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A B S T R A C T

This thesis presents a construction of a variant of the Khovanov ho-
mology for periodic links, i.e, links with certain kind of symmetry.
This version takes into account symmetries of links. We use elements
of homological algebra, like derived functors and spectral sequences,
and integral representation theory of finite cyclic groups to construct
and describe properties of the equivariant Khovanov homology. Fur-
ther, we develop a spectral sequence for computing the equivariant
Khovanov homology. We use this spectral sequence to compute the
rational equivariant Khovanov homology of torus links T(n, 2).

Apart from that, we also study properties of the equivariant ana-
logues of the Jones polynomial. We show that they satisfy certain ver-
sion of the skein relation and use it to generalize a result of J.H. Przy-
tycki, which is a criterion for periodicity of a link in terms of its Jones
polynomial. Additionally, we develop a state sum formula for the
equivariant analogues of the Jones polynomial, which enables us to
reprove the classical congruence of K. Murasugi.

S T R E S Z C Z E N I E

Rozprawa ta prezentuje konstrukcję wariantu homologii Khovanova
dla tzw. splotów periodycznych, czyli splotów posiadających pewną
symetrię. Ta wersja homologii Khovanova uwzględnia symetrie splo-
tów. Przy pomocy metod algebry homologicznej, takich jak funktory
pochodne i ciągi spektralne, oraz teorii całkowitoliczbowych reprezen-
tacji grup cyklicznych podajemy konstrukcję i opisujemy podstawowe
własności ekwiwariantnych homologii Khovanova. Dodatkowo, kon-
struujemy ciąg spektralny, który pozwala wyliczać ekwiwariantne ho-
mologie Khovanova. Ciąg ten jest adaptacją motkowego ciągu dokład-
nego. W dalszej części wyliczany wymierne ekwiwariantne homolo-
gie Khovanova splotów torusowych T(n, 2).

Oprócz tego, rozważamy ekwiwariantne odpowiedniki wielomia-
nu Jonesa. Pokazujemy, że spełniają one odpowiednik relacji mot-
kowej dla klasycznego wielomianu Jonesa i używamy tej własności
do wzmocnienia kryterium periodyczności splotu podanego przez
J.H. Przytyckiego. Dodatkowo, wyprowadzamy sumę statystyczną
dla ekwiwariantnych odpowiedników wielomianu Jonesa. Konsek-
wencją tego faktu jest klasyczna kongruencja podana przez K. Mura-
sugiego.
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Algebra is the offer made by the devil
to the mathematician. The devil says:

“I will give you this powerful machine,
it will answer any question you like.

All you need to do is give me your soul:
give up geometry and you will have

this marvelous machine.”
Sir Michael Atiyah [1]
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1
I N T R O D U C T I O N

One of the main themes in topology is the study of symmetries of cer-
tain objects like topological spaces or manifolds. In knot theory one
is particularly interested in symmetries of knots, that is symmetries
of the 3-sphere that preserve the given knot. One such particular ex-
ample is provided by involutions. Such an involution can preserve or
reverse the orientation of the knot and the ambient space, hence we
can distinguish four kinds of involutive symmetries of knots: strong
invertibility, strong +-amphicheirality, strong −-amphicheirality and
involutions that preserve the orientation of the 3-sphere and the knot.
Appart from that, there are many more possible symmetries, which
can be, for example, derived from the symmetries of S3.

In this thesis we study knots which possess certain kind of symme-
try of finite order, which is derived from the semi-free action of the
cyclic group on the 3-sphere i.e. we are interested in the diffeomor-
phisms f : (S3,K) → (S3,K) of finite order, where K is a knot. Due to
the resolution of the Smith Conjecture in [14], the existence of such
symmetry can be rephrased in the following way. Let ρn be the rota-
tion of R3 by the 2π

n angle about the OZ axis. We are interested in
knots K ⊂ R3, which are disjoint from the OZ axis and invariant un-
der ρn. A knot K is n-periodic if it admits such rotational symmetry.
n-periodic links are defined analogously.

The importance of periodic links stems from the fact, that according
to [21], a 3-manifold M admits an action of the cyclic group of prime
order p with the fixed point set being an unknot if, and only if, it can
be obtained as a surgery on a p-periodic link. Additionally, M admits
a free action of the cyclic group Z/p if, and only if, it can be obtained
as a surgery on a link of the form a p-periodic link L together with
the fixed point axis F. Hence, cyclic symmetries of 3-manifolds are
determined by the symmetries of their Kirby diagrams.

Another possible application of periodic links is, according to J.H.
Przytycki [17], to give a unified theory of skein modules for branched
and unbranched coverings. Skein module of a 3-manifold M is a cer-
tain algebraic objects associated to M, which serves as a generaliza-
tion of a certain polynomial link invariant, like the Jones polynomial,
for links in M. For more details on skein modules refer to [19].

There are many techniques at hand to study periodic knots. The
first significant results were obtained by Trotter in [31], where the au-
thor studies actions of the cyclic group on the fundamental group of
the complement of the knot, to derive all possible periods of torus
links. Murasugi studied periodic links with the aid of the Alexander
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2 introduction

polynomial in [15], obtaining very strong criterion for detecting pe-
riodicity. In [7] authors give partial answers to the converse of the
Murasugi’s theorem i.e. they consider the question whether a Lau-
rent polynomial, which satisfies the congruence of Murasugi, is the
Alexander polynomial of a periodic link.

Several authors studied Jones polynomial of periodic links. The
first result in this direction was obtained by Murasugi in [16]. Be-
sides that, [17, 28, 36] give other criteria for detecting periodicity
of knots in terms of their Jones polynomial. Several other authors
[20, 4, 17, 30, 29, 37] studied SUn-quantum polynomials and the
HOMFLYPT polynomial of periodic links. A summary of these re-
sults can be found in [18].

Khovanov in [10] made a breakthrough in knot theory, by construct-
ing certain homology theory of links, called the Khovanov homology,
which categorifies the Jones polynomial, i.e., the Jones polynomial
can be recovered from the Khovanov homology as an appropriately
defined Euler characteristic. Hence, it is natural to ask whether this
homology theory can be utilized to study periodic links. The first
such trial was made in [5]. However, the author works only with Z/2

coefficients due to certain technical problem with signs, which ap-
peares along the way. Nevertheless, the author obtains an invariant
of a periodic link and shows, via transfer argument, that his invariant
is isomorphic to the submodule of fixed points of the action on the
Khovanov homology.

The purpose of this thesis is to study the equivariant Khovanov ho-
mology of periodic links, which considerably generalizes the one con-
structed in [5]. We give a construction of the equivariant Khovanov
homology with integral coeffcients and study its properties such as its
relation to the classical Khovanov homology and additional torsion.
Next we construct a spectral sequence converging to the equivariant
Khovanov homology and use it to compute the 2-equivariant Kho-
vanov homology of torus links. Further we define equivariant ana-
logues of the Jones polynomial and study properties of these polyno-
mials. We prove that they satisfy certain variant of the skein relation
and use to to derive certain periodicity criterion, which generalizes
the ones given in [17, 28]. We conclude this thesis with a derivation of
the state sum formula for the equivariant Jones polynomials, which
is applied to recover the congruence from [16].

More specifically, we proceed as follows. In chapter 3 we show that
if D is an n-periodic diagram of an n-periodic link L, the Khovanov
complex CKh(D) becomes a cochain complex of graded Z [Z/n]-mo-
dules. This enables us to study the Khovanov homology of periodic
links with arbitrary coefficients. Next, with the aid of integral repre-
sentation theory of cyclic groups, we construct the equivariant Kho-
vanov homology – denoted by Kh∗,∗,∗

Z/n
(D) – a triply graded homology

theory, where the third grading is supported only for d | n. Further
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we show that this is indeed an invariant of periodic links, utilizing
machinery from [2].

Theorem 3.2.3. Equivariant Khovanov homology groups are invari-
ants of periodic links, that is, they are invariant under equivariant
Reidemeister moves.
Next, we show the relation of the equivariant Khovanov homology to
the classical Khovanov homology.

Theorem 3.2.4. Let p1, . . . ,ps be the collection of all prime divisors
of n. Define the ring Rn = Z

[
1
p1

, 1p2 , . . . , 1ps

]
. There exists a natural

map ⊕
d|r

Kh∗,∗,d
Z/n

(L)→ Kh(L)

which, when tensored with Rn, becomes an isomorphism.
Hence, the equivariant Khovanov homology, after collapsing the

third grading, encodes the same information as the classical Kho-
vanov homology, modulo torsion of order dividing n.

Further, we analyze the structure of the invariant for trivial links.
We have to distinguish two cases. The first case considers the peri-
odic trivial link, whose components are preserved under the action
of the cyclic group and the second case considers the periodic trivial
link, which posseses components, which are freely permuted by the
action of Z/n. In both cases the homology is expressible in terms of
the group cohomology of the cyclic group with coefficients in the cy-
clotomic rings Z [ξd], for d | n. The result is stated only for the first
case provided that the symmetry is of order pn, for a prime p.

Proposition 3.2.5. Let Tf be an f-component trivial link. The equiv-
ariant Khovanov homology of Tf is expressible in terms of the group
cohomology of the cyclic group Z/pn in the following way.

Kh∗,∗,p
s

Z/pn
(Tf) =

f⊕
i=0

H∗ (Z/pn, Z [ξps ])
(fi) {2i− f}.

Proposition 3.2.11 gives the corresponding result for the second case.
Our next goal is to use additional algebraic structure of the equiv-

ariant Khovanov homology to extract some information about the
additional torsion. This additional algebraic structure manifest itself
in the fact that for any 0 6 s 6 n, Kh∗,∗,p

s

Z/pn
(D) is a graded module

over the graded ring Ext∗Z[Z/pn] (Z [ξps ] , Z [ξps ]). This ring is isomor-
phic to certain quotient of the polynomial ring Z [Ts]. Analysis of this
structure yields the periodicity result, which can be thought of as an
analogue of the periodicity of the cohomology groups of the cyclic
groups. Below, n+(D) denotes the number of positive crossings of
the link diagram D.

Corollary 3.2.13. Let Ts denote the cohomology class in the ext ring

Ts ∈ Ext2Z[Z/pn] (Z [ξps ] , Z [ξps ])
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from proposition 2.2.24. Multiplication by Ts

−∪ Ts : Khi,∗,p
s

Z/pn
(D)→ Khi+2,∗,ps

Z/pn
(D)

is an epimorphism for i = n+(D) and isomorphism for i > n+(D).
As a consequence we can obtain some information about the addi-

tional torsion appearing in the equivariant Khovanov homology.

Corollary 3.2.16. For i > n+(D), Khi,∗,1
Z/pn

(D) is annihilated by pn, and

for 1 6 s 6 n, Khi,∗,p
s

Z/pn
(D) is annihilated by pn−s+1.

Chapter 3 is concluded with some remarks on the structure of the
rational equivariant Khovanov homology. These considerations are
sufficient to compute the rational equivariant Khovanov homology of
torus links T(n, 2) and, if gcd(n, 3) = 1, for torus knots T(n, 3), with
respect to the Z/d-symmetry, provided that d | n is odd and greater
than 2. In all of these cases we have

Kh∗,∗,1
Z/d

(D; Q) = Kh∗,∗(D; Q),

Kh∗,∗,k
Z/d

(D; Q) = 0, k > 1, k | d.

Theorem 4.1.11, which is the main result of Chapter 4, yields a spec-
tral sequence converging to the equivariant Khovanov homology of
a periodic link. Since the long exact sequence of Khovanov homol-
ogy, coming from two resolutions of a single crossing of D, cannot be
adapted to the equivariant setting, the spectral sequence is supposed
to fill in this gap and provide a computational tool. Instead of resolv-
ing a single crossing, we resolve crossings from a single orbit. We take
all possible resolutions of these crossings and assemble this data into
a spectral sequence. This spectral sequence is later used to compute
the rational 2-equivariant Khovanov homology of torus links, i.e. the
equivariant Khovanov homology with respect to the Z/2-symmetry.
It turns out, that something analogous happen as in the case of sym-
metries of order d > 2. Namely, almost always the only non-trivial
part is Kh∗,∗,1

Z/2
, with an exception of torus links T(2n, 2) for which

Khi,j,2
Z/2

(T(2n, 2); Q) =

{
Q, i = 2n, j = 6n,

0, otherwise.

In Chapter 5 we take one step back and analyze analogues of the
Jones polynomial, which can be derived from the equivariant Kho-
vanov homology. To be more precise, we define the equivariant Jones
polynomial in the following way. Choose an n-periodic diagram D

and d | n.

Jn,d(D) =
∑
i,j

(−1)iqj dimQ[ξd] Khi,j,d
Z/n

(D) ∈ Z
[
q,q−1

]
.

However, it turns out that it is better to consider the difference Jones
polynomials defined as follows. Let p be an odd prime and let D be
a pn-periodic diagram.
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Definition 5.1.2. Suppose thatD is a pn-periodic link diagram. Define
the difference Jones polynomials

DJn,s(D) = Jpn,ps(D) − Jpn,ps+1(D)

for 0 6 s 6 n.
The first indication, that the difference polynomials have better

properties is the following corollary.

Corollary 5.1.3. The following equality holds.

J(D) =

n−1∑
s=0

psDJn,s(D) + pn Jpn,pn(D).

Besides that, it turns out, that the difference polynomials and the
classical Jones polynomial have similar properties. For example, the
Jones polynomials satisfies the following skein relation.

q−2 J
( )

− q2 J
( )

= (q−1 − q) J
( )

.

The main theorem of Chapter 5 shows that a similar result holds for
the difference Jones polynomials.

Theorem 5.1.5. If p is an odd prime, then the difference Jones polyno-
mials have the following properties

1. DJ0 satisfies the following version of the skein relation

q−2p
n

DJn,0

(
. . .

)
− q2p

n

DJn,0

(
. . .

)
=

=
(
q−p

n

− qp
n
)

DJn,0

(
. . .

)
,

where . . . , . . . and . . . denote the orbit
of positive, negative and orientation preserving resolutions of
crossing, respectively.

2. For any 0 6 s < n, DJs satisfies the following congruences

q−2p
n

DJn,n−s

(
. . .

)
− q2p

n

DJn,n−s

(
. . .

)
≡

≡
(
q−p

n

− qp
n
)

DJn,s

(
. . .

)
(mod qp

s

− q−p
s

).

The above theorem has several interesting corollaries. The congru-
ences from [17, 28] follows from this theorem immediately. Further-
more, we can use some other properties of the difference polynomials
to strengthen this result.

