinate system on the configuration space, something which was not done before.
Furthermore, an invariant form of the operator representation is presented.

We end up this chapter with examples of quantum mechanical operators cor-
responding to observables linear, quadratic and cubic in momenta. Moreover, the
developed theory of quantization is illustrated with an example of the hydrogen
atom.

Finally, Chapter 5 presents a theory of quantum trajectories based on the de-
veloped formalism. The quantum trajectories are defined, in an analogy with the
classical case, as integral curves of quantum Hamiltonian vector fields. We present
in explicit form a quantum action of a quantum flow on observables, which is a
deformation of the respective classical action. The resulting time dependence of
observables gives an appropriate solution of a quantum time evolution equation for



observables (Heisenberg’s representation on a phase space). Then, we show that a
set of quantum symplectomorphisms (quantum flows) has a structure of a group with
multiplication (quantum composition) being a deformation of the ordinary compo-
sition considered as a multiplication in a group of classical symplectomorphisms
(classical flows). The explicit form of the quantum composition law is presented.
Such approach to quantum trajectories have a benefit in that it is not needed to
calculate the form of observables as x-functions, but only a quantum action of a
given trajectory needs to be found.

In Chapter 6 is given a summary of the thesis and an outlook on a further
development of the received results.

Throughout the thesis we will use the Einstein summation convention over any
twice repeated index if it appears once as a subscript and once as a superscript. By
Latin letters i, j, k,... we will denote indices ranging from 0 to N and by Greek
letters a, 3,7, ... indices ranging from 0 to 2N. The complex-conjugation of f will
be denoted by f. Often partial derivatives d, of tensors th-l will be denoted by
il and covariant derivatives V; by t%:!

m...n,i m..n;t"

The results presented in Chapters 3-5 are published in our papers [40-45].






Chapter 2

Classical mechanics

2.1 Phase space

The theory of classical Hamiltonian mechanics is described in an elegant language
of differential geometry. The central role in this description is played by a sym-
plectic manifold. The symplectic manifold represents a phase space of the system,
which points are interpreted as states of the system. More details about classical
Hamiltonian mechanics the reader can find in [46, 47].

Definition 2.1.1. A symplectic manifold is a smooth manifold M endowed with a
2-form w which is closed (dw = 0) and non-degenerate.

It can be proved that every symplectic manifold (M,w) is necessarily even-
dimensional.

Let us denote by C°°(M) the space of all smooth complex-valued functions de-
fined on a manifold M. On C®(M) we can introduce a point-wise product of
functions

(f - 9)(x) = (fg)(x) = f(x)g(x), (2.1.1)
which will make from C*°(M) a commutative algebra.

The symplectic structure distinguishes a class of vector fields on a symplectic
manifold. Namely, for every f € C*(M) we define a vector field (s, called a
Hamiltonian field, by the formula

w(¢r) = df, (2.1.2)

(here w is treated as a map X(M) — Q' (M), where X(M) and Q' (M) denote the
spaces of all smooth vector fields and 1-forms on M respectively, which is given by
the formula V — w(-, V), i.e. V¥ = w,, V). On the space C*(M) can be defined
a bilinear map { -, -}, called a Poisson bracket, by the formula

{f.9} =w(Cy: Cp) = df(Gy) = G f- (2.1.3)

The Poisson bracket satisfies the following properties:
{f7 g} = _{gv f} (antisymmetrY)v (214&)
{f,gh} ={f,gth + g{f, h} (Leibniz’s rule), (2.1.4b)

0={f{g,h}}+{h,{f,9}} +{9,{h, f}} (Jacobi’s identity). (2.1.4c)
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Property (2.1.4a) is a consequence of the antisymmetry of the symplectic form w.
Property (2.1.4b) follows from the fact that (s is a derivation of the algebra C*°(M).
Property (2.1.4¢) is a consequence of the closedness of the symplectic form w. Prop-
erties (2.1.4a) and (2.1.4c) state that the Poisson bracket is a Lie bracket on C*°(M).
The space C°°(M) together with the point-wise product of functions, the Poisson
bracket, and an involution being the complex-conjugation of functions f — f, will
be denoted by Ac(M) and called a Poisson algebra.

In the theory of classical Hamiltonian mechanics to every measurable quantity,
like energy, momentum, position, etc., corresponds a smooth real-valued function
in C*°(M). Thus, elements of the Poisson algebra Aq(M), self-conjugated with
respect to the involution in Ax (M), are called observables.

Note, that Hamiltonian fields satisfy the following properties

Cf+const = Cf? (215&)
Cr + ACg = Criag (2.1.5b)
[Cfa Cg] = C{g,f}» (215C)

for f,g € C*°(M) and X € C. Thus a space Ham(M) of all Hamiltonian fields is a
Lie algebra and the map (: Ac(M) — Ham(M), f — (s is a homomorphism of Lie
algebras whose kernel being constituted by the constant functions on M. Moreover,
observe that Hamiltonian fields preserve the symplectic form w:

Lew=0, (2.1.6)

where L, denotes a Lie derivative in the direction (y.
The symplectic form w on a manifold M induces a two-times contravariant an-
tisymmetric and non-degenerate tensor field P through the formula

Pow=1 1ie. inlocal coordinates P> w5 = 03, (2.1.7)

(here P is treated as a map Q' (M) — X(M) given by the formula a + P(-,a),
ie. a,+— P"a,). Thus, P is the inverse of the symplectic form w and often the
components P’ of the tensor field P will be denoted by w®?. The tensor P satisfies
the equality

L,P=0 (2.1.8)

and is called a Poisson tensor. In general, a two-times contravariant antisymmetric
tensor field P satisfying (2.1.8) is called a Poisson tensor and a smooth manifold
M endowed with a Poisson tensor is called a Poisson manifold. Note, that there is
a one-to-one correspondence between symplectic forms and non-degenerate Poisson
tensors on a given manifold M.

The definition of the Hamiltonian fields and the Poisson bracket can be restated
in terms of the Poisson tensor:

¢ ="P(df), (2.1.9)
{f. 9} =P(df.dg). (2.1.10)

On a symplectic manifold (M, w) there exists another useful structure, namely a
distinguished volume form 2, defined, up to a multiplicative constant, as an N-fold
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exterior product of the symplectic forms w

1
Q,=0= (—l)N(N+1)/2ﬁw/\---/\w. (2.1.11)
’ N

The volume form €2, is called a Liouville form or phase volume form.

An example of a symplectic manifold, on which we will mainly focus in the rest
of the thesis, is a cotangent bundle to a smooth manifold. Let Q be a smooth
N-dimensional manifold, then we define a set

o= JT;0 (2.1.12)

qeQ

Each point = in T"Q can be parametrized by a pair (q,p) for some ¢ € Q and
p € T;Q. We can also define a canonical projection 7: T"°Q — Q, x — ¢ for
r = (¢q,p). The set T*Q can be naturally endowed with a structure of a smooth
2N-dimensional manifold. Indeed, an atlas on Q naturally induces an atlas on
T*Q. If (0,4), : ¢+ (¢*,...,¢") is a chart on Q, then for every x = (¢,p) in
O = 7 1(O) we can decompose p € T, Q with respect to the coordinate basis

(p1 .., pn) €RY (2.1.13)

p=p;idg

q7

and a map @E: z— (¢',...,¢",p1,...,pn) is a chart on O c T*Q induced by the
chart ¢ on O C Q. The chart (@,L/AJ) is called a canonical coordinate system on
T*Q and the manifold T*Q is called a cotangent bundle to the manifold Q.

On T*Q we can define a canonical 1-form # by the formula

(0, w) = (p,dr(z)w) (2.1.14)
for w € T,T*Q and x = (q,p). The form 6 in canonical coordinates on 7" Q reads
0 = p;dq'. (2.1.15)

Moreover, on T*Q there exists a natural exact symplectic form w given by w = df
or in canonical coordinates on 7% Q

w = dp; Adq". (2.1.16)

Thus, T*Q is always a symplectic manifold. Usually in classical mechanics as the
manifold @ is taken a Riemannian manifold. The manifold Q represents a configu-
ration space of the system.

If (¢,...,¢") and (¢",...,¢") are two coordinate systems on Q, (¢*,p,) and
(q'i,p;-) are two corresponding canonical coordinate systems on 7*Q, and a map
o: (¢ ..., dN) = (¢*,...,¢") is a transformation between the two coordinate
systems on Q, then a corresponding transformation 7': (q’i,p;») — (¢, pj) between
the canonical coordinate systems on 7@ is of the form

¢ =d'(q),
pi = [(¢'(d) 11w},
where [(¢/(¢)) ']/ denotes an inverse matrix to the Jacobian matrix [¢'(¢)]; =

0P’
oq?

(2.1.17)

(¢) of ¢. The transformation T is called a point transformation.
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Example 2.1.1. Let us take as the manifold Q an Euclidean space E~. An N-di-
mensional Euclidean space EV is defined as a non-empty set EV together with an
N-dimensional real vector space V' endowed with a scalar product (-, -), and an
operation (called addition or translation)

EN xV 3 (q,v) = q+veEN, (2.1.18)
satisfying the following conditions
(i) for ¢ € EV and v,w € V holds the equality

(g+v)+w=1x+(v+w), (2.1.19)

(ii) for q1,qo € EY there exists exactly one vector v € V such that ¢, = ¢; + v.

The space V is called a space of free vectors of EV.

On an Euclidean space EY we can introduce a Cartesian coordinate system. Let
us choose a point ¢y € EY and an orthonormal basis e, ..., ex on a space V of free
vectors of EV. Define a map ¢: RY — EV by the formula

(', qY) =@+ e (2.1.20)

The map 1 is called a Cartesian coordinate system on the Euclidean space E~¥. The
point ¢ is called an origin, and the vectors ey, ..., ey axis vectors of the coordinate
system.

An Euclidean space EY is naturally endowed with a structure of an N-dimen-
sional Riemannian manifold. Indeed, a set of all Cartesian coordinate systems (de-
fined for different origins gy € EV and axis vectors eq,...,ex € V') constitutes a
smooth atlas on EY. Moreover, the scalar product (-, ) on the space V of free vec-
tors induces a metric tensor g on EY. Note, that tangent spaces TqEN are naturally
isomorphic to the space V' of free vectors. Thus, the tangent and cotangent bundles
TEYN and T*E" can be identified with Cartesian products E~ x V and EY x V*
respectively.

Let ¢ be a Cartesian coordinate system on EY with an origin ¢o € EY and

axis vectors e1,...,ey € V. A canonical coordinate system on T*EN = EN x v*
induced by v is a map ¢: T*EY — R*, = = (¢,p) — (¢*,...,¢",p1,...,pn), for
q = qo+q'e; and p = p;e" where el,...,e" isadual basis to ey, ..., ey. The canonical

coordinate system v will be called a Cartesian coordinate system on T*EY .

2.2 Coordinate systems

On a symplectic manifold (M,w) there exists a distinguished class of coordinate
systems, namely local coordinates (¢',...,¢",p1,...,py) in which the symplectic
form takes the canonical form

P Oy —I
w=dp, Adq" e (wu)= (]j\\[[ ONN> : (2.2.1)

These coordinates are called canonical coordinates or Darboux coordinates and they
always exist on a symplectic manifold, which is guaranteed by the Darboux theorem.
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In canonical coordinates all objects introduced in the previous section take the form

0 0 0 0 0 0

F= o " op " o¢ C o opi © og (22.22)
afa  af d
df dg  Of Og
=L 7 _ : 2.9.2
{f? g} 8qz apl apl aqu ( C)
Qu=dg' A---AdgY Adpy A -+ Adpw. (2.2.2d)

Note, that canonical coordinates on a cotangent bundle T*Q to a manifold Q are
example of canonical coordinates in the sense of the definition in this section.
Canonical coordinates can be equivalently defined in the following way. Coordi-

nates (z',...,2*") = (¢*,...,¢",p1,...,pn) are canonical iff
{z*,2"} = 7°%, (2.2.3)
where
0 I
aBy — N N
(JT%) (—IN ON) (2.2.4)
or equivalently o . ’
{d', ¢} =A{pi,pi} =0, {q' p;} =05 (2.2.5)

The functions ¢* and p; are observables of position and momentum associated with
the coordinate system (¢',...,¢",p1,...,pn).

In classical statistical mechanics appear integrals over a phase space (cf. Sec-
tion 2.3), which cannot be considered in arbitrary local coordinates, since doing
this would change the values of integrals. For example, if ¢: M D> O — R?,
Y:x— (2., 2*") is some coordinate chart, then in general

[ raaz [ pwieya (2.2.6)
M %(0)

where f is some function defined on M and df2 is a measure induced by the Liouville
form €2,,. These integrals will be equal only when M \ O is of measure zero. For this
reason we introduce the following definition. A coordinate system ¢: M D O —
R?Y on a symplectic manifold (M, w) is called almost global if M \ O is of measure
zero with respect to the measure d§2. Similarly, if (Q, g) is a Riemannian manifold
representing a configuration space, then by an almost global coordinate system on
Q we mean a coordinate system defined on an open subset U C Q such that Q\U is
of measure zero with respect to the measure induced by the metric volume form w,.
It can be proved that an almost global coordinate system on Q induces a canonical
coordinate system on 7™ Q with the same property. In what follows we will mainly
focus on almost global coordinate systems and consider only such manifolds which
admit such coordinates.

Example 2.2.1. Let Q = E® and consider on E? a Cartesian coordinates (z,, 2).
Consider also on E?® a spherical polar coordinates (r,#, ¢) related to the Cartesian
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coordinates by a transformation ¢: (0,00) x (0,7) x (0,27) — O, where O =

x = rsinf cos ¢,
y = rsinfsin ¢, (2.2.7)

z =1rcosf.

In the Cartesian coordinates (x,y,z) the metric volume form w, on E3? is equal
dz A dy A dz, and the corresponding measure dw, takes the form of the Lebesgue
measure drdydz. It can be seen that a set R® \ O is of Lebesgue-measure zero,
hence the spherical polar coordinates (r, 6, ¢) are almost global on E?.

Let (z,y, 2, px, Dy, p-) be canonical coordinates on T*E® induced by the Carte-
sian coordinates (z,y,2) on E®. In accordance to (2.1.17) canonical coordinates
(r,0, 6, pr, po, py) on T* E* induced by the spherical polar coordinates (r, 0, ¢) are re-
lated to the Cartesian coordinates (x,y, 2, py, py, p») by a transformation 7": (0, 0o) x

(0,7) x (0,27) x R* — O =0 x RS, T (1,0, 0,00, 00,00) = (2,9, 2, P, Py, Dz),

x = rsinf cos ¢,

y = rsinfsin ¢,

z =rcosb,
.92 . .
7P, sin® 0 cos @ + pg sin f cos 8 cos ¢ — p, sin
L ¢+ posin 6 —pysing. 228
rsin 6
TPy sin? fsin ¢ + pg sin 0 cos Osin ¢ + py cos @
Py = 7 sin 0 ’
rp, cos — pgysin
Pz = .

r

In the Cartesian coordinates (z,v, z, p, py, p.) the Liouville form Q, on T*E® is
equal dz A dy A dz A dp, A dpy A dp,, and the corresponding measure df2 takes the
form of the Lebesgue measure dz dy dz dp, dp, dp.. It can be seen that a set R\ O
is of Lebesgue-measure zero, hence the canonical coordinates (7,6, ¢, p,, ps, ps) are
almost global on T*E3.

2.3 Classical states

The points in a phase space (M,w) represent states of the system. Each point in
M can be interpreted as generalized positions and momenta of particles composing
the classical system. Values of generalized positions and momenta of the particles
can be extracted from a point in M by writing this point in canonical coordinates
(¢, p;). Then, q' are values of generalized positions and p; are values of generalized
momenta.

When the exact state of the system is not known, but only a probability that
the state is in a given region of the phase space, then there is a need to extend the
concept of a state to take into account such situation. The most natural way to do
this is to define states as probabilistic measures p defined on a o-algebra B(M) of
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Borel subsets of M. In such setting points = of the phase space can be identified
with Dirac measures 0,

sy =L TTEE s, (2.3.1)
0 forx ¢ F

Dirac measures will be called pure states and other probabilistic measures mixed
states.

Some probabilistic measures p can be written in a form du = pdf2, where p is
some integrable function on M satisfying

/ pdQ=1 (normalization), (2.3.2a)
M

p=>0 (positive-definiteness), (2.3.2b)

and thus can be identified with functions p. In what follows every probabilistic
measure g we will formally write in the form du = pd€2. In particular, for Dirac
measures we will use a notation dd,(y) = d(x,y) dQ(y).

Observe, that states can be alternatively defined as those “functions” p which
satisfy

(i) p = p (self-conjugation),

(ii) / pdQ =1 (normalization),
M

(iii) f-f-pdQ>0for f e C(M) (positive-definiteness),
M

where C3°(M) denotes a space of all smooth functions with compact support defined
on M. Indeed, (iii) is equivalent with p > 0.

Classical states form a convex set. Pure states can be defined as extreme points
of the set of states, i.e. as those states which cannot be written as convex linear
combinations of some other states. In other words ppue is a pure state if and only
if there do not exist two different states p; and p, such that pyure = pp1 + (1 —p)p2
for some p € (0,1). It can be proved that such characterization of pure states is
equivalent with the definition of pure states as Dirac measures.

For a given observable A € C*°(M) and state pu (du = pd€2) the expectation
value of the observable A in the state u is defined by

(A>M:/MAdu:/MA-de. (2.3.3)

Note, that the expectation value of the observable A in a pure state J, is equal A(x).
Indeed,

(A)s, = / AWy dy) = Alz). (2.3.4)
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2.4 Time evolution of classical systems

One of the observables in the algebra Aq(M) has a special purpose, namely a
Hamiltonian H. This is some distinguished real valued smooth function on M and
it corresponds to the total energy of the system. The phase space (M, w) together
with the Hamiltonian H is called a classical Hamiltonian system.

The Hamiltonian H governs the time evolution of the system. Indeed, H gener-
ates a Hamiltonian field (y. Integral curves x(t) of the vector field (g, i.e. curves
on M satisfying

i(t) = Cur(2(1)), (2.4.1)

represent positions of points x € M for every instance of time ¢, which is interpreted
as the time development of pure states. Integral curves of a Hamiltonian field (g
generate a map ®7: M — M (called a phase flow or a Hamiltonian flow) by a
prescription: for each point x € M a curve

z(t) = () (2.4.2)

is an integral curve of (g passing through the point x at time ¢t = 0. Equation (2.4.1)
is called a Hamilton equation and integral curves of the Hamiltonian field are called
classical trajectories. In canonical coordinates (q’,p;), using formula (2.2.2b), the
Hamilton equation takes a form

oH . 0H

i = = ———. 2.4.3

An equation of motion of mixed states can be derived from the probability
conservation law. From this law follows that every probabilistic measure p (mixed
state) should be constant along any trajectory in the phase space, i.e.

u(t)(B) = ut + AR (B)), B € B(M), (2.4.4)
which can be written in terms of the pull-back of a measure
u(t) = (@2) ult + At). (2.45)

From the above equation it follows that

. ((I)gt>*ﬂ(t + At) - N(t) . d .
0=t At Sa e
d * *
= (@) ult+s)| (@) u)] (2.4.6)
s s=0 d s=0
which implies that
op
E + LCHM = 0, (247)

where L.,y denotes a Lie derivative of the measure 1 in the direction of the vector
field (y. Equation (2.4.7) is called a Liouville equation and it describes the time
development of the state pu.
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Let us check if for a pure state 0, the Liouville equation (2.4.7) is equivalent
to the Hamilton equation (2.4.1). From (2.4.7) it follows that

_ 00wy | d oy _ 00y | d

0 — (D)6, —, : 2.4.8
ot ds( s )70t a0 ot + ds  2%s(@®) o0 ( )
From the above equation we get
. d g .
0=d(t) — @, (2(t)| =a(t) = Cul(z(?)), (2.4.9)
s=0

which is just the Hamilton equation (2.4.1).

If a mixed state pu can be written in a form du = pd€Q for a smooth function p,
then the Liouville equation (2.4.7) can be written in a different form. Indeed, from
(2.4.7) we get

_9
Ot

dp

(D) + L, (o)) = (—(t) n %p(zf)) 0, (2.4.10)

0 ot

where the fact that £, Q = 0, following from (2.1.6), was used. The above equation
implies that

_Op
ot
Hence, the following time evolution equation for the function p corresponding to the
state p was received

0 0
0= S0+ Leyp = o +Cup = o7 +{p. H}. (2.4.11)

dp B
5 {H,p}=0. (2.4.12)

Until now the states undergo the time development whereas the observables do
not. This corresponds to the Schrodinger picture in quantum mechanics. There is
also a dual point of view (which, in turn, corresponds in quantum mechanics to the
Heisenberg picture), in which states remain still whereas the observables undergo
the time development. A pull-back of the Hamiltonian flow U/ = (®)* = ¢t
is, for every ¢, an automorphism of the algebra of observables Aq (M) (it preserves
the linear structure as well as the point-wise product and the Poisson bracket). Its
action on an arbitrary observable A € Ax(M) is interpreted as the time development
of A

A(t) = UE A(0) = etcn A(0) = €1 A(0) = e "3 A(0). (2.4.13)

Differentiating equation (2.4.13) with respect to ¢ we receive the following time
evolution equation for an observable A

dA

() — {A), HY = 0. (24.14)

Let qi,pj be observables of position and momentum corresponding to a canonical
coordinate system (q',p;), i.e. ¢'(x,0),p;(x,0) are coordinates of a point x € M.
From (2.4.14) we get the following system of equations

dq¢’
dt

dp;
dt

(t) = {q'(t), H} =0, (t) — {p:(t), H} =0, (2.4.15)
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which are just the Hamilton equations (2.4.3) written in a different form. Indeed, a
solution of (2.4.15) is of a form ¢'(z,t) = ¢'(t) and p;(z,t) = p;(t) where ¢'(t) and
pi(t) are solutions of the Hamilton equations (2.4.3).

Both presented approaches to the time development yield equal predictions con-
cerning the results of measurements, since

(A0 = [ AO)aut) = [ A@) A(@") () = [ (@1 40)du(o)

M

| A®an0) = (4o, (2.4.16)



Chapter 3

Quantization of classical mechanics

3.1 Deformation theory of symplectic manifolds

One of the approaches to quantization is deformation quantization developed by
Bayen et al. [48, 49, 50]. In this approach quantum mechanics is formulated as a
deformation of classical mechanics. Such procedure results in a quantum theory
described in a geometric language similar to that of its classical counterpart. This
allows introduction in quantum mechanics many concepts from the classical the-
ory, like coordinate systems. Moreover, the formalism of deformation quantization
gives a smooth passage from classical to quantum theory, which makes it easy to
investigate the classical limit of quantum mechanics.

