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Introdu
tionThe strong for
e plays a fundamental and 
ru
ial role in nature. It is respon-sible for the formation of all hadrons, whi
h 
an be 
lassi�ed into mesonsand baryons. Examples of the former are the pion and the ρ meson andof the latter the proton and the neutron, whi
h in turn form the nu
lei ofall atoms. The theory of the strong intera
tion is believed to be QuantumChromoDynami
s (QCD). It postulates that all hadrons are not elementarythemselves but they have an inner stru
ture and are built from 
onstituentparti
les. S
attering experiments revealed that the 
onstituents are point-like obje
ts and we now have a large amount of eviden
e that they 
an beidenti�ed with quarks, whi
h are spin-1/2 fermions and whose intera
tionis mediated by spin-1 bosons known as gluons. In order to understand theintera
tion among quarks and gluons and 
omprehend how it 
an lead to theformation of hadrons a new quantum number, 
alled the 
olour 
harge, hadto be introdu
ed. However, all hadrons observed in experiment do not 
arrythis 
olour 
harge, but are 
olourless. This means that the quarks and gluons
an not be isolated and do not exist as free parti
les � they are 
on�ned into
olour-neutral 
omposite hadrons. This fundamental 
on�nement propertyof QCD results from the fa
t that at large distan
es (or at low energies) theQCD 
oupling 
onstant determining the intera
tion strength between thequarks and the gluons is large. However, we know from perturbation theoryanalyses of QCD that at small distan
es (or at high energies) the QCD 
ou-pling 
onstant be
omes small and the quarks behave as almost free parti
les.This property of QCD is 
alled asymptoti
 freedom and has been tested by
onfronting experimental results with perturbative QCD predi
tions. It isone of the most amazing 
hara
teristi
s of QCD that it should des
ribe bothphenomena, 
on�nement and asymptoti
 freedom, simultaneously. Clearly,in order to test this theoreti
al expe
tation, a method is needed where QCD
an be evaluated both in the perturbative regime at small distan
es and inthe non-perturbative regime at large distan
es, where we enter the world ofthe observed hadrons.However, many interesting and relevant phenomena are 
onsequen
es of7



the low-energy properties of QCD. To investigate these issues (e.g. to 
al
u-late the hadron spe
trum and many stru
tural properties of hadrons, likeform fa
tors or parton distribution fun
tions), non-perturbative methodshave to be employed. The only method whi
h ful�lls the above 
riterionand allows for pre
ise quantitative predi
tions is Latti
e QCD (LQCD). It
onsists in dis
retizing spa
e-time and formulating QCD on a 4-dimensionalEu
lidean spa
e-time grid with a latti
e spa
ing a. In this way, the theory isfully regularized and mathemati
ally well de�ned, whi
h led to many 
on
ep-tual and theoreti
al developments in our understanding of QCD. On the otherhand, by using Feynman's path integral formulation of quantum �eld theory,LQCD 
an be interpreted as a kind of a statisti
al me
hani
al system whi
hallows an evaluation with numeri
al methods. LQCD was �rst proposed ina seminal paper by Wilson in 1974 [1℄ and shortly after Creutz indeed per-formed su
h numeri
al simulations using Markov 
hain Monte Carlo methods[2℄. It has to be said that over many years LQCD simulations were performedin unphysi
al setups with mu
h too heavy and even in�nite quark masses.However, in the last few years a tremendous progress has been a
hieved whennew algorithmi
 developments provided a breakthrough in the performan
eof the used simulation algorithms. At the same time, the in
reasing 
omputerpower made it possible to simulate on large latti
es with �ne latti
e spa
ingsand pion masses approa
hing the physi
al pion mass. Latti
e QCD 
om-putations still require very large 
omputer resour
es, parti
ularly for fullydynami
al simulations, but its prospe
ts are steadily improving with a newgeneration of super
omputers in the PetaFlop range. The algorithmi
 and
omputer improvements were also a

ompanied by 
on
eptual developmentssu
h as ones leading to a faster approa
h to the 
ontinuum limit (a→ 0) andthe formulation of non-perturbative renormalization s
hemes.Another important aspe
t of QCD is 
hiral symmetry, i.e. the invarian
eof the theory under the ex
hange of massless left- and right-handed quarks.It is a 
ontinuous symmetry and we believe that it is spontaneously broken innature, thus giving rise to the appearan
e of Goldstone bosons. In QCD weidentify these Goldstone bosons with the pions, whose mass is mu
h smallerthan the mass of any other observed hadron. Assuming su
h spontaneousbreaking of 
hiral symmetry in QCD, many phenomenologi
al investigations
an be performed to interpret experimental data, the most notable of whi
his 
hiral perturbation theory.In prin
iple, LQCD should be able to dedu
e the phenomenon of sponta-neous 
hiral symmetry from the QCD Lagrangian itself and one would nothave to rely on assumptions. However, for many years, it seemed impos-sible to preserve 
hiral symmetry on the latti
e. Only in the late 1990s itwas shown that an alternative approa
h to 
hiral symmetry 
an be followed.8



This was inspired by the so-
alled Ginsparg-Wilson relation, whi
h impliesthat a latti
e fermion 
an be 
hiral, provided that we allow for a latti
e-modi�ed version of 
hiral symmetry. This dis
overy led to the introdu
tionof so-
alled overlap fermions, a kind of latti
e fermion whi
h respe
ts thislatti
e modi�ed 
hiral symmetry. Overlap fermions have many appealingproperties, but are mu
h more 
omputationally demanding than other pop-ular fermion dis
retizations, su
h as Wilson fermions, modi�
ations thereofor staggered fermions. This makes the use of overlap fermions still a 
hal-lenge, espe
ially in dynami
al simulations. As su
h, alternatives to dynami
aloverlap fermions are being looked for to keep 
hiral symmetry. The goal isis to pro�t from the good 
hiral properties of overlap fermions, but at thesame time avoid the high 
omputational 
ost of generating dynami
al over-lap gauge �eld 
on�gurations. One su
h approa
h is 
alled mixed a
tion andit 
onsists in using overlap fermions only as valen
e quarks and for the sease
tor a 
heaper fermion dis
retization is used.The aim of this thesis is to investigate the mixed a
tion setup of overlapvalen
e fermions and Wilson twisted mass sea quarks. One may suspe
tthat using di�erent latti
e fermion formulations in the sea and in the valen
ese
tor leads to unphysi
al e�e
ts. And, as we will show in this thesis, this isindeed the 
ase. As we will demonstrate, in order to have a �safe� simulation,where su
h e�e
ts 
an be avoided, a 
areful tuning of the physi
al setup hasto be performed. It is one of the main goals of this thesis to spe
ify theregime of parameter values (su
h as the latti
e volume and the pion mass)that allows to perform su
h safe simulations. Knowing these parameters willthen allow to address physi
al questions and 
ompute physi
al observableswithout being a�e
ted by possible unphysi
al e�e
ts. Therefore, providingthe parameters for safe simulations opens the way for future simulations with
hirally invariant overlap fermions in the valen
e se
tor to 
ompute importantphysi
al quantities.The outline of the thesis is the following.In Chapter 1, we review the theoreti
al prin
iples of Latti
e QCD. Westart by introdu
ing the 
ontinuum QCD Lagrangian and dis
ussing its sym-metries, parti
ularly the 
hiral symmetry. Next, we show how the 
ontinuumtheory is dis
retized and we introdu
e di�erent fermion dis
retizations, in-
luding the 
hirally-symmetri
 overlap formalism. We also shortly dis
ussthe ways of extra
ting physi
al observables from a simulation.Chapter 2 presents the results of a latti
e spa
ing s
aling test of dif-ferent fermion dis
retizations at tree-level of perturbation theory. For thiswe use overlap, twisted mass and Creutz fermions. We also investigate thee�e
ts of mat
hing of twisted mass and overlap fermions, whi
h is relevantfor 
onsiderations in Chapter 4. 9



In Chapter 3 we dis
uss some of the algorithmi
 and te
hni
al detailsof QCD simulations. We review the HMC algorithm and the te
hniquesused to e�e
tively deal with overlap fermions, in parti
ular the method of
omputation of the overlap Dira
 operator, ways of redu
ing the 
onditionnumber of its kernel and the use of sto
hasti
 sour
es.The main results of the thesis are reported in Chapter 4. First, themotivation and the general idea of a mixed a
tion simulation are dis
ussed.Then, a 
ontinuum limit s
aling test of the pion de
ay 
onstant is performed.This test motivates the analysis of the role of 
hiral zero modes of the over-lap operator. We show that this is a very important e�e
t in the 
ase of a
hirally-symmetri
 valen
e and non-
hirally-symmetri
 sea quarks dis
retiza-tion. This 
hapter 
on
ludes with the aforementioned range of parametervalues that are ne
essary for a simulation safe against these e�e
ts.In Chapter 5 we dis
uss some further results, in
luding the unitarityviolations present in the mixed a
tion setup, light baryon masses 
omputationand some topologi
al aspe
ts that 
an be probed with overlap fermions.

10



Chapter 1Theoreti
al prin
iplesof Latti
e QCD
1.1 The QCD LagrangianQuantum ChromoDynami
s (QCD) is a gauge theory of strong nu
lear in-tera
tions between the 
onstituents of hadrons. The hadrons are a 
lass ofparti
les in
luding baryons (e.g. the nu
leon) and mesons (e.g. the pion).The theory is based on the prin
iple of lo
al gauge invarian
e with a non-Abelian SU(3) gauge group [3, 4℄. The fundamental degrees of freedom ofthe theory are quarks and gluons. The Lagrangian density of QCD 
an bewritten as:

LQCD = Lquark + Lgluon + Lint, (1.1)where Lquark is the purely fermioni
 (quark) part, Lgluon the purely bosoni
(gluon) part and Lint the intera
tion part that 
ouples quarks and gluons.Let us now 
onsider the di�erent parts that 
onstitute the QCD La-grangian. The quark term is1:
Lquark =

Nf
∑

f=1

ψ̄f (x)(iγ
µ∂µ −mf )ψf(x), (1.2)where Nf is the number of �avours2, ψf (x) is the quark (spinor) �eld 
or-responding to �avour f and mf is the f -�avour bare quark mass and the1Throughout the thesis, we employ the Einstein summation 
onvention for Dira
 indi
es(denoted by Greek letters) and SU(3)-group generator indi
es (denoted by Latin letters).2The Standard Model in
orporates 6 �avours of quarks (up, down, strange, 
harm,bottom, top). However, investigating the low-energy properties of QCD with Latti
eQCD methods, one usually restri
ts oneself to the lightest 2, 3 or 4 �avours.11



gamma matri
es satisfy:
{γµ, γν} = 2ηµν , (1.3)where ηµν = diag(1, −1, −1, −1) is the metri
 tensor.The gluon part reads:

Lgluon = −1

4
F a
µν(x)F

µν
a (x), (1.4)where F a

µν(x) is the �eld strength tensor, whi
h is related to the gluon �eld
omponents Aaµ(x):
F a
µν(x) = ∂µA

a
ν(x) − ∂νA

a
µ(x) − gfabcAbµ(x)A

c
ν(x), (1.5)where g is the bare 
oupling 
onstant and fabc are the stru
ture 
onstants ofSU(3), satisfying the 
ommutation relations:

[ta, tb] = ifabctc, (1.6)where ta are the generators of the group SU(3).The purely bosoni
 part of the Lagrangian is invariant with respe
t tothe lo
al gauge transformation. If we want the fermioni
 part to obey thelo
al gauge symmetry as well, we have to introdu
e a term that 
ouples thefermions and bosons, i.e. des
ribes the intera
tion between them. This isthe basi
 building prin
iple of all lo
al gauge theories. It was �rst dis
overedin the 
ase of the ele
tromagneti
 intera
tion, where a term that 
ouplesele
trons and photons is ne
essary to guarantee the lo
al gauge invarian
e.In the 
ase of QCD, the sum Lquark + Lgluon is not invariant with respe
t tothe lo
al SU(3) transformation and the way to guarantee this invarian
e isto introdu
e the intera
tion term Lint that 
ouples the quark �elds ψ andgluon �elds Aµ:
Lint = g

Nf
∑

f=1

ψ̄f (x)γ
µAµ(x)ψf (x), (1.7)where the gluon �eld Aµ is related to its 
omponents in the following way:

Aµ(x) = taAaµ(x). (1.8)Conventionally, one writes the terms Lquark and Lint together, introdu
ingthe 
ovariant derivative Dµ:
Dµ(x) = ∂µ − igAµ(x). (1.9)12



Thus:
LQCD =

Nf
∑

f=1

ψ̄f (x)(iγ
µDµ −mf)ψf (x) −

1

4
F a
µν(x)F

µν
a (x). (1.10)Let us also de�ne the (
lassi
al) QCD a
tion, whi
h is the integral of theLagrangian density over spa
e-time:

SQCD =

∫

d4xLQCD. (1.11)An elegant (and relevant from the point of view of Latti
e QCD) way toquantize a 
lassi
al theory, like the one given by the 
lassi
al QCD a
tion(1.11), is to use the Feynman path integral formalism [5℄. The expe
tationvalue of any observable O is given by:
〈O〉 =

1

Z

∫

Dψ̄DψDA O[ψ, ψ̄, A] eiSQCD[ψ,ψ̄,A], (1.12)with the partition fun
tion:
Z =

∫

Dψ̄DψDA eiSQCD [ψ,ψ̄,A]. (1.13)It is worth to emphasize that all �elds in the path integral are 
lassi
al. Su
hpath integral 
an not be evaluated analyti
ally (ex
ept for few spe
ial 
asesmu
h simpler than QCD) and one has to swit
h to approximate methods.For many theories, like Quantum Ele
troDynami
s (QED), a very su

essfulmethod is perturbation theory. It 
onsists in expanding the path integralwith respe
t to a small parameter (e.g. the �ne stru
ture 
onstant α ≈
1/137.036 in QED) and dropping terms beyond some order. For example, themost re
ent 
al
ulation of the anomalous magneti
 moment of the ele
tron(usually parametrized in terms of the so-
alled g-fa
tor) up to fourth-orderin α agrees with experiment up to 10 signi�
ant digits, making it one ofthe most pre
isely veri�ed predi
tion of physi
s � the ele
tron g-fa
tor is
ge = 2ae+2, where the theoreti
al value: ath

e = 1 159 652 182.79(7.71)×10−12and the experimental one: aexp
e = 1 159 652 180.73(0.28)×10−12 [6℄. However,for perturbative methods to work, there has to be a small parameter withrespe
t to whi
h one expands the path integral. In the 
ase of QCD, the
oupling 
onstant of the 
olour intera
tion depends on energy and one hasto 
onsider two regimes. For high energy or large momentum transfer, theQCD 
oupling 
onstant is small enough for perturbative methods to work. Inthis regime, the intera
tion of quarks and gluons 
an be arbitrarily weak and13



hen
e it is termed asymptoti
 freedom. This property of QCD was dis
overedby Gross, Politzer and Wil
zek. However, in the 
ase of low energy or smallmomentum transfer, this 
oupling 
onstant be
omes of the order of unityand perturbation theory is bound to fail � the strong intera
tions be
omestrong indeed. Quantitatively, the energy s
ale when it happens Λstrong ≈ 250MeV, where the value is not pre
isely de�ned and depends on the 
hosenobservable. Anyway, its approximate value implies that a vast number ofrelevant phenomena in QCD, su
h as the 
on�nement of quarks and gluonsinto hadrons, happen in the non-perturbative regime. Thus, one needs non-perturbative methods, su
h as Latti
e QCD, whi
h is the only known methodof extra
ting quantitative predi
tions about the low-energy regime of QCD.This approa
h 
onsists in dis
retizing the QCD path integral. In this way,one obtains a fully regularized and well-de�ned theory, whi
h 
an be studiednumeri
ally, but also analyti
ally � the dis
retized version of QCD enabledmany relevant 
on
eptual developments and led to important insight into thenature of strong intera
tions.However, the os
illating exponential eiSQCD [ψ,ψ̄,A] renders the numeri
alevaluation of the QCD path integral unfeasible from the pra
ti
al point ofview. Fortunately, integrals like (1.12) are tra
table, if one swit
hes fromMinkowski spa
e-time with metri
 tensor ηµν with signature e.g. (+ −−−)to Eu
lidean spa
e-time with signature (++++). This is a
hieved by analyti

ontinuation (Wi
k rotation of the time dire
tion: t → −iτ). In order thatthe Eu
lidean formulation 
an be 
ontinued ba
k to physi
al (Minkowski)spa
e, the Eu
lidean 
orrelation fun
tions have to satisfy a 
ertain 
ondition,
alled the Osterwalder-S
hrader re�e
tion positivity [7, 8℄. This 
onditionensures that the transition probabilities between gauge-invariant states arenon-negative and the quantum me
hani
al Hamiltonian has only real andpositive eigenvalues [9℄.The QCD Lagrangian density in Eu
lidean spa
e reads [10℄:
LEQCD =

Nf
∑

f=1

ψ̄f (x)(γ
E
µDµ +mf )ψf (x) −

1

4
F a
µν(x)F

µν
a (x) (1.14)and the Eu
lidean gamma matri
es satisfy:

{γµ, γν} = 2δµν , (1.15)where δµν = diag(1, 1, 1, 1) is the Eu
lidean metri
 tensor. The expe
tationvalue of any observable O is then given by:
〈O〉 =

1

ZE

∫

Dψ̄DψDA O[ψ, ψ̄, A] e−S
E
QCD

[ψ,ψ̄,A], (1.16)14



where SEQCD =
∫

d4xLEQCD is the Eu
lidean a
tion and the Eu
lidean parti-tion fun
tion reads:
ZE =

∫

Dψ̄DψDA e−S
E
QCD [ψ,ψ̄,A]. (1.17)The os
illating exponential in (1.12) is repla
ed by the well-behaved fa
tor

e−S
E
QCD and thus the multi-dimensional integral (1.16) 
an be evaluated nu-meri
ally, at least in prin
iple, e.g. with Monte Carlo methods. Formally, thequantum �eld theory de�ned by the partition fun
tion (1.17) 
an be inter-preted as a statisti
al me
hani
al system and the exponential e−SE

QCD playsthe role of a Boltzmann fa
tor.From now on, we will work only with the Eu
lidean formulation of SU(3)non-Abelian gauge theory (QCD) and hen
e we drop the supers
ript E andthe subs
ript QCD that remind us of it.Now, we will dis
uss a few important features of 
ontinuum QCD that arerelevant from the point of view of further 
onsiderations, espe
ially the roleof 
hiral symmetry and spontaneous 
hiral symmetry breaking [10, 11, 4℄.To be spe
i�
, let us restri
t ourselves to two �avours of quarks (u and dquarks). The 
lassi
al QCD Lagrangian 
an be rewritten as:
L = ūγµDµu+ d̄γµDµd+ ūmuu+ d̄mdd−

1

4
F a
µνF

µν
a ≡

≡ Lu + Ld + Lmu
+ Lmd

+ Lgluon, (1.18)where u ≡ ψu and d ≡ ψd are the 
orresponding spinors and we have sep-arated the mass terms in the fermioni
 Lagrangian. We 
an de
ompose thequark Lagrangian further by de�ning left-handed and right-handed quarkspinor �elds:
qR ≡ P+q, qL ≡ P−q, q = u, d, (1.19)where:

P± =
1 ± γ5

2
. (1.20)Eq. (1.19) implies for the 
onjugate spinor �elds:

q̄R = q̄P−, q̄L = q̄P+. (1.21)Thus, the �rst two terms in Lagrangian (1.18) be
ome:
Lu + Ld = ūLγµDµuL + ūRγµDµuR + d̄LγµDµdL + d̄RγµDµdR = (1.22)

=
(

ūL d̄L
)

(

γµDµ 0
0 γµDµ

)(

uL
dL

)

+
(

ūR d̄R
)

(

γµDµ 0
0 γµDµ

)(

uR
dR

)

,15



i.e. the left- and right-handed �elds are de
oupled. However, for the massterms we obtain:
Lmu

+ Lmd
= mu(ūLuR + ūRuL) +md(d̄LdR + d̄RdL) = (1.23)
=

(

ūL d̄L
)

(

mu 0
0 md

)(

uR
dR

)

+
(

ūR d̄R
)

(

mu 0
0 md

)(

uL
dL

)

,i.e. the mass terms 
ouple �elds of opposite 
hiralities.Let us now 
onsider the massless terms Lu and Ld in the Lagrangian.They are invariant with respe
t to the following transformations, respe
-tively:
(

uL
dL

)

→ L

(

uL
dL

)

,

(

uR
dR

)

→ R

(

uR
dR

)

, (1.24)where L and R are unitary 2×2 matri
es, i.e. elements of the (�avour) groupU(2). This means that the Lagrangian Lu + Ld is invariant with respe
t tothe group U(2)L×U(2)R.Let us take a 
loser look at the possible forms of transformations. Themassless quark Lagrangian is invariant under four SU(2)×U(1) ve
tor trans-formations:
(

u
d

)

→ eiαui

(

u
d

)

,
(

ū d̄
)

→
(

ū d̄
)

e−iαui , (1.25)where the subs
ript i = 0, 1, 2, 3, u0 is the identity matrix in �avour spa
e and
ui (i = 1, 2, 3) are �avour SU(2) group generators. There are 4 
onserved(ve
tor) Noether 
urrents jµi asso
iated with these 4 transformations andhen
e 4 
onserved 
harges Qi =

∫

d3xj0
i � the baryon number (i = 0) andthe isospin (i = 1, 2, 3).In addition, there are transformations involving γ5, 
alled 
hiral rotations:

(

u
d

)

→ eiαγ5ui

(

u
d

)

,
(

ū d̄
)

→
(

ū d̄
)

eiαγ5ui. (1.26)Together with transformations (1.25), the massless quark Lagrangian Lu+Ldis invariant under the symmetry group SU(2)R×SU(2)L×U(1)V×U(1)A.However, it 
an be shown that the fermion integration measure in thequantized theory is not invariant under the transformation (1.26) for i = 0,whi
h redu
es the full symmetry to SU(2)R×SU(2)L×U(1)V . This is the so-
alled axial anomaly and it has important 
onsequen
es e.g. for the mesonspe
trum � the 
hiral �avour singlet symmetry 
an not be broken sponta-neously and hen
e there is no Goldstone boson asso
iated with spontaneousbreaking of this symmetry. This implies that the mass of the �avour sin-glet η′ meson does not vanish in the limit of vanishing quark masses (as16



opposed to the mass of the η meson, whi
h is one of the pseudo-Goldstonebosons), but it is related to topologi
al �u
tuations of the QCD va
uum viathe Witten-Veneziano formula [12, 13℄:
f 2
π

2Nf

(

m2
η +m2

η′ − 2m2
K

)

= χtop, (1.27)where fπ is the pion de
ay 
onstant, mx the mass of the x meson and χtopthe topologi
al sus
eptibility, whi
h will be de�ned later.Let us now 
onsider the mass terms of the QCD Lagrangian Lmu
+ Lmd

.They are invariant with respe
t to the transformation (1.25) for i = 0, so thebaryon number is 
onserved also in the massive theory. For i = 1, 2, 3 thetransformation (1.25) is a symmetry only if the quark masses are equal mu =
md. Hen
e, the isospin is 
onserved in the massive theory, but only for mass-degenerate quarks. However, the mass terms Lmu

+ Lmd
are not invariantunder 
hiral rotations (1.26), whi
h is 
aused by the fa
t that the exponentialin (1.26) is the same for the spinor (u d)T and the 
onjugate spinor (ū d̄

),whi
h is, in turn, due to the anti
ommutation relation {γµ, γ5} = 0. Thus,the symmetry of the quantum QCD Lagrangian is broken to SU(2)V×U(1)Vin the mass-degenerate 
ase and to U(1)V×U(1)V if mu 6= md.In the 
ase of arbitrary number Nf of quark �avours, the analysis iseasily generalized (the matri
es ui are now the Nf ×Nf identity matrix and
N2
f −1 generators of the �avour group SU(Nf )) and the full symmetry of thequantized massless QCD Lagrangian is SU(Nf )R×SU(Nf )L×U(1)V , whi
his redu
ed to SU(Nf )V×U(1)V in the mass-degenerate 
ase and further toU(1)V × . . .×U(1)V (with Nf fa
tors U(1)V ) in the 
ase of di�erent quarkmasses. Thus, in the latter 
ase, the only exa
t symmetry is the baryonnumber 
onservation.However, sin
e the isospin symmetry is only slightly broken for the lightesttwo quarks, it is often treated as exa
t3, while the heavier quarks are treatedseparately. Moreover, sin
e the up and down quarks are so light, 
omparedto the heavier quarks (mu ≈ md ≈ a few MeV, whereas already ms ≈ 100MeV), the full symmetry of the massless Lagrangian with Nf = 2 �avoursSU(2)R×SU(2)L×U(1)V remains an important approximate symmetry andis the basis of Nf = 2 
hiral perturbation theory (χPT). At low energy,the quarks and gluons are 
on�ned into hadrons and hen
e one 
an de�nean e�e
tive �eld theory, in whi
h the fundamental degrees of freedom arenot quarks and gluons, but light hadrons. Two-�avour χPT was formulatedby Gasser and Leutwyler [14℄. The Lagrangian of this theory is 
onstru
tedfrom �elds des
ribing the pions (π±, π0) in a way whi
h is 
onsistent with3In Latti
e QCD one usually simulates the lightest two quarks as mass-degenerate.17




hiral symmetry. The 
hiral expansion of su
h Lagrangian 
an then be or-ganized in terms of expansion parameters p/Λχ and mπ/Λχ, where p is themomentum, mπ the pion mass and Λχ = (4πf)2 the typi
al hadroni
 s
ale ≈1 GeV, with f � the pion de
ay 
onstant in the 
hiral limit. There are manyappli
ations of χPT in the analysis of the low-energy regime of QCD, e.g.pion s
attering experiments. Moreover, it is also essential in the analysis ofLatti
e QCD data, sin
e most of 
ontemporary Latti
e QCD simulations areperformed at unphysi
al values of the pion mass4 � hen
e an extrapolationto the physi
al point (physi
al pion mass) is ne
essary and is performed by�tting χPT formulas. What is more, even though the strange quark mass ismu
h larger than the mass of the up and down quarks, it is still relativelysmall 
ompared to the typi
al QCD s
ale of ≈ 1 GeV and the symmetrySU(3)R×SU(3)L×U(1)V of the massless Nf = 3 Lagrangian is also an ap-proximate symmetry and forms the basis of Nf = 3 
hiral perturbation the-ory, whi
h is also of use in the analysis of low-energy QCD experiments, e.g.in
luding the kaons (also in kaon physi
s from Latti
e QCD). Three-�avour
χPT was also introdu
ed by Gasser and Leutwyler [15℄ as a generalizationof the two-�avour 
ase to in
lude the strange quark. The three-�avour La-grangian in
ludes, besides the pion �elds, also other light pseudos
alar meson�elds (of the remaining pseudo-Goldstone bosons � the kaons K±, K0, K̄0and the η meson). Quantitatively, the expli
it breaking of 
hiral symmetryby the quark masses 
an be expressed by the ratios m2

π/(4πf)2 ≈ 0.007 and
m2
K/(4πf)2 ≈ 0.09. In this sense, the expli
it breaking by the strange quarkmass is roughly a 10% e�e
t, while for the lightest quarks it is a < 1% e�e
t.Obviously, it is not possible to treat the Nf = 4 symmetry as approximatelyvalid, sin
e the 
harm quark is already heavy (mc ≈ 1.3 GeV) and the mesons
ontaining it are mu
h heavier than the s
ale Λχ.However, if 
hiral symmetry was broken only expli
itly, we would observedegenerate multiplets of hadrons � e.g. there should be s
alar mesons withmasses very similar to the pseudos
alar ones. Also, in this 
ase one should notexpe
t su
h big di�eren
e between the masses of the pions and kaons. Theexplanation of these phenomena 
an be provided by an assumption that the
hiral symmetry of QCD is not only expli
itly broken by the quark masses,but also spontaneously broken. We speak of spontaneous symmetry breakingif a symmetry whi
h is present at the Lagrangian level is absent in the phys-i
al ground state5. If a 
ontinuous symmetry is broken spontaneously, then4Some 
ollaborations have re
ently started or are preparing simulations at the physi
alpion mass.5A 
lear example is provided by ferromagnets. Even though the Hamiltonian of su
hsystem is invariant with respe
t to a simultaneous �ip of all spins, in an experiment allspins are aligned, i.e. only one of two degenerate ground states must be 
hosen � the18



massless modes, 
alled the Goldstone bosons, appear. In QCD the pions areinterpreted as the �would be�-Goldstone bosons of 
hiral symmetry breaking,where the pre�x �would be�- refers to the fa
t that they are not massless, buthave a small mass (
ompared to the masses of other hadrons) that is due to(small) expli
it breaking of 
hiral symmetry by the quark masses.Also, spontaneous breaking of 
hiral symmetry 
an be observed in themass di�eren
e of parti
les that are 
hiral partners and should have thesame mass, if 
hiral symmetry was exa
t. Sin
e 
hiral symmetry is expli
itlybroken by the quark masses, the experimental mass values of 
hiral partnersshould not be equal, but they should be 
lose to ea
h other, be
ause themasses of the light quarks are so small. This is not observed. For example,the ve
tor mesons ρ and a1 have masses equal to, respe
tively, 770 and 1260MeV, whi
h is a mu
h larger di�eren
e than one would expe
t from the smallexpli
it breaking of 
hiral symmetry [16℄. Another example is the nu
leon andits negative-parity partner, usually denoted by N∗ [11, 17℄. The experimentalvalue of the nu
leon mass is mN ≈ 940 MeV, while mN∗ ≈ 1535 MeV.Spontaneous 
hiral symmetry breaking is signalled by a non-zero value ofthe 
hiral 
ondensate 〈0|ūu|0〉, where |0〉 is the va
uum state. This quantityemerges in 
hiral perturbation theory as an important low-energy 
onstant
B0:

B0 = −f−2〈0|ūu|0〉, (1.28)where the tree-level pion de
ay 
onstant f is another low-energy 
onstant.A well-known relation that involves the 
hiral 
ondensate is the Gell-Mann,Oakes, Renner (GMOR) relation [18℄:
f 2m2

π = −(mu +md)〈0|ūu|0〉, (1.29)whi
h 
an be derived in χPT . As su
h, it is desirable to assess the valueof the 
hiral 
ondensate from experiment � thus the value of B0 would beknown. It has been argued that the best estimate 
an be obtained fromthe low-energy pion-pion s
attering [19, 20℄. However, the 
al
ulation of the
ondensate from empiri
al data requires some model assumptions, i.e. one infa
t has to assume that spontaneous 
hiral symmetry breaking takes pla
e.Therefore, an important 
he
k would be to 
al
ulate the 
ondensate non-perturbatively from �rst prin
iples, without any additional assumptions. Onesu
h way is provided by Latti
e QCD. Indeed, Latti
e QCD simulations 
on-�rm that it is non-zero at zero temperature (a review of results on this topi
 isprovided e.g. in. [21℄). However, there exists a temperature where the 
hiral
ondensate vanishes, thus signalling 
hiral symmetry restoration. Moreover,spin-�ip symmetry is spontaneously broken.19



it has been hypothesized that this temperature is the same as the de
on�ne-ment temperature, i.e. the temperature at whi
h the quark-gluon plasmaforms and quarks and gluons are no longer 
on�ned into hadrons. Up to thepresent day, this issue has not been resolved 
ompletely, but it is a strong hintthat Latti
e QCD 
al
ulations point to the fa
t that both temperatures areequal, up to statisti
al error. This strongly suggests that spontaneous 
hiralsymmetry breaking is related to 
on�nement and 
on�rms that understand-ing 
hiral symmetry and spontaneous 
hiral symmetry breaking is essentialto fully 
omprehend QCD. However, mu
h more pre
ise results are neededto unambiguously resolve this question. In Latti
e QCD investigations ofthese phenomena it is therefore essential to take 
hiral symmetry properlyinto a

ount, i.e. fermions with good 
hiral properties have to be used. Thisis one of the motivations for employing overlap fermions, whi
h will be themain subje
t of this thesis.1.2 Dis
retizing gauge �eldsIn this se
tion and the next one, we show how QCD 
an be formulated in anon-perturbative way on a Eu
lidean 4-dimensional hyper
ubi
 latti
e withlatti
e spa
ing denoted by a [22℄.The basi
 relationship between the 
ontinuum and latti
e formulation ofgauge �elds is given by the following equation:
U(x, x+ aµ̂) = eigaAµ(x), (1.30)where U(x, x + aµ̂) represents the gauge �eld on the latti
e (it is a variablede�ned on the link 
onne
ting sites x and x+ aµ̂, where µ̂ is the unit ve
torin the µ-dire
tion) and Aµ(x) is the 
ontinuum gauge �eld. This expressionalso implies that the link variables are SU(3) matri
es, sin
e it involves thegenerators of SU(3), a

ording to eq. (1.8).We now dis
uss the simplest gauge �eld latti
e a
tion, 
alled the Wilsona
tion [1℄, and show that in the 
ontinuum limit it is equivalent to the 
on-tinuum gauge a
tion. It is worth to emphasize that the 
hoi
e of the latti
ea
tion is non-unique. In prin
iple, any latti
e a
tion 
an be used, providedthat it has the 
orre
t 
ontinuum limit. The Wilson a
tion reads:

