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The dissociation energies of all rotation—vibrational states of the molecular HD in the ground
electronic state are calculated to a high accuracy by including nonadiabatic, relativistic o,

and quantum electrodynamic o effects, with approximate treatment of small higher order o*,
and finite nuclear size corrections. The obtained result for the ground molecular state of
36 405.7828(10) cm ™' is in a small disagreement with the latest most precise experimental value.

I. Introduction

Since the beginning of quantum mechanics molecular hydrogen
and its isotopomers have been a ground for testing and
developing experimental techniques and theoretical models.
In determination of the dissociation energy (D), experimental
and theoretical measurements have diminished their individual
uncertainties to below 107> cm ™! and are in good agreement.
In particular, the latest theoretical Dy = 36 118.0695(10) cm ™'
of H,, obtained by Piszczatowski er al.,! agrees very well
with 36 118.06962(37) cm™' derived experimentally by
Liu er al.’> Analogous results obtained last year for D, are
36 748.3633(9) cm ™! from theory' and 36 748.36287(60) cm ™!
from experiment.® The tiny difference of 0.0004 cm ™! fits well
within both error estimates. To achieve this 107> cm ™! level of
accuracy, the theory must have taken into account, with
sufficient precision, not only the electron correlation but also
the finite nuclear mass, relativistic, and quantum electro-
dynamics (QED) effects.

Particularly challenging is the accurate inclusion of
nonadiabatic effects. One possible approach is to obtain a
nonadiabatic wave function (depending explicitly on nuclear
coordinates) by minimizing the nonrelativistic energy. For H,
such calculations, using explicitly correlated James—Coolidge
functions, were attempted by Kotos and Wolniewicz in 1963*°
and 15 years later by Bishop and Cheung.® The same authors
performed purely nonadiabatic calculations for HD. Kotos
and Wolniewicz obtained D, = 36 402.4 cm™',” whereas
Bishop and Cheung reported Dy = 36 405.97 cm™ 1.8 Calculations
in a similar spirit, but using extensively optimized explicitly
correlated Gaussian functions, were performed by Stanke
et al.’ Their nonadiabatic wave function was further employed
to compute perturbatively the relativistic correction to the
nonadiabatic energy. An apparent drawback of these methods
is their decreasing accuracy observed for the higher excited
states, particularly those lying close to dissociation threshold.
For such states the perturbative treatment of relativistic effects
may be inadequate. As an example, the v = 14, J = 4 state of
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H, becomes a resonance after the inclusion of relativistic
effects on the level of the potential energy curve (PEC).
Moreover, certain properties like the ortho—para mixing
or the scattering length, are inaccessible within the direct
nonadiabatic approach.

In contrast, the nonadiabatic perturbation theory (NAPT)
approach employed here, relies on solving the radial,
variable-mass Schrodinger equation with the PEC for the
nuclei constructed from the adiabatic potential augmented
by R-dependent nonadiabatic, relativistic and QED corrections.
The theory of the nonadiabatic potentials has been developed
in ref. 10 and 11, whereas the relativistic and QED corrections
to the PEC are evaluated on the basis of the nonrelativistic
quantum electrodynamics (NRQED).'>'* These corrections
are unambiguously identified by an expansion of a bound
atomic or molecular state energy in powers of the fine structure
constant o:

E=E9 + P2E?® + PE® + P*EPD+ .. (1)

where E® and higher order terms may additionally depend on
Ino.. The first term of the expansion represents the nonrelativistic
energy, o’E® is the leading relativistic contribution, terms
proportional to o and o describe the QED effects of the
leading and higher order, respectively. In this paper we report
on application of this approach to all rovibrational levels of
the ground electronic state of HD molecule. Uncertainty of
our results comes mainly from the neglect of the finite nuclear
mass corrections of the order o’m/M to the relativistic
contribution to the PEC, and from the approximate treatment
of the o* correction. The neglect of higher order nonadiabatic
terms proportional to (m/M)* also increases the overall
uncertainty.

