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The dissociation energies of all rotation–vibrational states of the molecular HD in the ground

electronic state are calculated to a high accuracy by including nonadiabatic, relativistic a2,
and quantum electrodynamic a3 effects, with approximate treatment of small higher order a4,
and finite nuclear size corrections. The obtained result for the ground molecular state of

36 405.7828(10) cm�1 is in a small disagreement with the latest most precise experimental value.

I. Introduction

Since the beginning of quantum mechanics molecular hydrogen

and its isotopomers have been a ground for testing and

developing experimental techniques and theoretical models.

In determination of the dissociation energy (D0), experimental

and theoretical measurements have diminished their individual

uncertainties to below 10�3 cm�1 and are in good agreement.

In particular, the latest theoretical D0 = 36 118.0695(10) cm�1

of H2, obtained by Piszczatowski et al.,1 agrees very well

with 36 118.06962(37) cm�1 derived experimentally by

Liu et al.2 Analogous results obtained last year for D2 are

36 748.3633(9) cm�1 from theory1 and 36 748.36287(60) cm�1

from experiment.3 The tiny difference of 0.0004 cm�1 fits well

within both error estimates. To achieve this 10�3 cm�1 level of

accuracy, the theory must have taken into account, with

sufficient precision, not only the electron correlation but also

the finite nuclear mass, relativistic, and quantum electro-

dynamics (QED) effects.

Particularly challenging is the accurate inclusion of

nonadiabatic effects. One possible approach is to obtain a

nonadiabatic wave function (depending explicitly on nuclear

coordinates) by minimizing the nonrelativistic energy. For H2

such calculations, using explicitly correlated James–Coolidge

functions, were attempted by Ko"os and Wolniewicz in 19634,5

and 15 years later by Bishop and Cheung.6 The same authors

performed purely nonadiabatic calculations for HD. Ko"os

and Wolniewicz obtained D0 = 36 402.4 cm�1,7 whereas

Bishop and Cheung reportedD0= 36 405.97 cm�1.8 Calculations

in a similar spirit, but using extensively optimized explicitly

correlated Gaussian functions, were performed by Stanke

et al.9 Their nonadiabatic wave function was further employed

to compute perturbatively the relativistic correction to the

nonadiabatic energy. An apparent drawback of these methods

is their decreasing accuracy observed for the higher excited

states, particularly those lying close to dissociation threshold.

For such states the perturbative treatment of relativistic effects

may be inadequate. As an example, the v = 14, J = 4 state of

H2 becomes a resonance after the inclusion of relativistic

effects on the level of the potential energy curve (PEC).

Moreover, certain properties like the ortho–para mixing

or the scattering length, are inaccessible within the direct

nonadiabatic approach.

In contrast, the nonadiabatic perturbation theory (NAPT)

approach employed here, relies on solving the radial,

variable-mass Schrödinger equation with the PEC for the

nuclei constructed from the adiabatic potential augmented

by R-dependent nonadiabatic, relativistic and QED corrections.

The theory of the nonadiabatic potentials has been developed

in ref. 10 and 11, whereas the relativistic and QED corrections

to the PEC are evaluated on the basis of the nonrelativistic

quantum electrodynamics (NRQED).12–14 These corrections

are unambiguously identified by an expansion of a bound

atomic or molecular state energy in powers of the fine structure

constant a:

E = E(0) + a2E(2) + a3E(3) + a4E(4)+ � � �, (1)

where E(3) and higher order terms may additionally depend on

lna. The first term of the expansion represents the nonrelativistic

energy, a2E(2) is the leading relativistic contribution, terms

proportional to a3 and a4 describe the QED effects of the

leading and higher order, respectively. In this paper we report

on application of this approach to all rovibrational levels of

the ground electronic state of HD molecule. Uncertainty of

our results comes mainly from the neglect of the finite nuclear

mass corrections of the order a2m/M to the relativistic

contribution to the PEC, and from the approximate treatment

of the a4 correction. The neglect of higher order nonadiabatic
terms proportional to (m/M)3 also increases the overall

uncertainty.

II. Nonrelativistic Hamiltonian

We consider a two-electron diatomic molecule in the reference

frame attached to the geometrical center of the two nuclei.

