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Abstract: The article presents the results of a study comparing the reliability of the GFS and WRF numerical 
models using different spatial resolutions. The study was carried out on the basis of a series of model and 
observational data for a period of 13 months from January 2015 to January 2016 with computational grid 
coordinates corresponding to the location of Poznań. Forecast quality was compared for basic meteorological 
parameters – air temperature, atmospheric pressure and wind speed. The quality of forecasts for the meteorolo-
gical parameters included in the study decreased systematically in subsequent time steps in the case of both the 
WRF and the GFS models. It improved in the initial hours of simulation after a higher resolution was applied 
for the computational grid in the WRF model (1,75 km) as can be seen from the minimal Mean Error values 
and very high correlation. For forecast time t = 0–60 h, WRF generated better results than GFS, especially 
when it comes to the quality of forecasting the atmospheric pressure field. 
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INTRODUCTION

Weather forecasts are of key importance for many aspects of human activity. 
Although many of those are unquantifiable (e.g. problems related to selecting 
adequate clothes), they are crucial from the perspective of the economy, im-
pacting such sectors as energy, transport (land, maritime and air), agriculture, 
tourism, organisation of mass events and other undertakings which depend on 
weather conditions. Thus, even a small improvement in the quality of forecasts 
translates into more time for potential response as well as a  better ability to 
adapt to and counter the effects of adverse atmospheric phenomena, bringing 
about a reduction in the costs of covering potential losses. Individual benefits 
related to weather forecasts are estimated at $2–10/month per person (Frei et al. 
2014). The figures are many times higher in different sectors of the economy. In 
Switzerland, weather forecasts help reduce transport expenditure by 65.7–79.8 
million Swiss francs annually (Frei et al. 2014). In other sectors of the economy 
the figures are often much higher (Frei et al. 2010). Improvements in the quality 
of weather forecasts generate long-term savings. In the US energy sector, for 
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example, they are estimated at about $1 million annually for each 1% of im-
provement in the forecast of air temperature (Teisberg et al. 2005).

Consequently, it is extremely important to implement evaluation processes 
and operational reviews of existing forecast models in order to select the best 
solutions. The process of verification consists in comparing forecasts with ob-
servations. In other words, numerical simulation is matched to the actual at-
mospheric conditions in a  given period. Weather forecast verification should 
improve the quality of forecasts for end users through reviewing applied algo-
rithms. Regardless of its focus, end user should also be aware of the forecast’s 
limitations and the most probable range of possible results. 

Currently, weather is forecast with the use of different numerical models. 
A large number of them, however, are based on boundary conditions received 
from the Global Forecast System (GFS). The National Oceanic and Atmospheric 
Administration (NOAA) publishes a basic verification of the model in opera-
tional time. In the case of the Weather Research and Forecasting Model (WRF), 
the situation is more complex (Skamarock et al. 2005). Due to the great number 
of possible configurations of this mesoscale model and its versatile applications 
(Werner et al. 2015; Rzepa 2012; Kryza et al. 2017), publications discussing 
it are less synthetic and often focus on the reliability of the model for specific 
parameters and phenomena, for example related to atmospheric convection (e.g. 
Schwartz et al. 2009). As regards the territory of Poland, there wasn’t much at-
tention given to the verification and comparison of the two models, whilst some 
available studies (Rzepa 2012) are based on their obsolete versions. Hence, this 
article tries to bridge the gap by verifying the GFS and WRF numerical models 
on the basis of one measurement point and a longer measurement series. 

DATA AND RESEARCH AREA

The study is based on hourly weather values – air temperature, atmospheric 
pressure and wind speed – generated by two numerical models which were com-
pared in the period from January 2015 to January 2016. Data from the GFS 
model developed by the US meteorological service was downloaded in the ver-
sion in which it is posted on meteomodel.pl. Currently, the GFS model uses the 
resolution of 25 km. GFS has 64 unevenly distributed vertical layers. The analy-
sis focused on its simulations from 00 and 12 UTC with maximum forecast time 
horizon of 240 hours.