The main ingredient of deformation quantization is a formal deformation of a
Poisson algebra C*°(M) of smooth complex-valued functions defined on a phase
space M (symplectic manifold). The procedure of formal deformation is based on
the Gerstenhaber’s theory of deformations of rings and algebras [51]|. For a recent
review on a subject of deformation quantization refer to [52]. Let C[v] denote
the ring of formal power series in the parameter v with coefficients in C and let
C*°(M)[v] be the space of formal power series in v with coefficients in C*°(M).
The space C*°(M)[v] is a C[v]-module.

Definition 3.1.1. A star-product on a symplectic manifold (M, w) is a bilinear map
C®(M) x C®(M) = C*(M)[v], (f,9)— frxg= Zka’k(f, 9), (3.1.1)
k=0

which extends C[[v]-linearly to C*(M)[v] x C*°(M)[v], such that
(i) Cy are bidifferential operators,
(ii) (f*g)*xh= fx(g*h) (associativity),
(iii) Colf,9) = fg, Ci(f,9) — Crlg, f) = {[, 9},
(iv) Ixf=fx1=f.
One also defines a deformed Poisson bracket by the formula

[f 9ls = %[f, gl = %(f*g —g*f), (3.1.2)

19
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and a formal involution as an antilinear map
C=®(M) = C®(M)[V], [ =) V'Bi(f), (3.1.3)
k=0

which extends C[v]-antilinearly to C*°(M)[v], where
(i) By are antilinear operators,

(i) (fxg)" =g +["

(i) ()" =

(iv) Bo(f) =

From the above definitions it is clear that the x-product, deformed Poisson bracket
[-, -], and involution * are deformations of the point-wise product of functions -,
Poisson bracket { -, - }, and complex-conjugation:

)
)
1)
v) B

f*g=fg+olv),
[f. 9] = {f. g} + o(v), (3.1.4)
f*=Ff+ov).

The associativity of the x-product implies that the bidifferential operators C}
satisfy the equations

k

D (CalChen(f,9),h) = Cu(f, Chnlg, h)) =0, k=1,2,.... (3.1.5)

n=0

The deformation of the Poisson algebra C*°(M) can be though of as a defor-
mation of a geometrical structure of the symplectic manifold M. The symplectic
manifold M is fully described by the Poisson algebra C°°(M). Thus by the defor-
mation of C*°(M) to some non-commutative algebra we can think of it as describing
a non-commutative symplectic manifold.

The existence of a star-product on any symplectic manifold was first proved in
1983 by De Wilde and Lecomte [53]. Later Fedosov 54| gave a recursive construction
of a star-product on a symplectic manifold using the framework of Weyl bundles.
Independently, Omori et al. [55] gave an alternative proof of the existence of a
star-product on a symplectic manifold, also using the framework of Weyl bundles.
Finally, in 1997, Kontsevich [56] proved the existence of a star-product on any
Poisson manifold.

Let x and " be two star-products on a symplectic manifold (M,w). These star-
products are said to be equivalent if there exists a series

S=> vk, Sy=id, (3.1.6)

where Sj, are differential operators on C*°(M), such that

S(f*xg)=Sf+Sg. (3.1.7)
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Alternatively, having a star-product on (M,w) and a series (3.1.6) one can define
a new star-product on (M,w) by the formula (3.1.7). It can be easily checked that
the new star-product indeed will satisty conditions (i)—(iv) from the definition of a
star-product.

The study of equivalences of star-products is best performed in the language
of Hochschild cohomologies [51]. The relation of equivalence of star-products is an
equivalence relation, thus the set of all star-products on a given symplectic mani-
fold is divided into disjoint equivalence classes. The following result, first received
by Nest and Tsygan [57], Bertelson et al. [58], and Deligne [59], characterizes the
equivalence classes of star-products.

Theorem 3.1.1. The equivalence classes of star-products on a symplectic manifold
M are parametrized by formal series of elements in the second de Rham cohomology

space of M, H*(M;C)[v].

In particular, on a symplectic manifold M for which the second de Rham coho-
mology space H?(M;C) vanishes all star-products are equivalent.

3.2 General theory of quantization

In this section we discuss a general theory of quantization of classical Hamiltonian
mechanics. Let (M,w, H) be a classical Hamiltonian system. Such a system can be
quantized in the framework of deformation quantization. According to this frame-
work the classical Poisson algebra Ac(M) = (C*(M),-,{-, -},7) is deformed to
a quantum Poisson algebra Ag(M) = (C*(M)[A],,[-, -],*), where as the de-
formation parameter v is taken ih (h being the Planck’s constant). Elements of
C>°(M)[n], self-adjoint with respect to the involution % from Ag(M) are observ-
ables of the quantum system. To every measurable quantity corresponds some
observable. The correspondence between measurable quantities and self-adjoint el-
ements of C°°(M)[h] is fixed by the choice of quantization and can vary depending
on the chosen quantization. In particular, quantum observables do not have to be
the same functions as in the classical case; they will be an A-deformations of classical
observables. They do not even have to be real valued if the involution from Agq (M)
is not the complex-conjugation. So an explicit choice of quantization of a classical
Hamiltonian system is fixed by a choice of both, the x-product and the form of
quantum observables. Note that to each classical observable corresponds the whole
family of quantum observables which will reduce to the same classical observable
in the classical limit. That is to say, if fo is a classical observable then quantum
observables corresponding to it are of the form

f=fe+> (3.2.1)
k=1

for some functions fi, € C°°(M). In other words, it seems that in the quantum world
there are more quantities which can be measured than in the classical world. In the
classical limit different measurable quantities will reduce to the same measurable
quantity.
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It seems that there is no way of telling which assignment of measurable quantities
to elements of C°°(M)[A] is appropriate for a given star-product — this can be only
verified through experiment. On the other hand, there is very restrictive number
of known physical quantum systems, being counterparts of some classical systems.
They are mainly described by so called natural Hamiltonians with flat metrics

1

H(q,p) = %gi‘j (Qpip; + V(9), (3.2.2)

where ¢” is a flat metric tensor on a configuration space. The knowledge of quan-
tization of such systems is not enough to fix uniquely the quantization and is the
source of ambiguities. In consequence, one meets in literature various versions of
quantizations which coincide for the class of natural flat Hamiltonians.

If we consider two quantizations of a classical Hamiltonian system (M,w, H),
given by two star-products x and ', and two assignments of measurable quantities
to elements of C°°(M)[R], then we say that these two quantizations are equivalent if
there exists a series S (3.1.6) such that (3.1.7) holds and which has the property that
if A is an observable from the first quantization scheme, corresponding to a given
measurable quantity, then A" = SA is an observable from the second quantization
scheme corresponding to the same measurable quantity. Note, that in the limit
h — 0 both observables A and A" will reduce to the same classical observable.

In what follows we will focus on star-products of the form

Frg=3 (—F‘)k Chlf.9). (3.2.3)

2
k=0

which provided the conditions (i)—(iv) from Definition 3.1.1 satisfy also the following
properties:

(1) Cx(f.9) = (=1)"Cilg. )),

(i) / Co(f,9)dQ =0 for f,g € C2(M) and k= 1,2, ..,
M

where C;°(M) denotes the space of smooth compactly supported functions on M,
and df2 is the Liouville measure induced by the Liouville form €. Conditions (i)
and (ii) imply that the complex-conjugation is an involution for this star-product,
and from condition (iii) follows that the x-product under the integral sign reduces
to the ordinary point-wise product:

/f*ng:/ fgdQ, g€ C(M). (3.2.4)
M M

However, we will not limit ourselves only to star-products of the form (3.2.3) and we
will also consider, as illustrative examples, other star-products, in particular, those
for which the complex-conjugation is not an involution.
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dQ(zx)
(2mh)N
LQ(M, dl) a Hilbert space of functions defined on the phase space M and square
integrable with respect to the measure dl, with the scalar product given by

In what follows let di(x) = be the normalized Liouville measure and

(f.9) = Mf(fﬁ)g(l‘) di(z). (3.2.5)
So far we considered a quantum Poisson algebra as a formal algebra. That way
we did not had to worry about the convergence of formal series appearing during
the process of formal quantization. However, such approach is not entirely physical
— observables should be functions on a phase space not formal power series. A
complete quantum theory require to investigate the convergence of formal series.
Let us give some remarks about the convergence of formal power series appearing
in the definition of star-products. Let * be a star-product on (M,w). In general
it is not possible to find a topology on C*°(M) such that the x-product will be
convergent for every pair of smooth functions. Thus we have to search for some
subspace A C C°°(M) with appropriately chosen topology on which the x-product
will be convergent. Note, that functions in A can depend implicitly on A. Moreover,
we will require that there exists a subalgebra F C A such that F is a dense subset
of L?(M,dl), and for f,g € F there holds

I1F =gl < 1719l (3.2.6)

From (3.2.6) it follows that the x-product is continuous on the subspace F x F with
respect to the L?-topology and consequently uniquely extends to the continuous
star-product defined on the whole space L*(M,dl) and satisfying (3.2.6) for every
f.g € L*(M,dl), which is a direct consequence of the fact that F is dense in
L*(M,dl).

In the rest of the thesis we will not be dealing with the problem of finding the
subspace A and its topology. In what follows we will tacitly assume that, wherever
it is needed, all formal series are convergent. More on the convergence of defor-
mation quantization the reader can find in [60-62], where the authors study the
convergence in the framework of C*-algebras (this is usually referred to as strict de-
formation quantization). In addition in [63, 64] is studied a non-formal deformation
quantization developed in the framework of Fréchet-Poisson algebras. Worth noting
are also papers [65, 66] where the convergence of a Moyal product on suitable spaces
of functions is investigated.

Note, that the star-product (3.2.3) treated as a formal deformation of the point-
wise product is local, i.e. if we choose some x € M then (f x g)(z) € C[h] is fully
specified by the values of functions f and g in an arbitrarily small neighborhood of
x. This is a direct consequence of the fact that the bidifferential operators Cj, are
local. However, if we will consider the convergence of the formal series (3.2.3), in
general, we end up with a star-product which is not local. In other words for some
x € M the value (f * g)(x) € C takes into account values of functions f and ¢ in
points far away from x. Examples of star-products with such property can be found
in Section 3.4.

The Hilbert space L*(M,dl) together with the x-product has a structure of an
algebra, denoted hereafter by £. It is clear that for the algebra £ = (L*(M,dl), %)



24 CHAPTER 3. QUANTIZATION OF CLASSICAL MECHANICS

the complex-conjugation is an involution in this algebra and that under the integral
sign the star-product of two functions from L?*(M,dl) reduces to the point-wise
product. Moreover, there holds

(g.f*h)=(fxg,h), f g heL*M,Adl). (3.2.7)

If f € A and D(f) is a subspace of A dense in L*(M,dl) such that for every
p € D(f), fxp€ L*(M,dl) then we can associate to f a densely defined operator
f* on the Hilbert space L*(M,dl), which domain is equal D(f) and which satisfies

(f )T =Fx. (3.2.8)

Let us define a trace functional by the formula
tr(f)= [ f(x)dl(z) (3.2.9)
M

for f € L'(M,dl). The x-product in the algebra £ obey the following property: the
ideal L' = L« L is a subset of L'(M,dl) and

tr(f*g) = (f,9) (3.2.10)
for any f,g € L*(M,dl).

Remark 3.2.1. In this thesis the star-products were introduced as formal series of
bidifferential operators. Then, using an appropriate topology on the space of smooth
functions, these series could be made convergent. That way we can introduce a
star-product on some subspace of C*°(M) and then transfer it to the Hilbert space
L*(M,dl). There is however other way of introducing star-products [67]. One can
first define a star-product on some subspace F C C'*°(M) of smooth functions, which
is at the same time required to be a dense subspace in L?(M,dl). The subspace
F should be endowed with some topology. Moreover, the star-product should be
continuous in F as well as in L*(M,dl), and it is usually defined by some integral
formula. From there it can be easily extended to a continuous star-product on the
whole space L?(M,dl). Denote by F' the space of continuous linear functionals
on F. The elements of F' are distributions and the space F is the space of test
functions. We can identify functions f € F with distributions given by

(f,g) = y f(z)g(z)di(z), for every g € F. (3.2.11)

Hence, we can write F C F'. For f € F and g € F we can define their x-product
by

(f*g,h)y =(f,g*xh), (gxf,h)y=(fhxg), forevery he F. (3.2.12)
Denote by F, the following subset:

Fo={feF | fxge Fand g% f € F forevery g € F}. (3.2.13)
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In particular, F C F,. If the set F, obeys the property

(f,hxg)={(g,f*h), forevery f,g € F,and h € F, (3.2.14)
then F, is endowed with the algebra structure

(fxg,hy={(f,gxh), forevery f,g € F, and h € F, (3.2.15)

which is consistent with the involution fxg = g * f. In such case F is called a
normal subalgebra.

Note that the unity function 1 does not belong to F or L*(M,dl), but is auto-
matically an element of F, and 1 x f = fx1 = f, for every f € F,. So, F, is an
involutive algebra with unity.

In the case M = R?" the Schwartz space S(R?"), i.e. the space of rapidly de-
creasing functions on R?, is the normal subalgebra for the Moyal product, cf. Sec-
tion 3.4 and [65].

3.2.1 Quantum states

From definition, through an analogy with the classical case (cf. Section 2.3), quan-
tum states are those functions p € L?(M, dl) which satisfy the following conditions

(i) p = p (self-conjugation),
(ii) / pdl =1 (normalization),
M

(iii) / fxfxpdl>0for f € C(M) (positive-definiteness),
M

or equivalently
(i) p = p (self-conjugation),
(ii’) tr(p) = 1 (normalization),
(iii") tr(f * f*xp) > 0 for f € Cg°(M) (positive-definiteness).

Quantum states form a convex subset of the Hilbert space L*(M,dl). Pure states
are defined as extreme points of the set of states, i.e. as those states which cannot
be written as convex linear combinations of some other states. In other words ppure
is a pure state if and only if there do not exist two different states p; and py such
that ppure = pp1 + (1 — p)p2 for some p € (0,1). A state which is not pure is called
a mixed state.

For certain symplectic manifolds M (cf. Proposition 4.3.6) pure states can be
alternatively characterized as functions ppure € L*(M, dl) which are self-conjugated,
normalized, and idempotent:

Ppure * Ppure = Ppure- (3216)
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Mixed states pmix € LQ(M ,dl) can be characterized as convex linear combinations,

possibly infinite, of some families of pure states pgﬁ)re

Prix = D PAPyures (3.2.17)
A

where py > 0 and ZpA =1.
A

The interpretation of pure and mixed states is similar as in classical mechanics.
When we have the full knowledge of the state of the system then the system is
described by a pure state. If we only know that the system is in some state with
some probability then the system must be described by a mixed state.

For a given observable A € C*°(M)[h] and state p the expectation value of the
observable A in the state p is defined by

<A>p:/ A*pdl:/ Apdl = tr(A* p). (3.2.18)
M M

3.2.2 Time evolution of quantum systems

The time evolution of a quantum system is governed by a Hamilton function H €
C*°(M)[h] which is, similarly as in classical mechanics, some distinguished observ-
able, being a deformation of a classical Hamilton function He. As in classical theory
there are two dual points of view on the time evolution: Schrodinger picture and
Heisenberg picture. In the Schrédinger picture states undergo time development
while observables do not. An equation of motion for states, through an analogy to
the Liouville equation (2.4.12), takes the form

22 1) — [H.p(1)] = 0. (3219)

The formal solution of (3.2.19) takes the form

p(t) =U(t) x p(0) *x U(t), (3.2.20)
where | . s
U(t) = e, ™" = Z% (—%t) Hx- %I (3.2.21)
k=0 k

is a unitary function as H is self-conjugated:

U« U =U@) «U(t) = 1. (3.2.22)

Hence, the time evolution of states can be alternatively expressed in terms of the
one parameter group of unitary functions U(t).

In the Heisenberg picture states remain still whereas observables undergo the
time development. The time evolution of an observable A € C*°(M)[h] is given by
the action of the unitary function U(t) from (3.2.21) on A:

At) =U() » A(0) * U(t) = e 17 14(0), (3.2.23)
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where
Y %(—t)kﬂﬂ, [H,. [H, ] ] (3.2.24)

Differentiating (3.2.23) with respect to ¢ results in the following evolution equation

for A:
dA

dt
Equation (3.2.25) is the quantum analogue of the classical equation (2.4.14).
Both presented approaches to the time development yield equal predictions con-
cerning the results of measurements, since

(A0 = [ A©)«pteya
:/MA(O)*U(t)*p(O)*Wdz
_ /M T(0) % A(0) % U(#) % p(0) dl

= [ 40« p0)dl = (A0, (3.2.26)

(t) — [A(t), H] = 0. (3.2.25)

3.3 Coordinate systems

The geometrical language which was used to quantize classical systems allowed
for quantization to be performed in a coordinate independent way. However, in
full analogy with classical mechanics, it is possible to consider quantum theory in
some coordinate system. Let M D U — V C R*™ x> (z'(2),..., 2 (z)) be
a coordinate system on a phase space M. In analogy with the classical case this
coordinate system is called quantum canonical if there holds

[z%, 2] = T, (3.3.1)
where
(%) = (_OJIVN éﬁ) . (3.3.2)
We will denote a quantum canonical coordinate system (', . .. oY ) by
(¢ qY p1s- o pn) = (¢ pj)- (3.3.3)
Then the quantum canonicity condition (3.3.1) takes the form
[¢', @] = [pisps] =0, ld',pi] = 35 (3.3.4)

The functions ¢* and p; are observables of position and momentum associated with
the coordinate system (¢',p;). Note that in the limit & — 0 a quantum canoni-
cal coordinate system reduces to a classical canonical coordinate system. If (¢’, Dj)
and (q’i,p;-) are two quantum canonical coordinate systems then the transforma-
tion (¢',p;) — (¢", p}) between these two coordinate systems is called a quantum
canonical transformation [42, 68-71].
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Let us derive the condition on a coordinate system (z',... ,xQN), which has to
be satisfied to make it a classical and quantum canonical coordinate system.

Theorem 3.3.1. A coordinate system (z', . .. ,x2N) 18 classical and quantum canon-
ical iff
Cy(z*,27) = T, (3.3.5a)
Cr(z®,2%) =0, k=3,5,..., (3.3.5b)
for every o, B = 1,...,2N, where Cy are bidifferential operators in the expansion

(3.2.3) of the x-product.

Proof. From (2.2.3) and (iii) from Definition 3.1.1 we get (3.3.5a). In accordance
with (3.3.1) a coordinate system (z',...,2*") is a quantum canonical coordinate
system iff

(2%, 2% = 2% % 27 — 27 x 2% = ih TP, (3.3.6)
The above condition can be written in the form
Ooka'o"BCﬁo‘—'h‘w 7
Z 5 (Cr(z®,2”) — Cr(2”,2%)) = ihT*". (3.3.7)
k=0

The above equation is equivalent with the following system of equations

1
3 Ci (2%, 27) — Cy (2%, 2%)) = TP, (3.3.8a)
Cr(2®, 2%) = Cp(2®,2%), k=2,3,.... (3.3.8b)
Equation (3.3.8a) is satisfied due to classical canonicity of the coordinate system.

Equation (3.3.8b) due to property (i) of Cy in the expansion (3.2.3) of the x-product
can be rewritten in the form

Cr(z®, 2%) = (=1)*Cy (2%, 7). (3.3.9)

The above formula is automatically satisfied for even k, and for odd k we get the
condition (3.3.5b). O
If (#',...,2*) is a coordinate system on M then we can write elements of

C*(M)[h] in this coordinates receiving formal power series in C*°(V)[h] where

V C R*N. In particular, if f = Z " fi is an element of C°°(M)[A] then by writing
k=0

cach f, € C°°(M) in the coordinates (z', ..., 2*") we receive a formal power series

in C*(V)[Ah]. Analogically, we can write a *-product on M in the coordinates

(z',...,2*N) receiving a star-product on a subset V C R?*. We will denote such
star-product by =@,
Note, that if (2!,...,2*") is a purely quantum canonical coordinate system, i.e.

it is not at the same time classical canonical, then it must depend on A and, in fact,
will be a deformation of some classical canonical coordinate system. The components
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wap of the symplectic form w for such purely quantum canonical coordinate system
will also depend on A and can be expanded in the following series

Wap = Tap + ') + B2wl) + o(B®). (3.3.10)

In consequence, the bidifferential operators Cj from the expansion (3.2.3) of the
x-product written in the coordinates (z',...,z*") will depend on k. Expanding C,
in the power series of % allows to write the *®-product in the form

o0 . k
=3 (2) s san

k=0

where C}, are new bidifferential operators which are independent on h, satisfy con-
ditions (i)—(iii) on page 22, and moreover, in accordance to (3.3.10)

C1(f,9) = T (0ae ) (Dupg). (3.3.12)
Thus we can show, similarly as in the proof of Theorem 3.3.1, that

Ci(x*,2”) = T, (3.3.13)
Ci(z®,2%) =0, k=3,5,.... (3.3.13Db)

As a result the *®-product can be considered as a coordinate representation, with
respect to a classical and quantum canonical coordinate system, of some star-product
on a symplectic manifold different than (M, w).

Let us make some remarks about domains of coordinate systems. If one is in-
terested only in the investigation of a geometry of a classical Hamiltonian system
(M,w, H), then one can consider coordinate systems defined on arbitrary open sub-
sets U of a phase space M. However, for quantum systems this does not remain
true since star-products, considered in a non-formal setting, are not local.

The same thing happens when one wishes to investigate integrals over the phase
space, e.g., to calculate expectation values of observables, then one cannot do this in
an arbitrary coordinate system. The reason for this is that, in general the values of
integrals will change if the integration will be performed over some subset U C M.
This argument applies both to classical and quantum theory. The only coordinate
systems in which it is meaningful to consider integration are almost global coordinate
systems (cf. Section 2.2).

3.4 Natural star-products on symplectic manifolds

3.4.1 Moyal star-product on R?*"

Let us take as a phase space M the symplectic vector space (]RQN,w), where w is
a symplectic matrix which components in a canonical basis e; = (1,0,...,0),ey =
(0,1,...,0),...,eanv = (0,0,...,1) on R* are equal

(W) = (gji _ofVN) . (3.4.1)
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On such symplectic manifold there exists a natural star-product which in canonical

coordinates x = 1%, — (z',...,2*") is given by the formula

J*mg=fexp <?ww’%:ﬁ“5>z”) 9

— Z g (%) WPV L GHEVE (6@_#1 oo Opi f) (@xul ... arykg)’ (342)
k=0

where w"” is an inverse matrix to the symplectic matrix w,,. The star-product
(3.4.2) was first considered by Groenewold 72|, Moyal [73], and Berezin [74] and is
usually called a Moyal product.