SWilson[U ] =
β

3

∑

x

∑

1≤µ<ν≤4

(1 − ReTrUP (x, µ, ν)) , (1.31)where UP is 
alled the plaquette variable and is de�ned as:
UP (x, µ, ν) ≡ U(x, x+ aµ̂)U(x+ aµ̂, x+ aµ̂+ aν̂) (1.32)

×U(x+ aµ̂+ aν̂, x+ aν̂)U(x+ aν̂, x).20



To simplify notation, one usually de�nes U(x, x + aµ̂) ≡ Ux,µ and U(x, x −
aµ̂) ≡ U †

x−aµ̂,µ. The short
ut notation for the plaquette variable is: UP (x, µ, ν)
≡ Ux,µν , where µν identi�es the plane of the plaquette. In this way, the pla-quette 
an be written as:

Ux,µν = Ux,µUx+aµ̂,νU
†
x+aν̂,µU

†
x,ν . (1.33)The gauge transformation on the latti
e is asso
iated with multipli
ationof the fermion and gluon �elds by a site-dependent SU(3) matrix G(x). Forthe link matri
es it 
an be written as:

Ux,µ → U ′
x,µ = G(x)Ux,µG(x+ aµ̂)†. (1.34)This form of the gauge transformation implies that the tra
e of the plaquette(a
tually, the tra
e of any 
losed loop of link variables) is a gauge-invariantquantity:

Ux,µν → U ′
x,µν = G(x)Ux,µG(x+ aµ̂)†G(x+ aµ̂)Ux+aµ̂,νG(x+ aµ̂+ aν̂)†

× G(x+ aµ̂+ aν̂)U †
x+aν̂,µG(x+ aν̂)†G(x+ aν̂)U †

x,νG(x)† =

= G(x)Ux,µUx+aµ̂,νU
†
x+aν̂,µU

†
x,νG(x)†, (1.35)TrU ′

x,µν = TrG(x)Ux,µUx+aµ̂,νU
†
x+aν̂,µU

†
x,νG(x)† = (1.36)

= TrUx,µUx+aµ̂,νU †
x+aν̂,µU

†
x,ν = TrUx,µν .We will 
onsider the gauge transformation for the fermion �elds in the nextse
tion.In Appendix A, we show that the Wilson gauge a
tion 
an be written as:

Sgauge[U ] = β
g2a4

6

∑

x

∑

µ,ν

{

1

4
Fµν(x)

2 + O(a2)

}

. (1.37)Comparing this expression with the 
ontinuum gauge a
tion ∫ d4x1
4
Fµν(x)

2,we 
an immediately see that the 
ontinuum limit of the dis
retized a
tion isthe 
ontinuum gauge a
tion if we set:
β =

6

g2
. (1.38)The leading dis
retization e�e
ts are O(a2), sin
e the fa
tor a4 in front ofthe sum 
omes just from the dis
retization of the integral ∫ d4x→ a4

∑

x.21



In pra
ti
al simulations, the Wilson gauge a
tion is often repla
ed by animproved a
tion, whi
h helps to de
rease the size of latti
e dis
retizatione�e
ts. Su
h a
tions have the same 
ontinuum limit, but this limit is ap-proa
hed faster. One of the �rst improved a
tions was derived by Weisz [23℄and it is usually referred to as tree-level Symanzik improved gauge a
tion.The form of this a
tion is:
StlSym[U ] =

β

3

∑

x

(

b0
∑

µ,ν=1
1≤µ<ν

(1 −ReTrUx,µν) + b1
∑

µ,ν=1
µ6=ν

(

1 − ReTrU re
t
x,µν

)

)

,(1.39)where b0, b1 are parameters6, Ux,µν is the (de�ned above) plaquette term and
U re
t
x,µν is the re
tangle term:

U re
t
x,µν = Ux,µUx+aµ̂,µUx+2aµ̂,νU

†
x+aν̂+aµ̂,µU

†
x+aν̂,µU

†
x,ν. (1.40)If b1 = 0, this a
tion be
omes the Wilson a
tion.1.3 Dis
retizing fermions1.3.1 Naive dis
retizationLet us start with a dis
retization of one-�avour 
ontinuum free fermion a
tionin Eu
lidean spa
e, given by:

Sfreequark =

∫

d4x ψ̄(x)Dψ(x), (1.41)where D = γµ∂µ + m is the Dira
 operator and m is the quark mass. Thedis
retization pro
edure is not unique and we show here one of the 
hoi
esfor the latti
e derivative [25℄:
∂̂µψ(x) =

1

2a
(ψ(x+ aµ̂) − ψ(x− aµ̂)) . (1.42)This 
an also be written as:

∂̂µψ(x) =
1

2a
(ψ(x+ aµ̂) − ψ(x) + ψ(x) − ψ(x− aµ̂)) ≡ 1

2

(

∇µ + ∇∗
µ

)

ψ(x),(1.43)6The 
omputations relevant for further part of this work used gauge �eld 
on�gurationsgenerated by the European Twisted Mass Collaboration (ETMC), who used this a
tion in
Nf = 2 simulations, with b1 = −1/12 and b0 = 1 − 8b1 [24℄.22



where we have de�ned the forward latti
e derivative ∇µ and the ba
kwardlatti
e derivative ∇∗
µ. We also dis
retize the spa
e-time integral (∫ d4x →

a4
∑

x), thus arriving at:
Ŝfreequark = a4

∑

x

∑

µ

ψ̄(x)(γµ∂̂µ +m)ψ(x), (1.44)where the hat denotes latti
e quantities.By Fourier-transforming the latti
e Dira
 operator (whi
h is 
onvention-ally 
alled the naive operator, sin
e it 
orresponds to the simplest possibledis
retization) D̂naive = γµ∂̂µ+m, one 
an obtain the expression for the Dira
operator in momentum spa
e:
D̂naive(p) = ip̊µγµ +m1, (1.45)where we have de�ned:

p̊µ ≡ 1

a
sin(apµ) (1.46)for later 
onvenien
e and 1 is the unit matrix in Dira
 spa
e.The tree-level fermion propagator in momentum spa
e is given by theinverse of the Dira
 operator (1.45) and thus equals:

D̂−1naive(p) =
−ip̊µγµ +m1
∑

µ p̊
2
µ +m2

. (1.47)Let us 
onsider the 
ase of massless fermions. One 
an easily observe that thisexpression has the right 
ontinuum limit −ipµγµ/p2. However, it also impliesthat the number of fermions is doubled for ea
h spa
e-time dimension, sin
ethe poles of the fermion propagator are lo
ated not only at zero momentum(apµ = (0, 0, 0, 0)), whi
h 
orresponds to the single fermion given by the
ontinuum Dira
 operator, but also whenever any momentum 
omponentequals π/a. Thus, in 4-dimensional spa
e-time, we have 24 = 16 fermions, ofwhi
h 15 are unphysi
al and are 
alled doublers. This is the so-
alled fermiondoubling problem.1.3.2 Wilson fermionsThe �rst way to over
ome the doubling problem 
onsists in treating di�er-ently the physi
al pole and the unphysi
al ones and was introdu
ed by Wilson[26℄, who suggested the following form of the latti
e Dira
 operator:
D̂Wilson =

1

2

(

γµ(∇∗
µ + ∇µ) − ar∇∗

µ∇µ

)

+m, (1.48)23



where r is the Wilson parameter. The se
ond-derivative term is now 
alledthe Wilson term. In momentum spa
e, this operator reads:
D̂Wilson(p) = ip̊µγµ +

ar

2
p̂2
µ1+m1, (1.49)where we have de�ned:

p̂µ ≡ 2

a
sin
(apµ

2

) (1.50)and the tree-level fermion propagator is:
D̂−1Wilson(p) =

−ip̊µγµ + (ar
2

∑

µ p̂
2
µ +m)1

∑

µ p̊
2
µ + (ar

2

∑

µ p̂
2
µ +m)2

. (1.51)The physi
al pole at apµ = (0, 0, 0, 0) gets no 
ontribution from the Wilsonterm, but the unphysi
al ones a
quire an additional mass, whi
h is propor-tional to a−1 and hen
e be
ome in�nitely heavy in the 
ontinuum limit andde
ouple.However, the pri
e one has to pay for removing the doublers is twofold.First, the Wilson term leads to an O(a) leading 
ut-o� dependen
e in ob-servables, whi
h makes it, from the point of view of pra
ti
al simulations,advantageous to introdu
e further terms to the a
tion, e.g. a twisted massterm, whi
h will be dis
ussed later, or 
ounterterms within the framework ofthe Symanzik improvement programme. The simplest way to obtain O(a)-improvement (the absen
e of O(a) 
ut-o� e�e
ts) is to add to the a
tion asingle term, 
alled the Sheikholeslami-Wohlert (
lover) term [27℄.Se
ond, the Wilson term, being a mass term, expli
itly breaks 
hiralsymmetry even in the 
hiral limitm = 0, i.e. even in this limit {D̂Wilson, γ5} 6=
0. Moreover, it has been proven by Nielsen and Ninomiya [28℄ that it is notpossible that a latti
e Dira
 operator D̂ ful�lls at the same time the following
onditions7:1. lo
ality � i.e. the norm of the Dira
 operator D̂ de
ays exponentially,as a fun
tion of the distan
e between latti
e points,2. translational invarian
e � i.e. the Fourier transform of the Dira
 oper-ator exists and equals D̂(p) = iγµpµ + O(ap2) for p≪ π/a,3. no fermion doublers � i.e. D̂(p) is invertible everywhere, ex
ept for

pµ = (0, 0, 0, 0),7Original formulation of the Nielsen-Ninomiya theorem is in fa
t di�erent. Here wepresent an equivalent formulation (given e.g. in [29, 30℄), whi
h stresses the importantproperties from the point of view of latti
e fermions.24



4. 
hiral symmetry in the standard form of the anti
ommutation relation:
{D̂, γ5} = 0. (1.52)For many years, it seemed that it was not possible to have 
hiral fermions onthe latti
e without violating one of the other 
onditions. However, a greatprogress has been made on this topi
 when it was realized that (1.52) is notthe only possible form of latti
e 
hiral symmetry. The impli
ations of thisdis
overy will be dis
ussed in the next se
tion.An important 
onsequen
e of 
hiral symmetry breaking for the Wilsona
tion is that the quark mass m requires additive renormalization. Hen
e,the massless 
ase does not 
orrespond to m = 0, but to m = mc, where mcis 
alled the 
riti
al quark mass.The quark mass is often expressed with the so-
alled hopping parameter

κ, de�ned as:
κ =

1

8 + 2m
. (1.53)Now, we dis
uss how to add gauge �elds to the Wilson fermion a
tion.It is believed that in the intera
ting 
ase the doubler modes also de
ouple.However, there is no rigorous proof of it.Under gauge transformation, the fermion �elds transform in the followingway:

ψ(x) → ψ′(x) = G(x)ψ(x), ψ̄(x) → ψ̄′(x) = ψ̄(x)G(x)†. (1.54)For 
onvenien
e, we remind here that the gauge �elds transform as:
Ux,µ → U ′

x,µ = G(x)Ux,µG(x+ aµ̂)†. (1.55)In this way, the fermion mass term is obviously gauge-invariant, but thederivative terms, e.g. ψ̄(x)γµ∇µψ(x) = ψ̄(x)γµ(ψ(x + aµ̂) − ψ(x)) are not,sin
e:
ψ̄(x)ψ(x+ aµ̂) → ψ̄(x)G†(x)G(x+ aµ̂)ψ(x+ aµ̂). (1.56)However, introdu
ing the 
ovariant derivative:
D̂µψ(x) =

1

2a

(

Ux,µψ(x+ aµ̂) − U †
x−aµ̂,µψ(x− aµ̂)

)

, (1.57)one �nds for the derivative term (1.56):
ψ̄(x)Ux,µψ(x+ aµ̂) → ψ̄(x)G†(x)G(x)Ux,µG(x+ aµ̂)†G(x+ aµ̂)ψ(x+ aµ̂)(1.58)25



and hen
e the 
ovariant derivative terms are gauge-invariant.The gauge-invariant Wilson-Dira
 operator 
an be written as:
D̂Wilson(m) =

1

2

(

γµ(∇∗
µ + ∇µ) − ar∇∗

µ∇µ

)

+m, (1.59)whi
h is exa
tly the same form as in eq. (1.48), but now ∇µ and ∇∗
µ are theforward and the ba
kward 
ovariant derivatives8, de�ned by:

∇µ =
1

a
(Ux+aµ̂,µψ(x+ aµ̂) − ψ(x)) , (1.60)

∇∗
µ =

1

a

(

ψ(x) − U †
x−aµ̂,µψ(x− aµ̂)

)

. (1.61)1.3.3 Wilson twisted mass fermionsIn the remainder of this se
tion, we will dis
uss Wilson twisted mass fermions,whi
h are relevant from the point of view of further 
onsiderations. Origi-nally, they were introdu
ed to deal with the problem of unphysi
ally smalleigenvalues (zero modes) of the Wilson-Dira
 operator [31℄, whi
h is an-other 
onsequen
e of additive quark mass renormalization, whi
h 
an bringthe renormalized quark mass to zero. In the quen
hed approximation, the
ontribution of these modes is not balan
ed by the fermioni
 determinantand leads to large �u
tuations, whi
h a�e
t ensemble averages in an un
on-trolled way. The gauge �eld 
on�gurations whi
h 
ause this problem arereferred to as ex
eptional 
on�gurations. This is espe
ially dangerous in the
ase of small quark masses and makes the approa
h towards the 
hiral limitpra
ti
ally impossible with Wilson fermions. In dynami
al simulations withWilson fermions the problem is suppressed by the fermioni
 determinant, butit 
an still 
ause te
hni
al problems, su
h as long auto
orrelation times in
ertain observables, 
oming from a

idental zero modes of the Wilson-Dira
operator. Moreover, it was realized that the twisted mass dis
retization 
anredu
e the e�e
ts of expli
it 
hiral symmetry breaking by the Wilson termby suppressing the mixing problem of operators belonging to di�erent 
hi-ral representations. Finally, twisted mass a
tion makes it possible to obtainautomati
 O(a)-improvement, by tuning just one parameter. This is an es-sential advantage of twisted mass fermions, sin
e other improvement s
hemesmake it ne
essary to 
ompute improvement 
oe�
ients for di�erent interpo-lating operators.8We will use the same symbols ∇µ and ∇∗

µ for the non-
ovariant and 
ovariant deriva-tives and the meaning of these symbols will be determined from the 
ontext.26



The twisted mass QCD latti
e a
tion [32℄ for two �avours of mass-degene-rate quarks is given by:
ŜTM = a4

∑

x

χ̄(x)D̂TMχ(x), (1.62)with:
D̂TM = D̂Wilson(m) + iµγ5τ3, (1.63)where µ is an additional mass parameter, 
alled the twisted mass, τ3 is thethird Pauli matrix in �avour spa
e and χ(x) is the quark �eld in the twistedbasis.The physi
al and twisted bases are related by an axial transformation:

ψ(x) → χ(x) = eiωγ5τ3/2ψ(x), ψ̄(x) → χ̄(x) = ψ̄(x)eiωγ5τ3/2, (1.64)where ω is 
alled the twist angle. This transformation leaves the form of thea
tion invariant, only transforming the mass parameters a

ording to:
m→ m cos(ω) + µ sin(ω), (1.65)
µ→ −m sin(ω) + µ cos(ω). (1.66)A spe
ial 
ase of this transformation, referred to as maximal twist, is ω =

π/2, whi
h 
orresponds to sending the bare quark mass m to 0 or, takingadditive mass renormalization into a

ount, to its 
riti
al value mc. Conven-tionally, the value of the 
riti
al bare quark mass is expressed in terms ofthe parameter κc, given by eq. (1.53). This is the only parameter that needsto be tuned to obtain automati
 O(a)-improvement. The tuning is usuallydone by employing one of two methods. First, one 
an just �nd the 
riti
albare quark mass by looking for a quark mass value that gives a vanishingpion mass. Alternatively, one 
an also tune the so-
alled untwisted PCACmass:
mPCAC =

∑

~x〈∂0A
a
0(~x, t)P

a(0)〉
2
∑

~x〈P a(~x, t)P a(0)〉 , a = 1, 2 (1.67)to zero [24℄. The latter method seems to work very well in pra
ti
al simula-tions.Thus, one 
an write the maximally twisted mass (MTM) QCD a
tion as:
ŜMTM = a4

∑

x

χ̄(x)D̂MTMχ(x), (1.68)with:
D̂MTM = D̂Wilson(mc) + iµγ5τ3. (1.69)27
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0.2Figure 1.1: Continuum limit s
aling in �xed �nite volume for r0fPS at �xedvalues of r0mPS (a) and for (r0mPS)
2 at �xed values of renormalized quarkmass r0µR (b). In (b) data at β = 4.2 ((a/r0)2 = 0.0144) are not in
luded,due to the missing value of the renormalization fa
tor ZP . Sour
e: [33℄.The spe
ial meaning of the maximally twisted 
ase is that it guarantees anautomati
 O(a)-improvement, whi
h was proven in [32℄. This means that allterms of O(a) in the Symanzik expansion of parity even operators (whi
hgive e.g. the hadron masses) are absent. This observation makes the twistedmass formulation (at maximal twist) very useful from the point of view ofpra
ti
al simulations.An example of O(a)-improvement is provided by ETMC simulations [33℄and is depi
ted in Fig. 1.1. The left plot shows the 
ontinuum limit s
alingof the pseudos
alar de
ay 
onstant (in �xed volume) at �xed referen
e valuesof the pseudos
alar mass r0mPS. Four latti
e spa
ings are in
luded, butthe linear �t does not in
lude the data at the largest latti
e spa
ing. Theright plot shows the s
aling of the pseudos
alar mass (again in �xed volume)at �xed values of the renormalized quark mass r0µR. Here, the data foronly three latti
e spa
ings are presented (all of them in
luded in the �t),sin
e it was impossible to in
lude the points at the �nest latti
e spa
ing((a/r0)2 = 0.0144), due to the missing value of the renormalization fa
tor ofthe pseudos
alar 
urrent ZP . Both plots show that the leading 
ut-o� e�e
tsare indeed O(a2) and their overall magnitude is rather small.However, one should mention here that the twisted mass term violatesparity and the isospin symmetry. This e�e
t e.g. makes the masses of the
harged and neutral pions di�erent from ea
h other9 and in fa
t this mass9In reality, these masses are, of 
ourse, di�erent, but this is due to ele
tromagneti
28



di�eren
e is used to quantify the isospin violation by the twisted mass term.Both parity and isospin breaking are O(a2) e�e
ts and hen
e they vanish inthe 
ontinuum limit.1.4 Chiral symmetry on the latti
eIn this se
tion we dis
uss the great breakthrough asso
iated with the fa
tthat it was realized that there is an alternative view on 
hiral symmetry onthe latti
e, i.e. that the Nielsen-Ninomiya theorem 
an be over
ome in anelegant way.1.4.1 Ginsparg-Wilson relationIn 1982 (i.e. only one year after establishing the Nielsen-Ninomiya theo-rem), Ginsparg and Wilson, basing on renormalization group transforma-tions, showed [34℄ that a remnant of 
hiral symmetry is present on the latti
ewithout the doubler modes, if the 
orresponding Dira
 operator D̂ obeys anequation now 
alled the Ginsparg-Wilson relation:
γ5D̂ + D̂γ5 = aD̂γ5D̂. (1.70)It is a modi�
ation of the anti
ommutation relation (1.52) and the term onthe right-hand side vanishes in the 
ontinuum limit � hen
e, in this limit thestandard 
hiral symmetry relation (1.52) is regained.However, for many years it has not been realized that the Ginsparg-Wilson relation allows one to de�ne 
hiral symmetry also on the latti
e,i.e. at non-vanishing latti
e spa
ing. It lasted until around 1997 before theGinsparg-Wilson relation was �redis
overed�. First, P. Hasenfratz realizedthat a kind of latti
e fermions 
alled the �xed point fermions satis�es thisrelation [35, 36℄ and shortly afterwards a similar observation was made byNeuberger regarding the overlap formalism [37, 38℄. Moreover, Lüs
her [29℄found that the Ginsparg-Wilson relation leads to a non-standard realizationof latti
e 
hiral symmetry. The fermion a
tion is invariant under the following
hiral rotation:

ψ → e
iθγ5

“

1− aD̂
2

”

ψ, ψ̄ → ψ̄e
iθγ5

“

1− aD̂
2

”

. (1.71)In the 
ontinuum limit this transformation is (1.26) with ui = 1. To prove theinvarian
e of the massless a
tion with respe
t to the above transformation,intera
tions and the expli
it violation of isospin symmetry by di�erent up and down quarkmasses. In Latti
e QCD with mass-degenerate quarks the 
harged and neutral pion massesshould be equal. 29



one has to use the Ginsparg-Wilson relation. Moreover, it is possible to de�nethe left- and right-handed proje
tors of fermion �elds [11℄ with a modi�ed
γ5-matrix γ̂5 = γ5(1 − aD̂):

P̂± =
1 ± γ̂5

2
. (1.72)Thus de�ned proje
tors have the same properties as the standard 
ontinuumproje
tors and hen
e one 
an de
ompose the fermion part of the Lagrangianinto left- and right-handed massless parts and a symmetry breaking massterm that mixes the left- and right-handed 
omponents. Taking the proper-ties of the latti
e proje
tors P̂± into a

ount, one �nds that the mass term isof the form mψ̄

(

1 − aD̂
2

)

ψ, whi
h means that the massive Ginsparg-WilsonDira
 operator D̂(m) that 
orresponds to the massless operator D̂ reads:
D̂(m) = D̂ +m

(

1 − aD̂

2

)

=
(

1 − am

2

)

D̂ +m. (1.73)Sin
e the Ginsparg-Wilson relation is a non-standard realization of 
hiralsymmetry, the 
onditions of the Nielsen-Ninomiya theorem do not apply andone 
an have 
hiral symmetry without the doublers, whi
h was 
onsidered tobe impossible for many years.Moreover, it was also shown by Hasenfratz, Laliena, Niedermayer [39℄ andin a di�erent way by Lüs
her [29℄ that the Ginsparg-Wilson relation impliesthat the axial anomaly is 
orre
tly reprodu
ed. The a
tion is invariant underthe transformation (1.71), but the fermioni
 measure Dψ̄Dψ is not � itsJa
obian J is non-trivial: J = exp[−2iθTr(γ5(1 − aD̂/2))] and it 
an alsobe expressed as J = exp[−2iθQtop], where Qtop is the topologi
al 
harge, tobe dis
ussed later. This issue was further elu
idated by Fujikawa [40℄, whostudied the 
ontinuum limit of this Ja
obian.Furthermore, a 
onsequen
e of the Ginsparg-Wilson relation is that fer-mions are prote
ted from additive mass renormalization and mixing betweenfour-fermion operators in di�erent 
hiral representations (Hasenfratz [36℄)and there 
an be no O(a) latti
e artefa
ts (Niedermayer [30℄).In the next se
tion we dis
uss one of the solutions of the Ginsparg-Wilsonequation, de�ning the so-
alled overlap operator.1.4.2 Overlap fermionsAs we have already stated, for many years it has not been realized that theGinsparg-Wilson relation provides a useful (from the simulational viewpoint)30



solution of the problem of latti
e 
hiral symmetry, simply be
ause no solu-tions of this equation have been known. In 1997, Neuberger [37, 38℄ found aparti
ularly simple form of a latti
e Dira
 operator that obeys the Ginsparg-Wilson relation. It is now usually referred to as overlap fermions and themassless overlap Dira
 operator is given by:
D̂ov(0) =

1

a

(

1 − A(A†A)−1/2
)

, (1.74)where:
A = 1 + s− aD̂Wilson(0) (1.75)and s is a parameter whi
h satis�es |s| < 1 and 
an be used to optimizelo
ality properties. Note that instead of D̂Wilson(0), one 
ould use in thekernel operator A any massless latti
e Dira
 operator that is lo
al and hasno doubler modes [30℄. Moreover, if the operator used in A itself satis�es theGinsparg-Wilson relation, it will be just reprodu
ed by eq. (1.74), sin
e then

A†A = 1.The massive operator is given, a

ording to (1.73), by:
Dov(m) =

(

1 + s− am

2

)

Dov(0) +m, (1.76)where m is the bare overlap quark mass.After the overlap operator was proposed, it was essential to show that itis lo
al. Else, this attitude would lead to 
ausality violations and render ituseless. The de�nition (1.74) in
ludes the highly non-lo
al term (A†A)−1/2,whi
h raises doubts about lo
ality. Algebrai
ally, stri
t lo
ality (or ultra-lo
ality) would mean that the Dira
 operator matrix element D̂(x, y) 
on-ne
ting sites x and y of the latti
e is non-zero only if the distan
e between
x and y is smaller than some spe
i�ed small value and also that this matrixelement depends on gauge links only in some small neighbourhood of sites xand y [41℄. These properties are true for the Wilson-Dira
 operator (hen
e,it is a sparse matrix), but the overlap Dira
 operator has non-zero entries forall pairs of latti
e sites and thus it is 
lear that it is not stri
tly lo
al.However, stri
t lo
ality for a Dira
 operator is not really needed. It isenough that the Dira
 operator falls o� exponentially, i.e. we have (suppress-ing the Dira
 and 
olor indi
es):

||D̂(x, y)|| ≤ Ce−ρ||x−y||, (1.77)for some 
onstants C and ρ, where || · || is the distan
e between sites x and
y, e.g. the taxi-driver distan
e ||x − y|| =

∑

µ |xi − yi|. If su
h inequalityholds, it means that the intera
tion range in physi
al units 1/ρ tends to 031



(the de
ay rate in latti
e units aρ does not depend on the latti
e spa
ing)as one approa
hes the 
ontinuum limit and in the 
ontinuum one has a lo
al�eld theory, as desired [11℄.A thorough analyti
al and numeri
al investigation of the lo
ality of theoverlap Dira
 operator was performed by Hernandez, Jansen and Lüs
her[41℄, who showed that this operator is lo
al under very general 
onditions,i.e. for a wide range of bare 
oupling 
onstants.1.4.3 Other kinds of 
hiral fermionsApart from overlap fermions, there a few kinds of latti
e fermions that alsopreserve 
hiral symmetry. In this subse
tion, we shortly dis
uss a few ofthem.1.4.3.1 Domain wall fermionsClosely related (mathemati
ally equivalent) to overlap fermions are domainwall fermions, introdu
ed by Kaplan [42℄ and Shamir [43℄ in 1992 and 1993,respe
tively. The general idea of this approa
h is to introdu
e an auxiliary(non-physi
al) �fth dimension and 
onsider massive Dira
 fermions with aspa
e-dependent mass in the shape of a domain wall. Kaplan showed thatsu
h theory has a zero mode with de�nite 
hirality lo
alized on the domainwall and from the point of view of the 4-dimensional theory this zero modeis a 
hiral fermion. The way that this formulation 
ir
umvents the Nielsen-Ninomiya theorem is that translational invarian
e in the 5-dimensional sys-tem is broken (by the spa
e-dependent mass term), but it is still 
onserved inthe 4-dimensional physi
al world [44℄. If the �fth dimension is in�nite, theredoes not exist a doubler mode. But in the 
ase of a �nite �fth dimension(whi
h is of 
ourse always true in a latti
e simulation), an extra zero modeof opposite 
hirality appears on a se
ond domain wall. However, both zeromodes have an exponentially small overlap and hen
e 
an not 
ommuni
ateif their separation is large enough. What is more, it was also shown that theanomaly stru
ture is 
orre
t both in the in�nite and �nite �fth dimension
ase. A �rst investigation of these properties was performed by Jansen [45℄,shortly after the birth of the idea of domain wall fermions.After the overlap formalism was invented, Neuberger also showed [46℄ thatdomain wall fermions with in�nite �fth dimension are equivalent to overlapfermions. Therefore, at �nite �fth dimension, they 
an be regarded as anapproximation to overlap fermions.In pra
ti
al simulations, the domain wall formalism is now widely usedin a dynami
al setup (e.g. by the RBC/UKQCD Collaboration [47℄) or in32



a mixed a
tion approa
h (e.g. by the LHP Collaboration with improvedstaggered fermions in the sea se
tor [48℄). However, the size of the �fthdimension is usually taken in the range 8-16, whi
h means that the 
hiralsymmetry is only approximate and this entails additive mass renormalizationof the quark mass, i.e. a shift away from zero of the bare quark mass forwhi
h one has a vanishing pion mass [10℄. The value of this shift is usuallyreferred to as the residual mass.The main advantage of domain wall fermions with respe
t to the Wilsonfermions (and other non-
hirally symmetri
 formulations) is that 
hiral sym-metry breaking by the domain wall fermions is rather mild and is believedto be 
ontrollable. Their main disadvantage is that one needs to simulatea 5-dimensional theory, instead of a 4-dimensional one, and hen
e the 
om-putational 
ost is higher by a fa
tor of the order of the size of the �fthdimension.With respe
t to overlap fermions, an advantage is that this 
omputational
ost is still mu
h smaller than the one for overlap, at the pri
e, however, ofnot having exa
t 
hiral symmetry, but only an approximation to it.1.4.3.2 Creutz fermionsA di�erent approa
h to 
ir
umvent the Nielsen-Ninomiya theorem is to re-stri
t oneself to the minimal number of doubler modes, i.e. to two modesof opposite 
hirality. This was pointed out in the 1980s by Karsten [49℄and Wil
zek [50℄. Re
ently, this idea reemerged in the work of Creutz [51℄,who was motivated by the ele
troni
 stru
ture of graphene (whi
h is built oftwo-dimensional layers of graphite). The low-energy ex
itations in grapheneare des
ribed by a two-dimensional Dira
 equation for massless fermions andare hen
e 
hiral. Furthermore, 
hirality is a
hieved exa
tly in the way thatinvolves the minimum number of fermion modes required by the Nielsen-Ninomiya theorem, i.e. they are minimally-doubled. Creutz showed howto generalize these properties to four dimensions. Creutz's idea was soonelaborated on by Bori
i [52℄, who derived a more general form of the a
tion.Creutz fermions exhibit an exa
t Nf = 2 �avour 
ontinuum 
hiral symme-try, whi
h implies also that the leading dis
retization errors are of O(a2) 10,and they are stri
tly lo
al. These are very appealing properties, sin
e theyimply that one 
ould simulate 
hiral fermions without the high 
omputa-tional 
ost of overlap fermions. However, Creutz fermions break a number ofdis
rete symmetries, su
h as parity, 
harge 
onjugation and time re�e
tion[53℄. Therefore, to approa
h the 
ontinuum limit in the intera
ting 
ase one10An expli
it test of this property will be dis
ussed in Chapter 2.33



would have to restore these symmetries by �ne-tuning of several parametersin the Symanzik e�e
tive a
tion and this would make the pra
ti
al simula-tions with Creutz fermions very di�
ult. However, a preliminary quen
hedtest was performed by Bori
i [54℄, who 
omputed the pion mass and found abehaviour 
onsistent with the predi
tions of 
hiral perturbation theory. Thisled him to a 
on
lusion that Creutz fermions are still worth exploring in thefuture, despite the fa
t that they break important dis
rete symmetries. Also,the 
on
lusion by Bedaque et al. [53℄ was that for 
ertain values of the pa-rameters, the minimally-doubled fermion a
tions may exhibit non-standardsymmetries, that 
ould eliminate relevant operators of the Symanzik e�e
tivetheory and hen
e moderate the problem of dis
rete symmetries breaking.The expressions for the Dira
 operator for Creutz fermions (by whi
hwe will mean both fermions related to Creutz's original idea and Bori
i'sgeneralization) will be dis
ussed in Chapter 2, only in the 
ontext of a testof their 
ontinuum-limit s
aling at tree-level of perturbation theory [55, 56℄.1.4.4 Topology on the latti
eThe QCD va
uum has a non-trivial topologi
al stru
ture, whi
h has many im-portant impli
ations for hadron properties. For example, we have remarkedin Se
tion 1.1 that the mass of the �avour singlet η′ meson is related tothe topologi
al �u
tuations of the QCD va
uum. This is an inherently non-perturbative phenomenon and hen
e seems to be well-suited to be addressedby Latti
e QCD 
al
ulations.Let us start with the �eld-theoreti
al de�nition of the topologi
al 
harge:
Qtop =