Theorem 5.1.8. Suppose that L is pn-periodic link and for all i, j we
have dimQ Khi,j(L; Q) < ϕ(ps), then the following congruence holds

J(L)(q) ≡ J(L)(q−1) (mod Ipn,s),
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where Ipn,s is an ideal generated by the following monomials

qp
n

− q−p
n

,p
(
qp

n−1
− q−p

n−1
)

, . . . ,ps−1
(
qp

n−s+1
− q−p

n−s+1
)

.

Example 5.1.9 shows that the above theorem is indeed stronger
than the one from [17, 28].

We conclude Chapter 5 with considerations regarding state sums
for the difference polynomials. We prove the following analogue of
[9, Prop. 2.2].

Theorem 5.2.1. Let D be a pn-periodic diagram of a link. Then for
any 0 6 m 6 n we have the following equality

DJn,n−m(D) = (−1)n−qn+−2n−
∑

m6v6n

∑
s∈S(D)

Iso(s)=Z/pv

(−q)r(s) DJpv,pv−s(s).

For a Kauffman state s we write r(s) = r if s ∈ Sr(D), compare
Definition 3.1.6.

We show that the Murasugi criterion from [16] follows from the
above state sum expansion.

For the sake of the reader we devote Chapter 2 to survey all the
necessary material crucial in the remainder part of this material. This
exposition is very concise, hence, we refer the interested reader to
the more detailed exposition to [6], for material from representation
theory, to [13, 26, 27, 35] for homological algebra and to [2, 10, 32] for
the Khovanov homology.



2
P R E L I M I N A R I E S

2.1 representation theory

Before we start, we will briefly recall some notions from representa-
tion theory that are essential in the remainder part of this thesis. The
exposition of the material in this section is based on [6].

2.1.1 Rational representation theory

Let M be a finite-dimensional Q [Z/n]-module, for some n > 1.

Definition 2.1.1. Define the character of M to be the function

χM : Z/n→ Q

χM(g) = tr ρ(g),

where
ρ : Z/n→ Aut (M)

is the representation which determines the module structure of M.

Proposition 2.1.2. Let M1, M2 be two Q [Z/n]-modules and let χM1

and χM2
be their characters.

1. If M1
∼=M2 as Q [Z/n]-modules, then χM1

= χM2
.

2. χM1⊕M2
= χM1

+ χM2
.

3. χM1⊗QM2
= χM1

· χM2
.

Example 2.1.3. Consider the group algebra Q [Z/n]. It is isomorphic
to the following quotient of the polynomial algebra

Q [Z/n] ∼= Q[t]/ (tn − 1) .

However, the polynomial tn − 1 can be further decomposed over Q

tn − 1 =
∏
d|n

Φd(t),

where
Φd(t) =

∏
16k6d

gcd(k,d)=1

(t− ξkd),

7



8 preliminaries

and ξd is the primitive root of unity of order d

ξd = exp
(
2πi

d

)
.

The above implies that Q [Z/n] admits the following decomposition

Q [Z/n] =
⊕
d|n

Q [ξd] ,

where
Q [ξd] = Q[t]/ (Φd(t))

is the d-th cyclotomic field. Denote by χd,n the character of the Q [Z/n]-
module Q [ξd].

The above decomposition exemplifies the so called Wedderburn
decomposition of semi-simple artinian algebras.

Theorem 2.1.4. The group algebra Q [Z/n] is a semi-simple artinian
algebra, hence every finitely-generated Q [Z/n]-module decomposes
into a direct sum of irreducible modules. Every irreducible Q [Z/n]-
module is isomorphic to Q [ξd] for some d | n.

Proposition 2.1.5 (Schur’s Lemma). If M and N are two finite-dimen-
sional and irreducible Q [Z/n]-modules which are not isomorphic,
then

HomQ[Z/n] (M,N) = 0.

Example 2.1.6. Consider the cyclic group Z/pn, where p is a prime.
Let 0 6 s < n, 0 6 j 6 pn−s − 1 and 0 6 m 6 ps − 1. The characters
of Z/pn are given by the following formulas.

χ1,pn(t
j) = 1,

χpn−s,pn(t
j+m·pn−s) =


φ(pn−s), j = 0,

−pn−s−1, j | pn−s−1,

0, otherwise,

where 0 6 j 6 pn−s − 1.

Definition 2.1.7. Let e1, . . . , ek be a set of central idempotents in a
semi-simple Q-algebra A. We say that e1, . . . , ek are orthogonal idem-
potents in A if the following conditions are satisfied

1. e1 + . . .+ ek = 1,

2. ei · ej = 0, for any 1 6 i < j 6 k.

Furthermore we say that an idempotent e is primitive if it cannot be
written as a sum e = e ′ + e ′′, where e ′ and e ′′ are idempotents such
that e ′ · e ′′ = 0.
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If {e1, . . . , ek} is a set of central orthogonal and primitive idempo-
tents in a semi-simple Q-algebra A, then simple ideals in the Wed-
derburn decomposition of A are principal ideals generated by the
idempotents ei. In particular decomposition of Q [G] from Example
2.1.3 can be obtained from the set {ed : d | n}, where ed acts on Q [ξd]

by identity and anihilates other irreducible modules.

Q [Z/n] =
⊕
d|n

Q [Z/n] · ed. (1)

Example 2.1.8. The set of central orthogonal and primitive idempo-
tents for Q [Z/pn] can be obtained from its characters.

e1 =
1

pn

pn−1∑
j=0

tj

epn−s =
p− 1

ps+1

ps−1∑
m=0

tm·p
n−s

−
1

ps+1

p−1∑
j=1

ps−1∑
m=0

(
tp
n−s−1

)j+m·p

for 0 6 s < n.

Let now H ⊂ G be finite groups.

Definition 2.1.9. Let M be a Q [H]-module. One can construct a Q [G]-
module, called the induced module, using M in the following way

IndGHM =M⊗Q[H] Q [G] ,

where we treat Q [G] as a Q [H]-module via the map

Q [H]→ Q [G]

induced by the embedding of H ↪→ G.

Remark 2.1.10. Induction can be analogously defined for other group
rings R [G], for R a commutative ring with unit.

If {g1, . . . ,gk} yield a system of representatives of the cosets of G/H,
then

Q [G] =

k⊕
i=1

Q [H]gi

which implies that

IndGHM =

k⊕
i=1

M⊗Q[G ′] Q [H]gi =

k⊕
i=1

Mgi.

The action of G on IndGHM is defined as follows. For each g ∈ G there
are unique 1 6 j 6 k and h ∈ H such that

gi · g = h · gj.
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Therefore
(Mgi) · g =Mgj

and the corresponding map of M corresponds to the action of h.
The next proposition, despite being stated only for the rational

group algebra, remains true for general group ring.

Proposition 2.1.11. Let M be a left Q [G]-module whose restriction to
a subgroup H contains a Q [H]-module L and admits a decomposition
into a direct sum of vector spaces

M =

k⊕
i=1

Lgi,

then M is isomorphic to IndGH L.

Definition 2.1.12. Let M be a Q [G]-module. M can be also treated as
a Q [H]-module. This operation is called restriction and we denote it
by

ResGHM.

Example 2.1.13. It is not hard to derive, from Example 2.1.6, the fol-
lowing formulas for the restriction of characters χpn−s,pn .

ResZ/pn

Z/pm
ξpn−s,pn =

{
ϕ(pn−s)ξ1,pm , m 6 s,

pn−mχpm−s,pm , m > s.

2.1.2 Integral representation theory

Definition 2.1.14. Let A be a semi-simple and finite dimensional Z-
algebra. We say that Λ ⊂ A is a Z-order if it is a subring of A which
containts the unit and some Q-basis of A.

In this thesis one of the most common example of a Z-order is the
group ring Z [G] contained in Q [G].

Definition 2.1.15. Let Λ be a Z-order in a semi-simple algebra A. We
say that Λ is maximal if it is not contained in any other Z-order in A.

Theorem 2.1.16. Let A be a finite dimensional semi-simple Q-algebra.

1. Every Z-order Λ ⊂ A is contained in a some maximal order Λ ′.

2. If A is commutative, then it possesses a unique maximal order.

3. If we are given a Wedderburn decomposition of A

A = A1 ⊕ . . .⊕Ak,

then every maximal order Λ ′ ⊂ A admits a decmposition into a
direct sum of ideals

Λ ′ = Λ ′1 ⊕ . . .⊕Λ ′k,

where each Λ ′i ⊂ Ai is a maximal order in Ai for i = 1, . . . ,k.
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Example 2.1.17. The group algebra Q [Z/n] admits the following Wed-
derburn decomposition

Q [Z/n] =
⊕
d|n

Q [ξd] .

Maximal order in Q [ξd] is equal to the ring of cyclotomic integers
Z [ξd]. Therefore, the unique maximal order Λ ′ ⊂ Q [Z/n] is equal to
the following direct sum

Λ ′ =
⊕
d|n

Z [ξd] .

It is also worth to mention that Λ ′ is the subring of Q [Z/n] generated
by the idempotents ed for d | n and

Z [ξd] = Λ
′ed.

Proposition 2.1.18. Let Λ ′ be a maximal order in Q [Z/n]. Under this
assumption, the following chain of inclusions is satisfied.

Z [Z/n] ⊂ Λ ′ ⊂ 1

n
Z [Z/n] .

Therefore, there exists an exact sequence

0→ Z [Z/n]→ Λ ′ →M→ 0,

where n ·M = 0.

For the sake of the next chapter we state the following proposi-
tion giving explicit formulas for the restrictions of certain Z [Z/n]-
modules.

Proposition 2.1.19. Let p be a prime and n a positive integer. Choose
0 6 s,m 6 n, then

ResZ[Z/pn]
Z[Z/pm] Z

[
ξpn−s

]
=

{
Zϕ(pn−s), m 6 s,

Z
[
ξpm−s

]pn−m , m > s.

Proof. This follows from Example 2.1.13, because ResZ/pn

Z/pm
Z
[
ξpn−s

]
is the maximal order in ResZ/pn

Z/pm
Q
[
ξpn−s

]
.

2.2 homological algebra

Apart from tools from representation theory, some elements of ho-
mological algebra will be of great importance in the constructions
performed later. The purpose of this section is to present all the nec-
essary material from homological algebra. The exposition is based on
[3], [13], [26] and [27].

For the sake of this section, assume that R is a commutative ring
with unit. Furthermore, all cochain complexes in question are cochain
complexes of finitely generated R-modules.
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2.2.1 Spectral sequences

Spectral sequence is a very important computational tool in contem-
porary mathematics. Its manifestations are abundant in topology, ge-
ometry and algebra. Since one of the next chapters of this thesis is
concerned with a construction of certain spectral sequence converg-
ing to the equivariant Khovanov homology, we briefly recall all the
necessary background material.

Definition 2.2.1. Let M∗ be a graded R-module. Define the shifted
module M{n}, for an integer n, to be

M{n}k =Mk−n.

Definition 2.2.2. Let H∗ be a graded R-module. A decreasing filtration
F on H∗ is a decreasing family of submodules

. . . ⊂ Fi+1 ⊂ Fi ⊂ Fi−1 ⊂ . . . .

Filtration F is called bounded if there are i0, i1 such that Fi = 0 for
i > i1 and Fi = H for i < i0. The pair (H∗,F) is called filtered graded
module.

All filtrations considered in this thesis will be bounded. So from now
on, we assume that whenever we have a filtration on a graded mod-
ule, then it is finite without further notice.

Definition 2.2.3. Let (H∗,F) be a filtered graded R-module. The asso-
ciated bigraded module E∗,∗0 (H∗) is defined as follows.

E
p,q
0 (H∗) =

(
Fp ∩Hp+q

)
/
(
Fp+1 ∩Hp+q

)
.

Let C∗ be a filtered cochain complex. Suppose that the differential
of C∗, denoted by d, preserves the filtration. In that case d induces a
map

d0 : E
p,q
0 (C∗)→ E

p,q+1
0 (C∗)

on the associated bigraded module. This map squares to 0. There-
fore, each column Ep,∗

0 becomes a cochain complex. Define another
bigraded module E∗,∗1 = H(E∗,∗0 ,d0). The short exact sequence

0→ Fp+1/Fp+2 → Fp/Fp+2 → Fp/Fp+1 → 0,

yields a map,

d1 : E
p,q
1 = Hp+q(Fp/Fp+1)→ Hp+q+1(Fp+1/Fp+2) = E

p+1,q
1 .

This map also squares to 0. Hence, one can define E∗,∗2 = H(E∗,∗1 ,d1).
Proceeding further in an analogous manner we obtain a spectral se-
quence.
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Definition 2.2.4. A cohomological spectral sequence is a sequence of bi-
graded modules and homomorphisms {E∗,∗r ,dr}, for r > 0, such that
the following conditions hold.

1. dr is a differential of bidegree (r, 1− r),

2. E∗,∗r+1 = H(E
∗,∗
r ,dr).

In principal, a spectral sequence can have non-trivial differentials on
infinitely many pages. However, all spectral sequences considered in
this thesis stop at a finite stage.

Definition 2.2.5. Let {E∗,∗r ,dr} be a cohomological spectral sequence.
We say that this spectral sequence collapses at N-th stage if dr = 0 for
r > N. If this is the case we define Ep,q∞ = Ep,q

N = Ep,q
N+1 = E

p,q
N+2 = . . ..

In general, spectral sequence is used to obtain some information
about the homology of some cochain complex. Unfortunately, often
the result of the computation does not determine uniquely the de-
sired homology groups. Instead, it is defined up to extension of mod-
ules. This is not an issue when we work with vector spaces over a
field, yet it might cause a lot of troubles when we work over other
rings.

Definition 2.2.6. Let (H∗,F) be a filtered graded module and let
{E∗,∗r ,dr} be a cohomological spectral sequence which collapses at N-
th stage. Then one says that the spectral sequence converges to H∗ if

Ep,q∞ = Ep,q
0 (H).

Many spectral sequences arise from a filtered cochain complex. The
starting point is the define compatible filtration on the homology of
the cochain complex.

Proposition 2.2.7. Let C∗ be a cochain complex with a bounded and
decreasing filtration F. Suppose that the differential of C∗ preserves
the filtration i.e.

d(Fi) ⊂ Fi.

Under this assumption, there is an induced decreasing filtration on
the homology module H∗(C) defined in the following way. An ele-
ment x ∈ H∗(C) belongs to Fi(H

∗(C)) if it can be represented by a
cycle z ∈ Fi.