Proposition 3.4.1. The Moyal product (3.4.2) is associative.

Proof. The Moyal product can be written in a form

ih
(o 9)0) = exp (00 ) (F0)o(2) (3.43)
y=z=zx
Derivatives 0,« are derivations for the xj;-product, which can be stated as
ih
00l 10 )(0) = 0 + 0.y (0,0, ) (F o) (3.44)
y=z=zx

Thus
(w30 9) v 1)) = exp (00 ) (F 520 9)(0)0)

V=wW=T

— exp (%:Lw“”(ayu + azv)aw») exp (%w”l”lé’ym@u') (f(W)g(2)h(w))

Yy=z=w=x

ih

= exp (Ol + 000 + 900 ) (FD9GIAW)|

[

Proposition 3.4.2. For elements f, g of the space CSO(R2N) of compactly supported
functions on R*Y

R2N R2N

Proof. Let
1
Ck(f, g) = kulyl e HEYE (&;m c &cuk f) (af,;lq c 8;5%9) (347)

Then, using integration by parts we get for k =1,2,...

1
/ Cr(f,g)dx = _/ T GHYE L GRS () D+ Ok f)
R2N

R2N k'
X (azul @Cuz s azvk g) dz

— /RQN Cu(f, g) dz. (3.4.8)
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Thus
/ Cr(f,g)dz =0, (3.4.9)
R2N

which proves (3.4.6). O

In the rest of the thesis we will use the following conventions concerning the
Fourier transform. We will define the Fourier transform of a function f on R*" by
the formula

1

(FINE) = Gy [ T@eTH0 da
= [ (z)e 16 dl(x) (3.4.10)
and the inverse Fourier transform by
(Z 7)) = (%r;h)N R2w F(€)ert=" de
=/ FE)ers dl(¢). (3.4.11)

The Fourier transform has the following properties

F (0 f)(€) = 36T (©), (3412
F(f-9)=Ff*Fg, (3.4.13)

where * is a convolution of functions defined by

(fx9g)(x) = fWg(x —y)di(y) = flx—y)g(y) di(y). (3.4.14)

R2N R2N

As an illustrative remark let us give an example of a subspace A of C*°(R*Y),
with an appropriate topology on which the Moyal product is convergent. Let A =
F (&) be the Fourier image of the space of distributions with compact support &'
The space £ is a dual space to the Fréchet space & = C*(R*") equipped with
a standard topology of uniform convergence on compact subsets of R*Y, together
with all derivatives. &' carries the strong dual topology, i.e. the topology of uniform
convergence on bounded sets in £, whereas A carries the topology induced by %
from &’. By the Paley-Wiener theorem A is the space of smooth functions on R*" for
which each derivative is polynomially bounded and which extend to entire functions
on C?V of exponential type. That is f: R*¥ — C is an element of A if and only if
f extends to an entire function f: C* — C satisfying for all z € C*V

()] < C(1 + [2])rerme) (3.4.15)
for some constants C' > 0, r > 0 and n € N. Note that all polynomials belong to A.

Theorem 3.4.1. For f,g € A the series f *y; g is convergent in A. Thus A is an
algebra with respect to the Moyal product % ;.
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The proof of the above theorem can be found in [65]. Worth noting is paper |66]
where author introduces slightly different family of subspaces of smooth functions
on which the Moyal product is also convergent.

Let F = .Z(C5°(R*Y)). Then F is a subspace of A as well as the Schwartz space
S(RQN), i.e. the space of rapidly decreasing functions on R*Y. Moreover, F is dense
in S(R*") and L*(R*Y).

Theorem 3.4.2. For f,g € F the Moyal product can be written in the following
integral form

(f *m g)(z) = 7rh (—h\2N /RQN o flx+u)g(x +v)e_%w“”uul’y dudv. (3.4.16)

Proof. Using the properties (3.4.12) and (3.4.13) of the Fourier transform the Moyal
product can be written in the following form

(o 0)(@) = F7F (Lo 0)(0) = s [ (o )@ a

1 =1 (k"
= — J— Hivy G HEY m

R2N

X F (D -+ Oy g) (€ — m)er&e™ dndg

1 < 1 /in\" i i
- — = HIVL L GHRVE n e T
(2mh)2N /RQN kZ:O k! ( 2) “ ~ /RQN e 7 )

X %(51/1 - 77V1) s %(gyk 77Vk (5 n)ehgux d77 dg

1 =1 , k
= [nh)N / /Zy( ) (& =)

Xff( )T (€ — n)erss" dnde

n).F W0 (=) o 166" A d
27Th (2mh)2N /R2N /R2N gf 77)6 7 e & é
(3.4.17)

Performing the change of variables

nu — 77u7

(3.4.18)
Eu = &t M

we get

(f M g)( 2N /2N )6%(IH+%“’W”V)5M(3%WW dnd¢
R
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After performing another change of variables

y' — at +ut,
3.4.20
Ny — 2w, 0" ( )

we receive the result. O]

The integral form of the Moyal product is also valid for f, g € S(R*"). Moreover,

it can be shown that x; is continuous on S(R?*") and that for f,g € S(R*"),
[ g € S(R*) and

1S %ar gl < LfIHIgll, (3.4.21)

see e.g. [40, 65]. The extension of the Moyal product from F to a continuous star-
product on S(R*") is unique since F is dense in S(R*Y). Hence the Schwartz space
S(IRZN) is an algebra with respect to the Moyal product. The subspace F is also
an algebra with respect to xp;, which is a direct consequence of the fact that the
Fourier transform .% is an automorphism of S(R*"). From (3.4.21) follows that the
Moyal product is continuous with respect to the L*-topology and so can be uniquely
extended to a continuous star-product on L*(R*M).

It is not difficult to check that the integral form (3.4.16) of the Moyal product
can be written in the following way

(f *ar 9)(g:p) = / fla+ du,v)glg = 3o,u)e 1P dudo,  (3.4.22)
RN JRN
where f denotes the Fourier transform of f in the momentum variable

1 i i
Fla.0) = g || Han)e . (3.4.23)

Note, that the Moyal product on the algebra A is not local, which can be seen
from the integral form (3.4.16) of the Moyal product — for a fixed r € R*" the
value of the integral in (3.4.16) depends on the values of functions f and g far away
from z.

The Moyal product (3.4.2) is also a valid star-product on symplectic manifold
M = T*U = U x RY, where U is some open subset of RY. This is a direct con-
sequence of the fact that the Moyal product is a series of bidifferential operators
which are local operators. For f, g € C;°(M) the integral form (3.4.16) of the Moyal
product still makes sense, since f and g can be uniquely extended to smooth func-
tions defined on the whole space R*Y with the same supports as f and g respectively
(just by putting the functions f and g equal 0 outside U x RY). In such case the
expression (3.4.16) still can be formally expanded to the series (3.4.2). Denote by
F the space of smooth functions which momentum Fourier transforms are smooth
functions with compact support. For f,g € F formula (3.4.22) makes sense and
defines the Moyal product of functions f and g. Taking the Fourier transform of
(3.4.22) in the momentum variable we receive

(f *ar 9)~ (g, u) = » Flg+ 3v,u—v)3(g — 3(u—v),v) dv. (3.4.24)
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From (3.4.24) and the fact that the convolution of compactly supported smooth
functions is also a compactly supported smooth function follows that (f x; g)™~ has
compact support and is smooth. Moreover, it is not difficult to see that f xy; g
is smooth. Hence f x); g € F, i.e. F is an algebra with respect to x;;. Formula
(3.4.24) defines actually a twisted convolution of f and §.

Let now (M, w) be a general symplectic manifold and * a star-product on M of
the form (3.2.3). If we choose on M some coordinate system M D U — V C R*Y,
v (2t 2*N) = (¢4, ..., ¢, p1,...,pn) which is at the same time classical and
quantum canonical, then in this coordinates the symplectic form w takes the form
(3.4.1) and we receive on the subset V a star-product +*). However, on V we can
also define a Moyal product (3.4.2) associated to the same symplectic form w. It
happens that these two star-products are always equivalent.

Theorem 3.4.3. For any coordinate system (z',..., 2*") on the symplectic mani-
fold (M, w), which is at the same time classical and quantum canonical, there exists

a unique series S = Z R*Sy of the form (3.1.6), such that

k=0
S(f 57 g) = Sf +") Sy, (3.4.25a)
Sx® =z, (3.4.25Db)
Sf=S5f, (3.4.25¢)
where *EC? is a star-product which in the coordinates (x',. .., x*) is of the form of

the Moyal product. The series S will satisfy (3.4.25) if and only if

k l
1
[Sgk’ xo‘] = Z (_Z) ASZSQ(]{,Z), (3.4.26&)
=1
k 1 l
[SQ}C, aa] = Z (_Z) Agl+132(k_l)7 (3426]3)

I=1
and Sy = 0 for k=1,2,..., where 0* = w*?d,s and AL f = Cip(z*, f).

The proof of the above theorem is given in Appendix A. Equations (3.4.26) can
be used to recursively calculate the series S order by order in 4. The general solution
of (3.4.26) is of the form

1
SQ/{: == Z —[mal’ ey [gjan—l’ FOén”aal “ e 606"7 (3427)

k I

1

where F'* = g (_Z> A5 So(k—1). Indeed, it is enough to solve (3.4.26a), since the
=1

solution of (3.4.26a) is specified up to an additive function which has to be equal
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zero by virtue of (3.4.25b). We have that

— 1
(S 2 = = D e [ P FR0s, - s,

n=1

=~ 1
+ Z ['Iﬁl? c [mﬂTL_l? Fa]]aﬁl e a/6)n—1

— 1
== >l s, s,

o0 1 . X

Note, that since Af are differential operators of finite order the sum in (3.4.27) will
be finite.

From Theorem 3.4.3 follows that a quantization of a classical system given by a
star-product of the form (3.2.3) and some assignment of measurable quantities to
elements A € C*°(M)[h], locally is equivalent with a Moyal quantization given by
the Moyal product (3.4.2) and an assignment of measurable quantities to elements
A" = SA. This fact is of fundamental importance for introducing an operator
representation of quantum mechanics.

Remark 3.4.1. Note, that Theorem 3.4.3 is also valid for a purely quantum canoni-
cal coordinate system (z', ... ,xQN) since, in accordance to Section 3.3, the x®)-prod-
uct can be considered as a coordinate representation, with respect to a classical and
quantum canonical coordinate system, of some star-product on some other symplec-
tic manifold.

In what follows we will consider only such x-products for which, for every almost
global classical and quantum canonical coordinate system M D> U — V C R?Y,
T (2t ,2*Y), the associated series S giving the equivalence with a Moyal
product has the property that for every f € C;°(V') the series S(f) is convergent to

an element of L?(V,dl) and

/ Sfdi = / fdi, feoeV). (3.4.29)
v v
From (3.4.29) it follows that

(5f,59) = (f,9),  [,9€C5(V). (3.4.30)

Indeed,
St.Sq)= [ SfSgdl= [ Sfx*) Sgdi
(Sf,S9) /Vfg /Vf* g
~ [sGad= [ ) gu= 9. Gasy
\% \%

The above property imposed on the series S guaranties that S can be uniquely
extended to a unitary operator defined on the whole Hilbert space L?(V,dl) and
satisfying

S(f+ g) = Sf+ Sg,  f,g € L3V, dl). (3.4.32)
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3.4.2 Family of star-products on T*E"~

Let us consider an N-dimensional Euclidean space E. The cotangent bundle 7*EY
to this space is a 2/N-dimensional manifold naturally endowed with a symplectic
structure w, as was discussed in Section 2.1. Let us choose some Cartesian coor-
dinate system (¢',...,¢") on E~. This coordinate system extends to a Cartesian
coordinate system (¢*,...,¢",p1,...,pn) = (2, ..., 2*) on the symplectic mani-
fold T*EN (see Section 2.1). In this coordinates the symplectic form w takes the
form dp; A dg'. Also the Poisson tensor P = w™! related to the symplectic form w

can be written in the form
P - j“”@xu % axr/ = 8(177 VAN 01,2.. (3433)

Equation (3.4.33) shows that the Poisson tensor P can be decomposed into a wedge
product of pair-wise commuting vector fields. However, such decomposition is not

unique. There are different sequences of commuting vector fields Dy, ..., Doy such
that
N
P=J"D,®D, =Y X;A\Y, (3.4.34)
i=1

where X; = D; and Y; = Dy, fori=1,... N.

In what follows we will define a family of star-products on the symplectic mani-
fold T*EN. Let (D,,) be a sequence of pair-wise commuting global vector fields from
the decomposition (3.4.34) of the Poisson tensor P. Define a star-product by the
formula

fxg= fexp <%ihj“”El7Z> g. (3.4.35)

From the commutativity of vector fields D,, follows the associativity of the star-
product. The proof of this fact is analogical as the proof of Proposition 3.4.1. As
was pointed out earlier the sequence (D)) is not uniquely specified by the Poisson
tensor, thus we can define the whole family of star-products related to the same
Poisson tensor.

In particular, if A} is a symplectic matrix with constant coefficients i.e. ATTA =
J or equivalently J “"AZ“AE = J° then vector fields D; = A,D, also pair-wise
commute and satisfy P = J"” D], @ D,,. Both sequences (D,,) and (D)) define the
same star-product, as can be checked by a direct computation. Thus the introduced
family of star-products is parametrized by elements of the space of sequences (D,,)
modulo the symplectic group Sp(2N).

The constructed family of star-products consists of equivalent star-products,
which is a direct consequence of Theorem 3.1.1.

Example 3.4.1. Let us consider the Poisson manifold 7*R = R? with the standard
Poisson tensor P. Assume that (g, p) is a Darboux coordinate system. Consider the
following vector fields

X =0, Y=0,

3.4.36
X' =q¢%0, — 2qpd,, Y' =q ?0,. ( )
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It can be checked that [X,Y] =0, [X',Y'] =0 and
P=XAY =X AY (3.4.37)

Star-products induced by vector fields X,Y and X', Y” are equivalent and the mor-
phism S giving this equivalence is represented by the formula

h2
S =id+ (247202 + ¢ ?pd — ¢ '0,07) + o(h*). (3.4.38)

Note that vector fields X, Y and X', Y are related by a canonical transformation
T:(q,p) = T(g,p) = (—¢" ", ¢°p):

(XfloT=X(foT), (YfloT=Y'(foT), (3.4.39)
for f € C™(R?).

For a given sequence of vector fields (D,,) from the decomposition (3.4.34) of the
Poisson tensor P there exists a global coordinate system (z',...,2*Y) in which D,
are coordinate vector fields, i.e. D, = 0. Such coordinate system is of course a
Darboux coordinate system associated with the symplectic form w. In this coordi-
nates the star-product (3.4.35) takes the form of the Moyal product (3.4.2). The
coordinate system (x',...,2?") will be called a natural coordinate system of the
*-product.

The structure of the symplectic manifold T*EY distinguishes one product from
the presented family of star-products, namely the one for which the natural co-
ordinate system is the Cartesian coordinate system. Such star-product is indeed
uniquely defined since coordinate vector fields of Cartesian coordinate systems are
related to each other by linear symplectic transformations and such transformations
do not change the star-product (3.4.35) as pointed out earlier. This distinguished
star-product will be called a canonical star-product on T*E™.

In what follows let us write the canonical star-product on T*EY in a different
form. To do this let us first write it in a Darboux coordinate system induced from

an arbitrary curvilinear coordinates on E. Let ¢: (¢*,....¢"™) — (¢*,...,¢")
be a change of coordinates from arbitrary curvilinear coordinates (¢, ... LN ) to
Cartesian coordinates (¢',...,¢"). The transformation ¢ on EY induces a canon-

ical transformation (¢’,p) — T(¢’,p') = (¢,p) on the symplectic manifold T*E"
according to the formula (2.1.17).

The canonical star-product in Cartesian coordinates takes the form of a Moyal
product (3.4.2). The Moyal product (3.4.2) under the point transformation 7" trans-
forms to the following star-product:

' 1 P
FxP) g = fexp <§ihjltv x’#Dx”’> g, (3.4.40)
where

Dy = [(@'(@) 7] (9 + Tula)pi0y) (3.4.41)
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is a transformation of Cartesian coordinate vector fields 0,:, 0,, to a new coordinate
. . . 92

chart, and (o) = (&) 110" @) (9" = 5 5 —(a) i the Hessian of

¢). Note that the symbols Fék(q’) are the Christoffel symbols for the (¢*,...,q¢")

coordinates, associated to the standard linear connection V on the configuration

space EV. Formula (3.4.40) can be written in the form

. =1 AN, o
RETED D € B T W N
n,m=0
where operators Dflll]m are given recursively by
Dl'dm f=D; (DI f)—TE, DiImf— ... —TF,  DInf
+szn+1 zkl ]sz+ +F;“7,+1Dfl1 anf (3.4.43a)
D\t f = Dme(D] ), (3.4.43b)
D; f ) ”f + Fzgpka ;f: (3443C)
D'f=0yf, (3.4.43d)

where {D;, D’} is a so called adopted frame on T*E" [75]. Note that the upper
indices in the operator D;! 7™ commute with the lower indices, i.e. it does not matter
if, when calculating DJ'" jmf, we first use formula (3.4.43a) and then (3.4.43b) or

11...0n
vice verse.
Equation (3.4.42) takes the form

> 1 ih k R Taw v
Z . (_> Z (n) ("N N vt
n=0 k
X (ﬁ cee @,g)fl.jnjy.‘jkfn’ (3444)

k

where 7 = N + ¢ and V is a linear connection on the symplectic manifold 7% E",
which components in the frame {D;, D’} are equal

fz‘,k _ p;k, f;k — _rg'k (3.4.45)

with the remaining components equal zero. Equation (3.4.44) can be written in the
form

where
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Equation (3.4.46) takes the form

1 (ih pivi PV (O v
Zk—(—) A4 B (A4 BN D

X (V- V@) w. (3.4.48)
k
Introducing
w=A+B= " Iy (3.4.49)
—In On
we finally receive
(d'p") SENEAY pvt HkVE (% v = =
k=0 "k sz

Since D; A D7 = di A a,,;, w” are components of the Poisson tensor in the Darboux
frame {0, 0y } as well as in the adopted frame {D;, D7},

The Christoffel symbols of the linear connection V in the Darboux coordinate
frame take the form

[, =ri, I, =-T9, T, =-T%
7k ik~ l i l ik o (3.4.51)
F]k - pl(FTka + FT F Fzy k:)

with the remaining components equal zero. From the construction it follows that \Y,
is symplectic, i.e. Vw = 0. Moreover, from flatness of the configuration space EY
follows that V is flat and torsionless.

Thus we wrote the canonical star-product on T*E” in a covariant form (3.4.50),
where V is a connection induced from a standard Levi-Civita connection on EV.
Other star-products on EV also can be written in a covariant form (3.4.50). As a
linear connection V one has to take a connection which components in a natural
coordinate system vanish. However, such connection is not related to a standard
Levi-Civita connection on EV.

Equation (3.4.51) defines a lift of the Levi-Civita connection on E” to a symplec-
tic connection on T*EN. It is possible to define a lift of the Levi-Civita connection
r “r on a general Riemannian manifold Q to a symplectic and torsionless connec-

tion F 3, on the cotangent bundle 7°Q. The resulting connection in the Darboux
coordinate frame is given by the formulas

F;k = F;‘lm F%k - _ng, F]"E = _Ffm (3.4.52)
F]k - pl<ijFi7, + FT Fl Fi] k %Ri]k - %Rézk)7

with the remaining components equal zero. In the adopted frame {D;, D’} the
connection 'y takes the form

37
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with the remaining components equal zero. Straightforward but tedious calculations
lead to the following components Rj ; for the curvature tensor of the symplectic

torsionless connection V given by (3.4.52)

- 21

Jkl gkl Kl (ij)k>
. o3 (3.4.54)
k= 3P (R;k:l;i + Rip; — 65 Ry + 4Rfij)[krlr]s) 5
with all remaining independent components equal zero, where (-, - ) and |-, - | stand

for the symmetrization and anti-symmetrization, respectively. From (3.4.54) it is
possible to calculate the components of the Ricci curvature tensor, Rag = RZA{B,
receiving
Rij — %Ri]’a R
As we will see later, on a symplectic manifold endowed with a symplectic torsion-
less connection it is possible to distinguish a family of star-products. In the majority
of physically interesting cases as the symplectic manifold is taken the cotangent bun-
dle to a configuration space being a Riemannian manifold. In such case there exists
a distinguished connection and thus a family of star-products which can be used to
introduce quantization. More about lifts of connections can be found in |75, 76|.

R;j = R;j =0. (3.4.55)

i —

Remark 3.4.2. The star-product (3.4.35) is also a valid star-product on more gen-
eral symplectic manifolds. Let us consider a symplectic manifold M whose Poisson
tensor can be written in the form (3.4.34). In addition, let us assume that the first
de Rham cohomology class H'(M) vanishes. This will guarantee the existence of
global natural coordinate systems associated to the star-products (3.4.35). On such
symplectic manifold M the product (3.4.35) is a valid star-product, which can also
be written in a covariant form (3.4.50) with an appropriate linear connection V.
However, in this case there is no distinguished star-product from the family of prod-
ucts (3.4.35). To distinguish a star-product we have to distinguish a sequence of
commuting vector fields (D,,) from the decomposition (3.4.34) of the Poisson tensor,
or equivalently, by distinguishing a flat torsionless symplectic linear connection V
on M.

3.4.3 Canonical star-product on 7°Q with a flat base
manifold O

We can distinguish a star-product on more general symplectic manifolds. Let Q
be an N-dimensional flat Riemannian manifold, and let us take as a symplectic
manifold M the cotangent bundle to @, M = T*Q. By virtue of (3.4.51) we can lift
a flat Levi-Civita connection V on Q to a flat torsionless symplectic connection V
on M. In analogy to (3.4.50) we can define a canonical star-product on M by the
following formula

o0

1 (in\" PP
Iro= k=0 E (§> Wt k(\_v o v,f)/u-..#k- (\V . V,g)lflml/k' (3'4'56)
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It can be proved that the star-product (3.4.56) is associative (see [49]), thus it is
a proper star-product on M. Note, that in a case of a non-flat connection V the
star-product (3.4.56) in general fails to be associative.

