Faculty of Physics
Adam Mickiewicz University
Poznan, Poland

Ph.D. Thesis

Lattice QCD with
chirally invariant fermions

Krzysztof Cichy

Supervisors

Dr hab. Piotr Tomczak, Prof. UAM
Adam Mickiewicz University
Quantum Physics Division

and

Dr. habil. Karl Jansen
NIC, DESY Zeuthen

Poznan 2010






Contents

Introduction

1 Theoretical principles
of Lattice QCD

1.1
1.2
1.3

1.4

1.5

The QCD Lagrangian . . . . . . . . . .. .. ... ... ....
Discretizing gauge fields . . . . . .. ... ... ...
Discretizing fermions . . . . . . . ... ...
1.3.1 Naive discretization . . . . . . . . ... ... ... ...
1.3.2 Wilson fermions . . . . . . .. ... ... L.
1.3.3  Wilson twisted mass fermions . . . .. ... ... ...
Chiral symmetry on the lattice . . . . ... ... .. ... ..
1.4.1 Ginsparg-Wilson relation . . . . . .. ... ... . ...
1.4.2  Overlap fermions . . . . . . . .. ... ... ... ..
1.4.3  Other kinds of chiral fermions . . . . . . . ... .. ..

1.4.3.1 Domain wall fermions . . .. ... ... ...

1.4.3.2 Creutz fermions . . . . . ... ... ... ...
1.4.4 Topology on the lattice . . . . . ... ... ... ...,
Observables in Lattice QCD . . . . . ... ... ... .. ...

2 Tree-level scaling test

2.1

2.2
2.3
2.4
2.5

Fermion propagators . . . . . . . . ... ... ... ...
2.1.1  Overlap fermions . . . . .. . .. ... ...
2.1.2  Wilson twisted mass fermions . . . . .. ... ... ..
2.1.3 Creutz fermions . . . . . ... ... ... ... .....
Observables . . . . . . . .. ... ...
Test setup . . . . . . . .
Comparison of overlap, twisted mass and Creutz fermions . . .
Matching twisted mass and overlap fermions . . . . . . .. ..
2.5.1 Unmatched quark masses . . . . . ... .. ... ....
2.5.2 Effects in the case of matched pion masses . . . . . ..

11
11
20
22
22
23
26
29
29
30
32
32
33
34
35



3 Algorithmic and technical details 61

3.1 Simulating QCD . . . .. ..o oo 61
3.1.1 Generalidea . . . . . . ... ... 0 0L 61
3.1.2 Hybrid Monte Carlo . . . . .. ... ... ... .... 62

3.2 Computation of the overlap operator . . . . .. .. ... ... 64

3.3 Reducing the condition number of ATA . . . . .. .. ... .. 66
3.3.1 FEigenvalue deflation . . . . . . . ... ... ... ... 66
3.3.2 HYP smearing of gauge fields . . .. .. ... ... .. 68

3.4 Inverting the Dirac operator . . . . . . . ... . ... ... .. 69
3.4.1 Stochastic sources . . . . . . .. ... ... 70
3.4.2 The SUMR solver . . . . . . . .. ... . ... ..... 72

4 Investigations of the continuum limit scaling properties of

the mixed action setup 75

4.1 Mixed action approach . . . . . . . ... ... L. 75

4.2 Scaling test — light sea quark mass . . . . . . . .. ... ... 78
4.2.1 Simulation parameters . . . . . . ... ... ... ... 79
422 Locality . . . ... ..o L 80
4.2.3 Matching the pion mass . . . .. ... ... ... ... 83
4.2.4 Pion decay constant scaling test . . . . . . ... . .. 85

4.3 Chiral zero modes and their contribution to mesonic correlators 88
4.3.1 Chiral zeromodes . . . . . . ... ... ... ... ... 88
4.3.2 The contribution of the zero modes to mesonic correlators 90
4.3.3 Comparison of correlation functions . . . . . . . . . .. 93

4.4 The role of the zero modes small volume, light sea quark mass 96

4.5 The role of the zero modes — finite volume effects analysis. . . 101
4.5.1 Simulation parameters . . . . . . ... ... ... ... 101
4.5.2 Matching the pion mass — PP correlator . . . . . . .. 101
4.5.3 Pion decay constant PP correlator . . . .. ... .. 102

4.6 'The role of the zero modes small volume, heavier sea quark
TNASS . =+« e e e e e e e e e e e e e e 104
4.6.1 Motivation and simulation setup . . . . . . . . ... .. 104
4.6.2 Pion decay constant — scaling test . . . . . . ... . .. 106

4.7 'The role of the zero modes conclusion . . . . . . . ... ... 109

4.8 Explicit subtraction of zero modes . . . . . . . ... ... ... 111
4.8.1 Subtraction procedure . . . . . ... .. ... .. ... 111
4.8.2 Effects of explicit zero modes subtraction . . . . . . . . 112

4.8.3 Pion decay constant — scaling test — PP subtr. correlator116



5 Various further results 121

5.1 Unitarity violations . . . . . . . . ... ... L. 121
5.1.1 Motivation . . . . . . . . ... 121

5.1.2  Small volume analysis . . . . . ... ... ... .... 124

5.2 Light baryon masses . . . . . . ... ... ... L. 128
5.3 Topological charge and susceptibility . . . . . ... ... ... 131
Conclusions and prospects 135
Acknowledgements 139
A Wilson gauge action 141
B Tree-level scaling test 143
B.1 Overlap fermions . . . . . . . . ... .. ... L. 143
B.2 Creutz fermions . . . . . . . . . . .. ... 145
B.3 Correlation functions . . . . . . . . ... ... 147

C Improvements of the HMC algorithm 149
D Tree-level test of zero modes subtraction 151
D.1 Analytical formula . . . . ... ... 0000 152
D.2 GWC code — point sources . . . . . . . . ... ... ..., 153
D.3 GWC code stochastic sources . . . . . . . . . ... .. ... 155
Bibliography 157






Introduction

The strong force plays a fundamental and crucial role in nature. It is respon-
sible for the formation of all hadrons, which can be classified into mesons
and baryons. Examples of the former are the pion and the p meson and
of the latter the proton and the neutron, which in turn form the nuclei of
all atoms. The theory of the strong interaction is believed to be Quantum
ChromoDynamics (QCD). It postulates that all hadrons are not elementary
themselves but they have an inner structure and are built from constituent
particles. Scattering experiments revealed that the constituents are point-
like objects and we now have a large amount of evidence that they can be
identified with quarks, which are spin-1/2 fermions and whose interaction
is mediated by spin-1 bosons known as gluons. In order to understand the
interaction among quarks and gluons and comprehend how it can lead to the
formation of hadrons a new quantum number, called the colour charge, had
to be introduced. However, all hadrons observed in experiment do not carry
this colour charge, but are colourless. This means that the quarks and gluons
can not be isolated and do not exist as free particles they are confined into
colour-neutral composite hadrons. This fundamental confinement property
of QCD results from the fact that at large distances (or at low energies) the
QCD coupling constant determining the interaction strength between the
quarks and the gluons is large. However, we know from perturbation theory
analyses of QCD that at small distances (or at high energies) the QCD cou-
pling constant becomes small and the quarks behave as almost free particles.
This property of QCD is called asymptotic freedom and has been tested by
confronting experimental results with perturbative QCD predictions. It is
one of the most amazing characteristics of QCD that it should describe both
phenomena, confinement and asymptotic freedom, simultaneously. Clearly,
in order to test this theoretical expectation, a method is needed where QCD
can be evaluated both in the perturbative regime at small distances and in
the non-perturbative regime at large distances, where we enter the world of
the observed hadrons.

However, many interesting and relevant phenomena are consequences of



the low-energy properties of QCD. To investigate these issues (e.g. to calcu-
late the hadron spectrum and many structural properties of hadrons, like
form factors or parton distribution functions), non-perturbative methods
have to be employed. The only method which fulfills the above criterion
and allows for precise quantitative predictions is Lattice QCD (LQCD). It
consists in discretizing space-time and formulating QCD on a 4-dimensional
Euclidean space-time grid with a lattice spacing a. In this way, the theory is
fully regularized and mathematically well defined, which led to many concep-
tual and theoretical developments in our understanding of QCD. On the other
hand, by using Feynman’s path integral formulation of quantum field theory,
LQCD can be interpreted as a kind of a statistical mechanical system which
allows an evaluation with numerical methods. LQCD was first proposed in
a seminal paper by Wilson in 1974 [1] and shortly after Creutz indeed per-
formed such numerical simulations using Markov chain Monte Carlo methods
|2]. It has to be said that over many years LQCD simulations were performed
in unphysical setups with much too heavy and even infinite quark masses.
However, in the last few years a tremendous progress has been achieved when
new algorithmic developments provided a breakthrough in the performance
of the used simulation algorithms. At the same time, the increasing computer
power made it possible to simulate on large lattices with fine lattice spacings
and pion masses approaching the physical pion mass. Lattice QCD com-
putations still require very large computer resources, particularly for fully
dynamical simulations, but its prospects are steadily improving with a new
generation of supercomputers in the PetaFlop range. The algorithmic and
computer improvements were also accompanied by conceptual developments
such as ones leading to a faster approach to the continuum limit (¢ — 0) and
the formulation of non-perturbative renormalization schemes.

Another important aspect of QCD is chiral symmetry, i.e. the invariance
of the theory under the exchange of massless left- and right-handed quarks.
It is a continuous symmetry and we believe that it is spontaneously broken in
nature, thus giving rise to the appearance of Goldstone bosons. In QCD we
identify these Goldstone bosons with the pions, whose mass is much smaller
than the mass of any other observed hadron. Assuming such spontaneous
breaking of chiral symmetry in QCD, many phenomenological investigations
can be performed to interpret experimental data, the most notable of which
is chiral perturbation theory.

In principle, LQCD should be able to deduce the phenomenon of sponta-
neous chiral symmetry from the QCD Lagrangian itself and one would not
have to rely on assumptions. However, for many years, it seemed impos-
sible to preserve chiral symmetry on the lattice. Only in the late 1990s it
was shown that an alternative approach to chiral symmetry can be followed.



This was inspired by the so-called Ginsparg-Wilson relation, which implies
that a lattice fermion can be chiral, provided that we allow for a lattice-
modified version of chiral symmetry. This discovery led to the introduction
of so-called overlap fermions, a kind of lattice fermion which respects this
lattice modified chiral symmetry. Overlap fermions have many appealing
properties, but are much more computationally demanding than other pop-
ular fermion discretizations, such as Wilson fermions, modifications thereof
or staggered fermions. This makes the use of overlap fermions still a chal-
lenge, especially in dynamical simulations. As such, alternatives to dynamical
overlap fermions are being looked for to keep chiral symmetry. The goal is
is to profit from the good chiral properties of overlap fermions, but at the
same time avoid the high computational cost of generating dynamical over-
lap gauge field configurations. One such approach is called mixed action and
it consists in using overlap fermions only as valence quarks and for the sea
sector a cheaper fermion discretization is used.

The aim of this thesis is to investigate the mixed action setup of overlap
valence fermions and Wilson twisted mass sea quarks. One may suspect
that using different lattice fermion formulations in the sea and in the valence
sector leads to unphysical effects. And, as we will show in this thesis, this is
indeed the case. As we will demonstrate, in order to have a “safe” simulation,
where such effects can be avoided, a careful tuning of the physical setup has
to be performed. It is one of the main goals of this thesis to specify the
regime of parameter values (such as the lattice volume and the pion mass)
that allows to perform such safe simulations. Knowing these parameters will
then allow to address physical questions and compute physical observables
without being affected by possible unphysical effects. Therefore, providing
the parameters for safe simulations opens the way for future simulations with
chirally invariant overlap fermions in the valence sector to compute important
physical quantities.

The outline of the thesis is the following.

In Chapter 1, we review the theoretical principles of Lattice QCD. We
start by introducing the continuum QCD Lagrangian and discussing its sym-
metries, particularly the chiral symmetry. Next, we show how the continuum
theory is discretized and we introduce different fermion discretizations, in-
cluding the chirally-symmetric overlap formalism. We also shortly discuss
the ways of extracting physical observables from a simulation.

Chapter 2 presents the results of a lattice spacing scaling test of dif-
ferent fermion discretizations at tree-level of perturbation theory. For this
we use overlap, twisted mass and Creutz fermions. We also investigate the
effects of matching of twisted mass and overlap fermions, which is relevant
for considerations in Chapter 4.



In Chapter 3 we discuss some of the algorithmic and technical details
of QCD simulations. We review the HMC algorithm and the techniques
used to effectively deal with overlap fermions, in particular the method of
computation of the overlap Dirac operator, ways of reducing the condition
number of its kernel and the use of stochastic sources.

The main results of the thesis are reported in Chapter 4. First, the
motivation and the general idea of a mixed action simulation are discussed.
Then, a continuum limit scaling test of the pion decay constant is performed.
This test motivates the analysis of the role of chiral zero modes of the over-
lap operator. We show that this is a very important effect in the case of a
chirally-symmetric valence and non-chirally-symmetric sea quarks discretiza-
tion. This chapter concludes with the aforementioned range of parameter
values that are necessary for a simulation safe against these effects.

In Chapter 5 we discuss some further results, including the unitarity
violations present in the mixed action setup, light baryon masses computation
and some topological aspects that can be probed with overlap fermions.
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Chapter 1

Theoretical principles
of Lattice QCD

1.1 The QCD Lagrangian

Quantum ChromoDynamics (QCD) is a gauge theory of strong nuclear in-
teractions between the constituents of hadrons. The hadrons are a class of
particles including baryons (e.g. the nucleon) and mesons (e.g. the pion).
The theory is based on the principle of local gauge invariance with a non-
Abelian SU(3) gauge group |3, 4]. The fundamental degrees of freedom of
the theory are quarks and gluons. The Lagrangian density of QCD can be
written as:

'CQC'D = 'Cquark + 'Cgluon + 'Cinta (11)

where L4k is the purely fermionic (quark) part, L£g,0n the purely bosonic
(gluon) part and L;,; the interaction part that couples quarks and gluons.

Let us now consider the different parts that constitute the QCD La-
grangian. The quark term is':

Louark = ) 0p(2) (90 — my)iog(z), (1.2)
f=1

where N; is the number of flavours?, ¢¢(x) is the quark (spinor) field cor-
responding to flavour f and my is the f-flavour bare quark mass and the

!Throughout the thesis, we employ the Einstein summation convention for Dirac indices
(denoted by Greek letters) and SU(3)-group generator indices (denoted by Latin letters).

2The Standard Model incorporates 6 flavours of quarks (up, down, strange, charm,
bottom, top). However, investigating the low-energy properties of QCD with Lattice
QCD methods, one usually restricts oneself to the lightest 2, 3 or 4 flavours.
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gamma matrices satisfy:
{" "= 2", (1.3)
where n* = diag(1, —1, —1, —1) is the metric tensor.
The gluon part reads:

1 a v
Lotuon = — 7 (@) F3" (), (1.4)
where F¢ () is the field strength tensor, which is related to the gluon field
components Ag(x):

Fy () = 9,A0(x) — 9,45 (x) — g f* Ay (2) Af (), (1.5)

where g is the bare coupling constant and f%¢ are the structure constants of
SU(3), satisfying the commutation relations:

[ta7 tb] — ,ifabctc7 (16)

where t* are the generators of the group SU(3).

The purely bosonic part of the Lagrangian is invariant with respect to
the local gauge transformation. If we want the fermionic part to obey the
local gauge symmetry as well, we have to introduce a term that couples the
fermions and bosons, i.e. describes the interaction between them. This is
the basic building principle of all local gauge theories. It was first discovered
in the case of the electromagnetic interaction, where a term that couples
electrons and photons is necessary to guarantee the local gauge invariance.
In the case of QCD, the sum L4 + Lgiuon 1s not invariant with respect to
the local SU(3) transformation and the way to guarantee this invariance is
to introduce the interaction term L;,; that couples the quark fields ¢ and
gluon fields A,:

Ny
Lint = 93 Dp(@)r" A (@) (), (1.7)
f=1
where the gluon field A, is related to its components in the following way:
Au(x) = t" Al (z). (1.8)

Conventionally, one writes the terms L4, and L;,, together, introducing
the covariant derivative D,:

D,(x) =0, —igA,(x). (1.9)

12



Thus:

Ny 1

Loop =Y i) (i D,y — mp)iy () - 1 Ew (@) F5" (). (1.10)
f=1

Let us also define the (classical) QCD action, which is the integral of the
Lagrangian density over space-time:

SQCD :/d4$£Q0D. (1.11)

An elegant (and relevant from the point of view of Lattice QCD) way to
quantize a classical theory, like the one given by the classical QCD action
(1.11), is to use the Feynman path integral formalism |5]. The expectation
value of any observable O is given by:

1 - - , 7
O) = — | DYDYDA O, ), A e'Secnlv:Al 1.12
Z
with the partition function:
7 = / Dy DyDA ¢SacolbtAl (1.13)

It is worth to emphasize that all fields in the path integral are classical. Such
path integral can not be evaluated analytically (except for few special cases
much simpler than QCD) and one has to switch to approximate methods.
For many theories, like Quantum ElectroDynamics (QED), a very successful
method is perturbation theory. It consists in expanding the path integral
with respect to a small parameter (e.g. the fine structure constant a =
1/137.036 in QED) and dropping terms beyond some order. For example, the
most recent calculation of the anomalous magnetic moment of the electron
(usually parametrized in terms of the so-called g-factor) up to fourth-order
in o agrees with experiment up to 10 significant digits, making it one of
the most precisely verified prediction of physics the electron g-factor is
ge = 2a,+2, where the theoretical value: @' = 1159652 182.79(7.71) x 10712
and the experimental one: a®® = 1159652 180.73(0.28) x 1072 |6]. However,
for perturbative methods to work, there has to be a small parameter with
respect to which one expands the path integral. In the case of QCD, the
coupling constant of the colour interaction depends on energy and one has
to consider two regimes. For high energy or large momentum transfer, the
QCD coupling constant is small enough for perturbative methods to work. In
this regime, the interaction of quarks and gluons can be arbitrarily weak and
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hence it is termed asymptotic freedom. This property of QCD was discovered
by Gross, Politzer and Wilczek. However, in the case of low energy or small
momentum transfer, this coupling constant becomes of the order of unity
and perturbation theory is bound to fail — the strong interactions become
strong indeed. Quantitatively, the energy scale when it happens Agong & 250
MeV, where the value is not precisely defined and depends on the chosen
observable. Anyway, its approximate value implies that a vast number of
relevant phenomena in QCD, such as the confinement of quarks and gluons
into hadrons, happen in the non-perturbative regime. Thus, one needs non-
perturbative methods, such as Lattice QCD, which is the only known method
of extracting quantitative predictions about the low-energy regime of QCD.
This approach consists in discretizing the QCD path integral. In this way,
one obtains a fully regularized and well-defined theory, which can be studied
numerically, but also analytically — the discretized version of QCD enabled
many relevant conceptual developments and led to important insight into the
nature of strong interactions. )

However, the oscillating exponential e**ecrl¥¥»4] renders the numerical
evaluation of the QCD path integral unfeasible from the practical point of
view. Fortunately, integrals like (1.12) are tractable, if one switches from
Minkowski space-time with metric tensor n*¥ with signature e.g. (+ — ——)
to Euclidean space-time with signature (++++). This is achieved by analytic
continuation (Wick rotation of the time direction: ¢ — —i7). In order that
the Euclidean formulation can be continued back to physical (Minkowski)
space, the Euclidean correlation functions have to satisfy a certain condition,
called the Osterwalder-Schrader reflection positivity |7, 8|. This condition
ensures that the transition probabilities between gauge-invariant states are
non-negative and the quantum mechanical Hamiltonian has only real and
positive eigenvalues [9)].

The QCD Lagrangian density in Euclidean space reads [10]:

QCD—wa D+ m)(e) - TFL@E @) (L14)

and the Euclidean gamma matrices satisfy:

[7,7"} = 26, (1.15)

where 6 = diag(1, 1, 1, 1) is the Euclidean metric tensor. The expectation
value of any observable O is then given by:

(©)= 75 [ DIDYDA Olw, G, Ajeerli (110

14



where S5op = [d*zLfsp is the Buclidean action and the Euclidean parti-
tion function reads:

A / DyDyDA ¢ SdenltbAl (1.17)

The oscillating exponential in (1.12) is replaced by the well-behaved factor
_SE c 9. . .

e ”ecp and thus the multi-dimensional integral (1.16) can be evaluated nu-

merically, at least in principle, e.g. with Monte Carlo methods. Formally, the

quantum field theory defined by the partition function (1.17) can be inter-

preted as a statistical mechanical system and the exponential e~S6op plays

the role of a Boltzmann factor.

From now on, we will work only with the Euclidean formulation of SU(3)
non-Abelian gauge theory (QCD) and hence we drop the superscript F and
the subscript QC'D that remind us of it.

Now, we will discuss a few important features of continuum QCD that are
relevant from the point of view of further considerations, especially the role
of chiral symmetry and spontaneous chiral symmetry breaking [10, 11, 4].

To be specific, let us restrict ourselves to two flavours of quarks (u and d
quarks). The classical QCD Lagrangian can be rewritten as:

- - 1
L = ﬂf}/ﬂDuu + d”yuDud + umyu + dmgd — iFﬁVF;W =

= Eu + Ed + »Cmu + »Cmd + »Cgluona (118)

where v = 1, and d = 14 are the corresponding spinors and we have sep-
arated the mass terms in the fermionic Lagrangian. We can decompose the
quark Lagrangian further by defining left-handed and right-handed quark
spinor fields:
ar=Prq, @ =P-q, q=u.d, (1.19)
where:
1+

Pe=—". (1.20)

Eq. (1.19) implies for the conjugate spinor fields:

Gr=qP-, qv=qPs. (1.21)
Thus, the first two terms in Lagrangian (1.18) become:

;Cu + ;Cd = ﬂL%DMuL + ﬂR%DMuR + CZL'YMDMCZL + JR’}/MDMCZR = (122)
T YD, 0 Uy, _ = YD, 0 UR
B (UL dL) ( 0 %DM) (dL) - (UR dR) ( 0 v.Dyu) \dr)’

15



i.e. the left- and right-handed fields are decoupled. However, for the mass
terms we obtain:

Emu + £md = mu(ﬂLuR + ﬂRuL) + md(JLdR + CZRdL) = (1.23)

= () (g 0} (5) + ) (T 0 ) ()

i.e. the mass terms couple fields of opposite chiralities.
Let us now consider the massless terms £, and £; in the Lagrangian.
They are invariant with respect to the following transformations, respec-

tively:
ur, Uy, UR UR
Ge)=r ) () =m(i) oo

where L and R are unitary 2 X 2 matrices, i.e. elements of the (flavour) group
U(2). This means that the Lagrangian £, + L, is invariant with respect to
the group U(2),xU(2)g.

Let us take a closer look at the possible forms of transformations. The
massless quark Lagrangian is invariant under four SU(2)xU(1) vector trans-
formations:

@) —e (Z) o (@ d) = (@ d)em, (1.25)

where the subscript i = 0,1, 2, 3, ug is the identity matrix in flavour space and
w; (i = 1,2,3) are flavour SU(2) group generators. There are 4 conserved
(vector) Noether currents j! associated with these 4 transformations and
hence 4 conserved charges Q; = [ dzj? — the baryon number (i = 0) and
the isospin (i = 1,2, 3).

In addition, there are transformations involving ~s, called chiral rotations:

@) —en (Z) o (@ d) = (ud)erm, (1.26)

Together with transformations (1.25), the massless quark Lagrangian £, + L,
is invariant under the symmetry group SU(2)gxSU(2),xU(1)yxU(1) 4.
However, it can be shown that the fermion integration measure in the
quantized theory is not invariant under the transformation (1.26) for ¢ = 0,
which reduces the full symmetry to SU(2)gxSU(2),xU(1)y. This is the so-
called axial anomaly and it has important consequences e.g. for the meson
spectrum  the chiral flavour singlet symmetry can not be broken sponta-
neously and hence there is no Goldstone boson associated with spontaneous
breaking of this symmetry. This implies that the mass of the flavour sin-
glet 7’ meson does not vanish in the limit of vanishing quark masses (as

16



opposed to the mass of the n meson, which is one of the pseudo-Goldstone
bosons), but it is related to topological fluctuations of the QCD vacuum via
the Witten-Veneziano formula [12, 13]:

2

2]@ (m?7 + mf], — 2m%) = Xtops (1.27)

where f; is the pion decay constant, m, the mass of the x meson and X,
the topological susceptibility, which will be defined later.

Let us now consider the mass terms of the QCD Lagrangian L, + L,,,.
They are invariant with respect to the transformation (1.25) for ¢ = 0, so the
baryon number is conserved also in the massive theory. For i = 1,2,3 the
transformation (1.25) is a symmetry only if the quark masses are equal m, =
myq. Hence, the isospin is conserved in the massive theory, but only for mass-
degenerate quarks. However, the mass terms £,,, + £,,, are not invariant
under chiral rotations (1.26), which is caused by the fact that the exponential
in (1.26) is the same for the spinor (u d)” and the conjugate spinor (ﬂ J),
which is, in turn, due to the anticommutation relation {v,,75} = 0. Thus,
the symmetry of the quantum QCD Lagrangian is broken to SU(2)y xU(1)y
in the mass-degenerate case and to U(1)yxU(1)y if m, # mg.

In the case of arbitrary number N; of quark flavours, the analysis is
easily generalized (the matrices u; are now the Ny x Ny identity matrix and
N7 —1 generators of the flavour group SU(Ny)) and the full symmetry of the
quantized massless QCD Lagrangian is SU(Ny)gxSU(Ns)xU(1)y, which
is reduced to SU(Ny)yxU(1)y in the mass-degenerate case and further to
Ul)y x ... xU(1)y (with Ny factors U(1)y) in the case of different quark
masses. Thus, in the latter case, the only exact symmetry is the baryon
number conservation.

However, since the isospin symmetry is only slightly broken for the lightest
two quarks, it is often treated as exact®, while the heavier quarks are treated
separately. Moreover, since the up and down quarks are so light, compared
to the heavier quarks (m, ~ my ~ a few MeV, whereas already ms ~ 100
MeV), the full symmetry of the massless Lagrangian with Ny = 2 flavours
SU(2)gxSU(2),xU(1)y remains an important approximate symmetry and
is the basis of Ny = 2 chiral perturbation theory (xPT). At low energy,
the quarks and gluons are confined into hadrons and hence one can define
an effective field theory, in which the fundamental degrees of freedom are
not quarks and gluons, but light hadrons. Two-flavour yPT was formulated
by Gasser and Leutwyler [14]. The Lagrangian of this theory is constructed
from fields describing the pions (7%, 7°) in a way which is consistent with

3In Lattice QCD one usually simulates the lightest two quarks as mass-degenerate.
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chiral symmetry. The chiral expansion of such Lagrangian can then be or-
ganized in terms of expansion parameters p/A, and m,/A,, where p is the
momentum, m, the pion mass and A, = (47 f)? the typical hadronic scale ~
1 GeV, with f — the pion decay constant in the chiral limit. There are many
applications of xPT in the analysis of the low-energy regime of QCD, e.g.
pion scattering experiments. Moreover, it is also essential in the analysis of
Lattice QCD data, since most of contemporary Lattice QCD simulations are
performed at unphysical values of the pion mass® — hence an extrapolation
to the physical point (physical pion mass) is necessary and is performed by
fitting yPT formulas. What is more, even though the strange quark mass is
much larger than the mass of the up and down quarks, it is still relatively
small compared to the typical QCD scale of ~ 1 GeV and the symmetry
SU(3)rxSU(3),xU(1)y of the massless N; = 3 Lagrangian is also an ap-
proximate symmetry and forms the basis of Ny = 3 chiral perturbation the-
ory, which is also of use in the analysis of low-energy QCD experiments, e.g.
including the kaons (also in kaon physics from Lattice QCD). Three-flavour
XPT was also introduced by Gasser and Leutwyler [15| as a generalization
of the two-flavour case to include the strange quark. The three-flavour La-
grangian includes, besides the pion fields, also other light pseudoscalar meson
fields (of the remaining pseudo-Goldstone bosons — the kaons K+, K° K°
and the 1 meson). Quantitatively, the explicit breaking of chiral symmetry
by the quark masses can be expressed by the ratios m?2/(4x f)? ~ 0.007 and
m?2 /(4 f)? ~ 0.09. In this sense, the explicit breaking by the strange quark
mass is roughly a 10% effect, while for the lightest quarks it is a < 1% effect.
Obviously, it is not possible to treat the Ny = 4 symmetry as approximately
valid, since the charm quark is already heavy (m. ~ 1.3 GeV) and the mesons
containing it are much heavier than the scale A,.