II. Nonrelativistic Hamiltonian

We consider a two-electron diatomic molecule in the reference
frame attached to the geometrical center of the two nuclei.
The total wave function ¢ is a solution of the stationary
Schrédinger equation

Hp = E¢, 2
with the Hamiltonian

H = Hel + Hm (3)
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split into the electronic and nuclear parts. In the electronic
Hamiltonian

vZ

Hy = —
¢ — 2me

+V, (4)

where V' is the Coulomb interaction

1 1 1 1 1
+— 5)

b
rta rB r g 2 R

the nuclei have fixed positions R4 (proton) and R (deuteron),
and R = R, — Rp. The nuclear Hamiltonian is

()

where Vo =13, Vo, , = (1/M4 + 1/Mp)~"is the nuclear
reduced mass, and H),, H, are even and odd parts with respect
to the inversion.

In order to simplify the calculation of nonadiabatic corrections
we introduce a unitary transformation

H = U"HU @)
of the form
U =e¢"Vr (8)

with ¥ = >, and the nuclear mass asymmetry parameter

,  ome (1 1
A= 3 < M, MA). 9)
The transformed Hamiltonian is

12
H=H+[H,7 Vg +%[[H,7 VRl 7 V] + 03,

(10)

where the higher order terms in the electron—nuclear mass
ratio O[(me/M 4, 5)°] are neglected, so that

H =Hy+ H + V7 Vg

P o 72 2L =
+2m*[ve1'VR7V'VR] +7[[He17r'VRLV‘VR]7

(11)

and the odd O[(m/M .4, 5)°] terms are neglected as well.
The internal commutator in the last term of eqn (11) is

- = . e 2. o
[He|7r~VR} :—I"VR(V)—m—Vel'VR, (12)
e

so that the transformed Hamiltonian can be decomposed as

H = Hy+ H) + H),. (13)

where

1 o

- S1 = = I .
H =H, + —Va V=57 Vr(V), 7+ Vg
€

(14)

1 /12 2 22;‘/ Rv/
:Hn+m—eVR+7”VRVR(V)

H' = —7 -Va(V). (15)

Both the nuclear Hamiltonians involve the derivative of the
Coulomb operator V, which is

= 1 Tia  Tig T4 Top n
Vy— (A s _a m) g
v z( R ) e

with 7 = ﬁ/R, while the second derivative of V is further
transformed in eqn (47)—(49).

III. Adiabatic approximation

In the adiabatic approximation the total wave function of the
molecule

¢u(F, R) = ¢ai(Py(R) (17)

is represented as a product of the electronic wave function
¢ and the nuclear wave function y. The electronic wave
function obeys the clamped nuclei electronic Schrédinger
equation

[Hcl - gcl(R)]mSCl) = 0’ (18)

while the wave function y is a solution to the nuclear
Schrodinger equation with the effective potential generated
by electrons

VZ
SR ER) 6B~ E[lD=0. (19
n

where &,(R) is the so-called adiabatic (or diagonal) correction
defined as

ga (R) :<¢61‘H2|¢el>el
(20)

i (TRl Vbl = (6ol V310l

Separation of the angular variables in eqn (19) leads to the
well-known radial nuclear equation

1 0RO JUJ+1) .
_FE)—RZ_,MHQ_R W‘F(gel(R)“’(ga(R) 1 (R)
= Eay;(R). (21)

Solving this equation gives an adiabatic energy level E, and an
adiabatic radial nuclear wave function y .
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IV. Nonadiabatic nuclear Schrodinger equation

Following the NAPT formalism introduced recently,'®!'" we

can obtain energy levels E including leading nonadiabatic
corrections by solving the following nonadiabatic version of
the radial Schrodinger equation

19 R 9 JUH]D
R2OR2u(R)OR * 2u, (R)R

(22)

where %(R) is a nonadiabatic potential energy function. In the
nonrelativistic limit

Y(R) = Ea(R) + Ea(R) + 680 (R) +06,,(R),  (23)
with the nonadiabatic correction constructed from the homo-
nuclear part & ,,,(R), defined in our previous work on H,,'*!!
and the heteronuclear part proportional to 2>