Theorem 2.2.8. Let C∗ be a cochain complex with bounded and de-
creasing filtration F. Then, there exists a cohomological spectral se-
quence {E∗,∗r ,dr} which converges toH∗(C) with the induced filtration
described in the previous definition. Furthermore,

E
p,q
1 = Hp+q(Fp/Fp+1).
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2.2.2 Ext groups

In classical homological algebra, when we work with modules which
are neither projective nor injective, we usually have to deal with lack
of exactness of certain functors. To be more precise, functors like ten-
sor product or Hom cease to be exact in such cases. This is remedied
by substituting a module by its projective or injective resolution. The
same strategy can be employed when we work with cochain com-
plexes, thus obtaining the derived versions of the respective functors.
The purpose of this section is to sketch the theory of the derived Hom
functor.

To fix the notation, assume that C∗,D∗ and E∗ are bounded cochain
complexes.

Definition 2.2.9. Let C∗ be a cochain complex. For n ∈ Z denote
by C[n]∗ a new cochain complex obtained from C∗ by applying the
following shift

C[n]k = Ck−n,

dkC[n] = (−1)ndk−nC .

Definition 2.2.10. Let f : C∗ → D∗ be a chain map. We say that f is a
quasi-isomorphism if f∗ : H∗(C)→ H∗(D) is an isomorphism.

The category of cochain complexes can be equipped with the struc-
ture of the differential graded category i.e. morphism sets can be
made into cochain complexes themselves.

Definition 2.2.11. For two cochain complexes, C∗ and D∗, define the
Hom complex Hom∗R (C

∗,D∗) to be

HomnR (C∗,D∗) =
∏
p∈Z

homR(Cp,Dp+n), n ∈ Z

and equip it with the following differential.

dC
∗,D∗(ψp)p =

(
dD ◦ψp − (−1)pψp+1 ◦ dC

)
p

Remark 2.2.12. Notice that since C∗ and D∗ are bounded, the Hom
complex Hom∗R (C

∗,D∗) is also bounded.

The next proposition is a mere reformulation of the definition of the
chain homotopy.

Proposition 2.2.13. The following equalities hold

Hn (Hom∗R (C
∗,D∗)) = [C∗,D∗[−n]] ,

where the outer square brackets denote the set of homotopy classes
of chain maps.
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As was mentioned earlier, in order to preserve the exactness of the
Hom functor, we need to replace every cochain complex by another
one, which, in some sense, does not differ to much from the initial
cochain complex. If we expect the new cochain complex to preserve
the exactness of the Hom functor, it should preferably consist of either
projective or injective modules. Therefore, let us define the injective
resolution of a cochain complex.

Definition 2.2.14. Let C∗ be cochain complex. Let I∗ be bounded be-
low cochain complex of injective modules. We say that I∗ is an injec-
tive resolution of C∗ if there exists a quasi-isomorphism

C∗ → I∗.

Categories of modules have enough injectives. This property en-
ables us to construct an injective resolution for any module. It turns
out that the same condition is sufficient to construct an injective res-
olution for a cochain complex, provided that the complex satisfies
certain technical condition.

Proposition 2.2.15. Let C∗ be a cochain complex. The complex pos-
sesses an injective resolution if, and only if Hn(C) = 0, for small
enough n. In particular, if C∗ is bounded, then it possesses an injec-
tive resolution.

Now we are ready to define the derived Hom functor and Ext groups.

Definition 2.2.16. Denote by I∗ an injective resolution of a cochain
complex D∗. Define the derived Hom

R Hom∗R (C
∗,D∗) = Hom∗R (C

∗, I∗) .

Ext groups are defined as the homology of the derived Hom.

ExtnR (C∗,D∗) = Hn (Hom∗R (C
∗, I∗)) .

In other words,
ExtnR (C∗,D∗) = [C∗, I∗[−n]] .

Remark 2.2.17. Of course, the derived Hom does not depend on the
choice of I∗, up to quasi-isomorphism. Analogously, Ext groups are
well defined up to isomorphism.

Properties of classical Ext groups extended to their generalized ver-
sion.

Proposition 2.2.18. Let C∗ and D∗ be as in the previous definition.

1. If C
′∗ andD

′∗ are bounded cochain complexes quasi-isomorphic
to C∗ and D∗, respectively, then these quasi-isomorphisms in-
duce isomorphisms,

ExtnR (C∗,D∗) ∼= ExtnR
(
C
′∗,D

′∗
)

, n ∈ Z.
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2. If
0→ C∗1 → C∗2 → C∗3 → 0

is a short exact sequence of bounded cochain complexes, then
there exists a long exact sequence of Ext groups

. . .→ ExtnR (C∗3,D∗)→ ExtnR (C∗2,D∗)→ ExtnR (C∗1,D∗)→ . . . .

3. Analogously, if

0→ D∗1 → D∗2 → D∗3 → 0

is a short exact sequence of bounded cochain complexes, then
there exists a long exact sequence of Ext groups

. . .→ ExtnR (C∗,D∗1)→ ExtnR (C∗,D∗2)→ ExtnR (C∗,D∗3)→ . . . .

4. There exist bilinear maps, induced by composition of maps on
the cochain level,

µ : ExtnR (C∗,D∗)×ExtmR (B∗,C∗)→ Extn+mR (B∗,D∗) .

Hence, Ext∗R (C
∗,C∗) and Ext∗R (D

∗,D∗) are graded rings. Addi-
tionally Ext∗R (C

∗,D∗) can be eqquipped with the structure of a
graded (Ext∗R (D

∗,D∗) , Ext∗R (C
∗,C∗))-bimodule.

Classical result of Cartan and Eilenberg gives two spectral sequences
which converge to the respective Ext groups.

Theorem 2.2.19. There are two spectral sequences {IE
∗,∗
r ,dr}, {IIE

∗,∗
r ,dr}

converging to Ext∗R (C
∗,D∗) satisfying

IE
p,q
2 = ExtpR (C

∗,Hq(D))

IIE
p,q
2 = Hq (Ext∗R (C

∗,Dp))

Part 4 of Proposition 2.2.18 shows that the Ext group possess a mul-
tiplicative structure. This additional structure is derived from certain
bilinear maps defined on the cochain level. The bilinear map is com-
patible with the filtration of Cartan and Eilenberg, thus its existence
is manifested in the Cartan-Eilenberg spectral sequence.

Theorem 2.2.20. For cochain complexes B∗, C∗ and D∗ there are bi-
linear maps of spectral sequences

µ : IE
p,q
r (C∗,D∗)× IEp

′,q ′
r (B∗,C∗)→ IE

p+p ′,q+q ′
r (B∗,D∗)

µ : IIE
p,q
r (C∗,D∗)× IIEp

′,q ′
r (B∗,C∗)→ IIE

p+p ′,q+q ′
r (B∗,D∗)

commuting with differentials i.e.

dB
∗,D∗
r (µ(x,y)) = µ(dC

∗,D∗
r (x),y) + (−1)p+qµ(x,dB

∗,C∗
r (y)),

and converging to bilinear maps from Proposition 2.2.18.
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When a cochain complex D∗ is equipped with a filtration, the Hom
complex HomR (C

∗,D∗) becomes filtered. This filtration is defined
by considering homomorphisms whose images are contained in the
respective submodule of the filtration of D∗. Moreover, the filtration
of D∗ induces a filtration on the derived Hom complex. This leads to
a spectral sequence.

Theorem 2.2.21. Suppose that D∗ is a bounded and filtered cochain
complex. Then there exists a spectral sequence {E∗,∗r ,dr} converging
to ExtnR (C∗,D∗) such that

E
p,q
1 = Extp+qR

(
C∗,Fp(D∗)/Fp+1(D∗)

)
.

The next three propositions supply us with certain computational
tools needed later.

Proposition 2.2.22 (Eckmann-Shapiro Lemma). Suppose that H ⊂ G
are finite groups and M is a Z [G]-module and N is a Z [H]-module.

ExtnZ[H]

(
N, ResGHM

)
∼= ExtnZ[G]

(
IndGHN,M

)
ExtnZ[H]

(
ResGHM,N

)
∼= ExtnZ[G]

(
M, IndGHN

)
.

Proposition 2.2.23. Let G and H be as in the previous proposition
and suppose that C∗, D∗ are cochain complexes of Z [G] and Z [H]-
modules, respectively. Under this assumptions, there exists the fol-
lowing isomorphism.

ExtnZ[G]

(
C∗, IndGHD

∗
)
∼= ExtnZ[H]

(
ResGHC

∗,D∗
)

.

Proof. The proof is very similar to the proof of Eckmann-Shapiro
Lemma.

HommZ[G]

(
C∗, IndGHD

∗
)
=
∏
p∈Z

HomZ[G]

(
Cp, IndGHD

p+n
)

From [3, Prop. 5.9] it follows that

IndGHD
p+n ∼= HomZ[H]

(
Z [G] ,Dp+n

)
.

The above isomorphism is defined in the following way. First, define
Z [H]-maps

φ : Dp+n → HomZ[H]

(
Z [G] ,Dp+n

)
such that

φ(m)(g) =

{
gm, g ∈ H,

0, g /∈ H.

Homomorphism φ admits a unique extension to the following Z [G]-
map

φ : IndGHD
p+n → HomZ[H]

(
Z [G] ,Dp+n

)
.
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For more details see for example [3, Chap. III.3].
From the above discussion we obtain the following isomorphisms.

HomZ[G]

(
Cp, IndGHD

p+n
)
∼=

∼= HomZ[G]

(
Cp, HomZ[H]

(
Z [G] ,Dp+n

))
∼=

∼= HomZ[H]

(
ResGHC

p,Dp+n
)

.

The above isomorphisms commute with the differentials dC
∗,IndGHD∗

and dResGHC
∗,D∗ . Consequently,

Hom∗Z[G]

(
C∗, IndGHD

∗
)
∼= Hom∗Z[H]

(
ResGHC

∗,D∗
)

.

This concludes the proof.

Proposition 2.2.24. Let n be a positive integer and let d be its divisor.
Then, there exists an isomorphism

Ext∗Z[Z/pn] (Z [ξps ] , Z [ξps ]) ∼= Z [ξps ] [T ]/(Φps,pn(ξps)T),

where

Φps,pn(t) =
tp
n
− 1

Φps(t)

and TS ∈ Ext2Z[Z/pn] (Z [ξps ] , Z [ξps ]) is a class represented by the
following Yoneda extension

0→ Z [ξps ]→ Z [Z/pn]
Φps(t)→ Z [Z/pn]→ Z [ξps ]→ 0.

Additionally, for any Z [Z/pn]-module N, multiplication by Ts

−∪ Ts : ExtiZ[Z/pn] (Z [ξps ] ,N)→ Exti+2
Z[Z/pn]

(Z [ξps ] ,N)

is an isomorphism for i > 0 and epimorphism for i = 0. In particular

Ext2iZ[Z/pn] (Z [ξps ] , Z [ξps ]) =


Z/pm, i > 0, s = 0,

Z/pm−s+1, i > 0, s > 0,

Z [ξps ] , i = 0,

0, otherwise.

Proof. The first part follows from [34, Lemma 1.1]. To prove the sec-
ond part, notice that-

Φps,pm(ξps) = lim
z→ξps

zp
m
− 1

Φps(z)
= lim
z→ξps

(zp
s−1

− 1)
zp

m
− 1

zp
s
− 1

=

= pm−s(ξp − 1).

by de L’Hospital rule. Since the algebraic norm of ξp − 1 is equal to
p, it follows readilly that

Z [ξps ] /(Φps,pn(ξps)) ∼= Z/pn−s+1.
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Figure 1: 4Tu relation

2.3 bar-natan’s bracket of a link

This section is devoted to defining the most important concept of
this thesis – the Khovanov homology. For more details on Khovanov
homology consult [2], [10] or [32].

2.3.1 Construction of the bracket

Definition 2.3.1. Let Cob3` (2n), for a non-negative integer n, denote
the category with objects and morphisms described below.

1. Objects in Cob3` (2n) are crossingless tangles in D2 with exactly
2n endpoints lying on the boundary ∂D2.

2. Morphisms between tangles T1 and T2 are formal linear combi-
nations of isotopy classes, rel boundary, of oriented cobordisms
from T1 to T2. These cobordisms are required to be collared near
the boundary, so that glueing is well defined.

3. Composition of morphisms Σ1 : T1 → T2 and Σ2 : T2 → T3 is
realised by glueing surfaces along a common boundary compo-
nent thus obtaining a new cobordism Σ1 ∪T2 Σ2.

4. Additionally we impose a few relations in Cob3` (2n).

a) S relation – whenever a cobordism Σ has a connected com-
ponent diffeomorphic to the 2-sphere this cobordism is
identified with the zero morphism.

b) T relation – whenever a cobordism Σ has a connected com-
ponent diffeomorphic to the 2-torus we can erase this com-
ponent and multiply the remaining cobordism Σ ′ by 2.

c) 4TU-relation – a local relation which is illustrated on Fig-
ure 1. This relation tells us how we can move one-handles
attached to cobordism in question.

Definition 2.3.2. Define the additive category Mat
(

Cob3` (2n)
)

as fol-
lows.

1. The set of objects consists of finite formal direct sums of objects
of Cob3` (2n).
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Figure 2: Positive and negative crossings

0-smoothing 1-smoothing

Figure 3: 0- and 1-smoothings

2. Morphisms are matrices

f :

k⊕
i=1

Ti →
n⊕
j=1

T ′j

f =


f11 f12 . . . f1k

f21 f22 . . . f2k
...

...
. . .

...

fn1 fn2 . . . fnk


where fij ∈MorCob3` (2n)

(Ti, T ′j ). Composition of morphisms cor-
responds to multiplication of the respective matrices.

Definition 2.3.3. Define

Kob (2n) = Kom
(

Mat
(

Cob3` (2n)
))

to be the category of finite cochain complexes over Mat
(

Cob3` (2n)
)

.
Morphisms in Kob (2n) are chain maps between the respective com-
plexes, which are defined in the usual way. We can define the homo-
topy category of Kob (2n).

Kobh (2n) = Komh
(

Mat
(

Cob3` (2n)
))

with the same objects as Kob (2n) and morphisms being homotopy
classes of chain maps, where the chain homotopy is defined as usual.