However, if chiral symmetry was broken only explicitly, we would observe
degenerate multiplets of hadrons — e.g. there should be scalar mesons with
masses very similar to the pseudoscalar ones. Also, in this case one should not
expect such big difference between the masses of the pions and kaons. The
explanation of these phenomena can be provided by an assumption that the
chiral symmetry of QCD is not only explicitly broken by the quark masses,
but also spontaneously broken. We speak of spontaneous symmetry breaking
if a symmetry which is present at the Lagrangian level is absent in the phys-
ical ground state®. If a continuous symmetry is broken spontaneously, then

4Some collaborations have recently started or are preparing simulations at the physical
pion mass.

5A clear example is provided by ferromagnets. Even though the Hamiltonian of such
system is invariant with respect to a simultaneous flip of all spins, in an experiment all
spins are aligned, i.e. only one of two degenerate ground states must be chosen — the
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massless modes, called the Goldstone bosons, appear. In QCD the pions are
interpreted as the “would be”-Goldstone bosons of chiral symmetry breaking,
where the prefix “would be”- refers to the fact that they are not massless, but
have a small mass (compared to the masses of other hadrons) that is due to
(small) explicit breaking of chiral symmetry by the quark masses.

Also, spontaneous breaking of chiral symmetry can be observed in the
mass difference of particles that are chiral partners and should have the
same mass, if chiral symmetry was exact. Since chiral symmetry is explicitly
broken by the quark masses, the experimental mass values of chiral partners
should not be equal, but they should be close to each other, because the
masses of the light quarks are so small. This is not observed. For example,
the vector mesons p and a; have masses equal to, respectively, 770 and 1260
MeV, which is a much larger difference than one would expect from the small
explicit breaking of chiral symmetry |16]. Another example is the nucleon and
its negative-parity partner, usually denoted by N* |11, 17|. The experimental
value of the nucleon mass is my ~ 940 MeV, while my« =~ 1535 MeV.

Spontaneous chiral symmetry breaking is signalled by a non-zero value of
the chiral condensate (0|uu|0), where |0) is the vacuum state. This quantity
emerges in chiral perturbation theory as an important low-energy constant
B()Z

By = —f2(0]au0), (1.28)

where the tree-level pion decay constant f is another low-energy constant.
A well-known relation that involves the chiral condensate is the Gell-Mann,
Oakes, Renner (GMOR) relation |18]:

which can be derived in yPT. As such, it is desirable to assess the value
of the chiral condensate from experiment — thus the value of By would be
known. It has been argued that the best estimate can be obtained from
the low-energy pion-pion scattering [19, 20|. However, the calculation of the
condensate from empirical data requires some model assumptions, i.e. one in
fact has to assume that spontaneous chiral symmetry breaking takes place.
Therefore, an important check would be to calculate the condensate non-
perturbatively from first principles, without any additional assumptions. One
such way is provided by Lattice QCD. Indeed, Lattice QCD simulations con-
firm that it is non-zero at zero temperature (a review of results on this topic is
provided e.g. in. [21]|). However, there exists a temperature where the chiral
condensate vanishes, thus signalling chiral symmetry restoration. Moreover,

spin-flip symmetry is spontaneously broken.
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it has been hypothesized that this temperature is the same as the deconfine-
ment temperature, i.e. the temperature at which the quark-gluon plasma
forms and quarks and gluons are no longer confined into hadrons. Up to the
present day, this issue has not been resolved completely, but it is a strong hint
that Lattice QCD calculations point to the fact that both temperatures are
equal, up to statistical error. This strongly suggests that spontaneous chiral
symmetry breaking is related to confinement and confirms that understand-
ing chiral symmetry and spontaneous chiral symmetry breaking is essential
to fully comprehend QCD. However, much more precise results are needed
to unambiguously resolve this question. In Lattice QCD investigations of
these phenomena it is therefore essential to take chiral symmetry properly
into account, i.e. fermions with good chiral properties have to be used. This
is one of the motivations for employing overlap fermions, which will be the
main subject of this thesis.

1.2 Discretizing gauge fields

In this section and the next one, we show how QCD can be formulated in a
non-perturbative way on a Euclidean 4-dimensional hypercubic lattice with
lattice spacing denoted by a [22].

The basic relationship between the continuum and lattice formulation of
gauge fields is given by the following equation:

Uz, z + aji) = €994@), (1.30)

where U(x,x + afi) represents the gauge field on the lattice (it is a variable
defined on the link connecting sites x and x + aji, where ji is the unit vector
in the p-direction) and A, (z) is the continuum gauge field. This expression
also implies that the link variables are SU(3) matrices, since it involves the
generators of SU(3), according to eq. (1.8).

We now discuss the simplest gauge field lattice action, called the Wilson
action [1], and show that in the continuum limit it is equivalent to the con-
tinuum gauge action. It is worth to emphasize that the choice of the lattice
action is non-unique. In principle, any lattice action can be used, provided
that it has the correct continuum limit. The Wilson action reads:

g
Switson U] = 3 Z Z (1 = ReTr Up(z, u,v)), (1.31)
z 1<u<v<4
where Up is called the plaquette variable and is defined as:
Up(z,u,v) = Ulx,x+ap)U(z + aft,x + aft + av) (1.32)
XUz +app + av,x + a0)U(x + av, x).
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To simplify notation, one usually defines U(z,z + aft) = U, and U(z, x —

afl) = U; op- The shortcut notation for the plaquette variable is: Up(x, 1, v)

= Uy, where pv identifies the plane of the plaquette. In this way, the pla-
quette can be written as:

Ux,;w = Um,pUm—i-aﬂ,uU UT (133)

ztab,u " x,v’

The gauge transformation on the lattice is associated with multiplication
of the fermion and gluon fields by a site-dependent SU(3) matrix G(x). For
the link matrices it can be written as:

Upyy = U, = G(2)Uy ,G(x + afp)'. (1.34)

This form of the gauge transformation implies that the trace of the plaquette
(actually, the trace of any closed loop of link variables) is a gauge-invariant
quantity:

Uy = Uy = G(@)U,, G2 + ai)'G(z + aft)Upyap,G(x + aji + ai)’

x G(z+ap+ az/)U;JraV LG+ ap)'G(x + a0)U] ,G(2)" =
= G@)UppUstapn Ul o UG, (1.35)
T, = TrG@)UsUsrainUl e LULLG(o)T = (1.36)

= TrU, UprapUl, o UL =TrU, .

z+al,u - x,v

We will consider the gauge transformation for the fermion fields in the next
section.
In Appendix A, we show that the Wilson gauge action can be written as:

Syauge[U %: Z { 24 0(a )} (1.37)

Comparing this expression with the continuum gauge action [ d*z1F,,(z)?,
we can immediately see that the continuum limit of the discretized action is
the continuum gauge action if we set:

6
a2

8= ol (1.38)

The leading discretization effects are O(a?), since the factor a* in front of
the sum comes just from the discretization of the integral [d*z — a* )" .
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In practical simulations, the Wilson gauge action is often replaced by an
improved action, which helps to decrease the size of lattice discretization
effects. Such actions have the same continuum limit, but this limit is ap-
proached faster. One of the first improved actions was derived by Weisz |23|
and it is usually referred to as tree-level Symanzik improved gauge action.
The form of this action is:

Stusym|U] = §Z (bo > (L=ReTrUpuw)+br Y (1—ReTrUX) )

p,r=1 pr=1
1<p<v uFV

(1.39)
where by, by are parameters®, U, ,, is the (defined above) plaquette term and

rect 3 .
Uow 1s the rectangle term:

U = Uy iUst o pUs s 205Ul ut, . Ul (1.40)

T,uv z+av+af,pu~ zt+av,u " T,w”

If by = 0, this action becomes the Wilson action.

1.3 Discretizing fermions

1.3.1 Naive discretization

Let us start with a discretization of one-flavour continuum free fermion action
in Euclidean space, given by:

Shree = / &'z §(z) D), (1.41)

where D = v,0, + m is the Dirac operator and m is the quark mass. The
discretization procedure is not unique and we show here one of the choices
for the lattice derivative [25]:

0,0(0) = o (Ve + af) — (o). (1.42)

This can also be written as:
0,0(@) = 5 V(o + af) = (z) + ¥(@) = V(e — ) = 3 (Vs + V;) ),
(1.43)

6The computations relevant for further part of this work used gauge field configurations
generated by the European Twisted Mass Collaboration (ETMC), who used this action in
Ny = 2 simulations, with b; = —1/12 and by = 1 — 8by [24].
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where we have defined the forward lattice derivative V, and the backward
lattice derivative V. We also discretize the space-time integral ([ d'z —
a*>" ), thus arriving at:

gcflf;rk =a' Z Z 1/_1(96)(%@ + m)i(x), (1.44)

where the hat denotes lattice quantities.
By Fourier-transforming the lattice Dirac operator (which is convention-
ally called the naive operator, since it corresponds to the simplest possible

discretization) Dyaive = 7,0, +m, one can obtain the expression for the Dirac
operator in momentum space:

A

Dnaive(p> = iﬁuVﬂ + m]lv (145)

where we have defined: ]
Py = . sin(ap,,) (1.46)

for later convenience and 1 is the unit matrix in Dirac space.
The tree-level fermion propagator in momentum space is given by the
inverse of the Dirac operator (1.45) and thus equals:

- =iy +ml

Diive(p) = ="5——%
> b+ m?

(1.47)

Let us consider the case of massless fermions. One can easily observe that this
expression has the right continuum limit —ip,,/p*. However, it also implies
that the number of fermions is doubled for each space-time dimension, since
the poles of the fermion propagator are located not only at zero momentum
(ap, = (0,0,0,0)), which corresponds to the single fermion given by the
continuum Dirac operator, but also whenever any momentum component
equals 7/a. Thus, in 4-dimensional space-time, we have 2! = 16 fermions, of
which 15 are unphysical and are called doublers. This is the so-called fermion
doubling problem.

1.3.2 Wilson fermions

The first way to overcome the doubling problem consists in treating differ-
ently the physical pole and the unphysical ones and was introduced by Wilson
|26], who suggested the following form of the lattice Dirac operator:

ﬁWilson = (f)/u(v; + V“) - arv;vu) +m, (148)

N —
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where r is the Wilson parameter. The second-derivative term is now called
the Wilson term. In momentum space, this operator reads:

~ o ar
DWilson(p) = 1Pu Y + 7]);%11 + ml, (149)
where we have defined: 5
=~ sin (2 1,50
bu =~ sm< 5 (1.50)

and the tree-level fermion propagator is:

it (S, A m)T
S (5 S, 2t m)?

The physical pole at ap, = (0,0,0,0) gets no contribution from the Wilson
term, but the unphysical ones acquire an additional mass, which is propor-
tional to a~! and hence become infinitely heavy in the continuum limit and
decouple.

However, the price one has to pay for removing the doublers is twofold.
First, the Wilson term leads to an O(a) leading cut-off dependence in ob-
servables, which makes it, from the point of view of practical simulations,
advantageous to introduce further terms to the action, e.g. a twisted mass
term, which will be discussed later, or counterterms within the framework of
the Symanzik improvement programme. The simplest way to obtain O(a)-
improvement (the absence of O(a) cut-off effects) is to add to the action a
single term, called the Sheikholeslami-Wohlert (clover) term [27].

Second, the Wilson term, being a mass term, explicitly breaks chiral
symmetry even in the chiral limit m = 0, i.e. even in this limit {Dwilson’ 5} #
0. Moreover, it has been proven by Nielsen and Ninomiya |28| that it is not
possible that a lattice Dirac operator D fulfills at the same time the following
conditions:

D\Rllilson(p) (151)

1. locality — i.e. the norm of the Dirac operator D decays exponentially,
as a function of the distance between lattice points,

2. translational invariance i.e. the Fourier transform of the Dirac oper-
ator exists and equals D(p) = iv,p, + O(ap?) for p < 7/a,

3. no fermion doublers i.e. D(p) is invertible everywhere, except for
pu = (0,0,0,0),

"Original formulation of the Nielsen-Ninomiya theorem is in fact different. Here we
present an equivalent formulation (given e.g. in [29, 30]), which stresses the important
properties from the point of view of lattice fermions.
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4. chiral symmetry in the standard form of the anticommutation relation:
[D,75} =0, (1.52)

For many years, it seemed that it was not possible to have chiral fermions on
the lattice without violating one of the other conditions. However, a great
progress has been made on this topic when it was realized that (1.52) is not
the only possible form of lattice chiral symmetry. The implications of this
discovery will be discussed in the next section.

An important consequence of chiral symmetry breaking for the Wilson
action is that the quark mass m requires additive renormalization. Hence,
the massless case does not correspond to m = 0, but to m = m,, where m,.
is called the critical quark mass.

The quark mass is often expressed with the so-called hopping parameter

k, defined as:
1

K= .

8+ 2m

Now, we discuss how to add gauge fields to the Wilson fermion action.

It is believed that in the interacting case the doubler modes also decouple.
However, there is no rigorous proof of it.

Under gauge transformation, the fermion fields transform in the following

(1.53)

way:

U(@) =Y (2) = Gla)p(z),  ¢(z) = ¥'(x) = P(x)Ga)l. (1.54)
For convenience, we remind here that the gauge fields transform as:
Upyp — Ul ,, = G(2)U, .Gz + afi)'. (1.55)

In this way, the fermion mass term is obviously gauge-invariant, but the

derivative terms, e.g. ¥ ()7, V,¥(x) = ¥(z)y,(Y(x + aft) — ¥ (x)) are not,
since:

U(@)d (@ + aft) — ()G (2)G(x + ap)i(x + afi). (1.56)
However, introducing the covariant derivative:
~ 1 . + .
D) = o (Uil +ap) = Ul (@ —a)) . (L57)

one finds for the derivative term (1.56):

D)Vt + afi) — D(2)GH (@) G (@)U Gl + a) Gla + ap)ib(a +(a/l) |
1.58
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and hence the covariant derivative terms are gauge-invariant.
The gauge-invariant Wilson-Dirac operator can be written as:

(mv; +V,) — arV;VM) +m, (1.59)

DN | —

DWilson(m) =

which is exactly the same form as in eq. (1.48), but now V, and V7 are the
forward and the backward covariant derivatives®, defined by:

Vi = 2 Ussait & + af) = 6(2). (1.60)
Vi = (0(0) ~ Ul (e o). (1.61)

1.3.3 Wilson twisted mass fermions

In the remainder of this section, we will discuss Wilson twisted mass fermions,
which are relevant from the point of view of further considerations. Origi-
nally, they were introduced to deal with the problem of unphysically small
eigenvalues (zero modes) of the Wilson-Dirac operator [31], which is an-
other consequence of additive quark mass renormalization, which can bring
the renormalized quark mass to zero. In the quenched approximation, the
contribution of these modes is not balanced by the fermionic determinant
and leads to large fluctuations, which affect ensemble averages in an uncon-
trolled way. The gauge field configurations which cause this problem are
referred to as exceptional configurations. This is especially dangerous in the
case of small quark masses and makes the approach towards the chiral limit
practically impossible with Wilson fermions. In dynamical simulations with
Wilson fermions the problem is suppressed by the fermionic determinant, but
it can still cause technical problems, such as long autocorrelation times in
certain observables, coming from accidental zero modes of the Wilson-Dirac
operator. Moreover, it was realized that the twisted mass discretization can
reduce the effects of explicit chiral symmetry breaking by the Wilson term
by suppressing the mixing problem of operators belonging to different chi-
ral representations. Finally, twisted mass action makes it possible to obtain
automatic O(a)-improvement, by tuning just one parameter. This is an es-
sential advantage of twisted mass fermions, since other improvement schemes
make it necessary to compute improvement coefficients for different interpo-
lating operators.

8We will use the same symbols V,, and V7, for the non-covariant and covariant deriva-
tives and the meaning of these symbols will be determined from the context.
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The twisted mass QCD lattice action [32] for two flavours of mass-degene-
rate quarks is given by:

Sty = a* Z () Dy (), (1.62)

with: R A
DTM == DWilson(m) + 7:/1/757—37 (163)

where p is an additional mass parameter, called the twisted mass, 73 is the
third Pauli matrix in flavour space and x(z) is the quark field in the twisted
basis.

The physical and twisted bases are related by an axial transformation:

Y(z) = x(x) = e 2(x), P(a) — x(2) = Px)e ™2 (1.64)

where w is called the twist angle. This transformation leaves the form of the
action invariant, only transforming the mass parameters according to:

m — mcos(w) + psin(w), (1.65)

p— —msin(w) + p cos(w). (1.66)

A special case of this transformation, referred to as maximal twist, is w =
7/2, which corresponds to sending the bare quark mass m to 0 or, taking
additive mass renormalization into account, to its critical value m.. Conven-
tionally, the value of the critical bare quark mass is expressed in terms of
the parameter k., given by eq. (1.53). This is the only parameter that needs
to be tuned to obtain automatic O(a)-improvement. The tuning is usually
done by employing one of two methods. First, one can just find the critical
bare quark mass by looking for a quark mass value that gives a vanishing
pion mass. Alternatively, one can also tune the so-called untwisted PCAC

mass: " .
Mpeac = >0 AL (7, 1) P?(0))
25 (P(F, 1)P(0))”
to zero [24|. The latter method seems to work very well in practical simula-

tions.
Thus, one can write the maximally twisted mass (MTM) QCD action as:

=1,2 (1.67)

gMTM =da’ Z X(I)DMTMX(‘T)v (1.68)

with: R R
Dyrm = Dwitson (e) + ipys 3. (1.69)
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Figure 1.1: Continuum limit scaling in fixed finite volume for o fpg at fixed
values of rompg (a) and for (rompg)? at fixed values of renormalized quark
mass roug (b). In (b) data at 3 = 4.2 ((a/r¢)* = 0.0144) are not included,
due to the missing value of the renormalization factor Zp. Source: [33].

The special meaning of the maximally twisted case is that it guarantees an
automatic O(a)-improvement, which was proven in [32|. This means that all
terms of O(a) in the Symanzik expansion of parity even operators (which
give e.g. the hadron masses) are absent. This observation makes the twisted
mass formulation (at maximal twist) very useful from the point of view of
practical simulations.

An example of O(a)-improvement is provided by ETMC simulations 33|
and is depicted in Fig. 1.1. The left plot shows the continuum limit scaling
of the pseudoscalar decay constant (in fixed volume) at fixed reference values
of the pseudoscalar mass rompg. Four lattice spacings are included, but
the linear fit does not include the data at the largest lattice spacing. The
right plot shows the scaling of the pseudoscalar mass (again in fixed volume)
at fixed values of the renormalized quark mass rougr. Here, the data for
only three lattice spacings are presented (all of them included in the fit),
since it was impossible to include the points at the finest lattice spacing
((a/rp)? = 0.0144), due to the missing value of the renormalization factor of
the pseudoscalar current Zp. Both plots show that the leading cut-off effects
are indeed O(a?) and their overall magnitude is rather small.

However, one should mention here that the twisted mass term violates
parity and the isospin symmetry. This effect e.g. makes the masses of the
charged and neutral pions different from each other® and in fact this mass

In reality, these masses are, of course, different, but this is due to electromagnetic
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difference is used to quantify the isospin violation by the twisted mass term.
Both parity and isospin breaking are O(a?) effects and hence they vanish in
the continuum limit.

1.4 Chiral symmetry on the lattice

In this section we discuss the great breakthrough associated with the fact
that it was realized that there is an alternative view on chiral symmetry on
the lattice, i.e. that the Nielsen-Ninomiya theorem can be overcome in an
elegant way.

1.4.1 Ginsparg-Wilson relation

In 1982 (i.e. only one year after establishing the Nielsen-Ninomiya theo-
rem), Ginsparg and Wilson, basing on renormalization group transforma-
tions, showed [34] that a remnant of chiral symmetry is present on the lattice
without the doubler modes, if the corresponding Dirac operator D obeys an
equation now called the Ginsparg-Wilson relation:

vsD + Dvs = aDsD. (1.70)

It is a modification of the anticommutation relation (1.52) and the term on
the right-hand side vanishes in the continuum limit — hence, in this limit the
standard chiral symmetry relation (1.52) is regained.

However, for many years it has not been realized that the Ginsparg-
Wilson relation allows one to define chiral symmetry also on the lattice,
i.e. at non-vanishing lattice spacing. It lasted until around 1997 before the
Ginsparg-Wilson relation was “rediscovered”. First, P. Hasenfratz realized
that a kind of lattice fermions called the fixed point fermions satisfies this
relation 35, 36| and shortly afterwards a similar observation was made by
Neuberger regarding the overlap formalism [37, 38|. Moreover, Liischer [29]
found that the Ginsparg-Wilson relation leads to a non-standard realization
of lattice chiral symmetry. The fermion action is invariant under the following
chiral rotation:

) — ew%(l_%)d}, P — @ew%(l_%). (1.71)

In the continuum limit this transformation is (1.26) with u; = 1. To prove the
invariance of the massless action with respect to the above transformation,

interactions and the explicit violation of isospin symmetry by different up and down quark
masses. In Lattice QCD with mass-degenerate quarks the charged and neutral pion masses
should be equal.
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one has to use the Ginsparg-Wilson relation. Moreover, it is possible to define
the left- and right-handed projectors of fermion fields [11] with a modified
Ys-matrix v5 = v5(1 — aD):

s lx4

Pe=—. (1.72)

Thus defined projectors have the same properties as the standard continuum
projectors and hence one can decompose the fermion part of the Lagrangian
into left- and right-handed massless parts and a symmetry breaking mass
term that mixes the left- and right-handed components. Taking the proper-
ties of the lattice projectors P, into account, one finds that the mass term is

of the form ma) (1 — %) 1, which means that the massive Ginsparg-Wilson
Dirac operator ﬁ(m) that corresponds to the massless operator D reads:

A

f)(m):D+m<1—%>:(1—%)D+m. (1.73)

Since the Ginsparg-Wilson relation is a non-standard realization of chiral
symmetry, the conditions of the Nielsen-Ninomiya theorem do not apply and
one can have chiral symmetry without the doublers, which was considered to
be impossible for many years.

Moreover, it was also shown by Hasenfratz, Laliena, Niedermayer [39] and
in a different way by Liischer |29| that the Ginsparg-Wilson relation implies
that the axial anomaly is correctly reproduced. The action is invariant under
the transformation (1.71), but the fermionic measure DyDy is not its
Jacobian J is non-trivial: J = exp[—2if Tr(v5(1 — aD/2))] and it can also
be expressed as J = exp[—2i0Q:,p), where @y, is the topological charge, to
be discussed later. This issue was further elucidated by Fujikawa [40|, who
studied the continuum limit of this Jacobian.

Furthermore, a consequence of the Ginsparg-Wilson relation is that fer-
mions are protected from additive mass renormalization and mixing between
four-fermion operators in different chiral representations (Hasenfratz [36])
and there can be no O(a) lattice artefacts (Niedermayer |30]).

In the next section we discuss one of the solutions of the Ginsparg-Wilson
equation, defining the so-called overlap operator.

1.4.2 Overlap fermions

As we have already stated, for many years it has not been realized that the
Ginsparg-Wilson relation provides a useful (from the simulational viewpoint)
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solution of the problem of lattice chiral symmetry, simply because no solu-
tions of this equation have been known. In 1997, Neuberger [37, 38] found a
particularly simple form of a lattice Dirac operator that obeys the Ginsparg-
Wilson relation. It is now usually referred to as overlap fermions and the
massless overlap Dirac operator is given by:

. 1
Do 0) = (1 A(ATA) ) (1.74)
where: R
A=1 + s — aDWilson(O) (175)

and s is a parameter which satisfies |s| < 1 and can be used to optimize
locality properties. Note that instead of ﬁWilsOH(O), one could use in the
kernel operator A any massless lattice Dirac operator that is local and has
no doubler modes [30]. Moreover, if the operator used in A itself satisfies the
Ginsparg-Wilson relation, it will be just reproduced by eq. (1.74), since then
ATA=1.

The massive operator is given, according to (1.73), by:

DmXWU::<1%—S—E%E)[%A0)+wn, (1.76)
where m is the bare overlap quark mass.

After the overlap operator was proposed, it was essential to show that it
is local. Else, this attitude would lead to causality violations and render it
useless. The definition (1.74) includes the highly non-local term (AfA)=1/2,
which raises doubts about locality. Algebraically, strict locality (or ultra-
locality) would mean that the Dirac operator matrix element D(z,y) con-
necting sites x and y of the lattice is non-zero only if the distance between
x and y is smaller than some specified small value and also that this matrix
element depends on gauge links only in some small neighbourhood of sites x
and y |41|. These properties are true for the Wilson-Dirac operator (hence,
it is a sparse matrix), but the overlap Dirac operator has non-zero entries for
all pairs of lattice sites and thus it is clear that it is not strictly local.

However, strict locality for a Dirac operator is not really needed. It is
enough that the Dirac operator falls off exponentially, i.e. we have (suppress-
ing the Dirac and color indices):

1D, y)|| < Cerlle=vl, (1.77)

for some constants C' and p, where || - || is the distance between sites x and
y, e.g. the taxi-driver distance ||z —y|[ = >_ [z; — y;[. If such inequality
holds, it means that the interaction range in physical units 1/p tends to 0
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(the decay rate in lattice units ap does not depend on the lattice spacing)
as one approaches the continuum limit and in the continuum one has a local
field theory, as desired |11].

A thorough analytical and numerical investigation of the locality of the
overlap Dirac operator was performed by Hernandez, Jansen and Liischer
[41], who showed that this operator is local under very general conditions,
i.e. for a wide range of bare coupling constants.

1.4.3 Other kinds of chiral fermions

Apart from overlap fermions, there a few kinds of lattice fermions that also
preserve chiral symmetry. In this subsection, we shortly discuss a few of
them.

1.4.3.1 Domain wall fermions

Closely related (mathematically equivalent) to overlap fermions are domain
wall fermions, introduced by Kaplan [42] and Shamir [43] in 1992 and 1993,
respectively. The general idea of this approach is to introduce an auxiliary
(non-physical) fifth dimension and consider massive Dirac fermions with a
space-dependent mass in the shape of a domain wall. Kaplan showed that
such theory has a zero mode with definite chirality localized on the domain
wall and from the point of view of the 4-dimensional theory this zero mode
is a chiral fermion. The way that this formulation circumvents the Nielsen-
Ninomiya theorem is that translational invariance in the 5-dimensional sys-
tem is broken (by the space-dependent mass term), but it is still conserved in
the 4-dimensional physical world [44]. If the fifth dimension is infinite, there
does not exist a doubler mode. But in the case of a finite fifth dimension
(which is of course always true in a lattice simulation), an extra zero mode
of opposite chirality appears on a second domain wall. However, both zero
modes have an exponentially small overlap and hence can not communicate
if their separation is large enough. What is more, it was also shown that the
anomaly structure is correct both in the infinite and finite fifth dimension
case. A first investigation of these properties was performed by Jansen [45],
shortly after the birth of the idea of domain wall fermions.