The star-product (3.4.56) can be written in a different form. Let exp: TM — M
be an exponential map of the connection V. For every x € M there exists a
neighborhood U C M of = on which exp, is a diffeomorphism of an open subset
V' of the tangent space T, M onto U. exp, can be used to locally represent each
function f € C*°(M) as a smooth function defined on the vector space T, /M. On
each vector space there exists a canonical star-product, namely the Moyal product
*r, thus it is natural to define on M a star-product by the following formula

(f xg)(x) = (exp,f *ar exp,9)(0), (3.4.57)
where exp, f = f o exp,. Using the formula
oF -
———— f(exp, =V -V (x 3.4.58
ay/,tl . ayuk f( p (y)) Y0 (H]:_/ f)/—L /”‘k( ) ( )

one can easily see that the star-product (3.4.57) is equal to (3.4.56).

For certain manifolds Q the star-product (3.4.56) can be written in an integral
form. A Riemannian manifold (Q, g) will be called geodesically simply connected if
every pair of points in Q is connected by a unique geodesic. A Riemannian manifold
(Q, g) will be called almost geodesically simply connected if for every ¢ € Q there
exists a neighborhood U C Q of ¢ such that Q \ U is of measure zero with respect
to the measure induced by the metric volume form w,, and every point in U can
be connected with ¢ by a unique geodesic. Similarly we define the notion of an
(almost) geodesically simply connected symplectic manifold (M, w) equipped with a
torsionless symplectic connection. In that case we replace in the definition the metric
volume form w, with the Liouville volume form €. If Q is (almost) geodesically
simply connected then T*Q has the same property. An example of geodesically
simply connected Riemannian manifold is the Euclidean space, and an example of
almost geodesically simply connected Riemannian manifold is the sphere.

If M = T*Q is almost geodesically simply connected then for every ©z € M
exists a neighborhood U C M such that M \ U is of measure zero and exp, is a
diffeomorphism of an open subset V' C T, M onto U. If f € C;°(M) is a smooth
function with compact support then exp,f € Cg°(V) is also a smooth function
with compact support. The function exp, f can be uniquely extended to a smooth
function defined on the whole tangent space T,,M with the same support as exp.,f,
just by putting the function exp, f equal 0 outside V. Thus by virtue of (3.4.57)
and the integral form of the Moyal product (3.4.16) it follows that for f,g € C;°(M)
the x-product can be written in the following integral form

1 e P —2i, u,v
(fxg)(x)= W/’IQM . f(exp,(u))g(exp,(v))e = ) qu do. (3.4.59)

Note, that the assumption that M \ U is of measure zero guaranties that the above
integral form of the x-product indeed expands to the series (3.4.56).

Let (z',...,2*") be a coordinate system on M which is at the same time clas-
sical and quantum canonical. In accordance with Theorem 3.4.3 the +®-product is
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equivalent with the Moyal product for the coordinates (x',...,z*"). In what fol-
lows we will derive the form of the respective equivalence morphism S to the second
order in h. By virtue of Theorem 3.4.3 it follows that only terms with even powers
in h are non-zero, thus we only have to calculate S5. To find the form of Sy we have
to solve the following system of equations

[S2, 3] = —iAg, (3.4.60a)
[92,0%] = —iAg“, (3.4.60D)
where
At = %W‘“” (V) i (VN P (3.4.61)
k k

Theorem 3.4.4. The solution to (3.4.60) is of the form

1 -~ 1~ =
= — —T5,0%0%0" + —T* T ,0°9° 3.4.62
SQ 24 By 9”9 + 16 va pﬁa 0 ) ( )

where fam = wa(;l:gv.

The proof of the above theorem is given in Appendix B. Note that the condition
that V has vanishing torsion can be restated as

re =T, (3.4.63)

and the condition that V is symplectic (Wuria = 0, W, , = 0) in Darboux coordinates
can be restated as

cuéﬁf’g7 = waﬂfgw, (3.4.64a)
w(gaI’gW = Wja ?V. (3464]9)

From conditions (3.4.63) and (3.4.64b) we get that V is symplectic and torsionless
iff ', is symmetric with respect to indices a, 5,7 [76].

Remark 3.4.3. The x-product (3.4.56) can be also defined on a general symplec-
tic manifold (M,w) equipped with a flat torsionless symplectic connection V. In
such general case formula (3.4.57), considerations about the integral form of the
*-product, and the form of the morphism S (3.4.62) remain the same.

3.4.4 Family of star-products on 7°Q with a non-flat base
manifold O

In this section we will describe a procedure of introducing star-products on a sym-
plectic manifold M = T*Q over a non-flat Riemannian manifold (Q, g). In such
general case we will use a connection VonT *Q, induced from a Levi-Civita con-
nection V on Q, to define a star-product. However, a star-product in the form
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(3.4.56) for a curved linear connection V is not a proper star-product (it is not asso-
ciative). Thus we have to change the star-product (3.4.56) in such a way that for a
curved linear connection V it would remain associative. Moreover, we would like it
to be equivalent with the Moyal product for every classical and quantum canonical
coordinate system.

The general way of defining on a symplectic manifold M a star-product equiva-
lent with the Moyal product is as follows. As in the general case there is no single
global coordinate chart, in order to define a product, which will be equivalent with
the Moyal product, it is necessary to do this locally for every classical and quantum
canonical coordinate chart. Let us take an atlas of classical and quantum canonical
coordinate charts (:v;, - ,$ZN ) defined on open subsets U, of the symplectic mani-
fold M. Moreover, let us take some family of linear automorphisms S, of C*°(U,)
with the property: two morphisms S, and S when acted on the Moyal products
*5@“) and *g\ﬁﬁ) give star-products, which on the intersection U, N Ug, are related to
each other by the change of variables (z,...,22V) — (z},...,23"). Every such
automorphism S, can be used to define a star-product on C*°(U,) by acting on
the Moyal product *5\'2“). All these star-products are consistent on the intersections
U,NUgz and hence glue together to give a global star-product on C*°(M). The ques-
tion whether such family of automorphisms S, always exists is nontrivial. Moreover,
in the case when such family exists it is not specified uniquely.

In what follows we will use the above procedure to define on M = T*Q a family
of star-products. We will present the construction to the third order in A. Let us
take the admissible morphisms S, in the similar form as for the flat case (see formula

(3.4.62))

1 - 1 o~ - N
S = id +h? (—ﬂramaaaﬁm + E(rf,jar;;ﬂ + 3aRa5)aaaﬁ) +o(h*),  (3.4.65)

where a is some real parameter and lfiag is the Ricci curvature tensor. Then we will
receive the one-parameter family of star-products in the form

=1 (in\* ., e - -
f*ag — % E (5) WHIVL L gHRVE ((v . "vf>u1...uk(v'"VQ)Vl---Vk
= k k

+ Bltl---lthl---Vk (f, g)) s (3466)

where B, ..., are bilinear operators given by

BO(fv 9) =0,
Bulul(fa 9) =0,
By (f19) = =3By, (Vi f)(Vi,9),
B pasvravs (2 9) = = Runvavsa®® (V V'V ) s as (V 59)

) 3 o 9 . } o (3.4.67)
- Rullmu:’,awaﬁ(Vﬁf)(VVVQ)VWQV?, - éaR/th;m(vV:zf) (VVQ)VUQ

9 . . 5 By .
+ §aRu1u2;us(vvf)uwz (Vi) + gaRst(vvf)m% (VV9) o0
+ Rmuwsa}?mvwﬂwaﬁww(6ﬂf)(ﬁdg)a
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and Ra/gv(; = wa,\ng is the curvature tensor. Analogical considerations as in
the previous section (see the proof of Theorem 3.4.4) prove that the star-products
(3.4.66) with the four first operators B, ..., given by (3.4.67) are equivalent
with the Moyal product, up to third order in A. Clearly for the flat linear connection
V the products (3.4.66) reduces to (3.4.56).

In a special case a = 0 the star-product (3.4.66) reduces to

.1 [ih\"
frg=>_ o (5) Wit (D Y (Do) (3.4.68)
k=0

where D, ,, are linear operators mapping functions to k-times covariant tensor
fields given by

Dof =T, (3.4.69a)
Dy f =V f, (3.4.69D)
Dyspiaf = (VV )z (3.4.69¢)
Dysyosf = (VVV P pspioss = Byispiopisaw™ Vs f- (3.4.60d)
A direct calculation, with the help of the Ricci identity
Ropns + Ranss + Rassy = 0, (3.4.70)
shows that operators (3.4.69) are symmetric with respect to indices 1, pa, . ... Note,

that the star-product (3.4.68) up to at least third order in  is a Fedosov star-product
associated with the Weyl curvature form 2 = w [54]. It should be noted that for
a # 0 the star-product (3.4.66) is not a Fedosov star-product.

From the presented construction it is clear that when the configuration space
@ is curved there is no single natural star-product on 7*Q but the whole family
of natural star-products. In the considered case (see formula (3.4.65)) the natural
star-products are parametrized by a real number a. Also the Fedosov construction
of star-products has freedom in taking different Weyl curvature forms €.

Remark 3.4.4. The presented construction of the star-products on a symplectic
manifold 779 can be generalized, in a straightforward way, to a general symplectic
manifold M endowed with a symplectic torsionless linear connection V. Formulas
(3.4.65)—(3.4.67) remain the same.

Let us extend the introduced family of star-products on M = T*Q. Using
(3.4.52) and (3.4.55) the formula (3.4.65) can be rewritten in the form

2

S =id+- (3 (TETY, + aRje) By, 0p + 310y Oy, Oy

J
+ (20T, — T, ) piapjapkapJ +o(hY). (3.4.71)

Let us generalize the formula (3.4.71) in the following way

2

S =id+; (3 (T4 + aRi) By, Oy + 3T 2000y, + (20T = T ) iy, 0,0,

— 360y, (O + T ypi0p, ) (D + r;np7,6pn)) +o(hY), (3.4.72)
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where b is some real parameter. For a symplectic manifold T*E" and Cartesian
coordinates (¢*,p;) all Christoffel symbols Iy, = 0 and the morphism S (3.4.72)
takes the form

J

ﬁ2
S =id —gbaqjap.aqkapk + o(RY), (3.4.73)

and can be considered as the expansion of the following morphism

J

h2
S = exp <—§b8qj8p.aqk8pk> : (3.4.74)
The morphism S (3.4.74) induces a star-product which takes the form

frng= fexp(éihﬁﬁpi — 500, + o (5.0,5,0, + 070,0.5,)

- G+ 3G+ 9 Es + B, 1) o BAT)

q J

In general, the star-product induced by the morphism S (3.4.72) fora =1 and b =1
leads to what was called in the paper [11] a “minimal” quantization. Moreover,
the same quantization was used in |[77-79] in order to investigate the quantum
integrability and quantum separability of classical Stickel systems.

3.4.5 Example of non-canonical star-products on 7*E"

In what follows we will present a family of star-products on the symplectic manifold
T*EY, which are not in the form (3.2.3) and for which the complex-conjugation is
not the involution. Let X;,..., Xy,Y], ..., Yy be a sequence of pair-wise commuting
global vector fields from the decomposition (3.4.34) of the Poisson tensor P. Define
a star-product by the formula

Frapg=fexp (im > XY, —in(1—\) > V.X,
IS ENY 371-7,) g, (3.4.76)

where A\, o, 5 € R. The star-product (3.4.76) is equivalent with the star-product
(3.4.35) corresponding to the same sequence (X;,Y;) of vector fields. A morphism
(3.1.6) giving this equivalence is of the form

L (1 1 1
Sxa.p = €xp (—zh (5 - /\) Z XiYi + S ha Z XiX;+ ShB Z Y,L-Y;> . (3.4.77)

The involution for the %, , g-product takes the form

fr=exp (—z’h(l —2)\) me> f. (3.4.78)
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Equation (3.4.78) indeed defines a proper involution. To see this first note that

the involution (3.4.78) can be written in the form f* = S\ 43554 5f- Then from
(3.1.7) and the fact that the complex-conjugation is the involution for the x-product
(3.4.35) we get

(f *r08 9)° = Sx08900.8(f %08 9) = Sxa8(Sxa5f * Sy a9
= Sxap(Sx a9 * Snapl) = (Sra69%a59) *re8 (Sna,855 a5
=g *nap [ (3.4.79)

From (3.4.78) it is evident that for A # % the involution for the ) o g-product is
different than the complex-conjugation and functions self-adjoint with respect to it
can be in general complex.

As an example let us consider a quantization given by the x, , g-product for a
one-dimensional case (N = 1) and in a natural coordinate system when X = 0, and
Y = §,. Consider complex function A(q,p) = qp* + hBq — ih(1 — 2\)p. A direct
calculation shows that A represents an observable, as it is self-adjoint with respect
to the involution * (3.4.78). Moreover, it is equivalent to an observable A(q, p) = qp®
for the Moyal quantization in the same coordinate system.



Chapter 4

Operator representation of quantum
mechanics

4.1 Operator representation over a phase space

4.1.1 The case of a phase space R?"

Let us take as a phase space M the symplectic vector space (R*M,w), where w
is a standard symplectic form. Moreover, let us consider on M a star-product
which in canonical coordinates z = 2%, ~ (z*,...,2?"), where e,..., ey is a
canonical basis on R* is in the form of the Moyal product (3.4.2). To elements
of C(R*M)[h] we can associate operators defined on the Hilbert space L*(R*Y,dl)
by the prescription

Fis o (4.1.1)
Formula (4.1.1) gives us a representation of the quantum Poisson algebra Ag(R*Y) =
(C*°(R*M)[A], %) in the Hilbert space L*(R*" dl). In what follows we will investi-
gate the form of the operators f ), . We will need a notion of a symplectic Fourier
transform. For a function f € L*(R*") we define a symplectic Fourier transform of
f by the formula

1 i
Fuf (1) = ——= “ae@) g 4.1.2
F@) = G [, S a, (4.1
where w is a standard symplectic form on R*" given by w(z,y) = Japr™y” where
[0y —Iy
(Jas) = (IN On > : (4.1.3)

Note that .Z, f(z) = .F f(J" ).
Theorem 4.1.1. Let f be an element of the space S(R*N) of Schwartz functions.
The operator f xpr can be written in the following form
1 7 AT 15
= ——— [ F,flqp)er PP dg dp, 4.1.4
fHum 2nh)N /sz f(g, p)en?dm qdp (4.1.4)
~i i i, 1 . L

where ¢, = q' %y = ¢ + §zh8pi and Dyyi = Di*m = Pi — §zh8qi are operators of

position and momentum.

47
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Proof. Let p € L*(R*"). Using the identity

e %ip(x) = plz+y), '.....y")eR¥ (4.1.5)
and the Baker-Campbell-Hausdorff formula we receive that

4 kit 0 Pungd) (g ) — ¢~ BT PPy o= et p( g )
— ¢~ Pl piPi(a'+310p;) —d im0y )p(q,p)
T ’Lpieﬁpiqle_ﬂ’iapie‘ﬁq,ipie_iqmaqip(%p)
= eh(Pla'=a"Pi) g~ 37100 =390 (g )
— erPia'=d pz)p( _ %q’,p _ %p/). (4.1.6)

From the above result we get that

/ Z, f q p)eh(plqw q""Papyi) dq dpp(q p)

27Th
1 L
- N wa(qup/”)( - %q/,p— %p/> h(pq q""ps) dq dp
(27h)N Jgan
1
= Gt o [0l = 1)
% et Pid'=d") =" (pi—p)) dq dp dq" dp". (417)

After the following change of variables under the integral sign

" "

"= =2¢", ¢" —=q+q",

, , (4.1.8)
i = —2p;, pi — Di +pi7

the above equation can be written in a form

1 Ll gt  _qlip .
(2rh)N /RQN Fof(dp)er PP dg' dp'p(q, p) =

1 20 (il ol 11
~ wh)¥ /QN Flatd"p+p"pla+d p+p)e B dg dpf dg” dpf
R R

(4.1.9)

which is the integral form (3.4.16) of the star-product f x p. O
Let us now consider on (R*Y,w) the following star-product

Foarg = fexp (zmga_; —R(1 - A)@@j) g, (4.1.10)

for A € [0,1], which is a particular example of the star-product (3.4.76). Using
similar considerations as in the proofs of Theorems 3.4.2 and 4.1.1 the following
theorem can be proved.
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Theorem 4.1.2. Let f be an element of the space S(R*N) of Schwartz functions.
The operator f *\ can be written in the following form

1 @ A4 i85 . Do .
T = G /  Fufla.p)et PTG g dp, (4.1.11)
R

where (jiA =" %\ =q" +ih\D,, and P,,; = p; *x» = p; — ih(1 — N\)d, are operators
of position and momentum.

The right hand sides of equations (4.1.4) and (4.1.11) are symmetric and A-or-
dered functions of operators inA,gzLA ; in accordance to a A-Weyl correspondence rule.

In general, for a Hilbert space ‘H and self-adjoint operators cji,ﬁj on H (where
i,7=1,2,..., N) satisfying the following commutation relations

[, ¢’ = [pi,p;] =0, [¢".p;] =ihd;, i.j=1,2,....N, (4.1.12)

the A-Weyl correspondence rule is a procedure of assigning operators defined on the
Hilbert space H, to functions defined on a symplectic manifold (R*" w). It was
first proposed by Weyl [80] for the symmetric ordering and formally it works by
substituting for the variables ¢', p; the operators g, p; and appropriately ordering
them. The A-ordered function f of the operators Qi,ﬁj will be denoted by f\(q,p)
and is given by the formula

1 .
1,0) = —— F T dez, 4.1.13
f/\(Q7p) (27Th)N /RQN f($) /\(.T) Z ( )
where - _ S o
Tx(q,p) — or il =@ Dit(5-Na'P) _ 30id’ o= 50Pi o= 5 P (4.1.14)

is the modified Heisenberg operator and A € [0, 1] is a parameter describing different
orderings. T,\(x) is a unitary operator for every x € R*¥ and A € [0, 1].

In what follows we will investigate on which class of functions the formula (4.1.13)
makes sense. Let

peu(®) = (. Th(@)Y), @, 0 € H. (4.1.15)
It can be easily checked that
peu(@)] < [l (4.1.16)
for every x € R*. Let .Z f € L'(R*") and

M) = s [ Fel @pla) da (1.1.17)

be a bilinear form on H. We calculate that

M) < G [ 1 FS @@l < s [ 12 5@ sl
(4.1.18)

Thus A is bounded and there exists a unique bounded linear operator fy(¢,p) such
that [81]
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That way we gave sense to formula (4.1.13) for f such that .# f € L'(R*Y).

Equation (4.1.13) makes sense also for wider class of functions f. In such case
it has to be treated distributionally. Let f € A = .%(£’) be the Fourier image of a
distribution with compact support, and let

D ={y €H | pyy € C(RN) for every p € H}. (4.1.20)
Then we can define a bilinear form A: H x D — C by the formula
A, ¥) = (Fuf, pey)- (4.1.21)
It is not difficult to show that
102 pp(@)] < CS) ] (4.1.22)

for every multi-index o € N*¥ ¢ € H, ¢» € D and =z € R?*", where Cy(x) is
some finite constant independent on ¢. Indeed, using the Baker-Campbell-Hausdor{f
formula the operator T)(¢,p) can be written in a form

TA(q,p) — e i MPigipid o= (1-N)a'Pi (4.1.23)
Hence, using the Leibniz’s formula we get
~ . AN AR _ n k n—k ~ o
Ogir =+ Ogin Oy, - Oy, Ta(a,p) = (_ﬁ) (ﬁ) ; (k>)\ (1= XN)"""Dg, - - Py,

g Ay i ipid 5 ot (1N
x e RMPiG L gimeiri T, oy e HITVIP T (4.1.24)

and consequently

iN" i\ <= (1 .
[0t ++ O Oy, -+ Oy pou (P < el (=7 ) (5 AL =)t
n) \n) =\k
X Py - - .ﬁikeﬁkqiﬁi(jﬁ .. ,djmeépiqiﬁml . .ﬁine,’;(lA)qiﬁin' (4.1.25)
From (4.1.22) we get that

1Pl 0 = Sg}g\aﬁpw(ﬂf)! < sup Co@)llell = Mia(d) el (4.1.26)

for every compact subset K C R?*M, multi-index o € N*, ¢ € H, and v € D,
where M (1) is some finite constant independent on ¢. From continuity of .% f in
£ = C™=(R?) there exists compact set K C R*', C' > 0, and multi-index o € N*
such that

M@, D) = [{(Fuf pow)| < Cllpgyllka < CMia(D)o]- (4.1.27)

Thus there exists a unique linear operator fy(g,p) with domain D such that [81]
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Note, that if there exist a dense subspace D C #H such that ¢': D — D and
p;j: D — Dfori,j =1,2,..., N then the subspace defined by (4.1.20) is equal to
this subspace D. In this case for every f € A we get a densely defined operator
fr(q, p) with domain D.

It can be calculated that the adjoint of the operator T)\(x) is given by

Ty(z)" = T1_x(—2). (4.1.29)
From this follows that B
(@D = fiia(d,p) (4.1.30)

on D. As a consequence, in a spacial case A\ = %, to real valued functions correspond
self-adjoint operators.

Theorem 4.1.3. For f(q,p) = K" (q)p;, - - - s, , where K™ is some symmetric
complex tensor field on RY, we get

n

R n n—k N it ein (A\A A

k=0
Proof. From (4.1.13) we get

~A~ A ]- 4 i Aol gip )
fk(q7p) — W /2N n K 1-e- n(q/)p;l .. .pgne h(pz‘l qu)T)\<q’p> dq/ dp/ dq dp
R R

1 i i . n gt iy
N (27Th)2N \/RQN R2N K o (q/) <(_Zh> aqil o 8qi"e h(plq ! pl))

x Tx(q,p) dg' dp’ dgdp

- K (g e RO ) ()0, - 0 T (g, )
(2mh)2N /RQN RON (q')e (ih) q q NCED
x d¢'dp’ dgdp. (4.1.32)

Using the Baker-Campbell-Hausdorff formula the operator TA(q,p) can be written

in a form X S ,
T)\(q,p) = ei%’\qlpieﬁpiqzefﬁ(lf/\)qlpi_ (4133)

From (4.1.33) and the Leibniz’s formula we get

(Zh)naq’l ttt aq"'n TA(va) = (ZFL)naqn cet 8qin 6_%Aqiﬁie%piqie_%(l_)\)qipi

= (Z) )\kﬁil .. -ﬁike_%)‘qiﬁie%pidi(l _ )\)"—kﬁikH .. -ﬁine_%(l_)‘)qiﬁi, (4.1.34)
k=0
Substituting (4.1.34) into (4.1.32) and performing integration we get the result. [
From (4.1.31) we get for monomial ¢’p; the operator

(@Dj)a = (L= N)@p; + Ap; @ - (4.1.35)

Thus A parametrizes different orderings, and so for A = 0 we get normal ordering,

for A = 1 anti-normal ordering, and for A = % symmetric ordering. In the rest of
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the thesis we will mainly focus on the case A = %. In such case we will often omit
the symbol X in fy(q,p) and simply write f(q,p).

