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IntrodutionThe strong fore plays a fundamental and ruial role in nature. It is respon-sible for the formation of all hadrons, whih an be lassi�ed into mesonsand baryons. Examples of the former are the pion and the ρ meson andof the latter the proton and the neutron, whih in turn form the nulei ofall atoms. The theory of the strong interation is believed to be QuantumChromoDynamis (QCD). It postulates that all hadrons are not elementarythemselves but they have an inner struture and are built from onstituentpartiles. Sattering experiments revealed that the onstituents are point-like objets and we now have a large amount of evidene that they an beidenti�ed with quarks, whih are spin-1/2 fermions and whose interationis mediated by spin-1 bosons known as gluons. In order to understand theinteration among quarks and gluons and omprehend how it an lead to theformation of hadrons a new quantum number, alled the olour harge, hadto be introdued. However, all hadrons observed in experiment do not arrythis olour harge, but are olourless. This means that the quarks and gluonsan not be isolated and do not exist as free partiles � they are on�ned intoolour-neutral omposite hadrons. This fundamental on�nement propertyof QCD results from the fat that at large distanes (or at low energies) theQCD oupling onstant determining the interation strength between thequarks and the gluons is large. However, we know from perturbation theoryanalyses of QCD that at small distanes (or at high energies) the QCD ou-pling onstant beomes small and the quarks behave as almost free partiles.This property of QCD is alled asymptoti freedom and has been tested byonfronting experimental results with perturbative QCD preditions. It isone of the most amazing harateristis of QCD that it should desribe bothphenomena, on�nement and asymptoti freedom, simultaneously. Clearly,in order to test this theoretial expetation, a method is needed where QCDan be evaluated both in the perturbative regime at small distanes and inthe non-perturbative regime at large distanes, where we enter the world ofthe observed hadrons.However, many interesting and relevant phenomena are onsequenes of7



the low-energy properties of QCD. To investigate these issues (e.g. to alu-late the hadron spetrum and many strutural properties of hadrons, likeform fators or parton distribution funtions), non-perturbative methodshave to be employed. The only method whih ful�lls the above riterionand allows for preise quantitative preditions is Lattie QCD (LQCD). Itonsists in disretizing spae-time and formulating QCD on a 4-dimensionalEulidean spae-time grid with a lattie spaing a. In this way, the theory isfully regularized and mathematially well de�ned, whih led to many onep-tual and theoretial developments in our understanding of QCD. On the otherhand, by using Feynman's path integral formulation of quantum �eld theory,LQCD an be interpreted as a kind of a statistial mehanial system whihallows an evaluation with numerial methods. LQCD was �rst proposed ina seminal paper by Wilson in 1974 [1℄ and shortly after Creutz indeed per-formed suh numerial simulations using Markov hain Monte Carlo methods[2℄. It has to be said that over many years LQCD simulations were performedin unphysial setups with muh too heavy and even in�nite quark masses.However, in the last few years a tremendous progress has been ahieved whennew algorithmi developments provided a breakthrough in the performaneof the used simulation algorithms. At the same time, the inreasing omputerpower made it possible to simulate on large latties with �ne lattie spaingsand pion masses approahing the physial pion mass. Lattie QCD om-putations still require very large omputer resoures, partiularly for fullydynamial simulations, but its prospets are steadily improving with a newgeneration of superomputers in the PetaFlop range. The algorithmi andomputer improvements were also aompanied by oneptual developmentssuh as ones leading to a faster approah to the ontinuum limit (a→ 0) andthe formulation of non-perturbative renormalization shemes.Another important aspet of QCD is hiral symmetry, i.e. the invarianeof the theory under the exhange of massless left- and right-handed quarks.It is a ontinuous symmetry and we believe that it is spontaneously broken innature, thus giving rise to the appearane of Goldstone bosons. In QCD weidentify these Goldstone bosons with the pions, whose mass is muh smallerthan the mass of any other observed hadron. Assuming suh spontaneousbreaking of hiral symmetry in QCD, many phenomenologial investigationsan be performed to interpret experimental data, the most notable of whihis hiral perturbation theory.In priniple, LQCD should be able to dedue the phenomenon of sponta-neous hiral symmetry from the QCD Lagrangian itself and one would nothave to rely on assumptions. However, for many years, it seemed impos-sible to preserve hiral symmetry on the lattie. Only in the late 1990s itwas shown that an alternative approah to hiral symmetry an be followed.8



This was inspired by the so-alled Ginsparg-Wilson relation, whih impliesthat a lattie fermion an be hiral, provided that we allow for a lattie-modi�ed version of hiral symmetry. This disovery led to the introdutionof so-alled overlap fermions, a kind of lattie fermion whih respets thislattie modi�ed hiral symmetry. Overlap fermions have many appealingproperties, but are muh more omputationally demanding than other pop-ular fermion disretizations, suh as Wilson fermions, modi�ations thereofor staggered fermions. This makes the use of overlap fermions still a hal-lenge, espeially in dynamial simulations. As suh, alternatives to dynamialoverlap fermions are being looked for to keep hiral symmetry. The goal isis to pro�t from the good hiral properties of overlap fermions, but at thesame time avoid the high omputational ost of generating dynamial over-lap gauge �eld on�gurations. One suh approah is alled mixed ation andit onsists in using overlap fermions only as valene quarks and for the seasetor a heaper fermion disretization is used.The aim of this thesis is to investigate the mixed ation setup of overlapvalene fermions and Wilson twisted mass sea quarks. One may suspetthat using di�erent lattie fermion formulations in the sea and in the valenesetor leads to unphysial e�ets. And, as we will show in this thesis, this isindeed the ase. As we will demonstrate, in order to have a �safe� simulation,where suh e�ets an be avoided, a areful tuning of the physial setup hasto be performed. It is one of the main goals of this thesis to speify theregime of parameter values (suh as the lattie volume and the pion mass)that allows to perform suh safe simulations. Knowing these parameters willthen allow to address physial questions and ompute physial observableswithout being a�eted by possible unphysial e�ets. Therefore, providingthe parameters for safe simulations opens the way for future simulations withhirally invariant overlap fermions in the valene setor to ompute importantphysial quantities.The outline of the thesis is the following.In Chapter 1, we review the theoretial priniples of Lattie QCD. Westart by introduing the ontinuum QCD Lagrangian and disussing its sym-metries, partiularly the hiral symmetry. Next, we show how the ontinuumtheory is disretized and we introdue di�erent fermion disretizations, in-luding the hirally-symmetri overlap formalism. We also shortly disussthe ways of extrating physial observables from a simulation.Chapter 2 presents the results of a lattie spaing saling test of dif-ferent fermion disretizations at tree-level of perturbation theory. For thiswe use overlap, twisted mass and Creutz fermions. We also investigate thee�ets of mathing of twisted mass and overlap fermions, whih is relevantfor onsiderations in Chapter 4. 9



In Chapter 3 we disuss some of the algorithmi and tehnial detailsof QCD simulations. We review the HMC algorithm and the tehniquesused to e�etively deal with overlap fermions, in partiular the method ofomputation of the overlap Dira operator, ways of reduing the onditionnumber of its kernel and the use of stohasti soures.The main results of the thesis are reported in Chapter 4. First, themotivation and the general idea of a mixed ation simulation are disussed.Then, a ontinuum limit saling test of the pion deay onstant is performed.This test motivates the analysis of the role of hiral zero modes of the over-lap operator. We show that this is a very important e�et in the ase of ahirally-symmetri valene and non-hirally-symmetri sea quarks disretiza-tion. This hapter onludes with the aforementioned range of parametervalues that are neessary for a simulation safe against these e�ets.In Chapter 5 we disuss some further results, inluding the unitarityviolations present in the mixed ation setup, light baryon masses omputationand some topologial aspets that an be probed with overlap fermions.
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Chapter 1Theoretial priniplesof Lattie QCD
1.1 The QCD LagrangianQuantum ChromoDynamis (QCD) is a gauge theory of strong nulear in-terations between the onstituents of hadrons. The hadrons are a lass ofpartiles inluding baryons (e.g. the nuleon) and mesons (e.g. the pion).The theory is based on the priniple of loal gauge invariane with a non-Abelian SU(3) gauge group [3, 4℄. The fundamental degrees of freedom ofthe theory are quarks and gluons. The Lagrangian density of QCD an bewritten as:

LQCD = Lquark + Lgluon + Lint, (1.1)where Lquark is the purely fermioni (quark) part, Lgluon the purely bosoni(gluon) part and Lint the interation part that ouples quarks and gluons.Let us now onsider the di�erent parts that onstitute the QCD La-grangian. The quark term is1:
Lquark =

Nf
∑

f=1

ψ̄f (x)(iγ
µ∂µ −mf )ψf(x), (1.2)where Nf is the number of �avours2, ψf (x) is the quark (spinor) �eld or-responding to �avour f and mf is the f -�avour bare quark mass and the1Throughout the thesis, we employ the Einstein summation onvention for Dira indies(denoted by Greek letters) and SU(3)-group generator indies (denoted by Latin letters).2The Standard Model inorporates 6 �avours of quarks (up, down, strange, harm,bottom, top). However, investigating the low-energy properties of QCD with LattieQCD methods, one usually restrits oneself to the lightest 2, 3 or 4 �avours.11



gamma matries satisfy:
{γµ, γν} = 2ηµν , (1.3)where ηµν = diag(1, −1, −1, −1) is the metri tensor.The gluon part reads:

Lgluon = −1

4
F a
µν(x)F

µν
a (x), (1.4)where F a

µν(x) is the �eld strength tensor, whih is related to the gluon �eldomponents Aaµ(x):
F a
µν(x) = ∂µA

a
ν(x) − ∂νA

a
µ(x) − gfabcAbµ(x)A

c
ν(x), (1.5)where g is the bare oupling onstant and fabc are the struture onstants ofSU(3), satisfying the ommutation relations:

[ta, tb] = ifabctc, (1.6)where ta are the generators of the group SU(3).The purely bosoni part of the Lagrangian is invariant with respet tothe loal gauge transformation. If we want the fermioni part to obey theloal gauge symmetry as well, we have to introdue a term that ouples thefermions and bosons, i.e. desribes the interation between them. This isthe basi building priniple of all loal gauge theories. It was �rst disoveredin the ase of the eletromagneti interation, where a term that oupleseletrons and photons is neessary to guarantee the loal gauge invariane.In the ase of QCD, the sum Lquark + Lgluon is not invariant with respet tothe loal SU(3) transformation and the way to guarantee this invariane isto introdue the interation term Lint that ouples the quark �elds ψ andgluon �elds Aµ:
Lint = g

Nf
∑

f=1

ψ̄f (x)γ
µAµ(x)ψf (x), (1.7)where the gluon �eld Aµ is related to its omponents in the following way:

Aµ(x) = taAaµ(x). (1.8)Conventionally, one writes the terms Lquark and Lint together, introduingthe ovariant derivative Dµ:
Dµ(x) = ∂µ − igAµ(x). (1.9)12



Thus:
LQCD =

Nf
∑

f=1

ψ̄f (x)(iγ
µDµ −mf)ψf (x) −

1

4
F a
µν(x)F

µν
a (x). (1.10)Let us also de�ne the (lassial) QCD ation, whih is the integral of theLagrangian density over spae-time:

SQCD =

∫

d4xLQCD. (1.11)An elegant (and relevant from the point of view of Lattie QCD) way toquantize a lassial theory, like the one given by the lassial QCD ation(1.11), is to use the Feynman path integral formalism [5℄. The expetationvalue of any observable O is given by:
〈O〉 =

1

Z

∫

Dψ̄DψDA O[ψ, ψ̄, A] eiSQCD[ψ,ψ̄,A], (1.12)with the partition funtion:
Z =

∫

Dψ̄DψDA eiSQCD [ψ,ψ̄,A]. (1.13)It is worth to emphasize that all �elds in the path integral are lassial. Suhpath integral an not be evaluated analytially (exept for few speial asesmuh simpler than QCD) and one has to swith to approximate methods.For many theories, like Quantum EletroDynamis (QED), a very suessfulmethod is perturbation theory. It onsists in expanding the path integralwith respet to a small parameter (e.g. the �ne struture onstant α ≈
1/137.036 in QED) and dropping terms beyond some order. For example, themost reent alulation of the anomalous magneti moment of the eletron(usually parametrized in terms of the so-alled g-fator) up to fourth-orderin α agrees with experiment up to 10 signi�ant digits, making it one ofthe most preisely veri�ed predition of physis � the eletron g-fator is
ge = 2ae+2, where the theoretial value: ath

e = 1 159 652 182.79(7.71)×10−12and the experimental one: aexp
e = 1 159 652 180.73(0.28)×10−12 [6℄. However,for perturbative methods to work, there has to be a small parameter withrespet to whih one expands the path integral. In the ase of QCD, theoupling onstant of the olour interation depends on energy and one hasto onsider two regimes. For high energy or large momentum transfer, theQCD oupling onstant is small enough for perturbative methods to work. Inthis regime, the interation of quarks and gluons an be arbitrarily weak and13



hene it is termed asymptoti freedom. This property of QCD was disoveredby Gross, Politzer and Wilzek. However, in the ase of low energy or smallmomentum transfer, this oupling onstant beomes of the order of unityand perturbation theory is bound to fail � the strong interations beomestrong indeed. Quantitatively, the energy sale when it happens Λstrong ≈ 250MeV, where the value is not preisely de�ned and depends on the hosenobservable. Anyway, its approximate value implies that a vast number ofrelevant phenomena in QCD, suh as the on�nement of quarks and gluonsinto hadrons, happen in the non-perturbative regime. Thus, one needs non-perturbative methods, suh as Lattie QCD, whih is the only known methodof extrating quantitative preditions about the low-energy regime of QCD.This approah onsists in disretizing the QCD path integral. In this way,one obtains a fully regularized and well-de�ned theory, whih an be studiednumerially, but also analytially � the disretized version of QCD enabledmany relevant oneptual developments and led to important insight into thenature of strong interations.However, the osillating exponential eiSQCD [ψ,ψ̄,A] renders the numerialevaluation of the QCD path integral unfeasible from the pratial point ofview. Fortunately, integrals like (1.12) are tratable, if one swithes fromMinkowski spae-time with metri tensor ηµν with signature e.g. (+ −−−)to Eulidean spae-time with signature (++++). This is ahieved by analytiontinuation (Wik rotation of the time diretion: t → −iτ). In order thatthe Eulidean formulation an be ontinued bak to physial (Minkowski)spae, the Eulidean orrelation funtions have to satisfy a ertain ondition,alled the Osterwalder-Shrader re�etion positivity [7, 8℄. This onditionensures that the transition probabilities between gauge-invariant states arenon-negative and the quantum mehanial Hamiltonian has only real andpositive eigenvalues [9℄.The QCD Lagrangian density in Eulidean spae reads [10℄:
LEQCD =

Nf
∑

f=1

ψ̄f (x)(γ
E
µDµ +mf )ψf (x) −

1

4
F a
µν(x)F

µν
a (x) (1.14)and the Eulidean gamma matries satisfy:

{γµ, γν} = 2δµν , (1.15)where δµν = diag(1, 1, 1, 1) is the Eulidean metri tensor. The expetationvalue of any observable O is then given by:
〈O〉 =

1

ZE

∫

Dψ̄DψDA O[ψ, ψ̄, A] e−S
E
QCD

[ψ,ψ̄,A], (1.16)14



where SEQCD =
∫

d4xLEQCD is the Eulidean ation and the Eulidean parti-tion funtion reads:
ZE =

∫

Dψ̄DψDA e−S
E
QCD [ψ,ψ̄,A]. (1.17)The osillating exponential in (1.12) is replaed by the well-behaved fator

e−S
E
QCD and thus the multi-dimensional integral (1.16) an be evaluated nu-merially, at least in priniple, e.g. with Monte Carlo methods. Formally, thequantum �eld theory de�ned by the partition funtion (1.17) an be inter-preted as a statistial mehanial system and the exponential e−SE

QCD playsthe role of a Boltzmann fator.From now on, we will work only with the Eulidean formulation of SU(3)non-Abelian gauge theory (QCD) and hene we drop the supersript E andthe subsript QCD that remind us of it.Now, we will disuss a few important features of ontinuum QCD that arerelevant from the point of view of further onsiderations, espeially the roleof hiral symmetry and spontaneous hiral symmetry breaking [10, 11, 4℄.To be spei�, let us restrit ourselves to two �avours of quarks (u and dquarks). The lassial QCD Lagrangian an be rewritten as:
L = ūγµDµu+ d̄γµDµd+ ūmuu+ d̄mdd−

1

4
F a
µνF

µν
a ≡

≡ Lu + Ld + Lmu
+ Lmd

+ Lgluon, (1.18)where u ≡ ψu and d ≡ ψd are the orresponding spinors and we have sep-arated the mass terms in the fermioni Lagrangian. We an deompose thequark Lagrangian further by de�ning left-handed and right-handed quarkspinor �elds:
qR ≡ P+q, qL ≡ P−q, q = u, d, (1.19)where:

P± =
1 ± γ5

2
. (1.20)Eq. (1.19) implies for the onjugate spinor �elds:

q̄R = q̄P−, q̄L = q̄P+. (1.21)Thus, the �rst two terms in Lagrangian (1.18) beome:
Lu + Ld = ūLγµDµuL + ūRγµDµuR + d̄LγµDµdL + d̄RγµDµdR = (1.22)

=
(

ūL d̄L
)

(

γµDµ 0
0 γµDµ

)(

uL
dL

)

+
(

ūR d̄R
)

(

γµDµ 0
0 γµDµ

)(

uR
dR

)

,15



i.e. the left- and right-handed �elds are deoupled. However, for the massterms we obtain:
Lmu

+ Lmd
= mu(ūLuR + ūRuL) +md(d̄LdR + d̄RdL) = (1.23)
=

(

ūL d̄L
)

(

mu 0
0 md

)(

uR
dR

)

+
(

ūR d̄R
)

(

mu 0
0 md

)(

uL
dL

)

,i.e. the mass terms ouple �elds of opposite hiralities.Let us now onsider the massless terms Lu and Ld in the Lagrangian.They are invariant with respet to the following transformations, respe-tively:
(

uL
dL

)

→ L

(

uL
dL

)

,

(

uR
dR

)

→ R

(

uR
dR

)

, (1.24)where L and R are unitary 2×2 matries, i.e. elements of the (�avour) groupU(2). This means that the Lagrangian Lu + Ld is invariant with respet tothe group U(2)L×U(2)R.Let us take a loser look at the possible forms of transformations. Themassless quark Lagrangian is invariant under four SU(2)×U(1) vetor trans-formations:
(

u
d

)

→ eiαui

(

u
d

)

,
(

ū d̄
)

→
(

ū d̄
)

e−iαui , (1.25)where the subsript i = 0, 1, 2, 3, u0 is the identity matrix in �avour spae and
ui (i = 1, 2, 3) are �avour SU(2) group generators. There are 4 onserved(vetor) Noether urrents jµi assoiated with these 4 transformations andhene 4 onserved harges Qi =

∫

d3xj0
i � the baryon number (i = 0) andthe isospin (i = 1, 2, 3).In addition, there are transformations involving γ5, alled hiral rotations:

(

u
d

)

→ eiαγ5ui

(

u
d

)

,
(

ū d̄
)

→
(

ū d̄
)

eiαγ5ui. (1.26)Together with transformations (1.25), the massless quark Lagrangian Lu+Ldis invariant under the symmetry group SU(2)R×SU(2)L×U(1)V×U(1)A.However, it an be shown that the fermion integration measure in thequantized theory is not invariant under the transformation (1.26) for i = 0,whih redues the full symmetry to SU(2)R×SU(2)L×U(1)V . This is the so-alled axial anomaly and it has important onsequenes e.g. for the mesonspetrum � the hiral �avour singlet symmetry an not be broken sponta-neously and hene there is no Goldstone boson assoiated with spontaneousbreaking of this symmetry. This implies that the mass of the �avour sin-glet η′ meson does not vanish in the limit of vanishing quark masses (as16



opposed to the mass of the η meson, whih is one of the pseudo-Goldstonebosons), but it is related to topologial �utuations of the QCD vauum viathe Witten-Veneziano formula [12, 13℄:
f 2
π

2Nf

(

m2
η +m2

η′ − 2m2
K

)

= χtop, (1.27)where fπ is the pion deay onstant, mx the mass of the x meson and χtopthe topologial suseptibility, whih will be de�ned later.Let us now onsider the mass terms of the QCD Lagrangian Lmu
+ Lmd

.They are invariant with respet to the transformation (1.25) for i = 0, so thebaryon number is onserved also in the massive theory. For i = 1, 2, 3 thetransformation (1.25) is a symmetry only if the quark masses are equal mu =
md. Hene, the isospin is onserved in the massive theory, but only for mass-degenerate quarks. However, the mass terms Lmu

+ Lmd
are not invariantunder hiral rotations (1.26), whih is aused by the fat that the exponentialin (1.26) is the same for the spinor (u d)T and the onjugate spinor (ū d̄

),whih is, in turn, due to the antiommutation relation {γµ, γ5} = 0. Thus,the symmetry of the quantum QCD Lagrangian is broken to SU(2)V×U(1)Vin the mass-degenerate ase and to U(1)V×U(1)V if mu 6= md.In the ase of arbitrary number Nf of quark �avours, the analysis iseasily generalized (the matries ui are now the Nf ×Nf identity matrix and
N2
f −1 generators of the �avour group SU(Nf )) and the full symmetry of thequantized massless QCD Lagrangian is SU(Nf )R×SU(Nf )L×U(1)V , whihis redued to SU(Nf )V×U(1)V in the mass-degenerate ase and further toU(1)V × . . .×U(1)V (with Nf fators U(1)V ) in the ase of di�erent quarkmasses. Thus, in the latter ase, the only exat symmetry is the baryonnumber onservation.However, sine the isospin symmetry is only slightly broken for the lightesttwo quarks, it is often treated as exat3, while the heavier quarks are treatedseparately. Moreover, sine the up and down quarks are so light, omparedto the heavier quarks (mu ≈ md ≈ a few MeV, whereas already ms ≈ 100MeV), the full symmetry of the massless Lagrangian with Nf = 2 �avoursSU(2)R×SU(2)L×U(1)V remains an important approximate symmetry andis the basis of Nf = 2 hiral perturbation theory (χPT). At low energy,the quarks and gluons are on�ned into hadrons and hene one an de�nean e�etive �eld theory, in whih the fundamental degrees of freedom arenot quarks and gluons, but light hadrons. Two-�avour χPT was formulatedby Gasser and Leutwyler [14℄. The Lagrangian of this theory is onstrutedfrom �elds desribing the pions (π±, π0) in a way whih is onsistent with3In Lattie QCD one usually simulates the lightest two quarks as mass-degenerate.17



hiral symmetry. The hiral expansion of suh Lagrangian an then be or-ganized in terms of expansion parameters p/Λχ and mπ/Λχ, where p is themomentum, mπ the pion mass and Λχ = (4πf)2 the typial hadroni sale ≈1 GeV, with f � the pion deay onstant in the hiral limit. There are manyappliations of χPT in the analysis of the low-energy regime of QCD, e.g.pion sattering experiments. Moreover, it is also essential in the analysis ofLattie QCD data, sine most of ontemporary Lattie QCD simulations areperformed at unphysial values of the pion mass4 � hene an extrapolationto the physial point (physial pion mass) is neessary and is performed by�tting χPT formulas. What is more, even though the strange quark mass ismuh larger than the mass of the up and down quarks, it is still relativelysmall ompared to the typial QCD sale of ≈ 1 GeV and the symmetrySU(3)R×SU(3)L×U(1)V of the massless Nf = 3 Lagrangian is also an ap-proximate symmetry and forms the basis of Nf = 3 hiral perturbation the-ory, whih is also of use in the analysis of low-energy QCD experiments, e.g.inluding the kaons (also in kaon physis from Lattie QCD). Three-�avour
χPT was also introdued by Gasser and Leutwyler [15℄ as a generalizationof the two-�avour ase to inlude the strange quark. The three-�avour La-grangian inludes, besides the pion �elds, also other light pseudosalar meson�elds (of the remaining pseudo-Goldstone bosons � the kaons K±, K0, K̄0and the η meson). Quantitatively, the expliit breaking of hiral symmetryby the quark masses an be expressed by the ratios m2

π/(4πf)2 ≈ 0.007 and
m2
K/(4πf)2 ≈ 0.09. In this sense, the expliit breaking by the strange quarkmass is roughly a 10% e�et, while for the lightest quarks it is a < 1% e�et.Obviously, it is not possible to treat the Nf = 4 symmetry as approximatelyvalid, sine the harm quark is already heavy (mc ≈ 1.3 GeV) and the mesonsontaining it are muh heavier than the sale Λχ.However, if hiral symmetry was broken only expliitly, we would observedegenerate multiplets of hadrons � e.g. there should be salar mesons withmasses very similar to the pseudosalar ones. Also, in this ase one should notexpet suh big di�erene between the masses of the pions and kaons. Theexplanation of these phenomena an be provided by an assumption that thehiral symmetry of QCD is not only expliitly broken by the quark masses,but also spontaneously broken. We speak of spontaneous symmetry breakingif a symmetry whih is present at the Lagrangian level is absent in the phys-ial ground state5. If a ontinuous symmetry is broken spontaneously, then4Some ollaborations have reently started or are preparing simulations at the physialpion mass.5A lear example is provided by ferromagnets. Even though the Hamiltonian of suhsystem is invariant with respet to a simultaneous �ip of all spins, in an experiment allspins are aligned, i.e. only one of two degenerate ground states must be hosen � the18



massless modes, alled the Goldstone bosons, appear. In QCD the pions areinterpreted as the �would be�-Goldstone bosons of hiral symmetry breaking,where the pre�x �would be�- refers to the fat that they are not massless, buthave a small mass (ompared to the masses of other hadrons) that is due to(small) expliit breaking of hiral symmetry by the quark masses.Also, spontaneous breaking of hiral symmetry an be observed in themass di�erene of partiles that are hiral partners and should have thesame mass, if hiral symmetry was exat. Sine hiral symmetry is expliitlybroken by the quark masses, the experimental mass values of hiral partnersshould not be equal, but they should be lose to eah other, beause themasses of the light quarks are so small. This is not observed. For example,the vetor mesons ρ and a1 have masses equal to, respetively, 770 and 1260MeV, whih is a muh larger di�erene than one would expet from the smallexpliit breaking of hiral symmetry [16℄. Another example is the nuleon andits negative-parity partner, usually denoted by N∗ [11, 17℄. The experimentalvalue of the nuleon mass is mN ≈ 940 MeV, while mN∗ ≈ 1535 MeV.Spontaneous hiral symmetry breaking is signalled by a non-zero value ofthe hiral ondensate 〈0|ūu|0〉, where |0〉 is the vauum state. This quantityemerges in hiral perturbation theory as an important low-energy onstant
B0:

B0 = −f−2〈0|ūu|0〉, (1.28)where the tree-level pion deay onstant f is another low-energy onstant.A well-known relation that involves the hiral ondensate is the Gell-Mann,Oakes, Renner (GMOR) relation [18℄:
f 2m2