After the overlap formalism was invented, Neuberger also showed [46] that
domain wall fermions with infinite fifth dimension are equivalent to overlap
fermions. Therefore, at finite fifth dimension, they can be regarded as an
approximation to overlap fermions.

In practical simulations, the domain wall formalism is now widely used
in a dynamical setup (e.g. by the RBC/UKQCD Collaboration [47]) or in
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a mixed action approach (e.g. by the LHP Collaboration with improved
staggered fermions in the sea sector [48]|). However, the size of the fifth
dimension is usually taken in the range 8-16, which means that the chiral
symmetry is only approximate and this entails additive mass renormalization
of the quark mass, i.e. a shift away from zero of the bare quark mass for
which one has a vanishing pion mass [10]. The value of this shift is usually
referred to as the residual mass.

The main advantage of domain wall fermions with respect to the Wilson
fermions (and other non-chirally symmetric formulations) is that chiral sym-
metry breaking by the domain wall fermions is rather mild and is believed
to be controllable. Their main disadvantage is that one needs to simulate
a b-dimensional theory, instead of a 4-dimensional one, and hence the com-
putational cost is higher by a factor of the order of the size of the fifth
dimension.

With respect to overlap fermions, an advantage is that this computational
cost is still much smaller than the one for overlap, at the price, however, of
not having exact chiral symmetry, but only an approximation to it.

1.4.3.2 Creutz fermions

A different approach to circumvent the Nielsen-Ninomiya theorem is to re-
strict oneself to the minimal number of doubler modes, i.e. to two modes
of opposite chirality. This was pointed out in the 1980s by Karsten [49]
and Wilczek [50]. Recently, this idea reemerged in the work of Creutz [51],
who was motivated by the electronic structure of graphene (which is built of
two-dimensional layers of graphite). The low-energy excitations in graphene
are described by a two-dimensional Dirac equation for massless fermions and
are hence chiral. Furthermore, chirality is achieved exactly in the way that
involves the minimum number of fermion modes required by the Nielsen-
Ninomiya theorem, i.e. they are minimally-doubled. Creutz showed how
to generalize these properties to four dimensions. Creutz’s idea was soon
elaborated on by Borici [52], who derived a more general form of the action.

Creutz fermions exhibit an exact Ny = 2 flavour continuum chiral symme-
try, which implies also that the leading discretization errors are of O(a?) !,
and they are strictly local. These are very appealing properties, since they
imply that one could simulate chiral fermions without the high computa-
tional cost of overlap fermions. However, Creutz fermions break a number of
discrete symmetries, such as parity, charge conjugation and time reflection
|53]. Therefore, to approach the continuum limit in the interacting case one

10 An explicit test of this property will be discussed in Chapter 2.
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would have to restore these symmetries by fine-tuning of several parameters
in the Symanzik effective action and this would make the practical simula-
tions with Creutz fermions very difficult. However, a preliminary quenched
test was performed by Borici |54|, who computed the pion mass and found a
behaviour consistent with the predictions of chiral perturbation theory. This
led him to a conclusion that Creutz fermions are still worth exploring in the
future, despite the fact that they break important discrete symmetries. Also,
the conclusion by Bedaque et al. [53| was that for certain values of the pa-
rameters, the minimally-doubled fermion actions may exhibit non-standard
symmetries, that could eliminate relevant operators of the Symanzik effective
theory and hence moderate the problem of discrete symmetries breaking.
The expressions for the Dirac operator for Creutz fermions (by which
we will mean both fermions related to Creutz’s original idea and Borici’s
generalization) will be discussed in Chapter 2, only in the context of a test
of their continuum-limit scaling at tree-level of perturbation theory [55, 56].

1.4.4 Topology on the lattice

The QCD vacuum has a non-trivial topological structure, which has many im-
portant implications for hadron properties. For example, we have remarked
in Section 1.1 that the mass of the flavour singlet 1" meson is related to
the topological fluctuations of the QCD vacuum. This is an inherently non-
perturbative phenomenon and hence seems to be well-suited to be addressed
by Lattice QCD calculations.

Let us start with the field-theoretical definition of the topological charge:

1
Qtop = W/d‘lx €pvpo 1T (Fu (), Flp(x)) = /d4:1: q(z), (1.78)

where ¢(x) is called the topological charge density [57]. Gauge field config-
urations that have a non-zero and integer topological charge are e.g. super-
positions of instantons |58| and anti-instantons, which are classical solutions
of the Euclidean field equations.

The topological charge can be related to the number of chiral zero modes
of the massless Dirac operator via the Atiyah-Singer index theorem [59):

Qtap = Qindew =N_— N—i—, (179)

where N denotes the number of zero modes in the positive/negative chirality
sector and Q;,qex 18 called the index of the Dirac operator.

If one wants to compute the topological charge of a given gauge field
configuration on the lattice, one can, in principle, use the discretized version
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of eq. (1.78). However, this can easily lead to non-integer values of the charge
[60]. This can be overcome by applying smearing on gauge configurations,
e.g. APE smearing |61], which moves the topological charge closer to integer
values, but it can also destroy small topological objects and thus lead to
incorrect values of the charge.

Such problems are avoided if one uses the index theorem and computes
the topological charge as the index of the massless Dirac operator. For this
to be possible, one has to employ a Dirac operator that can have chiral
zero modes (at any value of the lattice spacing), i.e. eigenstates with zero
eigenvalue, which have definite chirality (that is they are also eigenstates of -5
with eigenvalue £1). This means that the massless Dirac operator must obey
(lattice) chiral symmetry, e.g. it can be the overlap Dirac operator, which
will be used to compute topological charge in further part of this work.

Since the QCD path integral is symmetric with respect to the sign of the
topological charge, we have (Qy,,) = 0. However, a non-trivial quantity that
one can compute is related to the fluctuations of the topological charge and
is called topological susceptibility. In the continuum, it is defined by:

Vo = / 22 {g(2)q(0)). (1.80)

which on the lattice becomes

Xto :< ?ndex) (181)
P V )

where V' is the lattice volume.

It has been mentioned before that the topological susceptibility is related
via the Witten-Veneziano formula (1.27) to the mass of the 7’ meson. Phe-
nomenologically, this formula implies a value of y;, ~ (180MeV)*. It is
worth to emphasize that this value agrees rather well with several quenched
lattice computations, e.g. |62].

1.5 Observables in Lattice QCD

In this section, we show how one can extract hadron properties from Lat-
tice QCD simulations, concentrating on the quantities of interest for further
considerations.

Let us consider a general zero-momentum two-point correlation function

of the form C(t) = (0|0;(t)0,(0)|0), where O;(t) is some interpolating op-
erator corresponding to the state with quantum numbers of the hadron we

want to analyze. Since:
O;(t) = e'0;e 1, (1.82)
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inserting a complete set of energy eigenstates into C(t) yields (we take ¢ = j
for simplicity):

etO,eMtn) (n t
plooioy) = 3 o O

= (1.83)
Z (0|0;|n) (n|O]|0)ye~E=t Z (0]O;|n)[2e~Frnt
2F, N ~ 2F, ’

n

where E, is the energy of the state n (1/2F, is a normalization factor for
energy eigenstates).

One can immediately see that in the limit of large Euclidean time ¢, the
above expression is dominated by the lowest energy state |1):

0O 4,

C(t) t—oo ‘< 2E1 :

(1.84)

where Fj is the energy of this state, i.e. the mass of the lightest particle. In
this way, one can extract this mass by fitting (in some interval ¢ € [tin, timaz])
the correlation function with an exponential function Aexp(—m;t), where
A, my are fitting parameters, which provide estimates for the particle mass
FE; = m; and the matrix element [{0|O;|1)|*> = 2Am;. To find the fit interval
[tmin, tmaz), One usually computes the so-called effective mass:

me(t) = log <%) (1.85)

and plots it to find the plateau region, i.e. the region where the contribution
of the excited states is negligible and the effective mass is stable, up to
statistical fluctuations.

Since a lattice computation is usually performed with a finite lattice ex-
tent T in the temporal direction!! with e.g. periodic boundary conditions
in time, the large-time form of the correlation function is modified in the
following way:

varge [OIOIDP gy gy _ [OIOIDP gz T
C(t) 2 (e ""+e )= 7, e "2 coshFy |t 5
(1.86)

In such case, the effective mass at time ¢ can be extracted by solving numer-
ically the equation C(t)/C(t+1) = cosh E; (t — L)/ cosh By (t+1—1).

HHowever, it is sometimes possible to consider lattices with infinite time extent. An
example will be given in the next chapter.
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We now concentrate on meson correlators in the case of Ny = 2 degenerate
quarks. The general form of an interpolating operator for mesons is:

O;(Z,t) = (T, )" (T, 1), (1.87)

where I" denotes any Dirac matrix (an identity matrix, a gamma matrix or
a combination of gamma matrices).

Explicitly introducing Dirac (u, v, p, ) and colour (a, b) indices, the
correlation function can be written as:

C(t) = Y Oy (& 1)L}, ¢ (& )05 (0, 0)1,44(0,0)]0), (1.88)

T

where the sum over ¥ Fourier-transforms the correlation function to zero
momentum. Contracting fermion fields pairwise into fermion propagators:

(Ol (2, ),(0,0)]0) = Sp(Z.:0,0), (1.89)

according to Wick’s theorem, one finds that there are two possible con-
tractions (V2(7, ) < GA(Z, 1), v2(0,0) « ¥4(0,0) and ¥2(7,1) < U1(0,0),
Y2(0,0) 1/?2(5?, t)), which lead to:

— ) Tr(S(Z0,0)T7 S(0,0; Z,t) V), (1.90)

where the trace is over spin and colour.

The first term in the above expression can be represented by a discon-
nected diagram and contributes only to flavour singlet mesons. Later on, we
will be interested only in flavour non-singlet mesons, i.e. ones that are repre-
sented by connected diagrams, corresponding to the second term in the above
expression. Hence, we now drop the first term and use the ~s-hermiticity
property of the propagator: 5(5, 0;Z,t) = 1551 (7, t; 0, 0)7s5 to rewrite :

C(t) == Tr(S(#,0,0) 'ys ST(Z,£:0,0) y5I7). (1.91)
In this way, to evaluate this correlator it is enough to compute the propagator
from a given source (located at the origin (0,0) in the above formula) to all

possible sinks (all lattice sites (Z,¢)). Such propagator is called a point-to-all
propagator. This can be done by solving the following matrix equation:

Da = Ty (1.92)
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Table 1.1: Meson interpolating operators. J¢ classification denotes particle
spin J, parity P and charge conjugation C' [63].

| channel | J"9] T |
pseudoscalar | 077 | 5, Y075
scalar 0t | 1,7
vector 177 v Yo
axial vector | 1T+ YiYs
tensor 1t Vi)

12 times for each spin-colour combination pa, with a point source 7,,, i.e.
a vector (0...010...0)T, where the only non-zero number is placed in one
of the first 12 entries, corresponding to 12 spin-colour components at lattice
site (0,0,0,0).

The solution of this equation:

djua = D_ln;m (193)

is the point-to-all quark propagator, denoted by S(Z, t; 0, 0) in eq. (1.91), in
which the spin-colour indices are suppressed.

Obviously, the Dirac equation (1.92) does not have to be solved with a
point source located at the origin. Other choices of the source can be e.g.
point sources with random location of the source or stochastic sources. The
latter are of special relevance from the point of view of this work and will be
discussed later.

Table 1.1 summarizes the most commonly used meson interpolating oper-
ators. The names of different channels come from the transformation prop-
erties of particles with respect to spin and parity. Here we have assumed
that the I' matrix at the source (denoted by I'V in eq. (1.91)) and at the
sink (I';) are the same. However, it is also possible to construct mesons with
I #1, eg I'i =75, I'; = Y75, which belongs to the pseudoscalar channel
and hence it can also be used to extract the mass of the pseudoscalar meson.

From the point of view of further considerations, the most important
meson channel will be the pseudoscalar one. The PP correlation function
(I'; =75 = P, I'; =75 = P) is the simplest correlation function that can be
constructed. Putting its gamma matrix structure in eq. (1.91), one obtains:

—

Cpp(t) == Tr(S(Z;0,0) S1(Z,10,0)). (1.94)
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According to eq. (1.83), one can extract the mass of the pseudoscalar me-
son (pion) m, from the decay of the PP correlator and also the pion decay
constant f; from the matrix element |(0|P|7)|:

2m
fr = (01l (195
where m is the bare quark mass.
An equivalent definition of the pion decay constant reads:

= 22 |(0] Aol . (1.96)

where Z4 is the renormalization constant of the axial current and |(0|Ag|7)|
the matrix element of this current.

For the case of overlap fermions, the O(a)-improved interpolating opera-
tors for mesons are constructed in the following way [64]:

Oﬁaw=¢@wﬁ<rfm“@>¢@w=1fwywwWWﬁm

2
(1.97)
where the last equality holds for correlation functions at non-zero physical
distance.

We also give here the expressions for baryon interpolating operators
for the proton p (uud), the neutron n (udd) and the deltas A™* (uuu), AT
(uud), A° (udd), A~ (ddd) [65, 66], i.e. the octet and the decuplet baryons
that contain only light quarks (up and down, no strange quarks).

Tp = €ave (g Crsds) e, (1.98)

Jn = €ae (d Cysuy) de, (1.99)

Jhis = €ape (ug Cy'up) ue, (1.100)

Jhy = %eabc 2 (ul Cy*dy) ue + (ul Cy*up) d] (1.101)
Jho = %Eabc 2 (d] Cy*wy) de + (dE Cy*dy) ue] (1.102)
IR = €ape (dLCY'dy) d.., (1.103)

where C' = 747, is the charge conjugation matrix.
The two-point correlation function for baryon B reads:

Cu(t) = %Tr(l 1) Y (7, £)75(0,0)), (1.104)

-

xT
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where (1++4)/2 is the parity projector. For example, the physical proton is
described by the correlation function C,(t) with projection to positive parity
and the negative parity projection corresponds to the baryon N*, mentioned
earlier in the context of spontaneous chiral symmetry breaking.

We will be interested in light baryon masses, which are evaluated in an
analogous way as in the case of mesons, i.e. from the exponential fall-off of the
corresponding correlation function. The effective masses are thus extracted
numerically from the ratios of the correlation functions of the form (1.86) at
two subsequent timeslices.

We finish by shortly discussing the degeneracies between the light baryons
in the case of fermions that preserve isospin symmetry (e.g. overlap) and
violate it (e.g. twisted mass). In the overlap case, the proton p and neutron
n are degenerate, as well as all delta baryons. For the twisted mass case, the
degeneracy is reduced, but still holds between p—n, A™ — A~ and AT — A°,
which is due to ys-hermiticity. Therefore, we will always refer to the proton
and neutron as the nucleon N, but we will distinguish between A*™* and A™
in the twisted mass case.
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Chapter 2

Tree-level scaling test

In this chapter we will show the results of tree-level scaling tests of overlap,
twisted mass and Creutz fermions and thus explicitly demonstrate the O(a)-
improvement in the observables [67, 55, 56]. We will consider three quantities
— the pseudoscalar meson mass and decay constant and the pseudoscalar
correlation function at a fixed physical distance. We will also analyze the case
when the pseudoscalar correlation function is constructed with propagators
corresponding to two different fermion discretizations.

2.1 Fermion propagators

The tree-level test of different kinds of lattice fermions consists in analytically
evaluating the momentum-space fermion propagator and then using it to
construct the relevant correlation function, from which the observables of
interest can be extracted.

2.1.1 Overlap fermions

The starting point for the evaluation of the tree-level overlap fermion propa-
gator is the free massless overlap Dirac operator in momentum space', which
was given by Liischer [29]:

- - o a? o) a* 5 0\ T2
aDey(p) =1 — (1 — %P = 5P ) (1 +o ZMDV) : (2.1)
p<v

The massive operator is, according to (1.73):

aDey(p,m) = (1 - %) aDe, (p) + am, (2.2)

! An explicit derivation of this operator is given in Appendix B.
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where m is the bare overlap quark mass.
The expression for the quark propagator in momentum space S, (p) can
be found by computing the inverse of the above Dirac operator aDq,(p, m):

S¥(p) =

(2.3)

where 1 is the identity matrix in Dirac space and we have introduced the
functions:

a’ A2 A2
Fp)=1+ 5> p.b,, (2.4)

M(p) = 2(1 + % - (1 - %)F(p)_l/z(l - %2 Zﬁi)). (2.5)

The propagator has a matrix structure in Dirac space and for later conve-
nience we write it here in terms of its components:

S¥(p) = Sy (p)vu + 557 (p)1. (2.6)

2.1.2 Wilson twisted mass fermions

The twisted mass fermion propagator can be found as an inverse of the
following Dirac operator in momentum space:

ar

5 Pplly +mlly + ipysTs, (2.7)

Dtm(p) = Zﬁ/ﬂuﬂf +
where the relevant notation has been introduced in Section 1.3.3 and we
show here explicitly the matrix structure in flavour space. The first three
terms have a trivial structure in flavour space (1 is the identity matrix in
this space), but the twisted mass term iuvys73 breaks the isospin symmetry
between up and down quarks and hence it modifies the expression for the
tree-level Wilson propagator in momentum space (1.51) in the following way:

g (p) = —iﬁ;ﬂuﬂf + (% ZM ﬁi + m)ﬂﬂf — 1[7Y5T3
" S (E Y, 2 AmP

(2.8)

The propagator has a matrix structure in Dirac and flavour space and we
again write it here in terms of its components, explicitly distinguishing be-
tween up and down quark propagators:

S0 (p) = SE™(p)vu + S ()vs + Sg™ ()1, (2.9)
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S 4(p) = Si™(p)vu — S (p)ys + Se™(p)1, (2.10)

where the propagators of the two flavours differ only in the sign of the vs5-
matrix coefficient.

To obtain automatic O(a)-improvement (maximal twist), in the free the-
ory it is enough to set the bare untwisted quark mass m to 0. Such variant

of twisted mass fermions is usually referred to as maximally twisted mass
(MTM) fermions.

2.1.3 Creutz fermions

It can be shown [55] that the momentum space tree-level Dirac operator for
Creutz fermions can be written as:

. o _ . a 9 =
DCreutz(p) =1 E pu’}/u_li g piru—l—mﬂ (211)
1 1

All notation used in this subsection is explained in Appendix B. This yields
the following form of the fermion propagator:

=i Y, (5u0) + ) v+ m

Screuts(p) = 3
T s (o) e

where we have introduced auxiliary functions 5,(p) and ¢,(p).
The tree-level Dirac operator for the variant suggested by Borici is:

. o .a A
Dpoici(p) =i Zpu% — i3 Z L.p%+ml. (2.13)
p p

, (2.12)

The corresponding propagator is:

—i ZM Gu(p)'YM +mo 1
2, Gup)?+m?
where we have again introduced an auxiliary function G, (p).

The matrix structure of both Creutz and Borici fermions is of the same
form as in the case of overlap (2.6).

SBorici(p) = (214)

2.2 Observables

The tree-level test of different kinds of fermions will consist in computing
three observables — the pseudoscalar correlation function at a fixed physical
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distance, the pseudoscalar meson mass and decay constant. All of these
quantities can be calculated from the pseudoscalar correlation function, given
by eq. (1.94). Here we rewrite it for convenience, dropping the conventional
minus sign:

Cpp(t) ZTr (Z,t:0,0) ST(Z,t;0,0)). (2.15)

The derivation of the final expression for the pseudoscalar correlation func-
tion in terms of momentum space propagator components S¢(p), defined by
decompositions of the form (2.6) or (2.9), can be found in Appendix B and
gives:

4orb

N,N, )
Crr(t) NgNé DD D Se(pa) Se () Y (2.16)

P pa,p) §=0

where Ny is the number of Dirac components (i.e. the dimension of space-
time) and N, is the number of colours (in the free case the structure in colour
space is trivial). The index & runs from 0 to 4 in the case of overlap and
Creutz fermions or from 0 to 5 in the case of Wilson twisted mass fermions.

The above expression can be computed by explicitly evaluating the sum
over discrete momenta. On the lattice, the possible values of momenta are
(for periodic boundary conditions):

2T n; . 2 ny
a Na Ps = a N4’
where n;, =0,1,....,.N—1,n, =0,1,..., Ny — 1. The box length is in the
spatial directions L = a/N and in the temporal direction L, = aNy.

At large enough times, the above correlation function has only the con-
tribution from the lightest particle, i.e. it is of the form (1.84):

pi = (2.17)

0[P|m)[e~m=!
2m,

Crp(t) = , (2.15)

where we call the lightest pseudoscalar meson the pion and by m, we denote
its mass. However, since we are only considering here the tree-level quantities,
the name “pion” does not correspond to the physical QCD pion, but it is only
an abbreviation for the pseudoscalar meson.

The pion mass can be extracted from formula (1.85). In the free-field case
it is practical to consider lattices with very large time extent? and hence t

2In the case of Wilson twisted mass fermions it is even possible to analytically go to
infinite time extent [68, 69].
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can be taken so large that no contribution from the excited states is present,
up to machine precision. Therefore, one can obtain very precise values of the
pion mass.

The pion decay constant can be extracted from expression (1.95), substi-
tuting the matrix element (0| P|r) obtained from eq. (2.18). This yields:

oo 2M 1
fo = SV 2Cpp (e, (2.19)
mg

The value of f; does not depend on the timeslice ¢ at which the above equa-
1

tion is evaluated, i.e. the product 1/2Cpp(t)e2"" is time-independent, pro-

vided that it is calculated in the plateau region.

2.3 Test setup

We would like to perform a fixed-volume, continuum limit scaling test of the
three observables of interest the pseudoscalar correlator, mass and decay
constant. First, we have to define what is actually meant by fixed volume and
continuum limit in the context of a free theory, which can not have assigned
physically meaningful units.

By fixed volume, we will mean that the product of the box length in lattice
units (V) and quark mass (m) Nm = const. Since N = L/a, simultaneously
increasing the number of lattice sites and decreasing the quark mass in lattice
units (such that Nm is held fixed) corresponds to decreasing the lattice
spacing a. In this way, the continuum limit is equivalent to the infinite
volume limit. However, this is special to the tree-level case — in full QCD
these two limits are not equivalent.

For the test we will fix Nm (or Ny in the case of twisted mass fermions)
to 0.5 and change N from 4 to 64. The temporal direction will have a
much larger extent — in order not to have any contaminations from excited
states we take N, = 64N and extract observables at a fixed physical distance
t = 4N. Thus, the largest considered lattice is 643 x 4096. The corresponding
parameters for each lattice size are presented in Table 2.1.

2.4 Comparison of overlap, twisted mass and
Creutz fermions

In this section, we present the results of a tree-level scaling test of different
kinds of fermions:
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Table 2.1: Simulation parameters for the tree-level scaling test.

‘ N ‘ Ny ‘ mor p |t=4N
4 | 256 | 0.125000 16
8 | 512 | 0.062500 32
12 | 768 | 0.041667 48
16 | 1024 | 0.031250 64
20 | 1280 | 0.025000 80
24 | 1536 | 0.020833 96
28 | 1792 | 0.017857 112
32 | 2048 | 0.015625 128
36 | 2304 | 0.013889 144
40 | 2560 | 0.012500 160
44 | 2816 | 0.011364 176
48 | 3072 | 0.010417 192
52 | 3328 | 0.009615 208
56 | 3584 | 0.008929 224
64 | 4096 | 0.007813 256

overlap fermions,

Wilson twisted mass fermions at maximal twist (MTM),

Creutz fermions with C' = 3//10,
Creutz fermions with C' = 3//14,

Borici fermions.

First, we consider the pion mass, which is depicted in Fig. 2.1. The points
in the plot show the result extracted from the correlation function (2.16) and
the corresponding lines are fits of the following formula:

1 1
Nm., :am—l—bmm—l—cmm. (2.20)

In all cases, we find the expected behaviour i.e. O(a?) (O(1/N?)) scaling
violations. It is worth to emphasize here again that in the case of overlap
and Creutz fermions this results directly from chiral symmetry and in the
case of twisted mass fermions from automatic O(a)-improvement, which is
achieved only at maximal twist, i.e. for bare untwisted quark mass set to 0.
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Figure 2.1: Continuum limit scaling of the pion mass for overlap, twisted
mass and Creutz fermions.

Table 2.2: Fitting coefficients for the pion mass eq. (2.20).

‘ fermion ‘ A ‘ b, ‘ Cm ‘
MTM 1.0 | -0.0104167 | 0.000296044
Overlap 1.0 | 0.0208333 | 0.000783869
Borici 1.0 | -0.0494792 | 0.00564291

Creutz C' =3/+/10 | 1.0 | -0.0078125 | -0.0101045
Creutz C' =3/v/14 | 1.0 | -0.0488282 | 0.00282578

The continuum limit (the coefficient a,,) is the same for all kinds of
fermions (and equal to the expected value Nm, = 2Nm (overlap, Creutz
fermions) and Nm, = 2Npu (twisted mass fermions)). This is a necessary
condition that each fermion action has to fulfill — the continuum limit of all
physical observables has to be the same. This is ensured if the continuum
limit of the fermion propagator for the discretization of interest is equal to the
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Figure 2.2: Continuum limit scaling of the pion decay constant for overlap,
twisted mass and Creutz fermions.

continuum fermion propagator. In other words, various fermion discretiza-
tions differ in the way the lattice artefacts are introduced.

It is also interesting to compare the magnitude of O(1/N?) discretization
errors (coefficient b,, Tab. 2.2) for this observable. They are the largest for
Borici and Creutz (C' = 3/4/14) fermions, around twice smaller for overlap
fermions, a further factor of two smaller for twisted mass fermions and the
smallest for Creutz (C' = 3/4/10) fermions. Moreover, computations for
different fixed values of Nm confirm that this behaviour is universal for a
wide range of values of Nm.

Furthermore, the value of the coefficient ¢, that characterizes the O(1/N?)
discretization errors is in general smaller than b,,, indicating that the cor-
rections to the O(1/N?) behaviour are small. However, there are some ex-
ceptions to this rule (e.g. the Creutz C' = 3//10 case), where c,, is slightly
larger than b,,, but still rather small.

As the second observable, we consider the pion decay constant, shown in
Fig. 2.2. The points in the plot show the result computed from eq. (2.19)
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Table 2.3: Fitting coefficients for the pion decay constant eq. (2.21).

| fermion ar | by | cy |
MTM 3.4641 | 0.0541266 | -0.000811859
Overlap 3.4641 | 0.108253 0.00553143
Borici 3.4641 | -0.0676584 | -0.00527683

Creutz C'=3/4/10 | 3.4641 | 0.293186 -0.0746106
Creutz C' = 3/+/14 | 3.4641 | -0.00789431 | -0.0379067

and the corresponding lines are fits of the following formula:

1 1
wa:af_'_bfﬁ—i_cfm’ (2.21)

In all cases, we observe again O(1/N?) leading discretization errors. How-
ever, the coefficients b, (Tab. 2.3) lead to different conclusions regarding the
size of these effects for the kinds of fermions under analysis. The largest coef-
ficient is observed for Creutz (C' = 3/4/10) fermions, which had the smallest
discretization error in the pion mass (b,,). Accordingly, Creutz (C' = 3//14)
fermions had the second largest coefficient b,,, but the coefficient b; is the
smallest among all discretizations.