The total wave function f is a solution of the stationary

Schrödinger equation

Hf = Ef, (2)

with the Hamiltonian

H = Hel + Hn, (3)
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split into the electronic and nuclear parts. In the electronic

Hamiltonian

Hel ¼ �
X
a

r2
a

2me
þ V ; ð4Þ

where V is the Coulomb interaction

V ¼ � 1

r1A
� 1

r1B
� 1

r2A
� 1

r2B
þ 1

r12
þ 1

R
; ð5Þ

the nuclei have fixed positions ~RA (proton) and ~RB (deuteron),

and ~R = ~RA � ~RB. The nuclear Hamiltonian is

Hn ¼�
r2

R

2mn
� r

2
el

2mn
� 1

MB
� 1

MA

� �
r
!
R � r

!
el

¼H 0n þH 00n ;

ð6Þ

where r
!
el ¼ 1

2

P
ar
!
a, mn = (1/MA + 1/MB)

�1 is the nuclear

reduced mass, and H 0n, H
00
n are even and odd parts with respect

to the inversion.

In order to simplify the calculation of nonadiabatic corrections

we introduce a unitary transformation

H̃ = U+HU (7)

of the form

U ¼ el r
!�r
!

R ð8Þ

with ~r =
P

a~ra and the nuclear mass asymmetry parameter

l ¼ �me

2

1

MB
� 1

MA

� �
: ð9Þ

The transformed Hamiltonian is

~H ¼H þ l½H; r! � r
!
R� þ

l2

2
½½H; r! � r

!
R�; r! � r

!
R� þ Oðl3Þ;

ð10Þ

where the higher order terms in the electron–nuclear mass

ratio O[(me/MA,B)
3] are neglected, so that

~H ¼Hel þH 0n þ l½V ; r! � r
!
R�

þ 2
l2

me
½r
!
el � r

!
R; r
! � r

!
R� þ

l2

2
½½Hel; r

! � r
!
R�; r! � r

!
R�;

ð11Þ

and the odd O[(me/MA,B)
2] terms are neglected as well.

The internal commutator in the last term of eqn (11) is

½Hel; r
! � r

!
R� ¼ �r! � r

!
RðVÞ �

2

me
r
!
el � r

!
R; ð12Þ

so that the transformed Hamiltonian can be decomposed as

~H ¼ Hel þ ~H 0n þ ~H 00n : ð13Þ

where

~H 0n ¼ H 0n þ l2
1

me
r
!
el � r

!
R �

1

2
r
! � r

!
RðVÞ; r! � r

!
R

� �

¼ H 0n þ
l2

me
r2

R þ
l2

2
rirjri

Rr
j
RðVÞ

ð14Þ

~H 00n ¼ �lr
! � r

!
RðVÞ: ð15Þ

Both the nuclear Hamiltonians involve the derivative of the

Coulomb operator V, which is

r
!
RðVÞ ¼

1

2
� r
!
1A

r31A
þ r
!
1B

r31B
� r
!
2A

r32A
þ r
!
2B

r32B

 !
� n

!

R2
ð16Þ

with ~n = ~R/R, while the second derivative of V is further

transformed in eqn (47)–(49).

III. Adiabatic approximation

In the adiabatic approximation the total wave function of the

molecule

fa(~r, ~R) = fel(~r)w(~R) (17)

is represented as a product of the electronic wave function

fel and the nuclear wave function w. The electronic wave

function obeys the clamped nuclei electronic Schrödinger

equation

[Hel � Eel(R)]|feli = 0, (18)

while the wave function w is a solution to the nuclear

Schrödinger equation with the effective potential generated

by electrons

�r
2
R

2mn
þ EaðRÞ þ EelðRÞ � Ea

� �
jwi ¼ 0; ð19Þ

where Ea(R) is the so-called adiabatic (or diagonal) correction

defined as

EaðRÞ ¼hfeljH 0njfeliel

¼ 1

2mn
ðhr
!
Rfeljr

!
Rfeliel � hfeljr

!
2
eljfelielÞ:

ð20Þ

Separation of the angular variables in eqn (19) leads to the

well-known radial nuclear equation

� 1

R2

@

@R

R2

2mn

@

@R
þ JðJ þ 1Þ

2mnR2
þ EelðRÞ þ EaðRÞ

� �
wJðRÞ

¼ EawJðRÞ: ð21Þ

Solving this equation gives an adiabatic energy level Ea and an

adiabatic radial nuclear wave function wJ.
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IV. Nonadiabatic nuclear Schrödinger equation