π = −(mu +md)〈0|ūu|0〉, (1.29)whih an be derived in χPT . As suh, it is desirable to assess the valueof the hiral ondensate from experiment � thus the value of B0 would beknown. It has been argued that the best estimate an be obtained fromthe low-energy pion-pion sattering [19, 20℄. However, the alulation of theondensate from empirial data requires some model assumptions, i.e. one infat has to assume that spontaneous hiral symmetry breaking takes plae.Therefore, an important hek would be to alulate the ondensate non-perturbatively from �rst priniples, without any additional assumptions. Onesuh way is provided by Lattie QCD. Indeed, Lattie QCD simulations on-�rm that it is non-zero at zero temperature (a review of results on this topi isprovided e.g. in. [21℄). However, there exists a temperature where the hiralondensate vanishes, thus signalling hiral symmetry restoration. Moreover,spin-�ip symmetry is spontaneously broken.19



it has been hypothesized that this temperature is the same as the deon�ne-ment temperature, i.e. the temperature at whih the quark-gluon plasmaforms and quarks and gluons are no longer on�ned into hadrons. Up to thepresent day, this issue has not been resolved ompletely, but it is a strong hintthat Lattie QCD alulations point to the fat that both temperatures areequal, up to statistial error. This strongly suggests that spontaneous hiralsymmetry breaking is related to on�nement and on�rms that understand-ing hiral symmetry and spontaneous hiral symmetry breaking is essentialto fully omprehend QCD. However, muh more preise results are neededto unambiguously resolve this question. In Lattie QCD investigations ofthese phenomena it is therefore essential to take hiral symmetry properlyinto aount, i.e. fermions with good hiral properties have to be used. Thisis one of the motivations for employing overlap fermions, whih will be themain subjet of this thesis.1.2 Disretizing gauge �eldsIn this setion and the next one, we show how QCD an be formulated in anon-perturbative way on a Eulidean 4-dimensional hyperubi lattie withlattie spaing denoted by a [22℄.The basi relationship between the ontinuum and lattie formulation ofgauge �elds is given by the following equation:
U(x, x+ aµ̂) = eigaAµ(x), (1.30)where U(x, x + aµ̂) represents the gauge �eld on the lattie (it is a variablede�ned on the link onneting sites x and x+ aµ̂, where µ̂ is the unit vetorin the µ-diretion) and Aµ(x) is the ontinuum gauge �eld. This expressionalso implies that the link variables are SU(3) matries, sine it involves thegenerators of SU(3), aording to eq. (1.8).We now disuss the simplest gauge �eld lattie ation, alled the Wilsonation [1℄, and show that in the ontinuum limit it is equivalent to the on-tinuum gauge ation. It is worth to emphasize that the hoie of the lattieation is non-unique. In priniple, any lattie ation an be used, providedthat it has the orret ontinuum limit. The Wilson ation reads:

SWilson[U ] =
β

3

∑

x

∑

1≤µ<ν≤4

(1 − ReTrUP (x, µ, ν)) , (1.31)where UP is alled the plaquette variable and is de�ned as:
UP (x, µ, ν) ≡ U(x, x+ aµ̂)U(x+ aµ̂, x+ aµ̂+ aν̂) (1.32)

×U(x+ aµ̂+ aν̂, x+ aν̂)U(x+ aν̂, x).20



To simplify notation, one usually de�nes U(x, x + aµ̂) ≡ Ux,µ and U(x, x −
aµ̂) ≡ U †

x−aµ̂,µ. The shortut notation for the plaquette variable is: UP (x, µ, ν)
≡ Ux,µν , where µν identi�es the plane of the plaquette. In this way, the pla-quette an be written as:

Ux,µν = Ux,µUx+aµ̂,νU
†
x+aν̂,µU

†
x,ν . (1.33)The gauge transformation on the lattie is assoiated with multipliationof the fermion and gluon �elds by a site-dependent SU(3) matrix G(x). Forthe link matries it an be written as:

Ux,µ → U ′
x,µ = G(x)Ux,µG(x+ aµ̂)†. (1.34)This form of the gauge transformation implies that the trae of the plaquette(atually, the trae of any losed loop of link variables) is a gauge-invariantquantity:

Ux,µν → U ′
x,µν = G(x)Ux,µG(x+ aµ̂)†G(x+ aµ̂)Ux+aµ̂,νG(x+ aµ̂+ aν̂)†

× G(x+ aµ̂+ aν̂)U †
x+aν̂,µG(x+ aν̂)†G(x+ aν̂)U †

x,νG(x)† =

= G(x)Ux,µUx+aµ̂,νU
†
x+aν̂,µU

†
x,νG(x)†, (1.35)TrU ′

x,µν = TrG(x)Ux,µUx+aµ̂,νU
†
x+aν̂,µU

†
x,νG(x)† = (1.36)

= TrUx,µUx+aµ̂,νU †
x+aν̂,µU

†
x,ν = TrUx,µν .We will onsider the gauge transformation for the fermion �elds in the nextsetion.In Appendix A, we show that the Wilson gauge ation an be written as:

Sgauge[U ] = β
g2a4

6

∑

x

∑

µ,ν

{

1

4
Fµν(x)

2 + O(a2)

}

. (1.37)Comparing this expression with the ontinuum gauge ation ∫ d4x1
4
Fµν(x)

2,we an immediately see that the ontinuum limit of the disretized ation isthe ontinuum gauge ation if we set:
β =

6

g2
. (1.38)The leading disretization e�ets are O(a2), sine the fator a4 in front ofthe sum omes just from the disretization of the integral ∫ d4x→ a4

∑

x.21



In pratial simulations, the Wilson gauge ation is often replaed by animproved ation, whih helps to derease the size of lattie disretizatione�ets. Suh ations have the same ontinuum limit, but this limit is ap-proahed faster. One of the �rst improved ations was derived by Weisz [23℄and it is usually referred to as tree-level Symanzik improved gauge ation.The form of this ation is:
StlSym[U ] =

β

3

∑

x

(

b0
∑

µ,ν=1
1≤µ<ν

(1 −ReTrUx,µν) + b1
∑

µ,ν=1
µ6=ν

(

1 − ReTrU ret
x,µν

)

)

,(1.39)where b0, b1 are parameters6, Ux,µν is the (de�ned above) plaquette term and
U ret
x,µν is the retangle term:

U ret
x,µν = Ux,µUx+aµ̂,µUx+2aµ̂,νU

†
x+aν̂+aµ̂,µU

†
x+aν̂,µU

†
x,ν. (1.40)If b1 = 0, this ation beomes the Wilson ation.1.3 Disretizing fermions1.3.1 Naive disretizationLet us start with a disretization of one-�avour ontinuum free fermion ationin Eulidean spae, given by:

Sfreequark =

∫

d4x ψ̄(x)Dψ(x), (1.41)where D = γµ∂µ + m is the Dira operator and m is the quark mass. Thedisretization proedure is not unique and we show here one of the hoiesfor the lattie derivative [25℄:
∂̂µψ(x) =

1

2a
(ψ(x+ aµ̂) − ψ(x− aµ̂)) . (1.42)This an also be written as:

∂̂µψ(x) =
1

2a
(ψ(x+ aµ̂) − ψ(x) + ψ(x) − ψ(x− aµ̂)) ≡ 1

2

(

∇µ + ∇∗
µ

)

ψ(x),(1.43)6The omputations relevant for further part of this work used gauge �eld on�gurationsgenerated by the European Twisted Mass Collaboration (ETMC), who used this ation in
Nf = 2 simulations, with b1 = −1/12 and b0 = 1 − 8b1 [24℄.22



where we have de�ned the forward lattie derivative ∇µ and the bakwardlattie derivative ∇∗
µ. We also disretize the spae-time integral (∫ d4x →

a4
∑

x), thus arriving at:
Ŝfreequark = a4

∑

x

∑

µ

ψ̄(x)(γµ∂̂µ +m)ψ(x), (1.44)where the hat denotes lattie quantities.By Fourier-transforming the lattie Dira operator (whih is onvention-ally alled the naive operator, sine it orresponds to the simplest possibledisretization) D̂naive = γµ∂̂µ+m, one an obtain the expression for the Diraoperator in momentum spae:
D̂naive(p) = ip̊µγµ +m1, (1.45)where we have de�ned:

p̊µ ≡ 1

a
sin(apµ) (1.46)for later onveniene and 1 is the unit matrix in Dira spae.The tree-level fermion propagator in momentum spae is given by theinverse of the Dira operator (1.45) and thus equals:

D̂−1naive(p) =
−ip̊µγµ +m1
∑

µ p̊
2
µ +m2

. (1.47)Let us onsider the ase of massless fermions. One an easily observe that thisexpression has the right ontinuum limit −ipµγµ/p2. However, it also impliesthat the number of fermions is doubled for eah spae-time dimension, sinethe poles of the fermion propagator are loated not only at zero momentum(apµ = (0, 0, 0, 0)), whih orresponds to the single fermion given by theontinuum Dira operator, but also whenever any momentum omponentequals π/a. Thus, in 4-dimensional spae-time, we have 24 = 16 fermions, ofwhih 15 are unphysial and are alled doublers. This is the so-alled fermiondoubling problem.1.3.2 Wilson fermionsThe �rst way to overome the doubling problem onsists in treating di�er-ently the physial pole and the unphysial ones and was introdued by Wilson[26℄, who suggested the following form of the lattie Dira operator:
D̂Wilson =

1

2

(

γµ(∇∗
µ + ∇µ) − ar∇∗

µ∇µ

)

+m, (1.48)23



where r is the Wilson parameter. The seond-derivative term is now alledthe Wilson term. In momentum spae, this operator reads:
D̂Wilson(p) = ip̊µγµ +

ar

2
p̂2
µ1+m1, (1.49)where we have de�ned:

p̂µ ≡ 2

a
sin
(apµ

2

) (1.50)and the tree-level fermion propagator is:
D̂−1Wilson(p) =

−ip̊µγµ + (ar
2

∑

µ p̂
2
µ +m)1

∑

µ p̊
2
µ + (ar

2

∑

µ p̂
2
µ +m)2

. (1.51)The physial pole at apµ = (0, 0, 0, 0) gets no ontribution from the Wilsonterm, but the unphysial ones aquire an additional mass, whih is propor-tional to a−1 and hene beome in�nitely heavy in the ontinuum limit anddeouple.However, the prie one has to pay for removing the doublers is twofold.First, the Wilson term leads to an O(a) leading ut-o� dependene in ob-servables, whih makes it, from the point of view of pratial simulations,advantageous to introdue further terms to the ation, e.g. a twisted massterm, whih will be disussed later, or ounterterms within the framework ofthe Symanzik improvement programme. The simplest way to obtain O(a)-improvement (the absene of O(a) ut-o� e�ets) is to add to the ation asingle term, alled the Sheikholeslami-Wohlert (lover) term [27℄.Seond, the Wilson term, being a mass term, expliitly breaks hiralsymmetry even in the hiral limitm = 0, i.e. even in this limit {D̂Wilson, γ5} 6=
0. Moreover, it has been proven by Nielsen and Ninomiya [28℄ that it is notpossible that a lattie Dira operator D̂ ful�lls at the same time the followingonditions7:1. loality � i.e. the norm of the Dira operator D̂ deays exponentially,as a funtion of the distane between lattie points,2. translational invariane � i.e. the Fourier transform of the Dira oper-ator exists and equals D̂(p) = iγµpµ + O(ap2) for p≪ π/a,3. no fermion doublers � i.e. D̂(p) is invertible everywhere, exept for

pµ = (0, 0, 0, 0),7Original formulation of the Nielsen-Ninomiya theorem is in fat di�erent. Here wepresent an equivalent formulation (given e.g. in [29, 30℄), whih stresses the importantproperties from the point of view of lattie fermions.24



4. hiral symmetry in the standard form of the antiommutation relation:
{D̂, γ5} = 0. (1.52)For many years, it seemed that it was not possible to have hiral fermions onthe lattie without violating one of the other onditions. However, a greatprogress has been made on this topi when it was realized that (1.52) is notthe only possible form of lattie hiral symmetry. The impliations of thisdisovery will be disussed in the next setion.An important onsequene of hiral symmetry breaking for the Wilsonation is that the quark mass m requires additive renormalization. Hene,the massless ase does not orrespond to m = 0, but to m = mc, where mcis alled the ritial quark mass.The quark mass is often expressed with the so-alled hopping parameter

κ, de�ned as:
κ =

1

8 + 2m
. (1.53)Now, we disuss how to add gauge �elds to the Wilson fermion ation.It is believed that in the interating ase the doubler modes also deouple.However, there is no rigorous proof of it.Under gauge transformation, the fermion �elds transform in the followingway:

ψ(x) → ψ′(x) = G(x)ψ(x), ψ̄(x) → ψ̄′(x) = ψ̄(x)G(x)†. (1.54)For onveniene, we remind here that the gauge �elds transform as:
Ux,µ → U ′

x,µ = G(x)Ux,µG(x+ aµ̂)†. (1.55)In this way, the fermion mass term is obviously gauge-invariant, but thederivative terms, e.g. ψ̄(x)γµ∇µψ(x) = ψ̄(x)γµ(ψ(x + aµ̂) − ψ(x)) are not,sine:
ψ̄(x)ψ(x+ aµ̂) → ψ̄(x)G†(x)G(x+ aµ̂)ψ(x+ aµ̂). (1.56)However, introduing the ovariant derivative:
D̂µψ(x) =

1

2a

(

Ux,µψ(x+ aµ̂) − U †
x−aµ̂,µψ(x− aµ̂)

)

, (1.57)one �nds for the derivative term (1.56):
ψ̄(x)Ux,µψ(x+ aµ̂) → ψ̄(x)G†(x)G(x)Ux,µG(x+ aµ̂)†G(x+ aµ̂)ψ(x+ aµ̂)(1.58)25



and hene the ovariant derivative terms are gauge-invariant.The gauge-invariant Wilson-Dira operator an be written as:
D̂Wilson(m) =

1

2

(

γµ(∇∗
µ + ∇µ) − ar∇∗

µ∇µ

)

+m, (1.59)whih is exatly the same form as in eq. (1.48), but now ∇µ and ∇∗
µ are theforward and the bakward ovariant derivatives8, de�ned by:

∇µ =
1

a
(Ux+aµ̂,µψ(x+ aµ̂) − ψ(x)) , (1.60)

∇∗
µ =

1

a

(

ψ(x) − U †
x−aµ̂,µψ(x− aµ̂)

)

. (1.61)1.3.3 Wilson twisted mass fermionsIn the remainder of this setion, we will disuss Wilson twisted mass fermions,whih are relevant from the point of view of further onsiderations. Origi-nally, they were introdued to deal with the problem of unphysially smalleigenvalues (zero modes) of the Wilson-Dira operator [31℄, whih is an-other onsequene of additive quark mass renormalization, whih an bringthe renormalized quark mass to zero. In the quenhed approximation, theontribution of these modes is not balaned by the fermioni determinantand leads to large �utuations, whih a�et ensemble averages in an unon-trolled way. The gauge �eld on�gurations whih ause this problem arereferred to as exeptional on�gurations. This is espeially dangerous in thease of small quark masses and makes the approah towards the hiral limitpratially impossible with Wilson fermions. In dynamial simulations withWilson fermions the problem is suppressed by the fermioni determinant, butit an still ause tehnial problems, suh as long autoorrelation times inertain observables, oming from aidental zero modes of the Wilson-Diraoperator. Moreover, it was realized that the twisted mass disretization anredue the e�ets of expliit hiral symmetry breaking by the Wilson termby suppressing the mixing problem of operators belonging to di�erent hi-ral representations. Finally, twisted mass ation makes it possible to obtainautomati O(a)-improvement, by tuning just one parameter. This is an es-sential advantage of twisted mass fermions, sine other improvement shemesmake it neessary to ompute improvement oe�ients for di�erent interpo-lating operators.8We will use the same symbols ∇µ and ∇∗

µ for the non-ovariant and ovariant deriva-tives and the meaning of these symbols will be determined from the ontext.26



The twisted mass QCD lattie ation [32℄ for two �avours of mass-degene-rate quarks is given by:
ŜTM = a4

∑

x

χ̄(x)D̂TMχ(x), (1.62)with:
D̂TM = D̂Wilson(m) + iµγ5τ3, (1.63)where µ is an additional mass parameter, alled the twisted mass, τ3 is thethird Pauli matrix in �avour spae and χ(x) is the quark �eld in the twistedbasis.The physial and twisted bases are related by an axial transformation:

ψ(x) → χ(x) = eiωγ5τ3/2ψ(x), ψ̄(x) → χ̄(x) = ψ̄(x)eiωγ5τ3/2, (1.64)where ω is alled the twist angle. This transformation leaves the form of theation invariant, only transforming the mass parameters aording to:
m→ m cos(ω) + µ sin(ω), (1.65)
µ→ −m sin(ω) + µ cos(ω). (1.66)A speial ase of this transformation, referred to as maximal twist, is ω =

π/2, whih orresponds to sending the bare quark mass m to 0 or, takingadditive mass renormalization into aount, to its ritial value mc. Conven-tionally, the value of the ritial bare quark mass is expressed in terms ofthe parameter κc, given by eq. (1.53). This is the only parameter that needsto be tuned to obtain automati O(a)-improvement. The tuning is usuallydone by employing one of two methods. First, one an just �nd the ritialbare quark mass by looking for a quark mass value that gives a vanishingpion mass. Alternatively, one an also tune the so-alled untwisted PCACmass:
mPCAC =

∑

~x〈∂0A
a
0(~x, t)P

a(0)〉
2
∑

~x〈P a(~x, t)P a(0)〉 , a = 1, 2 (1.67)to zero [24℄. The latter method seems to work very well in pratial simula-tions.Thus, one an write the maximally twisted mass (MTM) QCD ation as:
ŜMTM = a4

∑

x

χ̄(x)D̂MTMχ(x), (1.68)with:
D̂MTM = D̂Wilson(mc) + iµγ5τ3. (1.69)27
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di�erene is used to quantify the isospin violation by the twisted mass term.Both parity and isospin breaking are O(a2) e�ets and hene they vanish inthe ontinuum limit.1.4 Chiral symmetry on the lattieIn this setion we disuss the great breakthrough assoiated with the fatthat it was realized that there is an alternative view on hiral symmetry onthe lattie, i.e. that the Nielsen-Ninomiya theorem an be overome in anelegant way.1.4.1 Ginsparg-Wilson relationIn 1982 (i.e. only one year after establishing the Nielsen-Ninomiya theo-rem), Ginsparg and Wilson, basing on renormalization group transforma-tions, showed [34℄ that a remnant of hiral symmetry is present on the lattiewithout the doubler modes, if the orresponding Dira operator D̂ obeys anequation now alled the Ginsparg-Wilson relation:
γ5D̂ + D̂γ5 = aD̂γ5D̂. (1.70)It is a modi�ation of the antiommutation relation (1.52) and the term onthe right-hand side vanishes in the ontinuum limit � hene, in this limit thestandard hiral symmetry relation (1.52) is regained.However, for many years it has not been realized that the Ginsparg-Wilson relation allows one to de�ne hiral symmetry also on the lattie,i.e. at non-vanishing lattie spaing. It lasted until around 1997 before theGinsparg-Wilson relation was �redisovered�. First, P. Hasenfratz realizedthat a kind of lattie fermions alled the �xed point fermions satis�es thisrelation [35, 36℄ and shortly afterwards a similar observation was made byNeuberger regarding the overlap formalism [37, 38℄. Moreover, Lüsher [29℄found that the Ginsparg-Wilson relation leads to a non-standard realizationof lattie hiral symmetry. The fermion ation is invariant under the followinghiral rotation:

ψ → e
iθγ5

“

1− aD̂
2

”

ψ, ψ̄ → ψ̄e
iθγ5

“

1− aD̂
2

”

. (1.71)In the ontinuum limit this transformation is (1.26) with ui = 1. To prove theinvariane of the massless ation with respet to the above transformation,interations and the expliit violation of isospin symmetry by di�erent up and down quarkmasses. In Lattie QCD with mass-degenerate quarks the harged and neutral pion massesshould be equal. 29



one has to use the Ginsparg-Wilson relation. Moreover, it is possible to de�nethe left- and right-handed projetors of fermion �elds [11℄ with a modi�ed
γ5-matrix γ̂5 = γ5(1 − aD̂):

P̂± =
1 ± γ̂5

2
. (1.72)Thus de�ned projetors have the same properties as the standard ontinuumprojetors and hene one an deompose the fermion part of the Lagrangianinto left- and right-handed massless parts and a symmetry breaking massterm that mixes the left- and right-handed omponents. Taking the proper-ties of the lattie projetors P̂± into aount, one �nds that the mass term isof the form mψ̄

(

1 − aD̂
2

)

ψ, whih means that the massive Ginsparg-WilsonDira operator D̂(m) that orresponds to the massless operator D̂ reads:
D̂(m) = D̂ +m

(

1 − aD̂

2

)

=
(

1 − am

2

)

D̂ +m. (1.73)Sine the Ginsparg-Wilson relation is a non-standard realization of hiralsymmetry, the onditions of the Nielsen-Ninomiya theorem do not apply andone an have hiral symmetry without the doublers, whih was onsidered tobe impossible for many years.Moreover, it was also shown by Hasenfratz, Laliena, Niedermayer [39℄ andin a di�erent way by Lüsher [29℄ that the Ginsparg-Wilson relation impliesthat the axial anomaly is orretly reprodued. The ation is invariant underthe transformation (1.71), but the fermioni measure Dψ̄Dψ is not � itsJaobian J is non-trivial: J = exp[−2iθTr(γ5(1 − aD̂/2))] and it an alsobe expressed as J = exp[−2iθQtop], where Qtop is the topologial harge, tobe disussed later. This issue was further eluidated by Fujikawa [40℄, whostudied the ontinuum limit of this Jaobian.Furthermore, a onsequene of the Ginsparg-Wilson relation is that fer-mions are proteted from additive mass renormalization and mixing betweenfour-fermion operators in di�erent hiral representations (Hasenfratz [36℄)and there an be no O(a) lattie artefats (Niedermayer [30℄).In the next setion we disuss one of the solutions of the Ginsparg-Wilsonequation, de�ning the so-alled overlap operator.1.4.2 Overlap fermionsAs we have already stated, for many years it has not been realized that theGinsparg-Wilson relation provides a useful (from the simulational viewpoint)30



solution of the problem of lattie hiral symmetry, simply beause no solu-tions of this equation have been known. In 1997, Neuberger [37, 38℄ found apartiularly simple form of a lattie Dira operator that obeys the Ginsparg-Wilson relation. It is now usually referred to as overlap fermions and themassless overlap Dira operator is given by:
D̂ov(0) =

1

a

(

1 − A(A†A)−1/2
)

, (1.74)where:
A = 1 + s− aD̂Wilson(0) (1.75)and s is a parameter whih satis�es |s| < 1 and an be used to optimizeloality properties. Note that instead of D̂Wilson(0), one ould use in thekernel operator A any massless lattie Dira operator that is loal and hasno doubler modes [30℄. Moreover, if the operator used in A itself satis�es theGinsparg-Wilson relation, it will be just reprodued by eq. (1.74), sine then

A†A = 1.The massive operator is given, aording to (1.73), by:
Dov(m) =

(

1 + s− am

2

)

Dov(0) +m, (1.76)where m is the bare overlap quark mass.After the overlap operator was proposed, it was essential to show that itis loal. Else, this attitude would lead to ausality violations and render ituseless. The de�nition (1.74) inludes the highly non-loal term (A†A)−1/2,whih raises doubts about loality. Algebraially, strit loality (or ultra-loality) would mean that the Dira operator matrix element D̂(x, y) on-neting sites x and y of the lattie is non-zero only if the distane between
x and y is smaller than some spei�ed small value and also that this matrixelement depends on gauge links only in some small neighbourhood of sites xand y [41℄. These properties are true for the Wilson-Dira operator (hene,it is a sparse matrix), but the overlap Dira operator has non-zero entries forall pairs of lattie sites and thus it is lear that it is not stritly loal.However, strit loality for a Dira operator is not really needed. It isenough that the Dira operator falls o� exponentially, i.e. we have (suppress-ing the Dira and olor indies):

||D̂(x, y)|| ≤ Ce−ρ||x−y||, (1.77)for some onstants C and ρ, where || · || is the distane between sites x and
y, e.g. the taxi-driver distane ||x − y|| =

∑

µ |xi − yi|. If suh inequalityholds, it means that the interation range in physial units 1/ρ tends to 031



(the deay rate in lattie units aρ does not depend on the lattie spaing)as one approahes the ontinuum limit and in the ontinuum one has a loal�eld theory, as desired [11℄.A thorough analytial and numerial investigation of the loality of theoverlap Dira operator was performed by Hernandez, Jansen and Lüsher[41℄, who showed that this operator is loal under very general onditions,i.e. for a wide range of bare oupling onstants.1.4.3 Other kinds of hiral fermionsApart from overlap fermions, there a few kinds of lattie fermions that alsopreserve hiral symmetry. In this subsetion, we shortly disuss a few ofthem.1.4.3.1 Domain wall fermionsClosely related (mathematially equivalent) to overlap fermions are domainwall fermions, introdued by Kaplan [42℄ and Shamir [43℄ in 1992 and 1993,respetively. The general idea of this approah is to introdue an auxiliary(non-physial) �fth dimension and onsider massive Dira fermions with aspae-dependent mass in the shape of a domain wall. Kaplan showed thatsuh theory has a zero mode with de�nite hirality loalized on the domainwall and from the point of view of the 4-dimensional theory this zero modeis a hiral fermion. The way that this formulation irumvents the Nielsen-Ninomiya theorem is that translational invariane in the 5-dimensional sys-tem is broken (by the spae-dependent mass term), but it is still onserved inthe 4-dimensional physial world [44℄. If the �fth dimension is in�nite, theredoes not exist a doubler mode. But in the ase of a �nite �fth dimension(whih is of ourse always true in a lattie simulation), an extra zero modeof opposite hirality appears on a seond domain wall. However, both zeromodes have an exponentially small overlap and hene an not ommuniateif their separation is large enough. What is more, it was also shown that theanomaly struture is orret both in the in�nite and �nite �fth dimensionase. A �rst investigation of these properties was performed by Jansen [45℄,shortly after the birth of the idea of domain wall fermions.After the overlap formalism was invented, Neuberger also showed [46℄ thatdomain wall fermions with in�nite �fth dimension are equivalent to overlapfermions. Therefore, at �nite �fth dimension, they an be regarded as anapproximation to overlap fermions.In pratial simulations, the domain wall formalism is now widely usedin a dynamial setup (e.g. by the RBC/UKQCD Collaboration [47℄) or in32



a mixed ation approah (e.g. by the LHP Collaboration with improvedstaggered fermions in the sea setor [48℄). However, the size of the �fthdimension is usually taken in the range 8-16, whih means that the hiralsymmetry is only approximate and this entails additive mass renormalizationof the quark mass, i.e. a shift away from zero of the bare quark mass forwhih one has a vanishing pion mass [10℄. The value of this shift is usuallyreferred to as the residual mass.The main advantage of domain wall fermions with respet to the Wilsonfermions (and other non-hirally symmetri formulations) is that hiral sym-metry breaking by the domain wall fermions is rather mild and is believedto be ontrollable. Their main disadvantage is that one needs to simulatea 5-dimensional theory, instead of a 4-dimensional one, and hene the om-putational ost is higher by a fator of the order of the size of the �fthdimension.With respet to overlap fermions, an advantage is that this omputationalost is still muh smaller than the one for overlap, at the prie, however, ofnot having exat hiral symmetry, but only an approximation to it.1.4.3.2 Creutz fermionsA di�erent approah to irumvent the Nielsen-Ninomiya theorem is to re-strit oneself to the minimal number of doubler modes, i.e. to two modesof opposite hirality. This was pointed out in the 1980s by Karsten [49℄and Wilzek [50℄. Reently, this idea reemerged in the work of Creutz [51℄,who was motivated by the eletroni struture of graphene (whih is built oftwo-dimensional layers of graphite). The low-energy exitations in grapheneare desribed by a two-dimensional Dira equation for massless fermions andare hene hiral. Furthermore, hirality is ahieved exatly in the way thatinvolves the minimum number of fermion modes required by the Nielsen-Ninomiya theorem, i.e. they are minimally-doubled. Creutz showed howto generalize these properties to four dimensions. Creutz's idea was soonelaborated on by Borii [52℄, who derived a more general form of the ation.Creutz fermions exhibit an exat Nf = 2 �avour ontinuum hiral symme-try, whih implies also that the leading disretization errors are of O(a2) 10,and they are stritly loal. These are very appealing properties, sine theyimply that one ould simulate hiral fermions without the high omputa-tional ost of overlap fermions. However, Creutz fermions break a number ofdisrete symmetries, suh as parity, harge onjugation and time re�etion[53℄. Therefore, to approah the ontinuum limit in the interating ase one10An expliit test of this property will be disussed in Chapter 2.33



would have to restore these symmetries by �ne-tuning of several parametersin the Symanzik e�etive ation and this would make the pratial simula-tions with Creutz fermions very di�ult. However, a preliminary quenhedtest was performed by Borii [54℄, who omputed the pion mass and found abehaviour onsistent with the preditions of hiral perturbation theory. Thisled him to a onlusion that Creutz fermions are still worth exploring in thefuture, despite the fat that they break important disrete symmetries. Also,the onlusion by Bedaque et al. [53℄ was that for ertain values of the pa-rameters, the minimally-doubled fermion ations may exhibit non-standardsymmetries, that ould eliminate relevant operators of the Symanzik e�etivetheory and hene moderate the problem of disrete symmetries breaking.The expressions for the Dira operator for Creutz fermions (by whihwe will mean both fermions related to Creutz's original idea and Borii'sgeneralization) will be disussed in Chapter 2, only in the ontext of a testof their ontinuum-limit saling at tree-level of perturbation theory [55, 56℄.1.4.4 Topology on the lattieThe QCD vauum has a non-trivial topologial struture, whih has many im-portant impliations for hadron properties. For example, we have remarkedin Setion 1.1 that the mass of the �avour singlet η′ meson is related tothe topologial �utuations of the QCD vauum. This is an inherently non-perturbative phenomenon and hene seems to be well-suited to be addressedby Lattie QCD alulations.Let us start with the �eld-theoretial de�nition of the topologial harge:
Qtop =