Generalizing, this means that the size of discretization effects depends on
the choice of the observable, i.e. that small O(a?) effects in one observable
do not mean that for other observables one can expect the same.

Table 2.4: Fitting coefficients for the pseudoscalar correlation function at a
fixed physical distance t/N =4 - eq. (2.22).

‘ fermion ‘ ac ‘ bc ‘ Cco
MTM 0.109894 | 0.00457891 | -0.0000333779
Overlap 0.109894 | 0.00457891 | 0.000181293
Borici 0.109894 | 0.00114472 | -0.0013941

Creutz C' = 3/4/10 | 0.109894 | 0.0194604 | -0.00269918
Creutz C' = 3/+/14 | 0.109894 | 0.00486504 | -0.00300215

This is confirmed by the result for the third observable the correlation
function at a fixed physical distance ¢ = 4N, shown in Fig. 2.3. Again, the
points in the plot correspond to the correlation function computed from eq.
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Figure 2.3: Continuum limit scaling of the pseudoscalar correlation function
at a fixed physical distance t/N = 4 for overlap, twisted mass and Creutz
fermions.

(2.16) and the lines are fits of the following formula:

Nngp(t:4N) :ac—l—bc%—i—CC%. (222)
The coefficient be is again the largest for Creutz (C = 3/4/10) fermions
and the smallest for Borici fermions. As a coincidence, bs for overlap and
twisted mass fermions is the same, which is not true for other values of Nm
(for Nm < 0.5 the value for overlap is larger, for Nm > 0.5 it is smaller).
Other interesting quantities to compute are the mixed correlators. In
the meson case they correspond to taking the two quarks discretized with
different actions. This is relevant from the point of view of mixed action
simulations in the interacting theory, where it is possible to build a meson
from two valence quarks, two sea quarks or one valence and one sea quark.
If one imposes a matching condition that the valence-valence pion and the
sea-sea pion have the same mass, the mixed valence-sea pion in general has a
different mass and the obtained mass difference quantifies unitarity violations
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Figure 2.4: Continuum limit scaling of the pion mass for overlap-overlap,
MTM-MTM and overlap-MTM quarks.

in the mixed action setup. It is, however, worth to emphasize that this effect
is only a lattice artefact with no physical significance.

The way to construct the mixed pion at tree-level is to use two different
propagators in formula (2.16) for the pseudoscalar correlation function. We
will show an example of overlap-MTM mixed correlator, i.e. we will take one
of the propagators to be the overlap fermion propagator and the other one
to be the MTM fermion propagator. The results of the scaling test for such
mixed case (with Nm = 0.5 and Ny = 0.5) are shown in Figs. 2.4, 2.5 and
2.6.

The mixed pion mass, decay constant and correlator at a fixed physical
distance all show leading O(a?) cut-off effects. Furthermore, in all cases, the
mixed meson line is situated exactly halfway between the overlap and M'TM
lines, which implies that the fitting coefficients b,,, by and bc are always
arithmetic averages of the corresponding coefficients for the overlap and the
MTM case. The consequence of this is also that at tree-level it is not possible
to observe a splitting between the mixed pion mass and the overlap/MTM
pion masses, if the latter are matched. This results from the fact that at
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Figure 2.5: Continuum limit scaling of the pion decay constant for overlap-
overlap, MTM-MTM and overlap-MTM quarks.

tree-level there are no unitarity violations their source is a different Dirac
operator used to generate the gauge field configurations and a different one
for the valence quarks and in the free case such situation does not occur.
To summarize, there are no definite conclusions from the tree-level test.
It can not be deduced that one type of fermions exhibits the smallest or the
largest discretization errors this depends on the observable and of course
in the interacting theory one should expect the same. A general conclusion
from the test is that all fermions exhibit O(a?) scaling violations. This again
should hold in the interacting theory, but it has to be explicitly tested. The
results of such test for overlap fermions will be presented in Chapter 4.

2.5 Matching twisted mass and overlap fermions
In this section, we will investigate the effects of matching of twisted mass and

overlap fermions. The motivation for this test is the following. In Chapter 4,
we will analyze a mixed action setup of overlap valence quarks and twisted
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Figure 2.6: Continuum limit scaling of the pseudoscalar correlation function
at a fixed physical distance t = 4N for overlap-overlap, MTM-MTM and
overlap-MTM quarks.

mass sea quarks, i.e. gauge field configurations will be generated with the
twisted mass action, but the propagators will be computed with overlap
valence quarks (and also with twisted mass valence quarks for comparison).
The reason for considering such setup will be discussed more thoroughly in
Chapter 4 and is related to the computational cost of generating gauge field
configurations with chirally symmetric actions. Therefore, it will be useful
to investigate the effects that emerge in such setup also at tree-level.

In a mixed action approach, an important condition that has to be realized
to minimize unitarity violations that necessarily arise in such formulation, is
the matching condition between the quark masses. This can be done in a
number of ways. We mention here two of them, postponing a full discussion
until Chapter 4:

e matching of the pion mass one finds a bare valence quark mass m*%,

which leads to the same pion mass as the mass of a pion constructed
from two sea quarks of mass m?¢®; mpel=val = psea=sea,

™
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e matching of renormalized quark masses: m¥% = m3e

TeEN ren-

In the free case, there is no need of renormalization and hence the second
condition is trivial. However, a general situation is that this matching can
be done only up to O(a?) effects. Hence, at tree-level we can investigate the
effects of such mismatch between the quark masses.

Regarding the first condition, we will find the bare overlap quark mass
that leads to the same pion mass as some specified MTM quark mass and
test whether the two other observables the pion decay constant and the
pseudoscalar correlator at a fixed physical distance are also matched.

2.5.1 Unmatched quark masses

To investigate the effect of non-ideal matching between the quark masses, we
impose the following setup. The MTM quark mass is fixed to Ny = 0.5, but
in the overlap quark mass we allow for an O(a?) deviation from the twisted

mass value, setting:
Nm = 0.5 —v/N>. (2.23)

The mismatch parameter v will be varied from v = 0 to v = 4.

The results of the test are shown in Figs. 2.7 and 2.8. Both plots show
that the leading O(1/N?) cut-off effects can become very large if there is
a substantial mismatch in quark masses (for large mismatch parameter v).
Moreover, even the O(1/N*) effects can become sizable, which can lead to a
wrong continuum limit value in the pion mass and decay constant, if the fit
includes too small lattices (i.e. all lattices from N =4 to N =64) such fit
corresponds to dashed lines on the plots. To get the correct continuum limit
value, the fit has to be performed for large enough lattices. However, for the
analyzed setup this becomes important only for v = 4 and even there it is
enough to exclude the point N = 4 from the fit to obtain the right value in
the continuum. If the quark masses are only slightly mismatched (v g 2),
even a full (N € [4,64]) fit leads to the correct continuum limit. It is worth
to emphasize that the effect that we observe at tree-level is rather small (the
continuum limit is wrong by only &~ 0.1 %), but it can be severely enhanced
in the interacting theory.

A similar effect can occur if it is not possible to go to large enough lattices,
i.e. if the fit can be performed e.g. only in the interval N € [16,24]. Once
again, such effect can be of practical importance in the simulations of the
interacting theory, where it might not be possible to go to very large lattices.
However, for the setup analyzed here such effect is very small in comparison
to the effect discussed above and hence it is not shown in a plot.
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2.5.2 Effects in the case of matched pion masses

In this subsection, we will investigate the other matching condition of matched
pion masses. We will consider the case of N = 16 and fix the twisted quark
mass to Ny = 0.5.

Since the magnitude of O(a?) effects is in general different for differ-
ent fermion discretizations, the condition of equal pion masses NmM™ =
NmeverlaP does not have to correspond to equal quark masses Nm = Np.
This is shown in Fig. 2.9, where the dependence of the (overlap) pion mass
on the overlap quark mass Nm is depicted. The value of Nm =~ 0.49994
leads to the same pion mass as the value Ny = 0.5 in the twisted mass case.

However, the matching of one observable does not mean that other ob-
servables have to be matched as well. This is a direct consequence of the fact
that the discretization effects in different observables are in general different.
Figs. 2.10 and 2.11 show that at the matching point (NmM™ = Nmoverlap),
the pion decay constant and the pion correlation function at a fixed physical
distance t = 4N are not matched. However, their difference is of O(a?),
which can be clearly observed in Figs. 2.12 and 2.13. Moreover, if the pion
masses are matched, the quark mass is indeed matched only up to O(a?)
(Fig. 2.14).

This is a general situation that one can expect at the matching point in the
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s

interacting theory. Regardless of the implemented matching condition, other
observables can only be matched up to O(a?) discretization effects. However,
since all valid fermion discretizations must lead to the same continuum limit,
the matching point differences in all observables that have a well-defined
continuum limit must decrease when one moves towards this limit.

In Chapter 4, when we consider a mixed setup of overlap valence quarks
and twisted mass sea quarks, we will use the same matching condition as in
this subsection. Moreover, the matching of pion masses can never be exact
in the interacting theory, since the relevant quantities are always extracted
with some statistical error. Therefore, the matching is in general realized up
to O(a?) effects, as was the case in the previous subsection. Hence, at the
matching point we have O(a?) effects originating from non-ideal matching
and additional O(a?) effects in other observables computed at the matching
point. Provided that the former are not too large (i.e. the counterpart of
the mismatch parameter v is small enough), it should be possible to extract
the right continuum limit for both discretizations. This will be explicitly
tested in the interacting theory, where all the effects are obviously much
more complex than in the case analyzed in this section.
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Chapter 3

Algorithmic and technical details

3.1 Simulating QCD

In this section, we briefly outline the idea behind a Lattice QCD simulation
(with any kind of fermions) and describe the most widely used algorithm of
generating gauge field configurations the Hybrid Monte Carlo algorithm.

3.1.1 General idea

As already stated in Section 1.1, computing any observable in a Lattice QCD
simulation consists in approximately evaluating an integral of the form (1.16)
by a Monte Carlo method. This is a high-dimensional integral over all possi-
ble gauge field and fermion field configurations. Fortunately, the dependence
on the Grassmann-valued fermion fields can always be eliminated, leaving an
integral over only the gauge fields, weighted by the Boltzmann factor e=¢/7,
where Scsf is some effective action dependent on the algorithm used. More-
over, for a majority of gauge field configurations the action is very large and
hence their weight is negligibly small. Therefore, one should perform impor-
tance sampling, i.e. use an algorithm that effectively chooses configurations
that have a high Boltzmann factor. Thus, having a large number (of the or-
der of several thousand) of such configurations, one can compute the Monte
Carlo average of an observable O, which we will denote by O:

0= %é@[m], (3.1)

where O[U;] denotes the observable O computed in a background gauge field
Ui belonging to the Markov chain of generated configurations. If the simula-
tion is performed correctly, in the limit N — oo the Monte Carlo average O
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will correspond to the actual ensemble average (O). The conditions that have
to be satisfied in order to obtain the correct average are measure preservation
and detailed balance. The latter reads:

eSUpU - U)=eVpU - U), (3.2)

where P(U — U’) denotes the probability of transition from configuration U
to U'.

Let us now consider the partition function (1.17). After integrating out
the fermion fields, one obtains:

Ny
Z - / DU e Soevse ¥ T det(D4{U)), (3.3)
i=1

where det(D;[U]) is the determinant of the Dirac operator matrix for fermion
flavour 7. Such form of the integrand implies that the probability distribution
that has to be simulated depends on a highly non-local fermion determinant.
The cost of calculating this determinant(s) is by far the highest cost in a
Monte Carlo simulation. However, the first approximation to the partition
function could be to neglect the fermion determinant, i.e. set it to a constant.
Such approximation is called the quenched approximation and it physically
consists in neglecting the fermion loops. As such, it is very crude. Still,
for many years it was very much used in simulations, since the computa-
tional cost related to the determinant was just too high for the generation of
computers then available.

However, the computational power has been increasing for many years
and presently it is possible to perform fully dynamical simulations (i.e. with
the determinant included'), which is also due to many algorithmic improve-
ments. In the next subsection we describe the algorithm of choice for most
simulations with dynamical fermions — the Hybrid Monte Carlo algorithm.

3.1.2 Hybrid Monte Carlo

The Hybrid Monte Carlo (HMC) algorithm was originally introduced by Du-
ane, Kennedy, Pendleton and Roweth [70|. It combines a molecular dynamics
update of gauge fields with a Metropolis accept /reject step. Here we outline
the basic steps that need to be performed in an HMC simulation [71].
Given the action to simulate S(U), first one constructs the Hamiltonian:

Ty T

H(r,U) = % Srt ot 4+ S(U), (3.4)

!The determinant is not computed explicitly — one usually represents it in an indirect
way, e.g. by a set of pseudofermion fields, to be discussed later.
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where 77, is a component of a momentum field:
_ a a
Moy = Tyt (3.5)

conjugate to each lattice link U, ,. In this way, the integral one wants to
evaluate: [ DU O[U]exp(—S(U)) can be written in the equivalent form:
| DUDz O[U] exp(—H(w,U)), since the additional integration over momen-
tum fields 7 yields just a Gaussian integral and hence produces a constant
factor.

Thus, one obtains a classical Hamiltonian system. The evolution of this
system in a fictitious Monte Carlo time 7 can be calculated from the Hamil-
ton’s equations:

oy = —Fop, (3.6)

Um,,u = Wx,qu,ua (37)

where the dot denotes differentiation with respect to the fictitious time 7 and
the force F, , is given by*:
aS(U
Fop=——. (3.8)
oU, .
Solving the above system of differential equations, one obtains a trajectory
in phase space, i.e. the values of U, ,(7) and m, ,(7) for every value of 7.
The steps in the HMC algorithm are the following:

~—

1. Randomly generate the initial (7 = 0) momentum field , ,(0) accord-

ing to the distribution exp(—3 D T o)

2. Numerically integrate (e.g. by the so-called leap-frog algorithm) Hamil-
ton’s differential equations (3.6)-(3.7) to obtain U, ,(7) and m, ,(7)
from their initial values U, ,(0) and 7, ,(0), respectively. By construc-
tion, such evolution preserves the value of the Hamiltonian up to a
numerical integration error.

3. Accept the new configuration with probability:
P =min (1, e_AH(T)) : (3.9)

where AH(7) = H(w(7),U(7)) — H(7(0),U(0)) is in general non-zero,
which is due only to the numerical integration error. If the configuration
is rejected, then U(7) = U(0), i.e. the initial configuration does not
change.

2In (3.8) we use symbolic notation for a derivative of the action with respect to a link
variable. The derivative with respect to an SU(3) element can be formally defined as
95 (exp(w? (z,m)t")U(z,p))

Ow(xz,

we (@,1)=0"
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4. Repeat steps 2-3 to obtain as many trajectories (gauge field configura-
tions) as is desired. The initial values of the variables U and 7 for step
2 of trajectory N are the values of these variables at the end of step 3 of

the preceding trajectory N — 1, i.e.: Utraiectory N(() = yytrajectory N=1(7)
71_‘51rajecto1ry N(O) — 71_‘51rajecto1ry N_l(’T).

The above algorithm could in principle be used to simulate QCD with
dynamical quarks. However, to make such simulations practical, one has to
overcome the computational problem of effectively calculating the fermion
determinant. This is usually done with the pseudo-fermion method, which
consists in replacing the fermion fields by auxiliary bosonic fields® and ex-
pressing the determinant as a Gaussian integral over these fields. The part
of the force coming from the pseudo-fermion fields is the most intensive part
of the simulation. Hence, dynamical simulations are by a large factor more
computationally expensive than pure gauge simulations, where the pseudo-
fermion field is not needed.

We have outlined here the general idea of the Hybrid Monte Carlo algo-
rithm. However, in practice one can greatly reduce the computer resources
that are needed by implementing the significant refinements of this algorithm
that were proposed during the last ca. 10 years. Some of them are shortly
discussed in Appendix C.

With these improvements, Lattice QCD is approaching the possibility of
large-scale simulations with physical quark masses. Only around 10 years
ago, it seemed that to reach the physical point one would need resources of
the order of several PetaFlop-years to generate an ensemble of a few hundred
independent dynamical gauge field configurations with typical parameters
for the lattice spacing (= 0.08 fm) and physical box length (=~ 2.5 fm).
This was illustrated by the famous “Berlin Wall” plot |72]. Around 2010 the
computational cost seems to be some 3-4 orders of magnitude smaller with
the aforementioned refinements [71]. Moreover, work on the algorithms is still
in progress and hence further reduction of the cost is possible. Nevertheless,
the computer resources needed to simulate QCD are still huge.

3.2 Computation of the overlap operator

We will now concentrate on technical details of simulations with overlap
fermions as valence quarks.

3The auxiliary fields carry the same indices as the fermion fields, but they obey bosonic
statistics. Hence, they are called pseudo-fermion fields.
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The matrix (ATA)71/2 in the definition of the overlap operator is the
source of many problems, including technical ones. It is a non-trivial task
to compute this matrix in the first place and it is obviously needed to con-
struct the overlap Dirac operator. The strategy that one usually follows is
to construct an approximation of (ATA)~Y/2. There are several ways to do
this, including polynomial approximations, Lanczos based methods and par-
tial fraction expansion. An overview of these methods is provided e.g. in
|73, 74]. Here we restrict ourselves to the description of the method rele-
vant from the point of view of this work, i.e. the Chebyshev polynomial
approximation method. The advantages of using this approximation are the
well-controlled exponential fit accuracy and the possibility of having numer-
ically very stable recursion relations, which allows for high degrees of the
polynomial.

The operator ATA depends on the gauge field configuration and therefore
this approximation has to be performed separately for each configuration.

The Chebyshev polynomials Tj(x) are solutions to the differential equa-
tion (1—2%)y” —xy’+ 7%y = 0 for non-negative integer j and can be expressed
recursively as: To(z) =1, T1(z) = =, Tj(z) = 22T () — Tj_o(x).

The Chebyshev polynomial approximation to the function (ATA)_I/2 is a
polynomial P,(ATA) of degree n |11]:

1
VATA

~ P,(ATA) = Xn:C]Tj(X), (3.10)

where:

2ATA — (Mnin + Anaz) 1

>\mam - )\mm

X = , (3.11)

Amin and A\pqe are the smallest and largest eigenvalue of ATA, respectively,
and the coefficients ¢; are calculated from the formula:

¢ = % Z f (o) Ty (), (3.12)
k=1
where:
1 o -1/2
f(zk) = (5()‘mm + )\max) + ?()\max - )\mm)) (313)
and

2 = coS ((k . %) %) . (3.14)
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Any eigenvalue A\ € [Apin, Amae] Of the matrix ATA satisfies the following
condition:

L P = O 20V A ) (3.15)
VA

This means that the approximation error decreases exponentially fast with
increasing polynomial degree and depends on the condition number of the
matrix ATA, i.e. on the ratio Amaz [ Amin- In other words, to achieve the de-
sired precision, one has to choose a polynomial degree which is proportional
to the condition number of ATA. Since the eigenvalues of the Wilson operator
can go arbitrarily low, the necessary degree of polynomial can easily become
prohibitively high. Therefore, one usually supplements the Chebyshev ap-
proximation method with eigenvalue deflation for the operator ATA. This
will be discussed in the next section.

In practical simulations, one usually wants to ensure that the Ginsparg-
Wilson relation (for massless overlap Dirac operator) is satisfied with a very
high precision — usually machine precision. To ensure this, the following
condition should be satisfied [76]:

IR — ATA (P.(ATA))" RIP/|IRIP < &, (3.16)

where R is a random vector and £ has to be a very small number, typically
set to 1071¢ to achieve a compromise between good quality of approximation
and its cost?.

3.3 Reducing the condition number of ATA

We now discuss the possibilities of reducing the condition number of the
operator ATA.

3.3.1 Eigenvalue deflation

The eigenvalues of ATA are bounded from above and hence the ones that can
be responsible for large condition numbers are the lowest eigenvalues. This
is illustrated in Fig. 3.1, which shows the cases of:

e fixed lattice spacing a ~ 0.079 fm, variable physical size of the lattice
(upper plots),

4Such level of precision corresponds to “double” precision in the C programming lan-
guage. Increasing precision is still possible with specialized libraries, e.g. GNU Multiple
Precision Arithmetic Library, but it would lead to a significant increase in computational
cost.
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Figure 3.1: 5 lowest eigenvalues and the highest eigenvalue for various gauge
field ensembles. The lattice spacing is a ~ 0.079 fm (8 = 3.9) for upper
plots, a ~ 0.063 fm (G = 4.05) for bottom left and a ~ 0.051 fm (8 = 4.2)
for bottom right plot.

e (approximately) fixed physical size of the lattice with box length L ~
1.3 fm, variable lattice spacing (upper left and bottom plots).

The former shows that increasing the volume at a fixed lattice spacing in-
creases the probability of having very low eigenvalues — hence the condition
number of ATA increases with the volume. Decreasing the lattice spacing (go-
ing from § = 3.9 towards 5 = 4.2) causes the spectrum of the lowest eigen-
values to move up (eigenvalues in lattice units tend to become higher), which
results from the fact that the gauge field configurations become smoother.
Therefore, the condition number of ATA decreases with decreasing lattice
spacing.

As can be seen on the plots, the eigenvalues of ATA can go very low and
hence the condition numbers of ATA can be very large, thus leading to very
high degrees of Chebyshev polynomials (necessary to satisfy the Ginsparg-
Wilson relation up to desired precision), which can typically reach 1000-2000
or even more, depending on the gauge field configuration under analysis and
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in general on the parameters (e.g. lattice volume, lattice spacing).

Since large condition numbers are caused by the lowest eigenvalues, it is
profitable to compute a certain number N, (out of the total number Nyy)
of eigenmodes of ATA and split (AfA)~'/2 into two parts:

Ntotal Nev
1 1
= )\ )\ S
/ATA Z / | Z / | / ,'_A

where ); are the eigenvalues of ATA, |)\;) the corresponding eigenvectors and
(ATA)_l/z is the part of the full operator that has the N, lowest modes
projected out.

In this way, the Chebyshev approximation (3.10) is applied just to the part
(ATA)='/2 which has a reduced condition number, since the lowest modes
have been projected out.

The resulting degree of Chebyshev polynomial, after the deflation proce-
dure, is of order 200-400 for optimally chosen N.,. The word “optimal” in
this context refers to the fact that the procedure of eigenmodes computation
is computer-time intensive and hence such number N, has to chosen that
the additional computer-time cost of calculating the eigenmodes is balanced
by the profit of having lower Chebyshev polynomial degree, e.g. for the in-
version of the Dirac operator. The number of eigenmodes N, that should be
projected out has to be found experimentally, but in general it grows with
increasing lattice volume, as a consequence of the behaviour observed in the
numerical test presented above.

(3.17)

3.3.2 HYP smearing of gauge fields

Eigenvalue deflation is not the only way to lower the condition number of
the matrix ATA and thus the degree of Chebyshev polynomial. A useful
technique that can be applied before the computation of the lowest modes
of ATA is to perform HYP smearing on the gauge fields. This link fattening
method was introduced by A. Hasenfratz and F. Knechtli [77] and allows to
eliminate short-distance fluctuations of the gauge fields and thus decrease the
probability of having very low eigenvalues of ATA. In this way, one iteration
of HYP smearing helps to achieve a smaller condition number of ATA and
thus decrease the degree of Chebyshev polynomial. In comparison with other
link fattening methods (e.g. APE smearing [61]), HYP smearing is believed
to preserve better the short-distance quantities, because it mixes links from
hypercubes attached only to the original link. Thus, it should not affect the
physical properties of gauge field configurations and the physical observables
calculated from HYP-smeared configurations.
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Finally, the degree of Chebyshev polynomial that one usually reaches by
a combination of one iteration of HYP smearing and eigenvalue deflation is
of order 100-200 for the optimal choice of the number of deflated eigenval-
ues N,,. This is a considerable improvement with respect to the first number
quoted for the polynomial degree — 1000-2000, which is typical without eigen-
value deflation and HYP smearing. Therefore, the reduction is by a factor of
around 10, a factor of ~ 2 brought in by HYP smearing and a factor of ~ 5
by eigenvalue deflation.

Obviously, the fact that one needs to work with the Chebyshev polynomial
approximation (or any other) still increases the computational cost of using
overlap fermions by a large factor typically of order 30-120 with respect to
e.g. twisted mass fermions [75], even after the condition number reduction
techniques have been used. Moreover, this number tends to increase when
one decreases the pion mass. This speed factor is now considered to be one of
the main drawbacks of overlap fermions and it motivates e.g. the mixed ac-
tion approach, in which overlap fermions are used only in the valence sector,
whereas to generate gauge field configurations a cheaper fermion discretiza-
tion is used. The hope of this approach is that while avoiding the most
expensive part of a simulation, which is the generation of gauge fields, one
can still profit from the exact chiral symmetry that overlap fermions provide.
The mixed action approach will be discussed further in Chapter 4.

3.4 Inverting the Dirac operator

After constructing the overlap Dirac operator, to calculate most observables,
such as hadronic correlation functions, it is necessary to compute the quark
propagator. To obtain complete information about quark propagation from
each possible source site to every other sink site, it would be necessary to
compute the inverse of the Dirac operator matrix. This is clearly a formidable
task for typical lattice sizes even storing such matrix in computer memory
would be very difficult. Fortunately, the complete propagator that corre-
sponds to a given gauge field configuration is not needed from the practical
point of view, since the information about quark propagation from some site
x to site y is very much correlated with the information about propagation
between some other site ' and y.

Therefore, the strategy that is usually followed consists in solving the
matrix equation:

D(m)y =, (3.18)

where 1) is called the propagator, m is the bare quark mass and 7 is the
source — a vector whose choice will be commented on below.
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3.4.1 Stochastic sources

An important aspect of solving eq. (3.18) is the choice of the source 7. The
simplest possible choice is the point source, which means that the vector 7
is chosen to be 1 at one space-time point .., spin pg.. and color cg.. and 0
otherwise:

(&) e = 2,20 OpprarcOc,core- (3.19)

The propagator 1, is called the point-to-all propagator, since it corresponds
to one column of the full inverse Dirac operator matrix and hence to quark
propagation from one point .. (with spin-color indices fig.. and cg,..) to all
other lattice points (with all possible spin-color indices). In this way, to ob-
tain a propagator suitable for computation of hadronic correlation functions
of interest in this work, it is necessary to solve eq. (3.18) 12 times — once for
each combination of spin and color components of the source pig.. and cgp.
However, for mesonic correlators it is possible and advisable to use the in-
formation provided in gauge field configurations more fully by using timeslice
stochastic sources. Let us consider the following choice of the source:

+1+£1
5 50 Csrc)
\/5 :| -'EeTs'rc ttere 7

where the symbol [|,er,,. means that the source vector is non-zero for all
lattice sites on a given timeslice T,.. and the & signs in the expression in
parentheses are chosen stochastically and independently for all . The re-
maining Kronecker deltas imply that the only non-zero entries are for a spec-
ified spin .. and colour component c,... Since the stochastic numbers are
of the form (£1 4 7)/v/2, we will refer to these sources as Z(2) stochastic
sources (formally, they should be called the Z(2) x Z(2) stochastic sources,
since here complex numbers are involved). In the context of Lattice QCD,
the Z(2) stochastic noise was first proposed by Dong and Liu [78|. The mo-
tivation to use this kind of noise is that it produces a minimum variance of
inverted matrix elements due to stochastic estimation.

The propagator element obtained from sample r of a stochastic source is:

e = | (3.20)

W = D'y, (3.21)

where the indices ¢, 7 encompass lattice site, spin and colour.