Let T be an oriented tangle in D2 with 2n endpoints. The Bar-
Natan’s bracket [[T ]]BN is an object in Kobh (2n) defined as follows.
Denote by n+(T) and n−(T) the number of positive and negative
crossings of T , respectively. For 0 6 r 6 n+(T) + n−(T) let [[T ]]r−n−

BN
be the formal direct sum of crossingless tangles obtained from T by
resolving exactly r crossings with the 1-smoothing and all remain-
der crossings with the 0-smoothing. The 0- and 1-smoothings are de-
picted on Figure 3.
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In order to define the differential, consider two resolutions T0 and
T1 of T , which differ only at a single crossing. To be more precise,
Ti was obtained from T by applying i-smoothing at this crossing, for
i = 0, 1, and they agree otherwise. Define a map in Cob3` (2n)

Σ0→1 : T0 → T1 (2)

to be the elementary cobordism from T0 to T1 obtained from T0× [0, 1]
by attaching 1-handle to T0 × {1} where the crossing change happen.
Now assemble all these cobordisms to a map

[[T ]]
r−n−

BN → [[T ]]
r+1−n−

BN .

Such map is not yet a differential, because its square is not equal to
zero in Kob (2n). Indeed, consider two crossings and resolve then in
two different ways. This yields the following commutative diagram
in Kob (2n).

T10

T00 ⊕ T11

T01

The diagram is indeed commutative, because the respective cobor-
disms, Σ00→10 ∪T10 Σ10→11 and Σ00→01 ∪T01 Σ01→11, from T00 to T11,
are isotopic rel boundary. Hence, in order to get a differential we
need to modify the definition of the map, by assigning additional
signs, so that in every commutative square as above, the two maps
Σ10→11 ◦ Σ00→10, Σ01→11 ◦ Σ00→01 appear a with different sign.

Let Cr T denote the set of crossings of T . Choose a linear order on
Cr T . Let W be a Q-vector space spanned by the elements of Cr T
and let V = Λ∗W be the exterior algebra of W. Vector space V has a
distinguished basis of the form

ci1 ∧ ci2 ∧ . . .∧ cik ,

where cij ∈ Cr T for 1 6 j 6 k and

ci1 < ci2 < . . . < cik ,

with respect to the chosen ordering. Let B be the set of vectors from
this distinguished basis. Every resolution of T can be labeled with a
unique element from B. Indeed, associate to every resolution a vector
v ∈ B in such a way that

v = ci1 ∧ ci2 ∧ . . .∧ cir

if, and only if, the resolution in question was obtained from T by
application of 1-smoothing only to crossings ci1 , ci2 , . . . , cir . To every
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pair (v,w), where v ∈ B and w ∈ Cr(T), such that v∧w 6= 0 ∈ V , we
can associate a map in Cob3` (2n)

Σ(v,w) : Tv → Tv ′ ,

where v ′ ∈ B and v ′ = sign(v,w)v∧w with sign(v,w) ∈ {±1}. The
map in question is the cobordism from (2).

To fix the sign issue, define the differential in [[T ]]BN by the follow-
ing formula.

dr−n− : [[T ]]
r−n−

BN → [[T ]]
r−n−+1
BN ,

dr−n− = (−1)n−(T)
∑
(v,w)

sign(v,w)Σ(v,w),

where the summation extends over pairs (v,w) ∈ B×Cr(T) such that
v∧w 6= 0.

Proposition 2.3.4. Bar-Natan’s bracket [[T ]]BN, of a tangle T , belongs
to Kobh (2n), for an appropriate n.

Theorem 2.3.5 (Invariance of the Bar-Natan’s bracket). Chain homo-
topy type of the Bar-Natan’s bracket [[T ]]BN is an isotopy invariant of
the tangle T .

Apart from that, the invariant of a tangle can be equipped with
an additional structure. This additional structure utilizes the fact that
morphisms have additional topological data – the genus of the re-
spective surface. This additional data equips Mat

(
Cob3` (2n)

)
with a

grading, thus making it into a graded category.

Definition 2.3.6. Let C be preadditive category. We say that C is graded
if the following conditions hold.

1. For any two objects O1 and O2 from C, morphisms from O1 to
O2 form a graded abelian group with composition being com-
patible with grading, that is

deg f ◦ g = deg f+ degg.

Additionally we require that identity morphisms are of degree
zero.

2. There is a Z action on the objects of C

(m,O) 7→ O{m}.

As sets, morphisms are unchanged under this action, that is

MorC (O1{m1},O2{m2}) = MorC(O1,O2).

Gradings, however, change. If we choose f ∈MorC(O1,O2) such
that deg f = d, then f, considered as an element of the mor-
phism set MorC (O1{m1},O2{m2}), has deg f = d+m2 −m1.
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In order to define the grading, enlarge the collection of objects by
adding formal finite direct sums of T {m}, for some m ∈ Z. If Σ is a
cobordism from Cob3` (2n) give it degΣ = χ(Σ) −n.

Definition 2.3.7. For a tangle T in D2, with 2n endpoints, define its
Khovanov bracket

[[T ]]Kh ∈ Kobh (2n) ,

where we treat Kobh (2n) as a graded category, to be the following
complex

[[T ]]
r−n−(T)
Kh = [[T ]]

r−n−(T)
BN {r+n+(T) −n−(T)}.

The differential remains unchanged.

Theorem 2.3.8.

1. For any tangle T , the differential in [[T ]]Kh is of degree zero.

2. Graded chain homotopy type (i.e. we consider only chain ho-
motopy equivalences of degree 0) of [[T ]]Kh is an invariant of the
isotopy class of T .

2.3.2 Planar algebra structure

Definition 2.3.9. A d-input planar arc-diagram D is a big “output” disk
with d smaller “input” disks removed and equipped with a collection
of oriented and disjointly embedded arcs. Each arc is either closed,
or has endpoints on ∂D. Each input disk is labeled with an integer
ranging from 1 to d, and a basepoint is chosen on each connected
component of the boundary. Such collection of data is considered
only up to isotopy rel boundary.

Definition 2.3.10. Let s be a finite string of arrows ↑ and ↓. Denote by
T0(s) the set of all s-ended oriented tangle diagrams in a based disk
D2, that is if we start at the chosen basepoint on ∂D2 and proceeds
in the counterclockwise direction, we will obtain s by looking at the
orientation of the endpoint of the tangle met along the way. Let T(s)
denote quotient of T0(s) by Reidemeister moves.

Every d-input planar arc-diagram D determines an operations

D : T0(s1)× . . .× T0(sd)→ T0(s),

D : T(s1)× . . . × T(sd)→ T(s)

which glues tangles from T0(si), or T(si) in the i-th input disk. These
operations are associative, in the sense that, if Di was obtained by
glueing D ′ along the boundary of the i-th input disk of D, then

Di = D ◦
(
I× . . .×D ′ × . . .× I

)
.

The diagram from Figure 4 acts as the identity.
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Figure 4: Identity in the planar algebra

Definition 2.3.11. A collection of sets P(s), indexed by string of ar-
rows, and operations as described above, satisfying the associativity
and identity relations, is called an oriented planar algebra. Analogously,
it is possible to define an unoriented planar algebra by disregarding
orientations of tangles.

A morphism of planar algebras is a collection of maps Ψ : P(s)→ P ′(s)

satisfying
Ψ ◦D = D ◦ (Ψ× . . .×Ψ) .

Example 2.3.12. Objects from Cob3` (2n) can be bundled into an ori-
ented planar algebra. This is in fact a planar subalgebra of T consist-
ing of crossingless tangles.

Example 2.3.13. Analogously, morphisms from Cob3` (2n) can be or-
ganised into a planar algebra. To define how a given planar diagram
D acts, consider D× [0, 1]. Every arc ` in D determines a rectangle
` × [0, 1]. Glue cobordisms from Cob3` (2n) into holes of D × [0, 1].
These cobordisms, together with the rectangles `× [0, 1], yield a new
cobordism, which is the result of the operation.

Theorem 2.3.14. 1. Kob (2n) and Kobh (2n) admit the structure of
an oriented planar algebra, which is inherited from Cob3` (2n).
In particular, every planar algebra operation transforms homo-
topy equivalent complexes into homotopy equivalent complexes.

2. The Khovanov bracket

[[·]]Kh : (T(s))→
(

Komh
(

Mat
(

Cob3` (2n)
)))

is a morphism of planar algebras.

2.3.3 Applying TQFT

In order to obtain computable invariants from Khovanov’s bracket, of
a link L, it is necessary to pass to an algebraic cochain complex. This
is done with the aid of a TQFT functor.

Definition 2.3.15. Let

T : Cob3` (0)→ModR
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be an additive functor whose target is the category of R-modules,
where R is a commutative ring with unit. We say that T is a TQFT if
the following conditions are satisfied.

1. T maps disjoint unions of objects of Cob3` (0) to tensor products
of the corresponding R-modules.

2. T maps disjoint unions of cobordisms into tensor products of
the corresponding maps.

3. The cylinder S× [0, 1] is mapped to the identity morphism.

Theorem 2.3.16. Every TQFT

T : Cob3` (0)→ Vectk .

is completely determined by its values on the following manifold.

1. A circle T(S1) = A.

2. The following elementary cobordisms (read from top to bot-
tom).

∆ : A→ A⊗A µ : A⊗A→ A ε : k→ A η : A→ k

Quintuple (A,µ,∆, ε,η) is a Frobenius algebra.

Remark 2.3.17. For more details about Frobenius algebras and TQFTs
consult [11].

Example 2.3.18. Consider the following TQFT.

A = Z [X] /
(
X2
)

, deg 11 = 1, degX = −1,

µ(11⊗ 11) = 11,

µ(11⊗X) = µ(X⊗ 11) = X,

µ(X⊗X) = 0,
∆(11) = 11⊗X+X⊗ 11,

∆(X) = X⊗X,

ε(1) = 11,

η(11) = 0,

η(X) = 1.
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Definition 2.3.19. Let T be a TQFT determined by the data from Ex-
ample 2.3.18. Define the Khovanov’s cochain complex, associated to a
link diagram D, to be

CKh(D) = T([[D]]Kh).

This is a cochain complex of graded Z-modules. Its homology, de-
noted by Kh(D), is called the Khovanov homology of D. Define also the
shifted Khovanov complex of D to be

CKh(D) = T([[D]]Kh)[n−(D)]{2n−(D) −n+(D)}.

Corollary 2.3.20. If D is a link diagram, the graded chain homotopy
type of CKh(D) is an isotopy invariant of D. Consequently, the Kho-
vanov homology of D is also an isotopy invariant.

Theorem 2.3.21. For any link L there exists an exact triangle

CKh
( )

→ CKh
( )

{1}→ CKh
( )

[−1]→ CKh
( )

[−1]

which yields a long exact sequence of Khovanov homology groups.

Example 2.3.22. Let Tn denote the n-component trivial link. Its Kho-
vanov homology is given below.

Kh(Tn) = A⊗n,

where A is the algebra from Example 2.3.18.

Definition 2.3.23. Let M∗ be a graded Q-vector space of finite di-
mension. Define its quantum dimension to be the following Laurent
polynomial.

qdimQM
∗ =
∑
n

qn dimQM
n ∈ Z

[
q,q−1

]
.

Definition 2.3.24. The Khovanov polynomial of a link L is the follow-
ing two variable Laurent polynomial.

KhP(L) =
∑
i,j

ti qdimQ Khi,∗(L)⊗Q.

Define the unreduced Jones polynomial to be the following one vari-
able laurent polynomial.

J(L) = KhP(L)(−1,q).

Proposition 2.3.25. The unreduced Jones polynomial satisfies the fol-
lowing properties.

1. If Tn denotes the n-components trivial link, then

J(T) = (q+ q−1)n.
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2. Let L∪L ′ be a split link, which disjoint union of two links L and
L ′.

J(L∪ L ′) = J(L) J(L ′).

3. Let D be an oriented diagram of a link L. Choose a crossing
of D. Let , and denote the diagram obtained from
D by cutting out a small neighbourhood of the chosen crossing
and gluing in the crossing from the respective piture.

q−2 J
( )

− q2 J
( )

= (q−1 − q) J
( )

.
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E Q U I VA R I A N T K H O VA N O V H O M O L O G Y

This chapter is devoted to our construction of the equivariant Kho-
vanov homology for periodic links. First, we recall the definition of
periodic links and analyze the Khovanov complex of such links. We
show that using the Bar-Natan’s sign convention, it possible to define
an action of the cyclic group on the Khovanov complex of a periodic
link. Next, we analyze the effect of performing Reidemeister moves.

The equivariant Khovanov homology of periodic links is defined
with the aid of the machinery of derived functors. Then, we describe
properties of the equivariant Khovanov homology, like its relation to
the classical Khovanov homology and analyze the additional torsion
that it contains. We also compute the equivariant Khovanov homol-
ogy of trivial links.

3.1 periodic links

Definition 3.1.1. Let n be a positive integer, and let L be a link in S3.
We say that L is n-periodic, if there exists an action of the cyclic group
of order n on S3 satisfying the following conditions.

1. The fixed point set, denoted by F, is the unknot.

2. L is disjoint from F.

3. L is a Z/n-invariant subset of S3.

Example 3.1.2. Borromean rings provide an example of a 3-periodic
link. The symmetry is visualised on Figure 5. The dot marks the fixed
point axis.

Example 3.1.3. Torus links constitute an infinite family of periodic
links. In fact, according to [15], the torus link T(m,n) is d-periodic if,
and only if, d divides either m or n.

Periodic diagrams of periodic links can be described in terms of
planar algebras. Take an n-periodic planar diagram Dn with n input
disks, like the one on Figure 6. Choose a tangle T which possesses
enough endpoints, and glue n copies of T into the input disks of Dn.
In this way, we obtain a periodic link whose quotient is represented
by an appropriate closure of T . See Figure 7 for an example.

Using this description of periodic links, it is possible to exhibit a
cobordism which induces an action of Z/n on [[D]]Kh, forD a periodic
link diagram. First, notice that we can assume thatD represents a link

29



30 equivariant khovanov homology

F

Figure 5: Borromean rings are 3-periodic. The fixed point axis F is marked
with a dot.

Figure 6: 4-periodic planar diagram.

Figure 7: Torus knot T(3, 4) as a 4-periodic knot obtained from the planar
diagram from Figure 6
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Figure 8: Periodic Kauffman state with 3 components and symmetry of or-
der 2. Middle cylinder contains the fixed point axis F.

in D2 × I and the symmetry comes from a rotation of the D2 factor.
In order to construct the cobordism, notice that the diffeomorphism,
denote it by f, generating the Z/n-symmetry of D2 × I, is isotopic
to the identity. Indeed, this isotopy can be chosen in such a way that
it changes the angle of rotation linearly from 0 to 2π

n . Denote this
isotopy by H. The cobordism in question is the trace of H.

ΣH = {(H(x, t), t) ∈ D2 × I× I : x ∈ L, t ∈ I}.