5(9@1,13 :;L2 |:<¢el ¢el>
el

+ <¢el F-Vr(V)

which is obtained from eqn (14) and (15). Apart from the
nonadiabatic potential %(R), the difference between eqn (22)
and (21) lies in the effective masses used. In the adiabatic
eqn (21) the reduced nuclear mass u, appearing in both
translational and rotational kinetic terms is a constant, while
in the nonadiabatic eqn (22) it is given by two different
functions of the internuclear distance. These two effective
reduced mass functions

1 |
;vi + 31V VR(V)

1

- Vr(V) 7(&1 ~Ha)

¢e]> :| )
el

(24)

b _1 + 'y (R) _2 (25)
2#\\(R) - 2:“71 ! me
1 1 2
= -— 2
2 (R) 21, VulR) me 29)

are defined with the help of additional radial functions

1

1 /. =
Wi (R)=—(n-V —_—
H( ) 'uz < R(/)e] (édel — Hel),

n

ne %R¢el> (27)

el
and

1

gcl - Hcl

. 1 (87 — n'n)
W (R) = — 2 ")
L( ) ,uﬁ P

(Vi Vita) - 8

1

In total, three radial functions are needed to construct
the nonadiabatic radial Schrédinger eqn (22) for diatomic
molecules: two functions, defined by eqn (27) and (28), to
describe the variable effective reduced masses of eqn (25) and
(26), and the nonadiabatic potential %. This potential, in turn,
is expressed by another four functions: BO energy &,
adiabatic &,, nonadiabatic homonuclear (58;,& and hetero-
nuclear 5§;M corrections (see eqn (23)).

V. Separated atoms limit

At large internuclear distances the effective reduced mass
functions (25) and (26) are expected to approach a value
corresponding to the reduced mass of separate H and D atoms
1 1 1
= + (29)

Uy M +me mg+mg

Because #(R) and # | (R) tend to —m(442), when R —» o,
we have

IS T s (30)
2up(00)  2uy(00)  2m, Ay me

111 me 1 me
=—|—1-— — (1 —-— 31
o ) el G R

which are exactly the leading terms of the expansion of the
atomic reduced mass (29) in the electron—nuclear mass ratio

1 1|1 m e\ 2
N R B T —c) ...
m2|:mp (1 mp+<mp) > 32
1 m, e\
+—<1——e+(—e) —)} (33)
mgq mq mq

In the separated atoms limit, the nonrelativistic energy of the
system (the dissociation threshold) &(o0) is simply a sum of
the energies of hydrogen and deuterium atoms expressed by
their reduced masses

&(c0) :—"7“—”7'3. (34)

The expansion of &(c0) in the electron to nucleus mass ratio is
of the form

1 (me me 1 (m> m?
/ — e (=) ey e .
&(o0) +5 (mp + md) 5 (mf, + o~ + (35)

Subsequent terms of this expansion coincide with the R —» oo
limits of corresponding components of the nonadiabatic
potential #(R) of eqn (23),

Ea(0) = —1, (36)
Ealo0) = ZZ, , (37)

2
06" (o00) = =22, (39)

In particular, the sum of eqn (38) and (39) is equal to the third
term in the expansion (35).
VI. Relativistic and radiative corrections

The relativistic correction to the adiabatic potential for a
singlet state is given by the expectation value with the
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nonrelativistic wave function of the Breit-Pauli Hamiltonian'?

o *Hpp = — SZpu 2222/4 Fad +7TZ5 T ab)

a<b

| .
__Z (pa pb+pa'rabTrab'pb>-
Yab r,

a<b ab

(40)

The expectation value §@(R) = (qﬁe]\HBp\d)el)el as a function
of R, was computed for H, to a high accuracy by Wolniewicz'®
in 1993 and has recently been recalculated in ref. 1. In the
present calculations, as in all the previous ones, we have
omitted the small relativistic recoil corrections, namely those
proportional to om./M.