Data from the high-resolution WRF model based on GFS boundary con-
ditions were made available by the administrator of meteoprognoza.pl where 
forecasts of the model are published. The WRF model was activated in 4 con-
figurations corresponding to increasing density of subsequent computational 
domains. 
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The WRF 1,75 km model was activated once per 24 hours (starting at 18.30 
local time, GFS GRIBs from 12 UTC downloaded from 018 h, forecast from 06 
UTC of the following day). The 3 km model was activated twice per 24 hours. 
The WRF 3 km model was active twice per 24 hours (1: starting at 6:15 local 
time, GRIBs from 18 UTC downloaded from 012 h, forecast from 12 UTC of the 
following day; 2: starting at 12:15 local time, GRIBs from 06 UTC download-
ed from 018 h, forecast from 00 UTC of the following day). The WRF 12 km 
model was active twice per 24 hours (1: starting at 18:30 local time, GRIBs from 
12 UTC downloaded from 018 h, forecast from 06 UTC of the following day; 
2: starting at 6:30 local time, GRIBs from 06 UTC downloaded from 000 h, fore-
cast from 12 UTC of the current day). The WRF 50 km model was active once 
per 24 hours (starting 18:30 local time, GFS GRIBs from 12 UTC, downloaded 
from 021 h, forecast from 03 UTC of the following day). 

Observational data from the Poznań-Ławica weather station was obtained 
from the Institute of Meteorology and Water Management – National Research 
Institute. The results discussed in the article concern comparisons of forecasts 
generated by a given numerical model of a given resolution at computational 
grid points located nearest the Poznań-Ławica weather station (52°25’18”N, 
16°49’25”E). 

METHODS

Air temperature, atmospheric pressure and wind speed were verified on the ba-
sis of verification methods used for continuous meteorological parameters (Jolliffe 
et al. 2012). Among others, these include statistical measures assessing deviations 
of the model series from expected values. These are: mean error (ME) (1), mean 
absolute error (MAE) (2), root mean square error (RMSE) (3), mean squared error 
(MSE) (4), BIAS (b) (5) and the Pearson correlation coefficient (r) (6). 

Mean error (1) measures the mean difference between forecast and observa-
tional data (Nurni 2003). It determines the mean forecast error assuming values 
from minus to infinity, the perfect score being ME = 0. 

	 i – 1

N

ME = 1N Σ (Fi – Oi)
	

(1)

Mean Absolute Error (2) measures the average magnitude of forecast errors 
in a given dataset and therefore is a scalar measure of forecast accuracy (Nurni 
2003). Its perfect score is MAE = 0, potential values ranging from 0 to plus 
infinity. 

	 i = 1

N
MAE = 1N Σ | Fi – Oi |

	
(2)



36	 SEBASTIAN KENDZIERSKI

Root mean square error (3) is a quadratic scoring rule which gives the ave-
rage magnitude of errors, weighted according to the square of the error (Stanski 
et al. 1989).It measures the mean magnitude of forecast error. Its best value is 
RMSE = 0, whilst potential values range from 0 to infinity. 

	
√ i = 1

N1
NRMSE =        Σ (Fi – Oi)2

	
(3)

Mean squared error (4) is the squared difference between forecasts and ob-
servations. Due to the second power, the MSE and RMSE are much more sensi-
tive to large forecast errors than the MAE (Nurni 2003). The perfect score for 
MSE is MSE = 0 with potential values ranging from 0 to plus infinity. 

	 i = 1

N

 MSE = 1N Σ (Fi – Oi)2

	
(4)

Bias (5) measures the difference between the mean value obtained from 
measurements and simulation values. It demonstrates how the average forecast 
magnitude compares to the average observed magnitude. It does not measure 
the magnitude of the errors. It does not measure the correspondence between 
forecasts and observations, i.e., it is possible to get a  perfect score for a  bad 
forecast if there are compensating errors (http://www.cawcr.gov.au/projects/
verification/). The best score is b = 1, potential values ranging from minus to 
plus infinity. 