Cobordism ΣH is diffeomorphic to the cylinder S1 × I, however it
is not isotopic, rel boundary, to the cylinder, which is equal to ΣH0 ,
where H0 denotes the constant isotopy from the identity to the iden-
tity. However, ΣH is invertible in Kobh (2`), because the composition
ΣH ◦ ΣH, where H(·, t) = H(·, 1− t), is isotopic to ΣH0 , rel boundary.

Before proceeding further, one remark is in order. During the con-
struction of [[D]]Kh it was necessary to multiply each summand of
the differential with ±1. This particular choice of signs forces us to
do the same with maps between complexes. Recall from section 2.3.1
that we considered two vector spaces – W generated by crossings of
the diagram and the exterior algebra V = Λ∗W. Each Kauffman state,
which is another name for any resolution of D, was labelled with a
vector from the distinguished basis of V . Choose a tangle T and let
WT be the vector space associated to T and D = Dn(T , . . . , T) with
WD defined analogously. Under this assumptions

WD ∼=Wn
T , and Λ∗WD ∼= (Λ∗WT )

⊗n .

Symmetry of D induces an action of Z/n on Λ∗WD, which permutes
factors in the above decomposition. Cobordism ΣH discussed above
induces a map

ΣH : [[D]]Kh → [[D]]Kh

which permutes all Kauffman states of D. This permutation is com-
patible with the induced action on Λ∗WD. Geometrically, the map
ΣH|[[D]]

r−n−
Kh

is induced by a “permutation” cobordisms similar to the
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one from Figure 8. However, additional sign is needed to assure that
this map commutes with the differential. Let us define

ψ : (Λ∗WT )
⊗n → (Λ∗WT )

⊗n (3)

ψ : x1 ⊗ x2 ⊗ . . .⊗ xn 7→ (−1)αx2 ⊗ . . .⊗ xn ⊗ x1, xi ∈WT ,

where

α = (n− 1)n−(T) + deg x1(deg x2 + deg x3 + . . .+ deg xn).

Automorphism ψ maps any vector from the distinguished basis of
Λ∗WD to ±1 multiplicity of some other vector from the basis.

ψ(v) = sign(ψ, v)w

We can utilize these signs to change the definition of ΣH as follows.

ΣH|Dv : Dv → Dw,

ΣH|Dv = sign(ψ, v)Σv,w, (4)

where Σv,w denotes the appropriate permutation cobordism. This dis-
cussion leads to the following proposition.

Proposition 3.1.4. If D is a periodic link diagram, then CKh(D) is a
complex of graded Z [Z/n]-modules.

Remark 3.1.5. This sign convention was implicitly described in [2].

Proof of Prop. 3.1.4. The only thing left to prove, is the commutativ-
ity of ΣH and the differential of CKh(D). Geometric properties of the
Khovanov bracket imply that the components of both maps commute
up to sign. Hence, the only thing left to check is that all these maps re-
ally commute, provided that we choose the signs as in the discussion
above.

Let x1, . . . , xn ∈ V be homogeneous vectors. Consider the following
linear maps

dD : (Λ∗WT )
⊗n → (Λ∗WT )

⊗n ,

dD : x1 ⊗ . . .⊗ xn 7→
n∑
i=1

(−1)αix1 ⊗ . . .⊗ dT (xi)⊗ . . .⊗ xn,

σi : (Λ
∗WT )

⊗n → (Λ∗WT )
⊗n ,

σi : x1 ⊗ . . .⊗ xn 7→ (−1)degxi·degxi+1x1 ⊗ . . .⊗ xi+1 ⊗ xi ⊗ . . .⊗ xn,

σ̃i = (−1)n−(T)σi.

where 1 6 i 6 n− 1, αi = (−1)deg(xn)+...+deg(xi+1) and

dT (w) =
∑
v∈CrT

w∧ v.
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Notice that the map ψ from (3) is expressible as the composition of
the maps σ̃i in the following way.

ψ = σ̃n−1 ◦ σ̃n−2 ◦ . . . ◦ σ̃1.

The map dD, on the other hand, corresponds to the differential. Let

dr−n−(D) : CKhr−n−,∗(D)→ CKhr+1−n−(D)(D)

be the differential in the Khovanov complex. In the notation from
previous chapter we have that

dr−n−(D) =
∑
(v,w)

sign(v,w)Σ(v,w).

It is not hard to check, that the coefficient sign(v,w) is equal to the
coefficient of v∧w in dD(v).

Therefore, it is sufficient to check that for 1 6 i 6 n− 1 the follow-
ing equality holds

σi ◦ dD = dD ◦ σi.

This can be verified by an elementary calculation.

Let us now analyze the structure of the cochain complex CKh(D).

Definition 3.1.6. 1. Let Sr(D) denote the set of Kauffman states of
D which were obtained by resolving exactly r crossings with
the 1-smoothing.

2. For d | n, let Sd(D) denote the set of Kauffman states which
inherit a symmetry of order d from the symmetry of D, that is
Kauffman states of the form

Dn(T1, . . . , Tn
d

, T1, . . . , Tn
d

, . . . , T1, . . . , Tn
d
),

where T1, . . . , Tn
d

are distinct resolutions of T .

3. For a Kauffman state s, write IsoD(s) = Z/d if, and only if
s ∈ Sd(D).

4. Define Sdr (D) = Sd(D)∩ Sr(D).

5. Define S
d
r (D) to be the quotient of Sdr (D) by the action of Z/n.

Remark 3.1.7. If Sdr (D) is non-empty, then d | gcd(n, r).

Definition 3.1.8. Let Z− be the following Z [Z/n]-module.

Z− =

{
Z [ξ2] , 2 | n,

Z, 2 - n.

In other words, if n is even, the generator of the cyclic group Z/n acts
on Z− by multiplication by −1, otherwise it is the trivial module.
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Lemma 3.1.9. Let T be any TQFT functor whose target is the category
of R-modules, for R a commutative ring with unit. If s1, . . . , sn

d
∈

Sdr (D), for d | gcd(n, r) and d > 1, are Kauffman states constituting
one orbit, then

n
d⊕
i=1

T([[si]]Kh) ∼= IndZ/n

Z/d

(
T([[s1]]Kh)⊗Z Z

⊗s(n,r,d)
−

)
.

as R [Z/n]-modules, where

s(n, r,d) =
(n− 1)n−(D) + r(d− 1)

d

Proof. We will prove that if s ∈ Sdr (D), then Σ
n
d

H(s) = (−1)s(n,r,d)s.
The orbit of s consists of nd Kauffman states which are permuted by
the action of Z/n. Hence, the lemma will follow from Proposition
2.1.11 once we determine the induced action of Z/d on T([[s1]]Kh).
Since T([[s1]]Kh) possesses a natural action of Z/d, the induced action
will differ from this one by a certain sign. Appeareance of this sign is
a consequence of our sign convention.

The Kauffman state s1 corresponds to a vector of the form

w = v⊗ v⊗ . . .⊗ v︸ ︷︷ ︸
d

,

where v = v1 ⊗ v2 ⊗ . . .⊗ vn
d

and v1, . . . , vn
d
∈ Λ∗WT belong to the

distinguished basis. Consequently

ψ
n
d (w) = (−1)k(d−1)+

n−(T)n(n−1)
d w = (−1)

r(d−1)+n−(D)(n−1)
d w,

where k = deg v1 + deg v2 + . . .+ deg vn
d

.

Corollary 3.1.10. If T is as in the previous lemma and 0 6 r 6 n+ +

n−, then

T([[D]]
r−n−

Kh ) =⊕
d|gcd(n,r)

⊕
s∈Sdr

IndZ/n

Z/d

(
T([[s]]Kh)⊗Z Z

⊗s(n,r,d)
−

)
{r+n+(D) −n−(D)}.

Remark 3.1.11. In the above formula there is a small ambiguity, since
we identified a Kauffman state belonging to an orbit with this orbit.
This notational shortcut does not cause any problems since all Kauff-
man states belonging to the same orbit yield isomorphic summands
in [[D]]

r−n−

Kh . We will use this convention in the remainder part of this
thesis.

Proof of Cor. 3.1.10. Since for d1,d2 | gcd(n, r) the sets S
d1
r (D), Sd2r (D)

are disjoint, corollary follows easily from lemma 3.1.9.
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Let now D = Dn(T , . . . , T) be an n-periodic link diagram obtained
from a tangle T . Suppose that we choose another tangle T ′, which dif-
fers from T by a single application of one of the Reidemester moves.
Form another link diagram D ′ = Dn(T

′, . . . , T ′). This raises a ques-
tion, what is the relationship between [[D]]Kh and [[D ′]]Kh in Kobh (0).
The following theorem from [2] answers this question.

Theorem 3.1.12. There exists a chain map, induced by the Reide-
meisted moves,

R : [[D]]Kh → [[D ′]]Kh,

which is an isomorphism in Kobh (0). In particular, this map induces
a chain homotopy equivalence after application of any TQFT functor.

However, in the equivariant setting we obtain a considerably weaker
invariance result.

Theorem 3.1.13. If D and D ′ are as above and T is a TQFT functor
whose target is the category of R-modules, then the map

R : [[D]]Kh → [[D ′]]Kh,

induced by Reidemeister moves, yields a quasi-isomorphism

T(R) : T([[D]]Kh)→ T([[D ′]]Kh)

in the category of cochain complexes of R [Z/n]-modules.

Proof. It is sufficient to prove, that T(R) is a morphism in the category
of R [Z/n]-modules, because Theorem 3.1.12 implies that it automati-
cally induces an isomorphism on homology.

To check this condition, refer to the proof of [2, Thm. 2]. The bracket
[[D]]Kh is constructed along the lines of the formal tensor product of
copies of the complex [[T ]]Kh. Each collection of morphisms

fi : [[T ]]Kh → [[T ′]]Kh,

for i = 1, . . . ,n, yield a morphism

f1 ⊗ . . .⊗ fn : [[D]]Kh → [[D ′]]Kh.

Taking into account the symmetry of D and D ′, we obtain the follow-
ing commutative diagram

[[D]]Kh [[D ′]]Kh

[[D]]Kh [[D ′]]Kh

f1⊗ . . .⊗ fn

ΣD ΣD′

f2⊗ . . .⊗ fn⊗ f1
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Figure 9: 2-periodic diagram of the unknot and its Khovanov bracket. Gray
arrows indicate the Z/2-action. Black dot stands for the fixed point
axis.

where ΣD and ΣD ′ denote the automorphisms of complexes induced
by the action of Z/n. Since R is of the form R = R ′ ⊗ . . .⊗R ′, where

R ′ : [[T ]]Kh → [[T ′]]Kh

is induced by a single Reidemeister move, it follows that T(R) is a
morphism in the category of R [Z/n]-modules.

3.2 equivariant khovanov homology

3.2.1 Integral equivariant Khovanov homology

Let L be an n-periodic link. It was shown earlier, that under this as-
sumption, the Khovanov complex CKh(D), where D is an n-periodic
diagram of L, admits the structure of a cochain complex of graded
Z [Z/n]-modules. We could try to obtain an invariant of L by defin-
ing the equivariant Khovanov homology to be

H∗,∗(HomZ[Z/n] (M, CKh(D))),

for some Z [Z/n]-moduleM. Unfortunately, Theorem 3.1.13 indicates
that this approach might not work. This is indeed the case, which is
illustrated by the following example.

Example 3.2.1. Consider the 2-periodic diagram D from Figure 9. We
will show that due to the lack of exactness of the Hom functor, the or-
dinary cohomology with coefficients depends on the chosen diagram.
Since

HomZ[Z/2] (Z−,M) = {x ∈M : t · x = −x},
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we obtain

HomZ[Z/2]

(
Z−, CKh1,∗(D)

)
=

=

〈[
11⊗ 11

− 11⊗ 11

]
,

[
11⊗X

−X⊗ 11

]
,

[
X⊗ 11

− 11⊗X

]
,

[
X⊗X

−X⊗X

]〉
HomZ[Z/2]

(
Z−, CKh2,∗(D)

)
= 〈11,X〉 .

Inspection of the differential d : CKh1,∗(D)→ CKh2,∗(D) yields

d :

[
11⊗ 11

− 11⊗ 11

]
7→ −2 · 11,

d :

[
11⊗X

−X⊗ 11

]
7→ −2 ·X,

therefore

H2,∗
(

HomZ[Z/2] (Z−, CKh(D))
)
= Z/2{5}⊕Z/2{3}.

On the other hand,

H2,∗
(

HomZ[Z/2] (Z−, CKh(U))
)
= 0,

where U denotes the crossingless diagram of the unknot.

The above example shows the necessity of considering the derived
functors Hom∗Z[Z/n] (M,−) and their homology. This is due to the
fact, that the Khovanov complex of a periodic link is built from per-
mutation modules, which are in general neither projective nor injec-
tive. This causes the discrepancy visible in the previous example.

Definition 3.2.2. Define the equivariant Khovanov homology of an
n-periodic diagram D to be the following triply-graded module, for
which the third grading is supported only for d | n.

Kh∗,∗,dG (L) = Ext∗,∗
Z[G]

(Z [ξd] , CKh(D)) .

It is worth to notice, that since CKh(D) is a complex of graded mod-
ules, Ext groups become also naturally graded, provided that we re-
gard Z [ξd] as a graded module concentrated in degree 0.

Theorem 3.2.3. Equivariant Khovanov homology groups are invari-
ants of periodic links, that is they are invariant under equivariant
Reidemeister moves, as described in the previous section.

Proof. Theorem 3.1.13 implies that application of an equivariant Rei-
demeister move yields a quasi-isomorphism of the corresponding
Khovanov complexes. Application of Proposition 2.2.18 gives an iso-
morphism between the respective ext groups, which concludes the
proof.
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One of the first questions, regarding the properties of the equivariant
Khovanov homology, we can ask, is the question about its relation to
the classical Khovanov homology. The answer is given in the follow-
ing theorem.

Theorem 3.2.4. Let p1, . . . ,ps be the collection of all prime divisors
of n. Define the ring Rn = Z

[
1
p1

, 1p2 , . . . , 1ps

]
. There exists a natural

map ⊕
d|r

Kh∗,∗,d
Z/n

(L)→ Kh(L),

which, when tensored with Rn, becomes an isomorphism.

Proof. From Theorem 2.2.19 it follows that

Ext∗,∗
Z[Z/n]

(Z [Z/n] , CKh(D)) ∼= Kh∗,∗(D).

Indeed, entries in the E2 page of the Cartan-Eileberg spectral se-
quence IE

∗,∗
∗ are equal to

Extp,∗
Z[Z/n]

(Z [Z/n] , Khq,∗(D)) =

=

{
HomZ[Z/n] (Z [Z/n] , Khq,∗(D)) , p = 0,

0, p > 0.