Hence, the full propagator matrix element estimate is: ﬁ;l = (nj)"Yi.
This estimate differs from the actual matrix element by stochastic noise,
which is in general rather large the noise-to-signal ratio for the timeslice
stochastic source is expected to be of the order of \/E/\/E, where V. is
the volume of the source, i.e. the number of non-vanishing entries in the
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source, and R is the number of noise samples. Clearly, to get a useful signal
the number of noise samples would have to be very large [24].

However, it is possible to reduce the noise-to-signal ratio considerably by
employing the so-called one-end trick, introduced in [79]. Let us consider the
product:

(Wp) Yl = (ﬁi—kln,’;> D'y = (f);,j) D! + noise. (3.22)

This is a stochastic estimate of the product of quark propagators from the
source to lattice sites ¢ and j. Contracting now with §;; (“one end”) allows
to determine two-point mesonic correlators. The noise-to-signal ratio in this
case is of the order of \/V2_ /v RVy. = 1/VR, where the factor /V2, is the
standard deviation associated with the noise and the signal is of the order
of V. itself (the other factor of Vj,..). Hence, even one sample per gauge
configuration (R = 1) should be sufficient to extract the signal.

Moreover, to allow for any Dirac structure of the mesonic correlators, one
can consider “linked” sources of the form:

+1+7
n(x)uc = { \/§ } 5M7Ms7“c7 (3.23)
;€T sre

where the Z; numbers are chosen independently for all lattice sites and all
colours on a given timeslice T}, and for a specified spin component .., but
the noise is common to all spin components. For this reason, such sources
are also called spin-diluted sources. In such case, one has 4 sources for each
gauge configuration (one per spin component) and therefore eq. (3.18) has
to be solved 4 times per configuration.

It is also possible to consider fully linked sources, i.e. spin and colour-
diluted:

(z) [:l:l :l:z}
M) e = .
g \/5 ;¢ xE€ETsre

In this case, the stochastic numbers are chosen independently for all lattice
sites on a given timeslice, all colours and all spins. Therefore, one has one
source for each gauge configuration and only one inversion is needed. How-
ever, this method can only be used for some types of mesonic correlators, i.e.
ones that have the 5 matrix at the source.

Another choice that has to be made when using stochastic sources is the
way of selecting the timeslice for each gauge configuration. The two strategies
that can be followed is to move the source timeslice cyclically through the
lattice or to choose it randomly. Earlier studies [24] have shown that the
latter method seems to work better (it leads to shorter autocorrelation times)
and in this work we stay with this choice.

(3.24)
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To improve the signal, when working with stochastic sources of the form
(3.23), we will use two samples of stochastic noise per configuration and for
one sample for each configuration we will apply Jacobi smearing with fuzzed
gauge links. This method helps to reduce excited-state contamination in the
mesonic correlators and thus also helps to obtain a better signal [24]. In
practice, the addition of smeared stochastic sources allows to obtain four
kinds of correlation functions: local-local (LL), local-fuzzed (LF), fuzzed-
local (FL) and fuzzed-fuzzed (FF), depending on the propagator used in the
construction of each correlation function. Averaging the local-fuzzed and
fuzzed-local correlators, one can obtain three estimates of every correlation
function at each timeslice and therefore e.g. three estimates of the effective
pion mass at each timeslice (LL, FF and the average of LF and FL, which
we will denote again by LF).

The general advantage of using stochastic sources with respect to point
sources is the reduction of statistical error on mesonic quantities like the pion
mass and decay constant, especially for small quark masses.

3.4.2 The SUMR solver

Equation (3.18), which has to be solved to find the quark propagator, is a
matrix equation involving a matrix of a very large dimension, of the order of
several million by several million. This means that solving this equation is the
most intensive part of the computation of correlation functions of interest in
this project. Therefore, it is essential to do it in an effective way. Specifically,
this means that an appropriate solver has to be chosen.

The efficiency of different solvers for overlap and twisted mass fermions
was investigated by Chiarappa et al. [75]. It was found that for the case
of (quenched) overlap and small volume (12 and 16*), the most effective
solvers are the chiral conjugate gradient algorithm and the SUMR solver.
Since the former algorithm can only be used for exact overlap operator, the
polynomial approximation that we use would lead to some corrections that
would have to be explicitly calculated. Therefore, the latter algorithm seems
to be better suited for this project.

The SUMR (Shifted Unitary Minimal Residual) algorithm was introduced
in [80| and first analyzed in the context of Lattice QCD in [81|, where it was
also shown that it is theoretically superior to certain variants of the Conjugate
Gradient and the Minimal Residual algorithms.

To improve the performance of the SUMR, algorithm, we have also used
adaptive precision. This means that the Chebyshev polynomial degree is
adapted to the accuracy that is actually needed in the present iteration step.
From the practical point of view, when the solver is heading towards the
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requested precision, the accuracy of approximation (the polynomial degree)
can be substantially decreased. For example, if the degree of Chebyshev
polynomial at the start of inversion is typically (for our parameters) of order
100-200, the final iterations can be performed with the polynomial degree
down to 20-40 with adaptive precision. This saves a factor of around 2 in
inversion time.

Since we are interested in the dependence of various observables on the
bare overlap quark mass, it is also crucial that the inversion does not have to
be performed separately for each quark mass. It was first shown by Frommer
et al. [82] that for some kinds of solver algorithms it is possible to obtain
the solution for an arbitrary quark mass at the cost of one inversion for only
the smallest quark mass. Therefore, the dependence of the observables on
the quark mass can be computed with very little additional cost, since the
SUMR algorithm has the necessary multiple mass capability — the mass shift
enters the algorithm only through scalar coefficients in the solution vector
[75].

To finalize this chapter, we comment on computer codes that were used in
this project. The gauge field configurations were generated by the ETM Col-
laboration using the tmLQCD package of Jansen and Urbach [83]. Stochastic
sources were generated and the mesonic correlation functions were computed
using the Contraction Code of Urbach and Wagner 84|, while the baryonic
correlators were calculated with the contraction code of Drach. Inversions
with the overlap operator were performed using the GWC code, written by
several contributors to the papers |64, 75|. The modifications of this code by
the author of this thesis included:

e implementation of HYP smearing,

e input/output routines for reading in stochastic sources and writing
propagators to allow the use of the Contraction Code,

e modification of the Contraction Code routines to generate fully linked
stochastic sources and to perform contractions of propagators inverted
on these sources,

e implementation of subtraction procedures for zero modes (discussed in
Chapter 4).

73






Chapter 4

Investigations of the continuum
limit scaling properties of the
mixed action setup

4.1 Mixed action approach

Overlap fermions have many appealing properties. However, their main dis-
advantage is that their use is very time-consuming and needs O(100) times
larger computer resources with respect to e.g. twisted mass fermions. This
makes dynamical simulations with overlap fermions a big challenge. Such
simulations are performed |85|, but in comparison with other kinds of lattice
actions it is still not possible to reach very fine lattice spacings and very large
lattices. Dynamical overlap fermions simulations also lead to algorithmic dif-
ficulties, the foremost being the discontinuity in the operator 1/v/ AT A, which
implies that the overlap Dirac operator changes discontinuously when its in-
dex changes (i.e. when the number of chiral zero modes of the Dirac operator
changes in a simulation) [86]. This problem can be overcome, e.g. by using
the reflection/refraction algorithm [87|, but this procedure is very costly and
hence still too demanding for the present generation of supercomputers. An-
other way to overcome the discontinuity problem is to modify the action in
such a way that the topological charge can not change [88]. However, this
leads to an additional finite volume effect which has to be taken into account.

The above discussion shows that while clearly the importance of dynam-
ical overlap simulations will increase in the future, it is still desirable to
investigate alternative approaches that make it possible to take advantage
of good chiral properties of overlap fermions and at the same time avoid the
immense computational cost of dynamical overlap simulations. One such
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approach is provided by the mixed action setup.

The mixed action approach consists in choosing a different discretization
for sea and valence fermions. This means that the gauge field configurations
are generated with a relatively cheap fermionic action, such as the Wilson
twisted mass action and the overlap operator is only used to invert the Dirac
operator, i.e. to construct propagators, and then to compute the correlation
functions.

The mixed action simulations have been performed for the following se-
tups:

e clover sea quarks and overlap valence quarks [89, 90, 91|,

e Wilson twisted mass sea quarks and overlap valence quarks — [92, 93,
94],

e improved staggered sea quarks,

— overlap valence quarks |95, 96, 97,

— domain wall valence quarks e.g. [98, 99, 100, 101, 102, 103, 104,
105, 48|.

As can be deduced from the above summary, the most widely used mixed
action setup employs domain wall valence quarks and improved staggered sea
quarks. This results from the relative abundance of gauge field configurations
generated with the improved staggered lattice action and from the relative
cheapness of domain wall fermions, as compared with overlap fermions, how-
ever at the price of sacrificing exact chiral symmetry with respect to the
latter.

The use of overlap valence quarks has been relatively rare and for Wilson
twisted mass sea quarks only an exploratory study has been performed. The
current project is the continuation of the analysis performed in |92, 93| and
its first results have been reported in [94]. It is also well-motivated from the
point of view of the availability of twisted mass sea gauge configurations,
generated by the European Twisted Mass Collaboration (ETMC) [106, 24].

However, before reporting the project results, let us shortly discuss the
validity of the mixed action approach in general. Let us consider the expres-
sion for a mesonic correlation function:

Cij(z,y) = %/DU@‘Sga“ge[U] (det <ﬁsea(msea)>>2 (4.1)

x Tr {(Dval(muau))_l (y,2) T (ﬁval(muam))_l (z,y) F]} :

In Ny = 2 simulations, one can have the following situations:
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~

L4 Dsea = Dval: Msea = Myal, 1l = Myal,2 unitary setup,
L4 Dsea = Dval; Mesea % Myal,l = Myal,2 O Mgeq = Muyal,l % Myal,2
partially quenched (PQ) setup,

° ﬁsea #+ Dml mixed action setup.

Since all valid lattice Dirac operators differ only by discretization effects, i.e.
terms proportional to some power of the lattice spacing, they have the same
continuum limit. This has been explicitly shown in Chapter 2 for selected
discretizations at tree-level. Therefore, it is clear from eq. (4.1) that even
taking different lattice Dirac operators for sea and valence quarks (the mixed
action setup) must lead to the same continuum limit as the unitary setup,
provided that the sea quarks and the valence quarks masses are properly
matched such that a fixed physical situation is realized in the approach to
the continuum limit. In the unitary setup, this obviously holds if the bare
quark masses are equal. However, in the mixed case the equality of bare
quark masses does not have to be the proper matching condition, i.e. one
leading to the same continuum limit as the unitary case. This is due to the
fact that the renormalization constants of the quark masses do not have to
be the same for different discretizations. Hence, a proper matching condi-
tion is to take equal renormalized quark masses. However, this is not always
straightforward, since the computation of renormalization constants can’t al-
ways be performed with sufficient precision. Therefore, alternative matching
conditions can be considered — one can match some hadronic observable that
can be computed precisely.

The choice that we will follow is to match the pion mass. This amounts
to finding a bare valence quark mass my. 1 = My 2 = m,, which leads to
the same pion mass as the mass of a pion constructed from two sea quarks of
Mass Mgeq: MLV = msea=sea We also expect (and again it has been shown
in the free case) that at the matching point other physical observables, such
as the pion decay constant, are also matched, but only up to O(a?), since
discretization effects are in general different in different observables.

However, even if we expect that the continuum limit of a mixed action
theory is the same as of unitary QCD, such theory is still non-unitary and this
can lead to various effects observed at non-zero lattice spacing. A pronounced
effect of this kind regards the scalar correlation function. It was first shown
in quenched QCD by Bardeen et al. [107, 108] that the scalar correlator can
obtain an unphysical negative contribution from one kind of diagrams. This
is especially important for low quark masses and it is attributed to the ' — 7
intermediate state. Such effect also appears in partially quenched QCD and
Prelovsek et al. derived an expression for this contribution [109| within the
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framework of Partially Quenched Chiral Perturbation Theory. Golterman,
Izubuchi and Shamir [110] adapted this result to the case of mixed actions.
At large time ¢, the dominant contribution to the scalar correlation function
is:

B2 [e2Mvst N,  e~2Mvvt (M{iv + M2

C(t) — — — Nf

Myt 4.2
213 | MZ, 2 My T )} (4.2)

where By is a low-energy constant, L — the physical length of the box, My =
mba=val Mgg = msea=sea My g = mP¥=¢ (at leading order M2y = (M2, +
M3s)/2),

R = (Mgs — M) /Ny + a*(yvv + 7ss — 29vs) (4.3)

is the residue from the double pole, which arises only in the case of a partially
quenched or a mixed action setup. ~yyy, vss and vy g are additional low-
energy constants, which are all equal in the case of a partially quenched
setup — hence in such case the second term in the residue from the double
pole vanishes. If we consider the case of matched pion masses, the formula
(4.2) reduces (in the Ny = 2 case) to:

Bg 6—2Mvvt

ol() P —
203 M2,

(v +7ss — 27vs) a’t. (4.4)

Thus, in the mixed action case the residue R does not vanish even if we
match the pion masses and even in this case it should be possible to observe
a potentially negative contribution (its sign depends on the signs of v low-
energy constants) to the scalar correlator at large time, as an indication of
a unitarity violation caused by the different discretization of sea and valence
quarks. This effect was further investigated by Furchner [111], who derived
finite volume corrections to the considered effect.

However, it is important to emphasize here that the unitarity violation is
a discretization effect and thus it vanishes in the continuum limit. Moreover,
even at finite lattice spacing, the y PT' formulas allow to control the unitarity
violation and hence the effect can be taken into account and analyzed.

4.2 Scaling test — light sea quark mass

In this section, we will show the results of a continuum limit scaling test of
the pion decay constant, employing overlap valence quarks and maximally
twisted mass sea quarks with a light mass, corresponding in infinite volume
to a pion mass of around 300 MeV.
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4.2.1 Simulation parameters

A continuum limit scaling test in the interacting theory consists in comput-
ing a certain observable at a few values of the lattice spacing, but in a fixed
volume and in fixed physical situation, and extrapolating the result to a = 0.
The range of lattice spacings and volumes covered by the available Ny = 2
ETMC configurations is broad. There are four lattice spacings between
a ~ 0.05 fm (which corresponds to § = 4.2) and a ~ 0.1 fm (5 = 3.8) and a
range of physical extents of the box L covering the interval between 1.3 and
2.7 fm. In order to minimize the effect of finite volume, in simulations with
twisted mass valence quarks one usually works with L > 2 fm. However,
such volume is very computer-time demanding in the case of overlap valence
quarks and practically out-of-reach for the physical extent L reaching 2.4 fm,
since it would require dealing with lattices of 483 x 96 at the finest lattice
spacing. Therefore, this scaling test will be performed with the smallest vol-
ume available, corresponding to the physical size of the box of L ~ 1.3 fm.
In order to estimate the size of the finite volume effects, we will also per-
form an analysis for larger volumes, but only for the coarsest lattice spacing,
corresponding to 3 = 3.9.

There are three available lattice spacings at the physical lattice extent of
1.3 fm, corresponding to the light sea quark mass that leads to a pion mass
of around 300 MeV. The simulation parameters are':

e 163 x 32, a ~ 0.079 fm (B = 3.9, ro/a = 5.25(2)), au = 0.004, 544
configurations,

e 203 x 40, a ~ 0.063 fm (8 = 4.05, ro/a = 6.61(2)), ap = 0.003, 300
configurations,

o 243 x 48, a ~ 0.051 fm (3 = 4.2, ro/a = 8.33(5)), ap = 0.002, 400
configurations.

We have chosen only a subset of available thermalized gauge field configura-
tions in each ensemble, in order to minimize the effect of autocorrelations. For
inversions with the overlap Dirac operator, we have chosen every 10th Monte
Carlo trajectory (at 5 = 3.9, 4.2) or every 20th trajectory (at 5 = 4.05). The
number of configurations for each ensemble was chosen to roughly match the
accuracy of the twisted mass data, i.e. achieve a similar statistical error on
the pion mass and decay constant as in the unitary setup. This requires
roughly the same number of configurations in both cases.

"The values of the lattice spacing and the hadronic length scale ro/a are taken from
[33].
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As discussed in the previous chapter, we have applied one iteration of
HYP smearing to the gauge field configurations.

4.2.2 Locality

Before concentrating on the scaling test, we investigate the issue of locality
of the overlap Dirac operator for our setup [112]. In this way, we will be able
to choose the optimal value of the parameter s which enters the definition of
this operator (equations (1.75) and (1.76)).

First, we analyze the dependence of the maximal norm of the overlap
Dirac operator ||Dyy||maz on the taxi-driver distance ||z||, defined in Section
1.4.2. The norm of the overlap operator is defined as the row-sum norm:

[ Dov(,y)|| = max ZID 5 Y) (4.5)

1<pu<4

and, since the operator norm may differ for the same taxi-driver distance due
to different paths that can be followed, we define the maximal norm for the
taxi driver distance d as:

1Dl (d) = mavs (1D = 9,0} (46)

The decay rate p of the maximal norm is defined by the formula:
||bov||mafc(d) = Ce_pd> (4.7)

where p and C can be extracted from a fit.

Fig. 4.1 shows in logarithmic scale the taxi-driver distance dependence
of the maximal norm of the overlap operator for different values of the pa-
rameter s. For all values of s we observe an exponential decay of the norm
and the maximal decay rate is observed for s = 0 (for this value a linear
fit is shown). This is further illustrated in Fig. 4.2, which shows that the
decay rate p is indeed maximal in the vicinity of s = 0. We also show here
the result for gauge field configurations without HYP smearing. In this case,
the maximal decay rate p is obtained for s = 0.4 and is slightly smaller than
the decay rate corresponding to s = 0 in the HYP-smeared case?. Hence,
for further simulations it is optimal from the point of view of locality to set
s =0.

The overlap operator decay rate in lattice units ap should not depend
on lattice spacing. This means that the values of 1/p extracted from plots

2A similar value of p is obtained also for s close to -1. However, negative values of s
mean that a non-physical phase may be entered [113].
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Figure 4.1: Maximal norm of the overlap operator in logarithmic scale. The
linear fit corresponds to the value of s which yields the maximal decay rate.
Parameters: § = 3.9, L/a = 16.
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Figure 4.2: The dependence of the overlap Dirac operator norm decay rate
p on the parameter s for gauge field configurations with and without HYP
smearing. Parameters: 5 = 3.9, L/a = 16.
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Figure 4.4: The continuum limit scaling of the ratio of the pion mass (at the
matching mass) and the overlap operator decay rate.

like Fig. 4.1 should have a linear dependence on the lattice spacing and
in the continuum limit 1/p should vanish. Fig. 4.3 shows that this is the
case for our setup the lattice spacing dependence is linear and the value
extrapolated to the continuum limit is consistent with zero.

Fig. 4.4 shows the ratio of m,/p. At finite lattice spacing the condition
m, < p must hold [30] in order that the interaction can be considered local
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fm (5 = 3.9), au = 0.004. The bare valence quark mass is am, = 0.04.
For each timeslice 3 values of the pion mass are computed, corresponding to
different kinds of smearing of the sources (described in Section 3.4.1). The
horizontal band corresponds to a simultaneous fit of the LL, LF and FF
pseudoscalar correlation functions, which yields a value 0.2884(17).

from the point of view of the considered particle. For the pion at the matching
mass, the ratio m,/p is well below 1 and thus locality is guaranteed. The
continuum limit value of m,/p is consistent with zero, which is due to the
fact that m, has a non-zero value in the continuum, while 1/p vanishes for
a=0.

All these tests show that for the analyzed setup there should be no prob-
lems with the locality of the overlap Dirac operator [112]. This operator
decays exponentially and we have maximized its decay rate by choosing a
suitable value of the parameter s, i.e. s = 0.0 in the case of HYP-smeared
gauge field configurations.

4.2.3 Matching the pion mass

As discussed in Section 4.1, a mixed action setup will lead to the same contin-
uum limit as the unitary setup, provided that the quark masses are properly
matched. Here we show the results of the matching procedure, with the
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MTM (maximally twisted mass) values and the curves show the bare quark
mass dependence of the overlap pion mass.

matching criterion of equal sea-sea and valence-valence pion masses. Em-
ploying a multi-mass solver, it was possible to obtain the dependence of the
pion mass on the bare overlap quark mass. A typical effective mass plateau
in the extraction of the pion mass from the pseudoscalar correlation function
is shown in Fig. 4.5. The different points that correspond to each timeslice
are related to different kinds of smearing of the sources used to compute the
propagators (as explained in Section 3.4.1) and hence three estimates of the
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Figure 4.7: The dependence of the pion decay constant on the bare overlap
quark mass. The dashed lines correspond to the matching quark masses am.

pion mass are obtained for each timeslice.

The matching plots in Fig. 4.6 show the pion mass in the unitary setup
(horizontal bands) and in the mixed setup. The intersection point of the two
lines defines the matching mass am for each ensemble. However, since the
error bands are non-negligible, the matching mass is not determined precisely,
but also with a statistical error. The values that we find are:

o 3=3.9—arh =0.007(1),
o 3=14.05 arh = 0.005(1),
e 3=42 ah=0.002(1).

4.2.4 Pion decay constant — scaling test

In addition to the pion mass, we have also computed the pion decay constant
from eq. (1.95). The dependence of this quantity on the bare overlap quark
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Figure 4.8: Continuum limit scaling of the overlap pion decay constant at
the matching mass and two other reference values of rom,.

mass is depicted in Fig. 4.7. The horizontal bands in this plot again corre-
spond to the unitary setup and the curves above to the mixed action setup.
The dashed vertical lines show the location of the matching bare overlap
quark mass am.

In Chapter 2 we have performed a tree-level continuum limit scaling test
for the pion decay constant and we have shown that the leading discretiza-
tion effects are O(a?). Now, we would like to perform a similar test in the
interacting case. The matching between the physical volumes of the lattices
(L ~ 1.3 fm) is imposed by the choice of the ensembles and here we also have
to fix the quark mass to allow for a comparison of the decay constants at
three distinct lattice spacings. This can be done e.g. by fixing rom,. We will
take three values of rom, ~ 1.5, rom, ~ 1.0 and rom, =~ 0.85, which corre-
sponds roughly to the matching mass m (as can be seen from the matching
plot 4.6, the MTM (sea-sea) pion masses are approximately matched for the
three ensembles under investigation).

The results of the test are shown in Fig. 4.8. For all investigated values
of rom,, we observe good scaling with O(a?) leading cut-off dependence, as
expected from previous considerations and confirmed at the tree-level.

However, we would still like to check whether the continuum limit of the
pion decay constant computed with overlap valence fermions is consistent
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Figure 4.9: Continuum limit scaling of the MTM pion decay constant at the
matching mass.

with the one computed in the unitary setup, i.e. with maximally twisted
mass valence quarks. This would provide an explicit test of universality of
fermion discretizations. The continuum limit value that has to be compared
is the one obtained for the matching mass.

Fig. 4.9 shows a continuum limit scaling of ry f, in the unitary setup. As
in the case of overlap valence quarks, the MTM pion decay constant shows a
leading O(a?) cut-off dependence. However, the continuum limit is different
than the one obtained from the extrapolation of overlap data. This is in
strong contrast with our earlier expectation that both discretizations should
lead to the same continuum value. To illustrate this result more clearly, we
plot in Fig. 4.10 the difference ro( foveriap — fMTM) " This confirms that the
discrepancy between the overlap and M'TM pion decay constant decreases
much too slowly as the continuum limit is approached.

This is a very surprising and unexpected outcome. Fig. 4.10 suggests that
using one of the Dirac operators leads to a wrong continuum limit, which is
in contradiction to the widely accepted knowledge that both constitute valid
lattice Dirac operators. The observed discrepancy is therefore a mystery at
this stage and it has been a major part of the present thesis to resolve this
mystery and find an explanation for the behaviour depicted in Fig. 4.10.

The qualitative difference of the twisted mass and overlap discretizations
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is that the latter exactly preserves chiral symmetry. Therefore, it is natural
to look in the direction of this difference. Namely, we will investigate the
role of chiral zero modes of the overlap Dirac operator.

4.3 Chiral zero modes and their contribution
to mesonic correlators

4.3.1 Chiral zero modes

There is a clear difference in the eigenvalue spectra of chiral and non-chiral
massless lattice Dirac operators. In the case of the former, it is possible
that eigenmodes ¢(x) with zero eigenvalue appear at any value of the lattice
spacing a. Moreover, such zero modes have a definite chirality, i.e. they are
eigenmodes of vs:

1s9(x) = +¢(x) (4.8)

with eigenvalue +1. If the eigenvalue equals +1, we call such eigenmode a
zero mode in the positive chirality sector (or a right-handed zero mode) and
for eigenvalue —1 we speak of a zero mode in the negative chirality sector
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(or a left-handed zero mode). In Section 1.4.4 we have discussed the relation
between the zero modes and topological properties of gauge fields.

Non-chiral lattice Dirac operators can also develop zero modes, but this
can only happen at sufficiently small values of the lattice spacing. The values
that are presently reached in simulations are far too large to have exact zero
modes of non-chiral Dirac operators from the practical point of view we can
therefore assume that in our mixed action setup with overlap valence quarks
and twisted mass sea quarks the valence Dirac operator admits zero modes
and the sea Dirac operator does not. Hence, in a finite volume situation the
zero modes of the valence Dirac operator lead to a contribution that is not
compensated by the fermionic determinant and can affect certain correlation
functions and hence some observables. It was shown by Blum et al. [114] that
the contribution of the zero modes (e.g to mesonic correlators) is proportional
to 1/\/7, where V' is the lattice volume, and therefore it is a finite volume
artefact.

It is interesting to speculate about the role of zero modes in an unitary
overlap simulation®. In such case, the contribution of the zero modes would
be suppressed by the (overlap) fermionic determinant. In other words, an
effect of the zero modes that we want to investigate in the mixed action setup
or the analogous effect in the quenched approximation |119| results from the
fact that the contribution of the zero modes is not properly suppressed by
the fermionic determinant, since it is a determinant that originates from a
non-chirally symmetric action (the MTM case) or there is no determinant at
all (i.e. it is set to a constant in the quenched approximation). Moreover,
it can be hypothesized that very close to the continuum limit, zero modes
of the MTM Dirac operator would also appear and the contribution of the
zero modes in the valence sector would be suppressed by the MTM fermionic
determinant. In this way, it would lead to a lowered continuum limit of the
overlap pion decay constant in the PP case with respect to the one extracted
from the linear extrapolation in a? and under the assumption of universality a
limit more consistent with the unitary MTM value. However, such hypothesis
is not testable in lattice calculations, since probably a simulation with a very
small lattice spacing would have to be performed. Nevertheless, the pion
decay constant continuum limit scaling test in the unitary overlap setup
would be interesting from this point of view and should confirm that the
continuum limit of both unitary overlap and unitary MTM is the same, even
when one looks at the PP correlator in the former case, as we have done in
the previous section.

3For unitary overlap simulations appropriate algorithms need to be used, which take the
zero modes into account, e.g. the Polynomial HMC (PHMC) algorithm [115, 116, 117, 118].
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4.3.2 The contribution of the zero modes to mesonic
correlators

We now proceed to show how the contribution of the zero modes can be
calculated and subtracted from the observables. In this way, we will be able
to compute the overlap pion decay constant without the contribution of the
zero modes and then perform the continuum limit scaling test of Section
4.2 again and check whether the finite volume effect of the zero modes is
responsible for the difference in the continuum value.

Let us consider the spectral decomposition of the propagator S(x,y):

S(z,y) Zﬂ +mq : (4.9)

where \; are the eigenvalues of the massless Dirac operator D, ie.