1

32π2

∫

d4x ǫµνρσTr (Fµν(x), Fρσ(x)) ≡
∫

d4x q(x), (1.78)where q(x) is 
alled the topologi
al 
harge density [57℄. Gauge �eld 
on�g-urations that have a non-zero and integer topologi
al 
harge are e.g. super-positions of instantons [58℄ and anti-instantons, whi
h are 
lassi
al solutionsof the Eu
lidean �eld equations.The topologi
al 
harge 
an be related to the number of 
hiral zero modesof the massless Dira
 operator via the Atiyah-Singer index theorem [59℄:
Qtop = Qindex ≡ N− −N+, (1.79)where N± denotes the number of zero modes in the positive/negative 
hiralityse
tor and Qindex is 
alled the index of the Dira
 operator.If one wants to 
ompute the topologi
al 
harge of a given gauge �eld
on�guration on the latti
e, one 
an, in prin
iple, use the dis
retized version34



of eq. (1.78). However, this 
an easily lead to non-integer values of the 
harge[60℄. This 
an be over
ome by applying smearing on gauge 
on�gurations,e.g. APE smearing [61℄, whi
h moves the topologi
al 
harge 
loser to integervalues, but it 
an also destroy small topologi
al obje
ts and thus lead toin
orre
t values of the 
harge.Su
h problems are avoided if one uses the index theorem and 
omputesthe topologi
al 
harge as the index of the massless Dira
 operator. For thisto be possible, one has to employ a Dira
 operator that 
an have 
hiralzero modes (at any value of the latti
e spa
ing), i.e. eigenstates with zeroeigenvalue, whi
h have de�nite 
hirality (that is they are also eigenstates of γ5with eigenvalue ±1). This means that the massless Dira
 operator must obey(latti
e) 
hiral symmetry, e.g. it 
an be the overlap Dira
 operator, whi
hwill be used to 
ompute topologi
al 
harge in further part of this work.Sin
e the QCD path integral is symmetri
 with respe
t to the sign of thetopologi
al 
harge, we have 〈Qtop〉 = 0. However, a non-trivial quantity thatone 
an 
ompute is related to the �u
tuations of the topologi
al 
harge andis 
alled topologi
al sus
eptibility. In the 
ontinuum, it is de�ned by:
χtop =

∫

d4x〈q(x)q(0)〉, (1.80)whi
h on the latti
e be
omes
χtop =

〈Q2
index〉
V

, (1.81)where V is the latti
e volume.It has been mentioned before that the topologi
al sus
eptibility is relatedvia the Witten-Veneziano formula (1.27) to the mass of the η′ meson. Phe-nomenologi
ally, this formula implies a value of χtop ≈ (180MeV)4. It isworth to emphasize that this value agrees rather well with several quen
hedlatti
e 
omputations, e.g. [62℄.1.5 Observables in Latti
e QCDIn this se
tion, we show how one 
an extra
t hadron properties from Lat-ti
e QCD simulations, 
on
entrating on the quantities of interest for further
onsiderations.Let us 
onsider a general zero-momentum two-point 
orrelation fun
tionof the form C(t) ≡ 〈0|Oi(t)Ōj(0)|0〉, where Oi(t) is some interpolating op-erator 
orresponding to the state with quantum numbers of the hadron wewant to analyze. Sin
e:
Oi(t) = eHtOie

−Ht, (1.82)35



inserting a 
omplete set of energy eigenstates into C(t) yields (we take i = jfor simpli
ity):
〈0|Oi(t)Ōi(0)|0〉 =

∑

n

〈0|eHtOie
−Ht|n〉〈n|O†

i |0〉
2En

= (1.83)
=

∑

n

〈0|Oi|n〉〈n|O†
i |0〉e−Ent

2En
=
∑

n

|〈0|Oi|n〉|2e−Ent

2En
,where En is the energy of the state n (1/2En is a normalization fa
tor forenergy eigenstates).One 
an immediately see that in the limit of large Eu
lidean time t, theabove expression is dominated by the lowest energy state |1〉:

C(t)
t→∞−−−→ |〈0|Oi|1〉|2

2E1
e−E1t, (1.84)where E1 is the energy of this state, i.e. the mass of the lightest parti
le. Inthis way, one 
an extra
t this mass by �tting (in some interval t ∈ [tmin, tmax])the 
orrelation fun
tion with an exponential fun
tion A exp(−m1t), where

A, m1 are �tting parameters, whi
h provide estimates for the parti
le mass
E1 = m1 and the matrix element |〈0|Oi|1〉|2 = 2Am1. To �nd the �t interval
[tmin, tmax], one usually 
omputes the so-
alled e�e
tive mass:

me�(t) ≡ log

(

C(t)

C(t+ 1)

) (1.85)and plots it to �nd the plateau region, i.e. the region where the 
ontributionof the ex
ited states is negligible and the e�e
tive mass is stable, up tostatisti
al �u
tuations.Sin
e a latti
e 
omputation is usually performed with a �nite latti
e ex-tent T in the temporal dire
tion11 with e.g. periodi
 boundary 
onditionsin time, the large-time form of the 
orrelation fun
tion is modi�ed in thefollowing way:
C(t)

t large−−−→ |〈0|Oi|1〉|2
2E1

(e−E1t+e−E1(T−t)) =
|〈0|Oi|1〉|2

E1
e−E1

T
2 coshE1

(

t− T

2

)

.(1.86)In su
h 
ase, the e�e
tive mass at time t 
an be extra
ted by solving numer-i
ally the equation C(t)/C(t+ 1) = coshE1

(

t− T
2

)

/ coshE1

(

t+ 1 − T
2

).11However, it is sometimes possible to 
onsider latti
es with in�nite time extent. Anexample will be given in the next 
hapter. 36



We now 
on
entrate on meson 
orrelators in the 
ase ofNf = 2 degeneratequarks. The general form of an interpolating operator for mesons is:
Oi(~x, t) = ψ̄(~x, t)Γiψ(~x, t), (1.87)where Γ denotes any Dira
 matrix (an identity matrix, a gamma matrix ora 
ombination of gamma matri
es).Expli
itly introdu
ing Dira
 (µ, ν, ρ, σ) and 
olour (a, b) indi
es, the
orrelation fun
tion 
an be written as:

C(t) =
∑

~x

〈0|ψ̄aµ(~x, t)Γiµνψaν(~x, t)ψ̄bρ(~0, 0)Γjρσψ
b
σ(~0, 0)|0〉, (1.88)where the sum over ~x Fourier-transforms the 
orrelation fun
tion to zeromomentum. Contra
ting fermion �elds pairwise into fermion propagators:

〈0|ψaµ(~x, t)ψ̄bν(0, 0)|0〉 = Sabµν(~x, t;~0, 0), (1.89)a

ording to Wi
k's theorem, one �nds that there are two possible 
on-tra
tions (ψaν(~x, t) ↔ ψ̄aµ(~x, t), ψbσ(~0, 0) ↔ ψ̄bρ(~0, 0) and ψaν(~x, t) ↔ ψ̄bρ(~0, 0),
ψbσ(~0, 0) ↔ ψ̄aµ(~x, t)), whi
h lead to:

C(t) =
∑

~x

Tr(S(~x, t; ~x, t) Γi) Tr(S(~0, 0;~0, 0) Γj) +

−
∑

~x

Tr(S(~x, t;~0, 0) Γi S(~0, 0; ~x, t) Γj), (1.90)where the tra
e is over spin and 
olour.The �rst term in the above expression 
an be represented by a dis
on-ne
ted diagram and 
ontributes only to �avour singlet mesons. Later on, wewill be interested only in �avour non-singlet mesons, i.e. ones that are repre-sented by 
onne
ted diagrams, 
orresponding to the se
ond term in the aboveexpression. Hen
e, we now drop the �rst term and use the γ5-hermiti
ityproperty of the propagator: S(~0, 0; ~x, t) = γ5S
†(~x, t;~0, 0)γ5 to rewrite :

C(t) = −
∑

~x

Tr(S(~x, t;~0, 0) Γiγ5 S
†(~x, t;~0, 0) γ5Γ

j). (1.91)In this way, to evaluate this 
orrelator it is enough to 
ompute the propagatorfrom a given sour
e (lo
ated at the origin (~0, 0) in the above formula) to allpossible sinks (all latti
e sites (~x, t)). Su
h propagator is 
alled a point-to-allpropagator. This 
an be done by solving the following matrix equation:
D̂ψµa = ηµa (1.92)37



Table 1.1: Meson interpolating operators. JPC 
lassi�
ation denotes parti
lespin J , parity P and 
harge 
onjugation C [63℄.
hannel JPC Γpseudos
alar 0−+ γ5, γ0γ5s
alar 0++ 1, γ0ve
tor 1−− γi, γ0γiaxial ve
tor 1++ γiγ5tensor 1+− γiγj12 times for ea
h spin-
olour 
ombination µa, with a point sour
e ηµa, i.e.a ve
tor (0 . . . 010 . . . 0)T , where the only non-zero number is pla
ed in oneof the �rst 12 entries, 
orresponding to 12 spin-
olour 
omponents at latti
esite (0, 0, 0, 0).The solution of this equation:
ψµa = D̂−1ηµa (1.93)is the point-to-all quark propagator, denoted by S(~x, t;~0, 0) in eq. (1.91), inwhi
h the spin-
olour indi
es are suppressed.Obviously, the Dira
 equation (1.92) does not have to be solved with apoint sour
e lo
ated at the origin. Other 
hoi
es of the sour
e 
an be e.g.point sour
es with random lo
ation of the sour
e or sto
hasti
 sour
es. Thelatter are of spe
ial relevan
e from the point of view of this work and will bedis
ussed later.Table 1.1 summarizes the most 
ommonly used meson interpolating oper-ators. The names of di�erent 
hannels 
ome from the transformation prop-erties of parti
les with respe
t to spin and parity. Here we have assumedthat the Γ matrix at the sour
e (denoted by Γj in eq. (1.91)) and at thesink (Γi) are the same. However, it is also possible to 
onstru
t mesons with

Γi 6= Γj , e.g. Γi = γ5, Γj = γ0γ5, whi
h belongs to the pseudos
alar 
hanneland hen
e it 
an also be used to extra
t the mass of the pseudos
alar meson.From the point of view of further 
onsiderations, the most importantmeson 
hannel will be the pseudos
alar one. The PP 
orrelation fun
tion(Γi = γ5 ≡ P , Γj = γ5 ≡ P ) is the simplest 
orrelation fun
tion that 
an be
onstru
ted. Putting its gamma matrix stru
ture in eq. (1.91), one obtains:
CPP (t) = −

∑

~x

Tr(S(~x, t;~0, 0)S†(~x, t;~0, 0)). (1.94)38



A

ording to eq. (1.83), one 
an extra
t the mass of the pseudos
alar me-son (pion) mπ from the de
ay of the PP 
orrelator and also the pion de
ay
onstant fπ from the matrix element |〈0|P |π〉|:
fπ =

2m

m2
π

|〈0|P |π〉|, (1.95)where m is the bare quark mass.An equivalent de�nition of the pion de
ay 
onstant reads:
fπ =

ZA
mπ

|〈0|A0|π〉|, (1.96)where ZA is the renormalization 
onstant of the axial 
urrent and |〈0|A0|π〉|the matrix element of this 
urrent.For the 
ase of overlap fermions, the O(a)-improved interpolating opera-tors for mesons are 
onstru
ted in the following way [64℄:
Oov
i (~x, t) = ψ̄(~x, t)Γi

(

1 − aD̂ov(0)

2

)

ψ(~x, t) =
1

1 − am
2

ψ̄(~x, t)Γiψ(~x, t),(1.97)where the last equality holds for 
orrelation fun
tions at non-zero physi
aldistan
e.We also give here the expressions for baryon interpolating operators �for the proton p (uud), the neutron n (udd) and the deltas ∆++ (uuu), ∆+(uud), ∆0 (udd), ∆− (ddd) [65, 66℄, i.e. the o
tet and the de
uplet baryonsthat 
ontain only light quarks (up and down, no strange quarks).
Jp = ǫabc

(

uTaCγ5db
)

uc, (1.98)
Jn = ǫabc

(

dTaCγ5ub
)

dc, (1.99)
Jµ∆++ = ǫabc

(

uTaCγ
µub
)

uc, (1.100)
Jµ∆+ =

1√
3
ǫabc

[

2
(

uTaCγ
µdb
)

uc +
(

uTaCγ
µub
)

dc
]

, (1.101)
Jµ∆0 =

1√
3
ǫabc

[

2
(

dTaCγ
µub
)

dc +
(

dTaCγ
µdb
)

uc
]

, (1.102)
Jµ∆− = ǫabc

(

dTaCγ
µdb
)

dc, (1.103)where C = γ4γ2 is the 
harge 
onjugation matrix.The two-point 
orrelation fun
tion for baryon B reads:
CB(t) =

1

2
Tr(1 ± γ4)

∑

~x

〈JB(~x, t)J̄B(~0, 0)〉, (1.104)39



where (1± γ4)/2 is the parity proje
tor. For example, the physi
al proton isdes
ribed by the 
orrelation fun
tion Cp(t) with proje
tion to positive parityand the negative parity proje
tion 
orresponds to the baryon N∗, mentionedearlier in the 
ontext of spontaneous 
hiral symmetry breaking.We will be interested in light baryon masses, whi
h are evaluated in ananalogous way as in the 
ase of mesons, i.e. from the exponential fall-o� of the
orresponding 
orrelation fun
tion. The e�e
tive masses are thus extra
tednumeri
ally from the ratios of the 
orrelation fun
tions of the form (1.86) attwo subsequent timesli
es.We �nish by shortly dis
ussing the degenera
ies between the light baryonsin the 
ase of fermions that preserve isospin symmetry (e.g. overlap) andviolate it (e.g. twisted mass). In the overlap 
ase, the proton p and neutron
n are degenerate, as well as all delta baryons. For the twisted mass 
ase, thedegenera
y is redu
ed, but still holds between p�n, ∆++ � ∆− and ∆+ � ∆0,whi
h is due to γ5-hermiti
ity. Therefore, we will always refer to the protonand neutron as the nu
leon N , but we will distinguish between ∆++ and ∆+in the twisted mass 
ase.

40



Chapter 2Tree-level s
aling testIn this 
hapter we will show the results of tree-level s
aling tests of overlap,twisted mass and Creutz fermions and thus expli
itly demonstrate the O(a)-improvement in the observables [67, 55, 56℄. We will 
onsider three quantities� the pseudos
alar meson mass and de
ay 
onstant and the pseudos
alar
orrelation fun
tion at a �xed physi
al distan
e. We will also analyze the 
asewhen the pseudos
alar 
orrelation fun
tion is 
onstru
ted with propagators
orresponding to two di�erent fermion dis
retizations.2.1 Fermion propagatorsThe tree-level test of di�erent kinds of latti
e fermions 
onsists in analyti
allyevaluating the momentum-spa
e fermion propagator and then using it to
onstru
t the relevant 
orrelation fun
tion, from whi
h the observables ofinterest 
an be extra
ted.2.1.1 Overlap fermionsThe starting point for the evaluation of the tree-level overlap fermion propa-gator is the free massless overlap Dira
 operator in momentum spa
e1, whi
hwas given by Lüs
her [29℄:
aD̂ov(p) = 1 −

(

1 − iaγµp̊µ −
a2

2
p̂2
)(

1 +
a4

2

∑

µ<ν

p̂2
µp̂

2
ν

)−1/2

. (2.1)The massive operator is, a

ording to (1.73):
aD̂ov(p,m) =

(

1 − am

2

)

aD̂ov(p) + am, (2.2)1An expli
it derivation of this operator is given in Appendix B.41



where m is the bare overlap quark mass.The expression for the quark propagator in momentum spa
e Sov(p) 
anbe found by 
omputing the inverse of the above Dira
 operator aD̂ov(p,m):
Sov(p) =

−i(1 − ma
2

)F (p)−1/2p̊µγµ + M(p)1
(1 − ma

2
)2F (p)−1

∑

µ p̊
2
µ + M(p)2

(2.3)where 1 is the identity matrix in Dira
 spa
e and we have introdu
ed thefun
tions:
F (p) = 1 +

a4

2

∑

µ<ν

p̂2
µp̂

2
ν , (2.4)

M(p) =
1

a

(

1 +
ma

2
−
(

1 − ma

2

)

F (p)−1/2
(

1 − a2

2

∑

µ

p̂2
µ

)

)

. (2.5)The propagator has a matrix stru
ture in Dira
 spa
e and for later 
onve-nien
e we write it here in terms of its 
omponents:
Sov(p) = Sov

µ (p)γµ + Sov
0 (p)1. (2.6)2.1.2 Wilson twisted mass fermionsThe twisted mass fermion propagator 
an be found as an inverse of thefollowing Dira
 operator in momentum spa
e:

D̂tm(p) = ip̊µγµ1f +
ar

2
p̂2
µ11f +m11f + iµγ5τ3, (2.7)where the relevant notation has been introdu
ed in Se
tion 1.3.3 and weshow here expli
itly the matrix stru
ture in �avour spa
e. The �rst threeterms have a trivial stru
ture in �avour spa
e (1f is the identity matrix inthis spa
e), but the twisted mass term iµγ5τ3 breaks the isospin symmetrybetween up and down quarks and hen
e it modi�es the expression for thetree-level Wilson propagator in momentum spa
e (1.51) in the following way:

Ŝtm(p) =
−ip̊µγµ1f + (ar

2

∑

µ p̂
2
µ +m)11f − iµγ5τ3

∑

µ p̊
2
µ + (ar

2

∑

µ p̂
2
µ +m)2 + µ2

. (2.8)The propagator has a matrix stru
ture in Dira
 and �avour spa
e and weagain write it here in terms of its 
omponents, expli
itly distinguishing be-tween up and down quark propagators:
Stm,u(p) = Stm

µ (p)γµ + Stm
5 (p)γ5 + Stm

0 (p)1, (2.9)42



Stm,d(p) = Stm
µ (p)γµ − Stm

5 (p)γ5 + Stm
0 (p)1, (2.10)where the propagators of the two �avours di�er only in the sign of the γ5-matrix 
oe�
ient.To obtain automati
 O(a)-improvement (maximal twist), in the free the-ory it is enough to set the bare untwisted quark mass m to 0. Su
h variantof twisted mass fermions is usually referred to as maximally twisted mass(MTM) fermions.2.1.3 Creutz fermionsIt 
an be shown [55℄ that the momentum spa
e tree-level Dira
 operator forCreutz fermions 
an be written as:

DCreutz(p) = i
∑

µ

p̊µ γ̄µ − i
a

2

∑

µ

p̂2
µ Γ̄µ +m1. (2.11)All notation used in this subse
tion is explained in Appendix B. This yieldsthe following form of the fermion propagator:

SCreutz(p) =
−i ∑µ

(

s̄µ(p) + c̄µ(p)
)

γµ +m1
∑

µ

(

s̄µ(p) + c̄µ(p)
)2

+m2

, (2.12)where we have introdu
ed auxiliary fun
tions s̄µ(p) and c̄µ(p).The tree-level Dira
 operator for the variant suggested by Bori
i is:
DBorici(p) = i

∑

µ

p̊µγµ − i
a

2

∑

µ

Γµp̂
2
µ +m1. (2.13)The 
orresponding propagator is:

SBorici(p) =
−i∑µGµ(p)γµ +m0 1
∑

µGµ(p)2 +m2
, (2.14)where we have again introdu
ed an auxiliary fun
tion Gµ(p).The matrix stru
ture of both Creutz and Bori
i fermions is of the sameform as in the 
ase of overlap (2.6).2.2 ObservablesThe tree-level test of di�erent kinds of fermions will 
onsist in 
omputingthree observables � the pseudos
alar 
orrelation fun
tion at a �xed physi
al43



distan
e, the pseudos
alar meson mass and de
ay 
onstant. All of thesequantities 
an be 
al
ulated from the pseudos
alar 
orrelation fun
tion, givenby eq. (1.94). Here we rewrite it for 
onvenien
e, dropping the 
onventionalminus sign:
CPP (t) =

∑

~x

Tr(S(~x, t;~0, 0)S†(~x, t;~0, 0)). (2.15)The derivation of the �nal expression for the pseudos
alar 
orrelation fun
-tion in terms of momentum spa
e propagator 
omponents Sξ(p), de�ned byde
ompositions of the form (2.6) or (2.9), 
an be found in Appendix B andgives:
CPP (t) =

NcNd

N3N2
4

∑

~p

∑

p4,p′4

4 or 5
∑

ξ=0

Sξ(~p, p4)S
∗
ξ (~p, p

′
4))e

i(p4−p′4)t, (2.16)where Nd is the number of Dira
 
omponents (i.e. the dimension of spa
e-time) and Nc is the number of 
olours (in the free 
ase the stru
ture in 
olourspa
e is trivial). The index ξ runs from 0 to 4 in the 
ase of overlap andCreutz fermions or from 0 to 5 in the 
ase of Wilson twisted mass fermions.The above expression 
an be 
omputed by expli
itly evaluating the sumover dis
rete momenta. On the latti
e, the possible values of momenta are(for periodi
 boundary 
onditions):
pi =

2π

a

ni
N
, p4 =

2π

a

n4

N4

, (2.17)where ni = 0, 1, . . . , N − 1, n4 = 0, 1, . . . , N4 − 1. The box length is in thespatial dire
tions L = aN and in the temporal dire
tion L4 = aN4.At large enough times, the above 
orrelation fun
tion has only the 
on-tribution from the lightest parti
le, i.e. it is of the form (1.84):
CPP (t)

t→∞
=

|〈0|P |π〉|2e−mπt

2mπ

, (2.18)where we 
all the lightest pseudos
alar meson the pion and by mπ we denoteits mass. However, sin
e we are only 
onsidering here the tree-level quantities,the name �pion� does not 
orrespond to the physi
al QCD pion, but it is onlyan abbreviation for the pseudos
alar meson.The pion mass 
an be extra
ted from formula (1.85). In the free-�eld 
aseit is pra
ti
al to 
onsider latti
es with very large time extent2 and hen
e t2In the 
ase of Wilson twisted mass fermions it is even possible to analyti
ally go toin�nite time extent [68, 69℄. 44




an be taken so large that no 
ontribution from the ex
ited states is present,up to ma
hine pre
ision. Therefore, one 
an obtain very pre
ise values of thepion mass.The pion de
ay 
onstant 
an be extra
ted from expression (1.95), substi-tuting the matrix element 〈0|P |π〉 obtained from eq. (2.18). This yields:
fπ

t→∞
=

2m

m
3/2
π

√

2CPP (t)e
1

2
mπt. (2.19)The value of fπ does not depend on the timesli
e t at whi
h the above equa-tion is evaluated, i.e. the produ
t √2CPP (t)e

1

2
mπt is time-independent, pro-vided that it is 
al
ulated in the plateau region.2.3 Test setupWe would like to perform a �xed-volume, 
ontinuum limit s
aling test of thethree observables of interest � the pseudos
alar 
orrelator, mass and de
ay
onstant. First, we have to de�ne what is a
tually meant by �xed volume and
ontinuum limit in the 
ontext of a free theory, whi
h 
an not have assignedphysi
ally meaningful units.By �xed volume, we will mean that the produ
t of the box length in latti
eunits (N) and quark mass (m) Nm = const. Sin
e N = L/a, simultaneouslyin
reasing the number of latti
e sites and de
reasing the quark mass in latti
eunits (su
h that Nm is held �xed) 
orresponds to de
reasing the latti
espa
ing a. In this way, the 
ontinuum limit is equivalent to the in�nitevolume limit. However, this is spe
ial to the tree-level 
ase � in full QCDthese two limits are not equivalent.For the test we will �x Nm (or Nµ in the 
ase of twisted mass fermions)to 0.5 and 
hange N from 4 to 64. The temporal dire
tion will have amu
h larger extent � in order not to have any 
ontaminations from ex
itedstates we take N4 = 64N and extra
t observables at a �xed physi
al distan
e

t = 4N . Thus, the largest 
onsidered latti
e is 643×4096. The 
orrespondingparameters for ea
h latti
e size are presented in Table 2.1.2.4 Comparison of overlap, twisted mass andCreutz fermionsIn this se
tion, we present the results of a tree-level s
aling test of di�erentkinds of fermions: 45



Table 2.1: Simulation parameters for the tree-level s
aling test.
N N4 m or µ t = 4N4 256 0.125000 168 512 0.062500 3212 768 0.041667 4816 1024 0.031250 6420 1280 0.025000 8024 1536 0.020833 9628 1792 0.017857 11232 2048 0.015625 12836 2304 0.013889 14440 2560 0.012500 16044 2816 0.011364 17648 3072 0.010417 19252 3328 0.009615 20856 3584 0.008929 22464 4096 0.007813 256

• overlap fermions,
• Wilson twisted mass fermions at maximal twist (MTM),
• Creutz fermions with C = 3/

√
10,

• Creutz fermions with C = 3/
√

14,
• Bori
i fermions.. First, we 
onsider the pion mass, whi
h is depi
ted in Fig. 2.1. The pointsin the plot show the result extra
ted from the 
orrelation fun
tion (2.16) andthe 
orresponding lines are �ts of the following formula:

Nmπ = am + bm
1

N2
+ cm

1

N4
. (2.20)In all 
ases, we �nd the expe
ted behaviour � i.e. O(a2) (O(1/N2)) s
alingviolations. It is worth to emphasize here again that in the 
ase of overlapand Creutz fermions this results dire
tly from 
hiral symmetry and in the
ase of twisted mass fermions from automati
 O(a)-improvement, whi
h isa
hieved only at maximal twist, i.e. for bare untwisted quark mass set to 0.46
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Figure 2.1: Continuum limit s
aling of the pion mass for overlap, twistedmass and Creutz fermions.Table 2.2: Fitting 
oe�
ients for the pion mass � eq. (2.20).fermion am bm cmMTM 1.0 -0.0104167 0.000296044Overlap 1.0 0.0208333 0.000783869Bori
i 1.0 -0.0494792 0.00564291Creutz C = 3/
√

10 1.0 -0.0078125 -0.0101045Creutz C = 3/
√

14 1.0 -0.0488282 0.00282578The 
ontinuum limit (the 
oe�
ient am) is the same for all kinds offermions (and equal to the expe
ted value Nmπ = 2Nm (overlap, Creutzfermions) and Nmπ = 2Nµ (twisted mass fermions)). This is a ne
essary
ondition that ea
h fermion a
tion has to ful�ll � the 
ontinuum limit of allphysi
al observables has to be the same. This is ensured if the 
ontinuumlimit of the fermion propagator for the dis
retization of interest is equal to the47
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Figure 2.2: Continuum limit s
aling of the pion de
ay 
onstant for overlap,twisted mass and Creutz fermions.
ontinuum fermion propagator. In other words, various fermion dis
retiza-tions di�er in the way the latti
e artefa
ts are introdu
ed.It is also interesting to 
ompare the magnitude of O(1/N2) dis
retizationerrors (
oe�
ient bm � Tab. 2.2) for this observable. They are the largest forBori
i and Creutz (C = 3/
√

14) fermions, around twi
e smaller for overlapfermions, a further fa
tor of two smaller for twisted mass fermions and thesmallest for Creutz (C = 3/
√

10) fermions. Moreover, 
omputations fordi�erent �xed values of Nm 
on�rm that this behaviour is universal for awide range of values of Nm.Furthermore, the value of the 
oe�
ient cm that 
hara
terizes theO(1/N4)dis
retization errors is in general smaller than bm, indi
ating that the 
or-re
tions to the O(1/N2) behaviour are small. However, there are some ex-
eptions to this rule (e.g. the Creutz C = 3/
√

10 
ase), where cm is slightlylarger than bm, but still rather small.As the se
ond observable, we 
onsider the pion de
ay 
onstant, shown inFig. 2.2. The points in the plot show the result 
omputed from eq. (2.19)48



Table 2.3: Fitting 
oe�
ients for the pion de
ay 
onstant � eq. (2.21).fermion af bf cfMTM 3.4641 0.0541266 -0.000811859Overlap 3.4641 0.108253 0.00553143Bori
i 3.4641 -0.0676584 -0.00527683Creutz C = 3/
√

10 3.4641 0.293186 -0.0746106Creutz C = 3/
√

14 3.4641 -0.00789431 -0.0379067and the 
orresponding lines are �ts of the following formula:
Nfπ = af + bf

1

N2
+ cf

1

N4
. (2.21)In all 
ases, we observe againO(1/N2) leading dis
retization errors. How-ever, the 
oe�
ients bf (Tab. 2.3) lead to di�erent 
on
lusions regarding thesize of these e�e
ts for the kinds of fermions under analysis. The largest 
oef-�
ient is observed for Creutz (C = 3/

√
10) fermions, whi
h had the smallestdis
retization error in the pion mass (bm). A

ordingly, Creutz (C = 3/

√
14)fermions had the se
ond largest 
oe�
ient bm, but the 
oe�
ient bf is thesmallest among all dis
retizations.Generalizing, this means that the size of dis
retization e�e
ts depends onthe 
hoi
e of the observable, i.e. that small O(a2) e�e
ts in one observabledo not mean that for other observables one 
an expe
t the same.Table 2.4: Fitting 
oe�
ients for the pseudos
alar 
orrelation fun
tion at a�xed physi
al distan
e t/N = 4 � eq. (2.22).fermion aC bC cCMTM 0.109894 0.00457891 -0.0000333779Overlap 0.109894 0.00457891 0.000181293Bori
i 0.109894 0.00114472 -0.0013941Creutz C = 3/

√
10 0.109894 0.0194604 -0.00269918Creutz C = 3/

√
14 0.109894 0.00486504 -0.00300215This is 
on�rmed by the result for the third observable � the 
orrelationfun
tion at a �xed physi
al distan
e t = 4N , shown in Fig. 2.3. Again, thepoints in the plot 
orrespond to the 
orrelation fun
tion 
omputed from eq.49
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Figure 2.3: Continuum limit s
aling of the pseudos
alar 
orrelation fun
tionat a �xed physi
al distan
e t/N = 4 for overlap, twisted mass and Creutzfermions.(2.16) and the lines are �ts of the following formula:
N3CPP (t = 4N) = aC + bC