Following the NAPT formalism introduced recently,10,11 we

can obtain energy levels E including leading nonadiabatic

corrections by solving the following nonadiabatic version of

the radial Schrödinger equation

� 1

R2

@

@R

R2

2mkðRÞ
@

@R
þ JðJ þ 1Þ
2m?ðRÞR2

þYðRÞ
" #

wJðRÞ ¼ EwJðRÞ;

ð22Þ

where Y(R) is a nonadiabatic potential energy function. In the

nonrelativistic limit

YðRÞ ¼ EelðRÞ þ EaðRÞ þ dEnaðRÞ þ dE
0
naðRÞ; ð23Þ

with the nonadiabatic correction constructed from the homo-

nuclear part dEna(R), defined in our previous work on H2,
10,11

and the heteronuclear part proportional to l2

dE
0
na ¼l2 fel

1

me
r2

R þ
1

2
rirjri

Rr
j
RðVÞ

����
����fel

� �
el

�

þ fel r
! � r

!
RðVÞ

1

ðEel �HelÞ0
r
! � r

!
RðVÞ

����
����fel

� �
el

#
;

ð24Þ

which is obtained from eqn (14) and (15). Apart from the

nonadiabatic potential Y(R), the difference between eqn (22)

and (21) lies in the effective masses used. In the adiabatic

eqn (21) the reduced nuclear mass mn appearing in both

translational and rotational kinetic terms is a constant, while

in the nonadiabatic eqn (22) it is given by two different

functions of the internuclear distance. These two effective

reduced mass functions

1

2mkðRÞ
� 1

2mn
þWkðRÞ �

l2

me
ð25Þ

1

2m?ðRÞ
� 1

2mn
þW?ðRÞ �

l2

me
ð26Þ

are defined with the help of additional radial functions

WkðRÞ ¼
1

m2n
n
! � r

!
Rfel

1

ðEel �HelÞ0
����

����n! � r!Rfel

� �
el

ð27Þ

and

W?ðRÞ ¼
1

m2n

ðdij � ninjÞ
2

ri
Rfel

1

Eel �Hel

����
����rj

Rfel

� �
el

: ð28Þ

In total, three radial functions are needed to construct

the nonadiabatic radial Schrödinger eqn (22) for diatomic

molecules: two functions, defined by eqn (27) and (28), to

describe the variable effective reduced masses of eqn (25) and

(26), and the nonadiabatic potential Y. This potential, in turn,

is expressed by another four functions: BO energy Eel,

adiabatic Ea, nonadiabatic homonuclear dE
0
na and hetero-

nuclear dE
0
na corrections (see eqn (23)).

V. Separated atoms limit

At large internuclear distances the effective reduced mass

functions (25) and (26) are expected to approach a value

corresponding to the reduced mass of separate H and D atoms

1

mA
¼ 1

mp þme
þ 1

md þme
: ð29Þ

Because WJ(R) and W>(R) tend to �me(4m
2
n), when R - N,

we have

1

2mkð1Þ
¼ 1

2m?ð1Þ
¼ 1

2mn
� me

4m2n
� l2

me
ð30Þ

¼ 1

2

1

mp
1� me

mp

� �
þ 1

md
1� me

md

� �� �
; ð31Þ

which are exactly the leading terms of the expansion of the

atomic reduced mass (29) in the electron–nuclear mass ratio

1

2mA
¼ 1

2

1

mp
1� me

mp
þ me

mp

� �2

� � � �
 !"

ð32Þ

þ 1

md
1� me

md
þ me

md

� �2

� � � �
 !#

: ð33Þ

In the separated atoms limit, the nonrelativistic energy of the

system (the dissociation threshold) E(N) is simply a sum of

the energies of hydrogen and deuterium atoms expressed by

their reduced masses

Eð1Þ ¼ � mH
2
� mD

2
: ð34Þ

The expansion of E(N) in the electron to nucleus mass ratio is

of the form

Eð1Þ ¼ �1þ 1

2

me

mp
þ me

md

� �
� 1

2

m2
e

m2
p

þ m2
e

m2
d

 !
þ � � � : ð35Þ

Subsequent terms of this expansion coincide with the R - N

limits of corresponding components of the nonadiabatic

potential Y(R) of eqn (23),

Eel(N) = �1, (36)

Eað1Þ ¼
me

2mn
; ð37Þ

dEnað1Þ ¼ �
me

2mn

� �2

; ð38Þ

dE
0
nað1Þ ¼ �l2: ð39Þ

In particular, the sum of eqn (38) and (39) is equal to the third

term in the expansion (35).