D@(?C) = \igi(z), (4.10)

and m, is the bare quark mass.
Inserting this decomposition into the expression for the mesonic correla-
tion function (1.91), we obtain:

ZZ ¢T(O 0) F1’75 ¢J(0 O)¢ ( )’75F2) (4 11)
- (N + mq)()\] + mq) ’ '
Let us now isolate the contribution of the zero modes:
C(t) = Coo(t) + 2Con(t) + Cnn (1), (4.12)

where Cg(t) is the part of the sum that contains only the zero modes (\; = 0,
Aj = 0), 2Con(t) = Con(t) + Cno(t) contains the mixed terms that couple
the zero modes and non-zero modes (A\; =0, A\; # 0 or \; # 0, A; = 0) and
Cnn(t) is the contribution of the non-zero modes (\; # 0, A; # 0). We find:

Cool) Z Z Z ¢1(0,0) s qb](O 0)¢ (7, t) v51?) (4.13)

2 5
" m
Z A=0X;=0 q

T 1 T 2
Con(t) ZZZ gb(OO)F%qﬁj(OU)gb( t) Vs F)’ (4.14)

T N=0X;#0 mQ()\]_I_mQ)

T 1 2
Coun(8) Z Z Z t)o; (0 0) s ¢J(O 0)¢ (Z,t) vsl ) (4.15)

7 A0 X\ #0 (Ai +mg)(Aj +my)
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Let us now consider the contributions of the zero modes Cyy(t), Con(¥)
to the pseudoscalar (I'" = I'? = ~;5) and scalar (I'" = I'> = 1) correlation
functions. In both cases we obtain the same result:

sy Tr(¢:(Z, )1 (0,0) ¢;(0,0)¢! (%, 1))
=222

2
mq

. (4.16)
Z A=0X;=0

i T
oS =3 3 3 TOENAG0 @ 0elE0)

& A=0X;#0 fI()\]_'_mQ)

where in the scalar case we have used eq. (4.8). The terms that contain
the zero modes contribution are proportional to 1/m? and 1/m, and hence
diverge in the chiral limit m, = 0. Since in our simulation setup the sea
quark mass is rather light, at the matching mass also the valence quark mass
is light and therefore the zero modes contribution can be important.

However, since the zero mode contribution to the pseudoscalar (Cpp(t))
and scalar (Cgg(t)) correlation functions is equal, it is possible to exactly
cancel this contribution by taking the difference of these two correlators.
This was first suggested by Blum et al. [114]. We define:

Cpp_ss(t) = Cpp(t) — Css(t). (4.18)

This is a valid correlation function with a proper transfer matrix decompo-
sition. Therefore, it should be possible to extract the pion mass and decay
constant from this correlation function. Cpp_gg(t) is contaminated by the
scalar excitation. However, since the lightest scalar meson is much heavier
than the lightest pseudoscalar meson, if we look at large enough time, the
contribution of the scalar states should be absent and we can indeed extract
the pion observables of interest.

In a mixed action setup there is an additional complication. The scalar
correlator is particularly vulnerable to the double pole contribution, which
has already been discussed in Section 4.1. The residue from this double
pole does not vanish even in the case of matched pion masses. Hence, by
considering the correlation function Cpp_gg(t) we exchange the contribution
of the zero modes for a unitarity violation related to the mixed action setup.
However, this is an effect of O(a?), which can be considered to be an extra
discretization effect, in addition to the standard O(a?) scaling violations
present in all observables. Therefore, such unitarity violations vanish in the
continuum and they should not affect the extrapolation of the pion decay
constant (computed from Cpp_gs(t)) to the continuum.

The effect of the zero modes on the pion mass can be observed in Fig.
4.11, which shows the bare overlap quark mass dependence of the pion mass
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Figure 4.11: The comparison of the quark mass dependence of the pion mass
extracted from PP and PP-SS correlators for 5 = 3.9 ensemble.

extracted from the pseudoscalar (PP) correlator and the PP-SS correlator
Cpp_ss(t). As expected from considerations in this section, the effect is the
most pronounced for small quark masses, while for larger masses the pion
mass extracted from both correlators is the same (up to statistical error). The
pion mass extrapolated to the chiral limit (m, = 0) is zero, when the effects of
the zero modes have been subtracted. This is in accordance with the leading-
order prediction of Partially Quenched Chiral Perturbation Theory —m?2 o
my |120, 121]. Also, the shape of the quark mass dependence of the pion mass
agrees with this prediction — in this range of masses the curvature implied
by the next-to-leading order prediction is only slightly visible and, especially,
there is no evidence for chiral logarithms o< m,logm,. An extrapolation to
the chiral limit in the PP case yields a non-zero value. The observed shape
could be mistaken for a chiral logarithm relevant for small quark masses,
but it is entirely due to the chiral zero modes, i.e. it is a finite-volume effect.
The plot also shows that the zero modes have a significant effect with respect
to the matching mass, which moves towards larger values of the bare quark
mass.
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Figure 4.12: The comparison of the quark mass dependence of the pion decay
constant extracted from PP and PP-SS correlators for g = 3.9 ensemble.

We also show the influence of the zero modes on the quark mass depen-
dence of the pion decay constant (Fig. 4.12). As for the pion mass, the effect
is significant for small quark masses and the PP-SS curve lies below the PP
one. This effect brings the decay constant towards the twisted mass value.
However, since the matching mass increases, the effect at the matching mass
is rather small (for = 3.9) and hence an investigation of the continuum
limit scaling is needed to check whether the zero modes are enough to ex-
plain the difference between the continuum limit values of the pion decay
constant. This will be performed in the following section.

4.3.3 Comparison of correlation functions

To illustrate the effects of subtracting the zero modes in two different ways,
we plot in Fig. 4.13 the following correlation functions: PP, SS and PP-
SS. We also plot the PP and PP-SS correlation functions for one chosen
gauge field configuration. Ensemble parameters are: [ = 3.9, L/a = 16,
ap = 0.004, am, = 0.004, i.e. we choose the lightest available valence quark

93



1 T T T T T T T
% PP —e—
SS —A—
PP PP-SS —a—
08 | é averages i
i
SS é
06 | 3 ¢ _
o
4 * %
PP-SS %X e ®
0.4 i ® o]
- L 3
= 4 4
(@] 4 i @
4 ;3 % i
02 A 2 2
02 [ T T P;D T T T T I_
° single conf.
0 | PP-SS i
A
0.1 | A () i
N 0go09% o
-0.2 | 8
A44aaa, : 2
0 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
_0.4 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
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doscalar (PP), scalar (SS), the difference of PP and SS (PP-SS). The inset
shows the PP and PP-SS correlation functions on a single configuration.
Parameters: = 3.9, L/a = 16, ap = 0.004, am, = 0.004.

mass to have the biggest contribution of the zero modes.
Let us summarize the conclusions from this plot.

e The PP-SS correlator has a smaller slope (with respect to the PP cor-
relator) in the plateau region — thus it corresponds to a smaller pion
mass. This was already observed in Fig. 4.11 (the valence quark mass
in Fig. 4.13 corresponds to the leftmost pair of points in Fig. 4.11).
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From Fig. 4.11, one can also conclude that the effect of the change of
slope in the plateau region is smaller for larger valence quark masses.
This is in accordance with our previous considerations the leading
quark-mass dependence of the zero-mode contribution to the PP and
SS correlators is O(1/m2).

e The matrix element of the PP-SS correlator [(0|P|7)|pp_gs is largely
reduced with respect to the PP correlator matrix element |(0|P|m)|.
However, this leads to a relatively small decrease in the pion decay
constant (observed in Fig. 4.12), since the decrease in this matrix
element is almost compensated for by a decrease in m?2, which comes
in the denominator of eq. (1.95).

e The effect of the zero modes on a single configuration consists in pro-
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ducing an unphysical peak at the timeslice (¢t = 12 in Fig. 4.13) that
corresponds to the location of the zero mode. This peak is removed in
the PP-SS correlator.

We also consider (Fig. 4.14) the case of a heavier valence quark mass
am, = 0.04 (the remaining parameters are the same). The plot shows only
the large-time behaviour of the correlation functions.

e The SS correlator is consistent with zero. For ¢ € [10, 16], there is no
contribution from the scalar excitation, as the scalar meson is too heavy.
Since the scalar correlator is zero, also the contribution of the zero
modes is negligible and hence the PP and PP-SS correlation functions
lead to the same result.

e For this value of quark mass, one also expects a negligible contribution
from the double pole to the scalar correlator eq. (4.2) implies that
for large My, this contribution is very small.

e Hence, the pion mass and decay constant extracted at this mass from
the PP /PP-SS correlator do not seem to be contaminated by either the
contribution of the zero modes or unitarity violations.

The analysis of this subsection implies that, as expected, the role of the
zero modes decreases as the quark mass is increased. In the next section
we will use the PP-SS correlation function to perform an analysis of the
behaviour of the pion decay constant with the zero modes contribution re-
moved. In particular, we would like to check its continuum limit — if the zero
modes are indeed responsible for the mismatch of continuum limits observed
in Fig. 4.10, their removal should lead to the same continuum limit of the
pion decay constant as the one of the unitary approach.

4.4 The role of the zero modes — small volume,
light sea quark mass

We would now like to perform a continuum limit scaling test of the pion decay
constant extracted from the PP-SS correlator Cpp_gs(t). We will proceed
in the same manner as before, i.e. we start by finding the matching mass
for each ensemble. The results of the matching procedure are shown in Fig.
4.15 and the bare overlap quark masses that lead to the same pion mass as
in the unitary setup are the following:

e =39 amn=0.011(1),
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Figure 4.15: Matching the pion mass (extracted from the PP-SS correlator)
for three values of the lattice spacing, corresponding to § = 3.9, 4.05 and
4.2.

e 3=14.05 ar =0.006(1),
o 3=42 arh =0.004(1).

In comparison with the PP case, the matching masses are shifted towards
larger values. This is a result of the fact that they were artificially lowered
due to the zero mode contribution.

As already discussed, the pion decay constant curve extracted from the
PP-SS correlation function lies below the one extracted in the PP case. At the
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Figure 4.16: The dependence of the pion decay constant on the bare overlap
quark mass. The dashed lines correspond to the matching quark masses am
(from PP-SS correlator). The solid vertical lines (left of the dashed lines)
show the difference of foveri@? and fMTM (at the matching mass) extracted
from the PP correlator.

same time, however, the matching masses are shifted towards larger values,
which corresponds to an increase in the pion decay constant. The interplay
of these two effects determines the difference between the overlap feverlor
and the MTM pion decay constant fMTM at the matching mass. One can
explicitly compare these differences for different ensembles by looking at Fig.
4.16, which shows the quark mass dependence of the pion decay constant
extracted from the PP-SS correlator. The dashed vertical lines show the
analyzed difference in the PP-SS case, while the solid vertical lines (left of
the dashed lines) show the corresponding matching point difference in the
PP case (the length of the solid lines is exactly the same as the length of the
vertical lines in Fig. 4.7). Crucially, this difference is the most significant
for the 8 = 4.2 ensemble and hence it implies a large shift in the difference
foverlap _ $MTM oxtrapolated to the continuum limit.
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Figure 4.17: Continuum limit scaling of the overlap pion decay constant
(extracted from the PP-SS correlator) at the matching mass and two other
reference values of rom,.

Fig. 4.17 shows the continuum limit scaling of the pion decay constant.
We again take three reference values of rom, ~ 1.5, rom, ~ 1.0 and the
one that corresponds to the matching criterion rgm, ~ 0.85. As before,
for all analyzed values of rom,, we observe good scaling with O(a?) leading
discretization effects. A comparison to the PP case (Fig. 4.8) indicates that
the extrapolated continuum limit value is mostly affected for small rom, and
there is almost no effect for the largest rom,. Also, in all cases the point that
is most affected is the one that corresponds to the smallest lattice spacing
and the one at § = 3.9 practically does not move.

Clearly, such behaviour results from the interplay of various effects in-
trinsic O(a?), unitarity violating O(a?) and the zero mode effects. We can
not disentangle all of these effects, but a possible qualitative explanation for
the observed behaviour can be provided by a working hypothesis that the
method of extracting the pion observables from the PP-SS correlation func-
tion exactly cancels the contribution of the zero modes, but at the same time
introduces the O(a?) unitarity violation related to the double pole contribu-
tion to the scalar correlator. In this way, the effect of the zero modes may
be basically equal for all lattice spacings (as expected for a finite volume
effect), but the unitarity violation effect causes that the pion decay constant
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Figure 4.18: Continuum limit scaling of the difference of the overlap (from
the PP-SS correlator) and MTM pion decay constant at the matching mass.

increases by an O(a?) term. Hence, one might expect that at even larger
lattice spacing, the pion decay constant extracted from the PP-SS correla-
tor at the matching mass would be even larger than the one from the PP
correlator, since then the unitarity violation effect could be larger than the
finite-volume contribution of the zero modes.

The essential question is whether the continuum limit of the pion decay
constant extracted from the PP-SS correlation function agrees with the MTM
continuum limit. Fig. 4.18 shows the differences ro( fovertar — fMTM) for the
investigated lattice spacings and the value extrapolated to a = 0 is consistent
with zero.

Hence, we can conclude that the continuum limit of the pion decay con-
stant computed for two different discretizations of valence quarks is the same,
provided that one takes into account the role of the chiral zero modes of the
overlap operator, i.e. they have to be subtracted from the overlap data in
order to compare the continuum limits.
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4.5 The role of the zero modes — finite volume
effects analysis

4.5.1 Simulation parameters

In order to check the finite volume effects in the current setup, we have
investigated two additional ensembles at the coarsest lattice spacing a ~
0.079 fm, corresponding to § = 3.9 and with the same sea quark mass value
ap = 0.004. The parameters are (including the ensemble at the smallest
volume):

e 16% x 32, L ~ 1.3 fm, 544 configurations,
o 20° x 40, L ~ 1.7 fm, 239 configurations,
o 243 x 48, L ~ 2.0 fm, 435 configurations.

In order to minimize the effect of autocorrelations, for propagator compu-
tations we have chosen every 10th Monte Carlo trajectory (for L/a = 16,
24) or every 20th trajectory (for L/a = 20). In addition, for the L/a = 24
ensemble, we have used the fully linked sources, described in Section 3.4.1.
Thus, only 1 inversion per gauge field configuration is required to construct
the pseudoscalar correlation function. However, in this way it is not possible
to calculate the scalar correlator and hence extract the pion decay constant
from the PP-SS correlator.

4.5.2 Matching the pion mass — PP correlator

Finite volume effects in the quark mass dependence of the pion mass can be
seen in Fig. 4.19. The finite-volume effect corresponding to a change in the
linear extent of the lattice from 1.3 to 1.7 fm is significant and approximately
equal for the overlap and the M'TM case, whereas the effect of going from 1.7
to 2.0 fm is very small in both cases. The only exception to this observation
can be discerned for the lightest valence quark masses, where the decrease
related to the change in volume is noticeable. This is especially meaningful
if the extrapolation to the chiral limit is performed. For L/a = 20 it clearly
gives a non-zero value, which means that the effects of the zero modes are
still very important. In turn, for L/a = 24, the chirally extrapolated value of
m, is much closer to zero, signalling that the importance of the zero modes
effect decreases. However, m, at m, = 0 is still non-zero and therefore one
should expect that the contribution of the zero modes is still non-negligible.
Fig. 4.19 also shows the matching mass values for each volume:
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Figure 4.19: Matching the pion mass for 3 different volumes at a fixed lattice
spacing a =~ 0.079 fm.

o Lla=16 am =0.007(1),
e L/a=20—-am=0.007(1),
o L/a=24— ain = 0.008(1).

For all volumes, the matching mass is approximately the same, which is due
to the fact that the finite volume effects (in the pion mass) of overlap and
MTM fermions are very similar.

4.5.3 Pion decay constant — PP correlator

Fig. 4.20 shows the quark mass dependence of the pion decay constant for
three investigated volumes, together with the values in the unitary MTM
setup. The difference in f, at the matching point decreases as the volume
is increased, which is in accordance with the expectation based on the fact
that the zero modes contribution is a finite volume effect. However, the
discrepancy between the overlap and M'TM values for L &~ 2 fm is still rather

102



o L/a=16 OVI(\E/Ir'lI?I\EI’ eeeeMeennd B=3.9 au=0.004
' L/a=20 Overlap
MTM
L/a=24 Overlap =---@---+
0.09 | MTM i
- ‘ eenpmmnmn ?
R S A
LRSS ESSUEREE 22 2%
o Piaaada s MR T D "
0.07 b EEET |
—
0.06 .
0.05 i
1 1 1 | | |
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
am

q

Figure 4.20: The quark mass dependence of the pion decay constant for 3
different volumes at a fixed lattice spacing a =~ 0.079 fm.

large (of order 15+ 5%) and one can suspect that the zero modes still play
a non-negligible (although much reduced) role.

This is further illustrated in Fig. 4.21, which shows the difference in
fr= as a function of the lattice size L/a. One can estimate from this plot
that at L/a = 32 it would be of the order of a few percent, thus signalling
that the contribution of the zero modes is negligible for practical reasons.
This analysis is performed at a non-zero lattice spacing and hence it can not
be expected that the difference in f; goes to zero even in infinite volume
~ at the matching point one expects an O(a?) difference due to different
discretization effects from different sea and valence quarks actions. However,
a test at L/a = 32, which corresponds to L = 2.6 fm is beyond the scope of
this work, since it would require a very computer-time intensive computation.
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4.6 The role of the zero modes — small volume,
heavier sea quark mass

4.6.1 Motivation and simulation setup

We now investigate the effects of the zero modes for a heavier sea quark
mass. The motivation for this test is provided by Fig. 4.22. The solid curve
shows the pion mass dependence of the pion decay constant for the mixed
action setup of overlap valence quarks and MTM sea quarks (the 5 = 4.05,
L/a = 20 ensemble). The corresponding unitary point (ap = 0.003) is
situated below the curve and the vertical distance from this point to the
overlap curve measures the discrepancy between the overlap and MTM pion
decay constants at the matching mass.

The other unitary point corresponds to a heavier sea quark mass (ap =
0.006) and this point lies very close to the overlap curve. Since the depen-
dence of the valence-valence pion mass and decay constant on the sea quark
mass is much smaller than the dependence on the valence quark mass?*, we

4This can be estimated from the formulas of Partially Quenched Chiral Perturbation
Theory [120, 121].

104



045 T T T T T

04 b
0.35 i
< 03f Uhitary MTM .
ap=0.006
0.25 r ‘l’<— Unitary MTM i
ap=0.003
02 B=4.05 L/a=20 -
Overlap valence on MTM sea with ap=0.003
015 . . IMTM valencle on MTM sea —v—
0 05 1 15 2 25 3

(romyp)?

Figure 4.22: The pion mass dependence of the pion decay constant for over-
lap valence quarks on MTM sea. Also shown are two unitary points (MTM
valence quarks on MTM sea), differing only by the sea quark mass. Param-
eters: 3 =4.05, L/a = 20.

can expect that the overlap curve for a heavier quark mass will not move
substantially from its position for ap = 0.003, thus implying that the dif-
ference between the pion decay constant at the matching mass will be much
smaller than the one observed for ap = 0.003.

An explicit computation of the overlap dependence for ap = 0.006 will
also provide a further check of the hypothesis that the zero modes are re-
sponsible for the mismatch in the continuum limit values between the mixed
and the unitary approach. Since the matching mass will be heavier, the con-
tribution of the zero modes will be much smaller. Thus, we can expect a
smaller mismatch in the continuum limit. Furthermore, we can again check
whether the procedure of cancelling the zero modes contribution by taking
the PP-SS correlation function will lead to a consistency between the mixed
and unitary continuum limit values of the pion decay constant. For this, we
will also use ensembles at f = 3.9 and § = 4.2 with a heavier quark mass
which leads to approximately the same sea-sea pion mass as ay = 0.006 in
the case of the 3 = 4.05 ensemble.

Simulation parameters are:
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o 163 x 32, a ~ 0.079 fn (8 = 3.9, ro/a = 5.25(2)), ap = 0.0074, 260

configurations,

e 203 x 48, a ~ 0.063 fm (8 = 4.05, ro/a = 6.61(2)), ap = 0.006, 299
configurations,

o 243 x 48, a ~ 0.051 fm (3 = 4.2, ro/a = 8.33(5)), ap = 0.005, 137

configurations.

In order to minimize the effect of autocorrelations, we have chosen every
16th Monte Carlo trajectory (at 5 = 3.9, 4.2) or every 20th trajectory (at
(3 = 4.05) for inversions with the overlap Dirac operator.

4.6.2 Pion decay constant — scaling test

To perform the pion decay constant continuum limit scaling test, we first
have to find the matching quark masses for each ensemble. For this, we
have found the quark mass dependence of the pion mass. The pion mass has
been extracted from the PP correlator — hence we expect that it might be
contaminated by zero modes effects. It is interesting to compare the quark
mass dependence of the pion mass for the cases of the light sea quark mass
and the heavier one. Superimposing the heavier sea quark mass curves on
the corresponding ones for light sea quark mass, one finds that they are
consistent within statistical error (hence, we don’t show this plot for the
heavier sea quark mass case), i.e. that at most a mild dependence of the
valence-valence pion mass on the sea quark mass can be observed. This is
in agreement with the predictions of Partially Quenched Chiral Perturbation
Theory, i.e. this dependence should be very small.

However, since the sea-sea pion mass changes substantially when the sea
quark mass value is increased (it is rom, ~ 1 for all cases), there is a sub-
stantial change of the matching mass values:

e 3=239- ari = 0.015(1),
e 3=14.05 am=0.011(1),
e 3=42 ah=0.009(1).

We now proceed to analyze the quark mass dependence of the pion decay
constant. Again, the curves corresponding to both values of the sea quark
mass for each ensemble are very close to each other. The sea-sea pion decay
constant values are for practical reasons equal for all ensembles and consid-
erably higher than in the case of light sea quark mass. This implies that the
differences at the matching point are much smaller than in the latter case.
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Figure 4.23: Continuum limit scaling of the overlap pion decay constant at
the matching mass — light and heavier sea quark mass.

In Fig. 4.23, we show the results of the continuum limit scaling test for
the matching mass, contrasting the cut-off effects in the case of the two sea
quark masses. Also in the case of the heavier sea quark mass, the leading
discretization effects are O(a?) °. Moreover, they are smaller in the case of
the heavier sea quark mass, i.e. the slope of the lattice spacing dependence
is smaller in this case.

The corresponding scaling plot for the MTM case (only heavier sea quark
mass) is shown in Fig. 4.24. Since we work at maximal twist, the leading
cut-off effects are also O(a?). However, the slope of the fitted line is negative
in this case, as opposed to a positive slope in the case of the light sea quark
mass.

To assess the role of the zero modes for heavier sea quark mass, a similar
analysis has also been performed using the PP-SS correlator to extract the
pion mass and decay constant. Here we just quote the values of the matching
mass for this case:

e 3=39 arh=0.0165(15),
o 3=4.05 ah=0.012(1),

5We have also checked that for other reference values of rgm, the leading cut-off effects
are also O(a?).
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Figure 4.24: Continuum limit scaling of the MTM pion decay constant at
the matching mass. The case of the heavier sea quark mass.
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Figure 4.25: Continuum limit scaling of the difference of the overlap and
MTM pion decay constant at the matching mass. The case of the heavier
sea quark mass, PP and PP-SS correlators.
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o 3=42 ah =0.0095(15).

At these values of the matching masses, the pion decay constant has
been calculated. Again, the scaling test shows that the leading discretization
effects are O(a?).

The essential issue is now to compare the continuum limits of the overlap
and MTM discretization, with the overlap data from both the PP and the PP-
SS correlator. In Fig. 4.25 we plot the difference ro(fovertar — fMTM) hetween
overlap (PP) vs. MTM and overlap (PP-SS) vs. MTM (slightly shifted to the
right for better presentation). The difference ro(fovertar — fMTM) ig consistent
with zero in both cases. However, the subtraction of the scalar correlator still
affects the pion observables, which is especially visible at the coarsest lattice
spacing. This allows us to conclude that the role of the zero modes at the
matching mass corresponding to the heavier sea quark mass is very much
reduced with respect to the light quark mass. It is, nevertheless, still non-
negligible at this sea quark mass and this volume.

4.7 The role of the zero modes — conclusion

In this section, we gather the most relevant conclusions regarding the role of
the zero modes.
We have investigated the role of the zero modes in three contexts:

e fixed volume corresponding to linear lattice extent of L ~ 1.3 fm, fixed
pion mass, corresponding in infinite volume to m, ~ 300 MeV, 3 lattice
spacings — 0.051, 0.063, 0.079 fm,

e fixed lattice spacing a =~ 0.079 fm (fixed § = 3.9), fixed pion mass
m,; ~ 300 MeV, 3 volumes with L ranging from 1.3 to 2.0 fm,

e fixed volume corresponding to linear lattice extent of L &~ 1.3 fm, fixed
pion mass, corresponding in infinite volume to m, ~ 450 MeV, 3 lattice
spacings  0.051, 0.063, 0.079 fm.

The first and third setup allowed us to test the continuum limit scaling
of the pion decay constant and assess the influence of the quark mass on the
contribution of the zero modes. The second setup enabled us to estimate the
volume dependence of the zero modes effects. Clearly, the role of the zero
modes is non-negligible in all of the investigated cases. We have shown that
it is considerably reduced at L ~ 2.0 fm and sea quark masses corresponding
to m, &~ 300 MeV and at L ~ 1.3 fm and sea quark masses giving m, ~ 450
MeV. The analysis of finite volume effects allowed us to conclude that in the
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Figure 4.26: The safe, hazardous and non-safe regions of parameters in phys-
ical units (linear extent of the lattice vs. pion mass) in mixed action simu-
lations with overlap valence and MTM sea quarks. The “safe” region corre-
sponds to parameters for which the effects of chiral zero modes of the overlap
operator are negligible.

case of m, =~ 300 MeV, one can expect that a linear lattice extent of L ~ 2.6
fm would be needed to ensure that the zero modes effects can be neglected.
At the higher pion mass of m, ~ 450 MeV, the corresponding “safe” lattice
volume can be estimated to be around L ~ 2.0 fm.

These conclusions are summarized in Fig. 4.26, which shows our esti-
mates of the parameters that are needed to ensure that one is safe against
the contribution of zero modes. As their role decreases when the sea quark
mass is increased, the linear lattice extent that is needed to simulate in the
safe region also decreases with increasing matching pion mass. We have also
distinguished a region where the zero modes effects are reduced, although
they are still non-negligible (the hazardous region). If the lattice linear ex-
tent is too small with respect to the pion mass, the simulation results may
be strongly contaminated by unsuppressed contribution from the zero modes
(the non-safe region). In this region, one has to be very careful when in-
terpreting the results of simulations certain observables may be largely
affected and a wrong continuum limit may be reached. We have to empha-
size here that the boundaries of the regions are not sharp — the effects of the
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zero modes are clearly observable-dependent. However, the plot may serve
as a hint on the parameter values (lattice size and matching pion mass) that
are needed to avoid the non-physical contributions from the zero modes.

4.8 Explicit subtraction of zero modes

In addition to subtracting the zero modes contribution by constructing the
PP-SS correlator, it is also possible to explicitly compute the zero modes of
the overlap Dirac operator and subtract them from the propagators. We will
use this procedure to cross-check the conclusion about the role of the zero
modes. However, we will also show that this procedure is dangerous and
hence its results have to be interpreted with caution.