Another o effect, which can be easily incorporated into the
relativistic potential, results from the spatial distribution of the
nuclear charge. The energy shift caused by this effect is given

by the formula
(/>e1> , (41)
el

&i(R 72710( ZZArch <¢elz 5(Fas)

where Zc = 386.159 264 59 fm is the Compton wavelength
over 21t and rp(A) is the root mean square charge radius of
the nuclei A, with values of re,(p) = 0.8768(69) fm and
ren(d) = 2.1402(28) fm.'”!® For the dissociation energy of
the ground rovibrational level this effect is quite small and
amounts to —0.000 119 cm™' with tendency to diminish to
zero for higher levels.
The leading order QED correction is given by'’

o3 Z { |:ﬁ + E1Il O’:| <¢el|6( zlh)|¢el>el

<¢e1 ( )¢el>el} )
*Zz{f—zlna—lnko}

<<¢>e1|5( )| Per)er-

The numerical evaluation of &® has been described in detail in
ref. 1. We only mention here that this evaluation includes such
terms as the Bethe logarithm In k¢ and the expectation value of
the Araki-Sucher distribution P(1/r%).>® As previously,' the
higher order QED contribution'* has been estimated by the
corresponding one-loop electron self-energy correction

5D (R) ~ (ﬁ_l 4)22 ($al0(Fur) be)a (43)

The large-R behaviour of the above relativistic and QED
potentials has been determined using asymptotic constants
reported in ref. 1 and 21.

The relativistic and QED corrections can be computed
directly, as expectation values with the adiabatic wave function.
It is more convenient and more accurate, however, to include
them into the nonadiabatic Schrédinger eqn (22) by adding

pertinent radial functions into the %(R) potential (23). In such
an approach, the eigenvalue of the Schrédinger equation
represents a total energy including all the mentioned finite
nuclear mass, relativistic and QED effects.

VII. Computational details

The radial nonadiabatic eqn (22), apart from the clamped
nuclei energy &¢; and the adiabatic correction &,, involves %7,
# ,, and the potentials 6&,, and 56‘3;121 in eqn (24). The
numerical values for all but the last radial functions were
obtained for H, and a simple rescaling by the first or second
power of the reduced mass ratio converts them to the pertinent
HD functions. For this reason, we shall omit a detailed
description of how these functions were obtained, referring
the reader to our previous work on H,.'%!! Below we give only
basic information on these functions and then concentrate
on the new terms which result from the nuclear mass
asymmetry in HD.

The electronic energy, &, used in this work is exactly the
same as the one reported in ref. 1. Its analytic form is based on
the energy points calculated by Sims and Hagstrom?? using
Hylleraas wave function and by Cencek?®® using an explicitly
correlated Gaussian (ECG) wave function. The relative
accuracy of these calculations is of the order of 1072, which
corresponds to about 107! of the relative accuracy of the
Born—-Oppenheimer potential. The ground state dissociation
energy obtained by numerically solving the adiabatic
Schrodinger eqn (21) in the Born—-Oppenheimer approximation
with this analytic potential is 36401.93319 cm™! (see also
Table 1). Also the relativistic and QED corrections to the
potential obtained for H, in ref. 1 apply directly to HD
because they do not depend on the nuclear mass.

The adiabatic correction &, has been evaluated analytically by
means of a new method described in ref. 10 and 11. The radial
function &, previously obtained for H, has been rescaled to HD
by the ratio of the reduced masses of nuclei p!2 /P

gHD _ my + Mg

&t 44
o (44)

and led to the adiabatic dissociation energy of the ground state
equal to 36 406.18407 cm ™.