VI. Relativistic and radiative corrections

The relativistic correction to the adiabatic potential for a

singlet state is given by the expectation value with the
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nonrelativistic wave function of the Breit–Pauli Hamiltonian15

a�2ĤBP ¼�
1

8

X
a

p4a þ
p
2

X
A

X
a

ZAdðr!aAÞ þ p
X
aob

dðr!abÞ

� 1

2

X
aob

p
!
a
1

rab
p
!
b þ p

!
a � r!ab

1

r3ab
r
!
ab � p!b

� �
:

ð40Þ

The expectation value E(2)(R) = hfel|ĤBP|feliel as a function

of R, was computed for H2 to a high accuracy by Wolniewicz16

in 1993 and has recently been recalculated in ref. 1. In the

present calculations, as in all the previous ones, we have

omitted the small relativistic recoil corrections, namely those

proportional to a2me/M.

Another a2 effect, which can be easily incorporated into the

relativistic potential, results from the spatial distribution of the

nuclear charge. The energy shift caused by this effect is given

by the formula

EfsðRÞ ¼
2p
3

a2

�l2C

X
A

ZAr
2
chðAÞ fel

X
a

dðr!aAÞ
�����

�����fel

* +
el

; ð41Þ

where �lC ¼ 386:159 264 59 fm is the Compton wavelength

over 2p and rch(A) is the root mean square charge radius of

the nuclei A, with values of rch(p) = 0.8768(69) fm and

rch(d) = 2.1402(28) fm.17,18 For the dissociation energy of

the ground rovibrational level this effect is quite small and

amounts to �0.000 119 cm�1 with tendency to diminish to

zero for higher levels.

The leading order QED correction is given by19

Eð3ÞðRÞ ¼a3
X
aob

(
164

15
þ 14

3
ln a

� �
hfeljdðr

!
abÞjfeliel

� 7

6p
fel P

1

r3ab

� �����
����fel

� �
el

)

þ a3
X
A

X
a

19

30
� 2 ln a� ln k0

� �

� 4ZA

3
hfeljdðr

!
aAÞjfeliel:

ð42Þ

The numerical evaluation of E(3) has been described in detail in

ref. 1. We only mention here that this evaluation includes such

terms as the Bethe logarithm ln k0 and the expectation value of

the Araki–Sucher distribution P(1/r3).20 As previously,1 the

higher order QED contribution14 has been estimated by the

corresponding one-loop electron self-energy correction

Eð4ÞðRÞ � pa4
427

96
� ln 4

� �X
A

X
a

hfeljdðr
!
aAÞjfeliel: ð43Þ

The large-R behaviour of the above relativistic and QED

potentials has been determined using asymptotic constants

reported in ref. 1 and 21.

The relativistic and QED corrections can be computed

directly, as expectation values with the adiabatic wave function.

It is more convenient and more accurate, however, to include

them into the nonadiabatic Schrödinger eqn (22) by adding

pertinent radial functions into the Y(R) potential (23). In such

an approach, the eigenvalue of the Schrödinger equation

represents a total energy including all the mentioned finite

nuclear mass, relativistic and QED effects.

VII. Computational details

The radial nonadiabatic eqn (22), apart from the clamped

nuclei energy Eel and the adiabatic correction Ea, involvesW||,

W>, and the potentials dEna and dE
0
na in eqn (24). The

numerical values for all but the last radial functions were

obtained for H2 and a simple rescaling by the first or second

power of the reduced mass ratio converts them to the pertinent

HD functions. For this reason, we shall omit a detailed

description of how these functions were obtained, referring

the reader to our previous work on H2.
10,11 Below we give only

basic information on these functions and then concentrate

on the new terms which result from the nuclear mass

asymmetry in HD.

The electronic energy, Eel, used in this work is exactly the

same as the one reported in ref. 1. Its analytic form is based on

the energy points calculated by Sims and Hagstrom22 using

Hylleraas wave function and by Cencek23 using an explicitly

correlated Gaussian (ECG) wave function. The relative

accuracy of these calculations is of the order of 10�12, which

corresponds to about 10�10 of the relative accuracy of the

Born–Oppenheimer potential. The ground state dissociation

energy obtained by numerically solving the adiabatic

Schrödinger eqn (21) in the Born–Oppenheimer approximation

with this analytic potential is 36401.93319 cm�1 (see also

Table 1). Also the relativistic and QED corrections to the

potential obtained for H2 in ref. 1 apply directly to HD

because they do not depend on the nuclear mass.