	

b = 
 1N∑N    Fii = 1

 1N∑N    Oii = 1 	

(5)

The last statistical indicator used in the study is the Pearson correlation co-
efficient (6). It measures how forecast values correspond to observations. Its 
perfect score is 1, potential values ranging from –1 to 1.

	
r =

∑ (F – F) (O – O)

√ ∑(F – F)2 √ ∑(O – O)2 	
(6)

where:
F	 –	forecast,
O	–	observation,
N	–	sample size verification.
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Verification results are presented as tables containing data for the entire time 
span of the forecast and all partial time steps. In order to facilitate the interpre-
tation of obtained errors, the distribution of errors in subsequent hours of the 
time step was also presented by means of box-plot charts. The charts show the 
distribution of the difference between forecasts and observations, median, per-
centiles and extremes in subsequent hours of the time step. Successive marks on 
box-plot charts show percentile values at levels 0.1, 0.25, 0.5, 0.75 and 0.9. Sta-
tistical computations were carried out with the use of the verification (NCAR – 
Research Applications Laboratory 2015) and hydroGOF (Zambrano-Bigiarini 
2014) packages for system R. The results section of the study has been divided 
into three parts presenting verification results for air temperature, atmospheric 
pressure and wind speed, in that order.

RESULTS

Air temperature

Air temperature is the most often verified parameter in weather forecasts. 
In the case of long-term forecasts, air temperature is verified to determine the 
tendency of potential changes over longer periods of time. In short-term foreca-
sts, we verify the exact value we may expect. Given the above premises and the 
incremental increase of forecast errors over time, long-term forecasts are fraught 
with errors in longer time horizons. Table 1 shows calculated values for studied 
statistics with a partial forecast horizon of the GFS model.

Table 1. Statistical results for air temperature according to GFS model for individual forecast 
time steps

t ME MAE RMSE MSE BIAS Correlation

0–48 h –0.1°C 1.4°C 1.8°C 3.2°C 0.95 0.98

49–96 h –0.1°C 1.7°C 2.2°C 4.9°C 0.95 0.97

97–144 h –0.2°C 2.2°C 2.9°C 8.2°C 0.94 0.94

145–192h –0.3°C 2.8°C 3.6°C 13.1°C 0.94 0.91

193–240 h –0.2°C 3.4°C 4.4°C 19.5°C 0.94 0.86

As mentioned above, the longer the time horizon of the forecast, the more 
pronounced its error. Over the studied period, the GFS model shows low ME 
(Mean Error) values at all hours of the time step, but MAE (Mean Absolute Er-
ror) values increase gradually with each step of the forecast. The lowest values 
of 1.1°C were obtained for data assimilation time (t = 0 h) whereas the highest 
values – 2.3°C – appeared at the end of the forecast (t = 240 h) (Fig. 1). Forecast 
errors increase visibly from hour 100 of the time step.
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In the case of the WRF model, the size of the computational grid impacts the 
level of obtained forecast errors. In spite of more accurate representation of sur-
face processes in smaller computational grids, the mean error was together with 
their resolution (ME is smallest for WRF-50 km). On the other hand, smaller 
computational grids translate into lower values of mean MAE, RMSE and MSE 
as well as better correlation between forecasts and observations (Tab. 2).

Table 2. Statistical results for air temperature according to the WRF model for forecast time step 
t = 0–60 h

Resolution ME MAE RMSE MSE BIAS Correlation

1.75 km –0.7°C 1.5°C 2.0°C 4.4°C 0.93 0.97

3 km –0.9°C 1.7°C 2.1°C 4.9°C 0.91 0.96

12 km –0.2°C 1.7°C 2.2°C 5.0°C 0.98 0.95

50 km –0.1°C 1.8°C 2.4°C 5.6°C 0.99 0.94

The distribution of errors depending on the time step of air temperature fo-
recast is different in the cases discussed. The lowest error values are recorded in 
1.75 km and 3 km grids in the initial hours of the forecast (Fig. 2). Mean Error 
and Mean Absolute Error values grow by leaps and bounds, without increasing 
linearly over longer periods. In extreme cases, maximum forecast errors reach 
almost 8°C. We may also observe a slight underestimation of temperature values 
in model simulation (i.e. the model is usually too “cold” compared to reality) 
especially in the case of WRF configuration for the 12 km grid. None of the ap-
plied computational grids showed error increase in subsequent time steps.