Hence, the spectral sequence collapses at E2. Since

HomZ[Z/n] (Z [Z/n] , Khq,∗(D)) ∼= Khq,∗(D)) ,

we obtain the desired conclusion.
The short exact sequence from proposition 2.1.18 implies that

Λ ′ ⊗Z Rn = Z [Z/n]⊗Z Rn = Rn [Z/n] ,

where Λ ′ denotes the maximal order in Q [Z/n]. Therefore,

Extr,∗
Z[Z/n]

(
Λ ′, CKh(D)

)
⊗Z Rn ∼=

∼= Extr,∗
Rn[Z/n]

(
Λ ′ ⊗Z Rn, CKh(D)⊗Z Rn

)
∼=

∼= Extr,∗
Rn[Z/n]

(Rn [Z/n] , CKh(D)⊗Z Rn) ∼= Khr,∗(D)⊗Z Rn,

because Rn is flat over Z. The last step of the proof consist of noticing,
that since Λ ′ =

⊕
d|nZ [ξd], hence

Ext∗,∗
Z[Z/n]

(
Λ ′, CKh(D)

)
=
⊕
d|r

Kh∗,∗,dG (L).

Until the end of this section we will restrict our attention to the
case of pn-periodic links, where p is an odd prime. This restriction is
needed to perform the computations of the Khovanov homology of
trivial links.
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Proposition 3.2.5. Let Tf be an f-component trivial link. It is pn-
periodic for any prime p and n > 0. Indeed, we can put components
of Tf disjointly in such a way that all of them are rotated by the an-
gle of 2πpn . The equivariant Khovanov homology of Tf is expressible
in terms of the group cohomology of the cyclic group Z/pn in the
following way.

Kh∗,∗,p
s

Z/pn
(Tf) =

f⊕
i=0

H∗ (Z/pn, Z [ξps ])
(fi) {2i− f}.

Proof. Since CKh(Tf) is a complex of trivial Z [Z/pn]-modules, it fol-
lows readilly that

Kh∗,∗,p
s

Z/pn
(Tf) = Ext∗,∗

Z[Z/pn]
(Z [ξps ] , CKh(Tf)) ∼=

∼= H∗,∗
(

Z/pn, Kh0,∗(Tf)⊗Z Z [ξps ]
)
∼=

∼=

f⊕
i=0

H∗ (Z/pn, Z [ξps ])
(fi) {2i− f},

because according to Example 2.3.22

Kh0,∗(Tf) = A⊗f.

Computation of the equivariant Khovanov homology of the trivial
link Tkpn , whose components are freely permuted by the action of
the cyclic group is a little more involved. In order to do that, let us
define the following family of polynomials.

Definition 3.2.6. Define a sequence of Laurent polynomials i.e. ele-
ments of the ring Z

[
q,q−1

]
.

P0(q) = q+ q
−1

Pn(q) =
1

pn

∑
16k6pn−1

gcd(k,pn)=1

(
pn

k

)
q2k−p

n

+

+
1

pn

∑
16s<n

∑
16k6pn−1

gcd(k,pn)=ps

((
pn

k

)
−

(
pn−s

k ′

))
q2k−p

n

,

where k ′ = k/ps and n > 1.

Proposition 3.2.7. The Khovanov complex CKh(Tkpn) can be decom-
posed into a direct sum of permutation modules in the following way

CKh0,∗(Tkpn) =

n⊕
s=0

IndZ/pn

Z/pn−s
Mk
s ,
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where Mk
s is a free abelian group and a trivial Z/pn−s-module satis-

fying

qdimMk
s =

k∑
`=1

ps·(`−1)Ps(q
pn−s)`

∑
06i0 ,...,is−16k

i0+...+is−1=k−`

s−1∏
j=0

(
pjPj(q

pn−j)
)ij

.

Proof. Since the induced action on

CKh∗,∗(Tkpn) = CKh0,∗(Tkpn) = A⊗k ⊗A⊗k ⊗ . . .⊗A⊗k︸ ︷︷ ︸
pn

permutes the factors in the tensor product above, thus it is sufficient
to consider the restriction of this action to the basis of A⊗kp

n
con-

sisting of tensor products of vectors 11 and X, where A, 11 and X are
defined in Example 2.3.18.

Let us start with the case k = 1. Denote by ` the following map

` : A⊗p
n → A⊗p

n

,

` : x1 ⊗ x2 ⊗ . . .⊗ xpn 7→ x2 ⊗ . . .⊗ xpn ⊗ x1.

In order to obtain the desired decomposition of CKh0,∗(Tpn) it is suf-
ficient to decompose the basis of A⊗p

n
into a disjoint union of orbits.

Observe that if v = x1 ⊗ . . .⊗ xpn satisfies `p
s
(v) = v, for some s 6 n,

then v is completely determined by its first ps factors x1, . . . , xps .

Lemma 3.2.8. The set of basis vectors satisfying the following condi-
tions, for fixed s 6 n,

1. Iso(v) = Z/pn−s,

2. deg v = pn−s(2k− ps), for 1 6 k 6 ps − 1

has cardinality

=

{ (
ps

k

)
, gcd(k,ps) = 1,(

ps

k

)
−
(
ps−u

k ′

)
, gcd(k,ps) = pu,

where k ′ = k/pu. In particular, qdimM1
s = Ps(q

pn−s).

Proof. Notice first, that if a vector v is fixed by `p
s
, then necessarily

pn−s | deg v. If k is not divisible by p, then v automatically satisfies
the first condition and cardinality of the set of such vectors is equal
to
(
ps

k

)
.

On the other hand, when gcd(k,ps) = pu, there are vectors v such
that deg v = pn−s(2k − pn) and Iso(v) contains properly Z/pn−s.
There are exactly

(
ps−u

k/ps

)
such vectors. Therefore, the overall cardinal-

ity in this case is equal to
(
ps

k

)
−
(
ps−u

k ′

)
.



3.2 equivariant khovanov homology 41

To perform the inductive step, notice that if v ∈ A(k−1)pn and
w ∈ Ap

n
satisfy Iso(v) = Z/pn−s and Iso(w) = Z/pn−s

′
, then

Iso(v ⊗ w) = Z/pmin(n−s,n−s ′). When Iso(v) = Z/pn−s, then the
orbit of v can be identified with Z/ps, with the action coming from
the following quotient map

Z/pn → Z/ps.

The product of two orbits Z/ps and Z/ps
′
, with the diagonal action,

consists of several orbits. This decomposition is given below.

Z/ps ×Z/ps
′
=

ps
′⊔

i=1

Z/ps, (5)

if s > s ′. Thus,

Mk
s =

⊕
06s ′<s

((
Mk−1
s ⊗Z M

1
s ′
)ps ′ ⊕ (Mk−1

s ′ ⊗Z M
1
s

)ps ′)
⊕
(
Mk−1
s ⊗Z M

1
s

)ps
.

Consequently,

qdimMk
s =

∑
06s ′<s

ps
′
(qdimMk−1

s · qdimM1
s ′

+ qdimMk−1
s ′ · qdimM1

s) + qdimMk−1
s · qdimM1

s .

Expanding this inductive formula yields the desired result.

Corollary 3.2.9. Polynomials Pn satisfy the following equality.

(q+ q−1)p
n

=

pn∑
s=0

psPs(q
pn−s).

Proof. This follows readilly from the previous proposition applied to
the case k = 1. Indeed, since

CKh0,∗(Tpn) =

n⊕
s=0

IndZ/pn

Z/pn−s
M1
s ,

it follows that

(q+ q−1)p
n

= qdim CKh0,∗(Tpn) =

n∑
s=0

ps qdimM1
s =

=

n∑
s=0

psPs(q
pn−s).
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Corollary 3.2.10. Let Tkpn+f be the pn-periodic trivial link, whose
components are divided into k free orbits and f fixed circles.

CKh0,∗(Tkpn+f) =

n⊕
s=0

IndZ/pn

Z/pn−s
Mk,f
s ,

where Mk,f
s is a trivial Z/pn−s-module such that

qdimMk,f
s = (q+ q−1)f qdimMk

s .

Proof. Corollary follows from Proposition 3.2.7. Indeed, because

CKh0,∗(Tkpn+f) = CKh0,∗(Tkpn)⊗Z CKh0,∗(Tf).

Arguing as in the proof of Proposition 3.2.7 we can consider orbits of
vectors which are tensor products of 11 and X. Every such orbits is a
tensor product of an orbit from CKh0,∗(Tkpn) and a trivial orbit from
CKh0,∗(Tf). This additional trivial orbits preserves the isotropy of the
orbit, therefore

Mk,f
s =Mk

s ⊗Z A⊗f,

which concludes the proof.

Analysis of the Khovanov complex of the trivial link yields the fol-
lowing result giving explicit formulas for the equivariant Khovanov
homology of trivial links.

Proposition 3.2.11.

Kh0,∗,pn−u
Z/pn

(Tkpn+f) =

n⊕
s=0

Wk,f
s,u,

where

Wk,f
s,u =

{ ⊕
iH
∗(Z/pn−s, Zdi)ϕ(pn−u){i}, n− s 6 u,⊕

iH
∗(Z/pn−s, Z

[
ξpn−s−u

]di)ps{i}, n− s > u.

and
qdimMk,f

s =
∑
i

diq
i,

for some non-negative integers di.

Proof. From corollary 3.2.10 one obtains equality

Ext∗,∗
Z/pn

(
Z
[
ξpn−u

]
, CKh0,∗(Tkpn+f)

)
=

=

n⊕
s=0

Ext∗,∗
Z/pn

(
Z
[
ξpn−u

]
, IndZ/pn

Z/pn−s
Mk,f
s

)
.
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From Shapiro’s Lemma and Proposition 2.1.19

Ext∗,∗
Z/pn

(
Z
[
ξpn−u

]
, IndZ/pn

Z/pn−s
Mk,f
s

)
∼=

∼= Ext∗,∗
Z/ps

(
ResZ/pn

Z/pn−s
Z
[
ξpn−u

]
,Mk,f

s

)
∼=

∼=

 Ext∗,∗
Z/ps

(
Zϕ(pn−u),Mk,f

s

)
, n− s 6 u

Ext∗,∗
Z/ps

(
Z
[
ξpn−s−u

]ps ,Mk,f
s

)
, n− s > u.

The rest follows from [3, Prop. 2.2].

Theorem 3.2.4 along with Propositions 3.2.7 and 3.2.11 imply that
the equivariant Khovanov homology contains an abundance of tor-
sion not present in the classical Khovanov homology. However, we
can use the additional algebraic structure of the equivariant Kho-
vanov homology to obtain some information about this extra tor-
sion. To be more precise, Proposition 2.2.18 implies that the equiv-
ariant Khovanov homology Kh∗,∗,p

s

Z/pn
(D) is a module over the ext ring

Ext∗Z[Z/pn] (Z [ξps ] , Z [ξps ]). This is the key to understand the addi-
tional torsion.

Proposition 3.2.12. For any r > 0, the ring Ext∗Z[Z/pn] (Z [ξps ] , Z [ξps ])

acts on IIEr, where (IIEr,dr) is the Cartan-Eilenberg spectral sequence
converging to Kh∗,∗,p

s

Z/pn
(D). To be more precise, the ring

Ext∗Z[Z/pn] (Z [ξps ] , Z [ξps ])

acts on the columns of the spectral sequence.

IIE
i,j
r ⊗Z ExtkZ[Z/pn] (Z [ξps ] , Z [ξps ])→ IIE

i,j+k
r .

Moreover, on E1 page this action agrees with the natural action of the
ext ring on the module Ext∗,∗

Z[Z/pn]

(
Z [ξps ] , CKhi,∗(D)

)
.

Proof. It is a direct consequence of theorem 2.2.20, because the appro-
priate version of the Cartan-Eilenberg spectral sequence for

Ext∗Z[Z/pn] (Z [ξps ] , Z [ξps ])

collapses at E1.

Corollary 3.2.13. Let Ts denote the cohomology class in the ext ring

Ts ∈ Ext2Z[Z/pn] (Z [ξps ] , Z [ξps ])

from proposition 2.2.24. Multiplication by Ts

−∪ Ts : Khi,∗,p
s

Z/pn
(D)→ Khi+2,∗,ps

Z/pn
(D)

is an epimorphism for i = n+ and isomorphism for i > n+.
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Remark 3.2.14. This is an analogue of [34, Lemma 1.1].

Proof. Proposition 2.2.24 implies that on the E1 page of the Cartan-
Eilenerg spectral sequence, Ts acts by epimorphisms for j = 0 and by
isomorphisms for j > 0. First, we will show that this is also the case
for r > 1.

Lemma 3.2.15. For r > 1, then multiplication by Ts

IIE
i,j
r → IIE

i,j+2
r .

is an epimorphism for j = 0 and an isomorphism for j > 0.

Proof. The argument is inductive. As it was pointed out earlier, the
case of r = 1 follows readilly from Proposition 2.2.24. To perform
the inductive step, notice that there exists the following commutative
diagram of short exact sequences,

0 B
i,j
r K

i,j
r E

i,j
r+1 0

0 B
i,j+2
r K

i,j+2
r E

i,j+2
r+1 0

−∪ Ts −∪ Ts −∪ Ts

where

Bi,jr = Imdr ∩ Ei,jr ,

Ki,jr = kerdr ∩ Ei,jr .

From the inductive hypothesis we know that the two leftmost ver-
tical homomorphisms are epimorphisms or isomorphisms, respec-
tively, thus the third vertical homomorphism is an epimorphism or
isomorphism, respectively, by the Five Lemma.

Since the filtration, from which the Cartan-Eilenberg spectral se-
quence originates, is finite, it guarantees that the maps of the spectral
sequence induced by Ts converges to the right target. To retrieve the
map on the equivariant Khovanov homology it is necessary to ana-
lyze the map on each step of the filtration. This is also done induc-
tively. The starting point is the consideration of

Fn+(D) Khn,∗,ps
Z/pn

(D) = En+(D),n−n+(D)+1∞ .

The indcutive step is performed with the aid of the following com-
mutative diagram of exact sequences

0 FpKhn,∗,ps
Z/pn

(D) Fp−1Khn,∗,ps
Z/pn

(D) E
p−1,n−p+1∞ 0

0 FpKhn+2,∗,ps
Z/pn

(D) Fp−1Khn+2,∗,ps
Z/pn

(D) E
p−1,n−p+3∞ 0

−∪ Ts −∪ Ts −∪ Ts
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The inductive step consists of noticing that if n > n+ the Corollary
follows by application of the Five Lemma.