The adiabatic correction Ea has been evaluated analytically by

means of a new method described in ref. 10 and 11. The radial

function Ea previously obtained for H2 has been rescaled to HD

by the ratio of the reduced masses of nuclei mH2
n =mHD

n

EHD
a ¼ mp þmd

2md
EH2
a ð44Þ

and led to the adiabatic dissociation energy of the ground state

equal to 36 406.18407 cm�1.

Similarly, the nonadiabatic potentials dEna, W||, and W>

were obtained for H2 in ref. 11 and here are rescaled to HD by

the square of the reduced mass ratio
mpþmd

2md

	 
2
. Numerical

Table 1 Components of D0 (in cm�1) for the v = 0, J = 0 state of
HD. Uncertainties of a2 and a3 come from the neglect of nuclear recoil
corrections and that of a4 from the approximate formula

Component D0

BO 36 401.9332(1)
Adiabatic correction 4.2509(1)
Nonadiabatic correction 0.3267(2)
a0 subtotal 36 406.5108(2)
a2 correction �0.5299(4)
a2 finite nuclear size correction �0.0001(0)
a0 + a2 subtotal 36 405.9809(5)
a3 correction �0.1964(2)
a4 correction �0.0016(8)
Total 36 405.7828(10)
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values of the nuclear masses mp = 1836.152 672 47 me and

md = 3670.482 965 4 me used in this study are based on

the CODATA 2006 compilation of fundamental physical

constants17 and were taken from the NIST Web Page.18 The

nuclear reduced mass of HD is mn = 1223.899 2280 me and

the nuclear mass asymmetry parameter l = 1.360 866 544

2 � 10�4 me.

The only newly evaluated function of R is the heteronuclear

nonadiabatic correction dE
0
na, eqn (24), resulting from those

terms of the Hamiltonian H̃, which contain l [see eqn (14)

and (15)]. dE
0
na comprises three parts. The first part is analogous

to the nuclear kinetic energy term in the adiabatic correction

(20) and requires evaluation of the derivative of the electronic

wave function over the nuclear variable ~R. This differentiation

can be accomplished with the help of the following formula24

r
!
Rfel ¼ n

! 1

ðEel �HelÞ0
@V

@R
fel �

i

R
n
! � L

!
nfel: ð45Þ

In the above equation, the first term gives the parallel component

and requires an additional basis set of 1S+
g symmetry to

evaluate the reduced resolvent. The perpendicular component

is obtained by evaluation of the expectation value of an

operator resulting from the last term, which involves the

nuclear angular momentum operator L
!
n ¼ �iR

!
� r

!
R. Here

we made use of the following identity valid for the S states:
~Lnfel = �~Lelfel, where ~Lel is the electronic angular

momentum operator L
!
el ¼ �i

P
a r
!
a �r

!
a. In this new

formulation, it is possible to avoid the involvement of P
symmetry functions—the perpendicular component is obtained

directly from the electronic ground state wave function as

� 1

R2
hfeljL2

eljfeliel: ð46Þ

The second part of dE
0
na contains operators which are difficult in

numerical evaluation, so we transform it to a more convenient

form using the following identity

ri
Rrj

R(V) = (ri
Rrj

R � ri
elrj

el)(V) + ri
elrj

el(V). (47)

The first term on the right hand side of eqn (47) is

ðri
Rr

j
R �ri

elr
j
elÞðVÞ ¼

3RiRj � dijR2

R5
� 4p

3
dijd3ðRÞ; ð48Þ

(the d3(R) part can be neglected), while the second term is

evaluated using integration by parts

hfel|r
irjri

elrj
el(V)|feliel =

R
d~rVri

elrj
el(r

irjf2
el). (49)

The third part of the heteronuclear nonadiabatic correction

dE
0
na;

eqn (24), is again a second order quantity, which requires

evaluation of the resolvent in the basis set of 1S+
u symmetry.