1

32π2

∫

d4x ǫµνρσTr (Fµν(x), Fρσ(x)) ≡
∫

d4x q(x), (1.78)where q(x) is alled the topologial harge density [57℄. Gauge �eld on�g-urations that have a non-zero and integer topologial harge are e.g. super-positions of instantons [58℄ and anti-instantons, whih are lassial solutionsof the Eulidean �eld equations.The topologial harge an be related to the number of hiral zero modesof the massless Dira operator via the Atiyah-Singer index theorem [59℄:
Qtop = Qindex ≡ N− −N+, (1.79)where N± denotes the number of zero modes in the positive/negative hiralitysetor and Qindex is alled the index of the Dira operator.If one wants to ompute the topologial harge of a given gauge �eldon�guration on the lattie, one an, in priniple, use the disretized version34



of eq. (1.78). However, this an easily lead to non-integer values of the harge[60℄. This an be overome by applying smearing on gauge on�gurations,e.g. APE smearing [61℄, whih moves the topologial harge loser to integervalues, but it an also destroy small topologial objets and thus lead toinorret values of the harge.Suh problems are avoided if one uses the index theorem and omputesthe topologial harge as the index of the massless Dira operator. For thisto be possible, one has to employ a Dira operator that an have hiralzero modes (at any value of the lattie spaing), i.e. eigenstates with zeroeigenvalue, whih have de�nite hirality (that is they are also eigenstates of γ5with eigenvalue ±1). This means that the massless Dira operator must obey(lattie) hiral symmetry, e.g. it an be the overlap Dira operator, whihwill be used to ompute topologial harge in further part of this work.Sine the QCD path integral is symmetri with respet to the sign of thetopologial harge, we have 〈Qtop〉 = 0. However, a non-trivial quantity thatone an ompute is related to the �utuations of the topologial harge andis alled topologial suseptibility. In the ontinuum, it is de�ned by:
χtop =

∫

d4x〈q(x)q(0)〉, (1.80)whih on the lattie beomes
χtop =

〈Q2
index〉
V

, (1.81)where V is the lattie volume.It has been mentioned before that the topologial suseptibility is relatedvia the Witten-Veneziano formula (1.27) to the mass of the η′ meson. Phe-nomenologially, this formula implies a value of χtop ≈ (180MeV)4. It isworth to emphasize that this value agrees rather well with several quenhedlattie omputations, e.g. [62℄.1.5 Observables in Lattie QCDIn this setion, we show how one an extrat hadron properties from Lat-tie QCD simulations, onentrating on the quantities of interest for furtheronsiderations.Let us onsider a general zero-momentum two-point orrelation funtionof the form C(t) ≡ 〈0|Oi(t)Ōj(0)|0〉, where Oi(t) is some interpolating op-erator orresponding to the state with quantum numbers of the hadron wewant to analyze. Sine:
Oi(t) = eHtOie

−Ht, (1.82)35



inserting a omplete set of energy eigenstates into C(t) yields (we take i = jfor simpliity):
〈0|Oi(t)Ōi(0)|0〉 =

∑

n

〈0|eHtOie
−Ht|n〉〈n|O†

i |0〉
2En

= (1.83)
=

∑

n

〈0|Oi|n〉〈n|O†
i |0〉e−Ent

2En
=
∑

n

|〈0|Oi|n〉|2e−Ent

2En
,where En is the energy of the state n (1/2En is a normalization fator forenergy eigenstates).One an immediately see that in the limit of large Eulidean time t, theabove expression is dominated by the lowest energy state |1〉:

C(t)
t→∞−−−→ |〈0|Oi|1〉|2

2E1
e−E1t, (1.84)where E1 is the energy of this state, i.e. the mass of the lightest partile. Inthis way, one an extrat this mass by �tting (in some interval t ∈ [tmin, tmax])the orrelation funtion with an exponential funtion A exp(−m1t), where

A, m1 are �tting parameters, whih provide estimates for the partile mass
E1 = m1 and the matrix element |〈0|Oi|1〉|2 = 2Am1. To �nd the �t interval
[tmin, tmax], one usually omputes the so-alled e�etive mass:

me�(t) ≡ log

(

C(t)

C(t+ 1)

) (1.85)and plots it to �nd the plateau region, i.e. the region where the ontributionof the exited states is negligible and the e�etive mass is stable, up tostatistial �utuations.Sine a lattie omputation is usually performed with a �nite lattie ex-tent T in the temporal diretion11 with e.g. periodi boundary onditionsin time, the large-time form of the orrelation funtion is modi�ed in thefollowing way:
C(t)

t large−−−→ |〈0|Oi|1〉|2
2E1

(e−E1t+e−E1(T−t)) =
|〈0|Oi|1〉|2

E1
e−E1

T
2 coshE1

(

t− T

2

)

.(1.86)In suh ase, the e�etive mass at time t an be extrated by solving numer-ially the equation C(t)/C(t+ 1) = coshE1

(

t− T
2

)

/ coshE1

(

t+ 1 − T
2

).11However, it is sometimes possible to onsider latties with in�nite time extent. Anexample will be given in the next hapter. 36



We now onentrate on meson orrelators in the ase ofNf = 2 degeneratequarks. The general form of an interpolating operator for mesons is:
Oi(~x, t) = ψ̄(~x, t)Γiψ(~x, t), (1.87)where Γ denotes any Dira matrix (an identity matrix, a gamma matrix ora ombination of gamma matries).Expliitly introduing Dira (µ, ν, ρ, σ) and olour (a, b) indies, theorrelation funtion an be written as:

C(t) =
∑

~x

〈0|ψ̄aµ(~x, t)Γiµνψaν(~x, t)ψ̄bρ(~0, 0)Γjρσψ
b
σ(~0, 0)|0〉, (1.88)where the sum over ~x Fourier-transforms the orrelation funtion to zeromomentum. Contrating fermion �elds pairwise into fermion propagators:

〈0|ψaµ(~x, t)ψ̄bν(0, 0)|0〉 = Sabµν(~x, t;~0, 0), (1.89)aording to Wik's theorem, one �nds that there are two possible on-trations (ψaν(~x, t) ↔ ψ̄aµ(~x, t), ψbσ(~0, 0) ↔ ψ̄bρ(~0, 0) and ψaν(~x, t) ↔ ψ̄bρ(~0, 0),
ψbσ(~0, 0) ↔ ψ̄aµ(~x, t)), whih lead to:

C(t) =
∑

~x

Tr(S(~x, t; ~x, t) Γi) Tr(S(~0, 0;~0, 0) Γj) +

−
∑

~x

Tr(S(~x, t;~0, 0) Γi S(~0, 0; ~x, t) Γj), (1.90)where the trae is over spin and olour.The �rst term in the above expression an be represented by a dison-neted diagram and ontributes only to �avour singlet mesons. Later on, wewill be interested only in �avour non-singlet mesons, i.e. ones that are repre-sented by onneted diagrams, orresponding to the seond term in the aboveexpression. Hene, we now drop the �rst term and use the γ5-hermitiityproperty of the propagator: S(~0, 0; ~x, t) = γ5S
†(~x, t;~0, 0)γ5 to rewrite :

C(t) = −
∑

~x

Tr(S(~x, t;~0, 0) Γiγ5 S
†(~x, t;~0, 0) γ5Γ

j). (1.91)In this way, to evaluate this orrelator it is enough to ompute the propagatorfrom a given soure (loated at the origin (~0, 0) in the above formula) to allpossible sinks (all lattie sites (~x, t)). Suh propagator is alled a point-to-allpropagator. This an be done by solving the following matrix equation:
D̂ψµa = ηµa (1.92)37



Table 1.1: Meson interpolating operators. JPC lassi�ation denotes partilespin J , parity P and harge onjugation C [63℄.hannel JPC Γpseudosalar 0−+ γ5, γ0γ5salar 0++ 1, γ0vetor 1−− γi, γ0γiaxial vetor 1++ γiγ5tensor 1+− γiγj12 times for eah spin-olour ombination µa, with a point soure ηµa, i.e.a vetor (0 . . . 010 . . . 0)T , where the only non-zero number is plaed in oneof the �rst 12 entries, orresponding to 12 spin-olour omponents at lattiesite (0, 0, 0, 0).The solution of this equation:
ψµa = D̂−1ηµa (1.93)is the point-to-all quark propagator, denoted by S(~x, t;~0, 0) in eq. (1.91), inwhih the spin-olour indies are suppressed.Obviously, the Dira equation (1.92) does not have to be solved with apoint soure loated at the origin. Other hoies of the soure an be e.g.point soures with random loation of the soure or stohasti soures. Thelatter are of speial relevane from the point of view of this work and will bedisussed later.Table 1.1 summarizes the most ommonly used meson interpolating oper-ators. The names of di�erent hannels ome from the transformation prop-erties of partiles with respet to spin and parity. Here we have assumedthat the Γ matrix at the soure (denoted by Γj in eq. (1.91)) and at thesink (Γi) are the same. However, it is also possible to onstrut mesons with

Γi 6= Γj , e.g. Γi = γ5, Γj = γ0γ5, whih belongs to the pseudosalar hanneland hene it an also be used to extrat the mass of the pseudosalar meson.From the point of view of further onsiderations, the most importantmeson hannel will be the pseudosalar one. The PP orrelation funtion(Γi = γ5 ≡ P , Γj = γ5 ≡ P ) is the simplest orrelation funtion that an beonstruted. Putting its gamma matrix struture in eq. (1.91), one obtains:
CPP (t) = −

∑

~x

Tr(S(~x, t;~0, 0)S†(~x, t;~0, 0)). (1.94)38



Aording to eq. (1.83), one an extrat the mass of the pseudosalar me-son (pion) mπ from the deay of the PP orrelator and also the pion deayonstant fπ from the matrix element |〈0|P |π〉|:
fπ =

2m

m2
π

|〈0|P |π〉|, (1.95)where m is the bare quark mass.An equivalent de�nition of the pion deay onstant reads:
fπ =

ZA
mπ

|〈0|A0|π〉|, (1.96)where ZA is the renormalization onstant of the axial urrent and |〈0|A0|π〉|the matrix element of this urrent.For the ase of overlap fermions, the O(a)-improved interpolating opera-tors for mesons are onstruted in the following way [64℄:
Oov
i (~x, t) = ψ̄(~x, t)Γi

(

1 − aD̂ov(0)

2

)

ψ(~x, t) =
1

1 − am
2

ψ̄(~x, t)Γiψ(~x, t),(1.97)where the last equality holds for orrelation funtions at non-zero physialdistane.We also give here the expressions for baryon interpolating operators �for the proton p (uud), the neutron n (udd) and the deltas ∆++ (uuu), ∆+(uud), ∆0 (udd), ∆− (ddd) [65, 66℄, i.e. the otet and the deuplet baryonsthat ontain only light quarks (up and down, no strange quarks).
Jp = ǫabc

(

uTaCγ5db
)

uc, (1.98)
Jn = ǫabc

(

dTaCγ5ub
)

dc, (1.99)
Jµ∆++ = ǫabc

(

uTaCγ
µub
)

uc, (1.100)
Jµ∆+ =

1√
3
ǫabc

[

2
(

uTaCγ
µdb
)

uc +
(

uTaCγ
µub
)

dc
]

, (1.101)
Jµ∆0 =

1√
3
ǫabc

[

2
(

dTaCγ
µub
)

dc +
(

dTaCγ
µdb
)

uc
]

, (1.102)
Jµ∆− = ǫabc

(

dTaCγ
µdb
)

dc, (1.103)where C = γ4γ2 is the harge onjugation matrix.The two-point orrelation funtion for baryon B reads:
CB(t) =

1

2
Tr(1 ± γ4)

∑

~x

〈JB(~x, t)J̄B(~0, 0)〉, (1.104)39



where (1± γ4)/2 is the parity projetor. For example, the physial proton isdesribed by the orrelation funtion Cp(t) with projetion to positive parityand the negative parity projetion orresponds to the baryon N∗, mentionedearlier in the ontext of spontaneous hiral symmetry breaking.We will be interested in light baryon masses, whih are evaluated in ananalogous way as in the ase of mesons, i.e. from the exponential fall-o� of theorresponding orrelation funtion. The e�etive masses are thus extratednumerially from the ratios of the orrelation funtions of the form (1.86) attwo subsequent timeslies.We �nish by shortly disussing the degeneraies between the light baryonsin the ase of fermions that preserve isospin symmetry (e.g. overlap) andviolate it (e.g. twisted mass). In the overlap ase, the proton p and neutron
n are degenerate, as well as all delta baryons. For the twisted mass ase, thedegeneray is redued, but still holds between p�n, ∆++ � ∆− and ∆+ � ∆0,whih is due to γ5-hermitiity. Therefore, we will always refer to the protonand neutron as the nuleon N , but we will distinguish between ∆++ and ∆+in the twisted mass ase.

40



Chapter 2Tree-level saling testIn this hapter we will show the results of tree-level saling tests of overlap,twisted mass and Creutz fermions and thus expliitly demonstrate the O(a)-improvement in the observables [67, 55, 56℄. We will onsider three quantities� the pseudosalar meson mass and deay onstant and the pseudosalarorrelation funtion at a �xed physial distane. We will also analyze the asewhen the pseudosalar orrelation funtion is onstruted with propagatorsorresponding to two di�erent fermion disretizations.2.1 Fermion propagatorsThe tree-level test of di�erent kinds of lattie fermions onsists in analytiallyevaluating the momentum-spae fermion propagator and then using it toonstrut the relevant orrelation funtion, from whih the observables ofinterest an be extrated.2.1.1 Overlap fermionsThe starting point for the evaluation of the tree-level overlap fermion propa-gator is the free massless overlap Dira operator in momentum spae1, whihwas given by Lüsher [29℄:
aD̂ov(p) = 1 −

(

1 − iaγµp̊µ −
a2

2
p̂2
)(

1 +
a4

2

∑

µ<ν

p̂2
µp̂

2
ν

)−1/2

. (2.1)The massive operator is, aording to (1.73):
aD̂ov(p,m) =

(

1 − am

2

)

aD̂ov(p) + am, (2.2)1An expliit derivation of this operator is given in Appendix B.41



where m is the bare overlap quark mass.The expression for the quark propagator in momentum spae Sov(p) anbe found by omputing the inverse of the above Dira operator aD̂ov(p,m):
Sov(p) =

−i(1 − ma
2

)F (p)−1/2p̊µγµ + M(p)1
(1 − ma

2
)2F (p)−1

∑

µ p̊
2
µ + M(p)2

(2.3)where 1 is the identity matrix in Dira spae and we have introdued thefuntions:
F (p) = 1 +

a4

2

∑

µ<ν

p̂2
µp̂

2
ν , (2.4)

M(p) =
1

a

(

1 +
ma

2
−
(

1 − ma

2

)

F (p)−1/2
(

1 − a2

2

∑

µ

p̂2
µ

)

)

. (2.5)The propagator has a matrix struture in Dira spae and for later onve-niene we write it here in terms of its omponents:
Sov(p) = Sov

µ (p)γµ + Sov
0 (p)1. (2.6)2.1.2 Wilson twisted mass fermionsThe twisted mass fermion propagator an be found as an inverse of thefollowing Dira operator in momentum spae:

D̂tm(p) = ip̊µγµ1f +
ar

2
p̂2
µ11f +m11f + iµγ5τ3, (2.7)where the relevant notation has been introdued in Setion 1.3.3 and weshow here expliitly the matrix struture in �avour spae. The �rst threeterms have a trivial struture in �avour spae (1f is the identity matrix inthis spae), but the twisted mass term iµγ5τ3 breaks the isospin symmetrybetween up and down quarks and hene it modi�es the expression for thetree-level Wilson propagator in momentum spae (1.51) in the following way:

Ŝtm(p) =
−ip̊µγµ1f + (ar

2

∑

µ p̂
2
µ +m)11f − iµγ5τ3

∑

µ p̊
2
µ + (ar

2

∑

µ p̂
2
µ +m)2 + µ2

. (2.8)The propagator has a matrix struture in Dira and �avour spae and weagain write it here in terms of its omponents, expliitly distinguishing be-tween up and down quark propagators:
Stm,u(p) = Stm

µ (p)γµ + Stm
5 (p)γ5 + Stm

0 (p)1, (2.9)42



Stm,d(p) = Stm
µ (p)γµ − Stm

5 (p)γ5 + Stm
0 (p)1, (2.10)where the propagators of the two �avours di�er only in the sign of the γ5-matrix oe�ient.To obtain automati O(a)-improvement (maximal twist), in the free the-ory it is enough to set the bare untwisted quark mass m to 0. Suh variantof twisted mass fermions is usually referred to as maximally twisted mass(MTM) fermions.2.1.3 Creutz fermionsIt an be shown [55℄ that the momentum spae tree-level Dira operator forCreutz fermions an be written as:

DCreutz(p) = i
∑

µ

p̊µ γ̄µ − i
a

2

∑

µ

p̂2
µ Γ̄µ +m1. (2.11)All notation used in this subsetion is explained in Appendix B. This yieldsthe following form of the fermion propagator:

SCreutz(p) =
−i ∑µ

(

s̄µ(p) + c̄µ(p)
)

γµ +m1
∑

µ

(

s̄µ(p) + c̄µ(p)
)2

+m2

, (2.12)where we have introdued auxiliary funtions s̄µ(p) and c̄µ(p).The tree-level Dira operator for the variant suggested by Borii is:
DBorici(p) = i

∑

µ

p̊µγµ − i
a

2

∑

µ

Γµp̂
2
µ +m1. (2.13)The orresponding propagator is:

SBorici(p) =
−i∑µGµ(p)γµ +m0 1
∑

µGµ(p)2 +m2
, (2.14)where we have again introdued an auxiliary funtion Gµ(p).The matrix struture of both Creutz and Borii fermions is of the sameform as in the ase of overlap (2.6).2.2 ObservablesThe tree-level test of di�erent kinds of fermions will onsist in omputingthree observables � the pseudosalar orrelation funtion at a �xed physial43



distane, the pseudosalar meson mass and deay onstant. All of thesequantities an be alulated from the pseudosalar orrelation funtion, givenby eq. (1.94). Here we rewrite it for onveniene, dropping the onventionalminus sign:
CPP (t) =

∑

~x

Tr(S(~x, t;~0, 0)S†(~x, t;~0, 0)). (2.15)The derivation of the �nal expression for the pseudosalar orrelation fun-tion in terms of momentum spae propagator omponents Sξ(p), de�ned bydeompositions of the form (2.6) or (2.9), an be found in Appendix B andgives:
CPP (t) =

NcNd

N3N2
4

∑

~p

∑

p4,p′4

4 or 5
∑

ξ=0

Sξ(~p, p4)S
∗
ξ (~p, p

′
4))e

i(p4−p′4)t, (2.16)where Nd is the number of Dira omponents (i.e. the dimension of spae-time) and Nc is the number of olours (in the free ase the struture in olourspae is trivial). The index ξ runs from 0 to 4 in the ase of overlap andCreutz fermions or from 0 to 5 in the ase of Wilson twisted mass fermions.The above expression an be omputed by expliitly evaluating the sumover disrete momenta. On the lattie, the possible values of momenta are(for periodi boundary onditions):
pi =

2π

a

ni
N
, p4 =

2π

a

n4

N4

, (2.17)where ni = 0, 1, . . . , N − 1, n4 = 0, 1, . . . , N4 − 1. The box length is in thespatial diretions L = aN and in the temporal diretion L4 = aN4.At large enough times, the above orrelation funtion has only the on-tribution from the lightest partile, i.e. it is of the form (1.84):
CPP (t)

t→∞
=

|〈0|P |π〉|2e−mπt

2mπ

, (2.18)where we all the lightest pseudosalar meson the pion and by mπ we denoteits mass. However, sine we are only onsidering here the tree-level quantities,the name �pion� does not orrespond to the physial QCD pion, but it is onlyan abbreviation for the pseudosalar meson.The pion mass an be extrated from formula (1.85). In the free-�eld aseit is pratial to onsider latties with very large time extent2 and hene t2In the ase of Wilson twisted mass fermions it is even possible to analytially go toin�nite time extent [68, 69℄. 44



an be taken so large that no ontribution from the exited states is present,up to mahine preision. Therefore, one an obtain very preise values of thepion mass.The pion deay onstant an be extrated from expression (1.95), substi-tuting the matrix element 〈0|P |π〉 obtained from eq. (2.18). This yields:
fπ

t→∞
=

2m

m
3/2
π

√

2CPP (t)e
1

2
mπt. (2.19)The value of fπ does not depend on the timeslie t at whih the above equa-tion is evaluated, i.e. the produt √2CPP (t)e

1

2
mπt is time-independent, pro-vided that it is alulated in the plateau region.2.3 Test setupWe would like to perform a �xed-volume, ontinuum limit saling test of thethree observables of interest � the pseudosalar orrelator, mass and deayonstant. First, we have to de�ne what is atually meant by �xed volume andontinuum limit in the ontext of a free theory, whih an not have assignedphysially meaningful units.By �xed volume, we will mean that the produt of the box length in lattieunits (N) and quark mass (m) Nm = const. Sine N = L/a, simultaneouslyinreasing the number of lattie sites and dereasing the quark mass in lattieunits (suh that Nm is held �xed) orresponds to dereasing the lattiespaing a. In this way, the ontinuum limit is equivalent to the in�nitevolume limit. However, this is speial to the tree-level ase � in full QCDthese two limits are not equivalent.For the test we will �x Nm (or Nµ in the ase of twisted mass fermions)to 0.5 and hange N from 4 to 64. The temporal diretion will have amuh larger extent � in order not to have any ontaminations from exitedstates we take N4 = 64N and extrat observables at a �xed physial distane

t = 4N . Thus, the largest onsidered lattie is 643×4096. The orrespondingparameters for eah lattie size are presented in Table 2.1.2.4 Comparison of overlap, twisted mass andCreutz fermionsIn this setion, we present the results of a tree-level saling test of di�erentkinds of fermions: 45



Table 2.1: Simulation parameters for the tree-level saling test.
N N4 m or µ t = 4N4 256 0.125000 168 512 0.062500 3212 768 0.041667 4816 1024 0.031250 6420 1280 0.025000 8024 1536 0.020833 9628 1792 0.017857 11232 2048 0.015625 12836 2304 0.013889 14440 2560 0.012500 16044 2816 0.011364 17648 3072 0.010417 19252 3328 0.009615 20856 3584 0.008929 22464 4096 0.007813 256

• overlap fermions,
• Wilson twisted mass fermions at maximal twist (MTM),
• Creutz fermions with C = 3/

√
10,

• Creutz fermions with C = 3/
√

14,
• Borii fermions.. First, we onsider the pion mass, whih is depited in Fig. 2.1. The pointsin the plot show the result extrated from the orrelation funtion (2.16) andthe orresponding lines are �ts of the following formula:

Nmπ = am + bm
1

N2
+ cm

1

N4
. (2.20)In all ases, we �nd the expeted behaviour � i.e. O(a2) (O(1/N2)) salingviolations. It is worth to emphasize here again that in the ase of overlapand Creutz fermions this results diretly from hiral symmetry and in thease of twisted mass fermions from automati O(a)-improvement, whih isahieved only at maximal twist, i.e. for bare untwisted quark mass set to 0.46
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Figure 2.1: Continuum limit saling of the pion mass for overlap, twistedmass and Creutz fermions.Table 2.2: Fitting oe�ients for the pion mass � eq. (2.20).fermion am bm cmMTM 1.0 -0.0104167 0.000296044Overlap 1.0 0.0208333 0.000783869Borii 1.0 -0.0494792 0.00564291Creutz C = 3/
√

10 1.0 -0.0078125 -0.0101045Creutz C = 3/
√

14 1.0 -0.0488282 0.00282578The ontinuum limit (the oe�ient am) is the same for all kinds offermions (and equal to the expeted value Nmπ = 2Nm (overlap, Creutzfermions) and Nmπ = 2Nµ (twisted mass fermions)). This is a neessaryondition that eah fermion ation has to ful�ll � the ontinuum limit of allphysial observables has to be the same. This is ensured if the ontinuumlimit of the fermion propagator for the disretization of interest is equal to the47
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Figure 2.2: Continuum limit saling of the pion deay onstant for overlap,twisted mass and Creutz fermions.ontinuum fermion propagator. In other words, various fermion disretiza-tions di�er in the way the lattie artefats are introdued.It is also interesting to ompare the magnitude of O(1/N2) disretizationerrors (oe�ient bm � Tab. 2.2) for this observable. They are the largest forBorii and Creutz (C = 3/
√

14) fermions, around twie smaller for overlapfermions, a further fator of two smaller for twisted mass fermions and thesmallest for Creutz (C = 3/
√

10) fermions. Moreover, omputations fordi�erent �xed values of Nm on�rm that this behaviour is universal for awide range of values of Nm.Furthermore, the value of the oe�ient cm that haraterizes theO(1/N4)disretization errors is in general smaller than bm, indiating that the or-retions to the O(1/N2) behaviour are small. However, there are some ex-eptions to this rule (e.g. the Creutz C = 3/
√

10 ase), where cm is slightlylarger than bm, but still rather small.As the seond observable, we onsider the pion deay onstant, shown inFig. 2.2. The points in the plot show the result omputed from eq. (2.19)48