1

N2
+ cC

1

N4
. (2.22)The 
oe�
ient bC is again the largest for Creutz (C = 3/

√
10) fermionsand the smallest for Bori
i fermions. As a 
oin
iden
e, bC for overlap andtwisted mass fermions is the same, whi
h is not true for other values of Nm(for Nm < 0.5 the value for overlap is larger, for Nm > 0.5 it is smaller).Other interesting quantities to 
ompute are the mixed 
orrelators. Inthe meson 
ase they 
orrespond to taking the two quarks dis
retized withdi�erent a
tions. This is relevant from the point of view of mixed a
tionsimulations in the intera
ting theory, where it is possible to build a mesonfrom two valen
e quarks, two sea quarks or one valen
e and one sea quark.If one imposes a mat
hing 
ondition that the valen
e-valen
e pion and thesea-sea pion have the same mass, the mixed valen
e-sea pion in general has adi�erent mass and the obtained mass di�eren
e quanti�es unitarity violations50
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Figure 2.4: Continuum limit s
aling of the pion mass for overlap-overlap,MTM-MTM and overlap-MTM quarks.in the mixed a
tion setup. It is, however, worth to emphasize that this e�e
tis only a latti
e artefa
t with no physi
al signi�
an
e.The way to 
onstru
t the mixed pion at tree-level is to use two di�erentpropagators in formula (2.16) for the pseudos
alar 
orrelation fun
tion. Wewill show an example of overlap-MTM mixed 
orrelator, i.e. we will take oneof the propagators to be the overlap fermion propagator and the other oneto be the MTM fermion propagator. The results of the s
aling test for su
hmixed 
ase (with Nm = 0.5 and Nµ = 0.5) are shown in Figs. 2.4, 2.5 and2.6.The mixed pion mass, de
ay 
onstant and 
orrelator at a �xed physi
aldistan
e all show leading O(a2) 
ut-o� e�e
ts. Furthermore, in all 
ases, themixed meson line is situated exa
tly halfway between the overlap and MTMlines, whi
h implies that the �tting 
oe�
ients bm, bf and bC are alwaysarithmeti
 averages of the 
orresponding 
oe�
ients for the overlap and theMTM 
ase. The 
onsequen
e of this is also that at tree-level it is not possibleto observe a splitting between the mixed pion mass and the overlap/MTMpion masses, if the latter are mat
hed. This results from the fa
t that at51
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Figure 2.5: Continuum limit s
aling of the pion de
ay 
onstant for overlap-overlap, MTM-MTM and overlap-MTM quarks.tree-level there are no unitarity violations � their sour
e is a di�erent Dira
operator used to generate the gauge �eld 
on�gurations and a di�erent onefor the valen
e quarks and in the free 
ase su
h situation does not o

ur.To summarize, there are no de�nite 
on
lusions from the tree-level test.It 
an not be dedu
ed that one type of fermions exhibits the smallest or thelargest dis
retization errors � this depends on the observable and of 
oursein the intera
ting theory one should expe
t the same. A general 
on
lusionfrom the test is that all fermions exhibit O(a2) s
aling violations. This againshould hold in the intera
ting theory, but it has to be expli
itly tested. Theresults of su
h test for overlap fermions will be presented in Chapter 4.2.5 Mat
hing twisted mass and overlap fermionsIn this se
tion, we will investigate the e�e
ts of mat
hing of twisted mass andoverlap fermions. The motivation for this test is the following. In Chapter 4,we will analyze a mixed a
tion setup of overlap valen
e quarks and twisted52
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Figure 2.6: Continuum limit s
aling of the pseudos
alar 
orrelation fun
tionat a �xed physi
al distan
e t = 4N for overlap-overlap, MTM-MTM andoverlap-MTM quarks.mass sea quarks, i.e. gauge �eld 
on�gurations will be generated with thetwisted mass a
tion, but the propagators will be 
omputed with overlapvalen
e quarks (and also with twisted mass valen
e quarks for 
omparison).The reason for 
onsidering su
h setup will be dis
ussed more thoroughly inChapter 4 and is related to the 
omputational 
ost of generating gauge �eld
on�gurations with 
hirally symmetri
 a
tions. Therefore, it will be usefulto investigate the e�e
ts that emerge in su
h setup also at tree-level.In a mixed a
tion approa
h, an important 
ondition that has to be realizedto minimize unitarity violations that ne
essarily arise in su
h formulation, isthe mat
hing 
ondition between the quark masses. This 
an be done in anumber of ways. We mention here two of them, postponing a full dis
ussionuntil Chapter 4:
• mat
hing of the pion mass � one �nds a bare valen
e quark mass mval,whi
h leads to the same pion mass as the mass of a pion 
onstru
tedfrom two sea quarks of mass msea: mval−val

π = msea−sea
π ,53



• mat
hing of renormalized quark masses: mval
ren = msea

ren.In the free 
ase, there is no need of renormalization and hen
e the se
ond
ondition is trivial. However, a general situation is that this mat
hing 
anbe done only up to O(a2) e�e
ts. Hen
e, at tree-level we 
an investigate thee�e
ts of su
h mismat
h between the quark masses.Regarding the �rst 
ondition, we will �nd the bare overlap quark massthat leads to the same pion mass as some spe
i�ed MTM quark mass andtest whether the two other observables � the pion de
ay 
onstant and thepseudos
alar 
orrelator at a �xed physi
al distan
e are also mat
hed.2.5.1 Unmat
hed quark massesTo investigate the e�e
t of non-ideal mat
hing between the quark masses, weimpose the following setup. The MTM quark mass is �xed to Nµ = 0.5, butin the overlap quark mass we allow for an O(a2) deviation from the twistedmass value, setting:
Nm = 0.5 − v/N2. (2.23)The mismat
h parameter v will be varied from v = 0 to v = 4.The results of the test are shown in Figs. 2.7 and 2.8. Both plots showthat the leading O(1/N2) 
ut-o� e�e
ts 
an be
ome very large if there isa substantial mismat
h in quark masses (for large mismat
h parameter v).Moreover, even the O(1/N4) e�e
ts 
an be
ome sizable, whi
h 
an lead to awrong 
ontinuum limit value in the pion mass and de
ay 
onstant, if the �tin
ludes too small latti
es (i.e. all latti
es from N = 4 to N = 64) � su
h �t
orresponds to dashed lines on the plots. To get the 
orre
t 
ontinuum limitvalue, the �t has to be performed for large enough latti
es. However, for theanalyzed setup this be
omes important only for v = 4 and even there it isenough to ex
lude the point N = 4 from the �t to obtain the right value inthe 
ontinuum. If the quark masses are only slightly mismat
hed (v / 2),even a full (N ∈ [4, 64]) �t leads to the 
orre
t 
ontinuum limit. It is worthto emphasize that the e�e
t that we observe at tree-level is rather small (the
ontinuum limit is wrong by only ≈ 0.1 %), but it 
an be severely enhan
edin the intera
ting theory.A similar e�e
t 
an o

ur if it is not possible to go to large enough latti
es,i.e. if the �t 
an be performed e.g. only in the interval N ∈ [16, 24]. On
eagain, su
h e�e
t 
an be of pra
ti
al importan
e in the simulations of theintera
ting theory, where it might not be possible to go to very large latti
es.However, for the setup analyzed here su
h e�e
t is very small in 
omparisonto the e�e
t dis
ussed above and hen
e it is not shown in a plot.54
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Figure 2.7: Continuum limit s
aling of the pion mass at a �xed physi
aldistan
e t/N = 4 for twisted mass and overlap fermions. The quark massesare mat
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Figure 2.9: The mat
hing of MTM and overlap quark masses.2.5.2 E�e
ts in the 
ase of mat
hed pion massesIn this subse
tion, we will investigate the other mat
hing 
ondition of mat
hedpion masses. We will 
onsider the 
ase of N = 16 and �x the twisted quarkmass to Nµ = 0.5.Sin
e the magnitude of O(a2) e�e
ts is in general di�erent for di�er-ent fermion dis
retizations, the 
ondition of equal pion masses NmMTM
π =

Nmoverlap
π does not have to 
orrespond to equal quark masses Nm = Nµ.This is shown in Fig. 2.9, where the dependen
e of the (overlap) pion masson the overlap quark mass Nm is depi
ted. The value of Nm ≈ 0.49994leads to the same pion mass as the value Nµ = 0.5 in the twisted mass 
ase.However, the mat
hing of one observable does not mean that other ob-servables have to be mat
hed as well. This is a dire
t 
onsequen
e of the fa
tthat the dis
retization e�e
ts in di�erent observables are in general di�erent.Figs. 2.10 and 2.11 show that at the mat
hing point (NmMTM

π = Nmoverlap
π ),the pion de
ay 
onstant and the pion 
orrelation fun
tion at a �xed physi
aldistan
e t = 4N are not mat
hed. However, their di�eren
e is of O(a2),whi
h 
an be 
learly observed in Figs. 2.12 and 2.13. Moreover, if the pionmasses are mat
hed, the quark mass is indeed mat
hed only up to O(a2)(Fig. 2.14).This is a general situation that one 
an expe
t at the mat
hing point in the57
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h between the MTM and overlap pion de
ay 
on-stants at the mat
hing point NmMTM
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Figure 2.12: The di�eren
e between the MTM and overlap pion de
ay 
on-stants at the mat
hing point NmMTM
π = Nmoverlap

π , as a fun
tion of 1/N2.intera
ting theory. Regardless of the implemented mat
hing 
ondition, otherobservables 
an only be mat
hed up to O(a2) dis
retization e�e
ts. However,sin
e all valid fermion dis
retizations must lead to the same 
ontinuum limit,the mat
hing point di�eren
es in all observables that have a well-de�ned
ontinuum limit must de
rease when one moves towards this limit.In Chapter 4, when we 
onsider a mixed setup of overlap valen
e quarksand twisted mass sea quarks, we will use the same mat
hing 
ondition as inthis subse
tion. Moreover, the mat
hing of pion masses 
an never be exa
tin the intera
ting theory, sin
e the relevant quantities are always extra
tedwith some statisti
al error. Therefore, the mat
hing is in general realized upto O(a2) e�e
ts, as was the 
ase in the previous subse
tion. Hen
e, at themat
hing point we have O(a2) e�e
ts originating from non-ideal mat
hingand additional O(a2) e�e
ts in other observables 
omputed at the mat
hingpoint. Provided that the former are not too large (i.e. the 
ounterpart ofthe mismat
h parameter v is small enough), it should be possible to extra
tthe right 
ontinuum limit for both dis
retizations. This will be expli
itlytested in the intera
ting theory, where all the e�e
ts are obviously mu
hmore 
omplex than in the 
ase analyzed in this se
tion.
59
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Chapter 3Algorithmi
 and te
hni
al details
3.1 Simulating QCDIn this se
tion, we brie�y outline the idea behind a Latti
e QCD simulation(with any kind of fermions) and des
ribe the most widely used algorithm ofgenerating gauge �eld 
on�gurations � the Hybrid Monte Carlo algorithm.3.1.1 General ideaAs already stated in Se
tion 1.1, 
omputing any observable in a Latti
e QCDsimulation 
onsists in approximately evaluating an integral of the form (1.16)by a Monte Carlo method. This is a high-dimensional integral over all possi-ble gauge �eld and fermion �eld 
on�gurations. Fortunately, the dependen
eon the Grassmann-valued fermion �elds 
an always be eliminated, leaving anintegral over only the gauge �elds, weighted by the Boltzmann fa
tor e−Seff ,where Seff is some e�e
tive a
tion dependent on the algorithm used. More-over, for a majority of gauge �eld 
on�gurations the a
tion is very large andhen
e their weight is negligibly small. Therefore, one should perform impor-tan
e sampling, i.e. use an algorithm that e�e
tively 
hooses 
on�gurationsthat have a high Boltzmann fa
tor. Thus, having a large number (of the or-der of several thousand) of su
h 
on�gurations, one 
an 
ompute the MonteCarlo average of an observable O, whi
h we will denote by Ō:

Ō =
1

N

N
∑

i=1

O[Ui], (3.1)where O[Ui] denotes the observable O 
omputed in a ba
kground gauge �eld
Ui belonging to the Markov 
hain of generated 
on�gurations. If the simula-tion is performed 
orre
tly, in the limit N → ∞ the Monte Carlo average Ō61



will 
orrespond to the a
tual ensemble average 〈O〉. The 
onditions that haveto be satis�ed in order to obtain the 
orre
t average are measure preservationand detailed balan
e. The latter reads:
e−S[U ]P (U → U ′) = e−S[U ′]P (U ′ → U), (3.2)where P (U → U ′) denotes the probability of transition from 
on�guration Uto U ′.Let us now 
onsider the partition fun
tion (1.17). After integrating outthe fermion �elds, one obtains:
Z =

∫

DU e−Sgauge[U ]

Nf
∏

i=1

det(D̂i[U ]), (3.3)where det(D̂i[U ]) is the determinant of the Dira
 operator matrix for fermion�avour i. Su
h form of the integrand implies that the probability distributionthat has to be simulated depends on a highly non-lo
al fermion determinant.The 
ost of 
al
ulating this determinant(s) is by far the highest 
ost in aMonte Carlo simulation. However, the �rst approximation to the partitionfun
tion 
ould be to negle
t the fermion determinant, i.e. set it to a 
onstant.Su
h approximation is 
alled the quen
hed approximation and it physi
ally
onsists in negle
ting the fermion loops. As su
h, it is very 
rude. Still,for many years it was very mu
h used in simulations, sin
e the 
omputa-tional 
ost related to the determinant was just too high for the generation of
omputers then available.However, the 
omputational power has been in
reasing for many yearsand presently it is possible to perform fully dynami
al simulations (i.e. withthe determinant in
luded1), whi
h is also due to many algorithmi
 improve-ments. In the next subse
tion we des
ribe the algorithm of 
hoi
e for mostsimulations with dynami
al fermions � the Hybrid Monte Carlo algorithm.3.1.2 Hybrid Monte CarloThe Hybrid Monte Carlo (HMC) algorithm was originally introdu
ed by Du-ane, Kennedy, Pendleton and Roweth [70℄. It 
ombines a mole
ular dynami
supdate of gauge �elds with a Metropolis a

ept/reje
t step. Here we outlinethe basi
 steps that need to be performed in an HMC simulation [71℄.Given the a
tion to simulate S(U), �rst one 
onstru
ts the Hamiltonian:
H(π, U) =

1

2

∑

x,µ

πax,µπ
a
x,µ + S(U), (3.4)1The determinant is not 
omputed expli
itly � one usually represents it in an indire
tway, e.g. by a set of pseudofermion �elds, to be dis
ussed later.62



where πax,µ is a 
omponent of a momentum �eld:
πx,µ = πax,µt

a (3.5)
onjugate to ea
h latti
e link Ux,µ. In this way, the integral one wants toevaluate: ∫ DU O[U ] exp(−S(U)) 
an be written in the equivalent form:
∫

DUDπO[U ] exp(−H(π, U)), sin
e the additional integration over momen-tum �elds π yields just a Gaussian integral and hen
e produ
es a 
onstantfa
tor.Thus, one obtains a 
lassi
al Hamiltonian system. The evolution of thissystem in a �
titious Monte Carlo time τ 
an be 
al
ulated from the Hamil-ton's equations:
π̇x,µ = −Fx,µ, (3.6)
U̇x,µ = πx,µUx,µ, (3.7)where the dot denotes di�erentiation with respe
t to the �
titious time τ andthe for
e Fx,µ is given by2:
Fx,µ =

∂S(U)

∂Ux,µ
. (3.8)Solving the above system of di�erential equations, one obtains a traje
toryin phase spa
e, i.e. the values of Ux,µ(τ) and πx,µ(τ) for every value of τ .The steps in the HMC algorithm are the following:1. Randomly generate the initial (τ = 0) momentum �eld πx,µ(0) a

ord-ing to the distribution exp(−1

2

∑

x,µ π
a
x,µπ

a
x,µ).2. Numeri
ally integrate (e.g. by the so-
alled leap-frog algorithm) Hamil-ton's di�erential equations (3.6)-(3.7) to obtain Ux,µ(τ) and πx,µ(τ)from their initial values Ux,µ(0) and πx,µ(0), respe
tively. By 
onstru
-tion, su
h evolution preserves the value of the Hamiltonian up to anumeri
al integration error.3. A

ept the new 
on�guration with probability:

P = min (1, e−∆H(τ)
)

, (3.9)where ∆H(τ) = H(π(τ), U(τ)) −H(π(0), U(0)) is in general non-zero,whi
h is due only to the numeri
al integration error. If the 
on�gurationis reje
ted, then U(τ) = U(0), i.e. the initial 
on�guration does not
hange.2In (3.8) we use symboli
 notation for a derivative of the a
tion with respe
t to a linkvariable. The derivative with respe
t to an SU(3) element 
an be formally de�ned as
∂S(exp(ωa(x,µ)ta)U(x,µ))

∂ωa(x,µ)

∣

∣

∣

ωa(x,µ)=0
. 63



4. Repeat steps 2-3 to obtain as many traje
tories (gauge �eld 
on�gura-tions) as is desired. The initial values of the variables U and π for step2 of traje
tory N are the values of these variables at the end of step 3 ofthe pre
eding traje
tory N −1, i.e.: U traje
tory N(0) = U traje
tory N−1(τ),
πtraje
tory N(0) = πtraje
tory N−1(τ).The above algorithm 
ould in prin
iple be used to simulate QCD withdynami
al quarks. However, to make su
h simulations pra
ti
al, one has toover
ome the 
omputational problem of e�e
tively 
al
ulating the fermiondeterminant. This is usually done with the pseudo-fermion method, whi
h
onsists in repla
ing the fermion �elds by auxiliary bosoni
 �elds3 and ex-pressing the determinant as a Gaussian integral over these �elds. The partof the for
e 
oming from the pseudo-fermion �elds is the most intensive partof the simulation. Hen
e, dynami
al simulations are by a large fa
tor more
omputationally expensive than pure gauge simulations, where the pseudo-fermion �eld is not needed.We have outlined here the general idea of the Hybrid Monte Carlo algo-rithm. However, in pra
ti
e one 
an greatly redu
e the 
omputer resour
esthat are needed by implementing the signi�
ant re�nements of this algorithmthat were proposed during the last 
a. 10 years. Some of them are shortlydis
ussed in Appendix C.With these improvements, Latti
e QCD is approa
hing the possibility oflarge-s
ale simulations with physi
al quark masses. Only around 10 yearsago, it seemed that to rea
h the physi
al point one would need resour
es ofthe order of several PetaFlop-years to generate an ensemble of a few hundredindependent dynami
al gauge �eld 
on�gurations with typi
al parametersfor the latti
e spa
ing (≈ 0.08 fm) and physi
al box length (≈ 2.5 fm).This was illustrated by the famous �Berlin Wall� plot [72℄. Around 2010 the
omputational 
ost seems to be some 3-4 orders of magnitude smaller withthe aforementioned re�nements [71℄. Moreover, work on the algorithms is stillin progress and hen
e further redu
tion of the 
ost is possible. Nevertheless,the 
omputer resour
es needed to simulate QCD are still huge.3.2 Computation of the overlap operatorWe will now 
on
entrate on te
hni
al details of simulations with overlapfermions as valen
e quarks.3The auxiliary �elds 
arry the same indi
es as the fermion �elds, but they obey bosoni
statisti
s. Hen
e, they are 
alled pseudo-fermion �elds.64



The matrix (A†A)−1/2 in the de�nition of the overlap operator is thesour
e of many problems, in
luding te
hni
al ones. It is a non-trivial taskto 
ompute this matrix in the �rst pla
e and it is obviously needed to 
on-stru
t the overlap Dira
 operator. The strategy that one usually follows isto 
onstru
t an approximation of (A†A)−1/2. There are several ways to dothis, in
luding polynomial approximations, Lan
zos based methods and par-tial fra
tion expansion. An overview of these methods is provided e.g. in[73, 74℄. Here we restri
t ourselves to the des
ription of the method rele-vant from the point of view of this work, i.e. the Chebyshev polynomialapproximation method. The advantages of using this approximation are thewell-
ontrolled exponential �t a

ura
y and the possibility of having numer-i
ally very stable re
ursion relations, whi
h allows for high degrees of thepolynomial.The operator A†A depends on the gauge �eld 
on�guration and thereforethis approximation has to be performed separately for ea
h 
on�guration.The Chebyshev polynomials Tj(x) are solutions to the di�erential equa-tion (1−x2)y′′−xy′+j2y = 0 for non-negative integer j and 
an be expressedre
ursively as: T0(x) = 1, T1(x) = x, Tj(x) = 2xTj−1(x) − Tj−2(x).The Chebyshev polynomial approximation to the fun
tion (A†A)−1/2 is apolynomial Pn(A†A) of degree n [11℄:
1√
A†A

≈ Pn(A
†A) =

n
∑

j=0

cjTj(X), (3.10)where:
X =

2A†A− (λmin + λmax)1
λmax − λmin

, (3.11)
λmin and λmax are the smallest and largest eigenvalue of A†A, respe
tively,and the 
oe�
ients cj are 
al
ulated from the formula:

cj =
π

n

n
∑

k=1

f(xk)Tj(xk), (3.12)where:
f(xk) =

(

1

2
(λmin + λmax) +

xk
2

(λmax − λmin)

)−1/2 (3.13)and
xk = cos

((

k − 1

2

)

π

n

)

. (3.14)
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Any eigenvalue λ ∈ [λmin, λmax] of the matrix A†A satis�es the following
ondition:
1√
λ
− Pn(λ) = O(e−2(n+1)

√
λmin/λmax). (3.15)This means that the approximation error de
reases exponentially fast within
reasing polynomial degree and depends on the 
ondition number of thematrix A†A, i.e. on the ratio λmax/λmin. In other words, to a
hieve the de-sired pre
ision, one has to 
hoose a polynomial degree whi
h is proportionalto the 
ondition number of A†A. Sin
e the eigenvalues of the Wilson operator
an go arbitrarily low, the ne
essary degree of polynomial 
an easily be
omeprohibitively high. Therefore, one usually supplements the Chebyshev ap-proximation method with eigenvalue de�ation for the operator A†A. Thiswill be dis
ussed in the next se
tion.In pra
ti
al simulations, one usually wants to ensure that the Ginsparg-Wilson relation (for massless overlap Dira
 operator) is satis�ed with a veryhigh pre
ision � usually ma
hine pre
ision. To ensure this, the following
ondition should be satis�ed [76℄:

||R− A†A
(

Pn(A
†A)
)2
R||2/||R||2 < ξ, (3.16)where R is a random ve
tor and ξ has to be a very small number, typi
allyset to 10−16 to a
hieve a 
ompromise between good quality of approximationand its 
ost4.3.3 Redu
ing the 
ondition number of A†AWe now dis
uss the possibilities of redu
ing the 
ondition number of theoperator A†A.3.3.1 Eigenvalue de�ationThe eigenvalues of A†A are bounded from above and hen
e the ones that 
anbe responsible for large 
ondition numbers are the lowest eigenvalues. Thisis illustrated in Fig. 3.1, whi
h shows the 
ases of:

• �xed latti
e spa
ing a ≈ 0.079 fm, variable physi
al size of the latti
e(upper plots),4Su
h level of pre
ision 
orresponds to �double� pre
ision in the C programming lan-guage. In
reasing pre
ision is still possible with spe
ialized libraries, e.g. GNU MultiplePre
ision Arithmeti
 Library, but it would lead to a signi�
ant in
rease in 
omputational
ost. 66
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β=4.2, L/a=24Figure 3.1: 5 lowest eigenvalues and the highest eigenvalue for various gauge�eld ensembles. The latti
e spa
ing is a ≈ 0.079 fm (β = 3.9) for upperplots, a ≈ 0.063 fm (β = 4.05) for bottom left and a ≈ 0.051 fm (β = 4.2)for bottom right plot.
• (approximately) �xed physi
al size of the latti
e with box length L ≈

1.3 fm, variable latti
e spa
ing (upper left and bottom plots).The former shows that in
reasing the volume at a �xed latti
e spa
ing in-
reases the probability of having very low eigenvalues � hen
e the 
onditionnumber of A†A in
reases with the volume. De
reasing the latti
e spa
ing (go-ing from β = 3.9 towards β = 4.2) 
auses the spe
trum of the lowest eigen-values to move up (eigenvalues in latti
e units tend to be
ome higher), whi
hresults from the fa
t that the gauge �eld 
on�gurations be
ome smoother.Therefore, the 
ondition number of A†A de
reases with de
reasing latti
espa
ing.As 
an be seen on the plots, the eigenvalues of A†A 
an go very low andhen
e the 
ondition numbers of A†A 
an be very large, thus leading to veryhigh degrees of Chebyshev polynomials (ne
essary to satisfy the Ginsparg-Wilson relation up to desired pre
ision), whi
h 
an typi
ally rea
h 1000-2000or even more, depending on the gauge �eld 
on�guration under analysis and67



in general on the parameters (e.g. latti
e volume, latti
e spa
ing).Sin
e large 
ondition numbers are 
aused by the lowest eigenvalues, it ispro�table to 
ompute a 
ertain number Nev (out of the total number Ntotal)of eigenmodes of A†A and split (A†A)−1/2 into two parts:
1√
A†A

=

Ntotal
∑

i

1√
λi
|λi〉〈λi| =

Nev
∑

i

1√
λi
|λi〉〈λi| +

1
√

Ã†Ã
(3.17)where λi are the eigenvalues of A†A, |λi〉 the 
orresponding eigenve
tors and

(Ã†Ã)−1/2 is the part of the full operator that has the Nev lowest modesproje
ted out.In this way, the Chebyshev approximation (3.10) is applied just to the part
(Ã†Ã)−1/2, whi
h has a redu
ed 
ondition number, sin
e the lowest modeshave been proje
ted out.The resulting degree of Chebyshev polynomial, after the de�ation pro
e-dure, is of order 200-400 for optimally 
hosen Nev. The word �optimal� inthis 
ontext refers to the fa
t that the pro
edure of eigenmodes 
omputationis 
omputer-time intensive and hen
e su
h number Nev has to 
hosen thatthe additional 
omputer-time 
ost of 
al
ulating the eigenmodes is balan
edby the pro�t of having lower Chebyshev polynomial degree, e.g. for the in-version of the Dira
 operator. The number of eigenmodes Nev that should beproje
ted out has to be found experimentally, but in general it grows within
reasing latti
e volume, as a 
onsequen
e of the behaviour observed in thenumeri
al test presented above.3.3.2 HYP smearing of gauge �eldsEigenvalue de�ation is not the only way to lower the 
ondition number ofthe matrix A†A and thus the degree of Chebyshev polynomial. A usefulte
hnique that 
an be applied before the 
omputation of the lowest modesof A†A is to perform HYP smearing on the gauge �elds. This link fatteningmethod was introdu
ed by A. Hasenfratz and F. Kne
htli [77℄ and allows toeliminate short-distan
e �u
tuations of the gauge �elds and thus de
rease theprobability of having very low eigenvalues of A†A. In this way, one iterationof HYP smearing helps to a
hieve a smaller 
ondition number of A†A andthus de
rease the degree of Chebyshev polynomial. In 
omparison with otherlink fattening methods (e.g. APE smearing [61℄), HYP smearing is believedto preserve better the short-distan
e quantities, be
ause it mixes links fromhyper
ubes atta
hed only to the original link. Thus, it should not a�e
t thephysi
al properties of gauge �eld 
on�gurations and the physi
al observables
al
ulated from HYP-smeared 
on�gurations.68



Finally, the degree of Chebyshev polynomial that one usually rea
hes bya 
ombination of one iteration of HYP smearing and eigenvalue de�ation isof order 100-200 for the optimal 
hoi
e of the number of de�ated eigenval-ues Nev. This is a 
onsiderable improvement with respe
t to the �rst numberquoted for the polynomial degree � 1000-2000, whi
h is typi
al without eigen-value de�ation and HYP smearing. Therefore, the redu
tion is by a fa
tor ofaround 10, a fa
tor of ≈ 2 brought in by HYP smearing and a fa
tor of ≈ 5by eigenvalue de�ation.Obviously, the fa
t that one needs to work with the Chebyshev polynomialapproximation (or any other) still in
reases the 
omputational 
ost of usingoverlap fermions by a large fa
tor � typi
ally of order 30-120 with respe
t toe.g. twisted mass fermions [75℄, even after the 
ondition number redu
tionte
hniques have been used. Moreover, this number tends to in
rease whenone de
reases the pion mass. This speed fa
tor is now 
onsidered to be one ofthe main drawba
ks of overlap fermions and it motivates e.g. the mixed a
-tion approa
h, in whi
h overlap fermions are used only in the valen
e se
tor,whereas to generate gauge �eld 
on�gurations a 
heaper fermion dis
retiza-tion is used. The hope of this approa
h is that while avoiding the mostexpensive part of a simulation, whi
h is the generation of gauge �elds, one
an still pro�t from the exa
t 
hiral symmetry that overlap fermions provide.The mixed a
tion approa
h will be dis
ussed further in Chapter 4.3.4 Inverting the Dira
 operatorAfter 
onstru
ting the overlap Dira
 operator, to 
al
ulate most observables,su
h as hadroni
 
orrelation fun
tions, it is ne
essary to 
ompute the quarkpropagator. To obtain 
omplete information about quark propagation fromea
h possible sour
e site to every other sink site, it would be ne
essary to
ompute the inverse of the Dira
 operator matrix. This is 
learly a formidabletask for typi
al latti
e sizes � even storing su
h matrix in 
omputer memorywould be very di�
ult. Fortunately, the 
omplete propagator that 
orre-sponds to a given gauge �eld 
on�guration is not needed from the pra
ti
alpoint of view, sin
e the information about quark propagation from some site
x to site y is very mu
h 
orrelated with the information about propagationbetween some other site x′ and y.Therefore, the strategy that is usually followed 
onsists in solving thematrix equation:

D̂(m)ψ = η, (3.18)where ψ is 
alled the propagator, m is the bare quark mass and η is thesour
e � a ve
tor whose 
hoi
e will be 
ommented on below.69



3.4.1 Sto
hasti
 sour
esAn important aspe
t of solving eq. (3.18) is the 
hoi
e of the sour
e η. Thesimplest possible 
hoi
e is the point sour
e, whi
h means that the ve
tor ηis 
hosen to be 1 at one spa
e-time point xsrc, spin µsrc and 
olor csrc and 0otherwise:
η(x)µc = δx,xsrc

δµ,µsrc
δc,csrc

. (3.19)The propagator ψµc is 
alled the point-to-all propagator, sin
e it 
orrespondsto one 
olumn of the full inverse Dira
 operator matrix and hen
e to quarkpropagation from one point xsrc (with spin-
olor indi
es µsrc and csrc) to allother latti
e points (with all possible spin-
olor indi
es). In this way, to ob-tain a propagator suitable for 
omputation of hadroni
 
orrelation fun
tionsof interest in this work, it is ne
essary to solve eq. (3.18) 12 times � on
e forea
h 
ombination of spin and 
olor 
omponents of the sour
e µsrc and csrc.However, for mesoni
 
orrelators it is possible and advisable to use the in-formation provided in gauge �eld 
on�gurations more fully by using timesli
esto
hasti
 sour
es. Let us 
onsider the following 
hoi
e of the sour
e:
η(x)µc =

[±1 ± i√
2

]

x∈Tsrc

δµ,µsrc
δc,csrc

, (3.20)where the symbol [·]x∈Tsrc
means that the sour
e ve
tor is non-zero for alllatti
e sites on a given timesli
e Tsrc and the ± signs in the expression inparentheses are 
hosen sto
hasti
ally and independently for all x. The re-maining Krone
ker deltas imply that the only non-zero entries are for a spe
-i�ed spin µsrc and 
olour 
omponent csrc. Sin
e the sto
hasti
 numbers areof the form (±1 ± i)/

√
2, we will refer to these sour
es as Z(2) sto
hasti
sour
es (formally, they should be 
alled the Z(2) × Z(2) sto
hasti
 sour
es,sin
e here 
omplex numbers are involved). In the 
ontext of Latti
e QCD,the Z(2) sto
hasti
 noise was �rst proposed by Dong and Liu [78℄. The mo-tivation to use this kind of noise is that it produ
es a minimum varian
e ofinverted matrix elements due to sto
hasti
 estimation.The propagator element obtained from sample r of a sto
hasti
 sour
e is:

ψri = D̂−1
ij η

r
j , (3.21)where the indi
es i, j en
ompass latti
e site, spin and 
olour.Hen
e, the full propagator matrix element estimate is: D̂−1

ij = (ηrj )
∗ψri .This estimate di�ers from the a
tual matrix element by sto
hasti
 noise,whi
h is in general rather large � the noise-to-signal ratio for the timesli
esto
hasti
 sour
e is expe
ted to be of the order of √Vsrc/√R, where Vsrc isthe volume of the sour
e, i.e. the number of non-vanishing entries in the70



sour
e, and R is the number of noise samples. Clearly, to get a useful signalthe number of noise samples would have to be very large [24℄.However, it is possible to redu
e the noise-to-signal ratio 
onsiderably byemploying the so-
alled one-end tri
k, introdu
ed in [79℄. Let us 
onsider theprodu
t:
(ψri )

∗ ψrj =
(

D̂−1
ik η

r
k

)∗

D̂−1
jl η

r
l =

(

D̂−1
ik

)∗

D̂−1
jk + noise. (3.22)This is a sto
hasti
 estimate of the produ
t of quark propagators from thesour
e to latti
e sites i and j. Contra
ting now with δij (�one end�) allowsto determine two-point mesoni
 
orrelators. The noise-to-signal ratio in this
ase is of the order of√V 2

src/
√
RVsrc = 1/

√
R, where the fa
tor√V 2

src is thestandard deviation asso
iated with the noise and the signal is of the orderof Vsrc itself (the other fa
tor of Vsrc). Hen
e, even one sample per gauge
on�guration (R = 1) should be su�
ient to extra
t the signal.Moreover, to allow for any Dira
 stru
ture of the mesoni
 
orrelators, one
an 
onsider �linked� sour
es of the form:
η(x)µc =

[±1 ± i√
2

]

c;x∈Tsrc

δµ,µsrc
, (3.23)where the Z2 numbers are 
hosen independently for all latti
e sites and all
olours on a given timesli
e Tsrc and for a spe
i�ed spin 
omponent µsrc, butthe noise is 
ommon to all spin 
omponents. For this reason, su
h sour
esare also 
alled spin-diluted sour
es. In su
h 
ase, one has 4 sour
es for ea
hgauge 
on�guration (one per spin 
omponent) and therefore eq. (3.18) hasto be solved 4 times per 
on�guration.It is also possible to 
onsider fully linked sour
es, i.e. spin and 
olour-diluted:

η(x)µc =

[±1 ± i√
2

]

µ; c;x∈Tsrc

. (3.24)In this 
ase, the sto
hasti
 numbers are 
hosen independently for all latti
esites on a given timesli
e, all 
olours and all spins. Therefore, one has onesour
e for ea
h gauge 
on�guration and only one inversion is needed. How-ever, this method 
an only be used for some types of mesoni
 
orrelators, i.e.ones that have the γ5 matrix at the sour
e.Another 
hoi
e that has to be made when using sto
hasti
 sour
es is theway of sele
ting the timesli
e for ea
h gauge 
on�guration. The two strategiesthat 
an be followed is to move the sour
e timesli
e 
y
li
ally through thelatti
e or to 
hoose it randomly. Earlier studies [24℄ have shown that thelatter method seems to work better (it leads to shorter auto
orrelation times)and in this work we stay with this 
hoi
e.71



To improve the signal, when working with sto
hasti
 sour
es of the form(3.23), we will use two samples of sto
hasti
 noise per 
on�guration and forone sample for ea
h 
on�guration we will apply Ja
obi smearing with fuzzedgauge links. This method helps to redu
e ex
ited-state 
ontamination in themesoni
 
orrelators and thus also helps to obtain a better signal [24℄. Inpra
ti
e, the addition of smeared sto
hasti
 sour
es allows to obtain fourkinds of 
orrelation fun
tions: lo
al-lo
al (LL), lo
al-fuzzed (LF), fuzzed-lo
al (FL) and fuzzed-fuzzed (FF), depending on the propagator used in the
onstru
tion of ea
h 
orrelation fun
tion. Averaging the lo
al-fuzzed andfuzzed-lo
al 
orrelators, one 
an obtain three estimates of every 
orrelationfun
tion at ea
h timesli
e and therefore e.g. three estimates of the e�e
tivepion mass at ea
h timesli
e (LL, FF and the average of LF and FL, whi
hwe will denote again by LF).The general advantage of using sto
hasti
 sour
es with respe
t to pointsour
es is the redu
tion of statisti
al error on mesoni
 quantities like the pionmass and de
ay 
onstant, espe
ially for small quark masses.3.4.2 The SUMR solverEquation (3.18), whi
h has to be solved to �nd the quark propagator, is amatrix equation involving a matrix of a very large dimension, of the order ofseveral million by several million. This means that solving this equation is themost intensive part of the 
omputation of 
orrelation fun
tions of interest inthis proje
t. Therefore, it is essential to do it in an e�e
tive way. Spe
i�
ally,this means that an appropriate solver has to be 
hosen.The e�
ien
y of di�erent solvers for overlap and twisted mass fermionswas investigated by Chiarappa et al. [75℄. It was found that for the 
aseof (quen
hed) overlap and small volume (124 and 164), the most e�e
tivesolvers are the 
hiral 
onjugate gradient algorithm and the SUMR solver.Sin
e the former algorithm 
an only be used for exa
t overlap operator, thepolynomial approximation that we use would lead to some 
orre
tions thatwould have to be expli
itly 
al
ulated. Therefore, the latter algorithm seemsto be better suited for this proje
t.The SUMR (Shifted Unitary Minimal Residual) algorithmwas introdu
edin [80℄ and �rst analyzed in the 
ontext of Latti
e QCD in [81℄, where it wasalso shown that it is theoreti
ally superior to 
ertain variants of the ConjugateGradient and the Minimal Residual algorithms.To improve the performan
e of the SUMR algorithm, we have also usedadaptive pre
ision. This means that the Chebyshev polynomial degree isadapted to the a

ura
y that is a
tually needed in the present iteration step.From the pra
ti
al point of view, when the solver is heading towards the72



requested pre
ision, the a

ura
y of approximation (the polynomial degree)
an be substantially de
reased. For example, if the degree of Chebyshevpolynomial at the start of inversion is typi
ally (for our parameters) of order100-200, the �nal iterations 
an be performed with the polynomial degreedown to 20-40 with adaptive pre
ision. This saves a fa
tor of around 2 ininversion time.Sin
e we are interested in the dependen
e of various observables on thebare overlap quark mass, it is also 
ru
ial that the inversion does not have tobe performed separately for ea
h quark mass. It was �rst shown by Frommeret al. [82℄ that for some kinds of solver algorithms it is possible to obtainthe solution for an arbitrary quark mass at the 
ost of one inversion for onlythe smallest quark mass. Therefore, the dependen
e of the observables onthe quark mass 
an be 
omputed with very little additional 
ost, sin
e theSUMR algorithm has the ne
essary multiple mass 
apability � the mass shiftenters the algorithm only through s
alar 
oe�
ients in the solution ve
tor[75℄.To �nalize this 
hapter, we 
omment on 
omputer 
odes that were used inthis proje
t. The gauge �eld 
on�gurations were generated by the ETM Col-laboration using the tmLQCD pa
kage of Jansen and Urba
h [83℄. Sto
hasti
sour
es were generated and the mesoni
 
orrelation fun
tions were 
omputedusing the Contra
tion Code of Urba
h and Wagner [84℄, while the baryoni

orrelators were 
al
ulated with the 
ontra
tion 
ode of Dra
h. Inversionswith the overlap operator were performed using the GWC 
ode, written byseveral 
ontributors to the papers [64, 75℄. The modi�
ations of this 
ode bythe author of this thesis in
luded:
• implementation of HYP smearing,
• input/output routines for reading in sto
hasti
 sour
es and writingpropagators to allow the use of the Contra
tion Code,
• modi�
ation of the Contra
tion Code routines to generate fully linkedsto
hasti
 sour
es and to perform 
ontra
tions of propagators invertedon these sour
es,
• implementation of subtra
tion pro
edures for zero modes (dis
ussed inChapter 4).
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Chapter 4Investigations of the 
ontinuumlimit s
aling properties of themixed a
tion setup
4.1 Mixed a
tion approa
hOverlap fermions have many appealing properties. However, their main dis-advantage is that their use is very time-
onsuming and needs O(100) timeslarger 
omputer resour
es with respe
t to e.g. twisted mass fermions. Thismakes dynami
al simulations with overlap fermions a big 
hallenge. Su
hsimulations are performed [85℄, but in 
omparison with other kinds of latti
ea
tions it is still not possible to rea
h very �ne latti
e spa
ings and very largelatti
es. Dynami
al overlap fermions simulations also lead to algorithmi
 dif-�
ulties, the foremost being the dis
ontinuity in the operator 1/

√
A†A, whi
himplies that the overlap Dira
 operator 
hanges dis
ontinuously when its in-dex 
hanges (i.e. when the number of 
hiral zero modes of the Dira
 operator
hanges in a simulation) [86℄. This problem 
an be over
ome, e.g. by usingthe re�e
tion/refra
tion algorithm [87℄, but this pro
edure is very 
ostly andhen
e still too demanding for the present generation of super
omputers. An-other way to over
ome the dis
ontinuity problem is to modify the a
tion insu
h a way that the topologi
al 
harge 
an not 
hange [88℄. However, thisleads to an additional �nite volume e�e
t whi
h has to be taken into a

ount.The above dis
ussion shows that while 
learly the importan
e of dynam-i
al overlap simulations will in
rease in the future, it is still desirable toinvestigate alternative approa
hes that make it possible to take advantageof good 
hiral properties of overlap fermions and at the same time avoid theimmense 
omputational 
ost of dynami
al overlap simulations. One su
h75



approa
h is provided by the mixed a
tion setup.The mixed a
tion approa
h 
onsists in 
hoosing a di�erent dis
retizationfor sea and valen
e fermions. This means that the gauge �eld 
on�gurationsare generated with a relatively 
heap fermioni
 a
tion, su
h as the Wilsontwisted mass a
tion and the overlap operator is only used to invert the Dira
operator, i.e. to 
onstru
t propagators, and then to 
ompute the 
orrelationfun
tions.The mixed a
tion simulations have been performed for the following se-tups:
• 
lover sea quarks and overlap valen
e quarks � [89, 90, 91℄,
• Wilson twisted mass sea quarks and overlap valen
e quarks � [92, 93,94℄,
• improved staggered sea quarks,� overlap valen
e quarks � [95, 96, 97℄,� domain wall valen
e quarks � e.g. [98, 99, 100, 101, 102, 103, 104,105, 48℄.As 
an be dedu
ed from the above summary, the most widely used mixeda
tion setup employs domain wall valen
e quarks and improved staggered seaquarks. This results from the relative abundan
e of gauge �eld 
on�gurationsgenerated with the improved staggered latti
e a
tion and from the relative
heapness of domain wall fermions, as 
ompared with overlap fermions, how-ever at the pri
e of sa
ri�
ing exa
t 
hiral symmetry with respe
t to thelatter.The use of overlap valen
e quarks has been relatively rare and for Wilsontwisted mass sea quarks only an exploratory study has been performed. The
urrent proje
t is the 
ontinuation of the analysis performed in [92, 93℄ andits �rst results have been reported in [94℄. It is also well-motivated from thepoint of view of the availability of twisted mass sea gauge 
on�gurations,generated by the European Twisted Mass Collaboration (ETMC) [106, 24℄.However, before reporting the proje
t results, let us shortly dis
uss thevalidity of the mixed a
tion approa
h in general. Let us 
onsider the expres-sion for a mesoni
 
orrelation fun
tion:
Cij(x, y) =

1

Z

∫

DU e−Sgauge [U ]
(det(D̂sea(msea)

))2 (4.1)
× Tr [(D̂val(mval,1)

)−1

(y, x) Γi

(

D̂val(mval,2)
)−1

(x, y) Γj

]

.In Nf = 2 simulations, one 
an have the following situations:76



• D̂sea = D̂val, msea = mval,1 = mval,2 � unitary setup,
• D̂sea = D̂val, msea 6= mval,1 = mval,2 or msea = mval,1 6= mval,2 �partially quen
hed (PQ) setup,
• D̂sea 6= D̂val � mixed a
tion setup.Sin
e all valid latti
e Dira
 operators di�er only by dis
retization e�e
ts, i.e.terms proportional to some power of the latti
e spa
ing, they have the same
ontinuum limit. This has been expli
itly shown in Chapter 2 for sele
teddis
retizations at tree-level. Therefore, it is 
lear from eq. (4.1) that eventaking di�erent latti
e Dira
 operators for sea and valen
e quarks (the mixeda
tion setup) must lead to the same 
ontinuum limit as the unitary setup,provided that the sea quarks and the valen
e quarks masses are properlymat
hed su
h that a �xed physi
al situation is realized in the approa
h tothe 
ontinuum limit. In the unitary setup, this obviously holds if the barequark masses are equal. However, in the mixed 
ase the equality of barequark masses does not have to be the proper mat
hing 
ondition, i.e. oneleading to the same 
ontinuum limit as the unitary 
ase. This is due to thefa
t that the renormalization 
onstants of the quark masses do not have tobe the same for di�erent dis
retizations. Hen
e, a proper mat
hing 
ondi-tion is to take equal renormalized quark masses. However, this is not alwaysstraightforward, sin
e the 
omputation of renormalization 
onstants 
an't al-ways be performed with su�
ient pre
ision. Therefore, alternative mat
hing
onditions 
an be 
onsidered � one 
an mat
h some hadroni
 observable that
an be 
omputed pre
isely.The 
hoi
e that we will follow is to mat
h the pion mass. This amountsto �nding a bare valen
e quark mass mval,1 = mval,2 ≡ mq, whi
h leads tothe same pion mass as the mass of a pion 
onstru
ted from two sea quarks ofmassmsea: mval−val

π = msea−sea
π . We also expe
t (and again it has been shownin the free 
ase) that at the mat
hing point other physi
al observables, su
has the pion de
ay 
onstant, are also mat
hed, but only up to O(a2), sin
edis
retization e�e
ts are in general di�erent in di�erent observables.However, even if we expe
t that the 
ontinuum limit of a mixed a
tiontheory is the same as of unitary QCD, su
h theory is still non-unitary and this
an lead to various e�e
ts observed at non-zero latti
e spa
ing. A pronoun
ede�e
t of this kind regards the s
alar 
orrelation fun
tion. It was �rst shownin quen
hed QCD by Bardeen et al. [107, 108℄ that the s
alar 
orrelator 
anobtain an unphysi
al negative 
ontribution from one kind of diagrams. Thisis espe
ially important for low quark masses and it is attributed to the η′−πintermediate state. Su
h e�e
t also appears in partially quen
hed QCD andPrelovsek et al. derived an expression for this 
ontribution [109℄ within the77



framework of Partially Quen
hed Chiral Perturbation Theory. Golterman,Izubu
hi and Shamir [110℄ adapted this result to the 
ase of mixed a
tions.At large time t, the dominant 
ontribution to the s
alar 
orrelation fun
tionis:
C(t) → B2

0

2L3

[

e−2MV St

M2
V S

Nf

2
− e−2MV V t

M4
V V

(

M2
V V +M2

SS

Nf
+RMV V t

)]

, (4.2)where B0 is a low-energy 
onstant, L � the physi
al length of the box,MV V ≡
mval−val
π , MSS ≡ msea−sea

π , MV S ≡ mval−sea
π (at leading order M2

V S = (M2
V V +

M2
SS)/2),

R = (M2
SS −M2

V V )/Nf + a2(γV V + γSS − 2γV S) (4.3)is the residue from the double pole, whi
h arises only in the 
ase of a partiallyquen
hed or a mixed a
tion setup. γV V , γSS and γV S are additional low-energy 
onstants, whi
h are all equal in the 
ase of a partially quen
hedsetup � hen
e in su
h 
ase the se
ond term in the residue from the doublepole vanishes. If we 
onsider the 
ase of mat
hed pion masses, the formula(4.2) redu
es (in the Nf = 2 
ase) to:
C(t) → − B2

0

2L3

e−2MV V t

M3
V V

(γV V + γSS − 2γV S) a
2t. (4.4)Thus, in the mixed a
tion 
ase the residue R does not vanish even if wemat
h the pion masses and even in this 
ase it should be possible to observea potentially negative 
ontribution (its sign depends on the signs of γ low-energy 
onstants) to the s
alar 
orrelator at large time, as an indi
ation ofa unitarity violation 
aused by the di�erent dis
retization of sea and valen
equarks. This e�e
t was further investigated by Fur
hner [111℄, who derived�nite volume 
orre
tions to the 
onsidered e�e
t.However, it is important to emphasize here that the unitarity violation isa dis
retization e�e
t and thus it vanishes in the 
ontinuum limit. Moreover,even at �nite latti
e spa
ing, the χPT formulas allow to 
ontrol the unitarityviolation and hen
e the e�e
t 
an be taken into a

ount and analyzed.4.2 S
aling test � light sea quark massIn this se
tion, we will show the results of a 
ontinuum limit s
aling test ofthe pion de
ay 
onstant, employing overlap valen
e quarks and maximallytwisted mass sea quarks with a light mass, 
orresponding in in�nite volumeto a pion mass of around 300 MeV. 78



4.2.1 Simulation parametersA 
ontinuum limit s
aling test in the intera
ting theory 
onsists in 
omput-ing a 
ertain observable at a few values of the latti
e spa
ing, but in a �xedvolume and in �xed physi
al situation, and extrapolating the result to a = 0.The range of latti
e spa
ings and volumes 
overed by the available Nf = 2ETMC 
on�gurations is broad. There are four latti
e spa
ings � between
a ≈ 0.05 fm (whi
h 
orresponds to β = 4.2) and a ≈ 0.1 fm (β = 3.8) and arange of physi
al extents of the box L 
overing the interval between 1.3 and2.7 fm. In order to minimize the e�e
t of �nite volume, in simulations withtwisted mass valen
e quarks one usually works with L ≥ 2 fm. However,su
h volume is very 
omputer-time demanding in the 
ase of overlap valen
equarks and pra
ti
ally out-of-rea
h for the physi
al extent L rea
hing 2.4 fm,sin
e it would require dealing with latti
es of 483 × 96 at the �nest latti
espa
ing. Therefore, this s
aling test will be performed with the smallest vol-ume available, 
orresponding to the physi
al size of the box of L ≈ 1.3 fm.In order to estimate the size of the �nite volume e�e
ts, we will also per-form an analysis for larger volumes, but only for the 
oarsest latti
e spa
ing,
orresponding to β = 3.9.There are three available latti
e spa
ings at the physi
al latti
e extent of1.3 fm, 
orresponding to the light sea quark mass that leads to a pion massof around 300 MeV. The simulation parameters are1:

• 163 × 32, a ≈ 0.079 fm (β = 3.9, r0/a = 5.25(2)), aµ = 0.004, 544
on�gurations,
• 203 × 40, a ≈ 0.063 fm (β = 4.05, r0/a = 6.61(2)), aµ = 0.003, 300
on�gurations,
• 243 × 48, a ≈ 0.051 fm (β = 4.2, r0/a = 8.33(5)), aµ = 0.002, 400
on�gurations.We have 
hosen only a subset of available thermalized gauge �eld 
on�gura-tions in ea
h ensemble, in order to minimize the e�e
t of auto
orrelations. Forinversions with the overlap Dira
 operator, we have 
hosen every 10th MonteCarlo traje
tory (at β = 3.9, 4.2) or every 20th traje
tory (at β = 4.05). Thenumber of 
on�gurations for ea
h ensemble was 
hosen to roughly mat
h thea

ura
y of the twisted mass data, i.e. a
hieve a similar statisti
al error onthe pion mass and de
ay 
onstant as in the unitary setup. This requiresroughly the same number of 
on�gurations in both 
ases.1The values of the latti
e spa
ing and the hadroni
 length s
ale r0/a are taken from[33℄. 79



As dis
ussed in the previous 
hapter, we have applied one iteration ofHYP smearing to the gauge �eld 
on�gurations.4.2.2 Lo
alityBefore 
on
entrating on the s
aling test, we investigate the issue of lo
alityof the overlap Dira
 operator for our setup [112℄. In this way, we will be ableto 
hoose the optimal value of the parameter s whi
h enters the de�nition ofthis operator (equations (1.75) and (1.76)).First, we analyze the dependen
e of the maximal norm of the overlapDira
 operator ||D̂ov||max on the taxi-driver distan
e ||x||, de�ned in Se
tion1.4.2. The norm of the overlap operator is de�ned as the row-sum norm:
||D̂ov(x, y)|| = max

1≤µ≤4

4
∑

ν=1

|D̂(x, y)µν | (4.5)and, sin
e the operator norm may di�er for the same taxi-driver distan
e dueto di�erent paths that 
an be followed, we de�ne the maximal norm for thetaxi driver distan
e d as:
||D̂ov||max(d) = max

||x−y||=d
||D̂ov(x− y, 0)||. (4.6)The de
ay rate ρ of the maximal norm is de�ned by the formula:

||D̂ov||max(d) = Ce−ρd, (4.7)where ρ and C 
an be extra
ted from a �t.Fig. 4.1 shows in logarithmi
 s
ale the taxi-driver distan
e dependen
eof the maximal norm of the overlap operator for di�erent values of the pa-rameter s. For all values of s we observe an exponential de
ay of the normand the maximal de
ay rate is observed for s = 0 (for this value a linear�t is shown). This is further illustrated in Fig. 4.2, whi
h shows that thede
ay rate ρ is indeed maximal in the vi
inity of s = 0. We also show herethe result for gauge �eld 
on�gurations without HYP smearing. In this 
ase,the maximal de
ay rate ρ is obtained for s = 0.4 and is slightly smaller thanthe de
ay rate 
orresponding to s = 0 in the HYP-smeared 
ase2. Hen
e,for further simulations it is optimal from the point of view of lo
ality to set
s = 0.The overlap operator de
ay rate in latti
e units aρ should not dependon latti
e spa
ing. This means that the values of 1/ρ extra
ted from plots2A similar value of ρ is obtained also for s 
lose to -1. However, negative values of smean that a non-physi
al phase may be entered [113℄.80



Figure 4.1: Maximal norm of the overlap operator in logarithmi
 s
ale. Thelinear �t 
orresponds to the value of s whi
h yields the maximal de
ay rate.Parameters: β = 3.9, L/a = 16.

Figure 4.2: The dependen
e of the overlap Dira
 operator norm de
ay rate
ρ on the parameter s for gauge �eld 
on�gurations with and without HYPsmearing. Parameters: β = 3.9, L/a = 16.81
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al82
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 operator [112℄. This operatorde
ays exponentially and we have maximized its de
ay rate by 
hoosing asuitable value of the parameter s, i.e. s = 0.0 in the 
ase of HYP-smearedgauge �eld 
on�gurations.4.2.3 Mat
hing the pion massAs dis
ussed in Se
tion 4.1, a mixed a
tion setup will lead to the same 
ontin-uum limit as the unitary setup, provided that the quark masses are properlymat
hed. Here we show the results of the mat
hing pro
edure, with the83
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urves above to the mixed a
tion setup.The dashed verti
al lines show the lo
ation of the mat
hing bare overlapquark mass am̂.In Chapter 2 we have performed a tree-level 
ontinuum limit s
aling testfor the pion de
ay 
onstant and we have shown that the leading dis
retiza-tion e�e
ts are O(a2). Now, we would like to perform a similar test in theintera
ting 
ase. The mat
hing between the physi
al volumes of the latti
es(L ≈ 1.3 fm) is imposed by the 
hoi
e of the ensembles and here we also haveto �x the quark mass to allow for a 
omparison of the de
ay 
onstants atthree distin
t latti
e spa
ings. This 
an be done e.g. by �xing r0mπ. We willtake three values of r0mπ ≈ 1.5, r0mπ ≈ 1.0 and r0mπ ≈ 0.85, whi
h 
orre-sponds roughly to the mat
hing mass m̂ (as 
an be seen from the mat
hingplot 4.6, the MTM (sea-sea) pion masses are approximately mat
hed for thethree ensembles under investigation).The results of the test are shown in Fig. 4.8. For all investigated valuesof r0mπ, we observe good s
aling with O(a2) leading 
ut-o� dependen
e, asexpe
ted from previous 
onsiderations and 
on�rmed at the tree-level.However, we would still like to 
he
k whether the 
ontinuum limit of thepion de
ay 
onstant 
omputed with overlap valen
e fermions is 
onsistent86
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aling of the MTM pion de
ay 
onstant at themat
hing mass.with the one 
omputed in the unitary setup, i.e. with maximally twistedmass valen
e quarks. This would provide an expli
it test of universality offermion dis
retizations. The 
ontinuum limit value that has to be 
omparedis the one obtained for the mat
hing mass.Fig. 4.9 shows a 
ontinuum limit s
aling of r0fπ in the unitary setup. Asin the 
ase of overlap valen
e quarks, the MTM pion de
ay 
onstant shows aleading O(a2) 
ut-o� dependen
e. However, the 
ontinuum limit is di�erentthan the one obtained from the extrapolation of overlap data. This is instrong 
ontrast with our earlier expe
tation that both dis
retizations shouldlead to the same 
ontinuum value. To illustrate this result more 
learly, weplot in Fig. 4.10 the di�eren
e r0(f overlapπ − fMTM
π ). This 
on�rms that thedis
repan
y between the overlap and MTM pion de
ay 
onstant de
reasesmu
h too slowly as the 
ontinuum limit is approa
hed.This is a very surprising and unexpe
ted out
ome. Fig. 4.10 suggests thatusing one of the Dira
 operators leads to a wrong 
ontinuum limit, whi
h isin 
ontradi
tion to the widely a

epted knowledge that both 
onstitute validlatti
e Dira
 operators. The observed dis
repan
y is therefore a mystery atthis stage and it has been a major part of the present thesis to resolve thismystery and �nd an explanation for the behaviour depi
ted in Fig. 4.10.The qualitative di�eren
e of the twisted mass and overlap dis
retizations87
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Figure 4.10: Continuum limit s
aling of the di�eren
e of the overlap andMTM pion de
ay 
onstant at the mat
hing mass.is that the latter exa
tly preserves 
hiral symmetry. Therefore, it is naturalto look in the dire
tion of this di�eren
e. Namely, we will investigate therole of 
hiral zero modes of the overlap Dira
 operator.4.3 Chiral zero modes and their 
ontributionto mesoni
 
orrelators4.3.1 Chiral zero modesThere is a 
lear di�eren
e in the eigenvalue spe
tra of 
hiral and non-
hiralmassless latti
e Dira
 operators. In the 
ase of the former, it is possiblethat eigenmodes φ(x) with zero eigenvalue appear at any value of the latti
espa
ing a. Moreover, su
h zero modes have a de�nite 
hirality, i.e. they areeigenmodes of γ5:
γ5φ(x) = ±φ(x) (4.8)with eigenvalue ±1. If the eigenvalue equals +1, we 
all su
h eigenmode azero mode in the positive 
hirality se
tor (or a right-handed zero mode) andfor eigenvalue −1 we speak of a zero mode in the negative 
hirality se
tor88



(or a left-handed zero mode). In Se
tion 1.4.4 we have dis
ussed the relationbetween the zero modes and topologi
al properties of gauge �elds.Non-
hiral latti
e Dira
 operators 
an also develop zero modes, but this
an only happen at su�
iently small values of the latti
e spa
ing. The valuesthat are presently rea
hed in simulations are far too large to have exa
t zeromodes of non-
hiral Dira
 operators � from the pra
ti
al point of view we 
antherefore assume that in our mixed a
tion setup with overlap valen
e quarksand twisted mass sea quarks the valen
e Dira
 operator admits zero modesand the sea Dira
 operator does not. Hen
e, in a �nite volume situation thezero modes of the valen
e Dira
 operator lead to a 
ontribution that is not
ompensated by the fermioni
 determinant and 
an a�e
t 
ertain 
orrelationfun
tions and hen
e some observables. It was shown by Blum et al. [114℄ thatthe 
ontribution of the zero modes (e.g to mesoni
 
orrelators) is proportionalto 1/
√
V , where V is the latti
e volume, and therefore it is a �nite volumeartefa
t.It is interesting to spe
ulate about the role of zero modes in an unitaryoverlap simulation3. In su
h 
ase, the 
ontribution of the zero modes wouldbe suppressed by the (overlap) fermioni
 determinant. In other words, ane�e
t of the zero modes that we want to investigate in the mixed a
tion setupor the analogous e�e
t in the quen
hed approximation [119℄ results from thefa
t that the 
ontribution of the zero modes is not properly suppressed bythe fermioni
 determinant, sin
e it is a determinant that originates from anon-
hirally symmetri
 a
tion (the MTM 
ase) or there is no determinant atall (i.e. it is set to a 
onstant in the quen
hed approximation). Moreover,it 
an be hypothesized that very 
lose to the 
ontinuum limit, zero modesof the MTM Dira
 operator would also appear and the 
ontribution of thezero modes in the valen
e se
tor would be suppressed by the MTM fermioni
determinant. In this way, it would lead to a lowered 
ontinuum limit of theoverlap pion de
ay 
onstant in the PP 
ase with respe
t to the one extra
tedfrom the linear extrapolation in a2 and under the assumption of universality alimit more 
onsistent with the unitary MTM value. However, su
h hypothesisis not testable in latti
e 
al
ulations, sin
e probably a simulation with a verysmall latti
e spa
ing would have to be performed. Nevertheless, the pionde
ay 
onstant 
ontinuum limit s
aling test in the unitary overlap setupwould be interesting from this point of view and should 
on�rm that the
ontinuum limit of both unitary overlap and unitary MTM is the same, evenwhen one looks at the PP 
orrelator in the former 
ase, as we have done inthe previous se
tion.3For unitary overlap simulations appropriate algorithms need to be used, whi
h take thezero modes into a

ount, e.g. the Polynomial HMC (PHMC) algorithm [115, 116, 117, 118℄.89



4.3.2 The 
ontribution of the zero modes to mesoni

orrelatorsWe now pro
eed to show how the 
ontribution of the zero modes 
an be
al
ulated and subtra
ted from the observables. In this way, we will be ableto 
ompute the overlap pion de
ay 
onstant without the 
ontribution of thezero modes and then perform the 
ontinuum limit s
aling test of Se
tion4.2 again and 
he
k whether the �nite volume e�e
t of the zero modes isresponsible for the di�eren
e in the 
ontinuum value.Let us 
onsider the spe
tral de
omposition of the propagator S(x, y):
S(x, y) =

∑

i

φi(x)φ
†
i(y)

λi +mq

, (4.9)where λi are the eigenvalues of the massless Dira
 operator D̂, i.e.:
D̂φi(x) = λiφi(x), (4.10)and mq is the bare quark mass.Inserting this de
omposition into the expression for the mesoni
 
orrela-tion fun
tion (1.91), we obtain:

C(t) =
∑

~x

∑

i,j

Tr(φi(~x, t)φ†
i(~0, 0) Γ1γ5 φj(~0, 0)φ†

j(~x, t) γ5Γ
2)

(λi +mq)(λj +mq)
. (4.11)Let us now isolate the 
ontribution of the zero modes:

C(t) = C00(t) + 2C0N (t) + CNN(t), (4.12)where C00(t) is the part of the sum that 
ontains only the zero modes (λi = 0,
λj = 0), 2C0N (t) = C0N(t) + CN0(t) 
ontains the mixed terms that 
ouplethe zero modes and non-zero modes (λi = 0, λj 6= 0 or λi 6= 0, λj = 0) and
CNN(t) is the 
ontribution of the non-zero modes (λi 6= 0, λj 6= 0). We �nd:
C00(t) =

∑

~x

∑

λi=0

∑

λj=0

Tr(φi(~x, t)φ†
i(~0, 0) Γ1γ5 φj(~0, 0)φ†

j(~x, t) γ5Γ
2)

m2
q

, (4.13)
C0N(t) =

∑

~x

∑

λi=0

∑

λj 6=0

Tr(φi(~x, t)φ†
i(~0, 0) Γ1γ5 φj(~0, 0)φ†

j(~x, t) γ5Γ
2)

mq(λj +mq)
, (4.14)

CNN(t) =
∑

~x

∑

λi 6=0

∑

λj 6=0

Tr(φi(~x, t)φ†
i(~0, 0) Γ1γ5 φj(~0, 0)φ†

j(~x, t) γ5Γ
2)

(λi +mq)(λj +mq)
. (4.15)90



Let us now 
onsider the 
ontributions of the zero modes C00(t), C0N(t)to the pseudos
alar (Γ1 = Γ2 = γ5) and s
alar (Γ1 = Γ2 = 1) 
orrelationfun
tions. In both 
ases we obtain the same result:
CPP,SS