Corollary 3.2.16. For i > n+, Khi,∗,1
Z/pn

(D) is annihilated by pn, and

for 1 6 s 6 n, Khi,∗,p
s

Z/pn
(D) is annihilated by pn−s+1.

Proof. This follows from previous corollary and the fact that pnT0 = 0
and pn−s+1Ts = 0, for 1 6 s 6 n.

3.2.2 Rational equivariant Khovanov homology

Since the rational group algebra Q [Z/n] is semi-simple and artinian,
the algebraic structure of the equivariant Khovanov homology with
rational coefficients simplifies considerably.

Proposition 3.2.17. If D is an n-periodic link diagram, then

CKh∗,∗(D; Q) ∼=
⊕
d|n

CKh∗,∗,d
Z/n

(D; Q),

where

CKh∗,∗,d
Z/n

(D; Q) = HomQ[Z/n] (Q [ξd] , CKh∗,∗(D; Q)) .

Moreover,
CKh∗,∗,d

Z/n
(D; Q) = CKh∗,∗(D; Q) · ed,

and

Kh∗,∗,d
Z/n

(D; Q) = Kh∗,∗(D; Q) · ed = H∗,∗(CKh(D; Q) · ed),

where ed is one of the central idempotents from Example 1.

Proof. The proposition is a consequence of the Wedderburn decom-
position and Schur’s Lemma. For more details refer to chapter 2.1.1
or [6, Chap. 1].

The above proposition has the following corollary.

Corollary 3.2.18. Suppose that D is an n-periodic diagram of a link.
Choose d | n. If for any i, j we have dimQ Khi,j(D; Q) < ϕ(d), wher ϕ
denotes the Euler’s totient function, then Kh∗,∗,d

Z/n
(D; Q) = 0.

Proof. Indeed, since Kh∗,∗,d
Z/n

(D; Q) is a Q [ξd] vector space, it follows

that dimQ Kh∗,∗,d
Z/n

(D; Q) is divisible by dimQ Q [ξd] = ϕ(d).

The above corollary can be used to compute the equivariant Kho-
vanov homology in some cases.

Corollary 3.2.19. Let T(n, 2) be the torus link. Let d > 2 be a divisor
of n. According to Example 3.1.3, T(n, 2) is d-periodic. Let d ′ > 2 and
d ′ | d.

Kh∗,∗,d
′

Z/d
(T(n, 2); Q) = 0.
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Proof. Indeed, because according to [10, Prop. 35] for all i, j we have

dimQ Khi,j(T(n, 2); Q) 6 1

and ϕ(d ′) > 1 if d ′ > 2.

Corollary 3.2.20. Let gcd(3,n) = 1. The 3-equivariant Khovanov ho-
mology Kh∗,∗,3

Z/3
(T(n, 3); Q) of the torus knot T(n, 3) vanishes.

If d > 2 divides n, d ′ > 2 and d ′ | d, then Kh∗,∗,d
′

Z/d
(T(n, 3); Q) = 0.

Proof. Indeed, because [33, Thm. 3.1] implies that for all i, j we have

dimQ Khi,j(T(n, 3); Q) 6 1,

provided that gcd(3,n) = 1.



4
T H E S P E C T R A L S E Q U E N C E

Computation of the classical Khovanov homology is usually done
with the aid of the exact sequence from Theorem 2.3.21, applied to
a chosen link crossing, which is then resolved in two different ways.
However, resolution of a single crossing kills the symmetry of the pe-
riodic link diagram in question. Instead, we need to resolve a whole
orbit of crossings to obtain another periodic diagram. But this is not
sufficient to recover the equivariant Khovanov homology. We have to
take into account all possible resolutions of a chosen orbit of cross-
ings. These data are organized into a spectral sequence the construc-
tion of which is the main goal of this chapter. During the construc-
tion, we obtain a filtration which can be applied to get the spectral
sequence from [8]. The spectral sequence that we obtain is applied
to the computation of the 2-equivariant Khovanov homology of torus
links T(n, 2).

4.1 construction of the spectral sequence

Start with a link L and its n-periodic diagram D. Choose a subset of
crossings X ⊂ CrD.

Definition 4.1.1. Let α : Cr(D)→ {0, 1, x} be a map.

1. If i ∈ {0, 1, x} define |α|i = #α−1(i).

2. Define the support of α to be suppα = α−1({0, 1}).

3. Define also the following family of maps

Bk(X) = {α : Cr(D)→ {0, 1, x} | suppα = X, |α|1 = k}.

4. Denote by Dα the diagram obtained from D by resolving cross-
ings from α−1(0) by 0- and from α−1(1) by 1-smoothing.

First, we will work with CKh(D), as defined in 2.3.19, and construct
a filtration on this complex. The filtration on CKh(D) will be obtained
from this one by an appropriate shift in degree.

Fix a crossing c ∈ Cr(D) and consider three functions

α0,α1,αx : Cr(D)→ {0, 1, x},

which attain different value at c, i.e. α1(c) = 1, αx(c) = x and α0(c) =
0, and are identical otherwise. This data yields the following short
exact sequence of complexes.

0→ CKh(Dα1)[1]{1}→ CKh(Dαx)→ CKh(Dα0)→ 0, (6)

47
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as in [33]. However, according to Theorem 2.3.21 there exists a chain
map

δc : CKh(Dα0)→ CKh(Dα1){1},

such that CKh(Dαx) = Cone(δc), where Cone(δc) denotes the alge-
braic mapping cone of δc, and (6) is the corresponding short exact
sequence of complexes. The map δc is obtained as follows. We iden-
tify CKh(Dα0) and CKh(Dα1) with submodules of CKh(Dαx) “gen-
erated” by Kauffman states with c resolved by 0- or 1-smoothing,
respectively. As a graded module CKh(Dαx) splits in the following
way

CKh(Dαx) = CKh(Dα0)⊕CKh(Dα1).

Additionally, CKh(Dα1) is a subcomplex. If π1 denotes the projec-
tion of CKh(Dαx) onto CKh(Dα1) and i0 denote the inclusion of
CKh(Dα0), then

δc = π1 ◦ d ◦ i0.

When we consider two crossings c and c ′, we obtain the following
bicomplex

CKh(Dα10){1}

CKh(Dα00) ⊕ CKh(Dα11){2}

CKh(Dα01){1}

where α00, α10, α01, α11 differ only at c or c ′ and

α00(c) = α(c
′) = 0,

α10(c) = 1, α10(c
′) = 0,

α01(c) = 0, α01(c
′) = 1,

α11(c) = α11(c
′) = 1.

The horizontal maps are defined analogously as in the previous case.
The total complex of the above bicomplex is equal to the shifted Kho-
vanov complex ofDαxx , where αxx agrees with α00, α10, α01 and α11
outside c and c ′ and

αxx(c) = αxx(c
′) = x.

Continuing this procedure we obtain the following bicomplex

Ni,j,k =


⊕

α∈Bi(X)
CKh

j,k
(Dα){i}, 0 6 i 6 #X,

0, otherwise.

The total complex of N, denoted by Tot(N)∗,∗ and defined by

Tot(N)i,j =
⊕
k+l=i

Nk,l,j,

is equal to the shifted Khovanov complex CKh(D).
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Definition 4.1.2. Let M∗,∗,∗ be a bicomplex of graded Z-modules
such that

Mi,j,k =


⊕

α∈Bi(X)
CKhj,k(Dα)[c(Dα)]{i+ 3c(Dα) + #X}, 0 6 i 6 #X,

0, otherwise,

where c(Dα) = n−(Dα) −n−(D). Vertical differentials

Mi,j,∗ →Mi,j+1,∗

are sums of ±1 multiplicities of differentials in the respective Kho-
vanov complexes. Horizontal differentials

Mi,j,∗ →Mi+1,j,∗,

on the other hand, are induced from the appropriate horizontal maps
in the bicomplex N∗,∗,∗.

Proposition 4.1.3. The total complex of M∗,∗,∗ is equal to the Kho-
vanov complex CKh(D).

Proof. Since the total complex of N∗,∗,∗ is equal to CKh(D) and

CKh(D) = CKh(D)[−n−(D)]{n+(D) − 2n−(D)},

we only need to check, that the application of the proper shift to N
results in M.

Ni,j,k[−n−(D)]{n+(D) − 2n−(D)} =

=
⊕

α∈Bi(X)

CKh
j,k

(Dα)[−n−(D)]{i+n+(D) − 2n−(D)} =

=
⊕

α∈Bi(X)

CKhj,k(Dα)[c(Dα)]{i+ 2c(Dα) +n+(D) −n+(Dα)} =

=
⊕

α∈Bi(X)

CKhj,k(Dα)[c(Dα)]{i+ 3c(Dα)#X} =Mi,j,k,

because

n+(D) −n+(Dβ) =

= # Cr(D) −n−(D) − (# Cr(D) − #X−n−(Dβ)) =

= c(Dβ) + #X.

Definition 4.1.4. Let

Fi(X) = Tot(
⊕
j>i

Mj,∗,∗),

for 0 6 i 6 #X. The family {Fi(D)}i is a filtration of the Khovanov
complex. This filtration is sometimes called the the column filtration
of the bicomplex M∗,∗,∗, see [13, Thm. 2.15].
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The following theorem was first proved in [8].

Theorem 4.1.5. Let D be a link diagram and let X ⊂ Cr(D). The pair
(D,X) determines a spectral sequence

{E∗,∗,∗r ,dr}

of graded modules converging to Kh∗,∗(D) such that

E
i,j,∗
1 =

⊕
β∈Bi(X)

Khj,∗(Dβ)[c(Dβ)]{i+ 3c(Dβ) + #X},

where c(Dβ) = n−(Dβ) −n−(D).

Proof. This is the spectral sequence associated to the column filtration
of the bicomplex M as in [13, Thm. 2.15].

Suppose now, that D is an n-periodic link diagram. If X ⊂ CrD is
invariant, under the action of Z/n, then for any 0 6 k 6 #X there
exists an induced action on Bk(X). Hence, each member Fk(X), for
0 6 k 6 #X, of the filtration is invariant under the action of Z/n. This
discussion leads to the following conclusion.

Proposition 4.1.6. If X ⊂ CrD is an invariant subset, then every mem-
ber of the filtration, from Definition 4.1.4 is a Z [Z/n]-subcomplex of
CKh(D).

From now on, we will assume that X consists of a single orbit of
crossings. We will perform analysis of the quotients Fi(X)/Fi+1(X)

to determine their structure as Z [Z/n]-modules.

Definition 4.1.7. Let 0 6 i 6 n and d | gcd(n, i). Analogously as in
the previous chapter denote by Bdi (X) the subset of Bi(X) consisting
of maps satisfying Iso(α) = Z/d. Also denote by B

d
i (X) the quotient

of Bdi (X) by Z/n.

Lemma 4.1.8. If α ∈ Bdi (X), then Dα is Z/d-periodic.

Proof. The Lemma follows readily, because such diagrams have simi-
lar structure as the Kauffman states belonging to Sdi (D), as in Defini-
tion 3.1.6.

Proposition 4.1.9. Suppose, that n is odd, then for 0 6 i 6 n

Fi(X)/Fi+1(X) =

=
⊕

d|gcd(n,i)

⊕
α∈Bdi (X)

IndZ/n

Z/d
(CKh(Dα)[t(α)]{q(α)}) ,

where

t(α) = c(Dα) + i,

q(α) = i+ 3c(Dα) +n.
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Proof. To proof of the Lemma uses an adaptation of the argument
from the proof of Lemma 3.1.9 and Corollary 3.1.10.

Proposition 4.1.10. Let n = 2. Under this assumption we have

F0(X)/F1(X) = CKh(Dα00)[t(α00)]{q(α00)}⊗Z Z
⊗
c(Dα00 )

2
− ,

F1(X)/F2(X) = CKh(Dα10)[t(α10)]{q(α10)}⊗Z Z [Z/2] ,

F2(X) = CKh(Dα11)[t(α11)]{q(α11)}⊗Z Z
⊗
c(Dα11 )

2 +1
− .

Proof. The middle equality follows easily, because complexes corre-
sponding to Dα10 and Dα01 are freely permuted by Z/2.

To check the first and third inequality, recall from Equation 3 from
Chapter 3 the sign convention. We have two distinguished crossings
c1, c2 ∈ suppα00. Let us denote by T , as in Chapter 3, the tangle
from which D was constructed. Let x1, x2 ∈ Λ∗WT be such that x1 ⊗
x2 corresponds to certain Kauffman state of Dα00 . According to our
convention, the permutation map acts on CKh(Dα00) as follows

x1 ⊗ x2 7→ (−1)
n−(Dα00 )

2 +degx1 degx2x2 ⊗ x1,

whereas on CKh(D) it acts as follows.

x1 ⊗ x2 7→ (−1)
n−(D)
2 +degx1 degx2x2 ⊗ x1.

Comparison of the two coefficients yields, that we need to twist the

action of Z/2 on CKh(Dα00) by Z
⊗
c(Dα00 )

2
− .

Analogous argument applied to D11 yields the third equality.

Let p be an odd prime and n > 0 an integer. We state the next the-
orem only for 2-periodic and pn-periodic links, since these cases will
be of importance in the remainder part of the thesis. The statement
in other cases can be analogously derived, however we omit it due to
its technical complication, which dims the whole idea of the spectral
sequence.

Theorem 4.1.11. Let L be a pn-periodic link, where p is an odd prime,
and let X ⊂ CrD consists of a single orbit. Then for any 0 6 s 6
n there exists a spectral sequence {pn−sE

∗,∗
r ,dr} of graded modules

converging to Kh∗,∗,p
n−s

Z/pn
(D) with

pn−sE
0,j
1 = Khj,∗,p

n−s

Z/pn
(Dα0)[c(Dα0)]{q(α0)},

pn−sE
pn,j
1 = Khj,∗,p

n−s

Z/pn
(Dα1)[c(Dα1)]{q(α1)},

pn−sE
i,j
1 =

⊕
06v6ui

⊕
α∈Bp

v

i (X)

Khj,∗,k(v,s)
Z/pv

(Dα)[c(Dα)]{q(α)}
`(v,s)
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for 0 < i < pn, and 0 otherwise, i = puig, where gcd(p,g) = 1 and
α0, α1 the unique elements of B0(X) and Bpn(X), respectively. Above
we used

q(α) = i+ 3c(Dα) + p
n,

k(s, v) =

{
1, v 6 s,

pv−s, v > s,

`(s, v) =

{
ϕ(pn−s), v 6 s,

pn−v, v > s,

The E1 pages of the respective spectral sequences for 2-periodic
links are given below.