Table 2.3: Fitting oe�ients for the pion deay onstant � eq. (2.21).fermion af bf cfMTM 3.4641 0.0541266 -0.000811859Overlap 3.4641 0.108253 0.00553143Borii 3.4641 -0.0676584 -0.00527683Creutz C = 3/
√

10 3.4641 0.293186 -0.0746106Creutz C = 3/
√

14 3.4641 -0.00789431 -0.0379067and the orresponding lines are �ts of the following formula:
Nfπ = af + bf

1

N2
+ cf

1

N4
. (2.21)In all ases, we observe againO(1/N2) leading disretization errors. How-ever, the oe�ients bf (Tab. 2.3) lead to di�erent onlusions regarding thesize of these e�ets for the kinds of fermions under analysis. The largest oef-�ient is observed for Creutz (C = 3/

√
10) fermions, whih had the smallestdisretization error in the pion mass (bm). Aordingly, Creutz (C = 3/

√
14)fermions had the seond largest oe�ient bm, but the oe�ient bf is thesmallest among all disretizations.Generalizing, this means that the size of disretization e�ets depends onthe hoie of the observable, i.e. that small O(a2) e�ets in one observabledo not mean that for other observables one an expet the same.Table 2.4: Fitting oe�ients for the pseudosalar orrelation funtion at a�xed physial distane t/N = 4 � eq. (2.22).fermion aC bC cCMTM 0.109894 0.00457891 -0.0000333779Overlap 0.109894 0.00457891 0.000181293Borii 0.109894 0.00114472 -0.0013941Creutz C = 3/

√
10 0.109894 0.0194604 -0.00269918Creutz C = 3/

√
14 0.109894 0.00486504 -0.00300215This is on�rmed by the result for the third observable � the orrelationfuntion at a �xed physial distane t = 4N , shown in Fig. 2.3. Again, thepoints in the plot orrespond to the orrelation funtion omputed from eq.49
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Figure 2.3: Continuum limit saling of the pseudosalar orrelation funtionat a �xed physial distane t/N = 4 for overlap, twisted mass and Creutzfermions.(2.16) and the lines are �ts of the following formula:
N3CPP (t = 4N) = aC + bC

1

N2
+ cC

1

N4
. (2.22)The oe�ient bC is again the largest for Creutz (C = 3/

√
10) fermionsand the smallest for Borii fermions. As a oinidene, bC for overlap andtwisted mass fermions is the same, whih is not true for other values of Nm(for Nm < 0.5 the value for overlap is larger, for Nm > 0.5 it is smaller).Other interesting quantities to ompute are the mixed orrelators. Inthe meson ase they orrespond to taking the two quarks disretized withdi�erent ations. This is relevant from the point of view of mixed ationsimulations in the interating theory, where it is possible to build a mesonfrom two valene quarks, two sea quarks or one valene and one sea quark.If one imposes a mathing ondition that the valene-valene pion and thesea-sea pion have the same mass, the mixed valene-sea pion in general has adi�erent mass and the obtained mass di�erene quanti�es unitarity violations50
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• mathing of the pion mass � one �nds a bare valene quark mass mval,whih leads to the same pion mass as the mass of a pion onstrutedfrom two sea quarks of mass msea: mval−val

π = msea−sea
π ,53



• mathing of renormalized quark masses: mval
ren = msea

ren.In the free ase, there is no need of renormalization and hene the seondondition is trivial. However, a general situation is that this mathing anbe done only up to O(a2) e�ets. Hene, at tree-level we an investigate thee�ets of suh mismath between the quark masses.Regarding the �rst ondition, we will �nd the bare overlap quark massthat leads to the same pion mass as some spei�ed MTM quark mass andtest whether the two other observables � the pion deay onstant and thepseudosalar orrelator at a �xed physial distane are also mathed.2.5.1 Unmathed quark massesTo investigate the e�et of non-ideal mathing between the quark masses, weimpose the following setup. The MTM quark mass is �xed to Nµ = 0.5, butin the overlap quark mass we allow for an O(a2) deviation from the twistedmass value, setting:
Nm = 0.5 − v/N2. (2.23)The mismath parameter v will be varied from v = 0 to v = 4.The results of the test are shown in Figs. 2.7 and 2.8. Both plots showthat the leading O(1/N2) ut-o� e�ets an beome very large if there isa substantial mismath in quark masses (for large mismath parameter v).Moreover, even the O(1/N4) e�ets an beome sizable, whih an lead to awrong ontinuum limit value in the pion mass and deay onstant, if the �tinludes too small latties (i.e. all latties from N = 4 to N = 64) � suh �torresponds to dashed lines on the plots. To get the orret ontinuum limitvalue, the �t has to be performed for large enough latties. However, for theanalyzed setup this beomes important only for v = 4 and even there it isenough to exlude the point N = 4 from the �t to obtain the right value inthe ontinuum. If the quark masses are only slightly mismathed (v / 2),even a full (N ∈ [4, 64]) �t leads to the orret ontinuum limit. It is worthto emphasize that the e�et that we observe at tree-level is rather small (theontinuum limit is wrong by only ≈ 0.1 %), but it an be severely enhanedin the interating theory.A similar e�et an our if it is not possible to go to large enough latties,i.e. if the �t an be performed e.g. only in the interval N ∈ [16, 24]. Oneagain, suh e�et an be of pratial importane in the simulations of theinterating theory, where it might not be possible to go to very large latties.However, for the setup analyzed here suh e�et is very small in omparisonto the e�et disussed above and hene it is not shown in a plot.54
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Chapter 3Algorithmi and tehnial details
3.1 Simulating QCDIn this setion, we brie�y outline the idea behind a Lattie QCD simulation(with any kind of fermions) and desribe the most widely used algorithm ofgenerating gauge �eld on�gurations � the Hybrid Monte Carlo algorithm.3.1.1 General ideaAs already stated in Setion 1.1, omputing any observable in a Lattie QCDsimulation onsists in approximately evaluating an integral of the form (1.16)by a Monte Carlo method. This is a high-dimensional integral over all possi-ble gauge �eld and fermion �eld on�gurations. Fortunately, the dependeneon the Grassmann-valued fermion �elds an always be eliminated, leaving anintegral over only the gauge �elds, weighted by the Boltzmann fator e−Seff ,where Seff is some e�etive ation dependent on the algorithm used. More-over, for a majority of gauge �eld on�gurations the ation is very large andhene their weight is negligibly small. Therefore, one should perform impor-tane sampling, i.e. use an algorithm that e�etively hooses on�gurationsthat have a high Boltzmann fator. Thus, having a large number (of the or-der of several thousand) of suh on�gurations, one an ompute the MonteCarlo average of an observable O, whih we will denote by Ō:

Ō =
1

N

N
∑

i=1

O[Ui], (3.1)where O[Ui] denotes the observable O omputed in a bakground gauge �eld
Ui belonging to the Markov hain of generated on�gurations. If the simula-tion is performed orretly, in the limit N → ∞ the Monte Carlo average Ō61



will orrespond to the atual ensemble average 〈O〉. The onditions that haveto be satis�ed in order to obtain the orret average are measure preservationand detailed balane. The latter reads:
e−S[U ]P (U → U ′) = e−S[U ′]P (U ′ → U), (3.2)where P (U → U ′) denotes the probability of transition from on�guration Uto U ′.Let us now onsider the partition funtion (1.17). After integrating outthe fermion �elds, one obtains:
Z =

∫

DU e−Sgauge[U ]

Nf
∏

i=1

det(D̂i[U ]), (3.3)where det(D̂i[U ]) is the determinant of the Dira operator matrix for fermion�avour i. Suh form of the integrand implies that the probability distributionthat has to be simulated depends on a highly non-loal fermion determinant.The ost of alulating this determinant(s) is by far the highest ost in aMonte Carlo simulation. However, the �rst approximation to the partitionfuntion ould be to neglet the fermion determinant, i.e. set it to a onstant.Suh approximation is alled the quenhed approximation and it physiallyonsists in negleting the fermion loops. As suh, it is very rude. Still,for many years it was very muh used in simulations, sine the omputa-tional ost related to the determinant was just too high for the generation ofomputers then available.However, the omputational power has been inreasing for many yearsand presently it is possible to perform fully dynamial simulations (i.e. withthe determinant inluded1), whih is also due to many algorithmi improve-ments. In the next subsetion we desribe the algorithm of hoie for mostsimulations with dynamial fermions � the Hybrid Monte Carlo algorithm.3.1.2 Hybrid Monte CarloThe Hybrid Monte Carlo (HMC) algorithm was originally introdued by Du-ane, Kennedy, Pendleton and Roweth [70℄. It ombines a moleular dynamisupdate of gauge �elds with a Metropolis aept/rejet step. Here we outlinethe basi steps that need to be performed in an HMC simulation [71℄.Given the ation to simulate S(U), �rst one onstruts the Hamiltonian:
H(π, U) =

1

2

∑

x,µ

πax,µπ
a
x,µ + S(U), (3.4)1The determinant is not omputed expliitly � one usually represents it in an indiretway, e.g. by a set of pseudofermion �elds, to be disussed later.62



where πax,µ is a omponent of a momentum �eld:
πx,µ = πax,µt

a (3.5)onjugate to eah lattie link Ux,µ. In this way, the integral one wants toevaluate: ∫ DU O[U ] exp(−S(U)) an be written in the equivalent form:
∫

DUDπO[U ] exp(−H(π, U)), sine the additional integration over momen-tum �elds π yields just a Gaussian integral and hene produes a onstantfator.Thus, one obtains a lassial Hamiltonian system. The evolution of thissystem in a �titious Monte Carlo time τ an be alulated from the Hamil-ton's equations:
π̇x,µ = −Fx,µ, (3.6)
U̇x,µ = πx,µUx,µ, (3.7)where the dot denotes di�erentiation with respet to the �titious time τ andthe fore Fx,µ is given by2:
Fx,µ =

∂S(U)

∂Ux,µ
. (3.8)Solving the above system of di�erential equations, one obtains a trajetoryin phase spae, i.e. the values of Ux,µ(τ) and πx,µ(τ) for every value of τ .The steps in the HMC algorithm are the following:1. Randomly generate the initial (τ = 0) momentum �eld πx,µ(0) aord-ing to the distribution exp(−1

2

∑

x,µ π
a
x,µπ

a
x,µ).2. Numerially integrate (e.g. by the so-alled leap-frog algorithm) Hamil-ton's di�erential equations (3.6)-(3.7) to obtain Ux,µ(τ) and πx,µ(τ)from their initial values Ux,µ(0) and πx,µ(0), respetively. By onstru-tion, suh evolution preserves the value of the Hamiltonian up to anumerial integration error.3. Aept the new on�guration with probability:

P = min (1, e−∆H(τ)
)

, (3.9)where ∆H(τ) = H(π(τ), U(τ)) −H(π(0), U(0)) is in general non-zero,whih is due only to the numerial integration error. If the on�gurationis rejeted, then U(τ) = U(0), i.e. the initial on�guration does nothange.2In (3.8) we use symboli notation for a derivative of the ation with respet to a linkvariable. The derivative with respet to an SU(3) element an be formally de�ned as
∂S(exp(ωa(x,µ)ta)U(x,µ))

∂ωa(x,µ)

∣

∣

∣

ωa(x,µ)=0
. 63



4. Repeat steps 2-3 to obtain as many trajetories (gauge �eld on�gura-tions) as is desired. The initial values of the variables U and π for step2 of trajetory N are the values of these variables at the end of step 3 ofthe preeding trajetory N −1, i.e.: U trajetory N(0) = U trajetory N−1(τ),
πtrajetory N(0) = πtrajetory N−1(τ).The above algorithm ould in priniple be used to simulate QCD withdynamial quarks. However, to make suh simulations pratial, one has tooverome the omputational problem of e�etively alulating the fermiondeterminant. This is usually done with the pseudo-fermion method, whihonsists in replaing the fermion �elds by auxiliary bosoni �elds3 and ex-pressing the determinant as a Gaussian integral over these �elds. The partof the fore oming from the pseudo-fermion �elds is the most intensive partof the simulation. Hene, dynamial simulations are by a large fator moreomputationally expensive than pure gauge simulations, where the pseudo-fermion �eld is not needed.We have outlined here the general idea of the Hybrid Monte Carlo algo-rithm. However, in pratie one an greatly redue the omputer resouresthat are needed by implementing the signi�ant re�nements of this algorithmthat were proposed during the last a. 10 years. Some of them are shortlydisussed in Appendix C.With these improvements, Lattie QCD is approahing the possibility oflarge-sale simulations with physial quark masses. Only around 10 yearsago, it seemed that to reah the physial point one would need resoures ofthe order of several PetaFlop-years to generate an ensemble of a few hundredindependent dynamial gauge �eld on�gurations with typial parametersfor the lattie spaing (≈ 0.08 fm) and physial box length (≈ 2.5 fm).This was illustrated by the famous �Berlin Wall� plot [72℄. Around 2010 theomputational ost seems to be some 3-4 orders of magnitude smaller withthe aforementioned re�nements [71℄. Moreover, work on the algorithms is stillin progress and hene further redution of the ost is possible. Nevertheless,the omputer resoures needed to simulate QCD are still huge.3.2 Computation of the overlap operatorWe will now onentrate on tehnial details of simulations with overlapfermions as valene quarks.3The auxiliary �elds arry the same indies as the fermion �elds, but they obey bosonistatistis. Hene, they are alled pseudo-fermion �elds.64



The matrix (A†A)−1/2 in the de�nition of the overlap operator is thesoure of many problems, inluding tehnial ones. It is a non-trivial taskto ompute this matrix in the �rst plae and it is obviously needed to on-strut the overlap Dira operator. The strategy that one usually follows isto onstrut an approximation of (A†A)−1/2. There are several ways to dothis, inluding polynomial approximations, Lanzos based methods and par-tial fration expansion. An overview of these methods is provided e.g. in[73, 74℄. Here we restrit ourselves to the desription of the method rele-vant from the point of view of this work, i.e. the Chebyshev polynomialapproximation method. The advantages of using this approximation are thewell-ontrolled exponential �t auray and the possibility of having numer-ially very stable reursion relations, whih allows for high degrees of thepolynomial.The operator A†A depends on the gauge �eld on�guration and thereforethis approximation has to be performed separately for eah on�guration.The Chebyshev polynomials Tj(x) are solutions to the di�erential equa-tion (1−x2)y′′−xy′+j2y = 0 for non-negative integer j and an be expressedreursively as: T0(x) = 1, T1(x) = x, Tj(x) = 2xTj−1(x) − Tj−2(x).The Chebyshev polynomial approximation to the funtion (A†A)−1/2 is apolynomial Pn(A†A) of degree n [11℄:
1√
A†A

≈ Pn(A
†A) =

n
∑

j=0

cjTj(X), (3.10)where:
X =

2A†A− (λmin + λmax)1
λmax − λmin

, (3.11)
λmin and λmax are the smallest and largest eigenvalue of A†A, respetively,and the oe�ients cj are alulated from the formula:

cj =
π

n

n
∑

k=1

f(xk)Tj(xk), (3.12)where:
f(xk) =

(

1

2
(λmin + λmax) +

xk
2

(λmax − λmin)

)−1/2 (3.13)and
xk = cos

((

k − 1

2

)

π

n

)

. (3.14)
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Any eigenvalue λ ∈ [λmin, λmax] of the matrix A†A satis�es the followingondition:
1√
λ
− Pn(λ) = O(e−2(n+1)

√
λmin/λmax). (3.15)This means that the approximation error dereases exponentially fast withinreasing polynomial degree and depends on the ondition number of thematrix A†A, i.e. on the ratio λmax/λmin. In other words, to ahieve the de-sired preision, one has to hoose a polynomial degree whih is proportionalto the ondition number of A†A. Sine the eigenvalues of the Wilson operatoran go arbitrarily low, the neessary degree of polynomial an easily beomeprohibitively high. Therefore, one usually supplements the Chebyshev ap-proximation method with eigenvalue de�ation for the operator A†A. Thiswill be disussed in the next setion.In pratial simulations, one usually wants to ensure that the Ginsparg-Wilson relation (for massless overlap Dira operator) is satis�ed with a veryhigh preision � usually mahine preision. To ensure this, the followingondition should be satis�ed [76℄:

||R− A†A
(

Pn(A
†A)
)2
R||2/||R||2 < ξ, (3.16)where R is a random vetor and ξ has to be a very small number, typiallyset to 10−16 to ahieve a ompromise between good quality of approximationand its ost4.3.3 Reduing the ondition number of A†AWe now disuss the possibilities of reduing the ondition number of theoperator A†A.3.3.1 Eigenvalue de�ationThe eigenvalues of A†A are bounded from above and hene the ones that anbe responsible for large ondition numbers are the lowest eigenvalues. Thisis illustrated in Fig. 3.1, whih shows the ases of:

• �xed lattie spaing a ≈ 0.079 fm, variable physial size of the lattie(upper plots),4Suh level of preision orresponds to �double� preision in the C programming lan-guage. Inreasing preision is still possible with speialized libraries, e.g. GNU MultiplePreision Arithmeti Library, but it would lead to a signi�ant inrease in omputationalost. 66
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β=4.2, L/a=24Figure 3.1: 5 lowest eigenvalues and the highest eigenvalue for various gauge�eld ensembles. The lattie spaing is a ≈ 0.079 fm (β = 3.9) for upperplots, a ≈ 0.063 fm (β = 4.05) for bottom left and a ≈ 0.051 fm (β = 4.2)for bottom right plot.
• (approximately) �xed physial size of the lattie with box length L ≈

1.3 fm, variable lattie spaing (upper left and bottom plots).The former shows that inreasing the volume at a �xed lattie spaing in-reases the probability of having very low eigenvalues � hene the onditionnumber of A†A inreases with the volume. Dereasing the lattie spaing (go-ing from β = 3.9 towards β = 4.2) auses the spetrum of the lowest eigen-values to move up (eigenvalues in lattie units tend to beome higher), whihresults from the fat that the gauge �eld on�gurations beome smoother.Therefore, the ondition number of A†A dereases with dereasing lattiespaing.As an be seen on the plots, the eigenvalues of A†A an go very low andhene the ondition numbers of A†A an be very large, thus leading to veryhigh degrees of Chebyshev polynomials (neessary to satisfy the Ginsparg-Wilson relation up to desired preision), whih an typially reah 1000-2000or even more, depending on the gauge �eld on�guration under analysis and67



in general on the parameters (e.g. lattie volume, lattie spaing).Sine large ondition numbers are aused by the lowest eigenvalues, it ispro�table to ompute a ertain number Nev (out of the total number Ntotal)of eigenmodes of A†A and split (A†A)−1/2 into two parts:
1√
A†A

=

Ntotal
∑

i

1√
λi
|λi〉〈λi| =

Nev
∑
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λi
|λi〉〈λi| +

1
√

Ã†Ã
(3.17)where λi are the eigenvalues of A†A, |λi〉 the orresponding eigenvetors and

(Ã†Ã)−1/2 is the part of the full operator that has the Nev lowest modesprojeted out.In this way, the Chebyshev approximation (3.10) is applied just to the part
(Ã†Ã)−1/2, whih has a redued ondition number, sine the lowest modeshave been projeted out.The resulting degree of Chebyshev polynomial, after the de�ation proe-dure, is of order 200-400 for optimally hosen Nev. The word �optimal� inthis ontext refers to the fat that the proedure of eigenmodes omputationis omputer-time intensive and hene suh number Nev has to hosen thatthe additional omputer-time ost of alulating the eigenmodes is balanedby the pro�t of having lower Chebyshev polynomial degree, e.g. for the in-version of the Dira operator. The number of eigenmodes Nev that should beprojeted out has to be found experimentally, but in general it grows withinreasing lattie volume, as a onsequene of the behaviour observed in thenumerial test presented above.3.3.2 HYP smearing of gauge �eldsEigenvalue de�ation is not the only way to lower the ondition number ofthe matrix A†A and thus the degree of Chebyshev polynomial. A usefultehnique that an be applied before the omputation of the lowest modesof A†A is to perform HYP smearing on the gauge �elds. This link fatteningmethod was introdued by A. Hasenfratz and F. Knehtli [77℄ and allows toeliminate short-distane �utuations of the gauge �elds and thus derease theprobability of having very low eigenvalues of A†A. In this way, one iterationof HYP smearing helps to ahieve a smaller ondition number of A†A andthus derease the degree of Chebyshev polynomial. In omparison with otherlink fattening methods (e.g. APE smearing [61℄), HYP smearing is believedto preserve better the short-distane quantities, beause it mixes links fromhyperubes attahed only to the original link. Thus, it should not a�et thephysial properties of gauge �eld on�gurations and the physial observablesalulated from HYP-smeared on�gurations.68



Finally, the degree of Chebyshev polynomial that one usually reahes bya ombination of one iteration of HYP smearing and eigenvalue de�ation isof order 100-200 for the optimal hoie of the number of de�ated eigenval-ues Nev. This is a onsiderable improvement with respet to the �rst numberquoted for the polynomial degree � 1000-2000, whih is typial without eigen-value de�ation and HYP smearing. Therefore, the redution is by a fator ofaround 10, a fator of ≈ 2 brought in by HYP smearing and a fator of ≈ 5by eigenvalue de�ation.Obviously, the fat that one needs to work with the Chebyshev polynomialapproximation (or any other) still inreases the omputational ost of usingoverlap fermions by a large fator � typially of order 30-120 with respet toe.g. twisted mass fermions [75℄, even after the ondition number redutiontehniques have been used. Moreover, this number tends to inrease whenone dereases the pion mass. This speed fator is now onsidered to be one ofthe main drawbaks of overlap fermions and it motivates e.g. the mixed a-tion approah, in whih overlap fermions are used only in the valene setor,whereas to generate gauge �eld on�gurations a heaper fermion disretiza-tion is used. The hope of this approah is that while avoiding the mostexpensive part of a simulation, whih is the generation of gauge �elds, onean still pro�t from the exat hiral symmetry that overlap fermions provide.The mixed ation approah will be disussed further in Chapter 4.3.4 Inverting the Dira operatorAfter onstruting the overlap Dira operator, to alulate most observables,suh as hadroni orrelation funtions, it is neessary to ompute the quarkpropagator. To obtain omplete information about quark propagation fromeah possible soure site to every other sink site, it would be neessary toompute the inverse of the Dira operator matrix. This is learly a formidabletask for typial lattie sizes � even storing suh matrix in omputer memorywould be very di�ult. Fortunately, the omplete propagator that orre-sponds to a given gauge �eld on�guration is not needed from the pratialpoint of view, sine the information about quark propagation from some site
x to site y is very muh orrelated with the information about propagationbetween some other site x′ and y.Therefore, the strategy that is usually followed onsists in solving thematrix equation:

D̂(m)ψ = η, (3.18)where ψ is alled the propagator, m is the bare quark mass and η is thesoure � a vetor whose hoie will be ommented on below.69



3.4.1 Stohasti souresAn important aspet of solving eq. (3.18) is the hoie of the soure η. Thesimplest possible hoie is the point soure, whih means that the vetor ηis hosen to be 1 at one spae-time point xsrc, spin µsrc and olor csrc and 0otherwise:
η(x)µc = δx,xsrc

δµ,µsrc
δc,csrc

. (3.19)The propagator ψµc is alled the point-to-all propagator, sine it orrespondsto one olumn of the full inverse Dira operator matrix and hene to quarkpropagation from one point xsrc (with spin-olor indies µsrc and csrc) to allother lattie points (with all possible spin-olor indies). In this way, to ob-tain a propagator suitable for omputation of hadroni orrelation funtionsof interest in this work, it is neessary to solve eq. (3.18) 12 times � one foreah ombination of spin and olor omponents of the soure µsrc and csrc.However, for mesoni orrelators it is possible and advisable to use the in-formation provided in gauge �eld on�gurations more fully by using timesliestohasti soures. Let us onsider the following hoie of the soure:
η(x)µc =

[±1 ± i√
2

]

x∈Tsrc

δµ,µsrc
δc,csrc

, (3.20)where the symbol [·]x∈Tsrc
means that the soure vetor is non-zero for alllattie sites on a given timeslie Tsrc and the ± signs in the expression inparentheses are hosen stohastially and independently for all x. The re-maining Kroneker deltas imply that the only non-zero entries are for a spe-i�ed spin µsrc and olour omponent csrc. Sine the stohasti numbers areof the form (±1 ± i)/

√
2, we will refer to these soures as Z(2) stohastisoures (formally, they should be alled the Z(2) × Z(2) stohasti soures,sine here omplex numbers are involved). In the ontext of Lattie QCD,the Z(2) stohasti noise was �rst proposed by Dong and Liu [78℄. The mo-tivation to use this kind of noise is that it produes a minimum variane ofinverted matrix elements due to stohasti estimation.The propagator element obtained from sample r of a stohasti soure is:

ψri = D̂−1
ij η

r
j , (3.21)where the indies i, j enompass lattie site, spin and olour.Hene, the full propagator matrix element estimate is: D̂−1

ij = (ηrj )
∗ψri .This estimate di�ers from the atual matrix element by stohasti noise,whih is in general rather large � the noise-to-signal ratio for the timesliestohasti soure is expeted to be of the order of √Vsrc/√R, where Vsrc isthe volume of the soure, i.e. the number of non-vanishing entries in the70



soure, and R is the number of noise samples. Clearly, to get a useful signalthe number of noise samples would have to be very large [24℄.However, it is possible to redue the noise-to-signal ratio onsiderably byemploying the so-alled one-end trik, introdued in [79℄. Let us onsider theprodut:
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(
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ik η

r
k
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jl η

r
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D̂−1
ik

)∗

D̂−1
jk + noise. (3.22)This is a stohasti estimate of the produt of quark propagators from thesoure to lattie sites i and j. Contrating now with δij (�one end�) allowsto determine two-point mesoni orrelators. The noise-to-signal ratio in thisase is of the order of√V 2

src/
√
RVsrc = 1/

√
R, where the fator√V 2

src is thestandard deviation assoiated with the noise and the signal is of the orderof Vsrc itself (the other fator of Vsrc). Hene, even one sample per gaugeon�guration (R = 1) should be su�ient to extrat the signal.Moreover, to allow for any Dira struture of the mesoni orrelators, onean onsider �linked� soures of the form:
η(x)µc =

[±1 ± i√
2

]

c;x∈Tsrc

δµ,µsrc
, (3.23)where the Z2 numbers are hosen independently for all lattie sites and allolours on a given timeslie Tsrc and for a spei�ed spin omponent µsrc, butthe noise is ommon to all spin omponents. For this reason, suh souresare also alled spin-diluted soures. In suh ase, one has 4 soures for eahgauge on�guration (one per spin omponent) and therefore eq. (3.18) hasto be solved 4 times per on�guration.It is also possible to onsider fully linked soures, i.e. spin and olour-diluted:

η(x)µc =

[±1 ± i√
2

]

µ; c;x∈Tsrc

. (3.24)In this ase, the stohasti numbers are hosen independently for all lattiesites on a given timeslie, all olours and all spins. Therefore, one has onesoure for eah gauge on�guration and only one inversion is needed. How-ever, this method an only be used for some types of mesoni orrelators, i.e.ones that have the γ5 matrix at the soure.Another hoie that has to be made when using stohasti soures is theway of seleting the timeslie for eah gauge on�guration. The two strategiesthat an be followed is to move the soure timeslie ylially through thelattie or to hoose it randomly. Earlier studies [24℄ have shown that thelatter method seems to work better (it leads to shorter autoorrelation times)and in this work we stay with this hoie.71