00 (t) =
∑

~x

∑

λi=0

∑

λj=0

Tr(φi(~x, t)φ†
i(~0, 0)φj(~0, 0)φ†

j(~x, t) )

m2
q

, (4.16)
CPP,SS

0N (t) =
∑

~x

∑

λi=0

∑

λj 6=0

Tr(φi(~x, t)φ†
i(~0, 0)φj(~0, 0)φ†

j(~x, t) )

mq(λj +mq)
, (4.17)where in the s
alar 
ase we have used eq. (4.8). The terms that 
ontainthe zero modes 
ontribution are proportional to 1/m2

q and 1/mq and hen
ediverge in the 
hiral limit mq = 0. Sin
e in our simulation setup the seaquark mass is rather light, at the mat
hing mass also the valen
e quark massis light and therefore the zero modes 
ontribution 
an be important.However, sin
e the zero mode 
ontribution to the pseudos
alar (CPP (t))and s
alar (CSS(t)) 
orrelation fun
tions is equal, it is possible to exa
tly
an
el this 
ontribution by taking the di�eren
e of these two 
orrelators.This was �rst suggested by Blum et al. [114℄. We de�ne:
CPP−SS(t) = CPP (t) − CSS(t). (4.18)This is a valid 
orrelation fun
tion with a proper transfer matrix de
ompo-sition. Therefore, it should be possible to extra
t the pion mass and de
ay
onstant from this 
orrelation fun
tion. CPP−SS(t) is 
ontaminated by thes
alar ex
itation. However, sin
e the lightest s
alar meson is mu
h heavierthan the lightest pseudos
alar meson, if we look at large enough time, the
ontribution of the s
alar states should be absent and we 
an indeed extra
tthe pion observables of interest.In a mixed a
tion setup there is an additional 
ompli
ation. The s
alar
orrelator is parti
ularly vulnerable to the double pole 
ontribution, whi
hhas already been dis
ussed in Se
tion 4.1. The residue from this doublepole does not vanish even in the 
ase of mat
hed pion masses. Hen
e, by
onsidering the 
orrelation fun
tion CPP−SS(t) we ex
hange the 
ontributionof the zero modes for a unitarity violation related to the mixed a
tion setup.However, this is an e�e
t of O(a2), whi
h 
an be 
onsidered to be an extradis
retization e�e
t, in addition to the standard O(a2) s
aling violationspresent in all observables. Therefore, su
h unitarity violations vanish in the
ontinuum and they should not a�e
t the extrapolation of the pion de
ay
onstant (
omputed from CPP−SS(t)) to the 
ontinuum.The e�e
t of the zero modes on the pion mass 
an be observed in Fig.4.11, whi
h shows the bare overlap quark mass dependen
e of the pion mass91
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Figure 4.11: The 
omparison of the quark mass dependen
e of the pion massextra
ted from PP and PP-SS 
orrelators for β = 3.9 ensemble.extra
ted from the pseudos
alar (PP) 
orrelator and the PP-SS 
orrelator
CPP−SS(t). As expe
ted from 
onsiderations in this se
tion, the e�e
t is themost pronoun
ed for small quark masses, while for larger masses the pionmass extra
ted from both 
orrelators is the same (up to statisti
al error). Thepion mass extrapolated to the 
hiral limit (mq = 0) is zero, when the e�e
ts ofthe zero modes have been subtra
ted. This is in a

ordan
e with the leading-order predi
tion of Partially Quen
hed Chiral Perturbation Theory � m2

π ∝
mq [120, 121℄. Also, the shape of the quark mass dependen
e of the pion massagrees with this predi
tion � in this range of masses the 
urvature impliedby the next-to-leading order predi
tion is only slightly visible and, espe
ially,there is no eviden
e for 
hiral logarithms ∝ mq logmq. An extrapolation tothe 
hiral limit in the PP 
ase yields a non-zero value. The observed shape
ould be mistaken for a 
hiral logarithm relevant for small quark masses,but it is entirely due to the 
hiral zero modes, i.e. it is a �nite-volume e�e
t.The plot also shows that the zero modes have a signi�
ant e�e
t with respe
tto the mat
hing mass, whi
h moves towards larger values of the bare quarkmass. 92
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Figure 4.12: The 
omparison of the quark mass dependen
e of the pion de
ay
onstant extra
ted from PP and PP-SS 
orrelators for β = 3.9 ensemble.We also show the in�uen
e of the zero modes on the quark mass depen-den
e of the pion de
ay 
onstant (Fig. 4.12). As for the pion mass, the e�e
tis signi�
ant for small quark masses and the PP-SS 
urve lies below the PPone. This e�e
t brings the de
ay 
onstant towards the twisted mass value.However, sin
e the mat
hing mass in
reases, the e�e
t at the mat
hing massis rather small (for β = 3.9) and hen
e an investigation of the 
ontinuumlimit s
aling is needed to 
he
k whether the zero modes are enough to ex-plain the di�eren
e between the 
ontinuum limit values of the pion de
ay
onstant. This will be performed in the following se
tion.4.3.3 Comparison of 
orrelation fun
tionsTo illustrate the e�e
ts of subtra
ting the zero modes in two di�erent ways,we plot in Fig. 4.13 the following 
orrelation fun
tions: PP, SS and PP-SS. We also plot the PP and PP-SS 
orrelation fun
tions for one 
hosengauge �eld 
on�guration. Ensemble parameters are: β = 3.9, L/a = 16,
aµ = 0.004, amq = 0.004, i.e. we 
hoose the lightest available valen
e quark93
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Figure 4.13: Ensemble averages for the following 
orrelation fun
tions: pseu-dos
alar (PP), s
alar (SS), the di�eren
e of PP and SS (PP-SS). The insetshows the PP and PP-SS 
orrelation fun
tions on a single 
on�guration.Parameters: β = 3.9, L/a = 16, aµ = 0.004, amq = 0.004.mass to have the biggest 
ontribution of the zero modes.Let us summarize the 
on
lusions from this plot.
• The PP-SS 
orrelator has a smaller slope (with respe
t to the PP 
or-relator) in the plateau region � thus it 
orresponds to a smaller pionmass. This was already observed in Fig. 4.11 (the valen
e quark massin Fig. 4.13 
orresponds to the leftmost pair of points in Fig. 4.11).94



 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 10  11  12  13  14  15  16

C
(t

)

t

averages

PP
SS

PP-SS

Figure 4.14: Ensemble averages for the following 
orrelation fun
tions: pseu-dos
alar (PP), s
alar (SS), the di�eren
e of PP and SS (PP-SS). Parameters:
β = 3.9, L/a = 16, aµ = 0.004, amq = 0.04 (mu
h larger valen
e quark massthan in Fig. 4.13).From Fig. 4.11, one 
an also 
on
lude that the e�e
t of the 
hange ofslope in the plateau region is smaller for larger valen
e quark masses.This is in a

ordan
e with our previous 
onsiderations � the leadingquark-mass dependen
e of the zero-mode 
ontribution to the PP andSS 
orrelators is O(1/m2

q).
• The matrix element of the PP-SS 
orrelator |〈0|P |π〉|PP−SS is largelyredu
ed with respe
t to the PP 
orrelator matrix element |〈0|P |π〉|.However, this leads to a relatively small de
rease in the pion de
ay
onstant (observed in Fig. 4.12), sin
e the de
rease in this matrixelement is almost 
ompensated for by a de
rease in m2

π, whi
h 
omesin the denominator of eq. (1.95).
• The e�e
t of the zero modes on a single 
on�guration 
onsists in pro-95



du
ing an unphysi
al peak at the timesli
e (t = 12 in Fig. 4.13) that
orresponds to the lo
ation of the zero mode. This peak is removed inthe PP-SS 
orrelator.We also 
onsider (Fig. 4.14) the 
ase of a heavier valen
e quark mass
amq = 0.04 (the remaining parameters are the same). The plot shows onlythe large-time behaviour of the 
orrelation fun
tions.

• The SS 
orrelator is 
onsistent with zero. For t ∈ [10, 16], there is no
ontribution from the s
alar ex
itation, as the s
alar meson is too heavy.Sin
e the s
alar 
orrelator is zero, also the 
ontribution of the zeromodes is negligible and hen
e the PP and PP-SS 
orrelation fun
tionslead to the same result.
• For this value of quark mass, one also expe
ts a negligible 
ontributionfrom the double pole to the s
alar 
orrelator � eq. (4.2) implies thatfor large MV V this 
ontribution is very small.
• Hen
e, the pion mass and de
ay 
onstant extra
ted at this mass fromthe PP/PP-SS 
orrelator do not seem to be 
ontaminated by either the
ontribution of the zero modes or unitarity violations.The analysis of this subse
tion implies that, as expe
ted, the role of thezero modes de
reases as the quark mass is in
reased. In the next se
tionwe will use the PP-SS 
orrelation fun
tion to perform an analysis of thebehaviour of the pion de
ay 
onstant with the zero modes 
ontribution re-moved. In parti
ular, we would like to 
he
k its 
ontinuum limit � if the zeromodes are indeed responsible for the mismat
h of 
ontinuum limits observedin Fig. 4.10, their removal should lead to the same 
ontinuum limit of thepion de
ay 
onstant as the one of the unitary approa
h.4.4 The role of the zero modes � small volume,light sea quark massWe would now like to perform a 
ontinuum limit s
aling test of the pion de
ay
onstant extra
ted from the PP-SS 
orrelator CPP−SS(t). We will pro
eedin the same manner as before, i.e. we start by �nding the mat
hing massfor ea
h ensemble. The results of the mat
hing pro
edure are shown in Fig.4.15 and the bare overlap quark masses that lead to the same pion mass asin the unitary setup are the following:
• β = 3.9 � am̂ = 0.011(1), 96
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Figure 4.15: Mat
hing the pion mass (extra
ted from the PP-SS 
orrelator)for three values of the latti
e spa
ing, 
orresponding to β = 3.9, 4.05 and4.2.
• β = 4.05 � am̂ = 0.006(1),
• β = 4.2 � am̂ = 0.004(1).In 
omparison with the PP 
ase, the mat
hing masses are shifted towardslarger values. This is a result of the fa
t that they were arti�
ially lowereddue to the zero mode 
ontribution.As already dis
ussed, the pion de
ay 
onstant 
urve extra
ted from thePP-SS 
orrelation fun
tion lies below the one extra
ted in the PP 
ase. At the97
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Figure 4.16: The dependen
e of the pion de
ay 
onstant on the bare overlapquark mass. The dashed lines 
orrespond to the mat
hing quark masses am̂(from PP-SS 
orrelator). The solid verti
al lines (left of the dashed lines)show the di�eren
e of f overlapπ and fMTM
π (at the mat
hing mass) extra
tedfrom the PP 
orrelator.same time, however, the mat
hing masses are shifted towards larger values,whi
h 
orresponds to an in
rease in the pion de
ay 
onstant. The interplayof these two e�e
ts determines the di�eren
e between the overlap f overlapπand the MTM pion de
ay 
onstant fMTM
π at the mat
hing mass. One 
anexpli
itly 
ompare these di�eren
es for di�erent ensembles by looking at Fig.4.16, whi
h shows the quark mass dependen
e of the pion de
ay 
onstantextra
ted from the PP-SS 
orrelator. The dashed verti
al lines show theanalyzed di�eren
e in the PP-SS 
ase, while the solid verti
al lines (left ofthe dashed lines) show the 
orresponding mat
hing point di�eren
e in thePP 
ase (the length of the solid lines is exa
tly the same as the length of theverti
al lines in Fig. 4.7). Cru
ially, this di�eren
e is the most signi�
antfor the β = 4.2 ensemble and hen
e it implies a large shift in the di�eren
e

f overlapπ − fMTM
π extrapolated to the 
ontinuum limit.98
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aling of the overlap pion de
ay 
onstant(extra
ted from the PP-SS 
orrelator) at the mat
hing mass and two otherreferen
e values of r0mπ.Fig. 4.17 shows the 
ontinuum limit s
aling of the pion de
ay 
onstant.We again take three referen
e values of r0mπ ≈ 1.5, r0mπ ≈ 1.0 and theone that 
orresponds to the mat
hing 
riterion r0mπ ≈ 0.85. As before,for all analyzed values of r0mπ, we observe good s
aling with O(a2) leadingdis
retization e�e
ts. A 
omparison to the PP 
ase (Fig. 4.8) indi
ates thatthe extrapolated 
ontinuum limit value is mostly a�e
ted for small r0mπ andthere is almost no e�e
t for the largest r0mπ. Also, in all 
ases the point thatis most a�e
ted is the one that 
orresponds to the smallest latti
e spa
ingand the one at β = 3.9 pra
ti
ally does not move.Clearly, su
h behaviour results from the interplay of various e�e
ts � in-trinsi
 O(a2), unitarity violating O(a2) and the zero mode e�e
ts. We 
annot disentangle all of these e�e
ts, but a possible qualitative explanation forthe observed behaviour 
an be provided by a working hypothesis that themethod of extra
ting the pion observables from the PP-SS 
orrelation fun
-tion exa
tly 
an
els the 
ontribution of the zero modes, but at the same timeintrodu
es the O(a2) unitarity violation related to the double pole 
ontribu-tion to the s
alar 
orrelator. In this way, the e�e
t of the zero modes maybe basi
ally equal for all latti
e spa
ings (as expe
ted for a �nite volumee�e
t), but the unitarity violation e�e
t 
auses that the pion de
ay 
onstant99
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Figure 4.18: Continuum limit s
aling of the di�eren
e of the overlap (fromthe PP-SS 
orrelator) and MTM pion de
ay 
onstant at the mat
hing mass.in
reases by an O(a2) term. Hen
e, one might expe
t that at even largerlatti
e spa
ing, the pion de
ay 
onstant extra
ted from the PP-SS 
orrela-tor at the mat
hing mass would be even larger than the one from the PP
orrelator, sin
e then the unitarity violation e�e
t 
ould be larger than the�nite-volume 
ontribution of the zero modes.The essential question is whether the 
ontinuum limit of the pion de
ay
onstant extra
ted from the PP-SS 
orrelation fun
tion agrees with the MTM
ontinuum limit. Fig. 4.18 shows the di�eren
es r0(f overlapπ − fMTM
π ) for theinvestigated latti
e spa
ings and the value extrapolated to a = 0 is 
onsistentwith zero.Hen
e, we 
an 
on
lude that the 
ontinuum limit of the pion de
ay 
on-stant 
omputed for two di�erent dis
retizations of valen
e quarks is the same,provided that one takes into a

ount the role of the 
hiral zero modes of theoverlap operator, i.e. they have to be subtra
ted from the overlap data inorder to 
ompare the 
ontinuum limits.
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4.5 The role of the zero modes � �nite volumee�e
ts analysis4.5.1 Simulation parametersIn order to 
he
k the �nite volume e�e
ts in the 
urrent setup, we haveinvestigated two additional ensembles at the 
oarsest latti
e spa
ing a ≈
0.079 fm, 
orresponding to β = 3.9 and with the same sea quark mass value
aµ = 0.004. The parameters are (in
luding the ensemble at the smallestvolume):

• 163 × 32, L ≈ 1.3 fm, 544 
on�gurations,
• 203 × 40, L ≈ 1.7 fm, 239 
on�gurations,
• 243 × 48, L ≈ 2.0 fm, 435 
on�gurations.In order to minimize the e�e
t of auto
orrelations, for propagator 
ompu-tations we have 
hosen every 10th Monte Carlo traje
tory (for L/a = 16,24) or every 20th traje
tory (for L/a = 20). In addition, for the L/a = 24ensemble, we have used the fully linked sour
es, des
ribed in Se
tion 3.4.1.Thus, only 1 inversion per gauge �eld 
on�guration is required to 
onstru
tthe pseudos
alar 
orrelation fun
tion. However, in this way it is not possibleto 
al
ulate the s
alar 
orrelator and hen
e extra
t the pion de
ay 
onstantfrom the PP-SS 
orrelator.4.5.2 Mat
hing the pion mass � PP 
orrelatorFinite volume e�e
ts in the quark mass dependen
e of the pion mass 
an beseen in Fig. 4.19. The �nite-volume e�e
t 
orresponding to a 
hange in thelinear extent of the latti
e from 1.3 to 1.7 fm is signi�
ant and approximatelyequal for the overlap and the MTM 
ase, whereas the e�e
t of going from 1.7to 2.0 fm is very small in both 
ases. The only ex
eption to this observation
an be dis
erned for the lightest valen
e quark masses, where the de
reaserelated to the 
hange in volume is noti
eable. This is espe
ially meaningfulif the extrapolation to the 
hiral limit is performed. For L/a = 20 it 
learlygives a non-zero value, whi
h means that the e�e
ts of the zero modes arestill very important. In turn, for L/a = 24, the 
hirally extrapolated value of

mπ is mu
h 
loser to zero, signalling that the importan
e of the zero modese�e
t de
reases. However, mπ at mq = 0 is still non-zero and therefore oneshould expe
t that the 
ontribution of the zero modes is still non-negligible.Fig. 4.19 also shows the mat
hing mass values for ea
h volume:101
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Figure 4.19: Mat
hing the pion mass for 3 di�erent volumes at a �xed latti
espa
ing a ≈ 0.079 fm.
• L/a = 16 � am̂ = 0.007(1),
• L/a = 20 � am̂ = 0.007(1),
• L/a = 24 � am̂ = 0.008(1).For all volumes, the mat
hing mass is approximately the same, whi
h is dueto the fa
t that the �nite volume e�e
ts (in the pion mass) of overlap andMTM fermions are very similar.4.5.3 Pion de
ay 
onstant � PP 
orrelatorFig. 4.20 shows the quark mass dependen
e of the pion de
ay 
onstant forthree investigated volumes, together with the values in the unitary MTMsetup. The di�eren
e in fπ at the mat
hing point de
reases as the volumeis in
reased, whi
h is in a

ordan
e with the expe
tation based on the fa
tthat the zero modes 
ontribution is a �nite volume e�e
t. However, thedis
repan
y between the overlap and MTM values for L ≈ 2 fm is still rather102
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Figure 4.20: The quark mass dependen
e of the pion de
ay 
onstant for 3di�erent volumes at a �xed latti
e spa
ing a ≈ 0.079 fm.large (of order 15 ± 5%) and one 
an suspe
t that the zero modes still playa non-negligible (although mu
h redu
ed) role.This is further illustrated in Fig. 4.21, whi
h shows the di�eren
e in
fπ as a fun
tion of the latti
e size L/a. One 
an estimate from this plotthat at L/a = 32 it would be of the order of a few per
ent, thus signallingthat the 
ontribution of the zero modes is negligible for pra
ti
al reasons.This analysis is performed at a non-zero latti
e spa
ing and hen
e it 
an notbe expe
ted that the di�eren
e in fπ goes to zero even in in�nite volume� at the mat
hing point one expe
ts an O(a2) di�eren
e due to di�erentdis
retization e�e
ts from di�erent sea and valen
e quarks a
tions. However,a test at L/a = 32, whi
h 
orresponds to L ≈ 2.6 fm is beyond the s
ope ofthis work, sin
e it would require a very 
omputer-time intensive 
omputation.
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e between the overlap and MTM pionde
ay 
onstant at the mat
hing point.4.6 The role of the zero modes � small volume,heavier sea quark mass4.6.1 Motivation and simulation setupWe now investigate the e�e
ts of the zero modes for a heavier sea quarkmass. The motivation for this test is provided by Fig. 4.22. The solid 
urveshows the pion mass dependen
e of the pion de
ay 
onstant for the mixeda
tion setup of overlap valen
e quarks and MTM sea quarks (the β = 4.05,
L/a = 20 ensemble). The 
orresponding unitary point (aµ = 0.003) issituated below the 
urve and the verti
al distan
e from this point to theoverlap 
urve measures the dis
repan
y between the overlap and MTM pionde
ay 
onstants at the mat
hing mass.The other unitary point 
orresponds to a heavier sea quark mass (aµ =
0.006) and this point lies very 
lose to the overlap 
urve. Sin
e the depen-den
e of the valen
e-valen
e pion mass and de
ay 
onstant on the sea quarkmass is mu
h smaller than the dependen
e on the valen
e quark mass4, we4This 
an be estimated from the formulas of Partially Quen
hed Chiral PerturbationTheory [120, 121℄. 104
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e of the pion de
ay 
onstant for over-lap valen
e quarks on MTM sea. Also shown are two unitary points (MTMvalen
e quarks on MTM sea), di�ering only by the sea quark mass. Param-eters: β = 4.05, L/a = 20.
an expe
t that the overlap 
urve for a heavier quark mass will not movesubstantially from its position for aµ = 0.003, thus implying that the dif-feren
e between the pion de
ay 
onstant at the mat
hing mass will be mu
hsmaller than the one observed for aµ = 0.003.An expli
it 
omputation of the overlap dependen
e for aµ = 0.006 willalso provide a further 
he
k of the hypothesis that the zero modes are re-sponsible for the mismat
h in the 
ontinuum limit values between the mixedand the unitary approa
h. Sin
e the mat
hing mass will be heavier, the 
on-tribution of the zero modes will be mu
h smaller. Thus, we 
an expe
t asmaller mismat
h in the 
ontinuum limit. Furthermore, we 
an again 
he
kwhether the pro
edure of 
an
elling the zero modes 
ontribution by takingthe PP-SS 
orrelation fun
tion will lead to a 
onsisten
y between the mixedand unitary 
ontinuum limit values of the pion de
ay 
onstant. For this, wewill also use ensembles at β = 3.9 and β = 4.2 with a heavier quark masswhi
h leads to approximately the same sea-sea pion mass as aµ = 0.006 inthe 
ase of the β = 4.05 ensemble.Simulation parameters are: 105



• 163 × 32, a ≈ 0.079 fm (β = 3.9, r0/a = 5.25(2)), aµ = 0.0074, 260
on�gurations,
• 203 × 48, a ≈ 0.063 fm (β = 4.05, r0/a = 6.61(2)), aµ = 0.006, 299
on�gurations,
• 243 × 48, a ≈ 0.051 fm (β = 4.2, r0/a = 8.33(5)), aµ = 0.005, 137
on�gurations.In order to minimize the e�e
t of auto
orrelations, we have 
hosen every16th Monte Carlo traje
tory (at β = 3.9, 4.2) or every 20th traje
tory (at

β = 4.05) for inversions with the overlap Dira
 operator.4.6.2 Pion de
ay 
onstant � s
aling testTo perform the pion de
ay 
onstant 
ontinuum limit s
aling test, we �rsthave to �nd the mat
hing quark masses for ea
h ensemble. For this, wehave found the quark mass dependen
e of the pion mass. The pion mass hasbeen extra
ted from the PP 
orrelator � hen
e we expe
t that it might be
ontaminated by zero modes e�e
ts. It is interesting to 
ompare the quarkmass dependen
e of the pion mass for the 
ases of the light sea quark massand the heavier one. Superimposing the heavier sea quark mass 
urves onthe 
orresponding ones for light sea quark mass, one �nds that they are
onsistent within statisti
al error (hen
e, we don't show this plot for theheavier sea quark mass 
ase), i.e. that at most a mild dependen
e of thevalen
e-valen
e pion mass on the sea quark mass 
an be observed. This isin agreement with the predi
tions of Partially Quen
hed Chiral PerturbationTheory, i.e. this dependen
e should be very small.However, sin
e the sea-sea pion mass 
hanges substantially when the seaquark mass value is in
reased (it is r0mπ ≈ 1 for all 
ases), there is a sub-stantial 
hange of the mat
hing mass values:
• β = 3.9 � am̂ = 0.015(1),
• β = 4.05 � am̂ = 0.011(1),
• β = 4.2 � am̂ = 0.009(1).We now pro
eed to analyze the quark mass dependen
e of the pion de
ay
onstant. Again, the 
urves 
orresponding to both values of the sea quarkmass for ea
h ensemble are very 
lose to ea
h other. The sea-sea pion de
ay
onstant values are for pra
ti
al reasons equal for all ensembles and 
onsid-erably higher than in the 
ase of light sea quark mass. This implies that thedi�eren
es at the mat
hing point are mu
h smaller than in the latter 
ase.106
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Figure 4.23: Continuum limit s
aling of the overlap pion de
ay 
onstant atthe mat
hing mass � light and heavier sea quark mass.In Fig. 4.23, we show the results of the 
ontinuum limit s
aling test forthe mat
hing mass, 
ontrasting the 
ut-o� e�e
ts in the 
ase of the two seaquark masses. Also in the 
ase of the heavier sea quark mass, the leadingdis
retization e�e
ts are O(a2) 5. Moreover, they are smaller in the 
ase ofthe heavier sea quark mass, i.e. the slope of the latti
e spa
ing dependen
eis smaller in this 
ase.The 
orresponding s
aling plot for the MTM 
ase (only heavier sea quarkmass) is shown in Fig. 4.24. Sin
e we work at maximal twist, the leading
ut-o� e�e
ts are also O(a2). However, the slope of the �tted line is negativein this 
ase, as opposed to a positive slope in the 
ase of the light sea quarkmass.To assess the role of the zero modes for heavier sea quark mass, a similaranalysis has also been performed using the PP-SS 
orrelator to extra
t thepion mass and de
ay 
onstant. Here we just quote the values of the mat
hingmass for this 
ase:
• β = 3.9 � am̂ = 0.0165(15),
• β = 4.05 � am̂ = 0.012(1),5We have also 
he
ked that for other referen
e values of r0mπ the leading 
ut-o� e�e
tsare also O(a2). 107



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

r 0
f π

(a/r0)
2

cont. limit = 0.359(11)

L ≈ 1.3 fm

β=4.2 β=4.05 β=3.9

matching mass MTMFigure 4.24: Continuum limit s
aling of the MTM pion de
ay 
onstant atthe mat
hing mass. The 
ase of the heavier sea quark mass.

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

r 0
(f

πo
v
e

rl
a

p
-f

πM
T

M
)

(a/r0)
2

L ≈ 1.3 fm

β=4.2

β=4.05

β=3.9

r0mπ
overlap

=r0mπ
MTM

matching mass heavier PP
matching mass heavier PP-SSFigure 4.25: Continuum limit s
aling of the di�eren
e of the overlap andMTM pion de
ay 
onstant at the mat
hing mass. The 
ase of the heaviersea quark mass, PP and PP-SS 
orrelators.108



• β = 4.2 � am̂ = 0.0095(15).At these values of the mat
hing masses, the pion de
ay 
onstant hasbeen 
al
ulated. Again, the s
aling test shows that the leading dis
retizatione�e
ts are O(a2).The essential issue is now to 
ompare the 
ontinuum limits of the overlapand MTM dis
retization, with the overlap data from both the PP and the PP-SS 
orrelator. In Fig. 4.25 we plot the di�eren
e r0(f overlapπ −fMTM
π ) betweenoverlap (PP) vs. MTM and overlap (PP-SS) vs. MTM (slightly shifted to theright for better presentation). The di�eren
e r0(f overlapπ −fMTM

π ) is 
onsistentwith zero in both 
ases. However, the subtra
tion of the s
alar 
orrelator stilla�e
ts the pion observables, whi
h is espe
ially visible at the 
oarsest latti
espa
ing. This allows us to 
on
lude that the role of the zero modes at themat
hing mass 
orresponding to the heavier sea quark mass is very mu
hredu
ed with respe
t to the light quark mass. It is, nevertheless, still non-negligible at this sea quark mass and this volume.4.7 The role of the zero modes � 
on
lusionIn this se
tion, we gather the most relevant 
on
lusions regarding the role ofthe zero modes.We have investigated the role of the zero modes in three 
ontexts:
• �xed volume 
orresponding to linear latti
e extent of L ≈ 1.3 fm, �xedpion mass, 
orresponding in in�nite volume tomπ ≈ 300 MeV, 3 latti
espa
ings � 0.051, 0.063, 0.079 fm,
• �xed latti
e spa
ing a ≈ 0.079 fm (�xed β = 3.9), �xed pion mass
mπ ≈ 300 MeV, 3 volumes with L ranging from 1.3 to 2.0 fm,

• �xed volume 
orresponding to linear latti
e extent of L ≈ 1.3 fm, �xedpion mass, 
orresponding in in�nite volume tomπ ≈ 450 MeV, 3 latti
espa
ings � 0.051, 0.063, 0.079 fm.The �rst and third setup allowed us to test the 
ontinuum limit s
alingof the pion de
ay 
onstant and assess the in�uen
e of the quark mass on the
ontribution of the zero modes. The se
ond setup enabled us to estimate thevolume dependen
e of the zero modes e�e
ts. Clearly, the role of the zeromodes is non-negligible in all of the investigated 
ases. We have shown thatit is 
onsiderably redu
ed at L ≈ 2.0 fm and sea quark masses 
orrespondingto mπ ≈ 300 MeV and at L ≈ 1.3 fm and sea quark masses giving mπ ≈ 450MeV. The analysis of �nite volume e�e
ts allowed us to 
on
lude that in the109
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Figure 4.26: The safe, hazardous and non-safe regions of parameters in phys-i
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e vs. pion mass) in mixed a
tion simu-lations with overlap valen
e and MTM sea quarks. The �safe� region 
orre-sponds to parameters for whi
h the e�e
ts of 
hiral zero modes of the overlapoperator are negligible.
ase of mπ ≈ 300 MeV, one 
an expe
t that a linear latti
e extent of L ≈ 2.6fm would be needed to ensure that the zero modes e�e
ts 
an be negle
ted.At the higher pion mass of mπ ≈ 450 MeV, the 
orresponding �safe� latti
evolume 
an be estimated to be around L ≈ 2.0 fm.These 
on
lusions are summarized in Fig. 4.26, whi
h shows our esti-mates of the parameters that are needed to ensure that one is safe againstthe 
ontribution of zero modes. As their role de
reases when the sea quarkmass is in
reased, the linear latti
e extent that is needed to simulate in thesafe region also de
reases with in
reasing mat
hing pion mass. We have alsodistinguished a region where the zero modes e�e
ts are redu
ed, althoughthey are still non-negligible (the hazardous region). If the latti
e linear ex-tent is too small with respe
t to the pion mass, the simulation results maybe strongly 
ontaminated by unsuppressed 
ontribution from the zero modes(the non-safe region). In this region, one has to be very 
areful when in-terpreting the results of simulations � 
ertain observables may be largelya�e
ted and a wrong 
ontinuum limit may be rea
hed. We have to empha-size here that the boundaries of the regions are not sharp � the e�e
ts of the110



zero modes are 
learly observable-dependent. However, the plot may serveas a hint on the parameter values (latti
e size and mat
hing pion mass) thatare needed to avoid the non-physi
al 
ontributions from the zero modes.4.8 Expli
it subtra
tion of zero modesIn addition to subtra
ting the zero modes 
ontribution by 
onstru
ting thePP-SS 
orrelator, it is also possible to expli
itly 
ompute the zero modes ofthe overlap Dira
 operator and subtra
t them from the propagators. We willuse this pro
edure to 
ross-
he
k the 
on
lusion about the role of the zeromodes. However, we will also show that this pro
edure is dangerous andhen
e its results have to be interpreted with 
aution.4.8.1 Subtra
tion pro
edureThe starting point for this analysis is again the spe
tral de
omposition of thepropagator (4.9). The full propagator is obtained from a standard inversion.In addition, we 
an 
onstru
t the propagator 
oming only from the zeromodes:
S0(x, y) =

∑

λi=0

φi(x)φ
†
i (y)

λi +mq
, (4.19)where the sum runs only over the zero eigenvalues. Then, we 
an subtra
t S0from the full propagator, thus arriving at the propagator 
oming only fromthe non-zero modes:

SN(x, y) = S(x, y) − S0(x, y). (4.20)The drawba
k of this method is that the 
al
ulation of the zero modesof the overlap operator is 
omputer-time intensive. We have 
hosen thefollowing method for this 
omputation [122℄. We 
onstru
t the operators:
D̂± = P±D̂ov(0)P±, (4.21)where P± ≡ (1±γ5)/2. It 
an be shown that the spe
trum of both D̂+ and D̂−is exa
tly the same for the non-
hiral (non-zero) modes, but the 
hiral zeromodes in the positive (negative) 
hirality se
tor o

ur only in the spe
trumof D̂+ (D̂−). Clearly, the zero modes of the operators D̂± are also zero modesof the massless Dira
 operator D̂ov(0), due to the Ginsparg-Wilson relation.In pra
ti
al 
omputations, we therefore 
ompute a 
ertain number ofeigenvalues of both D̂+ and D̂− and thus we 
an identify the zero eigenvaluesand their 
orresponding eigenve
tors.111



Hen
e, we 
an 
ompute the propagator 
oming only from the zero modes.Sin
e the full propagators in our setup are spinors of the form Ψ = D̂−1
ov (mq)η,where η are sto
hasti
 sour
es, we have to take it into a

ount by using thefollowing formula:

Ψ0 =
∑

λi=0

1

mq

φαi φ
†
iη. (4.22)Then, we obtain the propagators from non-zero modes by taking the dif-feren
e Ψ − Ψ0 and from this obje
t all relevant 
orrelation fun
tions 
anbe 
onstru
ted. At the level of 
orrelators, only the part CNN(t) is thus
al
ulated (eq. (4.15)), i.e. subtra
tion of the zero modes at the level ofpropagators removes the diagonal 
ontributions C00(t) and the mixed 
ontri-butions C0N(t), CN0(t) of the zero modes.In Appendix D we present the results of a free-�eld test of routines usedto subtra
t the zero modes at the level of propagators, whi
h 
on�rms thatthe subtra
tion pro
edure is performed in the 
orre
t way.4.8.2 E�e
ts of expli
it zero modes subtra
tionAn e�e
t of the subtra
tion pro
edure on the pion mass and de
ay 
onstant(with respe
t to the PP 
ase) 
an be observed in Figs. 4.27 and 4.28. For
omparison, also the 
urves 
orresponding to the PP-SS 
ase are plotted.The pion mass extra
ted from the PP-SS 
orrelator and the PP 
orrelatorwith subtra
ted zero modes (PP subtr.) agree for small quark masses, whilethe behaviour of the pion de
ay 
onstant is very di�erent. At the level of
orrelation fun
tions, this results from the fa
t that the PP subtr. 
orrelatorhas a very similar slope to the one of the PP-SS 
orrelator, but its matrixelement is signi�
antly lower.For larger quark masses (larger than r0mq ≈ 0.08), the pion masses ex-tra
ted from the PP-SS and the PP subtr. 
orrelators are not 
onsistent withea
h other � the PP subtr. 
urve 
hanges slope and deviates the more fromthe PP-SS 
urve the larger the quark mass. This is in apparent 
ontradi
tionwith the expe
tation that expli
it subtra
tion of zero modes removes the 
on-tribution of these modes, sin
e at larger quark mass values this 
ontributiontends to zero and the PP subtr. 
urve should 
onverge to the PP (and PP-SS) 
urve. Su
h behaviour of the pion mass from the PP subtr. 
orrelatorprovides a warning about the expli
it subtra
tion method. It was observedbefore in quen
hed studies with the �xed point Dira
 operator, whi
h is an-other variant of a 
hirally improved latti
e Dira
 operator. The studies byHauswirth [123℄ and Gattringer et al. [124℄ obtained a similar pi
ture � thepion mass at small quark mass is approximately the same from the PP-SS112



 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

(r
0m

π)
2

r0 mq

β=3.9 L/a=16 aµ=0.004MTM
Overlap PP subtr.