All these expectation values as well as the second order

quantities were evaluated in the basis of exponentially

correlated Gaussians (ECG) functions25

ckðr
!
1; r
!
2Þ ¼ð1þ P̂12Þð1	 îÞX

� exp �
X2
i;j¼1

Ak;ijðr!i � s
!
k;iÞðr!j � s

!
k;jÞ

" #
;
ð50Þ

where the matrices Ak and vectors ~sk contain nonlinear

parameters, 5 per basis function, to be variationally optimized

with respect to either the electronic energy or pertinent

Hylleraas functional. The antisymmetry projector (1 + P̂12)

ensures singlet symmetry, the spatial projector ð1	 îÞ ensures
the gerade (+) or ungerade (�) symmetry, and the Xk

prefactor enforces S states when equal to 1, or P states when

equal to yi (the perpendicular Cartesian component of the

electron coordinate). For the second order matrix elements

we generated a 600-term ECG basis set of 1S+
g or 1S+

u

symmetries. The nonlinear parameters of this basis were

optimized by minimizing the functional corresponding to this

matrix element.

Finally, the total potential Y in the Schrödinger

eqn (22) reads

YðRÞ ¼EelðRÞ þ EaðRÞ þ dEnaðRÞ þ dE
0
naðRÞ þ Eð2ÞðRÞ

þ EfsðRÞ þ Eð3ÞðRÞ þ Eð4ÞðRÞ:
ð51Þ

All its components were shifted by subtracting corresponding

atomic values (see section V and ref. 1) so that they asymptotically

tend to zero.

VIII. Results and discussion

Table 1 shows the dissociation energy of the ground

rovibrational level decomposed into all the known significant

contributions. Particular corrections have been computed as a

difference between the eigenvalues obtained adding successively

corresponding contributions to the potential Y, eqn (51). For

instance, the a2 relativistic correction has been evaluated from

two eigenvalues: one obtained with Y ¼ Eel þ Ea þ dEna þ
dE

0
na þ Eð2Þ and the other with Y ¼ Eel þ Ea þ dEna þ dE

0
na.

Relativistic and QED corrections can also be obtained without

the nonadiabatic potential dEna þ dE
0
na. The difference for the

ground state is quite small 10�6 cm�1, however for excited

states the difference can be larger.

There are several possible sources of the uncertainty in

the final dissociation energy. The three dominating are

(i) the missing relativistic and QED recoil terms of O(me/M),

(ii) the neglect of the nonadiabatic terms of O[(me/mn)
3],

and (iii) the approximate treatment of the a4 contribution.

Although the formulas for the omitted relativistic recoil terms

are explicitly known,24 no numerical calculations have been

performed so far. The error caused by the neglect of this term

can be estimated as me/mn times the a2 correction (see ref. 1)

and, analogously, times the a3 correction to account for the

missing QED recoil term. For D0 of the ground rovibronic

level these two contributions are 0.00043 cm�1 and 0.00016 cm�1,

respectively. In a similar fashion, the contribution to the error

budget from the missing higher order nonadiabatic terms can

be approximated as proportional to me/mn times the second

order nonadiabatic correction, which amounts to 0.00026 cm�1

at the ground level. The last meaningful part of the uncertainty

results from the incomplete treatment of the higher order QED

effects. As previously, (ref. 1) we conservatively estimate that

the terms omitted in E(4), eqn (43), contribute ca. 50% of the

one-loop term, which yields 0.0008 cm�1 of the uncertainty.

9192 | Phys. Chem. Chem. Phys., 2010, 12, 9188–9196 This journal is �c the Owner Societies 2010



The quadratic sum of these four error components leads to

the overall uncertainty on the ground state D0 of less then

0.0010 cm�1. For the rotationally and vibrationally excited

levels, the uncertainty changes in accord with the size of the

corrections. Its estimation for individual levels is listed in the

ESI.w In total, there are 400 bound levels with the vibrational

quantum number v ranging from 0 to 17. The number of the

rotational levels decreases with growing v from 37 for v = 0 to

only 2 in the highest v = 17 state. The full set of the total

dissociation energies is presented in Table 5. Moreover, a

detailed specification, similar to that in Table 1, has been

prepared for each bound rovibrational level and is available

in the ESI.w For each combination of the vibrational and

rotational quantum numbers there are 8 entries corresponding

to: six components of the dissociation energy, the totalD0, and

the estimated uncertainty of the total D0. The six components

of the total D0 are, respectively: the Born–Oppenheimer,

adiabatic, nonadiabatic, a2 relativistic (including finite nuclear

size), a3 QED, and a4 QED.

Table 2 assembles several experimental and theoretical

nonadiabatic values of D0 obtained over the years for the

ground rovibrational level. More details on the progress in

determining the dissociation energy of HD can be found in a

brief review by Stoicheff.26 The first variational nonadiabatic

calculation for HD has been performed by Bishop and

Cheung.8 They used 858 basis functions, each being a product

of an electronic James–Coolidge function and some radial

Gaussian-type function, and obtained the nonrelativistic

D0 = 36 405.97 cm�1 with an estimated convergence error

of 0.28 cm�1. Approximate relativistic (�0.54 cm�1) and

radiative (�0.22 cm�1) corrections completed the dissociation

energy to the value displayed in Table 2.