To improve the signal, when working with stohasti soures of the form(3.23), we will use two samples of stohasti noise per on�guration and forone sample for eah on�guration we will apply Jaobi smearing with fuzzedgauge links. This method helps to redue exited-state ontamination in themesoni orrelators and thus also helps to obtain a better signal [24℄. Inpratie, the addition of smeared stohasti soures allows to obtain fourkinds of orrelation funtions: loal-loal (LL), loal-fuzzed (LF), fuzzed-loal (FL) and fuzzed-fuzzed (FF), depending on the propagator used in theonstrution of eah orrelation funtion. Averaging the loal-fuzzed andfuzzed-loal orrelators, one an obtain three estimates of every orrelationfuntion at eah timeslie and therefore e.g. three estimates of the e�etivepion mass at eah timeslie (LL, FF and the average of LF and FL, whihwe will denote again by LF).The general advantage of using stohasti soures with respet to pointsoures is the redution of statistial error on mesoni quantities like the pionmass and deay onstant, espeially for small quark masses.3.4.2 The SUMR solverEquation (3.18), whih has to be solved to �nd the quark propagator, is amatrix equation involving a matrix of a very large dimension, of the order ofseveral million by several million. This means that solving this equation is themost intensive part of the omputation of orrelation funtions of interest inthis projet. Therefore, it is essential to do it in an e�etive way. Spei�ally,this means that an appropriate solver has to be hosen.The e�ieny of di�erent solvers for overlap and twisted mass fermionswas investigated by Chiarappa et al. [75℄. It was found that for the aseof (quenhed) overlap and small volume (124 and 164), the most e�etivesolvers are the hiral onjugate gradient algorithm and the SUMR solver.Sine the former algorithm an only be used for exat overlap operator, thepolynomial approximation that we use would lead to some orretions thatwould have to be expliitly alulated. Therefore, the latter algorithm seemsto be better suited for this projet.The SUMR (Shifted Unitary Minimal Residual) algorithmwas introduedin [80℄ and �rst analyzed in the ontext of Lattie QCD in [81℄, where it wasalso shown that it is theoretially superior to ertain variants of the ConjugateGradient and the Minimal Residual algorithms.To improve the performane of the SUMR algorithm, we have also usedadaptive preision. This means that the Chebyshev polynomial degree isadapted to the auray that is atually needed in the present iteration step.From the pratial point of view, when the solver is heading towards the72



requested preision, the auray of approximation (the polynomial degree)an be substantially dereased. For example, if the degree of Chebyshevpolynomial at the start of inversion is typially (for our parameters) of order100-200, the �nal iterations an be performed with the polynomial degreedown to 20-40 with adaptive preision. This saves a fator of around 2 ininversion time.Sine we are interested in the dependene of various observables on thebare overlap quark mass, it is also ruial that the inversion does not have tobe performed separately for eah quark mass. It was �rst shown by Frommeret al. [82℄ that for some kinds of solver algorithms it is possible to obtainthe solution for an arbitrary quark mass at the ost of one inversion for onlythe smallest quark mass. Therefore, the dependene of the observables onthe quark mass an be omputed with very little additional ost, sine theSUMR algorithm has the neessary multiple mass apability � the mass shiftenters the algorithm only through salar oe�ients in the solution vetor[75℄.To �nalize this hapter, we omment on omputer odes that were used inthis projet. The gauge �eld on�gurations were generated by the ETM Col-laboration using the tmLQCD pakage of Jansen and Urbah [83℄. Stohastisoures were generated and the mesoni orrelation funtions were omputedusing the Contration Code of Urbah and Wagner [84℄, while the baryoniorrelators were alulated with the ontration ode of Drah. Inversionswith the overlap operator were performed using the GWC ode, written byseveral ontributors to the papers [64, 75℄. The modi�ations of this ode bythe author of this thesis inluded:
• implementation of HYP smearing,
• input/output routines for reading in stohasti soures and writingpropagators to allow the use of the Contration Code,
• modi�ation of the Contration Code routines to generate fully linkedstohasti soures and to perform ontrations of propagators invertedon these soures,
• implementation of subtration proedures for zero modes (disussed inChapter 4).
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Chapter 4Investigations of the ontinuumlimit saling properties of themixed ation setup
4.1 Mixed ation approahOverlap fermions have many appealing properties. However, their main dis-advantage is that their use is very time-onsuming and needs O(100) timeslarger omputer resoures with respet to e.g. twisted mass fermions. Thismakes dynamial simulations with overlap fermions a big hallenge. Suhsimulations are performed [85℄, but in omparison with other kinds of lattieations it is still not possible to reah very �ne lattie spaings and very largelatties. Dynamial overlap fermions simulations also lead to algorithmi dif-�ulties, the foremost being the disontinuity in the operator 1/

√
A†A, whihimplies that the overlap Dira operator hanges disontinuously when its in-dex hanges (i.e. when the number of hiral zero modes of the Dira operatorhanges in a simulation) [86℄. This problem an be overome, e.g. by usingthe re�etion/refration algorithm [87℄, but this proedure is very ostly andhene still too demanding for the present generation of superomputers. An-other way to overome the disontinuity problem is to modify the ation insuh a way that the topologial harge an not hange [88℄. However, thisleads to an additional �nite volume e�et whih has to be taken into aount.The above disussion shows that while learly the importane of dynam-ial overlap simulations will inrease in the future, it is still desirable toinvestigate alternative approahes that make it possible to take advantageof good hiral properties of overlap fermions and at the same time avoid theimmense omputational ost of dynamial overlap simulations. One suh75



approah is provided by the mixed ation setup.The mixed ation approah onsists in hoosing a di�erent disretizationfor sea and valene fermions. This means that the gauge �eld on�gurationsare generated with a relatively heap fermioni ation, suh as the Wilsontwisted mass ation and the overlap operator is only used to invert the Diraoperator, i.e. to onstrut propagators, and then to ompute the orrelationfuntions.The mixed ation simulations have been performed for the following se-tups:
• lover sea quarks and overlap valene quarks � [89, 90, 91℄,
• Wilson twisted mass sea quarks and overlap valene quarks � [92, 93,94℄,
• improved staggered sea quarks,� overlap valene quarks � [95, 96, 97℄,� domain wall valene quarks � e.g. [98, 99, 100, 101, 102, 103, 104,105, 48℄.As an be dedued from the above summary, the most widely used mixedation setup employs domain wall valene quarks and improved staggered seaquarks. This results from the relative abundane of gauge �eld on�gurationsgenerated with the improved staggered lattie ation and from the relativeheapness of domain wall fermions, as ompared with overlap fermions, how-ever at the prie of sari�ing exat hiral symmetry with respet to thelatter.The use of overlap valene quarks has been relatively rare and for Wilsontwisted mass sea quarks only an exploratory study has been performed. Theurrent projet is the ontinuation of the analysis performed in [92, 93℄ andits �rst results have been reported in [94℄. It is also well-motivated from thepoint of view of the availability of twisted mass sea gauge on�gurations,generated by the European Twisted Mass Collaboration (ETMC) [106, 24℄.However, before reporting the projet results, let us shortly disuss thevalidity of the mixed ation approah in general. Let us onsider the expres-sion for a mesoni orrelation funtion:
Cij(x, y) =

1
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.In Nf = 2 simulations, one an have the following situations:76



• D̂sea = D̂val, msea = mval,1 = mval,2 � unitary setup,
• D̂sea = D̂val, msea 6= mval,1 = mval,2 or msea = mval,1 6= mval,2 �partially quenhed (PQ) setup,
• D̂sea 6= D̂val � mixed ation setup.Sine all valid lattie Dira operators di�er only by disretization e�ets, i.e.terms proportional to some power of the lattie spaing, they have the sameontinuum limit. This has been expliitly shown in Chapter 2 for seleteddisretizations at tree-level. Therefore, it is lear from eq. (4.1) that eventaking di�erent lattie Dira operators for sea and valene quarks (the mixedation setup) must lead to the same ontinuum limit as the unitary setup,provided that the sea quarks and the valene quarks masses are properlymathed suh that a �xed physial situation is realized in the approah tothe ontinuum limit. In the unitary setup, this obviously holds if the barequark masses are equal. However, in the mixed ase the equality of barequark masses does not have to be the proper mathing ondition, i.e. oneleading to the same ontinuum limit as the unitary ase. This is due to thefat that the renormalization onstants of the quark masses do not have tobe the same for di�erent disretizations. Hene, a proper mathing ondi-tion is to take equal renormalized quark masses. However, this is not alwaysstraightforward, sine the omputation of renormalization onstants an't al-ways be performed with su�ient preision. Therefore, alternative mathingonditions an be onsidered � one an math some hadroni observable thatan be omputed preisely.The hoie that we will follow is to math the pion mass. This amountsto �nding a bare valene quark mass mval,1 = mval,2 ≡ mq, whih leads tothe same pion mass as the mass of a pion onstruted from two sea quarks ofmassmsea: mval−val

π = msea−sea
π . We also expet (and again it has been shownin the free ase) that at the mathing point other physial observables, suhas the pion deay onstant, are also mathed, but only up to O(a2), sinedisretization e�ets are in general di�erent in di�erent observables.However, even if we expet that the ontinuum limit of a mixed ationtheory is the same as of unitary QCD, suh theory is still non-unitary and thisan lead to various e�ets observed at non-zero lattie spaing. A pronounede�et of this kind regards the salar orrelation funtion. It was �rst shownin quenhed QCD by Bardeen et al. [107, 108℄ that the salar orrelator anobtain an unphysial negative ontribution from one kind of diagrams. Thisis espeially important for low quark masses and it is attributed to the η′−πintermediate state. Suh e�et also appears in partially quenhed QCD andPrelovsek et al. derived an expression for this ontribution [109℄ within the77



framework of Partially Quenhed Chiral Perturbation Theory. Golterman,Izubuhi and Shamir [110℄ adapted this result to the ase of mixed ations.At large time t, the dominant ontribution to the salar orrelation funtionis:
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V V )/Nf + a2(γV V + γSS − 2γV S) (4.3)is the residue from the double pole, whih arises only in the ase of a partiallyquenhed or a mixed ation setup. γV V , γSS and γV S are additional low-energy onstants, whih are all equal in the ase of a partially quenhedsetup � hene in suh ase the seond term in the residue from the doublepole vanishes. If we onsider the ase of mathed pion masses, the formula(4.2) redues (in the Nf = 2 ase) to:
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2t. (4.4)Thus, in the mixed ation ase the residue R does not vanish even if wemath the pion masses and even in this ase it should be possible to observea potentially negative ontribution (its sign depends on the signs of γ low-energy onstants) to the salar orrelator at large time, as an indiation ofa unitarity violation aused by the di�erent disretization of sea and valenequarks. This e�et was further investigated by Furhner [111℄, who derived�nite volume orretions to the onsidered e�et.However, it is important to emphasize here that the unitarity violation isa disretization e�et and thus it vanishes in the ontinuum limit. Moreover,even at �nite lattie spaing, the χPT formulas allow to ontrol the unitarityviolation and hene the e�et an be taken into aount and analyzed.4.2 Saling test � light sea quark massIn this setion, we will show the results of a ontinuum limit saling test ofthe pion deay onstant, employing overlap valene quarks and maximallytwisted mass sea quarks with a light mass, orresponding in in�nite volumeto a pion mass of around 300 MeV. 78



4.2.1 Simulation parametersA ontinuum limit saling test in the interating theory onsists in omput-ing a ertain observable at a few values of the lattie spaing, but in a �xedvolume and in �xed physial situation, and extrapolating the result to a = 0.The range of lattie spaings and volumes overed by the available Nf = 2ETMC on�gurations is broad. There are four lattie spaings � between
a ≈ 0.05 fm (whih orresponds to β = 4.2) and a ≈ 0.1 fm (β = 3.8) and arange of physial extents of the box L overing the interval between 1.3 and2.7 fm. In order to minimize the e�et of �nite volume, in simulations withtwisted mass valene quarks one usually works with L ≥ 2 fm. However,suh volume is very omputer-time demanding in the ase of overlap valenequarks and pratially out-of-reah for the physial extent L reahing 2.4 fm,sine it would require dealing with latties of 483 × 96 at the �nest lattiespaing. Therefore, this saling test will be performed with the smallest vol-ume available, orresponding to the physial size of the box of L ≈ 1.3 fm.In order to estimate the size of the �nite volume e�ets, we will also per-form an analysis for larger volumes, but only for the oarsest lattie spaing,orresponding to β = 3.9.There are three available lattie spaings at the physial lattie extent of1.3 fm, orresponding to the light sea quark mass that leads to a pion massof around 300 MeV. The simulation parameters are1:

• 163 × 32, a ≈ 0.079 fm (β = 3.9, r0/a = 5.25(2)), aµ = 0.004, 544on�gurations,
• 203 × 40, a ≈ 0.063 fm (β = 4.05, r0/a = 6.61(2)), aµ = 0.003, 300on�gurations,
• 243 × 48, a ≈ 0.051 fm (β = 4.2, r0/a = 8.33(5)), aµ = 0.002, 400on�gurations.We have hosen only a subset of available thermalized gauge �eld on�gura-tions in eah ensemble, in order to minimize the e�et of autoorrelations. Forinversions with the overlap Dira operator, we have hosen every 10th MonteCarlo trajetory (at β = 3.9, 4.2) or every 20th trajetory (at β = 4.05). Thenumber of on�gurations for eah ensemble was hosen to roughly math theauray of the twisted mass data, i.e. ahieve a similar statistial error onthe pion mass and deay onstant as in the unitary setup. This requiresroughly the same number of on�gurations in both ases.1The values of the lattie spaing and the hadroni length sale r0/a are taken from[33℄. 79



As disussed in the previous hapter, we have applied one iteration ofHYP smearing to the gauge �eld on�gurations.4.2.2 LoalityBefore onentrating on the saling test, we investigate the issue of loalityof the overlap Dira operator for our setup [112℄. In this way, we will be ableto hoose the optimal value of the parameter s whih enters the de�nition ofthis operator (equations (1.75) and (1.76)).First, we analyze the dependene of the maximal norm of the overlapDira operator ||D̂ov||max on the taxi-driver distane ||x||, de�ned in Setion1.4.2. The norm of the overlap operator is de�ned as the row-sum norm:
||D̂ov(x, y)|| = max

1≤µ≤4

4
∑

ν=1

|D̂(x, y)µν | (4.5)and, sine the operator norm may di�er for the same taxi-driver distane dueto di�erent paths that an be followed, we de�ne the maximal norm for thetaxi driver distane d as:
||D̂ov||max(d) = max

||x−y||=d
||D̂ov(x− y, 0)||. (4.6)The deay rate ρ of the maximal norm is de�ned by the formula:

||D̂ov||max(d) = Ce−ρd, (4.7)where ρ and C an be extrated from a �t.Fig. 4.1 shows in logarithmi sale the taxi-driver distane dependeneof the maximal norm of the overlap operator for di�erent values of the pa-rameter s. For all values of s we observe an exponential deay of the normand the maximal deay rate is observed for s = 0 (for this value a linear�t is shown). This is further illustrated in Fig. 4.2, whih shows that thedeay rate ρ is indeed maximal in the viinity of s = 0. We also show herethe result for gauge �eld on�gurations without HYP smearing. In this ase,the maximal deay rate ρ is obtained for s = 0.4 and is slightly smaller thanthe deay rate orresponding to s = 0 in the HYP-smeared ase2. Hene,for further simulations it is optimal from the point of view of loality to set
s = 0.The overlap operator deay rate in lattie units aρ should not dependon lattie spaing. This means that the values of 1/ρ extrated from plots2A similar value of ρ is obtained also for s lose to -1. However, negative values of smean that a non-physial phase may be entered [113℄.80



Figure 4.1: Maximal norm of the overlap operator in logarithmi sale. Thelinear �t orresponds to the value of s whih yields the maximal deay rate.Parameters: β = 3.9, L/a = 16.

Figure 4.2: The dependene of the overlap Dira operator norm deay rate
ρ on the parameter s for gauge �eld on�gurations with and without HYPsmearing. Parameters: β = 3.9, L/a = 16.81
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(or a left-handed zero mode). In Setion 1.4.4 we have disussed the relationbetween the zero modes and topologial properties of gauge �elds.Non-hiral lattie Dira operators an also develop zero modes, but thisan only happen at su�iently small values of the lattie spaing. The valuesthat are presently reahed in simulations are far too large to have exat zeromodes of non-hiral Dira operators � from the pratial point of view we antherefore assume that in our mixed ation setup with overlap valene quarksand twisted mass sea quarks the valene Dira operator admits zero modesand the sea Dira operator does not. Hene, in a �nite volume situation thezero modes of the valene Dira operator lead to a ontribution that is notompensated by the fermioni determinant and an a�et ertain orrelationfuntions and hene some observables. It was shown by Blum et al. [114℄ thatthe ontribution of the zero modes (e.g to mesoni orrelators) is proportionalto 1/
√
V , where V is the lattie volume, and therefore it is a �nite volumeartefat.It is interesting to speulate about the role of zero modes in an unitaryoverlap simulation3. In suh ase, the ontribution of the zero modes wouldbe suppressed by the (overlap) fermioni determinant. In other words, ane�et of the zero modes that we want to investigate in the mixed ation setupor the analogous e�et in the quenhed approximation [119℄ results from thefat that the ontribution of the zero modes is not properly suppressed bythe fermioni determinant, sine it is a determinant that originates from anon-hirally symmetri ation (the MTM ase) or there is no determinant atall (i.e. it is set to a onstant in the quenhed approximation). Moreover,it an be hypothesized that very lose to the ontinuum limit, zero modesof the MTM Dira operator would also appear and the ontribution of thezero modes in the valene setor would be suppressed by the MTM fermionideterminant. In this way, it would lead to a lowered ontinuum limit of theoverlap pion deay onstant in the PP ase with respet to the one extratedfrom the linear extrapolation in a2 and under the assumption of universality alimit more onsistent with the unitary MTM value. However, suh hypothesisis not testable in lattie alulations, sine probably a simulation with a verysmall lattie spaing would have to be performed. Nevertheless, the piondeay onstant ontinuum limit saling test in the unitary overlap setupwould be interesting from this point of view and should on�rm that theontinuum limit of both unitary overlap and unitary MTM is the same, evenwhen one looks at the PP orrelator in the former ase, as we have done inthe previous setion.3For unitary overlap simulations appropriate algorithms need to be used, whih take thezero modes into aount, e.g. the Polynomial HMC (PHMC) algorithm [115, 116, 117, 118℄.89



4.3.2 The ontribution of the zero modes to mesoniorrelatorsWe now proeed to show how the ontribution of the zero modes an bealulated and subtrated from the observables. In this way, we will be ableto ompute the overlap pion deay onstant without the ontribution of thezero modes and then perform the ontinuum limit saling test of Setion4.2 again and hek whether the �nite volume e�et of the zero modes isresponsible for the di�erene in the ontinuum value.Let us onsider the spetral deomposition of the propagator S(x, y):
S(x, y) =

∑

i

φi(x)φ
†
i(y)

λi +mq

, (4.9)where λi are the eigenvalues of the massless Dira operator D̂, i.e.:
D̂φi(x) = λiφi(x), (4.10)and mq is the bare quark mass.Inserting this deomposition into the expression for the mesoni orrela-tion funtion (1.91), we obtain:

C(t) =
∑

~x

∑

i,j

Tr(φi(~x, t)φ†
i(~0, 0) Γ1γ5 φj(~0, 0)φ†

j(~x, t) γ5Γ
2)

(λi +mq)(λj +mq)
. (4.11)Let us now isolate the ontribution of the zero modes:

C(t) = C00(t) + 2C0N (t) + CNN(t), (4.12)where C00(t) is the part of the sum that ontains only the zero modes (λi = 0,
λj = 0), 2C0N (t) = C0N(t) + CN0(t) ontains the mixed terms that ouplethe zero modes and non-zero modes (λi = 0, λj 6= 0 or λi 6= 0, λj = 0) and
CNN(t) is the ontribution of the non-zero modes (λi 6= 0, λj 6= 0). We �nd:
C00(t) =

∑

~x

∑

λi=0

∑

λj=0

Tr(φi(~x, t)φ†
i(~0, 0) Γ1γ5 φj(~0, 0)φ†

j(~x, t) γ5Γ
2)

m2
q

, (4.13)
C0N(t) =

∑

~x

∑

λi=0

∑

λj 6=0

Tr(φi(~x, t)φ†
i(~0, 0) Γ1γ5 φj(~0, 0)φ†

j(~x, t) γ5Γ
2)

mq(λj +mq)
, (4.14)

CNN(t) =
∑

~x

∑

λi 6=0

∑

λj 6=0

Tr(φi(~x, t)φ†
i(~0, 0) Γ1γ5 φj(~0, 0)φ†

j(~x, t) γ5Γ
2)

(λi +mq)(λj +mq)
. (4.15)90



Let us now onsider the ontributions of the zero modes C00(t), C0N(t)to the pseudosalar (Γ1 = Γ2 = γ5) and salar (Γ1 = Γ2 = 1) orrelationfuntions. In both ases we obtain the same result:
CPP,SS

00 (t) =
∑

~x

∑

λi=0

∑

λj=0

Tr(φi(~x, t)φ†
i(~0, 0)φj(~0, 0)φ†

j(~x, t) )

m2
q

, (4.16)
CPP,SS

0N (t) =
∑

~x

∑

λi=0

∑

λj 6=0

Tr(φi(~x, t)φ†
i(~0, 0)φj(~0, 0)φ†

j(~x, t) )

mq(λj +mq)
, (4.17)where in the salar ase we have used eq. (4.8). The terms that ontainthe zero modes ontribution are proportional to 1/m2

q and 1/mq and henediverge in the hiral limit mq = 0. Sine in our simulation setup the seaquark mass is rather light, at the mathing mass also the valene quark massis light and therefore the zero modes ontribution an be important.However, sine the zero mode ontribution to the pseudosalar (CPP (t))and salar (CSS(t)) orrelation funtions is equal, it is possible to exatlyanel this ontribution by taking the di�erene of these two orrelators.This was �rst suggested by Blum et al. [114℄. We de�ne:
CPP−SS(t) = CPP (t) − CSS(t). (4.18)This is a valid orrelation funtion with a proper transfer matrix deompo-sition. Therefore, it should be possible to extrat the pion mass and deayonstant from this orrelation funtion. CPP−SS(t) is ontaminated by thesalar exitation. However, sine the lightest salar meson is muh heavierthan the lightest pseudosalar meson, if we look at large enough time, theontribution of the salar states should be absent and we an indeed extratthe pion observables of interest.In a mixed ation setup there is an additional ompliation. The salarorrelator is partiularly vulnerable to the double pole ontribution, whihhas already been disussed in Setion 4.1. The residue from this doublepole does not vanish even in the ase of mathed pion masses. Hene, byonsidering the orrelation funtion CPP−SS(t) we exhange the ontributionof the zero modes for a unitarity violation related to the mixed ation setup.However, this is an e�et of O(a2), whih an be onsidered to be an extradisretization e�et, in addition to the standard O(a2) saling violationspresent in all observables. Therefore, suh unitarity violations vanish in theontinuum and they should not a�et the extrapolation of the pion deayonstant (omputed from CPP−SS(t)) to the ontinuum.The e�et of the zero modes on the pion mass an be observed in Fig.4.11, whih shows the bare overlap quark mass dependene of the pion mass91
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• The PP-SS orrelator has a smaller slope (with respet to the PP or-relator) in the plateau region � thus it orresponds to a smaller pionmass. This was already observed in Fig. 4.11 (the valene quark massin Fig. 4.13 orresponds to the leftmost pair of points in Fig. 4.11).94
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q).
• The matrix element of the PP-SS orrelator |〈0|P |π〉|PP−SS is largelyredued with respet to the PP orrelator matrix element |〈0|P |π〉|.However, this leads to a relatively small derease in the pion deayonstant (observed in Fig. 4.12), sine the derease in this matrixelement is almost ompensated for by a derease in m2

π, whih omesin the denominator of eq. (1.95).
• The e�et of the zero modes on a single on�guration onsists in pro-95



duing an unphysial peak at the timeslie (t = 12 in Fig. 4.13) thatorresponds to the loation of the zero mode. This peak is removed inthe PP-SS orrelator.We also onsider (Fig. 4.14) the ase of a heavier valene quark mass
amq = 0.04 (the remaining parameters are the same). The plot shows onlythe large-time behaviour of the orrelation funtions.