Similarly, the nonadiabatic potentials 0&y,, #7, and #" |
were obtained for H; in ref. 11 and here are rescaled to HD by

mp+my
2my

2
the square of the reduced mass ratio ( ) . Numerical

Table 1 Components of D (in cm™") for the v = 0, J = 0 state of
HD. Uncertainties of o> and &> come from the neglect of nuclear recoil
corrections and that of o* from the approximate formula

Component Dy

BO 36 401.9332(1)
Adiabatic correction 4.2509(1)
Nonadiabatic correction 0.3267(2)
«° subtotal 36 406.5108(2)
o® correction —0.5299(4)
o finite nuclear size correction —0.0001(0)
«® + o subtotal 36 405.9809(5)
o« correction —0.1964(2)
o* correction —0.0016(8)

Total 36 405.7828(10)
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values of the nuclear masses m, = 1836.152 672 47 m. and
mg = 3670.482 965 4 m, used in this study are based on
the CODATA 2006 compilation of fundamental physical
constants'” and were taken from the NIST Web Page.'® The
nuclear reduced mass of HD is u, = 1223.899 2280 m,. and
the nuclear mass asymmetry parameter 2 = 1.360 866 544
2 x 107 Me.

The only newly evaluated function of R is the heteronuclear
nonadiabatic correction 3¢ na> €40 (24), resulting from those
terms of the Hamiltonian A, which contain /4 [see eqn (14)
and (15)]. (3(53;121 comprises three parts. The first part is analogous
to the nuclear kinetic energy term in the adiabatic correction
(20) and requires evaluation of the derivative of the electronic
wave function over the nuclear variable R. This differentiation
can be accomplished with the help of the following formula®*
1 oV

ﬁR(/)el =n )/a—R

1. .
nm ——nX Ln(/)e]. (45)

(7)6] R

In the above equation, the first term gives the parallel component
and requires an additional basis set of 12; symmetry to
evaluate the reduced resolvent. The perpendicular component
is obtained by evaluation of the expectation value of an
operator resulting from the last term, Wthh involves the
nuclear angular momentum operator L = —iR x VR Here
we made use of the followmg identity valid for the X states:
Ij,,dm = *Le@el, where Ly is the electromc angular
momentum operator Ly = —iy I, ><V In this new
formulation, it is possible to avoid the involvement of I
symmetry functions—the perpendicular component is obtained
directly from the electronic ground state wave function as

o (Bl (46)

The second part of 5(«?;,(1 contains operators which are difficult in
numerical evaluation, so we transform it to a more convenient
form using the following identity

Vr(V) = (ViVk — VaV)(V) + VaVa(V).  (47)
The first term on the right hand side of eqn (47) is

. - 3RIR —6YR* 4m
(VRVi — elv/e])(V):T 35’53( ), (48)

(the 8°(R) part can be neglected), while the second term is
evaluated using integration by parts

(Pl PNEVL) be)er = [AFVVEVLT ). (49)

The third part of the heteronuclear nonadiabatic correction

!

08

na’

eqn (24), is again a second order quantity, which requires
evaluation of the resolvent in the basis set of 'L, symmetry.

All these expectation values as well as the second order
quantities were evaluated in the basis of exponentially
correlated Gaussians (ECG) functions>>

Y (71, 72) =(1 4+ Pio)(1 £ 1)E

2
=D Ay (7
i=1

(50)
X exp

- Y/u)(

= skj) |5

where the matrices A, and vectors 5, contain nonlinear
parameters, 5 per basis function, to be variationally optimized
with respect to either the electronic energy or pertinent
Hylleraas functional. The antisymmetry projector (1 + Pi,)
ensures singlet symmetry, the spatial projector (1 % 7) ensures
the gerade (+) or ungerade (—) symmetry, and the E,
prefactor enforces X states when equal to 1, or IT states when
equal to y; (the perpendicular Cartesian component of the
electron coordinate). For the second order matrix elements
we generated a 600-term ECG basis set of 12; or 'T;
symmetries. The nonlinear parameters of this basis were
optimized by minimizing the functional corresponding to this
matrix element.

Finally, the total
eqn (22) reads

Y(R) =6a(R) + E4(R) + 060 (R) + 06, (R) + 6P (R)

potential % in the Schrédinger

+ &x(R) + EV(R) + W (R).

(51)

All its components were shifted by subtracting corresponding
atomic values (see section V and ref. 1) so that they asymptotically
tend to zero.

VIIIL.