Fig. 1. Distribution of air temperature errors in individual forecast time steps for the GFS model



	V erifying reliability of selected meteorological elements in the GFS	 39

Fig. 2. Error forecast air temperature for WRF model in different resolutions in individual time 
steps
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Air pressure

Table 3 shows verification results of atmospheric pressure (MSL) forecasts 
in Poznań. The GFS model displays major discrepancies between errors obta-
ined for different forecast time horizons. In the initial hours of the time step, 
forecast error is relatively small, amounting to about 1.5 hPa for Mean Absolute 
Error. The values increase significantly after day four of the forecast, reaching 
maximum absolute error of 8 hPa for the time step of 240 h. In the case of atmo-
spheric pressure forecast, Mean Error values stay at around 1 hPa regardless of 
the time horizon (Fig. 3). We need to highlight low correlation values of 0.55 for 
longer forecast times exceeding t = 192 h (Tab. 3). 

Table 3. Statistical results for air pressure according to GFS model for individual forecast  
time steps

t ME MAE RMSE MSE BIAS Correlation

0–48 h 0.0 hPa 0.7 hPa 1.1 hPa   1.3 hPa 1.00 0.99

49–96 h 0.1 hPa 1.8 hPa 2.4 hPa   5.7 hPa 1.00 0.97

97–144 h 0.2 hPa 3.6 hPa 4.9 hPa 23.8 hPa 1.00 0.87

145–192 h 0.6 hPa 5.7 hPa 7.7 hPa 59.1 hPa 1.00 0.69

193–240 h 0.7 hPa 7.2 hPa 9.6 hPa 91.9 hPa 1.00 0.55

Similar verification values for atmospheric pressure were obtained for the 
WRF model which produces very small errors for forecast times of 0–60 h 

Fig. 3. Distribution of air pressure errors in individual forecast time steps for the GFS model
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(Tab. 4). By increasing the resolution of the computational grid to 1.75 km, it 
was possible to eliminate the Mean Error almost totally. The same applies to 
Pearson correlation coefficient values of observed and forecast series which are 
very close to the levels of a perfect forecast. Other WRF configurations also 
display minimum levels of forecast errors.

Table 4. Statistical results for air pressure according to the WRF model for forecast time step  
t = 0–60 h

Resolution ME MAE RMSE MSE BIAS Correlation

1.75 km 0 hPa 1 hPa 1 hPa 2 hPa 1.00 0.99

3 km 1 hPa 1 hPa 2 hPa 2 hPa 0.99 0.98

12 km 0 hPa 1 hPa 2 hPa 3 hPa 1.00 0.97

50 km –1 hPa 2 hPa 2 hPa 4 hPa 0.99 0.94

The distribution of the atmospheric pressure error expressed through other 
verification measures (see Tab. 4) in individual time steps is similar in different 
computational grids. It is smallest in the initial hours of the forecast. In the entire 
forecast, the longest period of low error levels can be observed in the WRF- 
-12 model. In all cases, Mean Error values are stable, oscillating around 0 hPa 
(Fig. 4). Only WRF-50 km produces a negative Mean Error in the last hours of 
the forecast.

Wind speed

As wind speed is a very changeable meteorological element, it poses many 
problems when it comes to the possibility of forecasting it. We need to conclude, 
however, that Mean Error values diagnosed through verification results for the 
GFS model are relatively small, even if the correlation between forecasts and 
observations is quite poor (Tab. 5). On the other hand, diagnosed extreme values 

Table 5. Statistical results for wind speed according to GFS model for individual forecast  
time steps

t ME MAE RMSE MSE BIAS Correlation

0–48 h 0.6 m/s 1.2 m/s 1.5 m/s 2.1 m/s 1.15 0.82

49–96 h 0.7 m/s 1.4 m/s 1.8 m/s 3.3 m/s 1.17 0.69

97–144 h 0.7 m/s 1.8 m/s 2.3 m/s 5.1 m/s 1.18 0.50

145–192 h 0.8 m/s 2.0 m/s 2.6 m/s 6.7 m/s 1.20 0.34

193–240 h 0.8 m/s 2.2 m/s 2.8 m/s 8.0 m/s 1.22 0.19
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Fig. 4. Error forecast air pressure for WRF model in different resolutions in individual time steps
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of wind speed forecast errors remain high in the entire period, which is demon-
strated, among others, in high Mean Absolute Error values increasing gradually 
from 1.5 m/s to 2.3 m/s (Fig. 5). Mean Error values remain constant and their 
distribution shows that model values were overestimated compared to observa-
tions in the Poznań-Ławica weather station.