• The SS orrelator is onsistent with zero. For t ∈ [10, 16], there is noontribution from the salar exitation, as the salar meson is too heavy.Sine the salar orrelator is zero, also the ontribution of the zeromodes is negligible and hene the PP and PP-SS orrelation funtionslead to the same result.
• For this value of quark mass, one also expets a negligible ontributionfrom the double pole to the salar orrelator � eq. (4.2) implies thatfor large MV V this ontribution is very small.
• Hene, the pion mass and deay onstant extrated at this mass fromthe PP/PP-SS orrelator do not seem to be ontaminated by either theontribution of the zero modes or unitarity violations.The analysis of this subsetion implies that, as expeted, the role of thezero modes dereases as the quark mass is inreased. In the next setionwe will use the PP-SS orrelation funtion to perform an analysis of thebehaviour of the pion deay onstant with the zero modes ontribution re-moved. In partiular, we would like to hek its ontinuum limit � if the zeromodes are indeed responsible for the mismath of ontinuum limits observedin Fig. 4.10, their removal should lead to the same ontinuum limit of thepion deay onstant as the one of the unitary approah.4.4 The role of the zero modes � small volume,light sea quark massWe would now like to perform a ontinuum limit saling test of the pion deayonstant extrated from the PP-SS orrelator CPP−SS(t). We will proeedin the same manner as before, i.e. we start by �nding the mathing massfor eah ensemble. The results of the mathing proedure are shown in Fig.4.15 and the bare overlap quark masses that lead to the same pion mass asin the unitary setup are the following:
• β = 3.9 � am̂ = 0.011(1), 96
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4.5 The role of the zero modes � �nite volumee�ets analysis4.5.1 Simulation parametersIn order to hek the �nite volume e�ets in the urrent setup, we haveinvestigated two additional ensembles at the oarsest lattie spaing a ≈
0.079 fm, orresponding to β = 3.9 and with the same sea quark mass value
aµ = 0.004. The parameters are (inluding the ensemble at the smallestvolume):

• 163 × 32, L ≈ 1.3 fm, 544 on�gurations,
• 203 × 40, L ≈ 1.7 fm, 239 on�gurations,
• 243 × 48, L ≈ 2.0 fm, 435 on�gurations.In order to minimize the e�et of autoorrelations, for propagator ompu-tations we have hosen every 10th Monte Carlo trajetory (for L/a = 16,24) or every 20th trajetory (for L/a = 20). In addition, for the L/a = 24ensemble, we have used the fully linked soures, desribed in Setion 3.4.1.Thus, only 1 inversion per gauge �eld on�guration is required to onstrutthe pseudosalar orrelation funtion. However, in this way it is not possibleto alulate the salar orrelator and hene extrat the pion deay onstantfrom the PP-SS orrelator.4.5.2 Mathing the pion mass � PP orrelatorFinite volume e�ets in the quark mass dependene of the pion mass an beseen in Fig. 4.19. The �nite-volume e�et orresponding to a hange in thelinear extent of the lattie from 1.3 to 1.7 fm is signi�ant and approximatelyequal for the overlap and the MTM ase, whereas the e�et of going from 1.7to 2.0 fm is very small in both ases. The only exeption to this observationan be diserned for the lightest valene quark masses, where the dereaserelated to the hange in volume is notieable. This is espeially meaningfulif the extrapolation to the hiral limit is performed. For L/a = 20 it learlygives a non-zero value, whih means that the e�ets of the zero modes arestill very important. In turn, for L/a = 24, the hirally extrapolated value of

mπ is muh loser to zero, signalling that the importane of the zero modese�et dereases. However, mπ at mq = 0 is still non-zero and therefore oneshould expet that the ontribution of the zero modes is still non-negligible.Fig. 4.19 also shows the mathing mass values for eah volume:101
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• 163 × 32, a ≈ 0.079 fm (β = 3.9, r0/a = 5.25(2)), aµ = 0.0074, 260on�gurations,
• 203 × 48, a ≈ 0.063 fm (β = 4.05, r0/a = 6.61(2)), aµ = 0.006, 299on�gurations,
• 243 × 48, a ≈ 0.051 fm (β = 4.2, r0/a = 8.33(5)), aµ = 0.005, 137on�gurations.In order to minimize the e�et of autoorrelations, we have hosen every16th Monte Carlo trajetory (at β = 3.9, 4.2) or every 20th trajetory (at

β = 4.05) for inversions with the overlap Dira operator.4.6.2 Pion deay onstant � saling testTo perform the pion deay onstant ontinuum limit saling test, we �rsthave to �nd the mathing quark masses for eah ensemble. For this, wehave found the quark mass dependene of the pion mass. The pion mass hasbeen extrated from the PP orrelator � hene we expet that it might beontaminated by zero modes e�ets. It is interesting to ompare the quarkmass dependene of the pion mass for the ases of the light sea quark massand the heavier one. Superimposing the heavier sea quark mass urves onthe orresponding ones for light sea quark mass, one �nds that they areonsistent within statistial error (hene, we don't show this plot for theheavier sea quark mass ase), i.e. that at most a mild dependene of thevalene-valene pion mass on the sea quark mass an be observed. This isin agreement with the preditions of Partially Quenhed Chiral PerturbationTheory, i.e. this dependene should be very small.However, sine the sea-sea pion mass hanges substantially when the seaquark mass value is inreased (it is r0mπ ≈ 1 for all ases), there is a sub-stantial hange of the mathing mass values:
• β = 3.9 � am̂ = 0.015(1),
• β = 4.05 � am̂ = 0.011(1),
• β = 4.2 � am̂ = 0.009(1).We now proeed to analyze the quark mass dependene of the pion deayonstant. Again, the urves orresponding to both values of the sea quarkmass for eah ensemble are very lose to eah other. The sea-sea pion deayonstant values are for pratial reasons equal for all ensembles and onsid-erably higher than in the ase of light sea quark mass. This implies that thedi�erenes at the mathing point are muh smaller than in the latter ase.106
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• β = 4.2 � am̂ = 0.0095(15).At these values of the mathing masses, the pion deay onstant hasbeen alulated. Again, the saling test shows that the leading disretizatione�ets are O(a2).The essential issue is now to ompare the ontinuum limits of the overlapand MTM disretization, with the overlap data from both the PP and the PP-SS orrelator. In Fig. 4.25 we plot the di�erene r0(f overlapπ −fMTM
π ) betweenoverlap (PP) vs. MTM and overlap (PP-SS) vs. MTM (slightly shifted to theright for better presentation). The di�erene r0(f overlapπ −fMTM

π ) is onsistentwith zero in both ases. However, the subtration of the salar orrelator stilla�ets the pion observables, whih is espeially visible at the oarsest lattiespaing. This allows us to onlude that the role of the zero modes at themathing mass orresponding to the heavier sea quark mass is very muhredued with respet to the light quark mass. It is, nevertheless, still non-negligible at this sea quark mass and this volume.4.7 The role of the zero modes � onlusionIn this setion, we gather the most relevant onlusions regarding the role ofthe zero modes.We have investigated the role of the zero modes in three ontexts:
• �xed volume orresponding to linear lattie extent of L ≈ 1.3 fm, �xedpion mass, orresponding in in�nite volume tomπ ≈ 300 MeV, 3 lattiespaings � 0.051, 0.063, 0.079 fm,
• �xed lattie spaing a ≈ 0.079 fm (�xed β = 3.9), �xed pion mass
mπ ≈ 300 MeV, 3 volumes with L ranging from 1.3 to 2.0 fm,

• �xed volume orresponding to linear lattie extent of L ≈ 1.3 fm, �xedpion mass, orresponding in in�nite volume tomπ ≈ 450 MeV, 3 lattiespaings � 0.051, 0.063, 0.079 fm.The �rst and third setup allowed us to test the ontinuum limit salingof the pion deay onstant and assess the in�uene of the quark mass on theontribution of the zero modes. The seond setup enabled us to estimate thevolume dependene of the zero modes e�ets. Clearly, the role of the zeromodes is non-negligible in all of the investigated ases. We have shown thatit is onsiderably redued at L ≈ 2.0 fm and sea quark masses orrespondingto mπ ≈ 300 MeV and at L ≈ 1.3 fm and sea quark masses giving mπ ≈ 450MeV. The analysis of �nite volume e�ets allowed us to onlude that in the109
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zero modes are learly observable-dependent. However, the plot may serveas a hint on the parameter values (lattie size and mathing pion mass) thatare needed to avoid the non-physial ontributions from the zero modes.4.8 Expliit subtration of zero modesIn addition to subtrating the zero modes ontribution by onstruting thePP-SS orrelator, it is also possible to expliitly ompute the zero modes ofthe overlap Dira operator and subtrat them from the propagators. We willuse this proedure to ross-hek the onlusion about the role of the zeromodes. However, we will also show that this proedure is dangerous andhene its results have to be interpreted with aution.4.8.1 Subtration proedureThe starting point for this analysis is again the spetral deomposition of thepropagator (4.9). The full propagator is obtained from a standard inversion.In addition, we an onstrut the propagator oming only from the zeromodes:
S0(x, y) =

∑

λi=0

φi(x)φ
†
i (y)

λi +mq
, (4.19)where the sum runs only over the zero eigenvalues. Then, we an subtrat S0from the full propagator, thus arriving at the propagator oming only fromthe non-zero modes:

SN(x, y) = S(x, y) − S0(x, y). (4.20)The drawbak of this method is that the alulation of the zero modesof the overlap operator is omputer-time intensive. We have hosen thefollowing method for this omputation [122℄. We onstrut the operators:
D̂± = P±D̂ov(0)P±, (4.21)where P± ≡ (1±γ5)/2. It an be shown that the spetrum of both D̂+ and D̂−is exatly the same for the non-hiral (non-zero) modes, but the hiral zeromodes in the positive (negative) hirality setor our only in the spetrumof D̂+ (D̂−). Clearly, the zero modes of the operators D̂± are also zero modesof the massless Dira operator D̂ov(0), due to the Ginsparg-Wilson relation.In pratial omputations, we therefore ompute a ertain number ofeigenvalues of both D̂+ and D̂− and thus we an identify the zero eigenvaluesand their orresponding eigenvetors.111



Hene, we an ompute the propagator oming only from the zero modes.Sine the full propagators in our setup are spinors of the form Ψ = D̂−1
ov (mq)η,where η are stohasti soures, we have to take it into aount by using thefollowing formula:

Ψ0 =
∑

λi=0

1

mq

φαi φ
†
iη. (4.22)Then, we obtain the propagators from non-zero modes by taking the dif-ferene Ψ − Ψ0 and from this objet all relevant orrelation funtions anbe onstruted. At the level of orrelators, only the part CNN(t) is thusalulated (eq. (4.15)), i.e. subtration of the zero modes at the level ofpropagators removes the diagonal ontributions C00(t) and the mixed ontri-butions C0N(t), CN0(t) of the zero modes.In Appendix D we present the results of a free-�eld test of routines usedto subtrat the zero modes at the level of propagators, whih on�rms thatthe subtration proedure is performed in the orret way.4.8.2 E�ets of expliit zero modes subtrationAn e�et of the subtration proedure on the pion mass and deay onstant(with respet to the PP ase) an be observed in Figs. 4.27 and 4.28. Foromparison, also the urves orresponding to the PP-SS ase are plotted.The pion mass extrated from the PP-SS orrelator and the PP orrelatorwith subtrated zero modes (PP subtr.) agree for small quark masses, whilethe behaviour of the pion deay onstant is very di�erent. At the level oforrelation funtions, this results from the fat that the PP subtr. orrelatorhas a very similar slope to the one of the PP-SS orrelator, but its matrixelement is signi�antly lower.For larger quark masses (larger than r0mq ≈ 0.08), the pion masses ex-trated from the PP-SS and the PP subtr. orrelators are not onsistent witheah other � the PP subtr. urve hanges slope and deviates the more fromthe PP-SS urve the larger the quark mass. This is in apparent ontraditionwith the expetation that expliit subtration of zero modes removes the on-tribution of these modes, sine at larger quark mass values this ontributiontends to zero and the PP subtr. urve should onverge to the PP (and PP-SS) urve. Suh behaviour of the pion mass from the PP subtr. orrelatorprovides a warning about the expliit subtration method. It was observedbefore in quenhed studies with the �xed point Dira operator, whih is an-other variant of a hirally improved lattie Dira operator. The studies byHauswirth [123℄ and Gattringer et al. [124℄ obtained a similar piture � thepion mass at small quark mass is approximately the same from the PP-SS112
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whih means that the shape of the orrelation funtion is the one expetedfrom the spetral deomposition (1.83). However, for the heavier quark mass,there is no plateau (this plot an be ompared to Fig. 4.5, whih shows thesame quark mass, but the e�etive mass is extrated from the (unsubtrated)PP orrelator). This implies that the PP subtr. orrelation funtion mightnot be a sum of exponential funtions, but rather a sum of power fun-tions. This results from the fat that expliit subtration of zero modes is anon-loal proedure, i.e. it an modify the simulated theory in a non-loalway, thus leading to unphysial e�ets in the orrelation funtions, whihauses that the spetral deomposition (1.83) is not valid. It also impliesthat the pion mass values obtained from the PP subtr. orrelator are notmeaningful at high values of the quark mass. However, sine there is nofundamental reason why di�erent quark masses should lead to qualitativelydi�erent behaviour of the orrelation funtions, we an not be sure that evenat a relatively small quark mass (suh as the mathing mass) the subtrationproedure is valid.The above disussion leads to a onlusion that expliit subtration ofzero modes is a dangerous hand-made proedure, whih may lead to unon-trollable unphysial e�ets in the extrated observables. However, sine wehave observed the onsisteny between the pion masses from the PP-SS andPP subtr. orrelators (for relatively small quark masses), we may assumehere as a working hypothesis that at the mathing mass the expliit sub-tration proedure is valid, i.e. that the unphysial e�ets of subtration aresmall. This is justi�ed by the fat that the e�etive mass plateau for themathing mass does not show the pathology observed at the larger quarkmass.To onlude this subsetion, we show in Fig. 4.30 the salar orrelationfuntion with expliitly subtrated zero modes (SS subtr.) for two valuesof the valene quark mass � the lightest onsidered mass and the mathingmass. The plot shows that the dominant ontribution to the full SS orrelatoromes from the zero modes (the SS subtr. urve for amq = 0.004 should beompared to the full SS urve at the same quark mass � Fig. 4.13). Moreover,after the zero modes are subtrated, the salar orrelator is negative, whihmay be attributed to the unitarity violation e�et disussed in Setion 4.1.We have also hypothesized in Setion 4.4 that this e�et in�uenes the piondeay onstant extrated from the PP-SS orrelator. This would also explainthe di�erene in fπ extrated from the PP-SS and PP subtr. orrelators � thelatter does not have the enhaned unitarity violation e�et from the salarorrelator. This e�et will be investigated further in the next hapter.In the next subsetion we will use the PP subtr. orrelation funtion toextrat the pion deay onstant and perform its ontinuum limit saling test.115
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β = 4.2.Fig. 4.33 shows the ontinuum limit saling of the pion deay onstant forthree referene values of r0mπ ≈ 1.3 (here we take the highest value availablefor the β = 3.9 ensemble), r0mπ ≈ 1.0 and the one that orresponds to themathing riterion r0mπ ≈ 0.85. As in the previous ases of the PP andthe PP-SS orrelation funtions, we observe good saling behaviour for allanalyzed values of r0mπ, with O(a2) leading ut-o� e�ets.Moreover, the ontinuum limit of the pion deay onstant extrated fromthe PP subtr. orrelation funtion agrees with the MTM ontinuum limit,whih is shown in Fig. 4.34. Therefore, both methods of subtrating thezero modes lead to a onsistent ontinuum limit value, whih is the one ofthe unitary approah. This is a strong hint that the zero modes are indeedresponsible for the observed behaviour of the pion deay onstant extrated118
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Chapter 5Various further resultsIn the previous hapter we have performed an analysis of the ontinuumlimit saling of the pion deay onstant. We have disussed the role of thezero modes in a mixed ation setup of hirally-symmetri valene quarks andnon-hirally-symmetri sea quarks. To anel the non-physial ontributionof the zero modes we have used the PP-SS orrelation funtion and we havehypothesized that while this orrelator orretly removes the zero modesontribution, it also introdues enhaned unitarity violations. In this hapterwe will analyze this e�et. We will also present some additional resultsregarding the ontinuum limit saling of baryon (nuleon and delta) masses,as well as some topologial aspets.5.1 Unitarity violationsIn this setion we attempt at an analysis of the unitarity violation desribedin Setion 4.1. We begin by illustrating this e�et more learly, taking asan example the behaviour of the pion deay onstant at one lattie spaing
a ≈ 0.079 fm. Finite volume e�ets in fπ extrated from the PP orrelatorwere analyzed in Setion 4.5. We now show the outome of the analogousanalysis for the PP-SS orrelation funtion.5.1.1 MotivationWe have remarked earlier that the omputation of propagators for the L/a =
24 ensemble was done with fully linked stohasti soures, whih means thatthere was only 1 inversion per gauge �eld on�guration and thus it was notpossible to ompute the salar orrelator for this volume. However, at theearlier stage of this projet this ensemble was partly analyzed using point121
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value of fπ.Our analysis suggests that these two e�ets roughly ompensate eah otherat β = 3.9, while the zero modes removal e�et dominates the unitarityviolation e�et at β = 4.05 and β = 4.2. We will now proeed to expliitlyinvestigate the unitarity violation e�et.5.1.2 Small volume analysisFor onveniene, we rewrite here the formula for the salar orrelation fun-tion at the mathing mass:
CSS(t)

t→∞−−−→ − B2
0

2L3

e−2MV V t

M3
V V

(γV V + γSS − 2γV S) a
2t. (5.1)The low-energy onstants γV V = γV S = 0, due to exat hiral symmetryin the valene setor [110℄, but γSS is non-vanishing, sine the sea Diraoperator is not hirally-symmetri.Formula (5.1) implies that the salar orrelation funtion for the mathingquark mass an beome negative at large times (provided that γSS > 0).However, the shape of this orrelator is basially the one observed in Fig.4.13, whih shows the β = 3.9 ase at a quark mass below the mathingmass. Clearly, this orrelation funtion does not beome negative, sineit has a large positive ontribution from the zero modes and the unitarityviolation e�et is obsured.In order to analyze the e�et predited by eq. (5.1), we would have toremove the zero mode ontribution from the salar orrelator or work at largeenough volume and quark mass so that this ontribution would be negligible.The latter requires a very omputer-time intensive omputation and is henebeyond the sope of the urrent projet. However, suh analysis is plannedfor the future and would provide the leanest way of testing the preditionof eq. (5.1).In the urrent projet, we therefore have to restrit ourselves to the formermethod, i.e. to remove the zero mode ontribution from the SS orrelator.This is possible by following the proedure of expliit subtration of zeromodes at the level of propagators. As we have shown in the previous hap-ter, this is a dangerous proedure with hard to ontrol systemati e�ets.Therefore, the results of this analysis have to be interpreted with autionand treated as an outlook on this kind of analysis, whih will be later per-formed in a lean setup of large volume and large enough quark mass, sothat the zero mode e�ets will be negligible. An alternative approah ouldonsist in using only on�gurations in the trivial topologial setor, whih are124



not ontaminated by zero modes e�ets. However, the number of availableon�gurations in this setor is too small to allow for meaningful �ts of eq.(5.1).Fig. 4.30 shows that after the zero mode ontribution is removed, thesalar orrelator at the mathing mass beomes negative indeed. We havealso heked that the SS orrelator on topologially trivial on�gurations isnegative at large time (the error bands are too large to perform �ts of eq.(5.1), however, the onlusion about the sign of the orrelator is unambigu-ous), whih on�rms that the unitarity e�et is really present in our mixedation setup.Our strategy is the following. We use three small-volume ensembles whoseparameters are given in Setion 4.2.1 and expliitly subtrat the zero modesat the level of propagators, as desribed in Setion 4.8.1. In this way, weobtain for eah ensemble the SS subtr. orrelator at the mathing mass.Then, we �t eq. (5.1) to the lattie data.Spei�ally, we write this equation as:
CSS(t)

t→∞
= −γ t e−2MV V t. (5.2)where we have de�ned a parameter γ:

γ ≡ B2
0γSS

2(MV VL)3
a2 ≡ γ̃a2. (5.3)Sine the temporal extent of the lattie is �nite and equals T for eah en-semble (with periodi boundary onditions in time), the �tting formula thatwe use reads:

CSS(t)
t large
= −γ

(

t e−2MV V t + (T − t) e−2MV V (T−t)
)

. (5.4)The parameters that we �t are γ and the pion mass MV V . The de�nitionof the parameter γ implies that γ should have a quadrati dependene onthe lattie spaing, sine B0 and γSS are low-energy onstants and MV VL isapproximately the same for eah ensemble.The �t for the ensemble at the oarsest lattie spaing (β = 3.9) is shownin Fig. 5.3. The �tting interval is t ∈ [9, 23] and in this interval the �t repre-sents a very good desription of lattie data. Qualitatively similar behaviouris observed also in the β = 4.05 and β = 4.2 ases.One of the �tting parameters is the pion mass MV V . Its values extratedfrom the �ts an be ompared with values of the mathing pion mass (knownpreisely from the maximally twisted mass PP orrelator). This provides aonsisteny hek for the �ts. In all ases the �tted values ofMV V are around125
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β = 4.05 and β = 4.2, the �nite volume e�et of the zero modes anellationdominates over the O(a2) unitarity violation e�et, whih is smaller at theselattie spaings. 127



This interplay of e�ets also explains the di�erene between the pion de-ay onstant extrated from the PP-SS and the PP subtr. orrelator, sinethe latter does not have the double pole ontribution of the SS orrelator.However, it has to be remembered that this analysis has been performed withthe unphysial zero modes subtration proedure and it may su�er from un-preditable e�ets. Therefore, this analysis has to be treated with aution.It provides a plausible explanation of the observed e�ets. However, in orderto quantitatively analyze the e�et of unitarity violations in the salar or-relator and reliably extrat the low-energy onstant γSS, a simulation withlarge enough volume and quark mass would have to be performed in orderto have a negligible ontribution from the zero modes to the full salar or-relator (without expliit subtration proedure). In addition, eq. (5.1) wasderived for an in�nite volume and hene it would be very advantageous tohave large volume data for the SS orrelation funtion in order to use the�tting ansatz of this formula in an appropriate way.5.2 Light baryon massesIn this setion, we show the results of a alulation of light baryon massesin the ase of overlap valene and MTM sea quarks, as well as in the uni-tary setup [112℄. Partiularly, we would like to ompare the overlap andMTM values at the mathing mass and hek whether they have the sameontinuum limit.The alulation of baryon orrelation funtions with stohasti souresyields an unfavourable noise-to-signal ratio [125℄. Therefore, we repeated thepropagator omputation using Gaussian smeared point soures, where thesmearing helps signi�antly to suppress exited state ontributions [65, 66℄.We again used the small-volume, light-quark ensembles with parametersgiven in Setion 4.2.1. We report simulation results at two lattie spaings,orresponding to β = 3.9 (426 on�gurations) and β = 4.2 (around 370on�gurations). The simulations at β = 4.05 are on-going.The example of e�etive nuleon mass plateaus in the ase of β = 4.2 isshown in Fig. 5.5. The quality of the plateau is the best at the largest quarkmass, but also at overlap quark masses orresponding to the neighbourhoodof the mathing mass it is reasonable and allows for the extration of thenuleon mass.The (overlap) quark mass dependene of the nuleon and delta mass isshown in Fig. 5.6 (β = 3.9) and Fig. 5.7 (β = 4.2). We also show the unitaryvalues (horizontal bands) � the lower one orresponds to the nuleon and theupper one to the deltas. In the MTM ase, the baryons ∆++ and ∆+ are128
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p(Q) =

1√
2πσ

e−
Q2
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Conlusions and prospetsChiral symmetry is of utmost importane for low-energy properties of QCD.Therefore, when disretizing QCD on a 4-dimensional spae-time grid to ad-dress non-perturbative phenomena, retaining hiral symmetry in this lattieversion of QCD (LQCD) is an essential element. Hene, hirally-symmetrifermion disretizations are needed to fully explore the low energy regime ofQCD. A very appealing kind of hiral fermions are the overlap fermions.However, their use in dynamial Lattie QCD simulations is still a hallenge,sine they are very demanding from the omputational point of view.Chiral properties of fermions are espeially important in the valene se-tor. At the same time, the most expensive part of a simulation is the gen-eration of gauge �eld on�gurations. Hene, a possible way to overome theost problem of dynamial overlap simulations, whih at the same time keepstheir good hiral properties, is to follow a mixed ation approah where gauge�eld on�gurations are generated using a omputationally heaper fermiondisretization and the overlap operator is used only in the valene setor.The main aim of this thesis was to investigate a partiular mixed ationsetup of overlap valene and maximally twisted mass (MTM) sea quarks.In this way, we ould pro�t from a wide set of gauge �eld on�gurationsgenerated by the European Twisted Mass Collaboration (ETMC).In partiular, we wanted to perform a ontinuum limit saling test ofoverlap fermions, a study that has not been done before. However, to per-form suh investigation with a typial linear lattie extent of 2 fm very largeomputer resoures would be required, even if the overlap operator was usedonly in the valene setor. Therefore, we deided to employ a small volumewith L ≈ 1.3 fm. Suh volume is su�ient to test the ontinuum limit salingbehaviour. We deided to take the pion deay onstant as our main physialobservable to study the lattie artefats of the overlap disretization. Using asuitable mathing ondition of overlap and twisted mass fermions, for whihwe have taken the pion mass, and assuming universality, the same ontin-uum limit value for fπ should be reahed with both kinds of lattie fermions.We expliitly heked in the free theory that this expetation is ful�lled. We135



learly observed the O(a2) leading ut-o� dependene and demonstrated that
fπ agrees in the ontinuum limit.However, when moving to the interating ase, we enountered a puzzlein that the ontinuum limits of the two lattie fermions used ame out tobe inonsistent with eah other. It is one of the main results of this thesisthat the solution of this puzzle ould be identi�ed as the exat hiral zeromodes of the overlap Dira operator. Being hiral, this operator admitszero modes at any value of the lattie spaing. This is in ontrast to thenon-hiral twisted mass Dira operator whih does not admit suh hiralzero modes, at least not at our urrent values of the lattie spaing. Inorder to demonstrate that the hiral zero modes are indeed the ause ofthe mismath of fπ in the ontinuum limit, we used the fat that the zeromodes ouple in an idential way to the pseudosalar and salar orrelationfuntions. Hene, in the di�erene of these orrelation funtions (the so-alled PP-SS orrelator), the zero modes ontribution is exatly anelled.Performing now a ontinuum limit saling test of the pion deay onstantas omputed from the overlap PP-SS orrelator, whih is not a�eted bythe zero modes, we obtained indeed onsistent ontinuum limit values for fπomputed from the two fermion disretizations.We also ross-heked this result by expliitly subtrating the zero modesat the level of overlap propagators. This further on�rmed the piture thatthe hiral zero modes need to be treated speially, at least in the small �nitevolume used here. However, the modi�ation of propagators by expliit sub-tration of a part of eigenmodes of the Dira operator is a �eld-theoretiallynot well de�ned proedure and may lead to unontrollable systemati un-ertainties. Therefore, we interpret our �ndings when subtrating the zeromodes expliitly only as a plausibility hek, whih however points in theright diretion.The use of the PP-SS orrelator is, in ontrast, safe from the �eld-theoretial point of view. However, it leads to another di�ulty. The sub-tration of the zero modes from the salar orrelator introdues signi�ant
O(a2) e�ets related to the enhaned double pole ontribution to the salarorrelation funtion, as suggested by results from hiral perturbation the-ory. This e�et results from the fat that the sea and valene quarks aredisretized in a di�erent way and thus unitarity is violated at any non-zerovalue of the lattie spaing. Although being a disretization e�et it vanishesin the ontinuum limit, it may render the approah to this limit di�ult.Therefore, the oneptually leanest way to takle the zero mode problemis to avoid the region of parameters where the zero modes ontribution issigni�ant. To �nd this region, we analyzed the dependene of the zeromode e�ets on the lattie volume and the sea quark mass. In this way, we136



determined three regimes of parameters: one that is �safe� against the zeromodes ontribution, a �hazardous� and a �non-safe� regime. We onsiderthe identi�ation of these regions to be the most important result of thiswork. It allows to provide parameter values for future simulations whereproblems with the zero modes will be ompletely absent. The situation isbest illustrated in Fig. 4.26. Let us give two expliit examples of the valuesof pion masses and lattie sizes for safe simulations:
• at mπ ≈ 300 MeV, the �safe� linear lattie extent is L ≈ 2.6 fm,
• at mπ ≈ 450 MeV, the �safe� linear lattie extent is down to L ≈ 2.0fm.Clearly, the identi�ation of safe simulation regions for valene overlap fer-mions is not only important for extensions of the present work, but also forother ollaborations worldwide who are using overlap fermions in the valenesetor.Let us �nish by giving some diretions for further work. We group thesein two areas. The �rst are possible physis targets with the �safe� simulationparameters. With our knowledge of these parameters, we plan to:
• ompute observables for whih good hiral properties of valene fermionsare essential � e.g. the kaon bag parameter BK , or the deay K → ππ;
• investigate questions that are related to topology, i.e. the omputationof topologial suseptibility and the determination of the singlet mesonmass η′;
• analyze in the mixed ation setup unitarity violations in the salarorrelator and in mixed orrelation funtions (with one valene and onesea quark) � this needs a setup with negligible zero modes ontributionto isolate this e�et;
• onfront the simulation results with (Mixed Ation) Partially QuenhedChiral Perturbation Theory formulas to extrat the orresponding lowenergy onstants;
• perform a ontinuum limit saling test of the pion deay onstant (andother observables) at larger volume in order to hek for the size ofquadrati lattie spaing dependene.Moreover, it would also be interesting to further investigate the role of thezero modes to reah a better understanding. To this end, we plan to:137



• test alternative mathing onditions, di�erent from the mathing ofthe pion mass. In partiular, we plan to ompute the neessary renor-malization onstants in order to use the mathing ondition of equalrenormalized quark masses;
• investigate the role of the zero modes in baryoni observables;
• perform an analysis of topologial aspets by expliitly omputing thezero modes.Summarizing, we believe that the results of this work provide an essentialand so far missing basis for future large sale simulations using mixed ations.In partiular, for our setup of overlap valene and maximally twisted mass seaquarks we have determined simulation parameters for safe simulations on aquantitative level. Thus, respeting the limits on the parameters determinedhere and performing simulations on large enough lattie volume at a givenpion mass, it will be possible to pro�t from the good hiral properties ofoverlap fermions and obtain preise physial results for quantities that wouldbe hard to address with non hirally-symmetri versions of lattie fermions.
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Appendix AWilson gauge ationWe show here that the expression for the Wilson gauge ation has the rightQCD ontinuum limit. We will use the Baker-Campbell-Hausdor� formula:
eaAeaB = eaA+aB+ a2