Formula (4.1.13), by virtue of (3.4.12), can be written in a form

[\

1 1 7~ -1 A A
(G, p) = W /RQN FuSy f(f)Tl/z(x) dz = ()" f)(q,p), (4.1.36)

where

Sy = exp (—ih(: — X)0,i0,,) - (4.1.37)
Using this result we will generalize the concept of the ordering in the following way.
For a series S of differential operators in the form

S=id+» RS, (4.1.38)

k=1
we define an S-ordered function of the operators §', p; by the formula

1

fs(@,p) = (S~ £)(4,p) = B Jom SV f(x) Ty jo() . (4.1.39)

Note, that if on (R*V,w) we have some x-product equivalent with the Moyal
product, where the equivalence morphism S satisfies

Sq' =q', Spi =ps, (4.1.40)
then the operator f x is of the form

[ = [s(Gus Ps), (4.1.41)

where ¢. = ¢' x and p,; = p; . Indeed, from (4.1.40) we get that

SG ST =8(¢"xy )ST =8¢ x =¢' x = ¢’ (4.1.42)

*M

and similarly S]LMZ»S_I = p4i. Thus,

f*= S(S_lf*M )S_l = S(‘S_lf)((j*Maﬁ*M)S_l
= (ST ) (SGur ST Shapr ST = (s i) (4.1.43)

By virtue of Theorem 3.1.1 every star-product on R*Y is equivalent with the
Moyal product. Moreover, the equivalence morphism can always be chosen so that
(4.1.40) is satisfied, and this requirement uniquely specifies the morphism. Hence,
every star-product on R?V gives rise to an ordering of operators g, Dsj- Consequently
a quantization can be fixed either by choosing a star-product on a phase space R?Y
or equivalently, on a level of the operator representation, by choosing an ordering.
As we will see in Section 4.3 in an operator representation over a configuration
space to a given star-product on R*Y corresponds the same ordering, of canonical
operators (}i,ﬁj of position and momentum defined on the Hilbert space LQ(RN), as
in the operator representation over a phase space.
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Remark 4.1.1. The S-ordering rule (4.1.39) is very general and contains as special
cases all ordering rules found in the literature. In particular, for a special case of a
series S such that

S~ = F(—ihd,,iho,), (4.1.44)

where F': R?M — C is some general analytic function such that F(0) = 1, the
S-ordered function of the operators ¢', p; reads

1

fs(q4,p) = 2rh)N

/ Fuf(a,p)er PP F (g, p) dg dp. (4.1.45)
R2N
The above formula was first considered by Cohen [82]. Thus, it is clear that the
very broad family of orderings considered by Cohen and others is a special case of
the introduced family of orderings.

In general the morphisms S are not of the form (4.1.44). As an example in a
two-dimensional case (N = 1) the following three parameter family of morphisms
may serve

S =exp (—z’ha@qap + ihbq@i — h%@;’) , (4.1.46)

where a,b,c € R. This shows that the family of quantizations considered in the
thesis is more general than the broad family of quantizations considered by Cohen
and others. To illustrate the S-ordering rule let us consider a function f(q,p) =

1 1 1
—p? + =p® + =¢*. Then, one finds that

2 6 2
-1 Lo 13 1, o (1
(S f)(q,p):§p +6p +§q —ihbq(14+p) + k §ab+c (4.1.47)
and that
o 1, 1y 1, 1. 1. , (1
= S5 PP+ =% — ifib “ip+ = B =ab
fs(q,p) LR A U (q+2qp+2pq + 5ab+c
1o, 1.4 1, o . a2 1 1 U
S R bpi® — ( =ab+ =b
227 +6p +2Q qpq + 0pq 2(1 +2 + ¢ ) qpgp
1 1 1 1 1 1
+ (ﬁab — §b+ c) Gp*q + (éab + §b + c) PGP — (ﬁab — §b+ c) P4pq.

(4.1.48)

Remark 4.1.2. Let us consider a two-dimensional phase space M = R? and the
following star-product defined on it

Fayg=fexp (%mﬁf? Linha, + n22 =1 56, w22~ 15], p) g, (4.1.49)

for A € [0,1] and w > 0, which is a particular example of the star-product (3.4.76).
In holomorphic coordinates

(4.1.50)
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the x)-product takes the form
fHng= fexp (hAgﬁg — k(1 — A)E(‘i) g. (4.1.51)
Moreover, the operators f x, can be written in a form
[ = fla,al) = %/ﬁf(w,w)eh“(w&*wd*(%”'1”'2) A2w, (4.1.52)
where @ = a , , a' = a*, are operators of annihilation and creation, and
F f(w,w) = Wih / flz,2)el o2 @2 (4.1.53)

where d’z = d(Rez)d(Im z), is the symplectic Fourier transform in holomorphic
coordinates. The star-product (4.1.51) and the operator function f(a, a') are widely
used in quantum optics.

4.1.2 The case of a general phase space

First, let us consider a phase space in the form of a cotangent bundle T*U to an
open subset U C R™. On such phase space we can introduce the Moyal product
(3.4.2) or, more generally, the xy-product (4.1.10). If for self-adjoint operators ¢', p;
defined on some Hilbert space ‘H and satisfying the commutation relations (4.1.12),
and for a function f on T*U polynomial in momenta we define the corresponding
A-ordered function of the operators ¢',p; by the formula (4.1.31), then it can be
proved that the operator f x, is of the form

f*)\ = f)x(d*mﬁ*)\), (4154)

just like in the case of a phase space R*",

Let us now consider a general phase space in the form of a cotangent bundle T*Q
to a Riemannian manifold Q, and a general x-product (3.2.3) defined on it. For any
canonical coordinates (¢', p;) on T"Q the *@P)_product is equivalent with the Moyal
product, in accordance to Theorem 3.4.3. Using the corresponding equivalence
morphism S and analogical considerations as in the proof of (4.1.41) we get for a
function f polynomial in momenta

FFP) = f(Gu, Pa)- (4.1.55)

Note, that for star-products considered in Section 3.4 the action S™'f of the mor-
phism S on a function f polynomial in momenta is again a function polynomial in
momenta. Thus, to a general star-product on 7" Q written in canonical coordinates
corresponds an S-ordering of operators of position and momentum.

4.2 Operator calculus

In the following section we will consider the A-Weyl correspondence rule for a par-
ticular example of the Hilbert space ‘H and the self-adjoint operators ¢, p; defined
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on it. Moreover, we will present a generalization to a case of a symplectic manifold
T*Q for a general Riemannian manifold Q. Let the Hilbert space H be the space
L*(R™) of square integrable functions on R, and let ¢’ = ¢' be the operator of
multiplication by variable ¢ and pj = —ihd, be the operator of differentiation.
Note that the operators ¢', p; are properly defined on the Schwartz space S(RY)
and ¢': S(RY) — S(RY), p;: SRY) — S(RY). Thus the domain D of operators
f2(d,p), defined by (4.1.20), is equal S(RY). In such special case of the Hilbert
space H the formula (4.1.13) defining operators f\(q, p) can be written in a different
form.

Theorem 4.2.1. For i) € S(RY) there holds

@D = o [ T e s s waudn, a21)

where the integral is to be understood in a distributional sense.
Proof. From (4.1.13) we get

A A 1 iv' i 7u7" . i uiv'
@ p)(q) = 2N Jyax T f (1, 0)eiV e Oigh(q)e” M dudo.  (4.2.2)

From the identity ‘
e Wi (q) = (g —u), (4.2.3)

which can be easily proved by expanding in a Taylor series the exponent on the left
and ¢ on the right hand side, we get

. 1 4 (o — 2tV
(@, p)v(q) = R /sz Fo, f (w0, 0)(q — w)er @A qy dy
1 il i) (i A
N W /R2N R2N f(q/,p/)e nvid P en @A

x (q —u)dq' dp’ dudv

— ; ! o i’uip/. . ’ ,

~ (2rh)N /RQN - F(d,p)0(q" — g+ Mu)er Pip(q — u) dg dp' du
—1 / i ip/. /

- - “Pip(q — . 4.2.4
2rh)N /RN e e el —u) dudp (4.2.4)

]

Note that (4.2.1) can be written in a form

@) = | flg = u,u(q —u) du, (4.2.5)

RN

where f denotes the Fourier transform (3.4.23) of f in the momentum variable.
Let us now move to the more general case of the symplectic manifold M. Let
M =T*U = U x RY where U is some open subset of R". In such case for a general
Hilbert space H and operators (}i,ﬁj to function f polynomial in momenta, f(q,p) =
K% (q)pi, - - ps,, from definition will correspond operator given by (4.1.31). For
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general function f it is difficult to assign an operator since formula (4.1.13) is no
longer properly defined. However, for certain Hilbert spaces H it is possible to give
a formula for an operator f\(q,p) associated to a general function f.

Endow U with some metric tensor g making from U a Riemannian manifold.
Let us take as the Hilbert space H the space L?*(U,du) of functions on U square
integrable with respect to a measure du(q) = ¢'/*(q)dgq induced by the metric
volume form w, on U (g(¢) = |det[g;;(¢)]| is the determinant of the metric tensor
g). In such case for ¢ € C§°(U) we can generalize formula (4.2.1) in the following
way

5 5 1 —u'p;
1090 = gy [ ] fla dun)e g+ e, dudp

=, Flg = du,u)g(q = w)p(q, —u) du, (4.2.6)

where p(q,u) = ¢"*(¢ + u)g~/*(¢q). Note that since 1 has compact support it
does not matter that f and ¢ are not defined on the whole spaces R* and R",
respectively.

Note that for such Hilbert space operators ¢' and p; are given by

¢ =4q, pj=—ih (8qj + 2F§k) (4.2.7)

where F;k are Christoffel symbols of the Levi-Civita connection on U. In fact, for

functions f polynomial in momenta (4.1.31) holds.

Theorem 4.2.2. For f(q,p) = K" (q)p;, - - - pi,, where K" is some symmetric
complex tensor field on U, formula (4.1.31) holds for operators ¢' and p; given by
(4.2.7).

Proof. From (4.2.6) we get

I P (a) = m

— 11...0n ) n i1+ Oyin _T,U pi
x p(q,u)dudp

— —(277_1]5)]\[ /RN /]RN(—Zﬁ)naull .. aum (K“Z"(q—|— )\U)@/)(q—i— U)p(q,u))

iy,
x e " Pidudp

/N /N K0 (g Mu)pi, - - prne” 70 Pap(q + w)p(q, u) dudp
R R

= (=ih)"Dyir -+ Dy (K™ (q + Mu)tb (g +u)p(g, ) (4.2.8)
u=0
By virtue of the identity
Oui (9(q + Mu)h(g+1u)) = (Dyi + D) (9(q + Av)R(g + Ao + (1 = Nw)) (4.2.9)
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valid for any functions g and h, (4.2.8) can be written in a form

A@p)(a) = (" <Z) D+~ DD - Dy (K117 (q 4 )

k=0
X (g + M+ (1= Nw)g* (g + I+ (1 — )\)v)g_l/4(q)) (4.2.10)
u=v=0
Using the formula
9 _ ggrk 1.2.11
O_qj = 291 jk ( & )
we calculate that
. 0 1 .
— ihdy (Vg'") = ( a¢ gt + SUTg" 4) = (p)g"". (4.2.12)
From this and (4.2.10) we receive
A — (n . n— Q1.0
R =3 () (= AP0 By (K 4 2
k=0
X (Do = Di ) (@ + Au+ (1= N)g" (g + M+ (1= A)
x g~"4(q))
u=v=0

]

Remark 4.2.1. Formula (4.2.6) can be generalized for symplectic manifolds M =
T*Q, where Q is an almost geodesically simply connected Riemannian manifold. Let
L*(Q, dw,) be a Hilbert space of functions on Q square integrable with respect to a
measure dw, induced by the metric volume form w,. For some function f: 7°Q — C
we can define an operator on L*(Q, dw,) given, for every ¢ € C3°(Q), by the formula

8]

Pta) = o | [T ), AP0 (e, ()l ) ducy

(4.2.14)
where p(g,u) = g"*(exp,(u))g™"*(q) det(exp,.(v)), A(u) = expi(u)™: T;Q —
Tg;{pq(u)Q, exp,: T,Q — Q is an exponential map of the Levi-Civita connection on
Q, and exp,, (u): T,Q — Texp, ()@ is the derivative of exp, at point u. Note, that
since ¢ has compact support and exp, is the diffeomorphism taking values in the
almost whole manifold Q, (4.2.14) is properly defined.

If f(q,p) = K" (q)p;p; where K" is a smooth symmetric complex contravariant
tensor field on Q, then

B= -1 ((1 — N2KIV, Y, 4 201 — NVKIV; 4+ A2V, VK

222 + 1
6

Kin,»j), (4.2.15)
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where V; is the covariant derivative with respect to the Levi-Civita connection and
R;; is the Ricci curvature tensor. The proof of this formula can be found in [§]. In
a special case of the symmetric ordering (A = 3) equation (4.2.15) takes the form

f1/2 = _h2 (ViKZjVj + ZK”;U - ZK”RU> , (4216)

where K", denotes the second covariant derivative of K*.

4.3 Operator representation over a configuration
space

In this section we will present a construction of a natural operator representation of
quantum mechanics, which reproduces the usual Hilbert space approach to quantum
mechanics. We will be dealing with quantum systems defined on a phase space M
in the form of a cotangent bundle 7% 9 to a Riemannian manifold @. The manifold
O plays the role of a configuration space of the system. The representation will be
constructed in a Hilbert space L*(Q, dw,) of functions on Q square integrable with
respect to a measure dw, induced by the metric volume form w,. The elements of
L*(Q, dw,) are interpreted as wave functions describing the states of the quantum
system.

4.3.1 The case of a Moyal quantization

First, let us consider the phase space M = T*U, where U is an open subset of RY
endowed with some metric tensor g. Moreover, we will consider a classical system
defined on M and its quantization by means of the Moyal product on M. The first
step in construction of the operator representation for such quantum system is an
observation that the Hilbert space L*(T*U,dl) can be written as a tensor product
of the Hilbert space L*(U, du) and the space dual to it. In what follows we present
the construction of this tensor product.

In accordance to the Riesz representation theorem the Hilbert space (L*(U, du))*
dual to L*(U,dy) is anti-isomorphic to the Hilbert space L*(U,du) and can be
naturally identified with L?(U,du) itself [81]. After such identification the anti-
linear isomorphism #*: L*(U,du) — (L*(U,du))* takes the form of the complex-
conjugation. Denote by L?*(TU) the Hilbert space of functions defined on the tangent
bundle TU = U x R" and square integrable with respect to the Lebesgue measure
on U x RY. Let us introduce a bilinear map of Hilbert spaces W : (L*(U,dp))* x
L*(U,dp) — L*(TU), which on vectors ¢, € C3°(U) is defined by

W (g™ ) (g,u) = plg — ju)ib(g + Su)plg, u), (4.3.1)
where p(q,u) = ¢"/*(q — %u)gl/‘l(q + su). For 1,91, 2,1 € C°(U) there holds

(W (5, 01), W (3, 12)) = (3, 93) (W01, 2). (4.3.2)
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Indeed,

(Li/<99ivlbl)7Ii/(99;7@b2)) = ‘i/(gjfv@bl)(Q7?L)Li/(99;7zb2)(Q7ql)(jq(iu

U xRN

- / e1(g — Yu)in(g + Tu)ealg — Tu)(q + Lu)
UxRN
x g'%(q — tu)g"(q + Lu) dgdu. (4.3.3)

Note that since 1,11, 9,19 have compact support, we can extend integration in
(4.3.3) to the whole space RY x R™. After performing the following change of
variables

¢ =q— 3u,

4.3.4
¢ = q+ 3u, 34

equation (4.3.3) takes the form

(W (g3, 1b1), W (5, 12)) :/ ea(q1)01(a1)9" (@) dau /RN 1(g2)2(42) 9" (g2) dae

RN

= (1, 03) (Y1, ¥2). (4.3.5)

From property (4.3.2) follows that W is continuous on C°(U) x CS°(U). Thus, from
the fact that C3°(U) is dense in L*(U, du), it can be uniquely extended to a bilinear
map defined on the whole space (L*(U,du))* x L*(U,du) and satisfying (4.3.2).

It can be proved that finite linear combinations of vectors W (p*, 1)) for o, €
L?(U,dy) create a dense subset of L*(TU). Thus W is a tensor product of Hilbert
spaces (L*(U,du))* and L*(U,du).

Now, let us take the inverse Fourier transform of W(gp*,w) in momentum vari-
able. That way we receive a bilinear map of Hilbert spaces W: (L*(U,du))* x
L*(U,dp) — L*(T*U,dl), which on vectors o, 1) € C5°(U) takes the form

Wi ). = [ W o) e i du
= /R _ela = zu)lg+ 3u)lg, w)e” HP du, (4.3.6)

Since the Fourier transform in momentum variable is an isomorphism of the Hilbert
space L*(T*U,dl) onto the Hilbert space L*(TU), W is also a tensor product of
Hilbert spaces (L*(U,du))* and L*(U,du). We will denote this tensor product by
®w. In a case U = RY with a standard metric tensor g, (4.3.6) is a well known
Wigner transform |83, 84].

In what follows we will prove couple properties of the tensor product Qyy .

Theorem 4.3.1. For p,+ € L*(U,dpu) there holds

©* Qw Y =" Qw ¢, (4.3.7)
[ @ sw vy = .0 (4.3.5)



60 CHAPTER 4. OPERATOR REPRESENTATION

Proof. Formula (4.3.7) is an immediate consequence of the definition (4.3.6). To
prove (4.3.8) it is enough to consider ¢, € C;°(U) since the general case will
follow from the continuity of the tensor product ®y and the integral, and the fact
that C5°(U) is dense in L*(U,dp). From (4.3.6) we have that

d 1
27rh /XRN¢®w¢(qp) qdp = /UXRN/RN Y(q + 5u)
“EP g (g — Lu)gt (g + 5U)dudqdp

X e
:// (¢ — 5u)(q + 5u)g"*(q — 5u)g"*(a + 5u)d(u) dudg
—)

9"2(q)dg = (¢, 7). (4.3.9)

\

]

Theorem 4.3.2. Let p1 = @] Qw U1 and py = 5 Qw s for p1,901, @2, €
L*(U,du). Then

p1*ur p2 = (01, ¥2) (95 Qw P1). (4.3.10)
Proof. To prove (4.3.10) it is enough to consider 1,1, @2,1s € C5°(U) since the
general case will follow from the continuity of the Moyal product x;;, tensor product

®w and scalar product, and the fact that C;°(U) is dense in L*(U,dp). From
(3.4.22) we have that

(p1*m p2)(q,p) = / / p1(q + %Ua v)p2(q — %Ua U)ei%(uqvi)pi dudv
RN JRN

x g4 (g + tu+ $v)pa(q — Sv — Lu)ha(q — 1o + Lu)

x g"%(q = Jv — Ju)g" (g — Jv + Ju)e HOTIP dudv. (4.3.11)

After performing the change of variables

w=1u-+v,
;o 1 1 (4.3.12)
qg =q+ 53U — 50,

we get

(p1*a1 p2)(q,p) = /RN 1(@)02(d)g' 2 (d) dq,/ ©2(q — sw)hi (g + %w)e—%wim

RN
g+ tw)dw
(q,p). (4.3.13)

x g4 (q — jw)g

= (1, %2) (95 @w ¥1)(q

1/4(

[]

Let {¢;} be an orthonormal basis in L*(U, du), then {p;;} = {o; @w ¢,} is an
orthonormal basis in L*(T*U,dl). From (4.3.7), (4.3.8), and (4.3.10) we get that
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the basis functions p;; have the following properties:

ﬁij = Pji, (4314&)
*U
Pij *M Pkl = 5ilplcj' (4314C)

Using the basis {p;;} the following characterization of quantum states can be proved.
Theorem 4.3.3. Function p € L*(T*U,dl) is a quantum state, i.e. it satisfies
(i) p=p,

(i) pdl =1,
U

(iii) fxa foar pdl >0 for f € CO(THU),
U

if and only if p is in the form

p=>_pAlgh @w o). (4.3.15)
A

where gy € L*(U,du), oAl =1, pr >0, and Zp,\ =1

A
Proof. Function p can be written in a form
p=">_ ciipij, (4.3.16)
i,J

where c¢;; € C and {p;;} = {¢} @w p;} is an induced basis in L*(T*U, dl) by the basis
{o;} in L*(U,dy). Properties (i)-(iii) are equivalent to saying that the matrix ¢ of
the coefficients c¢;; is hermitian (¢ = ¢'), normalized (tr¢ = 1), and positive define
(ci; > 0). Indeed, hermiticity and normalization easily follow from (4.3.14a) and
(4.3.14b). To prove positive definite note that (iii) is valid for every f € L*(T*U, dl)
since Cg°(T*U) is dense in L*(T*U,dl). Thus in particular for basis functions pjx
and with the help of (4.3.14) we get

0< / Pk %M Pk *m pdl = / prk*am pdl = E Cij/ Pk % Pij dl
T*U T*U v U
i ™u i U i

for every k.
Since the matrix ¢ is hermitian it can be diagonalized, i.e. there exist an unitary
matrix 7" such that Cij = ZT;,C(pkékl)le = ZT,:Z-kakj for some p; € R. Hence, p
k,l k
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takes the form

p= Z TrokTi (07 Qw ¢;)) Zpk: ((Z Tkz‘%') ) Qw (Z Tkj%‘))
i J

4,5,k

= > (W ®@w ), (4.3.18)
k

where 9, = Z Tyipi- The conditions that ¢; > 0 and tr¢ =1 give that 0 < p, <1

and Zpk:ll. O
k

From the above theorem follows that pure states are in the form

Poure = £° Qw P, (4.3.19)

for some normalized ¢ € L*(U,du). Conversely, every function p of the form (4.3.19)
is a pure state. Moreover, from (4.3.10) follows that every pure state is idempotent:

Ppure *M Ppure = Ppure- (4320)
The following theorem states that the inverse is also true.

Theorem 4.3.4. Every function p € L*(T*U,dl) which satisfies
(i) p =0,
(i1) pdl =1,
T*U
(i) pxu p = p,
18 a pure state.