A more accurate relativistic dissociation energy of the HD

molecule was first obtained by Wolniewicz27 in 1983, and later

by Ko"os and coworkers.28,29 In 1995 Wolniewicz has

markedly improved his electronic wave functions and refined

the final dissociation energy to get 36 405.787 cm�1 shown in

Table 2. This value differs from ours by a few thousands of a

wave number in accord with the uncertainty estimated by

Wolniewicz. Concerning the QED correction to the ground

state D0 we mention the old but very good estimation

�0.197 cm�1 by Ladik.30 It agrees surprisingly well with the

current rigorous result, see Table 1.

Last year, Stanke et al.9 performed new variational

nonadiabatic calculation employing 10000 explicitly correlated

Gaussian basis functions. Their nonrelativistic total energy

of �1.165 471 922 0(20) Eh, when subtracted from the

sum of the atomic nonadiabatic energies, eqn (34), yields

D0 = 36 406.5105 cm�1 in good agreement with our non-

relativistic subtotal value in Table 1 (the difference is 0.0003(2)

cm�1). Their relativistic correction computed with the non-

adiabatic wave function is �1.089 307 � 10�5 Eh. Because the

corresponding atomic limit (�a2/4 Eh) is known to a high

accuracy (the leading order recoil term vanishes), the relativistic

D0 can be inferred from this data as equal to 36 405.9794 cm�1.

We note here that now the discrepancy increases to

0.0012(5) cm�1 in comparison with our relativistic result.

If this difference were attributed to the relativistic recoil

contribution, it would be almost 3 times larger than the

conservative estimate of this effect discussed above.

Table 2 also collects dissociation energies determined

experimentally. The first measurement of D0 for HD was

performed by Herzberg and Monfils in 196031 yielding

36 400.5 cm�1. Motivated by a discrepancy with the famous

theoretical results by Ko"os and Wolniewicz,32 Herzberg

repeated his experiment33,34 using an improved apparatus

and established D0 = 36 406.2(4) cm�1 shown in Table 2.

Table 2 Comparison of theoretical and experimental results for D0

(in cm�1) of the v = 0, J = 0 state of HD. d is a difference from our
result

Component D0 d

This work 36 405.7828(10)
Theory
Stanke et al. (2009)9 36 405.7814a �0.0014
Wolniewicz (1995)43 36 405.787 0.004
Ko"os and Rychlewski (1993)29 36 405.763 �0.020
Ko"os, Szalewicz, Monkhorst (1986)28 36 405.784 0.001
Wolniewicz (1983)27 36 405.73 0.05
Bishop and Cheung (1978)8 36 405.49 �0.29
Experiment
Zhang et al. (2004)38 36 405.828(16) 0.045
Balakrishnan et al. (1993)37 36 405.83(10) 0.05
Eyler and Melikechi (1993)35 36 405.88(10) 0.10
Herzberg (1970)33,34 36 406.2(4) 0.4

a The original D0 = 36 405.9794 cm�1 from ref. 9 has been augmented

by a sum of our a3 and a4 QED corrections equal to �0.1980 cm�1.

Table 4 Components of theoretically predicted transition energy DE
between J = 0 and J = 1, and between J = 0 and J = 2 rotational
levels of the ground vibrational state (v = 0) of HD. All entries in
cm�1

Component DE(0 - 1) DE(0 - 2)

BO 89.270 629 267.196 840
Adiabatic correction �0.036 086 �0.107 842
Nonadiabatic correction �0.007 782(6) �0.023 287(19)
a0 subtotal 89.226 761(6) 267.065 711(19)
a2 correction 0.001 948(2) 0.005 813(5)
a0+a2 subtotal 89.228 709(6) 267.071 524(20)
a3 correction �0.000 771(1) �0.002 303(2)
a4 correction �0.000 007(4) �0.000 018(9)
Total 89.227 933(8) 267.069 205(22)
Experiment46,47 89.227 950(5) 267.086(10)

Table 3 Comparison of theoretical and experimental results for the
energy difference DE (in cm�1) between v = 0 and v = 1 rotationless
states of HD. d is a difference from our result