2
[A,B]+O(a3), (A.1)generalized to:

eaAeaBeaCeaD = ea(A+B+C+D)+ a2

2
([A,B]+[A,C]+[A,D]+[B,C]+[B,D]+[C,D])+O(a3),(A.2)setting: A = igAµ(x), B = igAν(x+aµ̂), C = igAµ(x+aν̂) andD = igAν(x).Now, inserting (1.30) in (1.33) and using (A.2), we obtain:

Ux,µν = exp
[

iga
(

Aµ(x) + Aν(x+ aµ̂) − Aµ(x+ aν̂) −Aν(x)
)

+

− g2a2

2

(

[Aµ(x), Aν(x+ aµ̂)] − [Aµ(x), Aµ(x+ aν̂)] +

−[Aµ(x), Aν(x)] − [Aν(x+ aµ̂), Aµ(x+ aν̂)] +

−[Aν(x+ aµ̂), Aν(x)] + [Aµ(x+ aν̂), Aν(x)]
)

+

+ O(a3)
]

. (A.3)We Taylor-expand terms like:
Aµ(x+ aν̂) ≈ Aµ(x) + a∂νAµ(x) (A.4)
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to order a and this implies:
Ux,µν = exp

[

iga
(

a∂µAν(x) − a∂νAµ(x)
)

+

− g2a2

2

(

[Aµ(x), Aν(x)] − [Aµ(x), Aµ(x)] − [Aµ(x), Aν(x)]

−[Aν(x), Aµ(x)] − [Aν(x), Aν(x)] + [Aµ(x), Aν(x)]
)

+

+ O(a3)
]

= (A.5)
= exp

[

iga2
(

∂µAν(x) − ∂νAµ(x) + ig[Aµ(x), Aν(x)]
)

+ O(a3)
]

.From (1.8) and (1.6), the ommutator of the gauge �elds an be rearrangedas:
[Aµ(x), Aν(x)] = Abµ(x)A

d
ν(x)[tb, td] = if bdcAbµ(x)A

d
ν(x)tc, (A.6)�nally yielding (negleting O(a3) terms):

Ux,µν = exp
[

iga2
(

∂µAν(x) − ∂νAµ(x) − gf bdcAbµ(x)A
d
ν(x)tc

)

]

=

= exp
[

iga2Fµν

]

. (A.7)(A.8)Expanding to O(a4), we obtain for the Wilson ation (1.31):
Sgauge[U ] = β

∑

x

∑

1≤µ<ν≤4

{

g2a4

6
TrFµν(x)2 + O(a6)

}

, (A.9)sine O(a2) terms are purely imaginary. Finally, we use ∑x

∑

1≤µ<ν≤4 =
1
2

∑

x

∑

µ,ν and the fat that Tr(tatb) = 1
2
δab to obtain:

Sgauge[U ] = β
g2a4

6

∑

x

∑

µ,ν

{

1

4
Fµν(x)

2 + O(a2)

}

. (A.10)
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Appendix BTree-level saling test
B.1 Overlap fermionsWe show here expliitly the omputation of the overlap Dira operator inmomentum spae, whih was given by Lüsher [29℄. We begin with thederivation of the kernel operator � the massless Wilson-Dira operator inmomentum spae. In position spae, this operator is given by:

D̂Wilson =
1

2

(

γµ(∇∗
µ + ∇µ) − ar∇∗

µ∇µ

)

, (B.1)where we use the notation introdued in Chapter 1. The Eulidean ationan be written as:
S =

∑

x,y

ψ̄(x)Kxyψ(y), (B.2)with:
Kxy =

1

2

∑

µ

(

γµ (δx+µ̂,y − δx−µ̂,y) − r (δx+µ̂,y + δx−µ̂,y − 2δx,y)
)

. (B.3)Using the integral representation of the Kroneker delta:
δx,y =

∫ π

−π

d4p

(2π)4
eip(x−y)a, (B.4)we obtain:

Kxy =

∫ π

−π

d4p

(2π)4
eip(x−y)a

[

∑

µ

(

1

2
γµ
(

eipµa − e−ipµa
)

+ (B.5)
− r

2

(

eipµ̂a + e−ipµ̂a − 2
)

)]
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Substituting now the identities:
eipµ̂a − e−ipµ̂a = 2i sin apµ, (B.6)

eipµ̂a + e−ipµ̂a − 2 = 2(cos apµ − 1) = −4 sin2 apµ
2
, (B.7)we obtain:

Knm =

∫ π

−π

d4p

(2π)4
eip(n−m)a

[

∑

µ

(

iγµ sin apµ + 2r sin2 apµ
2

)]

. (B.8)The expression in brakets is the Fourier transform of Kmn, i.e. the Wilson-Dira operator in momentum spae D̂Wilson(p). Hene, adding expliitly theidentity matrix in Dira spae, we have:
D̂Wilson(p) = iγµp̊µ +

ar

2
p̂21, (B.9)whih is expression (1.49) for the Wilson-Dira operator at m = 0 or expres-sion (1.45) for the naive Dira operator, if the Wilson parameter r = 0. Onean also notie that the inverse of this formula immediately gives expressionsfor the fermion propagator (1.47) in the naive ase and (1.51) in the Wilsonase.We now set the Wilson parameter r = 1 and then the de�nition of theoperator A for overlap fermions (1.75) (with s = 0) yields:

A = 1 − aDW (p) = 1 − iaγµp̊µ −
a2

2
p̂2. (B.10)Sine the massless overlap Dira operator is given by:

D̂ov(0) =
1

a

(

1 − A(A†A)−1/2
)

, (B.11)we have to alulate A†A:
A†A =

(

1 − a2

2
p̂2

)2

+ a2
∑

µ,ν

γµγν p̊µp̊ν . (B.12)Using now the following rearrangements:
(

1 − a2

2
p̂2

)2

= 1 − a2p̂2 +
a4

4

∑

µ,ν

p̂2
µp̂

2
ν , (B.13)144



a2
∑

µ,ν

γµγν p̊µp̊ν = a2
∑

µ

(p̊µ)
2 , (B.14)

(p̊µ)
2 =

1

a2
sin2 apµ =

4

a2
sin2 apµ

2

(

1 − sin2 apµ
2

)

= p̂2
µ

(

1 − a2

4
p̂2
µ

)

. (B.15)in (B.12), we obtain:
A†A = 1 − a2p̂2 +

a4

4

∑

µ,ν

p̂2
µp̂

2
ν + a2p̂2 − a4

4

∑

µ

p̂4
µ. (B.16)We an redue:

a4

4

∑

µ,ν

p̂2
µp̂

2
ν −

a4

4

∑

µ

p̂4
µ =

a4

2

∑

µ<ν

p̂2
µp̂

2
ν . (B.17)In the end, we obtain for the operator A†A:

A†A = 1 +
a4

2

∑

µ<ν

p̂2
µp̂

2
ν . (B.18)The �nal form of the tree-level overlap Dira operator in momentum spaeis:

aD̂ov(p) = 1 −
(

1 − iaγµp̊µ −
a2

2
p̂2
)(

1 +
a4

2

∑

µ<ν

p̂2
µp̂

2
ν

)−1/2

. (B.19)B.2 Creutz fermionsOne an show [55℄ that the free Dira operator for Creutz fermions an bewritten in momentum spae as:
DCreutz(p) = i

∑

µ

p̊µ γ̄µ − i
a

2

∑

µ

p̂2
µ Γ̄µ +m1, (B.20)where γ̄µ, Γ̄µ are de�ned as:

γ̄µ ≡ āTγµ , Γ̄µ ≡ ᾱγ̄µ = ᾱāTγµ, ᾱ ≡ ā−1 b̄ (B.21)with:
ā =

1

R









1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

−3S
C

−3S
C

−3S
C

−3S
C
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b̄ =
1

R

S

C









1 1 −1 −1
1 −1 −1 1
1 −1 1 −1
3C
S

3C
S

3C
S

3C
S









,where the onstants C, R and S are parameters hosen appropriately toensure the orret ontinuum limit of the fermion propagator. One an showthat these values are: C = 3/
√

10, R = 2 and S = ±1/
√

10 or C = 3/
√

14,
R = 2

√
2 and S = ±

√

5/14.This fermion propagator is:
SCreutz(p) =

−i
∑

µ

(

s̄µ(p) + c̄µ(p)
)

γµ +m1
∑

µ

(

s̄µ(p) + c̄µ(p)
)2

+m2

, (B.22)where:
s̄k(p) =

1

R
sk(p) , s̄4(p) =

3S

RC
s4(p) (B.23)

c̄k(p) =
S

RC
ck(p) , c̄4(p) =

3

R
c4(p) (B.24)with the funtions s and c given by

s1(p) = [p̊1 + p̊2 − p̊3 − p̊4] , (B.25)
s2(p) = [p̊1 − p̊2 − p̊3 + p̊4] , (B.26)
s3(p) = [p̊1 − p̊2 + p̊3 − p̊4] , (B.27)
s4(p) = [−p̊1 − p̊2 − p̊3 − p̊4] , (B.28)
c1(p) = −a

2

[

p̂2
1 + p̂2

2 − p̂2
3 − p̂2

4

]

, (B.29)
c2(p) = −a

2

[

p̂2
1 − p̂2

2 − p̂2
3 + p̂2

4

]

, (B.30)
c3(p) = −a

2

[

p̂2
1 − p̂2

2 + p̂2
3 − p̂2

4

]

, (B.31)
c4(p) = −a

2

[

p̂2
1 + p̂2

2 + p̂2
3 + p̂2

4

]

. (B.32)The free Dira operator for the modi�ation suggested by Borii is:
DBorici(p) = i

∑

µ

p̊µγµ − i
a

2

∑

µ

Γµp̂
2
µ +m1, (B.33)where Γµ =

∑

ν αµνγν, with:
α =

1

2









1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1









. (B.34)146



The orresponding propagator is:
SBorici(p) =

−i
∑

µGµ(p)γµ +m0 1
∑

µGµ(p)2 +m2
, (B.35)where:

G1(p) = p̊1 −
a

4

[

p̂2
1 + p̂2

2 − p̂2
3 − p̂2

4

]

, (B.36)
G2(p) = p̊2 −

a

4

[

−p̂2
1 + p̂2

2 − p̂2
3 − p̂2

4

]

, (B.37)
G3(p) = p̊3 −

a

4

[

−p̂2
1 − p̂2

2 + p̂2
3 − p̂2

4

]

, (B.38)
G4(p) = p̊4 −

a

4

[

−p̂2
1 − p̂2

2 − p̂2
3 + p̂2

4

]

. (B.39)B.3 Correlation funtionsThe starting point for the derivation of the expression for the pseudosalarorrelation funtion as a sum over momenta is eq. (2.15):
CPP (t) =

∑

~x

Tr(S(~x, t;~0, 0)S†(~x, t;~0, 0)). (B.40)We introdue the Fourier transform of the position spae propagator:
S(~x, t;~0, 0) =

1

N3N4

∑

~p,p4

S(~p, p4)e
i~p·~xeip4t, (B.41)where N and N4 are the number of lattie sites in the spatial and temporaldiretions, respetively. This yields:

CPP (t) =
1

N6N2
4

∑

~x

∑

~p,p4

∑

~p′,p′
4

Tr(S(~p, p4)S
†(~p′, p′4))e

i~p·~xeip4te−i~p
′·~xe−ip

′

4
t.(B.42)Using the following expression for the Dira-delta funtion:

δ(~p− ~p′) =
1

N3

∑

~x

ei(~p−~p
′)·~x, (B.43)we obtain:

CPP (t) =
1

N3N2
4

∑

~p

∑

p4,p′4

Tr(S(~p, p4)S
†(~p, p′4))e

i(p4−p′4)t. (B.44)147



Now, we insert the matrix deomposition of the momentum spae propagator:
S(p) =

4 or 5
∑

ξ=0

Sξ(p)γξ, (B.45)where γ0 ≡ 1 and the index ξ runs from 0 to 4 in the ase of overlap andCreutz fermions or from 0 to 5 in the ase of Wilson twisted mass fermions.Hene, we obtain:
CPP (t) =

NcNd

N3N2
4

∑

~p

∑

p4,p′4

4 or 5
∑

ξ=0

Sξ(~p, p4)S
∗
ξ (~p, p

′
4))e

i(p4−p′4)t, (B.46)where Nd = Tr(1) is the number of Dira omponents (i.e. the dimension ofspae-time) and Nc = Tr(1c) is the number of olours (in the free ase thestruture in olour spae is trivial).
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Appendix CImprovements of the HMCalgorithmThe gauge �eld on�gurations that we have used for this projet were gener-ated with the twisted mass Lattie QCD program suite (tmLQCD) of Jansenand Urbah [83℄. A detailed desription of all the tehnial details is givenin this referene. Here we shortly disuss a few improvements of the HMCalgorithm that are relevant from the point of view of this thesis.For some lattie Dira operators (e.g. Wilson twisted mass), it is possibleto deompose the Dira matrix into subspaes of even and odd lattie sites,thus reduing the dimension of the problem. Suh tehnique is alled even-odd preonditioning [126℄.Another approah is to use more than one set of pseudo-fermion �elds,i.e. split the fermion determinant into two (or more) parts. One of thewidely used methods of this kind is alled the Hasenbush trik (or masspreonditioning) [127, 128℄ and onsists in utilizing the identity (example forthe Nf = 2 ase with degenerate quark masses µ):
| det(D̂)|2 = det(D̂D̂† + µ2) det

(

D̂D̂†

D̂D̂† + µ2

)

. (C.1)Suh deomposition splits the ontribution of the low-frequeny and high-frequeny modes of D̂D̂† and thus redues the ondition number of theproblem. It also allows for integration of di�erent parts of the ation ondi�erent time sales, suh that the most expensive part an be simulated onthe oarsest time sale. A general version of an HMC algorithm inorporat-ing even-odd preonditioning, mass preonditioning and multiple time saleintegration was presented by Urbah, Jansen, Shindler and Wenger [129℄. Itwas also shown by numerial investigation that suh version of the algorithm149



indeed produes a onsiderable improvement, espeially when approahingthe small quark mass limit. This version of the algorithm is the base of thetmLQCD suite in its part that was relevant for the generation of gauge �eldon�gurations used in this projet.Another important improvement of the HMC algorithm omes under thename of Polynomial HMC (PHMC). It was introdued and analyzed in [115,116, 117, 118℄. This version of the algorithm an be applied to simulatenon-degenerate quarks. It is used e.g. in the tmLQCD suite in simulationsinluding the strange and harm quark.The number of other improvements of the HMC algorithm is very largeand is still inreasing. To �nalize this appendix we just mention a few more.For their desription we refer to original papers. A wide and important lassof improvements onern integration shemes and ome under the name ofmultiple time-sale integration. The generalization of the leap-frog shemeto multiple time sales was originally proposed by Sexton and Weingarten[130℄. Another approah is the so-alled seond order minimal norm (2MN)integrator [131, 132℄. A variant of the HMC algorithm alled Rational HMC(RHMC) was disussed in [133, 134, 135, 136℄. Domain-deomposed HMCwas introdued in a series of papers by Lüsher [137, 138, 139℄ and lateraugmented by low-mode de�ation [140℄.
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Appendix DTree-level test of zero modessubtrationIn this appendix, we show the results of a free-�eld test of routines used tosubtrat the zero modes (we will refer to them as �subtration routines�) atthe level of propagators. The test is performed on a small lattie of 43 × 8,with quark mass set to am = 0.2. We perform the subtration in three waysfor the pseudosalar (PP) and salar (SS) orrelation funtion, using:
• formula (2.16) for the PP orrelator and an analogous formula for SS(�analytial formula�),
• GWC ode with subtration routines for point soures,
• GWC ode with subtration routines for stohasti soures.Using notation of Setion 4.3, we write the mesoni orrelation funtionas:

C(t) = C00(t) + 2C0N (t) + CNN(t), (D.1)where the �rst two terms involve the zero modes. Computing orrelationfuntions from the full propagator (with all modes) leads to C(t), while if thezero modes are subtrated at the level of propagators, only the part CNN(t)is obtained by performing ontrations, i.e. subtration of zero modes anelsboth the diagonal ontribution C00(t) and the mixed one C0N (t).
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D.1 Analytial formulaWe remind here the formula for the pseudosalar orrelator (2.16) and gen-eralize it to inlude the salar ase:
C(t) =

NcNd

N3N2
4

∑

~p

∑

p4,p′4

4
∑

ξ=0

s(ξ)Sξ(~p, p4)S
∗
ξ (~p, p

′
4))e

i(p4−p′4)t, (D.2)where we obtain the pseudosalar orrelator by hoosing: s(ξ) = 1 for all ξand the salar orrelator if we take s(ξ) = −1 for ξ = 0 and s(ξ) = 1 for
ξ = 1, 2, 3, 4.To isolate the ontribution of the zero-modes, we have to alulate thediagonal part C00(t) and the mixed part C0N(t):

C00(t) =
12

N3N2
4

4
∑

ξ=0

s(ξ)Sξ(~0, 0)S∗
ξ (~0, 0), (D.3)i.e. p1 = p2 = p3 = p4 = p′4 = 0 and the sum runs only over ξ and:

C0N(t) =
12

N3N2
4

∑

p′
4
6=0

4
∑

ξ=0

e−ip
′

4
ts(ξ)Sξ(~0, 0)S∗

ξ (~0, p
′
4), (D.4)i.e. p1 = p2 = p3 = p4 = 0 and the sum runs over ξ and also over p′4 (thelatter orresponds to non-zero modes in the mixed term).The ontribution of the zero modes is C00(t) + 2C0N(t) and it is for thePP and the SS ase:t C_PP(t)0 0.193365022585086698825307391 0.068542693495896533928402052 0.055983137376237557258917833 0.048644806504103327293719874 0.046231202662437964612252025 0.048644806504103299538144266 0.055983137376237529503342227 0.06854269349589661719512890t C_SS(t)0 -0.193365022585086698825307391 -0.068542693495896533928402052 -0.05598313737623755725891783152



3 -0.048644806504103327293719874 -0.046231202662437964612252025 -0.048644806504103299538144266 -0.055983137376237557258917837 -0.06854269349589661719512890As we have shown analytially in Setion 4.3, the ontribution of the zeromodes is the same in both the pseudosalar and the salar orrelator, up to asign, whih is a matter of onvention. With suh onvention, the ontributionof the zero modes exatly anles in the sum CPP+SS = CPP + CSS.We also show the part CNN (t) of the PP and SS orrelators, i.e. the partwith zero modes subtrated:t C_PP(t)0 3.207049559825603690654816091 0.053875523249846873907742412 0.011851594514028840343655703 0.004368503620979326262929734 0.002574703287816858254810635 0.004368503620979520551959046 0.011851594514028854221443517 0.05387552324984717921907418t C_SS(t)0 -2.899846672457193630378924351 0.053495724344856263043901382 0.009798606682089976149807603 0.000234954537403998797717724 -0.002407409019565424912467935 0.000234954537403631036340816 0.009798606682090003905383217 0.05349572434485556221561708We will use these numbers to ompare with the subtration routines.D.2 GWC ode � point souresFor the test of subtration routines, the �rst step was to explitly omputethe zero modes. The number of zero modes in the free-�eld ase is equal to
NcNd, i.e. there are 12 zero modes in our ase of interest, 6 in the positiveand 6 in the negative hirality setor.153



The test of the subtration routines onsisted in performing the followingsteps:1. Read in all zero modes.2. Compute the propagator Ψ0 oming only from the zero modes, usingformula 4.22, i.e. taking into aount the soure. This soure has to beexatly the same as the one used for full inversion (with all modes).3. Compute (or read in, if omputed before) the full propagator Ψ (withall modes) with the same point soure as in the previous step.4. Construt the non-zero modes propagator ΨN = Ψ − Ψ0.5. Use the GWC ontration ode to ompute the PP and SS orrelationfuntions from ΨN . This gives the part CNN (t) of these orrelators.The result for the orrelation funtions with no ontribution from the zeromodes is:t C_PP(t)0 +3.2070498264e+001 +5.3875529993e-022 +1.1851597433e-023 +4.3685038347e-034 +2.5747032913e-035 +4.3685038347e-036 +1.1851597433e-027 +5.3875529993e-02t C_SS(t)0 -2.8998469255e+001 +5.3495732753e-022 +9.7986124350e-033 +2.3495604466e-044 -2.4074086241e-035 +2.3495604466e-046 +9.7986124350e-037 +5.3495732753e-02These numbers are exatly the same as ones obtained with the analytialformula in the previous setion. 154



D.3 GWC ode � stohasti souresWe follow an analogous proedure in the ase of stohasti soures:1. Read in all zero modes.2. Read in sample r of stohasti soure.3. Compute the propagator Ψ0
r oming only from the zero modes, usingformula 4.22 with sample r of the soure4. Compute (or read in, if omputed before) the full propagator Ψr (withall modes) with the same sample of the soure r.5. Construt the non-zero modes propagator ΨN

r = Ψr − Ψ0
r.6. Use the �light� ontration ode to ompute the PP and SS orrelationfuntions from ΨN

r .Suh proedure is then repeated Nr times for di�erent samples of stohastinoise. Eah sample of the soure leads to a orrelation funtion CNN(t). Wehave used Nr = 600 samples and �nally averaged the orrelation funtionsto obtain:t C_PP(t) dC_PP(t)0 3.207395e+00 6.036502e-041 5.341456e-02 4.634707e-042 1.163657e-02 2.135815e-043 4.276079e-03 9.325929e-054 2.518227e-03 5.732913e-055 4.276079e-03 9.325929e-056 1.163657e-02 2.135815e-047 5.341456e-02 4.634707e-04t C_SS(t) dC_SS(t)0 2.899527e+00 3.025145e-041 -5.303857e-02 4.597752e-042 -9.629567e-03 1.669140e-043 -2.358282e-04 3.102437e-064 2.351388e-03 5.740869e-055 -2.358282e-04 3.102437e-066 -9.629567e-03 1.669140e-047 -5.303857e-02 4.597752e-04 155



The third olumn is the standard deviation. Comparing these numbers withthe ones from the analytial formula and from the GWC ode with pointsoures, we onlude that all results are onsistent, up to the statistial errorfor the ase of stohasti soures. The �light� ontration ode uses a di�erentsign onvention for the salar orrelator and hene the sign of CSS(t) isalways opposite to the one from the GWC ontration ode and the analytialformula. Hene, with the �light� ontration ode the ontribution of thezero modes is exatly anelled in the di�erene CPP − CSS. Therefore, foromputations in the interating ase we always use CPP − CSS.

156



Bibliography[1℄ Wilson K.G. (1974), Con�nement of Quarks, Phys.Rev. D10, 2445.[2℄ Creutz M. (1980), Monte Carlo study of quantized SU(2) theory, Phys.Rev. D21, 2308.[3℄ Peskin M.E., Shroeder D.V. (1995), An Introdution to QuantumField Theory, Addison-Wesley Publishing Group.[4℄ Pokorski S. (2000), Gauge Field Theories, Cambridge University Press,Cambridge.[5℄ Feynman R.P. (1948), Spae-time approah to non-relativisti quantummehanis, Rev.Mod.Phys. 20, 367.[6℄ Aoyama T., Hayakawa M., Kinoshita T., Nio M. (2008), Revised valueof the eighth-order QED ontribution to the anomalous magneti mo-ment of the eletron, Phys.Rev. D77, 053012; 0712.2607 (hep-ph).[7℄ Osterwalder K., Shrader R. (1973), Axioms for Eulidean Green'sfuntions, Comm.Math.Phys. 31, 83.[8℄ Osterwalder K., Shrader R. (1975), Axioms for Eulidean Green'sfuntions 2, Comm.Math.Phys. 42, 281.[9℄ Lüsher M. (1977), Constrution of a selfadjoint, stritly positive trans-fer matrix for eulidean lattie gauge theories, Comm.Math.Phys 54,283.[10℄ DeGrand T., DeTar C. (2006), Lattie Methods for Quantum Chromo-dynamis, World Sienti�, Singapore.[11℄ Gattringer C., Lang C.B. (2010), Quantum Chromodynamis on theLattie. An Introdutory Presentation, Springer-Verlag, Berlin Heidel-berg. 157



[12℄ Witten E. (1979), Current algebra theorems for the U(1) Goldstoneboson, Nul.Phys. B156, 269.[13℄ Veneziano G. (1979), U(1) without instantons, Nul. Phys. B159, 213.[14℄ Gasser J., Leutwyler H. (1984), Chiral perturbation theory to one loop,Ann. Phys. 158, 142.[15℄ Gasser J., Leutwyler H. (1985), Chiral perturbation theory: Expan-sions in the mass of the strange quark, Nul. Phys. B250, 465.[16℄ Greiner W., Shramm S., Stein E. (2002), Quantum Chromodynamis,Springer-Verlag, Berlin Heidelberg.[17℄ Jido D., Nemoto Y., Oka A., Hosaka A. (2000), Chiral Symmetry forPositive and Negative Parity Nuleons, Nul.Phys. A671, 471; hep-ph/9805306.[18℄ Gell-Mann M., Oakes R.J., Renner B. (1968), Behavior of CurrentDivergenes under SU3 × SU3, Phys. Rev. 175, 2195.[19℄ Fuhs N.H., Sazdjian H., Stern J. (1991), How to probe the sale of
〈q̄q〉 in hiral perturbation theory, Phys.Lett. B269, 183.[20℄ Stern J., Sazdjian H., Fuhs N.H. (1993), What π − π Sattering TellsUs About Chiral Perturbation Theory, Phys.Rev. D47, 3814; hep-ph/9301244.[21℄ DeTar C. (2008), Reent Progress in Lattie QCD Thermodynamis,PoS LATTICE2008, 001; 0811.2429 (hep-lat).[22℄ Montvay I., Münster G. (1997), Quantum Fields on a Lattie, Cam-bridge University Press, Cambridge.[23℄ Weisz P. (1983), Continuum limit improved lattie ation for pureYang-Mills theory (I), Nul.Phys. B212, 1.[24℄ Bouaud P. et al. (2008), Dynamial Twisted Mass Fermions with LightQuarks: Simulation and Analysis Details, Comput.Phys.Commun. 179,695; 0803.0224 (hep-lat).[25℄ Rothe H.J. (2005), Lattie Gauge Theories. An Introdution, 3rd edi-tion, World Sienti�, Singapore.158