Proof. Function p can be written in a form

p=_ Cubiss (4.3.21)

.3

where ¢;; € C and {p;;} = {¢; ®w ©;} is an induced basis in L*(T*U,dl) by the
basis {¢;} in L*(U,du). Properties (i)-(iii) are equivalent to saying that the matrix
¢ of the coefficients c¢;; is hermitian (¢ = &), normalized (tr¢ = 1), and idempotent
(¢ = ¢). Since the matrix ¢ is hermitian it can be diagonalized, i.e. there exist an
unitary matrix T such that Cij = ZTM (axbr)T7; = ZT,ﬁakT/ﬁ for some a; € R.

k,l
Hence, p takes the form

p=> TraxTii(} @w @) = Z ((Z TW%) Sw (Z T’ff%))

1,5,k

= 3 aulwi O ). (43.22)
k
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where ¢, = Tii;. The conditions that & = ¢and tré = 1 give that a? = ar and
2 g k
i

Zak = 1. Hence ay = 0y for some ko, from which follows that p = 1 Qw .

k
Thus p is a pure state. [

As was noted above pure states p € L*(T*U, dl) are of the form p = ¢* @y ¢ for
normalized ¢ € L*(U,dy). Thus there is a one to one correspondence between pure
states and normalized vectors in L*(U, du). In what follows we will show that there
is in fact a one to one correspondence between states p € L*(T*U,dl) and density
operators p on L*(U, dpu).

First, note that vectors f € L*(T*U,dl) can be considered as operators f xj; on
L*(T*U,dl) given by the formula

(f*a )p = frp, p€ LT, dl). (4.3.23)

From (3.4.21) follows that operators fx*j; are bounded with the norm || fx || < || f]l-
In what follows we will prove that operators f xj; can be naturally identified with
Hilbert-Schmidt operators on L*(U, du).

For a Hilbert space H a bounded operator A € B (H) is called a Hilbert-Schmidt
operator if tr(flel) < 00. The space of all Hilbert-Schmidt operators will be denoted
by Bs(H) and it happens to be a Hilbert space with a scalar product given by [85]

(A,B), = tr(A'B), A, B € By(H). (4.3.24)

From the well known relation between the Hilbert-Schmidt norm and the usual

operator norm [85] A A )
[Al < | Alla, A€ Ba(H) (4.3.25)

it follows that the inclusion By(H) C B(H) is continuous.

Proposition 4.3.1. For every p € L*(T*U,dl)
pHur = 1Qw p, (4.3.26)

where p € By(L*(U,du)) is some Hilbert-Schmidt operator defined on the Hilbert
space L*(U,dp). Conversely, for every p € By(L*(U,dp)) the operator 1 @y p is of
the form pxy for some p € L*(T*U,dl).

The following properties are fulfilled:

(’I,) fOT’p: 90* ®W1/}; 15: (()07 )2/}7
(ii) pra =1 @w pl,

= dl — ~ ,
(iii) tr(p) /*Up tr(p)

(iv) for p1,py € L*(T*U,dl) and py, pa € Bo(L*(U,dp)) such that pyxy = 1®w pr

~

and p2 xp =1 Qw po
(p1:p2) = (P1, P2)2, (4.3.27)



64 CHAPTER 4. OPERATOR REPRESENTATION

(v) fxm £ pdl >0 for f € CO(T*U) if and only if (¢, pp) > 0 for
U

o € L2(U,dp).

Proof. First let us prove (i). From (4.3.10) for basis functions p;; = ¢; Qw ¢; it
follows that

pru pi; = (" Qw ¥) *xar (¢ Qw ;) = (@, ;) (0] Aw V) = ¢f @w (pp;)
= (1w p)pij, (4.3.28)

which proves (i).

Now, note that for a basis {p;} in L*(U,du) the operators p;; = (g4, - )p; form
a basis in the Hilbert space Bo(L*(U,du)) of Hilbert-Schmidt operators. From (i)
for basis functions p;; = ¢; @w ; we have that

Pij M= j. Sw lﬁlﬁ (4329)

The general p € L*(T*U,dl) can be written in the form p = Zcijpij for some
0,
¢;; € C. In accordance to (4.3.29) the corresponding Hilbert-Schmidt operator p is
of the form p = Z c;jpij- This proves the first part of the theorem.
1,J
It is enough to prove properties (ii)—(iv) for basis functions p;;. Property (ii)
follows from (4.3.14a) and the fact that ,6;[]- = pj;. Property (iii) is a consequence of
(4.3.14b) and the identity tr(p;;) = d;;. Property (iv) follows from the equality

U T*U U
= tr(ﬁjjﬁkl) = (Dij> Or1)2- (4.3.30)
To prove (v) let us expand p and p in the corresponding basis: p = Zcijpij
1,3

and p = Zcijﬁij. The property follows from the observation that the positive-
i3
definiteness of p and p is equivalent with the inequality ¢, > 0 for every k. n
From Proposition 4.3.1 immediately follows that the Hilbert spaces L*(T*U, dl)
and By(L*(U,du)) are naturally isomorphic. The natural isomorphism p + p is
given by p*y = 1 ®y p. The isomorphism p — p is in fact a representation of the
algebra £ = (L*(T*U,dl), );) in the Hilbert space L*(U,du) since it satisfies

~

Frvg=1Ffa, [=F, w(f)=u(f) (4.3.31)

The last property is restricted to the subspace £' = £ xp; L.

Moreover, from Proposition 4.3.1 follows that there is a one to one correspon-
dence between quantum states p € L*(T*U, dl) and density operators on L*(U,du),
i.e. trace class operators p satisfying

) ' =5,
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(i) tr(p) =1,
(iii) (¢, pp) > 0 for every ¢ € L*(U,dp).

The density operators represent quantum states in the operator representation of
quantum mechanics.

In what follows we will show that observables f € C*°(T”U)[h] can be naturally
identified with operators defined on the Hilbert space L*(U,du). Moreover, the
presented identification will be in agreement with the Weyl correspondence rule.

Proposition 4.3.2. Let f € C(T*U)[h] and p = ¢* Qw ¢ for ¢, € C;°(U).
Then

frup=¢" @w f(q,0)0, (4.3.32a)
pru [ = (f(q.0) ) @uw 1, (4.3.32b)

where .f(qA,ﬁ) s a symmetrically ordered function of canonical operators of position
¢' = q' and momentum p; = —ih(0, + %I’?k), acting in the Hilbert space L*(U,du).

Proof. From (3.4.22) we get that

(f *u p)(q,p) = / Flg+ Yu,0)p(g — Lo, u)e # @+ dy do
RN JRN

=[] Fa+ buopela—To = Fueta — bo+ b
RN JRN
x gt (q — v — %u)gl/4(q —tu+ %u)e_%(“”r”i)pi dudv. (4.3.33)
After the following change of variables

U —uU—,
(4.3.34)
vV — v

and using (4.2.6) we receive

(f *m p)(a,p) = /RN . Fla+ tu— v, 0)0(q — 2u)e(q+ Lu—v)g"*(q — Lu)
x g g+ 3u—v)g" (g + ju)g (g + Ju)e i P dudv
= [ A= B @)+ hig o - dulg g+ he i du
= (¢" ®@w [(4,P)¥)(¢. p) (4.3.35)

which proves (4.3.32a).
To prove (4.3.32b) we can use (4.3.7) and (4.3.32a) receiving

pru f=Fxup=1*Qw f(G,0)¢ = (f(4,D)p) Qw . (4.3.36)
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Note, that the star-products f xp p and pxys f are properly defined by (3.4.22),
even though f has no compact support and is not defined on the whole space
RY x R¥, since p is in the form ¢* @y 1 for ¢ and v with compact support.

From Proposition 4.3.2 follows that operators f x); can be written as

fxu =1@w £(4,p). (4.3.37)
Equation (4.3.37) is an analog of (4.3.26) for functions f € C*(T*U)[h] and it
allows to naturally identify functions f with operators f(g,p). That way the Weyl
correspondence rule naturally appears in the operator representation of quantum

mechanics. R
The map f — f = f(§,p) have the following properties

frug="rfa. f=f1 (4.3.38)
for functions f, g € C*°(T*U)[A], thus it is a representation of the quantum Poisson
algebra Ag(T*U) = (C*(T*U)[h],*u) in the Hilbert space L*(U,dpu).

Theorem 4.3.5. Let f € C™(T*U)[h] and p € L*(T*U,dl). If fxyp € LY(T*U,dl)

then
fxm pdl=tr(f(q,p)p)- (4.3.39)
U
In particular, if p = ©* Q@w ¥ for v, € C°(U) then
| frpdi= (o s (4.3.40)
U

Proof. Let {p;} be a basis in L*(U,du) such that o; have compact support. From
Proposition 4.3.2 and (4.3.8) we have that

fpizdl = [ pig Al = (i, £(G,D)e;5) (4.3.41)
U U

for p;; = @7 @w ;. The function p can be expanded in the basis p;;, p = Z CijPij-
i?j
Using this expansion we get that

frupdl= [ fpdl=>) c; / Foidl=">"cij(¢i f(4. D))
U i U i

T*U T+
= Z cij r(f(q,0)pij) = tr(f (4, D)p)- (4.3.42)
O

From Theorem 4.3.5 follows that the expectation value of an observable f &€
C>®(T*U)[n] in a state p € L*(T*U,dl) in the operator representation of quantum
mechanics is expressed by the formula

(f)o=1tx(f(q,P)p). (4.3.43)

Moreover, in the operator representation to time evolution equation (3.2.19) corre-
sponds the following equation

2P (1) ~ [H(@.9), o(0)] = 0 (4.3.44)

called the von Neumann equation.
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4.3.2 The case of a general quantization

Let us consider a configuration space Q in the form of an N-dimensional almost
geodesically simply connected Riemannian manifold, and a phase space M =T*Q.
Moreover, we will consider a classical system defined on M and its quantization
by means of a *-product on M. We will begin with constructing the operator
representation for some coordinate system on Q. Tet Q DU — V C RY, ¢ —
(¢*,...,q") be an almost global coordinate system on Q. From the assumption that
Q is almost geodesically simply connected such coordinate system always exists. The
coordinate system (q',...,¢") induces on M an almost global classical canonical
coordinate system T*U — T*V =V x RY, z — (¢',...,¢",p1,...,pn). We will
assume that this coordinate system is at the same time quantum canonical. For
star-products from Section 3.4 this is the case. The quantum system can be written
in the coordinates (¢',p;). Note, that although x-product is not local it still can
be written in the coordinates (¢’, p;) since this coordinate system is almost globally
defined.

The idea behind introducing the operator representation lies in the observation
that the quantum system in coordinates (¢’, p;) is equivalent with a system quantized
by the Moyal product, cf. Theorem 3.4.3. If S is a morphism giving this equivalence
then S is a unitary operator on the Hilbert space L*(T*V,dl). Let us introduce a
tensor product ®@g: (L*(V,du))* x L*(V,du) — L*(T*V,dl) by the formula

e @sp =S @w ), @€ L*(V,dp) (4.3.45)

and a function f of S-ordered operators ¢’, Dj

fs(a.p) = (S7f)(4,p)- (4.3.46)

Using Theorem 3.4.3 and property (3.4.29) it can be easily proved that all previous
formulas and theorems for the case of a Moyal quantization also hold true for a
general quantum system in (¢',p;) coordinates, provided that the tensor product
@y will be replaced by ®g and operators f(q,p) by fs(q,p). In particular, there
holds.

Proposition 4.3.3. Let f € C(T*V)[h] and p = ¢* Qg ¢ for v, € C°(V).
Then
FHIP) p =" ®g fs(q, P, (4.3.47a)
p ) f = (fs(4,p)' )" @s ¢, (4.3.47b)

where fs(q,p) is an S-ordered function of canonical operators of position ¢ = ¢'
and momentum p; = —ih(0, + %F?k), acting in the Hilbert space L*(V,du).

Proof. From Theorem 3.4.3 and Proposition 4.3.2 we get that

v)

FxeP) p= 5871 (f £4P) py = §(57Lf &P g-1p) = 5 (¥" @w (ST )(a,p)
(4.3.48)

= ¢" Qg fs(q,p)V

which proves (4.3.47a). Equation (4.3.47b) can be proved analogically. O



68 CHAPTER 4. OPERATOR REPRESENTATION

From Proposition 4.3.3 follows that operators f «%?) can be written as

f) =1 ®g fs(4,p)- (4.3.49)

Equation (4.3.49) allows to naturally identify functions f € C*°(T*V)[h] with op-
erators fs(d,p). Moreover, the map f — f = fs(G,p) is a representation of the
algebra Ao (T*V) = (C=(T*V)[K], x%?)) in the Hilbert space L*(V,dp).

Similarly, the analog of Proposition 4.3.1 holds true, which gives us a represen-
tation p — p of the algebra £ = (L*(T*V,dl),+P) in the Hilbert space L*(V,du)
given by p % =1®g4 p.

Furthermore, the following analog of Theorem 4.3.5 can be proved.

Theorem 4.3.6. Let f € C®(T*V)[h] and p € L*(T*V,dl). If f 9P p ¢
LY(T*V,dl) then
£+ pdl = tr(fs(4,p)p)- (4.3.50)
TV
In particular, if p = ©* @g Y for p, € C;°(V) then

f+9P pdl = (¢, fs(q, p)v). (4.3.51)
TV
Proof. Let {p;} be a basis in L*(V,du) and {p;;} = {} ®s ©;} an induced basis in
L*(T*V,dl). Function p can be expanded in the basis {p;;} resulting in p = Z CijPij-
2%
From Theorems 3.4.3 and 4.3.5, and property (3.4.29) we get that

f*(‘“’)pdl:/ SS‘l(f*(q’p)p)dl:/ ST TP g1
TV *V TV
=D ey [ ST AT S pydl = Z% i, f5(4, D))
i TV
= i te(f5(d,p)pig) = tr(fs@,za)p). (4.3.52)
2

]

Note, that for a general quantization the operator representation corresponding
to some coordinate system gives us the correspondence rule f — fs(q,p) which in
general is different than the Weyl correspondence rule. The Weyl correspondence
rule is associated only with the Moyal quantization and the Cartesian coordinate
system. To create an operator representation of the general quantum system in gen-
eral coordinates in a consistent way it is needed to use different orderings of position
and momentum operators (instead of using Weyl ordering for any quantization and
coordinate system we have to use S-orderings).

Let Q DU -V cRY ¢g— (¢....¢") and Q D U — V' c RY,

q — (q/l,...,q'N) be two almost global coordinate systems on Q, and T*U —
"V = VxRY =z~ (¢....¢",p1,...,pn) and T*U' — T*V' = V' x RV,

= (¢t . ¢, P, ..., py) induced canonical coordinate systems on 7%Q. A map
o: (¢ ....¢"™) = (¢',...,¢") is then a transformation of coordinates on the con-

figuration space Q and amap T (¢*,.... ¢, p\,....0N) = (¢*,....¢",p1,...,pN)
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is a canonical transformation of coordinates on the phase space T*Q. The transfor-
mation T is given by the formula (2.1.17).

In what follows we will investigate how the operator representation of quan-
tum mechanics behaves after changing the coordinates. First, note that a map
Up: L*(V,dp) — L*(V',dy/) given by

(Ur)(q) = ¥(e(q)) (4.3.53)

is an isomorphism of Hilbert spaces. Moreover, a map L*(T*V,dl) — L*(T*V’,dl)
given by
fes foT (4.3.54)

is also an isomorphism of Hilbert spaces. Let ®g and ®g be tensor products corre-
sponding to star-products 7 and «7*) respectively. The following theorem can
be proved.

Theorem 4.3.7. For o, € L*(V,du) there holds
(" ®s9p) o T = (Urp)* @ Ur, (4.3.55)

From Theorem 4.3.7 follows that operator representations of quantum mechanics
corresponding to different coordinate systems are unitarily equivalent. In particular,
we get that operators, corresponding to a function f € C*(T7™Q)[h] written in
different coordinate systems, are unitarily equivalent:

Theorem 4.3.8. For f € C*(T*V)[h] there holds

Fo(d,9) = Urfs(a, p)Uz", (4.3.56)
where ' = foT and §' = ¢', p; = —ih(0p +35T5) and §" = q", P = —ih(0yi +5T%)

are operators of position and momentum corresponding to the coordinates (¢',p;) and
(q", p;) respectively.

Proof. Let p = ¢* ®g 1. From Proposition 4.3.3 and Theorem 4.3.7 we get from
one side

(f 0P p)oT = f'5 %) (poT) = (Urg)* @g fo(d,§)Ur¢ (4.3.57)

and from the other side

(f ¥4 p)o T = (¢* ®s fs(4,p)v) o T = (Ury)* ®@s Urfs(d,p)v
= (Ur¢)* ®s Urfs(d,p)Us ' Ur. (4.3.58)

Comparison of the above two formulas implies the result. ]

Remark 4.3.1. If qi,ﬁj are operators of position and momentum defined on the
Hilbert space L*(V,du) and corresponding to the coordinate system (q’,p;), and
if T7q,p) = (Q%(q,p),...,Q"(q,p), Pi(q,p), ..., Px(q,p)) is a transformation to
the coordinate system (q’i,p;-), then the maps Q', P; are observables of position
and momentum on the phase space TV corresponding to the coordinate system
(¢",p}). To the maps @', P; we can relate operators Q%(q,p), (P;)s(q,p) which are



70 CHAPTER 4. OPERATOR REPRESENTATION

operators of position and momentum defined on the Hilbert space L*(V,dp) and
corresponding to the coordinate system (q”,p;-). From Theorem 4.3.8 we get that

§" = UrQs(q, p)Ur ", (4.3.592)
p; = Ur(P;)s(4,p)Ur " (4.3.59b)

Equation (4.3.59a) is a statement of the fact that the unitary operator Uy gives a
position representation of the quantum system for the operators Qg(d,ﬁ), i.e. the
unitary operator Uy writes the operators Q'(G,p) as operators of multiplication by
a coordinate variable.

4.3.3 Invariant form of the operator representation

So far we introduced the operator representation of quantum mechanics correspond-
ing to some coordinate system on the configuration space. In what follows we will
use the developed formalism to introduce an operator representation in a coordinate
independent way. Let ¢: Q D U — V C R be an almost global coordinate system
on the configuration space Q and ®: T*U — TV =V x R a related almost global
canonical coordinate system on the phase space T7Q. Since the coordinate system
¢ is almost globally defined it defines an isomorphism U : L*(Q,dw,) — L*(V,dpu)
of the Hilbert spaces given by

U =tlyog™. (4.3.60)

Indeed, the restriction |;; is a natural isomorphism of L*(Q, dw,) onto L*(U, du) since
for ¢ € L*(Q,dw,), ¥ and |y are equal almost everywhere and Hilbert spaces of
square integrable functions are constituted of equivalence classes of functions equal
almost everywhere. Similarly, the coordinate system ® defines an isomorphism of
the Hilbert space L*(T*Q, dl) onto the Hilbert space L?(T*V,dl). We can now define
a tensor product ®@: (L*(Q,dw,))* x L*(Q,dw,) — L*(T*Q,dl) by the formula

e @U=(Up) ®sU)o®, ¢, e L*(Q,dw,), (4.3.61)

where ®g: (L*(V,du))* x L*(V,du) — L*(T*V,dl) is a tensor product corresponding
to the coordinate system ®. The definition of the tensor product ® is independent
on the choice of a coordinate system. Indeed, if ¢': Q@ D U’ — V' c R is an
another almost global coordinate system on Q, ®: T*U' — T*V' = V' x RY a
related almost global canonical coordinate system on 7%Q and U’: L*(Q,dw,) —
L*(V',dy') a Hilbert space isomorphism induced by ¢’ then T = ® o & ! is a
canonical transformation of coordinates and Up = U'U~" a related unitary operator
(4.3.53). Then from Theorem 4.3.7 follows that

@Y= (Up) ®sUtp)oT o ® = (UrUp)* ®g UrUi)) o &'
= (U'p)" @s U'p)) 0 @' (4.3.62)

The tensor product ® inherits all properties of the tensor products ®g. In
particular, the following theorems hold.
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Proposition 4.3.4. For every p € L*(T*Q,dl)
px =1® p, (4.3.63)

where p € Bo(L*(Q,dw,)) is some Hilbert-Schmidt operator defined on the Hilbert
space L*(Q, dw,). Conversely, for every p € By(L*(Q,dw,)) the operator 1®pis of
the form px for some p € L*(T*Q,dl).

The following properties are fulfilled:

(i) for p=¢ @1, p=(p, ),
(ii) px =1 pl,

_ 4 = tofs
(iiz) tr(p) /T o tr(p),

(iv) for pr,p2 € LA(T*Q,dl) and py, 2 € Ba(L*(Q,dw,)) such that py» =1 py
and ps x =1 & po
(p1, p2) = (P1, P2)2, (4.3.64)

(v) fxfxpdl >0 for f € CE(T*Q) if and only if (v, pp) > 0 for ¢ €
T+ Q
L*(Q, dw,).

Proposition 4.3.5. Let f € C(T"Q)[h] and p = p* @ for p,¢ € C3°(Q). Then

fxp=o*® fo, (4.3.65a)
pxf=(flo) @1, (4.3.65b)

where f 15 some operator acting in the Hilbert space LQ(Q,dwg). Furthermore, if
(¢*,...,q") is some almost global coordinate system on Q, (¢*,...,q¢",p1,...,pN) @
related canonical coordinate system on T*Q, and Ua corresponding unitary operator
given by (4.3.60), then o

U0~ = fo(d, ). (4.3.66)

Theorem 4.3.9. Let f € C™(T*Q)[h] and p € L*(T*Q,dl). If fxp € L'(T*Q,dl)
then

/ frpdl =tr(fp). (4.3.67)
*Q

In particular, if p= ¢* @Y for p, € C°(Q) then

T*Qf*pdl = (¢, f1). (4.3.68)

From Proposition 4.3.4 follows that the map p — p is a representation of the
algebra £ = (L*(T*Q,dl), ) in the Hilbert space L*(Q,dw,). Furthermore, from
Proposition 4.3.5 follows that functions f € C*°(T*Q)[h] can be naturally identified
with operators f through the formula

frx=1a/f. (4.3.69)



72 CHAPTER 4. OPERATOR REPRESENTATION

Moreover, the map f — f is a representation of the quantum Poisson algebra
Ao(T*Q) = (C*(T*Q)[h], *) in the Hilbert space L*(Q,dw,). By virtue of Theo-
rems 4.3.3 and 4.3.4 we get the following characterization of quantum states.