4.8.1 Subtraction procedure

The starting point for this analysis is again the spectral decomposition of the
propagator (4.9). The full propagator is obtained from a standard inversion.
In addition, we can construct the propagator coming only from the zero
modes:

¢i(
Z Y +mq : (4.19)

where the sum runs only over the zero eigenvalues. Then, we can subtract S°
from the full propagator, thus arriving at the propagator coming only from
the non-zero modes:

S¥(z,y) = S(z.y) = S°(x, y). (4.20)

The drawback of this method is that the calculation of the zero modes
of the overlap operator is computer-time intensive. We have chosen the
following method for this computation [122|. We construct the operators:

Dy = P.Dy,(0)Py, (4.21)

where Py = (14£75)/2. It can be shown that the spectrum of both D, and D_
is exactly the same for the non-chiral (non-zero) modes, but the chiral zero
modes in the positive (negative) chirality sector occur only in the spectrum
of D, (D_). Clearly, the zero modes of the operators Dy are also zero modes
of the massless Dirac operator D,,(0), due to the Ginsparg-Wilson relation.

In practical computations, we therefore compute a certain number of
eigenvalues of both D+ and D_ and thus we can identify the zero eigenvalues
and their corresponding eigenvectors.
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Hence, we can compute the propagator coming only from the zero modes.
Since the full propagators in our setup are spinors of the form ¥ = D> 1(m,)n,
where 7 are stochastic sources, we have to take it into account by using the
following formula: .

W=D . (422)
N=0 1
Then, we obtain the propagators from non-zero modes by taking the dif-
ference ¥ — W0 and from this object all relevant correlation functions can
be constructed. At the level of correlators, only the part Cyy(t) is thus
calculated (eq. (4.15)), i.e. subtraction of the zero modes at the level of
propagators removes the diagonal contributions Co(¢) and the mixed contri-
butions Con(t), Cno(t) of the zero modes.

In Appendix D we present the results of a free-field test of routines used
to subtract the zero modes at the level of propagators, which confirms that
the subtraction procedure is performed in the correct way.

4.8.2 Effects of explicit zero modes subtraction

An effect of the subtraction procedure on the pion mass and decay constant
(with respect to the PP case) can be observed in Figs. 4.27 and 4.28. For
comparison, also the curves corresponding to the PP-SS case are plotted.

The pion mass extracted from the PP-SS correlator and the PP correlator
with subtracted zero modes (PP subtr.) agree for small quark masses, while
the behaviour of the pion decay constant is very different. At the level of
correlation functions, this results from the fact that the PP subtr. correlator
has a very similar slope to the one of the PP-SS correlator, but its matrix
element is significantly lower.

For larger quark masses (larger than rom, ~ 0.08), the pion masses ex-
tracted from the PP-SS and the PP subtr. correlators are not consistent with
each other the PP subtr. curve changes slope and deviates the more from
the PP-SS curve the larger the quark mass. This is in apparent contradiction
with the expectation that explicit subtraction of zero modes removes the con-
tribution of these modes, since at larger quark mass values this contribution
tends to zero and the PP subtr. curve should converge to the PP (and PP-
SS) curve. Such behaviour of the pion mass from the PP subtr. correlator
provides a warning about the explicit subtraction method. It was observed
before in quenched studies with the fixed point Dirac operator, which is an-
other variant of a chirally improved lattice Dirac operator. The studies by
Hauswirth |123] and Gattringer et al. [124| obtained a similar picture — the
pion mass at small quark mass is approximately the same from the PP-SS
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and the PP subtr. correlator, while at larger quark masses the PP subtr.
correlation function leads to much smaller pion masses than ones obtained
from the PP and PP-SS correlators (which tend to agree at quark masses for
which the effects of zero modes are negligible).

This conclusion is further confirmed by Fig. 4.29, which shows the effec-
tive pion mass plateaus from the PP subtr. correlator, for two quark masses
— the matching mass (upper plot) and a significantly heavier mass (lower
plot). The plateau observed for the matching mass looks rather normal,
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which means that the shape of the correlation function is the one expected
from the spectral decomposition (1.83). However, for the heavier quark mass,
there is no plateau (this plot can be compared to Fig. 4.5, which shows the
same quark mass, but the effective mass is extracted from the (unsubtracted)
PP correlator). This implies that the PP subtr. correlation function might
not be a sum of exponential functions, but rather a sum of power func-
tions. This results from the fact that explicit subtraction of zero modes is a
non-local procedure, i.e. it can modify the simulated theory in a non-local
way, thus leading to unphysical effects in the correlation functions, which
causes that the spectral decomposition (1.83) is not valid. It also implies
that the pion mass values obtained from the PP subtr. correlator are not
meaningful at high values of the quark mass. However, since there is no
fundamental reason why different quark masses should lead to qualitatively
different behaviour of the correlation functions, we can not be sure that even
at a relatively small quark mass (such as the matching mass) the subtraction
procedure is valid.

The above discussion leads to a conclusion that explicit subtraction of
zero modes is a dangerous hand-made procedure, which may lead to uncon-
trollable unphysical effects in the extracted observables. However, since we
have observed the consistency between the pion masses from the PP-SS and
PP subtr. correlators (for relatively small quark masses), we may assume
here as a working hypothesis that at the matching mass the explicit sub-
traction procedure is valid, i.e. that the unphysical effects of subtraction are
small. This is justified by the fact that the effective mass plateau for the
matching mass does not show the pathology observed at the larger quark
mass.

To conclude this subsection, we show in Fig. 4.30 the scalar correlation
function with explicitly subtracted zero modes (SS subtr.) for two values
of the valence quark mass — the lightest considered mass and the matching
mass. The plot shows that the dominant contribution to the full SS correlator
comes from the zero modes (the SS subtr. curve for am, = 0.004 should be
compared to the full SS curve at the same quark mass Fig. 4.13). Moreover,
after the zero modes are subtracted, the scalar correlator is negative, which
may be attributed to the unitarity violation effect discussed in Section 4.1.
We have also hypothesized in Section 4.4 that this effect influences the pion
decay constant extracted from the PP-SS correlator. This would also explain
the difference in f, extracted from the PP-SS and PP subtr. correlators the
latter does not have the enhanced unitarity violation effect from the scalar
correlator. This effect will be investigated further in the next chapter.

In the next subsection we will use the PP subtr. correlation function to
extract the pion decay constant and perform its continuum limit scaling test.
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Figure 4.30: The SS subtr. correlation function (SS with explicitly subtracted
zero modes). Parameters: 8 = 3.9, L/a = 16, apu = 0.004, 2 valence quark
masses: am, = 0.004, am, = 0.011 (matching mass).

The results will not be contaminated by the zero modes contribution, but
we again emphasize that they have to be interpreted with caution, due to
the fact that the subtraction procedure is not clean from the field-theoretical
point of view.

4.8.3 Pion decay constant — scaling test — PP subtr.
correlator

We again begin by finding the matching mass for each ensemble. The results
of the matching procedure are shown in Fig. 4.31 and the bare overlap quark
masses that lead to the same pion mass as in the unitary setup are:

o 3=3.9— ah =0.0115(15),
o 3 =4.05— ah = 0.0065(15),
o 3=42 ah =0.0055(15).

These matching masses are consistent with the ones obtained from the PP-
SS correlation function, confirming again the conclusion that these methods
give consistent results for small quark masses.
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Figure 4.31: Matching the pion mass (extracted from the PP subtr. corre-
lator) for three values of the lattice spacing, corresponding to = 3.9, 4.05
and 4.2.

The curves that show the quark mass dependence of the pion decay con-
stant extracted from the PP correlator with explicitly subtracted zero modes
(PP subtr.) lie well below the corresponding curves for the PP and the PP-
SS case (Fig. 4.32). This effect has already been discussed in the previous
subsection. In comparison with the PP case, the values of the pion decay
constant at the matching mass are very much reduced, which is shown in the
plots by vertical lines — the dashed ones correspond to the difference in the
pion decay constant in the PP subtr. case and the solid ones to the PP case.
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Figure 4.32: The dependence of the pion decay constant on the bare overlap
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show the difference of foveri@? and fMTM (at the matching mass) extracted
from the PP correlator.

Again, the influence of zero modes cancellation is relatively the largest for
g =4.2.

Fig. 4.33 shows the continuum limit scaling of the pion decay constant for
three reference values of rom, ~ 1.3 (here we take the highest value available
for the 8 = 3.9 ensemble), rgm, ~ 1.0 and the one that corresponds to the
matching criterion rgm, ~ 0.85. As in the previous cases of the PP and
the PP-SS correlation functions, we observe good scaling behaviour for all
analyzed values of rom,, with O(a?) leading cut-off effects.

Moreover, the continuum limit of the pion decay constant extracted from
the PP subtr. correlation function agrees with the MTM continuum limit,
which is shown in Fig. 4.34. Therefore, both methods of subtracting the
zero modes lead to a consistent continuum limit value, which is the one of
the unitary approach. This is a strong hint that the zero modes are indeed
responsible for the observed behaviour of the pion decay constant extracted
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Figure 4.33: Continuum limit scaling of the overlap pion decay constant
(extracted from the PP subtr. correlator) at the matching mass and two
other reference values of rom,.

from the PP correlator, i.e. for the wrong continuum limit value of this
observable.

However, we have to emphasize again that the results of the explicit zero
modes subtraction procedure have to be treated with caution. The consis-
tency between both methods is a hint that the pathological effects of the
hand-made subtraction procedure are not very large at the matching mass,
but this method of cancelling the zero modes contribution is not recom-
mended, since there is no systematic way to control the potential non-physical
effects.

A clearly safer procedure to remove the contribution of the zero modes
is the one with the PP-SS correlation function. This method does not suffer
from the aforementioned effects, since no modification at the level of propa-
gators is made. In this way, both the PP and SS correlation functions have
the proper spectral decomposition and, as we have shown, the contribution of
the zero modes is exactly cancelled in the correlator difference. The price to
pay, however, is that the scalar correlator may introduce enhanced unitarity
violations coming from the double pole contribution specific to non-unitary
approaches (quenched, partially quenched and mixed action theories). On
the other hand, such effects are O(a?) lattice artefacts and hence should
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the PP subtr. correlator) and MTM pion decay constant at the matching
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not affect extrapolations to the continuum limit. This effect will be further
analyzed in the next chapter.
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Chapter 5

Various further results

In the previous chapter we have performed an analysis of the continuum
limit scaling of the pion decay constant. We have discussed the role of the
zero modes in a mixed action setup of chirally-symmetric valence quarks and
non-chirally-symmetric sea quarks. To cancel the non-physical contribution
of the zero modes we have used the PP-SS correlation function and we have
hypothesized that while this correlator correctly removes the zero modes
contribution, it also introduces enhanced unitarity violations. In this chapter
we will analyze this effect. We will also present some additional results
regarding the continuum limit scaling of baryon (nucleon and delta) masses,
as well as some topological aspects.

5.1 Unitarity violations

In this section we attempt at an analysis of the unitarity violation described
in Section 4.1. We begin by illustrating this effect more clearly, taking as
an example the behaviour of the pion decay constant at one lattice spacing
a =~ 0.079 fm. Finite volume effects in f, extracted from the PP correlator
were analyzed in Section 4.5. We now show the outcome of the analogous
analysis for the PP-SS correlation function.

5.1.1 Motivation

We have remarked earlier that the computation of propagators for the L/a =
24 ensemble was done with fully linked stochastic sources, which means that
there was only 1 inversion per gauge field configuration and thus it was not
possible to compute the scalar correlator for this volume. However, at the
earlier stage of this project this ensemble was partly analyzed using point
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Figure 5.1: Matching the pion mass (from the PP-SS correlator) for 3 differ-
ent volumes at a fixed lattice spacing a =~ 0.079 fm.

sources (with 54 independent gauge field configurations and 12 inversions
per configuration) [93] and in this part of the work we use the correlation
functions computed at that stage, including the scalar correlation function.
This enables us to perform the finite volume effects test also for the PP-SS
correlator.

Fig. 5.1 shows the quark mass dependence of the pion mass extracted
from the PP-SS correlator. With this method of computing the pion mass,
the linear extrapolation of m2 to the chiral limit gives a value consistent with
zero for all three volumes, thus indicating that the contribution of the zero
modes has been cancelled.

The matching mass values are for each volume:

e L/a=16 - am = 0.011(1),
e L/a=20—-am=0.009(1),
o Lja=24 ain=0.008(1).
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With these values, we can compare the pion decay constant at the matching
mass from the PP and the PP-SS correlator.

The comparison of the pion decay constant at the matching mass is shown
in Fig. 5.2. The subtraction of the zero modes by means of taking the PP-
SS correlation function has very little effect for all volumes. However, in the
previous chapter, we have shown that the effect of the zero modes is present
in the pion decay constant and since we observe no effect on this observable
when taking the PP-SS correlator values, we can conclude that there must
be two competing effects emerging when taking the difference of PP and SS
correlation functions:

1. removal of the zero mode contribution (finite volume effect) — decreases
the value of f,

2. contamination by the unitarity violation (O(a?) effect) increases the
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value of f.

Our analysis suggests that these two effects roughly compensate each other
at § = 3.9, while the zero modes removal effect dominates the unitarity
violation effect at § = 4.05 and g = 4.2. We will now proceed to explicitly
investigate the unitarity violation effect.

5.1.2 Small volume analysis

For convenience, we rewrite here the formula for the scalar correlation func-
tion at the matching mass:

Bg 6—2Mvvt

C2I3 M3,

Css(t) o (v +vss — 27vs) a’t. (5.1)

The low-energy constants yyy = yys = 0, due to exact chiral symmetry
in the valence sector [110], but vss is non-vanishing, since the sea Dirac
operator is not chirally-symmetric.

Formula (5.1) implies that the scalar correlation function for the matching
quark mass can become negative at large times (provided that vss > 0).
However, the shape of this correlator is basically the one observed in Fig.
4.13, which shows the § = 3.9 case at a quark mass below the matching
mass. Clearly, this correlation function does not become negative, since
it has a large positive contribution from the zero modes and the unitarity
violation effect is obscured.

In order to analyze the effect predicted by eq. (5.1), we would have to
remove the zero mode contribution from the scalar correlator or work at large
enough volume and quark mass so that this contribution would be negligible.
The latter requires a very computer-time intensive computation and is hence
beyond the scope of the current project. However, such analysis is planned
for the future and would provide the cleanest way of testing the prediction
of eq. (5.1).

In the current project, we therefore have to restrict ourselves to the former
method, i.e. to remove the zero mode contribution from the SS correlator.
This is possible by following the procedure of explicit subtraction of zero
modes at the level of propagators. As we have shown in the previous chap-
ter, this is a dangerous procedure with hard to control systematic effects.
Therefore, the results of this analysis have to be interpreted with caution
and treated as an outlook on this kind of analysis, which will be later per-
formed in a clean setup of large volume and large enough quark mass, so
that the zero mode effects will be negligible. An alternative approach could
consist in using only configurations in the trivial topological sector, which are
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not contaminated by zero modes effects. However, the number of available
configurations in this sector is too small to allow for meaningful fits of eq.
(5.1).

Fig. 4.30 shows that after the zero mode contribution is removed, the
scalar correlator at the matching mass becomes negative indeed. We have
also checked that the SS correlator on topologically trivial configurations is
negative at large time (the error bands are too large to perform fits of eq.
(5.1), however, the conclusion about the sign of the correlator is unambigu-
ous), which confirms that the unitarity effect is really present in our mixed
action setup.

Our strategy is the following. We use three small-volume ensembles whose
parameters are given in Section 4.2.1 and explicitly subtract the zero modes
at the level of propagators, as described in Section 4.8.1. In this way, we
obtain for each ensemble the SS subtr. correlator at the matching mass.
Then, we fit eq. (5.1) to the lattice data.

Specifically, we write this equation as:

Csg(t) =22 —yt e 2Mvvt, (5.2)
where we have defined a parameter :

Bjivss

72(MVVL)3 Fa?. (5.3)

0,2

v

Since the temporal extent of the lattice is finite and equals T for each en-
semble (with periodic boundary conditions in time), the fitting formula that
we use reads:

CSS(t) tlgge — (t €—2Mvvt + (T - t) 6—2MVV(T—t)) ) (5_4)

The parameters that we fit are v and the pion mass My . The definition
of the parameter ~ implies that v should have a quadratic dependence on
the lattice spacing, since By and ~ygg are low-energy constants and My L is
approximately the same for each ensemble.

The fit for the ensemble at the coarsest lattice spacing (8 = 3.9) is shown
in Fig. 5.3. The fitting interval is ¢ € [9, 23] and in this interval the fit repre-
sents a very good description of lattice data. Qualitatively similar behaviour
is observed also in the 3 = 4.05 and § = 4.2 cases.

One of the fitting parameters is the pion mass My, Its values extracted
from the fits can be compared with values of the matching pion mass (known
precisely from the maximally twisted mass PP correlator). This provides a
consistency check for the fits. In all cases the fitted values of My are around
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Figure 5.3: The SS subtr. correlation function at the matching mass. The
solid line represents the fit of eq. (5.4).

2 standard deviations below the matching pion mass. This is a reasonable
agreement, taking into account the unknown systematic effect related to the
subtraction procedure.

The fitting parameter v has a few sources of uncertainties, related to:

1. statistical errors in Cgg(t) (error bars in Fig. 5.3),

2. the choice of the fitting interval — to estimate it we have performed
several fits with different fitting intervals,

3. errors of the matching procedure to estimate it we have performed
fits not only for the matching quark masses, but also for quark masses
differing in lattice units by £0.001 (which corresponds to the error in
the matching mass),

4. the fact that the product My L is not exactly matched for all ensem-
bles,

5. unknown values of the renormalization constant Zg of the scalar current
we assume that Zg is equal for all ensembles,

6. an unknown systematic error introduced by the zero modes subtraction
procedure.
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Figure 5.4: Continuum limit scaling of the fitting parameter ~, defined by
eq. (5.3).

Fig. 5.4 shows the fitted values of . The errors on each value include
sources 1-4 from the above list of uncertainties. The error related to the
unknown value of Zg should be rather small compared to the overall size of
the error from sources 1-4. We have not tried to estimate the error related
to the zero modes subtraction procedure.

We observe good scaling of the parameter v with leading O(a?) cut-off
dependence. The value of this parameter extrapolated to the continuum is
consistent with zero. This result is in very good agreement with the hy-
pothesis that the scalar correlator is influenced by the unitarity violation
effect predicted and analyzed in [107, 108, 109, 110]. It also provides an
explanation for the behaviour described in the previous subsection, i.e. the
seemingly inconsistent with the hypothesis about the role of the zero modes
lack of effect of subtracting the SS correlator at g = 3.9. The unitarity vio-
lations analysis suggests that there are indeed two competing effects in the
PP-SS correlator the zero mode contribution is removed, but the correlator
is contaminated by a unitarity violation originating from an enhanced double
pole contribution. These two effects are roughly balanced at g = 3.9, but at
6 =4.05 and § = 4.2, the finite volume effect of the zero modes cancellation
dominates over the O(a?) unitarity violation effect, which is smaller at these
lattice spacings.
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This interplay of effects also explains the difference between the pion de-
cay constant extracted from the PP-SS and the PP subtr. correlator, since
the latter does not have the double pole contribution of the SS correlator.
However, it has to be remembered that this analysis has been performed with
the unphysical zero modes subtraction procedure and it may suffer from un-
predictable effects. Therefore, this analysis has to be treated with caution.
It provides a plausible explanation of the observed effects. However, in order
to quantitatively analyze the effect of unitarity violations in the scalar cor-
relator and reliably extract the low-energy constant ~vgg, a simulation with
large enough volume and quark mass would have to be performed in order
to have a negligible contribution from the zero modes to the full scalar cor-
relator (without explicit subtraction procedure). In addition, eq. (5.1) was
derived for an infinite volume and hence it would be very advantageous to
have large volume data for the SS correlation function in order to use the
fitting ansatz of this formula in an appropriate way.

5.2 Light baryon masses

In this section, we show the results of a calculation of light baryon masses
in the case of overlap valence and MTM sea quarks, as well as in the uni-
tary setup [112]. Particularly, we would like to compare the overlap and
MTM values at the matching mass and check whether they have the same
continuum limit.

The calculation of baryon correlation functions with stochastic sources
yields an unfavourable noise-to-signal ratio |125|. Therefore, we repeated the
propagator computation using Gaussian smeared point sources, where the
smearing helps significantly to suppress excited state contributions [65, 66].

We again used the small-volume, light-quark ensembles with parameters
given in Section 4.2.1. We report simulation results at two lattice spacings,
corresponding to # = 3.9 (426 configurations) and § = 4.2 (around 370
configurations). The simulations at 3 = 4.05 are on-going.

The example of effective nucleon mass plateaus in the case of § = 4.2 is
shown in Fig. 5.5. The quality of the plateau is the best at the largest quark
mass, but also at overlap quark masses corresponding to the neighbourhood
of the matching mass it is reasonable and allows for the extraction of the
nucleon mass.

The (overlap) quark mass dependence of the nucleon and delta mass is
shown in Fig. 5.6 (8 = 3.9) and Fig. 5.7 (5 = 4.2). We also show the unitary
values (horizontal bands) — the lower one corresponds to the nucleon and the
upper one to the deltas. In the MTM case, the baryons AT and AT are
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Figure 5.5: The effective nucleon mass plateaus for 3 values of the overlap
quark mass. Parameters: § = 4.2, L/a = 24, ap = 0.002.

non-degenerate due to isospin symmetry breaking. However, this is an O(a?)
effect and at the lattice spacings we are working at this effect is consistent
with zero. To be precise, at § = 3.9 we have: ama++ = 0.739(17), ama++ =
0.764(19) and at § = 4.2 we obtain: ama++ = 0.512(9), ama++ = 0.512(10).
Hence, on the plots we only show the values for AT+,

However, we are mostly interested in the comparison of the nucleon and
delta masses at the matching mass. Clearly, at both lattice spacings the
nucleon and delta masses in the overlap case are consistent with the M TM
unitary values. This is further illustrated in Fig. 5.8, which implies that also
the continuum limits of both masses are consistent with each other. Since we
only have the results for two lattice spacings, we do not quote any number
for the continuum limit values.

We conclude that the role of the zero modes for this kind of observables
the light baryon masses — is significantly smaller than in the case of the pion
decay constant. We can not exclude that the values that we have extracted
are still contaminated by the zero modes effects, but they are not large enough
to show at the current level of precision and with only two lattice spacings.
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Figure 5.6: The quark mass dependence of the nucleon and delta mass.
Parameters: § = 3.9, L/a = 16, ap = 0.004.
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Figure 5.7: The quark mass dependence of the nucleon and delta mass.
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Figure 5.8: Continuum limit scaling of the MTM and overlap light baryon
masses (nucleon, delta). The overlap masses are computed at the matching
mass. The MTM vales are slightly shifted to the left and the overlap ones to
the right, for clearer presentation.

In particular, even if the baryon masses are not considerably affected by the
zero modes, the matrix elements of the baryonic correlation functions still
might change significantly, as is anticipated in [124|. Therefore, this issue
will be investigated further in the future |112|. In particular, the role of
the zero modes can be assessed by using different interpolating operators for
baryonic correlation functions, since different operators couple in a different
way to zero modes [124]. Moreover, the explicit subtraction procedure may be
followed and the overlap of the sources and the zero modes may be computed.

However, the present analysis already allows us to conclude that the mag-
nitude of the zero modes effects in different observables may be different and
that some observables may be much more vulnerable to the zero modes con-
tribution (e.g. fr) than some other (e.g. the baryon masses).

5.3 Topological charge and susceptibility

In this section, we report the results of investigation of some topological issues
related to gauge field configurations that we have used. For some of them, we
have computed the zero modes, which allows us to calculate their topological
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Figure 5.9: Monte Carlo history of the index of the overlap operator for
different ensembles. The vertical axis scale is the same for all plots.

charge as the difference of the numbers of zero modes in the negative and
positive chirality sectors (eq. (1.79)), i.e. the index of the overlap Dirac
operator. In practice, zero modes on a given configuration occur only in one
chirality sector or, in other words, the probability of having zero modes in
both sectors for the same configuration is zero [122].

Fig. 5.9 shows the Monte Carlo histories of the index of the overlap op-
erator for four different ensembles of configurations: 8 = 3.9, L/a = 16, au =
0.004; 8 = 3.9,L/a = 16,an = 0.0074; § = 4.05,L/a = 20,ap = 0.003;
B =42 L/a = 24,ap = 0.002; all of them corresponding to linear lattice
extent of L &~ 1.3 fm. The plots indicate that the autocorrelations in Monte
Carlo time are rather not large and different topological sectors are sampled.
The vertical scale on each of the plots is the same and hence it is noticeable
that topological charge fluctuations are the largest for 5 = 3.9 and consider-
ably smaller and comparable to each other for 3 = 4.05 and § = 4.2.

The histograms of the index are shown in Fig. 5.10. To allow for com-
parison, the number of configurations which corresponds to the given index
N (index) has been normalized by the total number of configurations for each
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ensemble N (total) and the axes are plotted in the same scale. We also show
fits to the Gaussian probability distribution:

e —— (5.5)
2ro

where () is the index and o is the only fitting coefficient, i.e. we enforce the
mean of the distribution to be 0, since the probability distribution should be
symmetric with respect to configurations with negative and positive topolog-
ical charge.

The plots lead to the conclusion that the probability distributions of the
index () are approximately Gaussian. However, the quality of the fits is rather
poor — the most frequent value of the index is in two cases at ) # 0 and in
general the symmetry with respect to @) = 0 is not very good. This results
from the fact that the total number of configurations for each ensemble is
too small and an order of magnitude increase in statistics would be needed
to obtain a reliable distribution.
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Figure 5.11: Topological susceptibility for 4 ensembles of gauge field config-
urations. The m, ~ 450 MeV ensemble is slightly shifted to the right for
better visibility.

The fluctuations of the topological charge determine the value of topo-
logical susceptibility x:,, for each ensemble. This quantity can be computed
from eq. (1.81), i.e. as the mean value of the topological charge squared,
normalized by the volume. Alternatively, it can also be determined from the
Gaussian fit (5.5) as the variance %, again normalized by the volume. Even
though the probability distributions are rather far away from Gaussian, the
statistical errors of (%) and of o2 are large and we have checked that both
methods lead to consistent results. In Fig. 5.11 we plot the results of the
former method for three light-quark ensembles with sea quark masses cor-
responding to the pion mass of around 300 MeV and one ensemble at the
heavier pion mass of approximately 450 MeV. However, since the statistical
errors are large, a meaningful extrapolation to the continuum limit is not
possible  one would clearly need more statistics. The same holds true with
regard to the sea quark mass dependence of the topological susceptibility —
the expected increase of x4, for larger quark mass is observed, but it is not
statistically significant.

Therefore, the topological aspects also need to be investigated further in
the future a considerable increase in precision is needed to draw meaningful
physical conclusions.
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Conclusions and prospects

Chiral symmetry is of utmost importance for low-energy properties of QCD.
Therefore, when discretizing QCD on a 4-dimensional space-time grid to ad-
dress non-perturbative phenomena, retaining chiral symmetry in this lattice
version of QCD (LQCD) is an essential element. Hence, chirally-symmetric
fermion discretizations are needed to fully explore the low energy regime of
QCD. A very appealing kind of chiral fermions are the overlap fermions.
However, their use in dynamical Lattice QCD simulations is still a challenge,
since they are very demanding from the computational point of view.

Chiral properties of fermions are especially important in the valence sec-
tor. At the same time, the most expensive part of a simulation is the gen-
eration of gauge field configurations. Hence, a possible way to overcome the
cost problem of dynamical overlap simulations, which at the same time keeps
their good chiral properties, is to follow a mixed action approach where gauge
field configurations are generated using a computationally cheaper fermion
discretization and the overlap operator is used only in the valence sector.

The main aim of this thesis was to investigate a particular mixed action
setup of overlap valence and maximally twisted mass (MTM) sea quarks.
In this way, we could profit from a wide set of gauge field configurations
generated by the European Twisted Mass Collaboration (ETMC).