[26℄ Wilson K.G. (1975), Quarks and strings on a lattie, in: New Phenom-ena In Subnulear Physis. Part A. Proeedings of the First Half of the1975 International Shool of Subnulear Physis, Erie, Siily, July 11- August 1, 1975, ed. A. Zihihi, Plenum Press, New York, 1977, p.69.[27℄ Sheiholeslami B., Wohlert R. (1985), Improved ontinuum limit lattieation for QCD with Wilson fermions, Nul.Phys. B259, 572.[28℄ Nielsen N.B., Ninomiya M. (1981), Phys.Lett. B105, 211.[29℄ Lüsher M. (1998), Exat hiral symmetry on the lattie andthe Ginsparg-Wilson relation, Phys. Lett. B428, 342; arXiv: hep-lat/9802011.[30℄ Niedermayer F. (1999), Exat hiral symmetry, topologial hargeand related topis, Nul. Phys. B (Pro. Suppl.) 73, 105; arXiv:hep-lat/9810026.[31℄ Frezzotti R., Grassi P.A., Sint S., Weisz P. (2001), Lattie QCD witha hirally twisted mass term, JHEP 0108, 058; hep-lat/0101001.[32℄ Frezzotti R., Rossi G.C. (2004), Chirally improving Wilson fermions -I. O(a) improvement, JHEP 0408, 007; hep-lat/0306014.[33℄ Baron R. et al. (2009), Light Meson Physis from Maximally TwistedMass Lattie QCD, 0911.5061 (hep-lat).[34℄ Ginsparg P., Wilson K. (1982), A remnant of hiral symmetry on thelattie, Phys.Rev. D25, 2649.[35℄ Hasenfratz P. (1998), Prospets for perfet ations,Nul.Phys.Pro.Suppl. 63, 53; hep-lat/9709110.[36℄ Hasenfratz P. (1998), Lattie QCD without tuning, mixing and urrentrenormalization, Nul.Phys. B525, 401; hep-lat/9802007.[37℄ Neuberger H. (1998), Exatly massless quarks on the lattie, Phys.Lett. B 417, 141; hep-lat/9707022.[38℄ Neuberger H. (1998), More about exatly massless quarks on the lat-tie, Phys. Lett. B 427, 353; hep-lat/9801031.[39℄ Hasenfratz P., Laliena V., Niedermayer F. (1998), The index theoremin QCD with a �nite ut-o�, Phys.Lett. B427, 125; hep-lat/9801021.159



[40℄ Fujikawa K. (1999), A ontinuum limit of the hiral Jaobian in lattiegauge theory, Nul.Phys. B546, 480; hep-th/9811235.[41℄ Hernandez P., Jansen K., Lüsher M. (1999), Loality propertiesof Neuberger's lattie Dira operator, Nul.Phys. B552, 363; hep-lat/9808010.[42℄ Kaplan D.B. (1992), A Method for simulating hiral fermions on thelattie, Phys.Lett. B288, 342; hep-lat/9206013.[43℄ Shamir Y. (1993), Chiral Fermions from Lattie Boundaries,Nul.Phys. B406, 90; hep-lat/9303005.[44℄ Jansen K. (1996), Domain Wall Fermions and Chiral Gauge Theories,Phys.Rept. 273, 1-54; hep-lat/9410018.[45℄ Jansen K. (1992), Chiral fermions and anomalies on a �nite lattie,Phys.Lett. B288, 348.[46℄ Neuberger H. (1998), Vetor like gauge theories with almost masslessfermions on the lattie, Phys.Rev. D57, 5417; hep-lat/9710089.[47℄ Allton C. et al. (2007), 2+1 �avor domain wall QCD on a (2 fm)3 lattie:light meson spetrosopy with Ls = 16, Phys.Rev. D76, 014504; hep-lat/0701013.[48℄ Walker-Loud A. et al. (2009), Light hadron spetrosopy using do-main wall valene quarks on an Asqtad sea, Phys.Rev. D79, 054502;0806.4549 (hep-lat).[49℄ Karsten L.H. (1981), Lattie fermions in eulidean spae-time,Phys.Lett. B104, 315.[50℄ Wilzek F. (1987), Lattie Fermions, Phys.Rev.Lett. 59, 2397.[51℄ Creutz M. (2008), Four-dimensional graphene and hiral fermions,JHEP 0804, 017; 0712.1201 (hep-lat).[52℄ Borii A. (2008), Creutz Fermions on an Orthogonal Lattie, Phys.Rev.D78, 074504; 0712.4401 (hep-lat).[53℄ Bedaque P.F., Buho� M.I., Tiburzi B.C., Walker-Loud A. (2008), Bro-ken Symmetries from Minimally Doubled Fermions, Phys.Lett. B662,449; 0801.3361 (hep-lat). 160



[54℄ Borii A. (2008), Minimally Doubled Fermion Revival, PoS LAT-TICE2008, 231; 0812.0092 (hep-lat).[55℄ Cihy K., Gonzalez Lopez J., Jansen K., Kujawa A., Shindler A. (2008),Twisted Mass, Overlap and Creutz Fermions: Cut-o� E�ets at Tree-level of Perturbation Theory, Nul.Phys. B800, 94; 0802.3637 (hep-lat).[56℄ Cihy K., Gonzalez Lopez J., Kujawa A. (2008), A omparison of theut-o� e�ets for Twisted Mass, Overlap and Creutz fermions at tree-level of Perturbation Theory, Ata Phys.Pol. B39, 3463; 0811.0572(hep-lat).[57℄ Smit J. (2002), Introdution to Quantum Fields on a Lattie, Cam-bridge University Press, Cambridge.[58℄ Belavin A.A., Polyakov A.M., Shwartz A.S., Tyupkin Yu.S. (1975),Pseudopartile solutions of the Yang-Mills equations, Phys.Lett. B59,85.[59℄ Atiyah M., Singer I. (1963), The index of ellipti operators on ompatmanifolds, Bull. Amer. Math. So. 69, 422.[60℄ Brukmann F., Gruber F., Jansen K., Marinkovi M., Urbah C., Wag-ner M. (2009), Comparing topologial harge de�nitions using topology�xing ations, 0905.2849 (hep-lat).[61℄ Albanese M. et al. (1987), Glueball masses and string tension in lattieQCD, Phys.Lett. B192, 163.[62℄ Del Debbio L., Giusti L., Pia C. (2005), Topologial suseptibility inthe SU(3) gauge theory, Phys.Rev.Lett. 94, 032003; hep-th/0407052.[63℄ Gupta R. (1998), Introdution to Lattie QCD, Letures given at theLXVIII Les Houhes Summer Shool �Probing the Standard Model ofPartile Interations�, July 28-Sept 5, 1997.[64℄ Bietenholz W. et al. (2004), Going hiral: overlap versus twisted massfermions, JHEP 0412, 044; hep-lat/0411001.[65℄ Alexandrou C. et al. (2008), Light baryon masses with dynamialtwisted mass fermions, Phys.Rev. D78, 014509; 0803.3190 (hep-lat).[66℄ Alexandrou C. et al. (2009), The low-lying baryon spetrum with twodynamial twisted mass fermions, Phys.Rev. D80, 114503; 0910.2419(hep-lat). 161



[67℄ Cihy K., Gonzalez Lopez J., Jansen K., Kujawa A., Shindler A. (2007),Cuto� e�ets for Wilson twisted mass fermions at tree-level of pertur-bation theory, PoSLAT2007, 098; 0710.2036 (hep-lat).[68℄ Carpenter D.B., Baillie C.F. (1985), Free fermion propagators and lat-tie �nite-size e�ets, Nul.Phys. B260, 103.[69℄ Gonzalez Lopez J. (2007), Cut-o� e�ets and ontinuum limit attree-level of perturbation theory for Wilson twisted mass fermions atmaximal twist, Ph.D. thesis preparation report, Humboldt University,Berlin.[70℄ Duane S., Kennedy A.D., Pendleton B.J., Roweth D. (1987), HybridMonte Carlo, Phys.Lett. B195, 216.[71℄ Lüsher M. (2010), Computational Strategies in Lattie QCD, Leturesgiven at the Summer Shool on �Modern perspetives in lattie QCD�,Les Houhes, August 3-28, 2009; 1002.4232 (hep-lat).[72℄ Ukawa A. (2002), Computational ost of full QCD simulations ex-periened by CP-PACS and JLQCD Collaborations, Nul. Phys. B(Pro.Supp.) 106, 195.[73℄ Van den Eshof J. et al. (2002), Numerial Methods for the QCDOverlap Operator: I. Sign-Funtion and Error Bounds, Com-put.Phys.Commun. 146, 203; hep-lat/0202025.[74℄ Frommer A., Lippert T., Medeke B., Shilling K. (eds.), NumerialChallenges in Lattie Quantum Chromodynamis, Leture Notes inComputational Siene and Engineering 15, Heidelberg 2000.[75℄ Chiarappa T. et al. (2006), Iterative methods for overlap and twistedmass fermions, hep-lat/0609023.[76℄ Hernandez P., Jansen K., Lellouh L. (1999), Finite-size saling of thequark ondensate in quenhed lattie QCD, Phys.Lett. B469, 198; hep-lat/9907022.[77℄ Hasenfratz A., Knehtli F. (2001), Flavor Symmetry and the StatiPotential with Hyperubi Bloking, Phys.Rev. D64, 034504; hep-lat/0103029.[78℄ Dong S.J., Liu K.F. (1994), Stohasti Estimation with Z2 Noise,Phys.Lett. B328, 130; hep-lat/9308015.162



[79℄ Foster M., Mihael C. (1999), Phys.Rev. D59, 074503; hep-lat/9810021.[80℄ Jagels C.F., Reihel L. (1994), A fast minimal residual algorithm forshifted unitary matries, Numer. Linear Algebra Appl. 1(6), 555.[81℄ Arnold G. et al. (2003), Numerial Methods for the QCD Overlap Op-erator: II. Optimal Krylov Subspae Methods, hep-lat/0311025.[82℄ Frommer A., Güsken S., Lippert T., Nökel B., Shilling K. (1995),Many Masses on One Stroke: Eonomi Computation of Quark Prop-agators, Int.J.Mod.Phys. C6, 627; hep-lat/9504020.[83℄ Jansen K., Urbah C. (2009), tmLQCD: a program suite to simulateWilson Twisted mass Lattie QCD, 0905.3331 (hep-lat).[84℄ Wagner M. (2008), Contration Code Doumentation, unpublished.[85℄ Aoki S. et al. (2008), Two-�avor QCD simulation with exat hiralsymmetry, Phys.Rev. D78, 014508; 0803.3197 (hep-lat).[86℄ Shaefer S. (2006), Algorithms for dynamial overlap fermions,PoSLAT2006, 020; hep-lat/0609063.[87℄ Fodor Z., Katz S.D., Szabo K.K. (2004), Dynamial overlap fermions,results with hybrid Monte-Carlo algorithm, JHEP 0408, 003l hep-lat/0311010.[88℄ Fukaya H. et al. (2006), Lattie gauge ation suppressing near-zeromodes of HW , Phys.Rev. D74, 094505; hep-lat/0607020.[89℄ Dürr S. et al. (2007), Mixed ation simulations: approahing physialquark masses, PoSLAT2007, 113; 0710.4866 (hep-lat).[90℄ Dürr S. et al. (2007), Chiral behavior of pseudo-Goldstone boson massesand deay onstants in 2+1 �avor QCD, PoSLAT2007, 115; 0710.4769(hep-lat).[91℄ Bernardoni F. et al. (2009), Mixed ation omputations on �ne dynam-ial latties, 0911.3756 (hep-lat).[92℄ Bär O., Jansen K., Shaefer S., Sorzato L., Shindler A. (2006), Overlapfermions on a twisted mass sea, PoSLAT2006, 199; hep-lat/0609039.[93℄ Garron N., Sorzato L. (2007), Results from overlap valene quarks ona twisted mass sea, PoSLAT2007, 083; 0710.1582 (hep-lat).163



[94℄ Cihy K., Herdoiza G., Jansen K. (2009), Continuum-Limit Saling ofOverlap Fermions As Valene Quarks, Ata Phys.Pol.B Pro.Suppl. 2,497; 0910.0816 (hep-lat).[95℄ Bowler K.C. et al. (2004), Exploratory spetrum alulations usingoverlap valene quarks on a staggered sea, hep-lat/0408043.[96℄ Bowler K.C. et al. (2005), Lattie QCD with mixed ations, JHEP0508, 003; hep-lat/0411005.[97℄ Hasenfratz A., Ho�mann R. (2006), Mixed Ation Simulations on Stag-gered Bakground; Interpretation and Result for the 2-�avor QCD Chi-ral Condensate, Phys.Rev. D74, 114509; hep-lat/0609067.[98℄ Renner D.B. et al. (2005), Hadroni physis with domain-wall valeneand improved staggered sea quarks, Nul.Phys.Pro.Suppl. 140, 255;hep-lat/0409130.[99℄ Edwards R.G. et al. (2006), The nuleon axial harge in full lattieQCD, Phys.Rev.Lett. 96, 052001; hep-lat/0510062.[100℄ Beane S.R., Bedaque P.F., Orginos K., Savage M.J. (2006), I =
2 ππ Sattering from Fully-Dynamial Mixed-Ation Lattie QCD,Phys.Rev. D73, 054503; hep-lat/0506013.[101℄ Alexandrou C., Leontiou T., Negele J.W., Tsapalis A. (2007), The axialN to Delta transition form fators from Lattie QCD, Phys.Rev.Lett.98, 052003; hep-lat/0607030.[102℄ Beane S.R. et al. (2007), Hyperon-Nuleon Sattering from Fully-Dynamial Lattie QCD, Nul.Phys.A794, 62; hep-lat/0612026.[103℄ Beane S.R. et al. (2008), Preise Determination of the I = 2 ππ Satter-ing Length from Mixed-Ation Lattie QCD, Phys.Rev. D77, 014505;0706.3026 (hep-lat).[104℄ Hägler P. et al. (2008), Nuleon Generalized Parton Distributions fromFull Lattie QCD, Phys.Rev. D77, 094502; 0705.4295 (hep-lat).[105℄ Alexandrou C. et al. (2008), The nuleon to Delta eletromagneti tran-sition form fators in lattie QCD, Phys.Rev.D77, 085012; 0710.4621(hep-lat).[106℄ Bouaud P. et al. (2007), Dynamial Twisted Mass Fermions with LightQuarks, Phys.Lett. B650, 304; hep-lat/0701012.164



[107℄ Bardeen W., Dunan A., Eihten E., Isgur N., Thaker H. (2001),Chiral Loops and Ghost States in the Quenhed Salar Propagator,Phys.Rev. D65, 014509; hep-lat/0106008.[108℄ Bardeen W., Eihten E., Thaker H. (2004), Chiral Lagrangian Pa-rameters for Salar and Pseudosalar Mesons, Phys.Rev. D69, 054502;hep-lat/0307023.[109℄ Prelovsek S., Dawson C., Izubuhi T., Orginos K., Soni A. (2004),Salar meson in dynamial and partially quenhed two-�avor QCD: lat-tie results and hiral loops, Phys.Rev.D70, 094503; hep-lat/0407037.[110℄ Golterman M., Izubuhi T., Shamir Y. (2005), The role of the doublepole in lattie QCD with mixed ations, Phys.Rev. D71, 114508; hep-lat/0504013.[111℄ Furhner A. (2010), Unitarity violation in mixed ation QCD, DiplomaThesis, Humboldt Universität zu Berlin.[112℄ Cihy K., Drah V., Garia Ramos E., Herdoiza G., Jansen K. (2010),in preparation.[113℄ Jansen K., Shmaltz M. (1992), Critial Momenta of Lattie ChiralFermions, Phys.Lett. B296, 374; hep-lat/9209002.[114℄ Blum T. et al. (2004), Quenhed Lattie QCD with Domain WallFermions and the Chiral Limit, Phys.Rev. D69, 074502; hep-lat/0007038.[115℄ de Forrand P., Takaishi T. (1997), Fast Fermion Monte Carlo,Nul.Phys.Pro.Suppl. 53, 968; hep-lat/9608093.[116℄ Frezzotti R., Jansen K. (1997), A Polynomial Hybrid Monte CarloAlgorithm, Phys.Lett. B402, 328; hep-lat/9702016.[117℄ Frezzotti R., Jansen K. (1999), The PHMC algorithm for simulations ofdynamial fermions: I � desription and properties, Nul.Phys. B555,395; hep-lat/9808011.[118℄ Frezzotti R., Jansen K. (1999), The PHMC algorithm for simulationsof dynamial fermions: II - Performane analysis, Nul.Phys. B555,432; hep-lat/9808038.
165



[119℄ Giusti L., Hoelbling C., Rebbi C. (2001), Light Quark Masses withOverlap Fermions in Quenhed QCD, Phys.Rev. D64, 114508; ErratumPhys.Rev. D65, 079903; hep-lat/0108007.[120℄ Sharpe S.R. (1997), Enhaned hiral logarithms in partially quenhedQCD, Phys.Rev. D56, 7052; Erratum Phys.Rev. D62, 099901; hep-lat/9707018.[121℄ Golterman M., Leung K.C. (1998), Appliations of Partially QuenhedChiral Perturbation Theory, Phys.Rev. D57, 5703; hep-lat/9711033.[122℄ Giusti L., Hoelbling C., Lüsher M., Wittig H. (2003), Numerial teh-niques for lattie QCD in the ǫ�regime, Comput.Phys.Commun. 153,31; hep-lat/0212012.[123℄ Hauswirth S. (2002), Light hadron spetrosopy in quenhed lat-tie QCD with hiral Fixed-Point fermions, University of Bern; hep-lat/0204015.[124℄ Gattringer C. et al. (2004), Quenhed spetrosopy with �xed-pointand hirally improved fermions, Nul.Phys. B677, 3; hep-lat/0307013.[125℄ Capitani S. (2009), Mesoni and baryoni orrelation funtions at �nelattie spaings, PoS LAT2009, 095; 0910.5578 (hep-lat).[126℄ DeGrand T., Rossi P. (1990), Conditioning tehniques for dynamialfermions, Comp.Phys.Comm. 60, 211.[127℄ Hasenbush M. (2001), Speeding up the Hybrid-Monte-Carlo algorithmfor dynamial fermions, Phys.Lett. B519, 177; hep-lat/0107019.[128℄ Hasenbush M., Jansen K. (2003), Speeding up Lattie QCD simu-lations with lover-improved Wilson Fermions, Nul.Phys. B659, 299;hep-lat/0211042.[129℄ Urbah C., Jansen K., Shindler A., Wenger U. (2006), HMC algorithmwith multiple time sale integration and mass preonditioning, Com-put.Phys.Commun. 174, 87; hep-lat/0506011.[130℄ Sexton J.C., Weingarten D.H. (1992), Hamiltonian evolution for thehybrid Monte Carlo algorithm, Nul. Phys. B380, 665.[131℄ Omelyan I.P., Mryglod I.M., Folk R. (2003), Sympleti analytiallyintegrable deomposition algorithms: lassi�ation, derivation, and ap-pliation to moleular dynamis, quantum and elestial mehanis sim-ulations, Comp.Phys.Comm. 151, 272.166



[132℄ Takaishi T., de Forrand P. (2006), Testing and tuning sympleti in-tegrators for Hybrid Monte Carlo algorithm in lattie QCD, Phys.Rev.E73, 036706; hep-lat/0505020.[133℄ Horvath I., Kennedy A.D., Sint S. (1999), A New Exat Methodfor Dynamial Fermion Computations with Non-Loal Ations,Nul.Phys.Pro.Suppl. 73, 834; hep-lat/9809092.[134℄ Clark M.A., Kennedy A.D. (2003), The RHMC Algorithm for 2Flavours of Dynamial Staggered Fermions, hep-lat/0309084.[135℄ Clark M.A. (2006), The Rational Hybrid Monte Carlo Algorithm,PoSLAT2006, 004; hep-lat/0610048.[136℄ Clark M.A., Kennedy A.D. (2007), Aelerating Dynamial FermionComputations using the Rational Hybrid Monte Carlo (RHMC) Algo-rithm with Multiple Pseudofermion Fields, Phys.Rev.Lett. 98, 051601;hep-lat/0608015.[137℄ Lüsher M. (2003), Lattie QCD and the Shwarz alternating proe-dure, JHEP 0305, 052; hep-lat/0304007.[138℄ Lüsher M. (2004), Solution of the Dira equation in lattie QCD usinga domain deomposition method, Comp.Phys.Comm. 156, 209; hep-lat/0310048.[139℄ Lüsher M. (2005), Shwarz-preonditioned HMC algorithm for two-�avour lattie QCD, Comp.Phys.Comm. 165, 199; hep-lat/0409106.[140℄ Lüsher M. (2007), De�ation aeleration of lattie QCD simulations,JHEP 0712, 011; 0710.5417 (hep-lat).

167



List of Tables1.1 Meson interpolating operators. JPC lassi�ation denotes par-tile spin J , parity P and harge onjugation C [63℄. . . . . . 382.1 Simulation parameters for the tree-level saling test. . . . . . . 462.2 Fitting oe�ients for the pion mass � eq. (2.20). . . . . . . . 472.3 Fitting oe�ients for the pion deay onstant � eq. (2.21). . . 492.4 Fitting oe�ients for the pseudosalar orrelation funtion ata �xed physial distane t/N = 4 � eq. (2.22). . . . . . . . . . 49

168



List of Figures1.1 Continuum limit saling in �xed �nite volume for r0fPS at�xed values of r0mPS (a) and for (r0mPS)
2 at �xed values ofrenormalized quark mass r0µR (b). In (b) data at β = 4.2((a/r0)2 = 0.0144) are not inluded, due to the missing valueof the renormalization fator ZP . Soure: [33℄. . . . . . . . . . 282.1 Continuum limit saling of the pion mass for overlap, twistedmass and Creutz fermions. . . . . . . . . . . . . . . . . . . . . 472.2 Continuum limit saling of the pion deay onstant for overlap,twisted mass and Creutz fermions. . . . . . . . . . . . . . . . 482.3 Continuum limit saling of the pseudosalar orrelation fun-tion at a �xed physial distane t/N = 4 for overlap, twistedmass and Creutz fermions. . . . . . . . . . . . . . . . . . . . . 502.4 Continuum limit saling of the pion mass for overlap-overlap,MTM-MTM and overlap-MTM quarks. . . . . . . . . . . . . . 512.5 Continuum limit saling of the pion deay onstant for overlap-overlap, MTM-MTM and overlap-MTM quarks. . . . . . . . . 522.6 Continuum limit saling of the pseudosalar orrelation fun-tion at a �xed physial distane t = 4N for overlap-overlap,MTM-MTM and overlap-MTM quarks. . . . . . . . . . . . . . 532.7 Continuum limit saling of the pion mass at a �xed physialdistane t/N = 4 for twisted mass and overlap fermions. Thequark masses are mathed up to O(1/N2). The lower plot isa zoom of the upper one for large values of N . . . . . . . . . . 552.8 Continuum limit saling of the pion deay onstant at a �xedphysial distane t/N = 4 for twisted mass and overlap fermions.The quark masses are mathed up to O(1/N2). The lower plotis a zoom of the upper one for large values of N . . . . . . . . . 562.9 The mathing of MTM and overlap quark masses. . . . . . . . 572.10 The mismath between the MTM and overlap pion deay on-stants at the mathing point NmMTM

π = Nmoverlap
π . . . . . . . 58169



2.11 The mismath between the MTM and overlap orrelation fun-tions (at a �xed physial distane) at the mathing point
NmMTM

π = Nmoverlap
π . . . . . . . . . . . . . . . . . . . . . . . . 582.12 The di�erene between the MTM and overlap pion deay on-stants at the mathing point NmMTM

π = Nmoverlap
π , as a fun-tion of 1/N2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 592.13 The di�erene between the MTM and overlap orrelation fun-tions (at a �xed physial distane) at the mathing point

NmMTM
π = Nmoverlap

π , as a funtion of 1/N2. . . . . . . . . . . 602.14 The di�erene between the MTM and overlap quark mass atthe mathing point NmMTM
π = Nmoverlap

π , as a funtion of 1/N2. 603.1 5 lowest eigenvalues and the highest eigenvalue for variousgauge �eld ensembles. The lattie spaing is a ≈ 0.079 fm(β = 3.9) for upper plots, a ≈ 0.063 fm (β = 4.05) for bottomleft and a ≈ 0.051 fm (β = 4.2) for bottom right plot. . . . . 674.1 Maximal norm of the overlap operator in logarithmi sale.The linear �t orresponds to the value of s whih yields themaximal deay rate. Parameters: β = 3.9, L/a = 16. . . . . . 814.2 The dependene of the overlap Dira operator norm deay rate
ρ on the parameter s for gauge �eld on�gurations with andwithout HYP smearing. Parameters: β = 3.9, L/a = 16. . . . 814.3 The ontinuum limit saling of the overlap operator deay rate. 824.4 The ontinuum limit saling of the ratio of the pion mass (atthe mathing mass) and the overlap operator deay rate. . . . 824.5 E�etive pion mass plateau for the ensemble 163 × 32, a ≈
0.079 fm (β = 3.9), aµ = 0.004. The bare valene quark massis amq = 0.04. For eah timeslie 3 values of the pion massare omputed, orresponding to di�erent kinds of smearingof the soures (desribed in Setion 3.4.1). The horizontalband orresponds to a simultaneous �t of the LL, LF andFF pseudosalar orrelation funtions, whih yields a value0.2884(17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834.6 Mathing the pion mass for three values of the lattie spaing,orresponding to β = 3.9, 4.05 and 4.2. The horizontal bandsare unitary MTM (maximally twisted mass) values and theurves show the bare quark mass dependene of the overlappion mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

170



4.7 The dependene of the pion deay onstant on the bare overlapquark mass. The dashed lines orrespond to the mathingquark masses am̂. . . . . . . . . . . . . . . . . . . . . . . . . . 854.8 Continuum limit saling of the overlap pion deay onstant atthe mathing mass and two other referene values of r0mπ. . . 864.9 Continuum limit saling of the MTM pion deay onstant atthe mathing mass. . . . . . . . . . . . . . . . . . . . . . . . . 874.10 Continuum limit saling of the di�erene of the overlap andMTM pion deay onstant at the mathing mass. . . . . . . . 884.11 The omparison of the quark mass dependene of the pionmass extrated from PP and PP-SS orrelators for β = 3.9ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924.12 The omparison of the quark mass dependene of the piondeay onstant extrated from PP and PP-SS orrelators for
β = 3.9 ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . 934.13 Ensemble averages for the following orrelation funtions: pseu-dosalar (PP), salar (SS), the di�erene of PP and SS (PP-SS). The inset shows the PP and PP-SS orrelation funtionson a single on�guration. Parameters: β = 3.9, L/a = 16,
aµ = 0.004, amq = 0.004. . . . . . . . . . . . . . . . . . . . . . 944.14 Ensemble averages for the following orrelation funtions: pseu-dosalar (PP), salar (SS), the di�erene of PP and SS (PP-SS). Parameters: β = 3.9, L/a = 16, aµ = 0.004, amq = 0.04(muh larger valene quark mass than in Fig. 4.13). . . . . . . 954.15 Mathing the pion mass (extrated from the PP-SS orrelator)for three values of the lattie spaing, orresponding to β =
3.9, 4.05 and 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . 974.16 The dependene of the pion deay onstant on the bare overlapquark mass. The dashed lines orrespond to the mathingquark masses am̂ (from PP-SS orrelator). The solid vertiallines (left of the dashed lines) show the di�erene of f overlapπand fMTM

π (at the mathing mass) extrated from the PPorrelator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 984.17 Continuum limit saling of the overlap pion deay onstant(extrated from the PP-SS orrelator) at the mathing massand two other referene values of r0mπ. . . . . . . . . . . . . . 994.18 Continuum limit saling of the di�erene of the overlap (fromthe PP-SS orrelator) and MTM pion deay onstant at themathing mass. . . . . . . . . . . . . . . . . . . . . . . . . . . 1004.19 Mathing the pion mass for 3 di�erent volumes at a �xed lat-tie spaing a ≈ 0.079 fm. . . . . . . . . . . . . . . . . . . . . 102171
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4.32 The dependene of the pion deay onstant on the bare over-lap quark mass. The dashed lines orrespond to the math-ing quark masses am̂ (from PP subtr. orrelator). The solidvertial lines (left of the dashed lines) show the di�erene of
f overlapπ and fMTM
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5.11 Topologial suseptibility for 4 ensembles of gauge �eld on-�gurations. The mπ ≈ 450 MeV ensemble is slightly shiftedto the right for better visibility. . . . . . . . . . . . . . . . . . 134
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