Overlap PP-SS
Overlap PP

Figure 4.27: The 
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itly subtra
ted zero modes (PPsubtr.) 
orrelators for β = 3.9 ensemble.
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Figure 4.29: E�e
tive mass plateaus for PP subtr. 
orrelation fun
tions.Parameters: β = 3.9, L/a = 16, aµ = 0.004. Upper plot: amq = 0.011.Lower plot: amq = 0.04.and the PP subtr. 
orrelator, while at larger quark masses the PP subtr.
orrelation fun
tion leads to mu
h smaller pion masses than ones obtainedfrom the PP and PP-SS 
orrelators (whi
h tend to agree at quark masses forwhi
h the e�e
ts of zero modes are negligible).This 
on
lusion is further 
on�rmed by Fig. 4.29, whi
h shows the e�e
-tive pion mass plateaus from the PP subtr. 
orrelator, for two quark masses� the mat
hing mass (upper plot) and a signi�
antly heavier mass (lowerplot). The plateau observed for the mat
hing mass looks rather normal,114



whi
h means that the shape of the 
orrelation fun
tion is the one expe
tedfrom the spe
tral de
omposition (1.83). However, for the heavier quark mass,there is no plateau (this plot 
an be 
ompared to Fig. 4.5, whi
h shows thesame quark mass, but the e�e
tive mass is extra
ted from the (unsubtra
ted)PP 
orrelator). This implies that the PP subtr. 
orrelation fun
tion mightnot be a sum of exponential fun
tions, but rather a sum of power fun
-tions. This results from the fa
t that expli
it subtra
tion of zero modes is anon-lo
al pro
edure, i.e. it 
an modify the simulated theory in a non-lo
alway, thus leading to unphysi
al e�e
ts in the 
orrelation fun
tions, whi
h
auses that the spe
tral de
omposition (1.83) is not valid. It also impliesthat the pion mass values obtained from the PP subtr. 
orrelator are notmeaningful at high values of the quark mass. However, sin
e there is nofundamental reason why di�erent quark masses should lead to qualitativelydi�erent behaviour of the 
orrelation fun
tions, we 
an not be sure that evenat a relatively small quark mass (su
h as the mat
hing mass) the subtra
tionpro
edure is valid.The above dis
ussion leads to a 
on
lusion that expli
it subtra
tion ofzero modes is a dangerous hand-made pro
edure, whi
h may lead to un
on-trollable unphysi
al e�e
ts in the extra
ted observables. However, sin
e wehave observed the 
onsisten
y between the pion masses from the PP-SS andPP subtr. 
orrelators (for relatively small quark masses), we may assumehere as a working hypothesis that at the mat
hing mass the expli
it sub-tra
tion pro
edure is valid, i.e. that the unphysi
al e�e
ts of subtra
tion aresmall. This is justi�ed by the fa
t that the e�e
tive mass plateau for themat
hing mass does not show the pathology observed at the larger quarkmass.To 
on
lude this subse
tion, we show in Fig. 4.30 the s
alar 
orrelationfun
tion with expli
itly subtra
ted zero modes (SS subtr.) for two valuesof the valen
e quark mass � the lightest 
onsidered mass and the mat
hingmass. The plot shows that the dominant 
ontribution to the full SS 
orrelator
omes from the zero modes (the SS subtr. 
urve for amq = 0.004 should be
ompared to the full SS 
urve at the same quark mass � Fig. 4.13). Moreover,after the zero modes are subtra
ted, the s
alar 
orrelator is negative, whi
hmay be attributed to the unitarity violation e�e
t dis
ussed in Se
tion 4.1.We have also hypothesized in Se
tion 4.4 that this e�e
t in�uen
es the pionde
ay 
onstant extra
ted from the PP-SS 
orrelator. This would also explainthe di�eren
e in fπ extra
ted from the PP-SS and PP subtr. 
orrelators � thelatter does not have the enhan
ed unitarity violation e�e
t from the s
alar
orrelator. This e�e
t will be investigated further in the next 
hapter.In the next subse
tion we will use the PP subtr. 
orrelation fun
tion toextra
t the pion de
ay 
onstant and perform its 
ontinuum limit s
aling test.115
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Figure 4.30: The SS subtr. 
orrelation fun
tion (SS with expli
itly subtra
tedzero modes). Parameters: β = 3.9, L/a = 16, aµ = 0.004, 2 valen
e quarkmasses: amq = 0.004, amq = 0.011 (mat
hing mass).The results will not be 
ontaminated by the zero modes 
ontribution, butwe again emphasize that they have to be interpreted with 
aution, due tothe fa
t that the subtra
tion pro
edure is not 
lean from the �eld-theoreti
alpoint of view.4.8.3 Pion de
ay 
onstant � s
aling test � PP subtr.
orrelatorWe again begin by �nding the mat
hing mass for ea
h ensemble. The resultsof the mat
hing pro
edure are shown in Fig. 4.31 and the bare overlap quarkmasses that lead to the same pion mass as in the unitary setup are:
• β = 3.9 � am̂ = 0.0115(15),
• β = 4.05 � am̂ = 0.0065(15),
• β = 4.2 � am̂ = 0.0055(15).These mat
hing masses are 
onsistent with the ones obtained from the PP-SS 
orrelation fun
tion, 
on�rming again the 
on
lusion that these methodsgive 
onsistent results for small quark masses.116
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Figure 4.31: Mat
hing the pion mass (extra
ted from the PP subtr. 
orre-lator) for three values of the latti
e spa
ing, 
orresponding to β = 3.9, 4.05and 4.2.The 
urves that show the quark mass dependen
e of the pion de
ay 
on-stant extra
ted from the PP 
orrelator with expli
itly subtra
ted zero modes(PP subtr.) lie well below the 
orresponding 
urves for the PP and the PP-SS 
ase (Fig. 4.32). This e�e
t has already been dis
ussed in the previoussubse
tion. In 
omparison with the PP 
ase, the values of the pion de
ay
onstant at the mat
hing mass are very mu
h redu
ed, whi
h is shown in theplots by verti
al lines � the dashed ones 
orrespond to the di�eren
e in thepion de
ay 
onstant in the PP subtr. 
ase and the solid ones to the PP 
ase.117
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Figure 4.32: The dependen
e of the pion de
ay 
onstant on the bare overlapquark mass. The dashed lines 
orrespond to the mat
hing quark masses am̂(from PP subtr. 
orrelator). The solid verti
al lines (left of the dashed lines)show the di�eren
e of f overlapπ and fMTM
π (at the mat
hing mass) extra
tedfrom the PP 
orrelator.Again, the in�uen
e of zero modes 
an
ellation is relatively the largest for

β = 4.2.Fig. 4.33 shows the 
ontinuum limit s
aling of the pion de
ay 
onstant forthree referen
e values of r0mπ ≈ 1.3 (here we take the highest value availablefor the β = 3.9 ensemble), r0mπ ≈ 1.0 and the one that 
orresponds to themat
hing 
riterion r0mπ ≈ 0.85. As in the previous 
ases of the PP andthe PP-SS 
orrelation fun
tions, we observe good s
aling behaviour for allanalyzed values of r0mπ, with O(a2) leading 
ut-o� e�e
ts.Moreover, the 
ontinuum limit of the pion de
ay 
onstant extra
ted fromthe PP subtr. 
orrelation fun
tion agrees with the MTM 
ontinuum limit,whi
h is shown in Fig. 4.34. Therefore, both methods of subtra
ting thezero modes lead to a 
onsistent 
ontinuum limit value, whi
h is the one ofthe unitary approa
h. This is a strong hint that the zero modes are indeedresponsible for the observed behaviour of the pion de
ay 
onstant extra
ted118
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aling of the overlap pion de
ay 
onstant(extra
ted from the PP subtr. 
orrelator) at the mat
hing mass and twoother referen
e values of r0mπ.from the PP 
orrelator, i.e. for the wrong 
ontinuum limit value of thisobservable.However, we have to emphasize again that the results of the expli
it zeromodes subtra
tion pro
edure have to be treated with 
aution. The 
onsis-ten
y between both methods is a hint that the pathologi
al e�e
ts of thehand-made subtra
tion pro
edure are not very large at the mat
hing mass,but this method of 
an
elling the zero modes 
ontribution is not re
om-mended, sin
e there is no systemati
 way to 
ontrol the potential non-physi
ale�e
ts.A 
learly safer pro
edure to remove the 
ontribution of the zero modesis the one with the PP-SS 
orrelation fun
tion. This method does not su�erfrom the aforementioned e�e
ts, sin
e no modi�
ation at the level of propa-gators is made. In this way, both the PP and SS 
orrelation fun
tions havethe proper spe
tral de
omposition and, as we have shown, the 
ontribution ofthe zero modes is exa
tly 
an
elled in the 
orrelator di�eren
e. The pri
e topay, however, is that the s
alar 
orrelator may introdu
e enhan
ed unitarityviolations 
oming from the double pole 
ontribution spe
i�
 to non-unitaryapproa
hes (quen
hed, partially quen
hed and mixed a
tion theories). Onthe other hand, su
h e�e
ts are O(a2) latti
e artefa
ts and hen
e should119
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Figure 4.34: Continuum limit s
aling of the di�eren
e of the overlap (fromthe PP subtr. 
orrelator) and MTM pion de
ay 
onstant at the mat
hingmass.not a�e
t extrapolations to the 
ontinuum limit. This e�e
t will be furtheranalyzed in the next 
hapter.
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Chapter 5Various further resultsIn the previous 
hapter we have performed an analysis of the 
ontinuumlimit s
aling of the pion de
ay 
onstant. We have dis
ussed the role of thezero modes in a mixed a
tion setup of 
hirally-symmetri
 valen
e quarks andnon-
hirally-symmetri
 sea quarks. To 
an
el the non-physi
al 
ontributionof the zero modes we have used the PP-SS 
orrelation fun
tion and we havehypothesized that while this 
orrelator 
orre
tly removes the zero modes
ontribution, it also introdu
es enhan
ed unitarity violations. In this 
hapterwe will analyze this e�e
t. We will also present some additional resultsregarding the 
ontinuum limit s
aling of baryon (nu
leon and delta) masses,as well as some topologi
al aspe
ts.5.1 Unitarity violationsIn this se
tion we attempt at an analysis of the unitarity violation des
ribedin Se
tion 4.1. We begin by illustrating this e�e
t more 
learly, taking asan example the behaviour of the pion de
ay 
onstant at one latti
e spa
ing
a ≈ 0.079 fm. Finite volume e�e
ts in fπ extra
ted from the PP 
orrelatorwere analyzed in Se
tion 4.5. We now show the out
ome of the analogousanalysis for the PP-SS 
orrelation fun
tion.5.1.1 MotivationWe have remarked earlier that the 
omputation of propagators for the L/a =
24 ensemble was done with fully linked sto
hasti
 sour
es, whi
h means thatthere was only 1 inversion per gauge �eld 
on�guration and thus it was notpossible to 
ompute the s
alar 
orrelator for this volume. However, at theearlier stage of this proje
t this ensemble was partly analyzed using point121
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Figure 5.1: Mat
hing the pion mass (from the PP-SS 
orrelator) for 3 di�er-ent volumes at a �xed latti
e spa
ing a ≈ 0.079 fm.sour
es (with 54 independent gauge �eld 
on�gurations and 12 inversionsper 
on�guration) [93℄ and in this part of the work we use the 
orrelationfun
tions 
omputed at that stage, in
luding the s
alar 
orrelation fun
tion.This enables us to perform the �nite volume e�e
ts test also for the PP-SS
orrelator.Fig. 5.1 shows the quark mass dependen
e of the pion mass extra
tedfrom the PP-SS 
orrelator. With this method of 
omputing the pion mass,the linear extrapolation ofm2
π to the 
hiral limit gives a value 
onsistent withzero for all three volumes, thus indi
ating that the 
ontribution of the zeromodes has been 
an
elled.The mat
hing mass values are for ea
h volume:

• L/a = 16 � am̂ = 0.011(1),
• L/a = 20 � am̂ = 0.009(1),
• L/a = 24 � am̂ = 0.008(1). 122
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Figure 5.2: The dependen
e of the pion de
ay 
onstant on the bare overlapquark mass. The dashed lines 
orrespond to the mat
hing quark masses am̂(from the PP-SS 
orrelator). The solid verti
al lines (left of the dashed lines)show the di�eren
e of f overlapπ and fMTM
π (at the mat
hing mass) extra
tedfrom the PP 
orrelator.With these values, we 
an 
ompare the pion de
ay 
onstant at the mat
hingmass from the PP and the PP-SS 
orrelator.The 
omparison of the pion de
ay 
onstant at the mat
hing mass is shownin Fig. 5.2. The subtra
tion of the zero modes by means of taking the PP-SS 
orrelation fun
tion has very little e�e
t for all volumes. However, in theprevious 
hapter, we have shown that the e�e
t of the zero modes is presentin the pion de
ay 
onstant and sin
e we observe no e�e
t on this observablewhen taking the PP-SS 
orrelator values, we 
an 
on
lude that there mustbe two 
ompeting e�e
ts emerging when taking the di�eren
e of PP and SS
orrelation fun
tions:1. removal of the zero mode 
ontribution (�nite volume e�e
t) � de
reasesthe value of fπ,2. 
ontamination by the unitarity violation (O(a2) e�e
t) � in
reases the123



value of fπ.Our analysis suggests that these two e�e
ts roughly 
ompensate ea
h otherat β = 3.9, while the zero modes removal e�e
t dominates the unitarityviolation e�e
t at β = 4.05 and β = 4.2. We will now pro
eed to expli
itlyinvestigate the unitarity violation e�e
t.5.1.2 Small volume analysisFor 
onvenien
e, we rewrite here the formula for the s
alar 
orrelation fun
-tion at the mat
hing mass:
CSS(t)

t→∞−−−→ − B2
0

2L3

e−2MV V t

M3
V V

(γV V + γSS − 2γV S) a
2t. (5.1)The low-energy 
onstants γV V = γV S = 0, due to exa
t 
hiral symmetryin the valen
e se
tor [110℄, but γSS is non-vanishing, sin
e the sea Dira
operator is not 
hirally-symmetri
.Formula (5.1) implies that the s
alar 
orrelation fun
tion for the mat
hingquark mass 
an be
ome negative at large times (provided that γSS > 0).However, the shape of this 
orrelator is basi
ally the one observed in Fig.4.13, whi
h shows the β = 3.9 
ase at a quark mass below the mat
hingmass. Clearly, this 
orrelation fun
tion does not be
ome negative, sin
eit has a large positive 
ontribution from the zero modes and the unitarityviolation e�e
t is obs
ured.In order to analyze the e�e
t predi
ted by eq. (5.1), we would have toremove the zero mode 
ontribution from the s
alar 
orrelator or work at largeenough volume and quark mass so that this 
ontribution would be negligible.The latter requires a very 
omputer-time intensive 
omputation and is hen
ebeyond the s
ope of the 
urrent proje
t. However, su
h analysis is plannedfor the future and would provide the 
leanest way of testing the predi
tionof eq. (5.1).In the 
urrent proje
t, we therefore have to restri
t ourselves to the formermethod, i.e. to remove the zero mode 
ontribution from the SS 
orrelator.This is possible by following the pro
edure of expli
it subtra
tion of zeromodes at the level of propagators. As we have shown in the previous 
hap-ter, this is a dangerous pro
edure with hard to 
ontrol systemati
 e�e
ts.Therefore, the results of this analysis have to be interpreted with 
autionand treated as an outlook on this kind of analysis, whi
h will be later per-formed in a 
lean setup of large volume and large enough quark mass, sothat the zero mode e�e
ts will be negligible. An alternative approa
h 
ould
onsist in using only 
on�gurations in the trivial topologi
al se
tor, whi
h are124



not 
ontaminated by zero modes e�e
ts. However, the number of available
on�gurations in this se
tor is too small to allow for meaningful �ts of eq.(5.1).Fig. 4.30 shows that after the zero mode 
ontribution is removed, thes
alar 
orrelator at the mat
hing mass be
omes negative indeed. We havealso 
he
ked that the SS 
orrelator on topologi
ally trivial 
on�gurations isnegative at large time (the error bands are too large to perform �ts of eq.(5.1), however, the 
on
lusion about the sign of the 
orrelator is unambigu-ous), whi
h 
on�rms that the unitarity e�e
t is really present in our mixeda
tion setup.Our strategy is the following. We use three small-volume ensembles whoseparameters are given in Se
tion 4.2.1 and expli
itly subtra
t the zero modesat the level of propagators, as des
ribed in Se
tion 4.8.1. In this way, weobtain for ea
h ensemble the SS subtr. 
orrelator at the mat
hing mass.Then, we �t eq. (5.1) to the latti
e data.Spe
i�
ally, we write this equation as:
CSS(t)

t→∞
= −γ t e−2MV V t. (5.2)where we have de�ned a parameter γ:

γ ≡ B2
0γSS

2(MV VL)3
a2 ≡ γ̃a2. (5.3)Sin
e the temporal extent of the latti
e is �nite and equals T for ea
h en-semble (with periodi
 boundary 
onditions in time), the �tting formula thatwe use reads:

CSS(t)
t large
= −γ

(

t e−2MV V t + (T − t) e−2MV V (T−t)
)

. (5.4)The parameters that we �t are γ and the pion mass MV V . The de�nitionof the parameter γ implies that γ should have a quadrati
 dependen
e onthe latti
e spa
ing, sin
e B0 and γSS are low-energy 
onstants and MV VL isapproximately the same for ea
h ensemble.The �t for the ensemble at the 
oarsest latti
e spa
ing (β = 3.9) is shownin Fig. 5.3. The �tting interval is t ∈ [9, 23] and in this interval the �t repre-sents a very good des
ription of latti
e data. Qualitatively similar behaviouris observed also in the β = 4.05 and β = 4.2 
ases.One of the �tting parameters is the pion mass MV V . Its values extra
tedfrom the �ts 
an be 
ompared with values of the mat
hing pion mass (knownpre
isely from the maximally twisted mass PP 
orrelator). This provides a
onsisten
y 
he
k for the �ts. In all 
ases the �tted values ofMV V are around125
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Figure 5.3: The SS subtr. 
orrelation fun
tion at the mat
hing mass. Thesolid line represents the �t of eq. (5.4).2 standard deviations below the mat
hing pion mass. This is a reasonableagreement, taking into a

ount the unknown systemati
 e�e
t related to thesubtra
tion pro
edure.The �tting parameter γ has a few sour
es of un
ertainties, related to:1. statisti
al errors in CSS(t) (error bars in Fig. 5.3),2. the 
hoi
e of the �tting interval � to estimate it we have performedseveral �ts with di�erent �tting intervals,3. errors of the mat
hing pro
edure � to estimate it we have performed�ts not only for the mat
hing quark masses, but also for quark massesdi�ering in latti
e units by ±0.001 (whi
h 
orresponds to the error inthe mat
hing mass),4. the fa
t that the produ
t MV VL is not exa
tly mat
hed for all ensem-bles,5. unknown values of the renormalization 
onstant ZS of the s
alar 
urrent� we assume that ZS is equal for all ensembles,6. an unknown systemati
 error introdu
ed by the zero modes subtra
tionpro
edure. 126
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Figure 5.4: Continuum limit s
aling of the �tting parameter γ, de�ned byeq. (5.3).Fig. 5.4 shows the �tted values of γ. The errors on ea
h value in
ludesour
es 1-4 from the above list of un
ertainties. The error related to theunknown value of ZS should be rather small 
ompared to the overall size ofthe error from sour
es 1-4. We have not tried to estimate the error relatedto the zero modes subtra
tion pro
edure.We observe good s
aling of the parameter γ with leading O(a2) 
ut-o�dependen
e. The value of this parameter extrapolated to the 
ontinuum is
onsistent with zero. This result is in very good agreement with the hy-pothesis that the s
alar 
orrelator is in�uen
ed by the unitarity violatione�e
t predi
ted and analyzed in [107, 108, 109, 110℄. It also provides anexplanation for the behaviour des
ribed in the previous subse
tion, i.e. theseemingly in
onsistent with the hypothesis about the role of the zero modesla
k of e�e
t of subtra
ting the SS 
orrelator at β = 3.9. The unitarity vio-lations analysis suggests that there are indeed two 
ompeting e�e
ts in thePP-SS 
orrelator � the zero mode 
ontribution is removed, but the 
orrelatoris 
ontaminated by a unitarity violation originating from an enhan
ed doublepole 
ontribution. These two e�e
ts are roughly balan
ed at β = 3.9, but at
β = 4.05 and β = 4.2, the �nite volume e�e
t of the zero modes 
an
ellationdominates over the O(a2) unitarity violation e�e
t, whi
h is smaller at theselatti
e spa
ings. 127



This interplay of e�e
ts also explains the di�eren
e between the pion de-
ay 
onstant extra
ted from the PP-SS and the PP subtr. 
orrelator, sin
ethe latter does not have the double pole 
ontribution of the SS 
orrelator.However, it has to be remembered that this analysis has been performed withthe unphysi
al zero modes subtra
tion pro
edure and it may su�er from un-predi
table e�e
ts. Therefore, this analysis has to be treated with 
aution.It provides a plausible explanation of the observed e�e
ts. However, in orderto quantitatively analyze the e�e
t of unitarity violations in the s
alar 
or-relator and reliably extra
t the low-energy 
onstant γSS, a simulation withlarge enough volume and quark mass would have to be performed in orderto have a negligible 
ontribution from the zero modes to the full s
alar 
or-relator (without expli
it subtra
tion pro
edure). In addition, eq. (5.1) wasderived for an in�nite volume and hen
e it would be very advantageous tohave large volume data for the SS 
orrelation fun
tion in order to use the�tting ansatz of this formula in an appropriate way.5.2 Light baryon massesIn this se
tion, we show the results of a 
al
ulation of light baryon massesin the 
ase of overlap valen
e and MTM sea quarks, as well as in the uni-tary setup [112℄. Parti
ularly, we would like to 
ompare the overlap andMTM values at the mat
hing mass and 
he
k whether they have the same
ontinuum limit.The 
al
ulation of baryon 
orrelation fun
tions with sto
hasti
 sour
esyields an unfavourable noise-to-signal ratio [125℄. Therefore, we repeated thepropagator 
omputation using Gaussian smeared point sour
es, where thesmearing helps signi�
antly to suppress ex
ited state 
ontributions [65, 66℄.We again used the small-volume, light-quark ensembles with parametersgiven in Se
tion 4.2.1. We report simulation results at two latti
e spa
ings,
orresponding to β = 3.9 (426 
on�gurations) and β = 4.2 (around 370
on�gurations). The simulations at β = 4.05 are on-going.The example of e�e
tive nu
leon mass plateaus in the 
ase of β = 4.2 isshown in Fig. 5.5. The quality of the plateau is the best at the largest quarkmass, but also at overlap quark masses 
orresponding to the neighbourhoodof the mat
hing mass it is reasonable and allows for the extra
tion of thenu
leon mass.The (overlap) quark mass dependen
e of the nu
leon and delta mass isshown in Fig. 5.6 (β = 3.9) and Fig. 5.7 (β = 4.2). We also show the unitaryvalues (horizontal bands) � the lower one 
orresponds to the nu
leon and theupper one to the deltas. In the MTM 
ase, the baryons ∆++ and ∆+ are128
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tive nu
leon mass plateaus for 3 values of the overlapquark mass. Parameters: β = 4.2, L/a = 24, aµ = 0.002.non-degenerate due to isospin symmetry breaking. However, this is an O(a2)e�e
t and at the latti
e spa
ings we are working at this e�e
t is 
onsistentwith zero. To be pre
ise, at β = 3.9 we have: am∆++ = 0.739(17), am∆++ =

0.764(19) and at β = 4.2 we obtain: am∆++ = 0.512(9), am∆++ = 0.512(10).Hen
e, on the plots we only show the values for ∆++.However, we are mostly interested in the 
omparison of the nu
leon anddelta masses at the mat
hing mass. Clearly, at both latti
e spa
ings thenu
leon and delta masses in the overlap 
ase are 
onsistent with the MTMunitary values. This is further illustrated in Fig. 5.8, whi
h implies that alsothe 
ontinuum limits of both masses are 
onsistent with ea
h other. Sin
e weonly have the results for two latti
e spa
ings, we do not quote any numberfor the 
ontinuum limit values.We 
on
lude that the role of the zero modes for this kind of observables �the light baryon masses � is signi�
antly smaller than in the 
ase of the pionde
ay 
onstant. We 
an not ex
lude that the values that we have extra
tedare still 
ontaminated by the zero modes e�e
ts, but they are not large enoughto show at the 
urrent level of pre
ision and with only two latti
e spa
ings.129
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Figure 5.8: Continuum limit s
aling of the MTM and overlap light baryonmasses (nu
leon, delta). The overlap masses are 
omputed at the mat
hingmass. The MTM vales are slightly shifted to the left and the overlap ones tothe right, for 
learer presentation.In parti
ular, even if the baryon masses are not 
onsiderably a�e
ted by thezero modes, the matrix elements of the baryoni
 
orrelation fun
tions stillmight 
hange signi�
antly, as is anti
ipated in [124℄. Therefore, this issuewill be investigated further in the future [112℄. In parti
ular, the role ofthe zero modes 
an be assessed by using di�erent interpolating operators forbaryoni
 
orrelation fun
tions, sin
e di�erent operators 
ouple in a di�erentway to zero modes [124℄. Moreover, the expli
it subtra
tion pro
edure may befollowed and the overlap of the sour
es and the zero modes may be 
omputed.However, the present analysis already allows us to 
on
lude that the mag-nitude of the zero modes e�e
ts in di�erent observables may be di�erent andthat some observables may be mu
h more vulnerable to the zero modes 
on-tribution (e.g. fπ) than some other (e.g. the baryon masses).5.3 Topologi
al 
harge and sus
eptibilityIn this se
tion, we report the results of investigation of some topologi
al issuesrelated to gauge �eld 
on�gurations that we have used. For some of them, wehave 
omputed the zero modes, whi
h allows us to 
al
ulate their topologi
al131
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β=4.2, L/a=24, aµ=0.002, 396 confsFigure 5.9: Monte Carlo history of the index of the overlap operator fordi�erent ensembles. The verti
al axis s
ale is the same for all plots.
harge as the di�eren
e of the numbers of zero modes in the negative andpositive 
hirality se
tors (eq. (1.79)), i.e. the index of the overlap Dira
operator. In pra
ti
e, zero modes on a given 
on�guration o

ur only in one
hirality se
tor or, in other words, the probability of having zero modes inboth se
tors for the same 
on�guration is zero [122℄.Fig. 5.9 shows the Monte Carlo histories of the index of the overlap op-erator for four di�erent ensembles of 
on�gurations: β = 3.9, L/a = 16, aµ =
0.004; β = 3.9, L/a = 16, aµ = 0.0074; β = 4.05, L/a = 20, aµ = 0.003;
β = 4.2, L/a = 24, aµ = 0.002; all of them 
orresponding to linear latti
eextent of L ≈ 1.3 fm. The plots indi
ate that the auto
orrelations in MonteCarlo time are rather not large and di�erent topologi
al se
tors are sampled.The verti
al s
ale on ea
h of the plots is the same and hen
e it is noti
eablethat topologi
al 
harge �u
tuations are the largest for β = 3.9 and 
onsider-ably smaller and 
omparable to ea
h other for β = 4.05 and β = 4.2.The histograms of the index are shown in Fig. 5.10. To allow for 
om-parison, the number of 
on�gurations whi
h 
orresponds to the given index
N(index) has been normalized by the total number of 
on�gurations for ea
h132



 0

 0.05

 0.1

 0.15

 0.2

-10 -5  0  5  10

N
(i
n
d
e
x
)/

N
(t

o
ta

l)

index=n--n+

β=3.9, L/a=16, aµ=0.004, 544 confs

 0

 0.05

 0.1

 0.15

 0.2

-10 -5  0  5  10

N
(i
n
d
e
x
)/

N
(t

o
ta

l)

index=n--n+

β=3.9, L/a=16, aµ=0.0074, 260 confs

 0

 0.05

 0.1

 0.15

 0.2

-10 -5  0  5  10

N
(i
n
d
e
x
)/

N
(t

o
ta

l)

index=n--n+

β=4.05, L/a=20, aµ=0.003

300 confs

 0

 0.05

 0.1

 0.15

 0.2

-10 -5  0  5  10

N
(i
n
d
e
x
)/

N
(t

o
ta

l)

index=n--n+

β=4.2, L/a=24, aµ=0.002, 396 confs

Figure 5.10: Histograms of the index of the overlap operator for di�erentensembles. Also shown are Gaussian �ts of the distributions. The axess
ales are the same for all plots.ensemble N(total) and the axes are plotted in the same s
ale. We also show�ts to the Gaussian probability distribution:
p(Q) =

1√
2πσ

e−
Q2

2σ2 , (5.5)where Q is the index and σ is the only �tting 
oe�
ient, i.e. we enfor
e themean of the distribution to be 0, sin
e the probability distribution should besymmetri
 with respe
t to 
on�gurations with negative and positive topolog-i
al 
harge.The plots lead to the 
on
lusion that the probability distributions of theindexQ are approximately Gaussian. However, the quality of the �ts is ratherpoor � the most frequent value of the index is in two 
ases at Q 6= 0 and ingeneral the symmetry with respe
t to Q = 0 is not very good. This resultsfrom the fa
t that the total number of 
on�gurations for ea
h ensemble istoo small and an order of magnitude in
rease in statisti
s would be neededto obtain a reliable distribution. 133



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

r 0
4
χ t

o
p

(a/r0)
2

β=4.2 β=4.05 β=3.9

mπ≈300 MeV
mπ≈450 MeV

Figure 5.11: Topologi
al sus
eptibility for 4 ensembles of gauge �eld 
on�g-urations. The mπ ≈ 450 MeV ensemble is slightly shifted to the right forbetter visibility.The �u
tuations of the topologi
al 
harge determine the value of topo-logi
al sus
eptibility χtop for ea
h ensemble. This quantity 
an be 
omputedfrom eq. (1.81), i.e. as the mean value of the topologi
al 
harge squared,normalized by the volume. Alternatively, it 
an also be determined from theGaussian �t (5.5) as the varian
e σ2, again normalized by the volume. Eventhough the probability distributions are rather far away from Gaussian, thestatisti
al errors of 〈Q2〉 and of σ2 are large and we have 
he
ked that bothmethods lead to 
onsistent results. In Fig. 5.11 we plot the results of theformer method for three light-quark ensembles with sea quark masses 
or-responding to the pion mass of around 300 MeV and one ensemble at theheavier pion mass of approximately 450 MeV. However, sin
e the statisti
alerrors are large, a meaningful extrapolation to the 
ontinuum limit is notpossible � one would 
learly need more statisti
s. The same holds true withregard to the sea quark mass dependen
e of the topologi
al sus
eptibility �the expe
ted in
rease of χtop for larger quark mass is observed, but it is notstatisti
ally signi�
ant.Therefore, the topologi
al aspe
ts also need to be investigated further inthe future � a 
onsiderable in
rease in pre
ision is needed to draw meaningfulphysi
al 
on
lusions. 134