Proposition 4.3.6. Pure states can be alternatively characterized as functions
Ppure € L*(T*Q,dl) which are self-conjugated, normalized, and idempotent:

Ppure = ﬁpure; (4370&)

/ Ppure dl = ]-7 (4370]3)
*Q

Ppure * Ppure = Ppure- (4370C)

Mixed states pmix € Lz(T*Q, dl) can be characterized as convex linear combinations,

possibly infinite, of some families of pure states pgl‘l{e

Pmix = Zp/\pgl\l)rev (4371)
A

where py > 0 and Zp,\ =1.
A

Remark 4.3.2. If $: @ D U — V C R" is an almost global coordinate system on
the configuration space Q, ®: T*U — T*V = V xR" a related almost global canon-
ical coordinate system on the phase space 7°Q, and U : L*(Q,dw,) — L*(V,dp) an
isomorphism of the Hilbert spaces given by (4.3.60), then the maps ¢' = ®" and
pj = Ity (1,7 = 1,2,...,N) are observables of position and momentum corre-
sponding to the coordinate system ®. To the maps qi,pj we can relate operators
G',p; defined on the Hilbert space L?*(Q,dw,). The operators ¢’ = ¢' are of the
form of multiplication operators by coordinate functions ¢* and they constitute a
complete set of commuting observables. Thus they can be used to create a represen-
tation corresponding to the coordinate system ¢. In this representation operators
¢’ take the form of the multiplication operators by a coordinate variable, which
are defined on the Hilbert space L*(V,dy). In accordance to (4.3.66) the unitary
operator giving this representation is equal U.

4.3.4 Examples of quantum mechanical operators

In what follows we will consider such quantization of a classical system on 7" Q for
which the morphism S giving the equivalence with the Moyal quantization is in the
form (3.4.72) for any classical and quantum canonical coordinate system. We will
derive the form of operators corresponding to functions linear, quadratic and cubic
in momenta. Note, that the terms of order higher or equal to A* in (3.4.72) are at
least of the fourth order in J, so the formula (3.4.72) is enough to calculate the
action of S on functions that are up to cubic in momenta. First, let us consider
a function H on T*Q linear in momenta, which in some canonical coordinates on
T Q takes the form

H(q,p) = K'(q)ps, (4.3.72)



4.3. OPERATOR REPRESENTATION OVER A CONFIGURATION SPACE 73

where K' are components of some vector field K defined on Q. The action of the
morphism S on H leaves the function H unchanged:

(S~'H)(q,p) = K'(¢)pi- (4.3.73)

From this and (4.1.31) to H will correspond the following self-adjoint operator

N Lo Lo
Hs(q,p) = §K (§)p; + ipiK (). (4.3.74)

By virtue of (4.2.7) the above equation can be written in the form

Hy(@,0) = =% (2K + K',+ ThK') = =2 (2K'0, + K1) . (43.75)

Finally, we can write the above equation in the following invariant form
. ih ; ; wh o, :
Hs(q,0) = =% (2K'Vi+ K';) = = (K'Vi+ ViK'). (4.3.76)

Now, let us consider a function H on T Q quadratic in momenta, which in some
canonical coordinates on 77 Q takes the form

Hla.p) = 5K @nin; + V(@) (1.3.77)

where K% are components of some symmetric tensor field K defined on Q and V' is
a smooth function on Q. The action of the morphism S on H results in the following
function

(ST H)(q,p) = %K”(Q)pipj +Vi(g) — %(iKij,k(q>Fi'€j(q) + }lK”(q)Fﬁ(CJ)FZj(Q)
- %bKi{U(q) + %am’ (q)Rij(q)). (4.3.78)

From this and (4.1.31) to H will correspond the following self-adjoint operator

Hs(4,p) = = (

| R D .
5 \ 7K @pip; + 5P (@)D; + P K ](Q)) +VI(q)

4 2

hQ 1 17 ~ ~ 1 37/ A ~ ~ 1 11 ~ 1 11/ A A~
=5 (FE @S + TR @@L @ - 10K, + Jak DR

By virtue of (4.2.7) the above equation can be written in the form

. R (. y Y 1. 1. 1
Hs(q,p) = ) (K”&f@qﬂ’ +K”F§'zaqi+K ],iaqj+§K”F§'l,i+ZKljrfkré'l+§[(J,iré'l
11 - 1
+ =KV + K" I} + ~KYT;T}, — 1

» 1 .
DKV + ~aKYR; | + V. (4.3.
1 1 1 T 70 RJ)+V (4.3.80)
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Using the equality Ki{k = —K"T%, — K", + Kij;k the above equation simplifies
to

h2 g g g 1 g 1 g
Hs(q.5) =~ (K”aqiaqf+K”F258qz-+f<”,ié‘qj+1(1—b>K”ﬂj—1<1—a)K”Rij) V.
(4.3.81)
Note, that (4.3.81) can be written in the following invariant form
q.D h ij 1 ij 1 ij

where ViKijVj = Ay is the pseudo-Laplace operator. For a special case when K
is the standard metric tensor g on the configuration space, the function H has the
form of a natural Hamiltonian (3.2.2), and equation (4.3.82) reduces to

2

o hi
Hs(q,p) = —=

. 1
9 (QUVZ‘V]‘ - —(1 — (l)R) + V. (4383)

4

Observe, that V,;g”V; = ¢g?V,;V; = A is the Laplace-Beltrami operator. Note, that
for a flat metric tensor g the family of morphisms .S depends only on the parameter
b and consequently we have one-parameter family of quantizations which, according
to (4.3.83), coincide for a class of natural Hamiltonians (3.2.2).

Finally, Let us consider a function H on T*Q, which in some canonical coordi-
nates on 7@ is cubic in momenta (we skip the lower terms in momenta):

H(q,p) = K" (q)p:pipr, (4.3.84)

where K% are components of some symmetric tensor field K defined on Q. Similarly
as in the previous case we can derive the form of the corresponding self-adjoint
operator:

1 g g 1 i
Hs(q,p) = il (viw’fvjvk + ViV KV + (1= 0) VK"

+ (1=K, Y, — Z(l —a)V; K% Ry, — §(1 — a)Kiijjkvi). (4.3.85)

4

A

Note, that the received operators are defined on the Hilbert space L*(V,du) and
correspond to a given canonical coordinate system (¢, p;). These operators are writ-
ten in an invariant form and consequently they can be treated as operators defined
on the Hilbert space LQ(Q,dwg). Indeed, using the unitary operator U related to
the coordinate system (q’,p;) and given by (4.3.60) we can receive, in accordance
to the formula (4.3.66), operators defined on the Hilbert space L*(Q, dw,).

4.3.5 Example of the hydrogen atom

Let us consider a quantum system of the hydrogen atom. A configuration space of
such system is the 3-dimensional Euclidean space E3. It represents the position in
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space of an electron of the hydrogen atom. A phase space of the system is 7% E?
and a Hamiltonian H in Cartesian coordinates takes a form

2 2 2 2
Pz tp, P 1 €
H('r?yazapxapyapz) - 2m, - 47T€0 /[BQ + y2 + 22'

As a star-product on T*E® is taken the canonical *-product which in the Cartesian
coordinates takes a form of the Moyal product. In the operator representation in the
Cartesian coordinate system the Hilbert space of states takes the form of the space
L*(R?) of functions on R* square integrable with respect to the Lebesgue measure.
The canonical operators of position and momentum take the standard form

(4.3.86)

(szxa (jy:yy (jZ:Z,

4.3.87
f)x = _Zha:m ﬁy = _ihay’ ﬁz = _ihaz’ ( )

and the Hamilton operator, being a symmetrically ordered function H of the oper-
ators of position and momentum, takes a form

h? 1 2
- ‘ ,
2m dmey (/a2 4 y2 + 22

where A = 92 + 85 + 92 is the Laplace operator in the Cartesian coordinates.

Now, let us consider the quantum system and its operator representation in the
spherical polar coordinates. The Moyal product in the Cartesian coordinates, under
the point transformation to spherical polar coordinates (2.2.8), transforms to a star-
product of the form (3.4.40). In accordance to Theorem 3.4.3 this star-product is
equivalent to the Moyal product, where the equivalence morphism S, by virtue of
(3.4.71), is equal

H (G, Gy, Gzs P, Py, P=) = — (4.3.88)

h2 2 1 2 2 1 1 2
S =id+— (7&8 - (2tan2 i 1) 0y, — 0, + maprape + T_2p9aprapﬂ

1 2 I 1

_ ﬁp,,@pﬁ;e + mm@ OpgOpy — (§pr sin? 6 + ;pg sin 6 cos 9) 8pﬁ — —p933
1 1 1

p¢8£eap¢ Po0p, 0 — —p¢33 2p¢333p¢ — 57"07«859 — —rsin® 9&8;2%

1
tan2 6 Po=pe 2

1 1 . 1
+ ;3981)7,8179 b sin @ cos 9896§¢ + ;3¢8p70p¢ + m3¢3p93p¢) +o(h*). (4.3.89)

+

The Hamilton function (4.3.86) in the spherical polar coordinates takes a form

1 pg pi 1 6
H<T707¢7p7’7p97p¢) 2 - + + . 2 (4390)

r2 " r2sin26 ) dweg v

and the action of the morphism S on the transformed Hamilton function (4.3.90)
results in the following function

7 1 7 1 e?
(S 1H>(T767 ¢7p7“7p97p¢> 2 (pr + — p9 + ¢ ) - —

r2 " r2sin?6 ey 1

i ( ! +1) (4.3.91)

8mr2 \ sin’#
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Note the extra term in (4.3.91) dependent on A. Thus, the quantum system in the
spherical polar coordinates can be described by the Hamiltonian (4.3.90) and the
star-product in the form (3.4.40), or equivalently by the Hamiltonian (4.3.91) and
the Moyal star-product.

In the operator representation in the spherical polar coordinates the Hilbert
space of states is equal L*(V, du), where V = (0, 00)x (0, 7) x (0, 27) and du(r, 0, ¢) =
r?sin @ dr dfd d¢, and the operators of position and momentum take a form

(jr‘:ra q@zea qA¢:¢a

X , 1 X : R _ (4.3.92)
P, = —ih &A—; , Do = —ih | 0y+ , Dy = —1h0y.

2tan 6

The Hamilton operator is calculated as an S-ordered Hamilton function (4.3.90) of
the operators of position and momentum (4.3.92), or equivalently as a symmetrically
ordered function (4.3.91) of these operators:

HS(qATJ (197 (j¢7ﬁ7’7ﬁ97ﬁ¢) - (571H>((j7'7quandhﬁMﬁ@?ﬁ(ﬁ)
h? 2 1 1 1 1 e?
=—— 0P+ 20, + = |07 O+ ——0%|| — —. (4.3.93
2m[r+r +r2<0+tan9 0+sin2¢9¢ dmey ( )

Note, that the expression in square brackets is just the Laplace operator written in
spherical coordinates. A direct computation shows that the operators (4.3.88) and
(4.3.93) are unitarily equivalent, where a unitary operator giving this equivalence is
equal

Ur: LA(R®) — LAV, dp), (Up)(r,0,¢) = 1 (rsinf cos ¢, rsin @ sin ¢, r cos 6).
(4.3.94)
Note, that the property that the spherical polar coordinates are almost global is
crucial to get the unitarity of Uy. Since the operators (4.3.88) and (4.3.93) are
unitarily equivalent they have the same spectra, and solving the eigenvalue problem
of one of these operators gives the solution for the other operator.



Chapter 5

Quantum trajectories

5.1 Preliminaries

We will consider the Moyal quantization of a classical Hamiltonian system (M, w, H),
where a phase space M = R*, symplectic form w = dp; A d¢’, and Hamiltonian
H € C°°(M) is an arbitrary real function.

The solution of quantum Hamiltonian equations

Q'(t) = [Q'(t), 1], Fy(t) =[P(t), H], (5.1.1)

where Q*(q, p,0) = ¢' and P;(q,p,0) = p;, i.e., the Heisenberg representation (3.2.25)
for observables of position and momentum, generates a quantum flow ®; in phase
space according to an equation

®(q,p; h) = (Q(q, p,t; h), P(q, p,t; h)). (5.1.2)

For every instance of time t the map ®; is a quantum canonical transformation
(quantum symplectomorphism) from the coordinates ¢', p; to new coordinates i
Q'(q,p, t; h), p;- = Pj(¢,p,t;h). In other words @, preserves the quantum Poisson
bracket: [Q(1), P](t)]] = 5; (this can be easily seen from (5.1.8) and the fact that
[Q°(0), P;(0)] = [g",ps] = 95)-

The flow ®,, as every other quantum canonical transformation, can act on ob-
servables and states as a simple composition of maps. Such classical action can
also be used to transform the algebraic structure of the quantum Poisson algebra so
that the action will be an isomorphism of the initial algebra and its transformation.
A star-product %, being the Moyal *-product transformed by ®; is defined by the
formula

(frg)o® = (fo® ) x(go®"), fgeC®R™)[A. (5.1.3)

The x-product takes the form of the Moyal product but with derivatives 0, O,
replaced by some other derivations D,i, D,, of the algebra C*(R*Y):

1 — 1 —
fxg= fexp (?h@Dm — §ihmei> g, (5.1.4)
where derivations D, D,, are transformations of the derivatives d,i, 0p,:
0pf) 0 ¥ = Dy(fo07Y), (9 f) 0 @7 = Dy (f 0 07, (5.15)

7
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The crucial point of our construction is the observation that for quantum flows the
*-product is equivalent to the Moyal product (see Theorem 3.4.3 and Remark 3.4.1).
Strictly speaking, to a quantum flow ®; there corresponds a unique isomorphism S;
of the form (3.1.6) satisfying

Se(f * g) = Scf % Sig, (5.1.6a)
S’ =4q', Sip;=p;, (5.1.6b)
Sif =Sif. (5.1.6¢)

A formal solution of the time evolution equation (3.2.25) for an observable A €
C*>®(R*V)[R] can be expressed by the formula

A(t) = e 11 4(0) = e« A(0) % e+ (5.1.7)

In particular, the solution of (5.1.1) takes the form
Q'(t) = I 1Q(0) = e« QU(0) e (5.1.82)
Pi(t) = e 1P,(0) = ef " % P;(0) % “”{, (5.1.8b)

which for a fixed initial condition Q*(g,p,0) = ¢' and Pj(q,p,0) = p, represents a
particular quantum trajectory.

A time evolution of an observable A € C*(R*M)[A] should be alternatively
expressed by an action of the quantum flow ®; on A. The composition of ®; with
observables (the classical action of ®; on observables) does not result in a proper time
evolution of observables. Thus it is necessary to deform this classical action. We will
prove that a proper action of the quantum flow ®; on functions from C>°(R*™)[A]
(a pull-back of @) is given by the formula

DA = (S,A) 0 Dy, (5.1.9)

where S; is an isomorphism associated to the quantum canonical transformation
®; . Indeed, (5.1.9) can be proved first by noting that

;Q'(0) = (S:Q'(0)) 0 & = Q(0) 0 &, = Q'(t) = e "1 (0) (5.1.10)

and similarly
®rP;(0) = e~ -1 p(0), (5.1.11)

where the fact that S,¢' = ¢' and Sip; = p; was used, which on the other hand was
a consequence of the quantum canonicity of ®,. Secondly, ®; given by (5.1.9) is an
automorphism of Ag(R*Y) as

O (Ax B) = (Si(Ax B)) o @, = (S, A% S,B) 0 ®, = ((S;A) 0 &) % ((S:B) 0 By)
= OF A% DI B, (5.1.12)

where %, denotes a star-product transformed by ®;!. Thus

Py = ] (5.1.13)
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holds true since every function in C*(R*™)[A] can be expressed as a x-power series.

In a complete analogy with classical theory one can define a quantum Hamil-
tonian vector field by (g = [-, H]. Then (5.1.13) states that ®; is a flow of the
quantum Hamiltonian vector field (5. Also in an analogy with classical mechanics
{®;} is a one-parameter group of quantum canonical transformations with respect
to a multiplication defined by

Dy, @, = (Si,Pry) 0 Do, (5.1.14)
where S,,®,, denotes a map R* — R?" given by the formula
St2q)t1 - (StQQl(tl)y'"7St2PN(t1))a (5115)

where ®;, = (Q'(t1),...,Q" (1), Pi(t1), ..., Px(t1)). Multiplication defined in such
a way satisfies properties similar to their classical counterparts:

@0 — ld, ®t1¢t2 — q)t1+t27 (5116)

proving that {®;} is a group. Further on we will call it a quantum composition.
The quantum composition rule given by (5.1.14) is properly defined since it respects
the quantum pull-back of flows:

(B, ®y,)" = D, 0 D], (5.1.17)

Indeed, it is enough to show (5.1.17) for an arbitrary x-monomial. For simplicity we
will present the proof for a two-dimensional case and for a x-monomial ¢ x p. Using
the fact that S;q = q and Syp = p for every ¢, following from quantum canonicity of
the flow ®,, one calculates that

(@7, 0 B} )(gxp) = P}, (St (g% p)) 0 By,) = D}, ((q 41, p) © Dy,
= 0}, (Q(t) * P(t1)) = (Su(Q(t1) * P(t1))) o Py,

= (StQQ(tl) *t2 StQP(t1>) o ®t2 = (q *t2,t1 p) ° Stzq)tl o (pt27
(5.1.18)

where %, , %;,, denote Moyal products transformed, respectively, by transformations
®, ', @', and *4,,, denotes the x4,-product transformed by (S;,®¢,)~". Now, from
the relation Sror, = S 1S, valid for any quantum canonical transformations
Ty, Ty defined on the whole phase space (St,or, is an isomorphism intertwining
star-products x and xp,op,, S7,. 7, intertwines xp, with xpop,, and Sy, intertwines
* with %7, where xp, and xp,op, are Moyal products transformed, respectively, by

transformations 77 and T; o Ty), one receives that

5(<1>t1<1>t2)*1(q *p) = Sq>;21,(st2q>t1)—1 Stg(q *P) = S@;;,(Stgfbtl)—l(q Ktg P) =g *tyty D-
(5.1.19)
Hence

(@7, 0@} )(g*p) = S(@,01,)-1(qx p) 0 Sy, Ppy 0 By, = (P, P,)" (g * p). (5.1.20)
In the limit & — 0, (5.1.8) reduces to classical phase space trajectories
Q') =7 IQ0),  Pit) = e I P(0),

i Z. (5.1.21)
Q<Q7p>0)ZQ7 P](q)p70):pj7
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which are formal solutions of classical Hamilton equations

Q'(t) ={Q'(t), H}, Fy(t) = {P;(t), H}. (5.1.22)

In more explicit form classical trajectories are represented by a flow (diffeomor-
phism)
Oy (x,p) = (Q(z,p,t), P(x,p,t)), (5.1.23)

which is an A — 0 limit of the quantum flow (5.1.2). Diffeomorphism (5.1.23) is a
classical symplectomorphism. An action of the classical flow ®; on functions from
Ac(R*) (a pull-back of ®,) is just a simple composition of functions with ®,, being
an ii — 0 limit of (5.1.9)

A= Ao, (5.1.24)

{®;} forms a one-parameter group of canonical transformations, preserving a clas-
sical Poisson bracket: {Q'(t), P;(t)} = 0, with a multiplication being an ordinary
composition of maps

Oy Dy, = Dy, 0 Dy, (5.1.25)

which is the A — 0 limit of (5.1.14).

5.2 Examples

5.2.1 Example 1: Harmonic oscillator

In this example we will consider quantum trajectories of the harmonic oscillator.
The Hamiltonian of the harmonic oscillator is given by the equation

H(q,p) = % (P* + ). (5.2.1)

It happens that in such case the quantum trajectory coincides with the classical
one. Indeed, one can show that

Q(t) = e 11Q(0) = U1 Q(0), (5.2.2a)
P(t) = e H-1p(0) = 1 p(0) (5.2.2b)

and in explicit form classical/quantum trajectory ®;, = (Q(t), P(t)) of the harmonic
oscillator is

Q(g,p,t) = geoswt +w ™ psinwt, (5.2.3a)
P(q,p,t) = pcoswt — wqsin wt. (5.2.3b)

Observe that the classical action (composition) of ®; on the algebra of observ-
ables preserves the Moyal product, i.e.,

(fxg)o®i=(fod)x(g0B), f,geC®R*™M)[A]. (5.2.4)

Thus in accordance with (5.1.6) the unique isomorphism S; associated with ®; is
equal S; = id. This means that the action of the flow ®; on observables (5.1.9) as
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well as the quantum composition rule (5.1.14) for the flow is equal to the classical
composition. In other words the time evolution of observables is the same as in
classical case. The difference between the classical and quantum system is in the
admissible states which evolve along the flow. In classical case states are probabilis-
tic distribution functions, whereas in quantum case states are quasi-probabilistic
distribution functions. In particular, classical pure states are Dirac distribution
functions, however, quantum pure states will no longer be of such form due to the
Heisenberg uncertainty principle.

5.2.2 Example 2

In this example let us consider a two particle system described by the Hamiltonian

2
P 3
H(q,p) = =—— + == + kq'p3, (5.2.5)

2m1 2m2

where m; and my are masses of particles and k is a coupling constant. The solution
of quantum Hamilton equations (5.1.1) reads [71]

1

Ht)=q'+ —pit - ot 5.2.6
Q(t)=q + LA L ( a)
Pi(t) = p1 — kpat, (5.2.6b)

2 2 1 1 k kQ 343
Q(t)=q + 2t 2kqpa | T+ —plpzt R ot (5.2.6¢)

2

Ps(t) = pa, (5.2.6d)

which coincides again with a solution of classical Hamilton equations. However, in
accordance with (5.1.3) the received quantum flow ®; transforms the Moyal product
to the following product

fHg= fexp (%zhﬁqlf — %zhﬁpD—qv g, (5.2.7)

where
Dp = 0p + 2ktp28q : (5.2.8a)
D,, =0, + ta 1 + F t *pal,e, (5.2.8b)
Dp = 0p, (5.2.8¢)

ko, 1 ko, Kk,
l)p2 = 6p2 — Zktpgapl - m—lt p28q1 + —t + thq — —t P1 — m—t p2 qu.
(5.2.8d)

Moreover, the isomorphism S; associated with ®; and intertwining the Moyal prod-
uct with the x;-product takes the form

1.,k 1 1,k
St = exXp (thm—1t2aqla§2 + thktﬁplag 12 le t3p2832) . (529)



82 CHAPTER 5. QUANTUM TRAJECTORIES

Indeed, a direct calculations show that the relations (5.1.6) are satisfied. More
details of the construction of S; the reader can find in [42].

As in this case S, ®;, = P, the group multiplication for {®;} is just a com-
position of maps, as one could expect since ®; is simultaneously the classical and
quantum trajectory. However, the action of ®; on observables and states does not
reduce in general to a composition of maps (5.1.24). This shows that the time evo-
lution of quantum observables differs in general from the time evolution of classical
observables.