Table 1 shows the dissociation energy of the ground
rovibrational level decomposed into all the known significant
contributions. Particular corrections have been computed as a
difference between the eigenvalues obtained adding successively
corresponding contributions to the potential %, eqn (51). For
instance, the o relativistic correction has been evaluated from
two eigenvalues: one obtained with % = &g + &4 + 0E s +
<5é”;m + &P and the other with ¥ = ¢ + &4 + 0Ena + (5é”;m
Relativistic and QED corrections can also be obtained without
the nonadiabatic potential &y, 4+ 0&,,. The difference for the
ground state is quite small 107° cm™', however for excited
states the difference can be larger.

There are several possible sources of the uncertainty in
the final dissociation energy. The three dominating are
(1) the missing relativistic and QED recoil terms of ((m./M),
(i) the neglect of the nonadiabatic terms of O[(m./w,)],
and (iii) the approximate treatment of the «* contribution.
Although the formulas for the omitted relativistic recoil terms
are explicitly known,>* no numerical calculations have been
performed so far. The error caused by the neglect of this term
can be estimated as m,/u, times the o correction (see ref. 1)
and, analogously, times the o correction to account for the
missing QED recoil term. For D, of the ground rovibronic
level these two contributions are 0.00043 cm™" and 0.00016 cm™",
respectively. In a similar fashion, the contribution to the error
budget from the missing higher order nonadiabatic terms can
be approximated as proportional to m,/u, times the second
order nonadiabatic correction, which amounts to 0.00026 cm ™'
at the ground level. The last meaningful part of the uncertainty
results from the incomplete treatment of the higher order QED
effects. As previously, (ref. 1) we conservatively estimate that
the terms omitted in &, eqn (43), contribute ca. 50% of the
one-loop term, which yields 0.0008 cm ™! of the uncertainty.

Results and discussion
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The quadratic sum of these four error components leads to
the overall uncertainty on the ground state D of less then
0.0010 cm™'. For the rotationally and vibrationally excited
levels, the uncertainty changes in accord with the size of the
corrections. Its estimation for individual levels is listed in the
ESI.t In total, there are 400 bound levels with the vibrational
quantum number v ranging from 0 to 17. The number of the
rotational levels decreases with growing v from 37 for v = 0 to
only 2 in the highest v = 17 state. The full set of the total
dissociation energies is presented in Table 5. Moreover, a
detailed specification, similar to that in Table 1, has been
prepared for each bound rovibrational level and is available
in the ESI.¥ For each combination of the vibrational and
rotational quantum numbers there are 8§ entries corresponding
to: six components of the dissociation energy, the total D, and
the estimated uncertainty of the total Dy. The six components
of the total D, are, respectively: the Born—Oppenheimer,
adiabatic, nonadiabatic, o relativistic (including finite nuclear
size), o> QED, and o* QED.

Table 2 assembles several experimental and theoretical
nonadiabatic values of D, obtained over the years for the
ground rovibrational level. More details on the progress in
determining the dissociation energy of HD can be found in a
brief review by Stoicheff.?® The first variational nonadiabatic
calculation for HD has been performed by Bishop and
Cheung.® They used 858 basis functions, each being a product
of an electronic James—Coolidge function and some radial
Gaussian-type function, and obtained the nonrelativistic
Dy = 36 405.97 cm™' with an estimated convergence error
of 0.28 cm™!. Approximate relativistic (—=0.54 cm™') and
radiative (—0.22 cm™") corrections completed the dissociation
energy to the value displayed in Table 2.