In particular, we wanted to perform a continuum limit scaling test of
overlap fermions, a study that has not been done before. However, to per-
form such investigation with a typical linear lattice extent of 2 fm very large
computer resources would be required, even if the overlap operator was used
only in the valence sector. Therefore, we decided to employ a small volume
with L ~ 1.3 fm. Such volume is sufficient to test the continuum limit scaling
behaviour. We decided to take the pion decay constant as our main physical
observable to study the lattice artefacts of the overlap discretization. Using a
suitable matching condition of overlap and twisted mass fermions, for which
we have taken the pion mass, and assuming universality, the same contin-
uum limit value for f, should be reached with both kinds of lattice fermions.
We explicitly checked in the free theory that this expectation is fulfilled. We
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clearly observed the O(a?) leading cut-off dependence and demonstrated that
fr agrees in the continuum limit.

However, when moving to the interacting case, we encountered a puzzle
in that the continuum limits of the two lattice fermions used came out to
be inconsistent with each other. It is one of the main results of this thesis
that the solution of this puzzle could be identified as the exact chiral zero
modes of the overlap Dirac operator. Being chiral, this operator admits
zero modes at any value of the lattice spacing. This is in contrast to the
non-chiral twisted mass Dirac operator which does not admit such chiral
zero modes, at least not at our current values of the lattice spacing. In
order to demonstrate that the chiral zero modes are indeed the cause of
the mismatch of f in the continuum limit, we used the fact that the zero
modes couple in an identical way to the pseudoscalar and scalar correlation
functions. Hence, in the difference of these correlation functions (the so-
called PP-SS correlator), the zero modes contribution is exactly cancelled.
Performing now a continuum limit scaling test of the pion decay constant
as computed from the overlap PP-SS correlator, which is not affected by
the zero modes, we obtained indeed consistent continuum limit values for f,
computed from the two fermion discretizations.

We also cross-checked this result by explicitly subtracting the zero modes
at the level of overlap propagators. This further confirmed the picture that
the chiral zero modes need to be treated specially, at least in the small finite
volume used here. However, the modification of propagators by explicit sub-
traction of a part of eigenmodes of the Dirac operator is a field-theoretically
not well defined procedure and may lead to uncontrollable systematic un-
certainties. Therefore, we interpret our findings when subtracting the zero
modes explicitly only as a plausibility check, which however points in the
right direction.

The use of the PP-SS correlator is, in contrast, safe from the field-
theoretical point of view. However, it leads to another difficulty. The sub-
traction of the zero modes from the scalar correlator introduces significant
O(a?) effects related to the enhanced double pole contribution to the scalar
correlation function, as suggested by results from chiral perturbation the-
ory. This effect results from the fact that the sea and valence quarks are
discretized in a different way and thus unitarity is violated at any non-zero
value of the lattice spacing. Although being a discretization effect it vanishes
in the continuum limit, it may render the approach to this limit difficult.

Therefore, the conceptually cleanest way to tackle the zero mode problem
is to avoid the region of parameters where the zero modes contribution is
significant. To find this region, we analyzed the dependence of the zero
mode effects on the lattice volume and the sea quark mass. In this way, we
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determined three regimes of parameters: one that is "safe” against the zero
modes contribution, a "hazardous” and a "non-safe” regime. We consider
the identification of these regions to be the most important result of this
work. It allows to provide parameter values for future simulations where
problems with the zero modes will be completely absent. The situation is
best illustrated in Fig. 4.26. Let us give two explicit examples of the values
of pion masses and lattice sizes for safe simulations:

e at m, ~ 300 MeV, the "safe” linear lattice extent is L ~ 2.6 fm,

e at m, ~ 450 MeV, the "safe” linear lattice extent is down to L ~ 2.0
fm.

Clearly, the identification of safe simulation regions for valence overlap fer-
mions is not only important for extensions of the present work, but also for
other collaborations worldwide who are using overlap fermions in the valence
sector.

Let us finish by giving some directions for further work. We group these
in two areas. The first are possible physics targets with the "safe” simulation
parameters. With our knowledge of these parameters, we plan to:

e compute observables for which good chiral properties of valence fermions
are essential — e.g. the kaon bag parameter By, or the decay K — 7;

e investigate questions that are related to topology, i.e. the computation
of topological susceptibility and the determination of the singlet meson

/

mass 1';

e analyze in the mixed action setup unitarity violations in the scalar
correlator and in mixed correlation functions (with one valence and one
sea quark) — this needs a setup with negligible zero modes contribution
to isolate this effect;

e confront the simulation results with (Mixed Action) Partially Quenched
Chiral Perturbation Theory formulas to extract the corresponding low
energy constants;

e perform a continuum limit scaling test of the pion decay constant (and
other observables) at larger volume in order to check for the size of
quadratic lattice spacing dependence.

Moreover, it would also be interesting to further investigate the role of the
zero modes to reach a better understanding. To this end, we plan to:
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e test alternative matching conditions, different from the matching of
the pion mass. In particular, we plan to compute the necessary renor-
malization constants in order to use the matching condition of equal
renormalized quark masses;

e investigate the role of the zero modes in baryonic observables;

e perform an analysis of topological aspects by explicitly computing the
zero modes.

Summarizing, we believe that the results of this work provide an essential
and so far missing basis for future large scale simulations using mixed actions.
In particular, for our setup of overlap valence and maximally twisted mass sea
quarks we have determined simulation parameters for safe simulations on a
quantitative level. Thus, respecting the limits on the parameters determined
here and performing simulations on large enough lattice volume at a given
pion mass, it will be possible to profit from the good chiral properties of
overlap fermions and obtain precise physical results for quantities that would
be hard to address with non chirally-symmetric versions of lattice fermions.

138



Acknowledgements

First of all, I would like to thank my supervisor Karl Jansen, who introduced
me to Lattice QCD and was always patient in answering all my questions and
sharing his great experience. Thank you for your constant support, many
fruitful and inspiring discussions and the friendly atmosphere that you always
create.

I thank my supervisor Piotr Tomczak who also supported me while I was
working on this project and from whom I learned a lot over many years,
especially about scientific programming and statistical physics.

Very special thanks go to Gregorio Herdoiza for many important and
insightful discussions, as well as for numerous careful cross-checkings of the
results. Thank you for answering a lot of my naive questions and teaching
me the right (patient) attitude to physics problems. Thank you also for the
very pleasant atmosphere of our common work.

I would like to thank all the people with whom I have worked on different
aspects related to this thesis: Vincent Drach, Elena Garcia Ramos, Jenifer
Gonzalez Lopez, Agnieszka Kujawa (who is now my wife), Andrea Shindler.
Thank you for many stimulating discussions and for the nice working atmo-
sphere.

I am also indebted to Karolina Adamiak thanks to whom I met Karl and
came to Zeuthen for the first time.

I thank all the people who contributed to the computer code that I have
been using and who have helped me in the use of this code, especially to:
Remi Baron, Vincent Drach, Luigi Scorzato, Andrea Shindler, Carsten Ur-
bach, Marc Wagner.

I acknowledge useful discussions with: Mariane Brinet, Maarten Golter-
man, Dru Renner, Luigi Scorzato, Stefan Schaefer, Carsten Urbach, Urs
Wenger.

I would also like to thank the Organizers of Les Houches 2009 Summer
School — Modern perspectives in Lattice QCD: Quantum field theory and
high performance computing Laurent Lellouch, Rainer Sommer, Benjamin
Svetitsky, Anastassios Vladikas for making it possible for me to participate

139



in this school and for financial support. I also thank all lecturers at this
school for their very clear presentation of difficult topics that allowed me to
learn many important aspects for this work.

I have also profited a lot from the Lattice Practices workshop in 2008. I
thank the Organizers of this school — Karl Jansen, Dirk Pleiter and Carsten
Urbach.

I acknowledge the use of computer resources of the Leibniz Rechenzen-
trum in Munich and Poznan Supercomputing and Networking Centre. I also
thank the staff of these institutions for technical support.

I thank DESY Zeuthen for hospitality and financial support during my
stays in Zeuthen.

This work was partly financed from Ministry of Science and Higher Edu-
cation grant nr. N N202 237437. 1 also acknowledge financial support from
the Foundation for Polish Science who granted me the START scholarship
(2009, 2010).

Last but not least, I thank my family who supported me over many years

especially my wife Agnieszka and my parents.

140



Appendix A

Wilson gauge action

We show here that the expression for the Wilson gauge action has the right
QCD continuum limit. We will use the Baker-Campbell-Hausdorff formula:

a2
6aA6aB _ 6aA+aB+7[A,B}+O(a3)’ (Al)
generalized to:
02 .
A paB paC paD _ oa(A+B+C+D)+ 4% ([A,BI+[A,C]+[A,D]+[B,Cl+[B,D]+[C.D] )+O(a3)’
(A.2)

setting: A =igA,(z), B =igA,(x+ajr), C =igA,(z+av) and D = igA,(z).
Now, inserting (1.30) in (1.33) and using (A.2), we obtain:
U = 5D |iga(A(2) + A& + af) — Ay(w + ap) = Ay(2)) +

g2a®
2

(I4u(2), Au(@ + af)] = [Au(2), Aulz + ai)] +
~[Au(@), Aul@)] = [A (@ + aft), Ao + ap)] +
Ay (@ + a), Ay (@)] + [Au(w + ap), A(@)]) +

+ o). (A.3)
We Taylor-expand terms like:

A (z+av) = Ay(z) + a0, A,(z) (A4)
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to order a and this implies:

Uppw = €xp [iga(aauA,,(x) — a&,Au(I)) +

g2a2

5 ([Au(x), Ay(2)] = [Au(@), Au(@)] — [Au(z), Au(2)]
—[Ay(x), Au(x)] = [Au(x), Ay (2)] + [Au(), AA%’)]) +

+ 0(a3)] - (A.5)

— exp [iga2 (aMAV(I) — 0,A,(2) + ig[A, (), A,,(:v)]) + 0(a3)] .

From (1.8) and (1.6), the commutator of the gauge fields can be rearranged
as:

[Au(x), Ay (2)] = AD(2) A (2)[ty, ta) = if* A} () Al ()t (A.6)
finally yielding (neglecting O(a®) terms):
Upyw = €xp [z’ga2 (8MA,,(93) -0, A, () — gfbchZ(x)Aﬁ(x)tc)} -

= exp [iga2Fw,] . Ei?;
.8

Expanding to O(a?), we obtain for the Wilson action (1.31):

Sgauge[U] = BZ Z {%Tr Fu(@)® + O(aﬁ)} ; (A9)

z 1<pu<v<4

since O(a?) terms are purely imaginary. Finally, we use Y Zl<u<u<4 =
%Zx Z/W and the fact that Tr(t,t,) = %5(11, to obtain:

Sgauge U] = % Z Z {iﬂw(:ﬂ)2 + (’)(a2)} . (A.10)

T pv
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Appendix B

Tree-level scaling test

B.1 Overlap fermions

We show here explicitly the computation of the overlap Dirac operator in
momentum space, which was given by Liischer [29]. We begin with the
derivation of the kernel operator the massless Wilson-Dirac operator in
momentum space. In position space, this operator is given by:

R 1 i} .
Dwitson = B (%(Vu + V) — arvuvu) ) (B.1)

where we use the notation introduced in Chapter 1. The Euclidean action
can be written as:

S = Z () Koyt (y (B.2)
with:

1
Ky = B Z <7u (Oxtpy = Ox—py) = T Oty + 0y — 202y) ) (B.3)
“w
Using the integral representation of the Kronecker delta:

™ d4p )
Oy = iv(@=y)a B.4
Y /;ﬂ— (27’(’)46 ) ( )

we obtain:

™ d4 )
K,y = / ( w(w y)a [Z( eiPua _e—wua) + (B.5)
N M

(eipﬂa + e—ipﬂa _ 2) )] .
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Substituting now the identities:

et — e~ — 9 sin ap,, (B.6)
e'Pha 4 e~ PRa 9 — 9(cos ap, — 1) = —4sin? %, (B.7)
we obtain:
A pnem)a L . 2 APy
K,,, = 3 (27T)46 Z i, sin ap, + 2rsin - || (B.8)
I

The expression in brackets is the Fourier transform of K,,,, i.e. the Wilson-
Dirac operator in momentum space Dyion(p). Hence, adding explicitly the
identity matrix in Dirac space, we have:

Duion(p) = i3 + 5 5°1. (B.9)
which is expression (1.49) for the Wilson-Dirac operator at m = 0 or expres-
sion (1.45) for the naive Dirac operator, if the Wilson parameter » = 0. One
can also notice that the inverse of this formula immediately gives expressions
for the fermion propagator (1.47) in the naive case and (1.51) in the Wilson
case.

We now set the Wilson parameter » = 1 and then the definition of the
operator A for overlap fermions (1.75) (with s = 0) yields:
a2
A=1—-aDw(p) =1—tay,p, — 5132. (B.10)

Since the massless overlap Dirac operator is given by:

A 1
Do (0) = —(1 - A(ATA)‘1/2>, (B.11)
a
we have to calculate AfA:
a® L\’
ATA = (1 — 5]32) + a? Z VYo PuPo- (B.12)
v
Using now the following rearrangements:
a L\’ o at 9.
(1 - 7p2) =1-—a?p* + - pipg’ (B.13)
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& Vb = a” Y () (B.14)
787 "

o 1 . 4 . ,ap D ) a®
(pu)2 == sin® ap, = s sin 7” <1 sin? 7") :pi (1 — Zpi . (B.15)
n (B.12), we obtain:
20 @ ~2 22 20 a ~4
ATA=1-0a% —I—ZZpupy—l—ap —ZZpu. (B.16)
v p
We can reduce:
a* ~2 52 a' 2 A2
T2 = Z 5 DB (B.17)
v pu<v
In the end, we obtain for the operator AfA:
ATA=1+— Zﬁi 2. (B.18)
u<v

The final form of the tree-level overlap Dirac operator in momentum space
is:

aDoe(p) = 1= (1= iami — % )( Zﬁiﬁi) . (B.19)

p<v

B.2 Creutz fermions

One can show [55] that the free Dirac operator for Creutz fermions can be
written in momentum space as:

. o . a D T
DCreutz(p) =1 Zpu’)/u_lizpiru‘l'mlh (BQO)
B B

where ¥, T, are defined as:

Jo=a'y,, Ty=ay, =aa’y, a=a'b (B.21)
with:

1 1 -1 -1

_ 1 1 —1 —1 1

a=—

R 1 —1 1 —1
35 _35 _35 _3S

C C C C



1 1 -1 -1
15 1 -1 -1 1

1 -1 1 -1 ’
3C 3C 3C 3C

S S S S
where the constants C', R and S are parameters chosen appropriately to
ensure the correct continuum limit of the fermion propagator. One can show

that these values are: C' = 3/4/10, R =2 and S = +1/4/10 or C = 3//14,
R=2y2and S = +,/5/14.

This fermion propagator is:

i 2, (5,0) + () ) v+ m1

SCreutz(p) = ) ) (B22)
S (5ul0) +20)) +m2
where:
1 35
Sk(p) = ESk(p) , 5a(p) = %54(]9) (B.23)
S 3
6n) = crld) . @alp) = pealp) (B.24)
with the functions s and ¢ given by
s1(p) = [P1 + P2 — P3 — P , (B.25)
sa(p) = [P1 — P2 — P3 + Pal (B.26)
s3(p) = [p1 — P2 + D3 — Pal (B.27)
sa(p) = [P — P2 — Ps3 —]34] (B.28)
a
ar(p) = =5 [BY+ 95— p5 —pil (B.29)
a .
ea(p) = =5 [PY =95 — 13 +p4} : (B.30)
a .
cs(p) = =5 [PY = P3 +P5 — pal (B.31)
a
p) D) [ Py +p2 +p3 —0—]94} (B-32)
The free Dirac operator for the modification suggested by Borici is:
: . a
Dgorici(p) =1 Zp,ﬂu — i3 Z L.p2+ml, (B.33)
p p
where I'), = >~ a7, with:
1 -1 -1 -1
11 -1 1 -1 -1
-1 -1 -1 1
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The corresponding propagator is:

=122, GuP)vu +mo 1

SBorici(P) = Zu G, (p)2 + m? ) (B.35)
where:
Gr(p) = pr — 7 [} + 53 — 53— 7] (B.30)
Galp) = P — 5 [=53 + 3 — i — 1] (B.37)
Ga(p) = by — 7 [~ — % + 55 — 53] (B.38)
Galp) = pu — T [~ — % — % + 1] (B.39)

B.3 Correlation functions

The starting point for the derivation of the expression for the pseudoscalar
correlation function as a sum over momenta is eq. (2.15):

Cpp(t) ZTr Z,t:0,0) ST(2,t,0,0)). (B.40)

We introduce the Fourier transform of the position space propagator:

S(i,t:0,0) = N3N4 > 8P, pa)e e, (B.41)

D\pa

where N and N, are the number of lattice sites in the spatial and temporal
directions, respectively. This yields:

CPP N6N2 Z Z Z TI" p p4 ST( )) ip-T Zp4te—zp x6_2p4t

T ppa p'.p)

(B.42)

Using the following expression for the Dirac-delta function:

— 1 iW(p—p')-T
57— 1) = 3 3 €T, (5.43)
we obtain:
1

Crp(t) = s 2 2 T (S pa) STE,p)) e’ 7" (B.44)



Now, we insert the matrix decomposition of the momentum space propagator:

4orb

S(p) = Se(p)e, (B.45)
£=0

where 79 = 1 and the index £ runs from 0 to 4 in the case of overlap and
Creutz fermions or from 0 to 5 in the case of Wilson twisted mass fermions.
Hence, we obtain:

NN 4orb . Z
Cpp(t) Nché DD e pa) St pY) )P, (B.46)

P pa,py §€=0

where N; = Tr(1) is the number of Dirac components (i.e. the dimension of

space-time) and N. = Tr(1.) is the number of colours (in the free case the
structure in colour space is trivial).
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Appendix C

Improvements of the HMC
algorithm

The gauge field configurations that we have used for this project were gener-
ated with the twisted mass Lattice QCD program suite (tmLQCD) of Jansen
and Urbach [83]. A detailed description of all the technical details is given
in this reference. Here we shortly discuss a few improvements of the HMC
algorithm that are relevant from the point of view of this thesis.

For some lattice Dirac operators (e.g. Wilson twisted mass), it is possible
to decompose the Dirac matrix into subspaces of even and odd lattice sites,
thus reducing the dimension of the problem. Such technique is called even-
odd preconditioning [126].

Another approach is to use more than one set of pseudo-fermion fields,
i.e. split the fermion determinant into two (or more) parts. One of the
widely used methods of this kind is called the Hasenbusch trick (or mass
preconditioning) [127, 128| and consists in utilizing the identity (example for
the Ny = 2 case with degenerate quark masses p):

| det(D)|? = det(DDT + p2) det (A) : (C.1)
DDt + 2

Such decomposition splits the contribution of the low-frequency and high-
frequency modes of DD' and thus reduces the condition number of the
problem. It also allows for integration of different parts of the action on
different time scales, such that the most expensive part can be simulated on
the coarsest time scale. A general version of an HMC algorithm incorporat-
ing even-odd preconditioning, mass preconditioning and multiple time scale
integration was presented by Urbach, Jansen, Shindler and Wenger [129]. It
was also shown by numerical investigation that such version of the algorithm
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indeed produces a considerable improvement, especially when approaching
the small quark mass limit. This version of the algorithm is the base of the
tmLQCD suite in its part that was relevant for the generation of gauge field
configurations used in this project.

Another important improvement of the HMC algorithm comes under the
name of Polynomial HMC (PHMC). It was introduced and analyzed in [115,
116, 117, 118]. This version of the algorithm can be applied to simulate
non-degenerate quarks. It is used e.g. in the tmLQCD suite in simulations
including the strange and charm quark.

The number of other improvements of the HMC algorithm is very large
and is still increasing. To finalize this appendix we just mention a few more.
For their description we refer to original papers. A wide and important class
of improvements concern integration schemes and come under the name of
multiple time-scale integration. The generalization of the leap-frog scheme
to multiple time scales was originally proposed by Sexton and Weingarten
[130]. Another approach is the so-called second order minimal norm (2MN)
integrator [131, 132]. A variant of the HMC algorithm called Rational HMC
(RHMC) was discussed in [133, 134, 135, 136]. Domain-decomposed HMC
was introduced in a series of papers by Liischer [137, 138, 139] and later
augmented by low-mode deflation |140].
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Appendix D

Tree-level test of zero modes
subtraction

In this appendix, we show the results of a free-field test of routines used to
subtract the zero modes (we will refer to them as “subtraction routines”) at
the level of propagators. The test is performed on a small lattice of 43 x 8,
with quark mass set to am = 0.2. We perform the subtraction in three ways
for the pseudoscalar (PP) and scalar (SS) correlation function, using:

e formula (2.16) for the PP correlator and an analogous formula for SS
(“analytical formula”),

e GWC code with subtraction routines for point sources,
e GWC code with subtraction routines for stochastic sources.

Using notation of Section 4.3, we write the mesonic correlation function
as:

C(t) = Coo(t) + 2Con(t) + Cnn (1), (D.1)

where the first two terms involve the zero modes. Computing correlation
functions from the full propagator (with all modes) leads to C'(t), while if the
zero modes are subtracted at the level of propagators, only the part Cyx(t)
is obtained by performing contractions, i.e. subtraction of zero modes cancels
both the diagonal contribution Cy,(t) and the mixed one Coyy(t).
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D.1 Analytical formula

We remind here the formula for the pseudoscalar correlator (2.16) and gen-
eralize it to include the scalar case:

N.N,
N3Nd2 Z Z Z SE p 2 Sﬁ( ))e i(pa 1”4)t7 (DQ)

P pa,py §=0

where we obtain the pseudoscalar correlator by choosing: s(§) = 1 for all £
and the scalar correlator if we take s(¢) = —1 for £ = 0 and s(§) = 1 for
£=1,2,3,4.

To isolate the contribution of the zero-modes, we have to calculate the
diagonal part Cpo(t) and the mixed part Coy(t):

Coolt) N3N2 Z €)S¢(0,0)5:(0,0), (D.3)

i.e. py = py = p3 = py = p), = 0 and the sum runs only over £ and:

Con(t) 12 NNz > Z it 5(€)Se(0,0)S:(T, ), (D.4)

1 pi#0 €=0

ie. p1 = po = p3 = py = 0 and the sum runs over £ and also over pj (the
latter corresponds to non-zero modes in the mixed term).

The contribution of the zero modes is Cy(t) + 2Con(t) and it is for the
PP and the SS case:

C_PP(t)

0.19336502258508669882530739
0.06854269349589653392840205
0.05598313737623755725891783
0.04864480650410332729371987
0.04623120266243796461225202
0.04864480650410329953814426
0.05598313737623752950334222
0.06854269349589661719512890

~NOoO Ok WNN P O

C_SS(t)
-0.19336502258508669882530739
-0.06854269349589653392840205

-0.055983137376237557256891783

N = O ct
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3 -0.04864480650410332729371987
4 -0.04623120266243796461225202
5 -0.04864480650410329953814426
6 -0.05598313737623755725891783
7 -0.06854269349589661719512890

As we have shown analytically in Section 4.3, the contribution of the zero
modes is the same in both the pseudoscalar and the scalar correlator, up to a
sign, which is a matter of convention. With such convention, the contribution
of the zero modes exactly cancles in the sum Cpp g5 = Cpp + Csg.

We also show the part C'yy(t) of the PP and SS correlators, i.e. the part
with zero modes subtracted:

C_PP(t)

.20704955982560369065481609
.05387552324984687390774241
.01185159451402884034365570
.00436850362097932626292973
.00257470328781685825481063
.00436850362097952055195904
.01185159451402885422144351
.05387552324984717921907418

~N O Ol WN - O
O O OO O O O W

t C_SS(t)

0 -2.89984667245719363037892435
1 0.05349572434485626304390138
2 0.00979860668208997614980760
3 0.00023495453740399879771772
4 -0.00240740901956542491246793
5 0.00023495453740363103634081
6 0.00979860668209000390538321
7 0.05349572434485556221561708

We will use these numbers to compare with the subtraction routines.

D.2 GWC code — point sources

For the test of subtraction routines, the first step was to explictly compute
the zero modes. The number of zero modes in the free-field case is equal to
N.Ng, i.e. there are 12 zero modes in our case of interest, 6 in the positive
and 6 in the negative chirality sector.

153



The test of the subtraction routines consisted in performing the following

steps:

1.

2.

Read in all zero modes.

Compute the propagator ¥° coming only from the zero modes, using
formula 4.22, i.e. taking into account the source. This source has to be
exactly the same as the one used for full inversion (with all modes).

Compute (or read in, if computed before) the full propagator ¥ (with
all modes) with the same point source as in the previous step.

. Construct the non-zero modes propagator ¥V = ¥ — 0,

Use the GWC contraction code to compute the PP and SS correlation
functions from WY, This gives the part Cyy(t) of these correlators.

The result for the correlation functions with no contribution from the zero
modes is:

t
0
1
2
3
4
5
6
7

~N o O WN R O

C_PP(t)

+3.2070498264e+00
+5.3875529993e-02
+1.1851597433e-02
+4.3685038347e-03
+2.5747032913e-03
+4.3685038347e-03
+1.1851597433e-02
+5.3875529993e-02

C_SS(t)

-2.8998469255e+00
+5.3495732753e-02
+9.7986124350e-03
+2.3495604466e-04
-2.4074086241e-03
+2.3495604466e-04
+9.7986124350e-03
+5.3495732753e-02

These numbers are exactly the same as ones obtained with the analytical
formula in the previous section.
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D.3 GWC code — stochastic sources

We follow an analogous procedure in the case of stochastic sources:

1.

2.

Read in all zero modes.
Read in sample r of stochastic source.

Compute the propagator ¥? coming only from the zero modes, using
formula 4.22 with sample r of the source

. Compute (or read in, if computed before) the full propagator ¥, (with

all modes) with the same sample of the source r.

. Construct the non-zero modes propagator UV = ¥, — @0,

Use the “light” contraction code to compute the PP and SS correlation
functions from W¥.

Such procedure is then repeated N, times for different samples of stochastic
noise. Each sample of the source leads to a correlation function Cyy(t). We
have used N, = 600 samples and finally averaged the correlation functions

to obtain:

t C_PP(t) dC_PP(t)

0 3.207395e+00 6.036502e-04
1 5.341456e-02 4.634707e-04
2 1.163657e-02 2.135815e-04
3 4.276079e-03 9.325929e-05
4 2.518227e-03 5.732913e-05
5 4.276079e-03 9.325929e-05
6 1.163657e-02 2.135815e-04
7 5.341456e-02 4.634707e-04
t C_SS(t) dC_SS(t)

0 2.899527e+00 3.025145e-04
1 -5.303857e-02 4.597752e-04
2 -9.629567e-03 1.669140e-04
3 -2.358282e-04 3.102437e-06
4 2.351388e-03 5.740869e-05
5 -2.358282e-04 3.102437e-06
6 -9.629567e-03 1.669140e-04
7 -5.303857e-02 4.597752e-04
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The third column is the standard deviation. Comparing these numbers with
the ones from the analytical formula and from the GWC code with point
sources, we conclude that all results are consistent, up to the statistical error
for the case of stochastic sources. The “light” contraction code uses a different
sign convention for the scalar correlator and hence the sign of Csg(t) is
always opposite to the one from the GWC contraction code and the analytical
formula. Hence, with the “light” contraction code the contribution of the
zero modes is exactly cancelled in the difference Cpp — Csg. Therefore, for
computations in the interacting case we always use Cpp — Cyg.
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