One can check by direct calculations that the action of the quantum flow ®; on
an observable A, given by (5.1.9), indeed describes the quantum time evolution of
A. As an example let us take A(q,p) = qi¢3. Then

1.,k
(5:A4)(¢:p) = 13 + 7h*—1° (5.2.10)
my
and it can be checked that
1., k
A(l) = (Si4) 0 @0 = Q1)@ (1)) + 77° —17 (5.2.11)
1

satisfies the time evolution equation (3.2.25).

5.2.3 Example 3

In this example we will consider a system described by a Hamiltonian

H(q,p) = ¢°p". (5.2.12)

The solution of quantum Hamilton equations (5.1.1) reads [37]

2
Q(q, p,t; h) = sec?(ht)q exp (ﬁ tan(ht)qp) , (5.2.13a)
2
P(q,p,t; k) = sec®(ht)p exp (_7_1 tan(ht)qp> , (5.2.13b)

for |t| < g7. This solution is a deformation of a classical one given by the limit
h—0

QC(Qapa t) = q62tqp7 PC(Q7p; t) = p€_2tqp. (5214)

The induced quantum flow @, is an example of a flow for which ®;, for every ¢t €
(—2, =) \ {0}, is not a classical symplectomorphism, since

{Q(t), P(£)} = sect(ht) # 1. (5.2.15)

In accordance with (5.1.3) the quantum flow ®; transforms the Moyal product
to the following product

1 1
frg=Ffexp (yﬁﬁp - 5@'71732171) g, (5.2.16)
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where
D, = sec?(ht) (1 + Qta(ht)qp) exp(2ta(ﬁt)qp) 0y
— 2t sec®(ht)a(ht)p® exp (Qta(ht)qp) Op, (5.2.17a)
D,, = 2tsec®(ht)a(ht)q* exp(—2ta(ht)gp)d,
+ sec?(ht) (1 — Qta(ht)qp) exp(—Zta(ht)qp) Op, (5.2.17Db)
tan(z) . : : . .
and a(z) = ————. Moreover, the isomorphism S; associated with ®, and inter-
x sect(x)

twining the Moyal product with the x;-product, up to the second order in h, takes
the form

1 ) ) 1 ) )
S, = id +h? (6(3152(]3 + 4t5q4p)82 + 6(3t2p3 — 4t3qp4)8§

1 1
+ 5(=tp = Cqp® + 4°¢°p*)0,0; + 5 (tg — £°¢°p — 4t°¢°p*) 90,

+ (26°¢° + 26°¢°p)0; + (2°p” — 2t°qp*) 0 + (—2t2qp)aq6p) +o(hY). (5.2.18)

Indeed, expanding relations (5.1.6) with respect to i one can prove that S; in the
above form satisfies these relations up to o(h?).

From the fact that ®, is a purely quantum trajectory, we deal with the quantum
group multiplication (5.1.14) for {®;} as well as the quantum action (5.1.9) of ®,
on observables and states. Indeed, expanding (5.2.13) with respect to A:

Q(g,p, t;h) = Q¢ (1 + h? <t2 + %t?’qp)) + o(RY), (5.2.19a)
P(q,p,t;h) = Pg (1 + B (t2 — §t3qp>) + o(h*) (5.2.19h)

and applying isomorphism S; (5.2.18), it can be calculated that the quantum com-
position law

Q(tl + tg) = StQQ(t1> o) CI)tz = StlQ(t2> 0] CI)tp (5220&)
P(tl + tg) = St2p<t1) o (I)t2 = Stlp(t2> o (I)tl (5220b)

holds up to o(h?). Note also, that the flow ®, is not defined for all ¢ € R but only on
an interval (—g, 57), contrary to classical flows which are always globally defined.
This is an interesting result showing that in general the quantum time evolution do

not have to be defined for all instances of time ¢.






Chapter 6

Summary

In the thesis was developed an invariant quantization procedure of classical Hamil-
tonian mechanics. The main results include:

e use of deformation approach to quantization for developing an invariant de-
scription of quantum mechanics,

e construction of the two-parameter family of star-products on a cotangent bun-
dle to a general Riemannian manifold, which reproduces most of the results
received by different approaches to quantization found in the literature,

e construction of the operator representation of quantum mechanics for any
coordinates on the configuration space and in a coordinate independent way,
this includes generalization of the concept of ordering of operators of position
and momentum,

e development of the theory of quantum trajectories on a phase space.

The presented theory is a promising starting point for a further development.
Especially interesting would be to create a quantum analog of classical theories
of integrable systems such as bi-Hamiltonian systems. The received geometrical
approach to quantum mechanics, which includes coordinate transformations and
quantum trajectories, gives a potential possibility of developing such theories. Some
preliminary results were received in our papers [79, 86].

Another interesting development of the presented formalism would be an incor-
poration of spin degrees of freedom. Some results in this direction can be found
in the literature [87, 88|, where the authors use a Grassmann variant of classical
mechanics.

The received theory allowed for quantizing systems defined on curved spaces.
This can be used to introduce quantization of systems with constrains. Moreover, it
is possible to formulate a relativistic version of the theory, which together with the
possibility of quantizing systems on curved spaces allows for introducing quantum
mechanics coupled with a classical gravitational field [89].

The theory of quantum trajectories can be used to investigate quantum geometry
of a phase space. In particular, it might be possible to develop a version of non-
commutative geometry in which quantum mechanics could be described. Moreover,
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the phase space formalism of quantum theory may be adopted to describe a non-
commutative quantum mechanics in which a non-commutativity of observables of
position is introduced [90].

The presented formalism could also be used as a starting point in developing a
theory of quantum fields in the language of deformation quantization [91].



Appendix

A Proof of Theorem 3.4.3

First let us endow C*°(M)[#] with a topology. The space C°°(M) can be considered
as a Fréchet space with a standard topology of uniform convergence on compact
subsets in all derivatives. The space of formal power series C*°(M)[h] can be treated
as the Cartesian product of countable family of copies of the spaces C*°(M), i.e.

formal series Z R* fi can be identified with sequences (fo, f1, fo,...). We can hence

k=0
endow the space C*°(M)[h] with the product topology.
We will prove Theorem 3.4.3 by directly constructing the morphism S. The
proof will constitute with a series of lemmas.

Lemma A.1l. Equations (3.4.25) are equivalent with the following equations

S\ f) = 22+ 5, (A.la)
Sz = x“, (A.1b)
Sf=Sf. (A.lc)

Proof. Indeed, if the conditions (3.4.25) are fulfilled then trivially the conditions
(A.1) are fulfilled. Assume now, that the conditions (A.1) are fulfilled. From (A.1)

it follows that (3.4.25a) will be satisfied for every f in the form of a *E@)—polynomial.
For example when f = z“ *g\? 2” then

S(f *EC? g) = S(z” *5@) z? *S\‘? g) = z* %@ (2P *S@) g) = 22 % 27 x@) gg

= 52 %@ S8+ g = Sz %) 2P) k) g = 5f x*) S (A.2)
Every polynomial with coefficients from C[h] can be written as a *g\?—polynomial.
Since the space of polynomials is a dense subspace of C°°(M) the space of polyno-
mials with coefficients from C[A] is dense in C*°(M)[A]. The morphism S as well as

*SC}) and ™ _products are continuous as formal series of differential operators, hence

(3.4.25a) will be satisfied for every f € C*(M)[h]. O

M 9 A.
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and the operator z® ) can be written in the form

1 = (in\"
@ =g 4 éihaa + Z (%) A7, (A.4)
k=2

where 0% = 70,5 and AL f = Ci(z%, f).

Lemma A.2. Let S = Z h*Si, where Sy = id. Then S will satisfy (A.1) iff
k=0

k l
1
[Sgk’ xo‘] = Z (_Z) ASZSQ(k_l), (A5a)
=1
k 1 l
[SQk, aa] = Z (_Z) Agl+1s2(kfl)7 (A5b)

=1

and Sor_1 =0 fork=1,2,....

Proof. Equation (A.la) takes the form

DS+ Y SIS 0% = Y a4y SO,
k=0 k=0 k=0 k=0
[e'e) o0 . l
]
+Y > (§> RFHAZS,. (AL6)

k=0 [=2

Regrouping terms with even and odd £k and [ in the last term in the above equation
we get

i RFSy, z%] + %z i RS, 0% = i i 2l ( ) Ay San
k=0 k=0

n=0 [=1

o oo 1 1 1 0o 00 1 l
n Z Z p2n+2i+1 (_Z) AL Soi1 + 5@ Z Z p2n 2041 (_ ) AS 1S,
n=0 [=1

n=0 [=1
. . 1\'

Regrouping terms with even and odd £ in the left hand side of the above formula
and replacing the summation over n and [ by a summation over £k = n + [ and [ we
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receive
) 0o 1 0o
Z h2k [52k7 xa] + Z h2k+1[52k+1, :L,a] + 5@ Z h2k+1[52k7 aa] +
k=0 k=0 k=0

oo 00 k l
1. o 1 o
5 > B[S0, 0% = Y D (7) A5 Sk
k=0 k=1 =1
k

0 k ! > :
1 1 . 1 «
+ E R E (_1> Ay Sa(k—1)+1 + 5 E :h%q Z (_4_1) A1 521
ot - k=1

= = =1

00 k l
1 N
+ 52 Z h2k+2 Z (_Z_L> A21+152(k_l)+1. (A8)
k=1

=1

Comparing terms with the same order in % and using (A.lc) we get the following
recursive equations for Sy

k l
1
[Szk,xo‘] = Z <_Z> AngQ(k_l), (A9a)
=1
k 1 l
52,01 =3 (~7) AaSuecn (A.90)
=1
and
[Sl, JTa] = 0, (AlOa)
[S1,0%1 =0 (A.10b)
k 1 l
Suena®] =3 (~7) AgSuecnn (4100
=1
k 1 1
[Sor1,0°) = <_Z) A 152(k-1)+1, (A.10d)

=1

for k =1,2,.... From (A.10a) and (A.10b) we get that S; = const, and by virtue
of (A.1b) this implies that S; = 0. Thus, from (A.10c) and (A.10d), we get that
Szk+1:0,k’:1,2,.... D

To prove Theorem 3.4.3 we have to prove that (A.5) have a solution. Before
doing this let us prove the following lemmas.

Lemma A.3. A system of equations

[B,z% = F* «a=1,2,...,2N, (A.11a)
[B,0°] =G, a=1,2,...,2N, (A.11b)
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where F'* = Zfﬁlmun(x)a“l <O and G = Zgﬁlm#n(x)(?“l -+ 0" are some
n>0 n>0
differential operators, have a solution B iff

[F*,2%) = [F?, 2], (A.12a)
[F*,0°] = [G",x%], (A.12b)
G, 0°] = [GP,0°] (A.12¢)

foralla,6=1,2,...,2N.

Proof. First let us assume that (A.11) have a solution. From Jacobi’s identity we
have that
(B, 2],0°] + [[z®,0°], B] + [[0”, B], 2] = 0, (A.13)

from which follows that
[[B,2°],0°] = [[B, 0], 2°]. (A.14)

Using (A.11) from this we receive (A.12b). Equations (A.12a) and (A.12¢) can be
received analogically.

Now, let us assume that (A.12a) is satisfied. From the form of F* it can be
easily seen that (A.11a) for & = 1 have a solution. Assume that for some v > 1
(A.11a) have a solution for all & < ~y. This solution is not unique but there exists
a family of solutions such that if B and B’ are solutions of (A.11a) for all a < v
then there exists an operator H) such that B' = B + H® and [HY,2%] = 0 for
alla =1,2,...,7. From (A.12a) and (A.11a) we have that

[B,z%], 2" = [F", 2%, a=1,2,...,7. (A.15)
Using Jacobi’s identity the above equation takes the form
[B, 2", 2% = [F",2%], a=1,2,...,7. (A.16)
From this follows that
B2 =F* 4+ HY a=1,2,...,y (A.17)

for some operator H") such that [H 2% = 0 for all @« = 1,2,...,~. From the
freedom of the solution B there exists B for which H) = 0. Hence for all @ < v+1
(A.11a) have a solution. Thus we inductively proved that (A.1la) have a solution
foralla=1,2,...,2N.
Now, let us assume that (A.12) is satisfied. As was shown above (A.11a) have
a solution. This solution is not unique but there exists a family of solutions such
that if B and B’ are solutions of (A.11a) then there exists an operator H such that
B'=B+H and [H,z*] =0for all« =1,2,...,2N. From (A.12b) and (A.11a) we
have that
[B,z%],0'] = [G',2*], a=1,2,...,2N. (A.18)

Using Jacobi’s identity the above equation takes the form

[B,0",2%] = [G',2*], a=1,2,...,2N. (A.19)
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From this follows that
B,0'] =G+ HY, (A.20)

for some operator H such that [HY, 2%] = 0 for all @ = 1,2,...,2N. From the
freedom of the solution B there exists B for which H") = 0. Hence we have shown
that there exists a solution to the system of equations

[B,z%| =F%, «a=1,2,...,2N, (A.21a)
[B,d'] = G". (A.21b)
This solution is specified up to an operator H such that [H,z% = 0 for all a =

1,2,...,2N and [H,0'] = 0. Assume now that for v > 1 there exists a solution B
to the system of equations

[B,z% = F*, «a=1,2,...,2N, (A.22a)
[B,0°] =GP, B=1,2,...,7, (A.22b)

specified up to an operator H such that [H,2%] =0 (a =1,2,...,2N) and [H,0°) =
0(8=1,2,...,7). From (A.12b) and (A.11la) we have that

[B,z%],0"™] = [G"",2°], a=1,2,...,2N. (A.23)

Using Jacobi’s identity the above equation takes the form
[B,0" ), 2] = [G"", 2], a=1,2,...,2N. (A.24)

From this follows that

(B, aVH] =G 4 7Y, (A.25)
for some operator H( " such that [H,2%] = 0 for all &« = 1,2,...,2N. Moreover,

HY satisfies: [H®, 0% = 0 for all ﬁ 1,2,...,7. Indeed,
[B,071,0°) = [, 0°] + [HD,0°], B=12,....7, (A.26)

from which follows, by virtue of Jacobi’s identity and (A.12c¢), that
[B,0°),07 = [GP, 07+ + [H, 0%, B=1,2,...,7. (A.27)
Since B satisfies (A.22b) we receive that
[HY, 0% =0, B=1,2,...,7. (A.28)
From the freedom of the solution B there exists B for which H® = 0. Hence
(A.22) have a solution for 8 <« + 1. Thus we inductively proved that (A.11) have

a solution for all a« =1,2,... 2N. ]

From Lemma A.3 we get:
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Lemma A.4. The system of equations (A.5) for k =1,2,... have a solution iff

k
Z Ay, Ay_p] =0, (A.29a)
k
Z A1, Ag_p] =0, (A.29b)
=0
k
Z[Agl-q-l: Ag(k_l)_ﬂ] =0, (A.29¢)

1=0
foralla,f=1,2,...,2N.

Proof. We will prove the lemma by induction. Directly from Lemma A.3 follows
that for k£ = 1 the assumption of the lemma is true. Assume that for k=1,2,... K
where K > 1 the assumption of the lemma holds. From Lemma A.3 the system of
equations (A.5) for k = K + 1 have a solution iff

rK+1 1 I [K+1 1 l
Z (_ZL> A5152(K+1_l)714€ = Z (_Z> A§JS2(K+1—1)7A8

LI=1 LI=1

) (A.30a)

FK+1 1\ [K+1 1\'
Z(_Z> ASZS2(K+1—l)aAf - Z(_Z> A§z+152(K+1—l)=A8 , (A.30D)

LI=1 =1

K+1 1\ 7 K+1
[Z (—Z> Agl+152(K+171),Af = Z (—

=1 L =1

l
>A§,+152(K+“),A§é . (A.30¢)

o |

Equation (A.30a), by virtue of the Leibniz’s rule, is equivalent with the following
equation

K41 0y K+1 !
Z (_4_1> (A%, AJ)Sa(rc 111 +Z( ) S [Sax 411y, A] =

=1
K+1 K+1 1 l
_ Z ( —> AQZ,AS]SQ(K_A'_l_Z) + Z (—Z) Agl[SZ(K+1_l),A8]. (ASl)
=1

Using (A.5a) we have that

K+1 1 1 K K+1-1 1 I+r
> (~5) Aslsenn A1 =30 (5) A4S

=1

K+1 n—l 1 n
= <_Z) 2(n r) A27‘SZ K+1-n)- (A32)

Using (A.32) and (A.29a) for £ = 1, (A.31) can be rewritten in the form

K+1 1 1 -1
2 (_Z) (Ag’Agl + D A5 A5y [A§I>A8]> Sarey1-n =0,  (A.33)
r=1

=2
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which in turn can be written as

K+1 1 11
> (~1) Tub g ISunesn =0 (A31)

=2 r=0
Using the inductive assumption the above equation reduces to

K+1

Z[Agrv Ag(K—i—l—r)] = 07 (A35)

r=0

which proves that (A.30a) is equivalent with (A.29a) for £ = K + 1. Analogically
we prove that (A.30b) and (A.30c) are equivalent with (A.29b) and (A.29¢). This
ends the induction. O

Now we are ready to prove Theorem 3.4.3.

Proof of Theorem 3.4.5. We have to show that the system of equations (A.5) have
a solution. From Lemma A.4 it is enough to show that (A.29) holds. From (3.1.5)
we get

2k 2k
ZAf(Agk—l ):ch ; Cor—i( ZCZ (Cop_i(2®,27), f)
1=0

k-1

—ZC% Coge—ny (2, 2° +ZOQZ+1 (Coge—py—1(z*,27), f).
1=0

- (A.36)

The second term in the last equality in (A.36) vanishes because of the classical and
quantum canonicity condition (Theorem 3.3.1). Hence, with the use of property (i)
on page 22 equation (A.36) reduces to

2k
ZA?(Agk—l ZCQZ (Cog—ty(z®, 2° ZCg(k (Co(z?,2%), f)
1=0 1=0

=0
- ZA% J(ASf (A.37)

Thus we get that

2%
Z[A?a Agkfl] = 0. (A.38)
1=0

Analogically we get that

2k+1
Z [A?7A§kfl+1} =0. (A.39)

1=0
On the other hand from (3.1.5) we have that

k

> CCra(2?, £),2%) = Ci(a®, Cra(f, 1), (A.40)

=0
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which can be rewritten in the form
k k k

S CDANAL) = (DA (AL ) =D (DAL (ARF). (Al

1=0 1=0 1=0
Thus we get that

2k
> (SDAR Ap ] =0, (A.42a)
=0

2k+1

D (DIAR Ay ] =0, (A.42b)

=0

By adding (A.38) to (A.42a) we receive (A.29a) and by subtracting them we get
(A.29¢). By adding or subtracting (A.39) to (A.42b) we receive (A.29b). O

B Proof of Theorem 3.4.4
From (3.4.61) and (3.4.64a) we get that

1
Ag . _2wﬂll/lw.u‘2y2ra (81/ al/Q - 1/11/286)

B2
— Lpa gmgee  Lmepn e g B.1
- _5 112 B 2("') Hip2 ™ V1v2 : ( : )
On the other hand
1 ~ 1 . 1 .
[SQ, J,’a] = —ﬂwdaF5673587 - ﬂwBaF557@537 - ﬂaﬂalﬂwvaéaﬁ
1 1
« v qf BaT v
g Tl 0 + o™ Tl I 507
1= 1
— o} « v a8
= grﬁwaﬁm + 3w T 1507, (B.2)

which proves (3.4.60a). From (3.4.61) we can calculate that

0y 0p — 00,03

V1V2 V3V1

1 ~ o~ o~
Ag — éw#wlwmwwusw (VVVJ:Q)MHM (81,1(9”281/3

8,05 + (VVVa? )Vlmaﬁ) (B.3)

V2 v3

The above equation can be rewritten in a different form. To do this first let us prove
that

Wulyl(@ﬁﬁxa)muzus = OMFZIQW w T wamRZ;usm’ (B-4a)
W (VNI ) oy = 0Ty + W2 (B.4b)
Indeed, with the help of (3.4.64) we can calculate that
W (VYY) gy = @ (=T, + T8 TG+ T8 T
= W (T s+ Dt D) + T T
= W (B — F/’fzm ps T Fﬁzmrylm) wulﬁrziuarguz’

(B.5)
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and that
pwBrrve o, mBsatvr Y, B, ,af e T B, ad v T
w qugrﬁuz_w (57qu3fﬂm—w w wMFm%FﬁM—w w memmF(M

(B.6)

_ S, 087w Y, daTwr Tl
_57("} FM1M3F5M2_ w Fu1u3F5u2’

from which follows (B.4a). (B.4b) can be proved analogically. Hence using (3.4.64a),
(B.4) and the condition

(U'ulyl s (JJ'ukyk (@ R @Ia)ul,_.uk(ﬁ e @lﬂ)yl...yk - 07 k = 3a 57 s (B7)
following from the quantum canonicity condition (3.3.5b) of the coordinate system
(z', ..., 2*Y) we get

1 . -
43 = cwem (B, L+ Y

6 B2 3,111 H2H3 41

) O, 02r

1 ~ 1~ 2~ ~
+ o (F”l +oRY 4+ SR )Fm 0. (B.8)

2 H2/3,041 3 H213 1 3 H3H2 1 viv2

On the other hand

1 e 1 e -
[92,0% = — 570" T}, 406" — Sw T 510", (B.9)

which shows that S5 in the form (3.4.62) will satisfy (3.4.60b) since from the flatness
assumption Rj s = 0.
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Oswiadczenie

Ja, nizej podpisany

Ziemowit Domariski,
doktorant w Zakladzie Fizyki Matematycznej Wydziatu Fizyki
Uniwersytetu im. Adama Mickiewicza w Poznaniu

o$wiadczam, ze przedktadana rozprawe doktorska pt:
Admissible invariant canonical quantizations of classical mechanics

napisalem samodzielnie. Oznacza to, ze przy pisaniu rozprawy, poza niezbednymi
konsultacjami, nie korzystatem z pomocy innych oséb, a w szczego6lnosci nie zleca-
tem opracowania rozprawy lub jej czesci innym osobom, ani nie odpisywalem tej
rozprawy lub jej czesci od innych osoéb.

Oswiadczam rowniez, ze egzemplarz rozprawy doktorskiej w formie wydruku
komputerowego jest zgodny z egzemplarzem rozprawy doktorskiej w formie elektro-
niczne;j.

Jednoczesnie przyjmuje do wiadomosci, ze gdyby powyzsze oswiadczenie okazato
sie nieprawdziwe, decyzja o nadaniu mi stopnia naukowego doktora zostanie cofnieta.

Poznan, dnia 15 grudnia 2014
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