A more accurate relativistic dissociation energy of the HD
molecule was first obtained by Wolniewicz?’ in 1983, and later
by Kotos and coworkers.”®? In 1995 Wolniewicz has
markedly improved his electronic wave functions and refined
the final dissociation energy to get 36 405.787 cm ™' shown in
Table 2. This value differs from ours by a few thousands of a
wave number in accord with the uncertainty estimated by
Wolniewicz. Concerning the QED correction to the ground

Table 2 Comparison of theoretical and experimental results for Dy
(in cm™!) of the v = 0, J = 0 state of HD. § is a difference from our
result

Component Dy 1

This work 36 405.7828(10)

Theory

Stanke ef al. (2009)° 36 405.7814¢ —0.0014
Wolniewicz (1995)* 36 405.787 0.004
Kotos and Rychlewski (1993)%° 36 405.763 —0.020
Kotos, Szalewicz, Monkhorst (1986)*® 36 405.784 0.001
Wolniewicz (1983)* 36 405.73 0.05
Bishop and Cheung (1978)* 36 405.49 —0.29

Experiment

Zhang et al. (2004)* 36 405.828(16) 0.045

Balakrishnan er al. (1993)*” 36 405.83(10) 0.05
Eyler and Melikechi (1993)* 36 405.88(10) 0.10
Herzberg (1970)3334 36 406.2(4) 0.4

“ The original Dy = 36 405.9794 cm ™' from ref. 9 has been augmented
by a sum of our ¢ and «* QED corrections equal to —0.1980 cm™".

state Dy we mention the old but very good estimation
—0.197 cm ™! by Ladik.*® It agrees surprisingly well with the
current rigorous result, see Table 1.

Last year, Stanke er al’ performed new variational
nonadiabatic calculation employing 10000 explicitly correlated
Gaussian basis functions. Their nonrelativistic total energy
of —1.165 471 922 0(20) E;,, when subtracted from the
sum of the atomic nonadiabatic energies, eqn (34), yields
Doy = 36 406.5105 cm™' in good agreement with our non-
relativistic subtotal value in Table 1 (the difference is 0.0003(2)
cm™1). Their relativistic correction computed with the non-
adiabatic wave function is —1.089 307 x 107> E;,. Because the
corresponding atomic limit (—«?/4 Ey) is known to a high
accuracy (the leading order recoil term vanishes), the relativistic
Dy can be inferred from this data as equal to 36 405.9794 cm™".
We note here that now the discrepancy increases to
0.0012(5) cm™! in comparison with our relativistic result.
If this difference were attributed to the relativistic recoil
contribution, it would be almost 3 times larger than the
conservative estimate of this effect discussed above.

Table 2 also collects dissociation energies determined
experimentally. The first measurement of Dy, for HD was
performed by Herzberg and Monfils in 1960°' yielding
36 400.5 cm~'. Motivated by a discrepancy with the famous
theoretical results by Kotos and Wolniewicz,>> Herzberg
repeated his experiment>>3* using an improved apparatus
and established Dy = 36 406.2(4) cm~' shown in Table 2.

Table 3 Comparison of theoretical and experimental results for the
energy difference AE (in em™ ) between v = 0 and v = 1 rotationless
states of HD. ¢ is a difference from our result

Source AE 0

This work 3632.1604(5)

Theory

Stanke et al. (2009)° 3632.1614¢ 0.0010
Wolniewicz (1995)* 3632.161 0.001
Kotos and Rychlewski (1993)* 3632.161 0.001
Experiment

Stanke et al. (2009)° 3632.1595(17)° —0.0009
Rich er al. (1982)* 3632.159(6)° —0.001
McKellar er al. (1976)* 3632.152(9)° —0.008

“ The original AE = 3632.1802 cm ™' from ref. 9 has been augmented
by a sum of our & and «* QED corrections equal to —0.0187 cm™".
? 16 uncertainty. ¢ 3¢ uncertainty.