Source DE d

This work 3632.1604(5)
Theory
Stanke et al. (2009)9 3632.1614a 0.0010
Wolniewicz (1995)43 3632.161 0.001
Ko"os and Rychlewski (1993)29 3632.161 0.001
Experiment
Stanke et al. (2009)9 3632.1595(17)b �0.0009
Rich et al. (1982)44 3632.159(6)c �0.001
McKellar et al. (1976)45 3632.152(9)c �0.008
a The original DE = 3632.1802 cm�1 from ref. 9 has been augmented

by a sum of our a3 and a4 QED corrections equal to �0.0187 cm�1.
b 1s uncertainty. c 3s uncertainty.
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This value, however, is in fact an arithmetic mean of two

independent measurements: 36 405.8 cm�1 and 36 406.6 cm�1,

the former being very close to our value. In 1993, Eyler and

Melikechi35 determined the dissociation threshold from the EF
1S+

g state and, in combination with the spectra measured by

Diecke,36 obtained D0 = 36 405.88(10) cm�1. At the same

time, Balakrishnan et al.37 performed a delayed detection of

the fluorescence spectrum of photodissociated hydrogen and

arrived at D0 = 36 405.83(10) cm�1. These results, although

systematically larger, are in agreement within their uncertainties

with current theoretical predictions. An order of magnitude

more accurate measurements were reported by the Eyler group

in 2004.38 In a three-step experiment aiming at determination

of the second dissociation threshold they obtained D0 =

36 405.828(16) cm�1. This result is 3s away from our

theoretical value. In view of an increased precision on both

the experimental and theoretical side it must be stated

that currently there is a discrepancy of ca. 0.05 cm�1 in the

determination of D0 for HD.

Accuracy of the present results can also be assessed by

comparison of the energy difference corresponding to the

lowest rotationless vibrational transition with the available

literature data (see Table 3). The most accurate theoretical

predictions by Wolniewicz and by Ko"os and Rychlewski as

well as the experimental data are in very good agreement with

the present result 3632.1604(5) cm�1. Here, we estimated the

uncertainty in the same way as for the dissociation energy (see

above) i.e. assuming that the error components are proportional

to corresponding corrections.

In contrast to the homonuclear isotopomers, the electric

dipole transitions between the lowest rotational states of HD

are allowed and the transition energy can, in principle, be

measured directly. In Table 4 we present values of all

significant contributions to the lowest J = 0 - 1, 2 transition

energies and compare with the available experimental data –

we note a 2s difference between the theory and measurements.

The ionization potential (IP) of HD can be related to its

dissociation energy by

IP = D0(HD) � E(H) � D0(HD+). (52)

Since the dissociation energy of HD+, as well as the total

energy of the hydrogen atom, is known very accurately, we can

evaluate IP with an accuracy adequate to that of D0(HD).

Up-to-date values of E(H) = �109 678.7717 cm�1 and

D0(HD+) = 21 516.069 60 cm�1 have been compiled by Liu

et al.3 on the basis of current fundamental constants17 and

calculations by Korobov.39,40 IP computed for HD from the

above formula amounts to 124 568.4849(10) cm�1 with the

uncertainty transferred directly from D0.

IX. Conclusion

The high accuracy of 0.001 cm�1 for the theoretically

predicted dissociation energy of H2 and isotopomers has been

achieved due to the recent progress made in two directions.

The first one, enabled a complete treatment of the leading

QED effects. In particular, the approach to effectively

calculate the many electron Bethe logarithm and mean values

of singular operators, like the Araki–Sucher term, has been

developed.1,41,42 The second direction, indispensable for reaching

this accuracy, is the nonadiabatic perturbation theory,10,11,24

which enables a rigorous approach to the finite nuclear mass

effects beyond the adiabatic approximation. However, an

accurate nonadiabatic correction to relativistic contribution

still remains to be evaluated.

In comparison of theoretical predictions with recent

experimental results we observe a very good agreement for

dissociation energies of H2 and D2, and a small discrepancy of

0.045(16) cm�1 for HD. Therefore, a new measurement with

an increased precision of dissociation and transition energies

of HD molecule would be very desirable.

Note added in proof

After submitting this paper we became aware of a new

measurements of HD dissociation energy [D. Sprecher,

J. Liu, C. Jungen, W. Ubachs, F. Merkt, 2010, to be published].

The new value of D0 = 36405.78366(36) cm�1 is in a very

good agreement with our theoretical prediction.
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