Con
lusions and prospe
tsChiral symmetry is of utmost importan
e for low-energy properties of QCD.Therefore, when dis
retizing QCD on a 4-dimensional spa
e-time grid to ad-dress non-perturbative phenomena, retaining 
hiral symmetry in this latti
eversion of QCD (LQCD) is an essential element. Hen
e, 
hirally-symmetri
fermion dis
retizations are needed to fully explore the low energy regime ofQCD. A very appealing kind of 
hiral fermions are the overlap fermions.However, their use in dynami
al Latti
e QCD simulations is still a 
hallenge,sin
e they are very demanding from the 
omputational point of view.Chiral properties of fermions are espe
ially important in the valen
e se
-tor. At the same time, the most expensive part of a simulation is the gen-eration of gauge �eld 
on�gurations. Hen
e, a possible way to over
ome the
ost problem of dynami
al overlap simulations, whi
h at the same time keepstheir good 
hiral properties, is to follow a mixed a
tion approa
h where gauge�eld 
on�gurations are generated using a 
omputationally 
heaper fermiondis
retization and the overlap operator is used only in the valen
e se
tor.The main aim of this thesis was to investigate a parti
ular mixed a
tionsetup of overlap valen
e and maximally twisted mass (MTM) sea quarks.In this way, we 
ould pro�t from a wide set of gauge �eld 
on�gurationsgenerated by the European Twisted Mass Collaboration (ETMC).In parti
ular, we wanted to perform a 
ontinuum limit s
aling test ofoverlap fermions, a study that has not been done before. However, to per-form su
h investigation with a typi
al linear latti
e extent of 2 fm very large
omputer resour
es would be required, even if the overlap operator was usedonly in the valen
e se
tor. Therefore, we de
ided to employ a small volumewith L ≈ 1.3 fm. Su
h volume is su�
ient to test the 
ontinuum limit s
alingbehaviour. We de
ided to take the pion de
ay 
onstant as our main physi
alobservable to study the latti
e artefa
ts of the overlap dis
retization. Using asuitable mat
hing 
ondition of overlap and twisted mass fermions, for whi
hwe have taken the pion mass, and assuming universality, the same 
ontin-uum limit value for fπ should be rea
hed with both kinds of latti
e fermions.We expli
itly 
he
ked in the free theory that this expe
tation is ful�lled. We135




learly observed the O(a2) leading 
ut-o� dependen
e and demonstrated that
fπ agrees in the 
ontinuum limit.However, when moving to the intera
ting 
ase, we en
ountered a puzzlein that the 
ontinuum limits of the two latti
e fermions used 
ame out tobe in
onsistent with ea
h other. It is one of the main results of this thesisthat the solution of this puzzle 
ould be identi�ed as the exa
t 
hiral zeromodes of the overlap Dira
 operator. Being 
hiral, this operator admitszero modes at any value of the latti
e spa
ing. This is in 
ontrast to thenon-
hiral twisted mass Dira
 operator whi
h does not admit su
h 
hiralzero modes, at least not at our 
urrent values of the latti
e spa
ing. Inorder to demonstrate that the 
hiral zero modes are indeed the 
ause ofthe mismat
h of fπ in the 
ontinuum limit, we used the fa
t that the zeromodes 
ouple in an identi
al way to the pseudos
alar and s
alar 
orrelationfun
tions. Hen
e, in the di�eren
e of these 
orrelation fun
tions (the so-
alled PP-SS 
orrelator), the zero modes 
ontribution is exa
tly 
an
elled.Performing now a 
ontinuum limit s
aling test of the pion de
ay 
onstantas 
omputed from the overlap PP-SS 
orrelator, whi
h is not a�e
ted bythe zero modes, we obtained indeed 
onsistent 
ontinuum limit values for fπ
omputed from the two fermion dis
retizations.We also 
ross-
he
ked this result by expli
itly subtra
ting the zero modesat the level of overlap propagators. This further 
on�rmed the pi
ture thatthe 
hiral zero modes need to be treated spe
ially, at least in the small �nitevolume used here. However, the modi�
ation of propagators by expli
it sub-tra
tion of a part of eigenmodes of the Dira
 operator is a �eld-theoreti
allynot well de�ned pro
edure and may lead to un
ontrollable systemati
 un-
ertainties. Therefore, we interpret our �ndings when subtra
ting the zeromodes expli
itly only as a plausibility 
he
k, whi
h however points in theright dire
tion.The use of the PP-SS 
orrelator is, in 
ontrast, safe from the �eld-theoreti
al point of view. However, it leads to another di�
ulty. The sub-tra
tion of the zero modes from the s
alar 
orrelator introdu
es signi�
ant
O(a2) e�e
ts related to the enhan
ed double pole 
ontribution to the s
alar
orrelation fun
tion, as suggested by results from 
hiral perturbation the-ory. This e�e
t results from the fa
t that the sea and valen
e quarks aredis
retized in a di�erent way and thus unitarity is violated at any non-zerovalue of the latti
e spa
ing. Although being a dis
retization e�e
t it vanishesin the 
ontinuum limit, it may render the approa
h to this limit di�
ult.Therefore, the 
on
eptually 
leanest way to ta
kle the zero mode problemis to avoid the region of parameters where the zero modes 
ontribution issigni�
ant. To �nd this region, we analyzed the dependen
e of the zeromode e�e
ts on the latti
e volume and the sea quark mass. In this way, we136



determined three regimes of parameters: one that is �safe� against the zeromodes 
ontribution, a �hazardous� and a �non-safe� regime. We 
onsiderthe identi�
ation of these regions to be the most important result of thiswork. It allows to provide parameter values for future simulations whereproblems with the zero modes will be 
ompletely absent. The situation isbest illustrated in Fig. 4.26. Let us give two expli
it examples of the valuesof pion masses and latti
e sizes for safe simulations:
• at mπ ≈ 300 MeV, the �safe� linear latti
e extent is L ≈ 2.6 fm,
• at mπ ≈ 450 MeV, the �safe� linear latti
e extent is down to L ≈ 2.0fm.Clearly, the identi�
ation of safe simulation regions for valen
e overlap fer-mions is not only important for extensions of the present work, but also forother 
ollaborations worldwide who are using overlap fermions in the valen
ese
tor.Let us �nish by giving some dire
tions for further work. We group thesein two areas. The �rst are possible physi
s targets with the �safe� simulationparameters. With our knowledge of these parameters, we plan to:
• 
ompute observables for whi
h good 
hiral properties of valen
e fermionsare essential � e.g. the kaon bag parameter BK , or the de
ay K → ππ;
• investigate questions that are related to topology, i.e. the 
omputationof topologi
al sus
eptibility and the determination of the singlet mesonmass η′;
• analyze in the mixed a
tion setup unitarity violations in the s
alar
orrelator and in mixed 
orrelation fun
tions (with one valen
e and onesea quark) � this needs a setup with negligible zero modes 
ontributionto isolate this e�e
t;
• 
onfront the simulation results with (Mixed A
tion) Partially Quen
hedChiral Perturbation Theory formulas to extra
t the 
orresponding lowenergy 
onstants;
• perform a 
ontinuum limit s
aling test of the pion de
ay 
onstant (andother observables) at larger volume in order to 
he
k for the size ofquadrati
 latti
e spa
ing dependen
e.Moreover, it would also be interesting to further investigate the role of thezero modes to rea
h a better understanding. To this end, we plan to:137



• test alternative mat
hing 
onditions, di�erent from the mat
hing ofthe pion mass. In parti
ular, we plan to 
ompute the ne
essary renor-malization 
onstants in order to use the mat
hing 
ondition of equalrenormalized quark masses;
• investigate the role of the zero modes in baryoni
 observables;
• perform an analysis of topologi
al aspe
ts by expli
itly 
omputing thezero modes.Summarizing, we believe that the results of this work provide an essentialand so far missing basis for future large s
ale simulations using mixed a
tions.In parti
ular, for our setup of overlap valen
e and maximally twisted mass seaquarks we have determined simulation parameters for safe simulations on aquantitative level. Thus, respe
ting the limits on the parameters determinedhere and performing simulations on large enough latti
e volume at a givenpion mass, it will be possible to pro�t from the good 
hiral properties ofoverlap fermions and obtain pre
ise physi
al results for quantities that wouldbe hard to address with non 
hirally-symmetri
 versions of latti
e fermions.
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Appendix AWilson gauge a
tionWe show here that the expression for the Wilson gauge a
tion has the rightQCD 
ontinuum limit. We will use the Baker-Campbell-Hausdor� formula:
eaAeaB = eaA+aB+ a2

2
[A,B]+O(a3), (A.1)generalized to:

eaAeaBeaCeaD = ea(A+B+C+D)+ a2

2
([A,B]+[A,C]+[A,D]+[B,C]+[B,D]+[C,D])+O(a3),(A.2)setting: A = igAµ(x), B = igAν(x+aµ̂), C = igAµ(x+aν̂) andD = igAν(x).Now, inserting (1.30) in (1.33) and using (A.2), we obtain:

Ux,µν = exp
[

iga
(

Aµ(x) + Aν(x+ aµ̂) − Aµ(x+ aν̂) −Aν(x)
)

+

− g2a2

2

(

[Aµ(x), Aν(x+ aµ̂)] − [Aµ(x), Aµ(x+ aν̂)] +

−[Aµ(x), Aν(x)] − [Aν(x+ aµ̂), Aµ(x+ aν̂)] +

−[Aν(x+ aµ̂), Aν(x)] + [Aµ(x+ aν̂), Aν(x)]
)

+

+ O(a3)
]

. (A.3)We Taylor-expand terms like:
Aµ(x+ aν̂) ≈ Aµ(x) + a∂νAµ(x) (A.4)
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to order a and this implies:
Ux,µν = exp

[

iga
(

a∂µAν(x) − a∂νAµ(x)
)

+

− g2a2

2

(

[Aµ(x), Aν(x)] − [Aµ(x), Aµ(x)] − [Aµ(x), Aν(x)]

−[Aν(x), Aµ(x)] − [Aν(x), Aν(x)] + [Aµ(x), Aν(x)]
)

+

+ O(a3)
]

= (A.5)
= exp

[

iga2
(

∂µAν(x) − ∂νAµ(x) + ig[Aµ(x), Aν(x)]
)

+ O(a3)
]

.From (1.8) and (1.6), the 
ommutator of the gauge �elds 
an be rearrangedas:
[Aµ(x), Aν(x)] = Abµ(x)A

d
ν(x)[tb, td] = if bdcAbµ(x)A

d
ν(x)tc, (A.6)�nally yielding (negle
ting O(a3) terms):

Ux,µν = exp
[

iga2
(

∂µAν(x) − ∂νAµ(x) − gf bdcAbµ(x)A
d
ν(x)tc

)

]

=

= exp
[

iga2Fµν

]

. (A.7)(A.8)Expanding to O(a4), we obtain for the Wilson a
tion (1.31):
Sgauge[U ] = β

∑

x

∑

1≤µ<ν≤4

{

g2a4

6
TrFµν(x)2 + O(a6)

}

, (A.9)sin
e O(a2) terms are purely imaginary. Finally, we use ∑x

∑

1≤µ<ν≤4 =
1
2

∑

x

∑

µ,ν and the fa
t that Tr(tatb) = 1
2
δab to obtain:

Sgauge[U ] = β
g2a4

6

∑

x

∑

µ,ν

{

1

4
Fµν(x)

2 + O(a2)

}

. (A.10)
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Appendix BTree-level s
aling test
B.1 Overlap fermionsWe show here expli
itly the 
omputation of the overlap Dira
 operator inmomentum spa
e, whi
h was given by Lüs
her [29℄. We begin with thederivation of the kernel operator � the massless Wilson-Dira
 operator inmomentum spa
e. In position spa
e, this operator is given by:

D̂Wilson =
1

2

(

γµ(∇∗
µ + ∇µ) − ar∇∗

µ∇µ

)

, (B.1)where we use the notation introdu
ed in Chapter 1. The Eu
lidean a
tion
an be written as:
S =

∑

x,y

ψ̄(x)Kxyψ(y), (B.2)with:
Kxy =

1

2

∑

µ

(

γµ (δx+µ̂,y − δx−µ̂,y) − r (δx+µ̂,y + δx−µ̂,y − 2δx,y)
)

. (B.3)Using the integral representation of the Krone
ker delta:
δx,y =

∫ π

−π

d4p

(2π)4
eip(x−y)a, (B.4)we obtain:

Kxy =

∫ π

−π

d4p

(2π)4
eip(x−y)a

[

∑

µ

(

1

2
γµ
(

eipµa − e−ipµa
)

+ (B.5)
− r

2

(

eipµ̂a + e−ipµ̂a − 2
)

)]
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Substituting now the identities:
eipµ̂a − e−ipµ̂a = 2i sin apµ, (B.6)

eipµ̂a + e−ipµ̂a − 2 = 2(cos apµ − 1) = −4 sin2 apµ
2
, (B.7)we obtain:

Knm =

∫ π

−π

d4p

(2π)4
eip(n−m)a

[

∑

µ

(

iγµ sin apµ + 2r sin2 apµ
2

)]

. (B.8)The expression in bra
kets is the Fourier transform of Kmn, i.e. the Wilson-Dira
 operator in momentum spa
e D̂Wilson(p). Hen
e, adding expli
itly theidentity matrix in Dira
 spa
e, we have:
D̂Wilson(p) = iγµp̊µ +

ar

2
p̂21, (B.9)whi
h is expression (1.49) for the Wilson-Dira
 operator at m = 0 or expres-sion (1.45) for the naive Dira
 operator, if the Wilson parameter r = 0. One
an also noti
e that the inverse of this formula immediately gives expressionsfor the fermion propagator (1.47) in the naive 
ase and (1.51) in the Wilson
ase.We now set the Wilson parameter r = 1 and then the de�nition of theoperator A for overlap fermions (1.75) (with s = 0) yields:

A = 1 − aDW (p) = 1 − iaγµp̊µ −
a2

2
p̂2. (B.10)Sin
e the massless overlap Dira
 operator is given by:

D̂ov(0) =
1

a

(

1 − A(A†A)−1/2
)

, (B.11)we have to 
al
ulate A†A:
A†A =

(

1 − a2

2
p̂2

)2

+ a2
∑

µ,ν

γµγν p̊µp̊ν . (B.12)Using now the following rearrangements:
(

1 − a2

2
p̂2

)2

= 1 − a2p̂2 +
a4

4

∑

µ,ν

p̂2
µp̂

2
ν , (B.13)144



a2
∑

µ,ν

γµγν p̊µp̊ν = a2
∑

µ

(p̊µ)
2 , (B.14)

(p̊µ)
2 =

1

a2
sin2 apµ =

4

a2
sin2 apµ

2

(

1 − sin2 apµ
2

)

= p̂2
µ

(

1 − a2

4
p̂2
µ

)

. (B.15)in (B.12), we obtain:
A†A = 1 − a2p̂2 +

a4

4

∑

µ,ν

p̂2
µp̂

2
ν + a2p̂2 − a4

4

∑

µ

p̂4
µ. (B.16)We 
an redu
e:

a4

4

∑

µ,ν

p̂2
µp̂

2
ν −

a4

4

∑

µ

p̂4
µ =

a4

2

∑

µ<ν

p̂2
µp̂

2
ν . (B.17)In the end, we obtain for the operator A†A:

A†A = 1 +
a4

2

∑

µ<ν

p̂2
µp̂

2
ν . (B.18)The �nal form of the tree-level overlap Dira
 operator in momentum spa
eis:

aD̂ov(p) = 1 −
(

1 − iaγµp̊µ −
a2

2
p̂2
)(

1 +
a4

2

∑

µ<ν

p̂2
µp̂

2
ν

)−1/2

. (B.19)B.2 Creutz fermionsOne 
an show [55℄ that the free Dira
 operator for Creutz fermions 
an bewritten in momentum spa
e as:
DCreutz(p) = i

∑

µ

p̊µ γ̄µ − i
a

2

∑

µ

p̂2
µ Γ̄µ +m1, (B.20)where γ̄µ, Γ̄µ are de�ned as:

γ̄µ ≡ āTγµ , Γ̄µ ≡ ᾱγ̄µ = ᾱāTγµ, ᾱ ≡ ā−1 b̄ (B.21)with:
ā =

1

R









1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

−3S
C

−3S
C

−3S
C

−3S
C







145



b̄ =
1

R

S

C









1 1 −1 −1
1 −1 −1 1
1 −1 1 −1
3C
S

3C
S

3C
S

3C
S









,where the 
onstants C, R and S are parameters 
hosen appropriately toensure the 
orre
t 
ontinuum limit of the fermion propagator. One 
an showthat these values are: C = 3/
√

10, R = 2 and S = ±1/
√

10 or C = 3/
√

14,
R = 2

√
2 and S = ±

√

5/14.This fermion propagator is:
SCreutz(p) =

−i
∑

µ

(

s̄µ(p) + c̄µ(p)
)

γµ +m1
∑

µ

(

s̄µ(p) + c̄µ(p)
)2

+m2

, (B.22)where:
s̄k(p) =

1

R
sk(p) , s̄4(p) =

3S

RC
s4(p) (B.23)

c̄k(p) =
S

RC
ck(p) , c̄4(p) =

3

R
c4(p) (B.24)with the fun
tions s and c given by

s1(p) = [p̊1 + p̊2 − p̊3 − p̊4] , (B.25)
s2(p) = [p̊1 − p̊2 − p̊3 + p̊4] , (B.26)
s3(p) = [p̊1 − p̊2 + p̊3 − p̊4] , (B.27)
s4(p) = [−p̊1 − p̊2 − p̊3 − p̊4] , (B.28)
c1(p) = −a

2

[

p̂2
1 + p̂2

2 − p̂2
3 − p̂2

4

]

, (B.29)
c2(p) = −a

2

[

p̂2
1 − p̂2

2 − p̂2
3 + p̂2

4

]

, (B.30)
c3(p) = −a

2

[

p̂2
1 − p̂2

2 + p̂2
3 − p̂2

4

]

, (B.31)
c4(p) = −a

2

[

p̂2
1 + p̂2

2 + p̂2
3 + p̂2

4

]

. (B.32)The free Dira
 operator for the modi�
ation suggested by Bori
i is:
DBorici(p) = i

∑

µ

p̊µγµ − i
a

2

∑

µ

Γµp̂
2
µ +m1, (B.33)where Γµ =

∑

ν αµνγν, with:
α =

1

2









1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1









. (B.34)146



The 
orresponding propagator is:
SBorici(p) =

−i
∑

µGµ(p)γµ +m0 1
∑

µGµ(p)2 +m2
, (B.35)where:

G1(p) = p̊1 −
a

4

[

p̂2
1 + p̂2

2 − p̂2
3 − p̂2

4

]

, (B.36)
G2(p) = p̊2 −

a

4

[

−p̂2
1 + p̂2

2 − p̂2
3 − p̂2

4

]

, (B.37)
G3(p) = p̊3 −

a

4

[

−p̂2
1 − p̂2

2 + p̂2
3 − p̂2

4

]

, (B.38)
G4(p) = p̊4 −

a

4

[

−p̂2
1 − p̂2

2 − p̂2
3 + p̂2

4

]

. (B.39)B.3 Correlation fun
tionsThe starting point for the derivation of the expression for the pseudos
alar
orrelation fun
tion as a sum over momenta is eq. (2.15):
CPP (t) =

∑

~x

Tr(S(~x, t;~0, 0)S†(~x, t;~0, 0)). (B.40)We introdu
e the Fourier transform of the position spa
e propagator:
S(~x, t;~0, 0) =

1

N3N4

∑

~p,p4

S(~p, p4)e
i~p·~xeip4t, (B.41)where N and N4 are the number of latti
e sites in the spatial and temporaldire
tions, respe
tively. This yields:

CPP (t) =
1

N6N2
4

∑

~x

∑

~p,p4

∑

~p′,p′
4

Tr(S(~p, p4)S
†(~p′, p′4))e

i~p·~xeip4te−i~p
′·~xe−ip

′

4
t.(B.42)Using the following expression for the Dira
-delta fun
tion:

δ(~p− ~p′) =
1

N3

∑

~x

ei(~p−~p
′)·~x, (B.43)we obtain:

CPP (t) =
1

N3N2
4

∑

~p

∑

p4,p′4

Tr(S(~p, p4)S
†(~p, p′4))e

i(p4−p′4)t. (B.44)147



Now, we insert the matrix de
omposition of the momentum spa
e propagator:
S(p) =

4 or 5
∑

ξ=0

Sξ(p)γξ, (B.45)where γ0 ≡ 1 and the index ξ runs from 0 to 4 in the 
ase of overlap andCreutz fermions or from 0 to 5 in the 
ase of Wilson twisted mass fermions.Hen
e, we obtain:
CPP (t) =

NcNd

N3N2
4

∑

~p

∑

p4,p′4

4 or 5
∑

ξ=0

Sξ(~p, p4)S
∗
ξ (~p, p

′
4))e

i(p4−p′4)t, (B.46)where Nd = Tr(1) is the number of Dira
 
omponents (i.e. the dimension ofspa
e-time) and Nc = Tr(1c) is the number of 
olours (in the free 
ase thestru
ture in 
olour spa
e is trivial).
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Appendix CImprovements of the HMCalgorithmThe gauge �eld 
on�gurations that we have used for this proje
t were gener-ated with the twisted mass Latti
e QCD program suite (tmLQCD) of Jansenand Urba
h [83℄. A detailed des
ription of all the te
hni
al details is givenin this referen
e. Here we shortly dis
uss a few improvements of the HMCalgorithm that are relevant from the point of view of this thesis.For some latti
e Dira
 operators (e.g. Wilson twisted mass), it is possibleto de
ompose the Dira
 matrix into subspa
es of even and odd latti
e sites,thus redu
ing the dimension of the problem. Su
h te
hnique is 
alled even-odd pre
onditioning [126℄.Another approa
h is to use more than one set of pseudo-fermion �elds,i.e. split the fermion determinant into two (or more) parts. One of thewidely used methods of this kind is 
alled the Hasenbus
h tri
k (or masspre
onditioning) [127, 128℄ and 
onsists in utilizing the identity (example forthe Nf = 2 
ase with degenerate quark masses µ):
| det(D̂)|2 = det(D̂D̂† + µ2) det

(

D̂D̂†

D̂D̂† + µ2

)

. (C.1)Su
h de
omposition splits the 
ontribution of the low-frequen
y and high-frequen
y modes of D̂D̂† and thus redu
es the 
ondition number of theproblem. It also allows for integration of di�erent parts of the a
tion ondi�erent time s
ales, su
h that the most expensive part 
an be simulated onthe 
oarsest time s
ale. A general version of an HMC algorithm in
orporat-ing even-odd pre
onditioning, mass pre
onditioning and multiple time s
aleintegration was presented by Urba
h, Jansen, Shindler and Wenger [129℄. Itwas also shown by numeri
al investigation that su
h version of the algorithm149



indeed produ
es a 
onsiderable improvement, espe
ially when approa
hingthe small quark mass limit. This version of the algorithm is the base of thetmLQCD suite in its part that was relevant for the generation of gauge �eld
on�gurations used in this proje
t.Another important improvement of the HMC algorithm 
omes under thename of Polynomial HMC (PHMC). It was introdu
ed and analyzed in [115,116, 117, 118℄. This version of the algorithm 
an be applied to simulatenon-degenerate quarks. It is used e.g. in the tmLQCD suite in simulationsin
luding the strange and 
harm quark.The number of other improvements of the HMC algorithm is very largeand is still in
reasing. To �nalize this appendix we just mention a few more.For their des
ription we refer to original papers. A wide and important 
lassof improvements 
on
ern integration s
hemes and 
ome under the name ofmultiple time-s
ale integration. The generalization of the leap-frog s
hemeto multiple time s
ales was originally proposed by Sexton and Weingarten[130℄. Another approa
h is the so-
alled se
ond order minimal norm (2MN)integrator [131, 132℄. A variant of the HMC algorithm 
alled Rational HMC(RHMC) was dis
ussed in [133, 134, 135, 136℄. Domain-de
omposed HMCwas introdu
ed in a series of papers by Lüs
her [137, 138, 139℄ and lateraugmented by low-mode de�ation [140℄.

150



Appendix DTree-level test of zero modessubtra
tionIn this appendix, we show the results of a free-�eld test of routines used tosubtra
t the zero modes (we will refer to them as �subtra
tion routines�) atthe level of propagators. The test is performed on a small latti
e of 43 × 8,with quark mass set to am = 0.2. We perform the subtra
tion in three waysfor the pseudos
alar (PP) and s
alar (SS) 
orrelation fun
tion, using:
• formula (2.16) for the PP 
orrelator and an analogous formula for SS(�analyti
al formula�),
• GWC 
ode with subtra
tion routines for point sour
es,
• GWC 
ode with subtra
tion routines for sto
hasti
 sour
es.Using notation of Se
tion 4.3, we write the mesoni
 
orrelation fun
tionas:

C(t) = C00(t) + 2C0N (t) + CNN(t), (D.1)where the �rst two terms involve the zero modes. Computing 
orrelationfun
tions from the full propagator (with all modes) leads to C(t), while if thezero modes are subtra
ted at the level of propagators, only the part CNN(t)is obtained by performing 
ontra
tions, i.e. subtra
tion of zero modes 
an
elsboth the diagonal 
ontribution C00(t) and the mixed one C0N (t).
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D.1 Analyti
al formulaWe remind here the formula for the pseudos
alar 
orrelator (2.16) and gen-eralize it to in
lude the s
alar 
ase:
C(t) =

NcNd

N3N2
4

∑

~p

∑

p4,p′4

4
∑

ξ=0

s(ξ)Sξ(~p, p4)S
∗
ξ (~p, p

′
4))e

i(p4−p′4)t, (D.2)where we obtain the pseudos
alar 
orrelator by 
hoosing: s(ξ) = 1 for all ξand the s
alar 
orrelator if we take s(ξ) = −1 for ξ = 0 and s(ξ) = 1 for
ξ = 1, 2, 3, 4.To isolate the 
ontribution of the zero-modes, we have to 
al
ulate thediagonal part C00(t) and the mixed part C0N(t):

C00(t) =
12

N3N2
4

4
∑

ξ=0

s(ξ)Sξ(~0, 0)S∗
ξ (~0, 0), (D.3)i.e. p1 = p2 = p3 = p4 = p′4 = 0 and the sum runs only over ξ and:

C0N(t) =
12

N3N2
4

∑

p′
4
6=0

4
∑

ξ=0

e−ip
′

4
ts(ξ)Sξ(~0, 0)S∗

ξ (~0, p
′
4), (D.4)i.e. p1 = p2 = p3 = p4 = 0 and the sum runs over ξ and also over p′4 (thelatter 
orresponds to non-zero modes in the mixed term).The 
ontribution of the zero modes is C00(t) + 2C0N(t) and it is for thePP and the SS 
ase:t C_PP(t)0 0.193365022585086698825307391 0.068542693495896533928402052 0.055983137376237557258917833 0.048644806504103327293719874 0.046231202662437964612252025 0.048644806504103299538144266 0.055983137376237529503342227 0.06854269349589661719512890t C_SS(t)0 -0.193365022585086698825307391 -0.068542693495896533928402052 -0.05598313737623755725891783152



3 -0.048644806504103327293719874 -0.046231202662437964612252025 -0.048644806504103299538144266 -0.055983137376237557258917837 -0.06854269349589661719512890As we have shown analyti
ally in Se
tion 4.3, the 
ontribution of the zeromodes is the same in both the pseudos
alar and the s
alar 
orrelator, up to asign, whi
h is a matter of 
onvention. With su
h 
onvention, the 
ontributionof the zero modes exa
tly 
an
les in the sum CPP+SS = CPP + CSS.We also show the part CNN (t) of the PP and SS 
orrelators, i.e. the partwith zero modes subtra
ted:t C_PP(t)0 3.207049559825603690654816091 0.053875523249846873907742412 0.011851594514028840343655703 0.004368503620979326262929734 0.002574703287816858254810635 0.004368503620979520551959046 0.011851594514028854221443517 0.05387552324984717921907418t C_SS(t)0 -2.899846672457193630378924351 0.053495724344856263043901382 0.009798606682089976149807603 0.000234954537403998797717724 -0.002407409019565424912467935 0.000234954537403631036340816 0.009798606682090003905383217 0.05349572434485556221561708We will use these numbers to 
ompare with the subtra
tion routines.D.2 GWC 
ode � point sour
esFor the test of subtra
tion routines, the �rst step was to expli
tly 
omputethe zero modes. The number of zero modes in the free-�eld 
ase is equal to
NcNd, i.e. there are 12 zero modes in our 
ase of interest, 6 in the positiveand 6 in the negative 
hirality se
tor.153



The test of the subtra
tion routines 
onsisted in performing the followingsteps:1. Read in all zero modes.2. Compute the propagator Ψ0 
oming only from the zero modes, usingformula 4.22, i.e. taking into a

ount the sour
e. This sour
e has to beexa
tly the same as the one used for full inversion (with all modes).3. Compute (or read in, if 
omputed before) the full propagator Ψ (withall modes) with the same point sour
e as in the previous step.4. Constru
t the non-zero modes propagator ΨN = Ψ − Ψ0.5. Use the GWC 
ontra
tion 
ode to 
ompute the PP and SS 
orrelationfun
tions from ΨN . This gives the part CNN (t) of these 
orrelators.The result for the 
orrelation fun
tions with no 
ontribution from the zeromodes is:t C_PP(t)0 +3.2070498264e+001 +5.3875529993e-022 +1.1851597433e-023 +4.3685038347e-034 +2.5747032913e-035 +4.3685038347e-036 +1.1851597433e-027 +5.3875529993e-02t C_SS(t)0 -2.8998469255e+001 +5.3495732753e-022 +9.7986124350e-033 +2.3495604466e-044 -2.4074086241e-035 +2.3495604466e-046 +9.7986124350e-037 +5.3495732753e-02These numbers are exa
tly the same as ones obtained with the analyti
alformula in the previous se
tion. 154



D.3 GWC 
ode � sto
hasti
 sour
esWe follow an analogous pro
edure in the 
ase of sto
hasti
 sour
es:1. Read in all zero modes.2. Read in sample r of sto
hasti
 sour
e.3. Compute the propagator Ψ0
r 
oming only from the zero modes, usingformula 4.22 with sample r of the sour
e4. Compute (or read in, if 
omputed before) the full propagator Ψr (withall modes) with the same sample of the sour
e r.5. Constru
t the non-zero modes propagator ΨN

r = Ψr − Ψ0
r.6. Use the �light� 
ontra
tion 
ode to 
ompute the PP and SS 
orrelationfun
tions from ΨN

r .Su
h pro
edure is then repeated Nr times for di�erent samples of sto
hasti
noise. Ea
h sample of the sour
e leads to a 
orrelation fun
tion CNN(t). Wehave used Nr = 600 samples and �nally averaged the 
orrelation fun
tionsto obtain:t C_PP(t) dC_PP(t)0 3.207395e+00 6.036502e-041 5.341456e-02 4.634707e-042 1.163657e-02 2.135815e-043 4.276079e-03 9.325929e-054 2.518227e-03 5.732913e-055 4.276079e-03 9.325929e-056 1.163657e-02 2.135815e-047 5.341456e-02 4.634707e-04t C_SS(t) dC_SS(t)0 2.899527e+00 3.025145e-041 -5.303857e-02 4.597752e-042 -9.629567e-03 1.669140e-043 -2.358282e-04 3.102437e-064 2.351388e-03 5.740869e-055 -2.358282e-04 3.102437e-066 -9.629567e-03 1.669140e-047 -5.303857e-02 4.597752e-04 155



The third 
olumn is the standard deviation. Comparing these numbers withthe ones from the analyti
al formula and from the GWC 
ode with pointsour
es, we 
on
lude that all results are 
onsistent, up to the statisti
al errorfor the 
ase of sto
hasti
 sour
es. The �light� 
ontra
tion 
ode uses a di�erentsign 
onvention for the s
alar 
orrelator and hen
e the sign of CSS(t) isalways opposite to the one from the GWC 
ontra
tion 
ode and the analyti
alformula. Hen
e, with the �light� 
ontra
tion 
ode the 
ontribution of thezero modes is exa
tly 
an
elled in the di�eren
e CPP − CSS. Therefore, for
omputations in the intera
ting 
ase we always use CPP − CSS.
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