Table 4 Components of theoretically predicted transition energy AE
between J = 0 and J = 1, and between J = 0 and J = 2 rotational
levells of the ground vibrational state (v = 0) of HD. All entries in
cm -

Component AEO — 1) AEO — 2)
BO 89.270 629 267.196 840
Adiabatic correction —0.036 086 —0.107 842

Nonadiabatic correction
«° subtotal

o? correction

o®+ o2 subtotal

o’ correction —0.000 771(1)
o* correction —0.000 007(4)
Total 89.227 933(8)
Experiment*®47 89.227 950(5)

—0.007 782(6)
89.226 761(6)

0.001 948(2)
89.228 709(6)

—0.023 287(19)
267.065 711(19)
0.005 813(5)
267.071 524(20)
—0.002 303(2)
—0.000 018(9)
267.069 205(22)

267.086(10)
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This value, however, is in fact an arithmetic mean of two
independent measurements: 36 405.8 cm ™! and 36 406.6 cm ™!,
the former being very close to our value. In 1993, Eyler and
Melikechi** determined the dissociation threshold from the EF
12; state and, in combination with the spectra measured by
Diecke,*® obtained D, = 36 405.88(10) cm™'. At the same
time, Balakrishnan et al.” performed a delayed detection of
the fluorescence spectrum of photodissociated hydrogen and
arrived at Dy = 36 405.83(10) cm~'. These results, although
systematically larger, are in agreement within their uncertainties
with current theoretical predictions. An order of magnitude
more accurate measurements were reported by the Eyler group
in 2004.%% In a three-step experiment aiming at determination
of the second dissociation threshold they obtained D,

36 405.828(16) cm~!. This result is 3¢ away from our
theoretical value. In view of an increased precision on both
the experimental and theoretical side it must be stated
that currently there is a discrepancy of ca. 0.05 cm™! in the
determination of Dy for HD.

Accuracy of the present results can also be assessed by
comparison of the energy difference corresponding to the
lowest rotationless vibrational transition with the available
literature data (see Table 3). The most accurate theoretical
predictions by Wolniewicz and by Kotos and Rychlewski as
well as the experimental data are in very good agreement with
the present result 3632.1604(5) cm ™. Here, we estimated the
uncertainty in the same way as for the dissociation energy (see
above) i.e. assuming that the error components are proportional
to corresponding corrections.

In contrast to the homonuclear isotopomers, the electric
dipole transitions between the lowest rotational states of HD
are allowed and the transition energy can, in principle, be
measured directly. In Table 4 we present values of all
significant contributions to the lowest / = 0 — 1, 2 transition
energies and compare with the available experimental data —
we note a 2o difference between the theory and measurements.

The ionization potential (IP) of HD can be related to its
dissociation energy by

IP = Dy(HD) — E(H) — Do(HD ™). (52)

Since the dissociation energy of HD ™, as well as the total
energy of the hydrogen atom, is known very accurately, we can
evaluate IP with an accuracy adequate to that of Dy(HD).
Up-to-date values of E(H) = —109 678.7717 ecm~' and
Do(HD ™) = 21 516.069 60 cm ™! have been compiled by Liu
et al.® on the basis of current fundamental constants'” and
calculations by Korobov.***® IP computed for HD from the
above formula amounts to 124 568.4849(10) cm ™' with the
uncertainty transferred directly from D,.

IX. Conclusion

The high accuracy of 0.001 cm™' for the theoretically
predicted dissociation energy of H, and isotopomers has been
achieved due to the recent progress made in two directions.
The first one, enabled a complete treatment of the leading
QED effects. In particular, the approach to effectively
calculate the many electron Bethe logarithm and mean values
of singular operators, like the Araki—Sucher term, has been

developed."*'*> The second direction, indispensable for reaching
this accuracy, is the nonadiabatic perturbation theory,'%!!->
which enables a rigorous approach to the finite nuclear mass
effects beyond the adiabatic approximation. However, an
accurate nonadiabatic correction to relativistic contribution
still remains to be evaluated.

In comparison of theoretical predictions with recent
experimental results we observe a very good agreement for
dissociation energies of H, and D,, and a small discrepancy of
0.045(16) cm ™! for HD. Therefore, a new measurement with
an increased precision of dissociation and transition energies
of HD molecule would be very desirable.

Note added in proof

After submitting this paper we became aware of a new
measurements of HD dissociation energy [D. Sprecher,
J. Liu, C. Jungen, W. Ubachs, F. Merkt, 2010, to be published].
The new value of Dy = 36405.78366(36) cm ™! is in a very
good agreement with our theoretical prediction.
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