The distribution of test statistics for the WRF model shows great diversity 
in different resolutions of computational grids. Differences in results are most 
pronounced in the case of configurations with the smallest computational grids 
of the domains amounting to 1.75 km and 50 km (Tab. 6). In all cases, there is 
poor correlation between wind speed observations and forecasts. 

Table 6. Statistical results for wind speed according to the WRF model for forecast time step  
t = 0–60 h

Resolution ME MAE RMSE MSE BIAS Correlation

1.75 km 0.4 m/s 1.2 m/s 1.5 m/s 2.5 m/s 1.23 0.74

3 km 0.7 m/s 1.3 m/s 1.7 m/s 3 m/s 1.20 0.77

12 km 1.1 m/s 1.7 m/s 2.2 m/s 4.9 m/s 1.34 0.67

50 km 1.3 m/s 1.8 m/s 2.3 m/s 5 m/s 1.4 0.64

Figure 6 shows error tendency in WRF wind speed forecasts for different 
computational grids. In the case of the 1.75 km model, smallest errors are ob-
served in the initial hours of the forecast. When configured for a high spatial 

Fig. 5. Distribution of wind speed errors in individual forecast time steps for the GFS model
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Fig. 6. Error forecast wind speed for WRF model in different resolutions in individual time steps
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resolution grid, the WRF model produces better wind speed forecasts in the 
initial hours. WRF configurations for 12 km and 50 km resolution grids display 
similar error trends. ME values in all cases above 0 show overestimations of 
wind speed forecasts.

CONCLUSION

The article compares reliability of the GFS and WRF models in different 
configurations on the basis of selected meteorological elements for geographical 
coordinates corresponding to the location of Poznań. The idea of downscaling 
applied to different configurations of the WRF model does not necessarily im-
prove weather forecast. This is confirmed by examples of air temperature veri-
fication. On the other hand, the quality of simulated atmospheric elements gets 
significantly better in line with increasing resolution of the model in the case of 
atmospheric pressure.

In the case of the WRF model, we may observe smaller errors in tested pa-
rameters for smaller sizes of computational grids (smallest WRF configuration 
errors appeared on the 1.75 km grid). It is particularly this grid which generates 
smallest mean errors of tested parameters and a high correlation with observatio-
nal data. Compared to GFS, the advantage of using dynamic downscaling with 
the use of the WRF model, especially in smaller computational grids, is that it 
generates more accurate short-term forecasts. By taking more account of the 
local environment of the tested area and incorporating more assimilated data in 
the WRF model, it is possible to eliminate forecast errors to a large extent, which 
is particularly visible in the case of highly changeable meteorological elements 
such as the wind field. 

There is a sharp drop in the quality of long-term forecasts after day four of 
the forecast. In the case of forecasts with a shorter time horizon (0–48 h), the best 
results were obtained in WRF 1.75 km for air temperature, WRF 1.75 km for 
atmospheric pressure and WRF 1.75 km for mean wind speed. Similar regulari-
ties can be observed in the following 24 hours of the forecast (48–96 h), a period 
which is often mentioned in the media for the benefit of end users.

Forecasts generated by the long-term GFS model get worse beyond day four 
in the forecast period. This is demonstrated by MAE values which become si-
gnificantly higher for the studied parameters. The largest variety of values in 
the tested periods was recorded for atmospheric pressure forecasts. Forecasting 
wind speed in this model produces big extreme errors for the entire period of the 
forecast. In this case, the ME and MAE indicators are not much different in the 
studied periods. 

The computation was partly performed with the use of resources provided by the Poznań Su-
percomputing and Networking Center (PCSS), grant No. 315.
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