1E
0,j
1 = Khj,∗,s(D00)

Z/2
(D00){3c(D00) + 2},

1E
1,j
1 = Khj,∗(D01){3c(D01) + 3},

1E
2,j
1 = Khj,∗,3−s(c(D11))

Z/2
(D11){3c(D11) + 4},

2E
0,j
1 = Khj,∗,3−s(D00)

Z/2
(D00){3c(D00) + 2},

2E
1,j
1 = Khj,∗(D01){3c(D01) + 3},

2E
2,j
1 = Khj,∗,s(c(D11))

Z/2
(D11){3c(D11) + 4},

where s ∈ {1, 2} and

s(Dα) ≡
c(Dα)

2
(mod 2)

Proof. In the odd case apply Theorem 2.2.21 to the filtration F∗(X).
Use Proposition 4.1.9 and Eckamann-Shapiro Lemma to compute the
entries in the E1 page as in the proof of Proposition 3.2.11.

In the even case apply Theorem 2.2.21 and Proposition 4.1.10.

4.2 sample computations

The purpose of this section is to compute the rational 2-equivariant
Khovanov homology of torus links T(n, 2). Before we start, however,
let us define the equivariant Khovanov and Jones polynomials. Al-
though we study their properties in the next chapter, we define them
here to simplify the statements of the results presented in this section.

Definition 4.2.1. Let L be an n-periodic link. For d | n, define the d-th
equivariant Khovanov polynomial of L as follows

KhPn,d(L)(t,q) =
∑
i,j

tiqj dimQ[ξd] Khi,j,d(L; Q)

and the d-th equivariant Jones polynomial of L as

Jn,d(L)(q) = KhPn,d(L)(−1,q).
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+

+ +

−

Figure 10: Anticommutative cube for T(2, 2)

Let us, however, start with T(2, 2), which serves as a basis for fur-
ther calculations.

Example 4.2.2. Consider the Hopf link as on Figure 13 for n = 2.
Its Khovanov bracket is depicted on Figure 10. Figures 11 and 12 de-
pict CKh∗,∗,1

Z/2
(T(2, 2)) and CKh∗,∗,2

Z/2
(T(2, 2)), respectively. Equivariant

Khovanov and Jones polynomials of T(2, 2) are given below.

KhP2,1(T(2, 2))(t,q) = 1+ q2 + t2q4

KhP2,2(T(2, 2))(t,q) = t2q6

J2,1(T(2, 2))(q) = 1+ q
2 + q4

J2,2(T(2, 2))(q) = q
6

Let us also state the following proposition from [10], which de-
scribes the Khovanov homology of torus links T(n, 2). We will use it
extensively throughout this section.

Proposition 4.2.3. The Khovanov polynomial of Kh(T(n, 2)) is equal
to

KhP(T(2k, 2)) = q2k−2 + q2k + t2q2k+2(1+ tq4)
k−2∑
j=0

t2jq4j

+ t2kq6k−2 + t2kq6k,

KhP(T(2k+ 1, 2)) = q2k−1 + q2k+1 + t2q2k+3(1+ tq4)
k−1∑
j=0

t2jq4j,

for k > 1.
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i
j

0 1 2

0

2

4

X⊗X

1⊗X−X⊗ 1

1⊗X+X⊗ 1

1⊗ 1

(X,X)

(1, 1) 1⊗X−X⊗ 1

Figure 11: Computation of Kh∗,∗,1
Z/2

(T(2, 2); Q).

i
j

0 1 2

2

4

6

1
2(−X,X)

1
2(−1, 1)

X⊗X

1⊗X+X⊗ 1

1⊗ 1

Figure 12: Computation of Kh∗,∗,2
Z/2

(T(2, 2); Q).
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Figure 13: The 2-periodic diagram of T(n, 2). The chosen orbit of crossings
is marked with red circles.

Theorem 4.2.4. Khovanov polynomials of the 2-equivariant Khovanov
homology of torus links T(n, 2) are given below.

KhP2,1(T(2n+ 1, 2)) = KhP(T(2n+ 1, 2))

KhP2,2(T(2n+ 1, 2)) = 0

KhP2,1(T(2n, 2)) = KhP(T(2n, 2)) − t2nq6n

KhP2,2(T(2n, 2)) = t2nq6n

Consider the 2-periodic diagram D of T(n, 2) from Figure 13 with
the chosen orbit marked with red circles. Orient the diagram so that
all crossings are positive. The associated bicomplex in Kob (0) is de-
picted on Figure 14.

Lemma 4.2.5. The 0-th column of the E1 page of the spectral sequence
from Theorem 4.1.11 applied to the 2-periodic diagram D, has the
following form.

1E
0,j,k
1 = Khj,k−1,1

Z/2
(T(n− 1, 2))⊕Khj,k−3,1

Z/2
(T(n− 1, 2)),

2E
0,j,k
1 = Khj,k−1,2

Z/2
(T(n− 1, 2))⊕Khj,k−3,2

Z/2
(T(n− 1, 2)).

Proof. From figure 14 it is not hard to see, that the diagram D00 rep-
resents the split sum T(n − 1, 2) t U, where U denotes the unknot.
Additionally, D00 inherits orientation from D, therefore c(D00) = 0,
because D was oriented so that all crossings are positive. This con-
cludes the proof.
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Figure 14: Bicomplex associated to the 2-periodic diagram of T(n, 2) from
figure 13.

n− 2 strands

Figure 15: Diagram D ′ isotopic to the diagram of the D01.
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n− 2 strands n− 2 strands

Figure 16: 0- and 1- smoothings of the diagram D ′, respectively.

Lemma 4.2.6. The 2-nd column of the E1 page of the spectral se-
quence from theorem 4.1.11 applied to the 2-periodic diagram D, has
teh following form.

1E
2,j,k
1 = Khj,k−4,2

Z/2
(T(n− 2, 2))

2E
2,j,k
1 = Khj,k−4,1

Z/2
(T(n− 2, 2))

Proof. From figure 14 it follows that D11 = T(n− 2, 2). It is not hard
to check that we can orient D11 in such a way that all crossings are
positive, therefore c(D11) = 0. This finishes the proof.

Lemma 4.2.7. The 1-st column of the E1 page of the spectral sequence
from theorem 4.1.11 applied to the 2-periodic diagram D has the fol-
lowing form.

1E
1,j,k
1 = 2E

1,j,k
1 =


Khj,k−4(T(2k− 2, 2)), j < 2k− 2,

Q{6k− 4}, j = 2k− 2,

Q{6k}, j = 2k− 1,

0, j > 2k− 1,

if n = 2k and

1E
1,j,k
1 = 2E

1,j,k
1 =


Khj,k−4(T(2k− 1, 2)), j < 2k,

Q{6k+ 1}⊕Q{6k+ 3}, j = 2k,

0, j > 2k,

if n = 2k+ 1.
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Proof. Let us denote by D01 one of the diagrams in the middle col-
umn of Figure 14. First, let us compute c(D01). It is not hard to see,
that D01 can be oriented in such a way that all crossings are positive.
Therefore c(D01) = 0.

Let us denote by D ′ the diagram from Figure 15. Orient it, so that
all crossings are positive. Quick inspection shows that D01 and D ′

are isotopic. In order to prove the lemma, let us compute Kh(D ′). To
do this we will use the exact triangle from 2.3.21 with respect to the
crossing marked on Figure 15. Let D ′0 and D ′1 denote the 0- and 1-
smoothing of D ′, respectively, as on Figure 16. The 0-smoothing is
the torus link T(n− 2, 2) with c(D ′0) = 0. On the other hand, D ′1 is a
diagram of the unknot with c(D ′1) = n− 2.

Consider first the case n = 2k, for k > 1. In the long exact se-
quence derived from Theorem 2.3.21 almost all terms corresponding
to Kh(D ′1) vanish. There are only two non-vanishing terms. Further
inspection of the long exact sequence yields that there can be only
one possibly non-vanishing morphism in this sequence.

Q = Kh2k−2,6k−6(T(2k− 2, 2)) δ→ Kh0,−1(U) = Q

Suppose that δ = 0 and notice that if n = 2k, then D ′ represents a
knot. It is not hard to see, that the Khovanov homology of this knot is
concentrated only on two diagonals j− 2i = 2k− 3, 2k− 1, regardless
of whether δ vanishes or not. Further, if δ vanishes, then

KhP(D ′) = qKhP(T(2k− 2, 2)) + t2k−1q6k−7 + t2k−1q6k−5. (7)

On the other hand, [12, Thm. 4.4] and [22, Prop. 3.3] imply that

KhP(D ′) ≡ qs(D ′)(q+ q−1) (mod (1+ tq4)), (8)

for some integer s(D ′). However, from (7) it follows that

KhP(D ′) ≡ q2k−3 + q2k−1+
+ q−8k+8(q6k−7 + q6k−5)(1− q−4) (mod (1+ tq4)),

which contradicts (8). Thus, δ must be non-trivial.
If n = 2k+ 1, there is also only one case to consider. Namely

Q = Kh2k−1,6k−3(T(2k− 1, 2))→ Kh0,−1(U) = Q.

Notice that D ′ represents a 2-component link, whose Khovanov ho-
mology is concentrated on two diagonals. Therefore, analogously as
in the previous case, [12, Thm. 4.4] and [22, Prop. 3.3] imply that

KhP(D ′) ≡ qs(q+ q−1) + t`qs ′(q+ q−1) (mod (1+ tq4)), (9)

where ` denotes the linking number of the components of D ′. Argu-
ment analogous as in the even case yields that now δmust vanish.
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Proof of Thm. 4.2.4. The proof is inductive. The first case was done in
Example 4.2.2.

Consider first T(2n+ 1, 2). From lemmas 4.2.5, 4.2.6 and 4.2.7 we
can derive the E1 page spectral sequence 2E

∗,∗,∗
∗ , which is depicted

on Figures 17. In order to finish the computation we need to apply
Proposition 3.2.17 and Proposition 4.2.3. Since

Kh2n+1,∗(T(2n+ 1, 2)) = Q{6n+ 3},

Kh2n,∗(T(2n+ 1, 2)) = Q{6n− 1},

if follows easily from Proposition 4.2.3 that the differential

d0,2n
1 : 2E

0,2n,∗
1 → 2E

1,2n,∗
1

is an isomorphism. Analogous comparisons of grading of 2E
1,k
1 and

Khk+1,∗(T(2n+ 1, 2)) yield that 2E
∗,∗,∗
2 is zero. Thus,

Kh∗,∗,2
Z/2

(T(2n+ 1, 2)) = 0,

and consequently

Kh∗,∗,1
Z/2

(T(2n+ 1, 2)) = Kh∗,∗(T(2n+ 1, 2)).

Consider now T(2n, 2). The E1 page of the spectral sequence is pre-
sented on Figure 17. Comparison of gradings of 2E

∗,∗,∗
1 and gradings

of Kh∗,∗(T(2n− 2, 2)) yields that the only non-zero entry of 2E
∗,∗,∗
2 is

2E
1,2n−1,6n
2 = Q.

Therefore,
Kh∗,∗,2

Z/2
(T(2n, 2)) = Q[2n]{6n}.
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0 1 2

0

...

2n− 1

2n

Q{6n+ 3}

⊕
Q{6n+ 1}

Q{6n+ 3}

⊕
Q{6n+ 1}

Kh(T(2n− 1, 2)){4} Kh(T(2n− 1, 2)){4}

Figure 17: 2E
∗,∗,∗
1 of T(2n+ 1, 2).

0 1 2

0

...

2n− 3

2n− 2

2n− 1 Q{6n}

Q{6n− 4} Q{6n− 4}

Kh(T(2n− 2, 2)){4} Kh(T(2n− 2, 2)){4}

Figure 18: 2E
∗,∗,∗
1 of T(2n, 2).
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E Q U I VA R I A N T J O N E S P O LY N O M I A L S

The aim of this chapter is to investigate properties of equivariant ana-
logues of the Jones polynomial. We analyze their relations to the clas-
sical Jones and Khovanov polynomials. Next, we define the difference
polynomials and show that they satisfy an analogue of the skein rela-
tion. This leads us to a new criterion for periodicity of links, which is
a stronger version of the criterion given by J.H. Przytycki. Further, we
present a state sum expansion for the difference polynomials, which
leads us to a proof of the classical congruence of Murasugi. We con-
clude this chapter with proofs of the skein relation and the state sum
formula.

5.1 basic properties

First, let us recall the definition of the equivariant polynomials.

Definition 4.2.1. Let L be an n-periodic link. For d | n define a d-th
equivariant Khovanov polynomial by

KhPn,d(L)(t,q) =
∑
i,j

tiqj dimQ[ξd] Khi,j,d(L; Q)

and d-th equivariant Jones polynomial

Jn,d(L)(q) = KhPn,d(L)(−1,q).

The next theorem describes basic properties of equivariant Jones poly-
nomials.

Theorem 5.1.1. Let L be an n-periodic link and let d | n.

1. Equivariant Khovanov and Jones polynomials are invariants of
periodic links i.e. they are invariant under Reidemeister moves.

2. If J(L) denotes the ordinary unreduced Jones polynomial, then
the following equality holds.

J(L) =
∑
d|n

φ(d) Jn,d(L),

where φ denotes the Euler’s totient function.

3. If d | n and for all i, j we have dimQ Khi,j(L; Q) < ϕ(d), then

KhPn,d(L) = 0,

Jn,d(L) = 0.

61
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Proof. 1. First part of the theorem follows from theorem 3.2.3.

2. This follows readily from Proposition 3.2.17.

3. This is a reformulation of Corollary 3.2.18.

From now on we assume that all links are pn-periodic, for p an odd
prime and n > 0.

Definition 5.1.2. Suppose that D is a pn-periodic link diagram. De-
fine the difference Jones polynomials

DJn,s(D) = Jpn,ps(D) − Jpn,ps+1(D)

for 0 6 s 6 n.

Corollary 5.1.3. The following equality holds.

J(D) =

n∑
s=0

psDJn,s(D)

Proof. Proof follows from theorem 5.1.1 and a simple fact that

φ(ps) = ps − ps−1.

Example 5.1.4. Let Tk·pn+f denote the pn-periodic diagram of the
trivial link with k · pn + f components. Assume that this diagram
has k free orbits of components and f fixed circles. From Proposition
3.2.7 we obtain that the equivariant and difference Jones polynomials
of Tk·pn+f can be expressed in terms of polynomials Ps defined in
3.2.6. Indeed, Proposition 3.2.11 implies that

Kh0,∗,pn−u
Z/pn

(Tk·pn+f; Q) =

n⊕
s=n−u

⊕
i

H0(Z/pn−s, Qdi)ϕ(pn−u){i} =

=

n⊕
s=n−u

(Mk,f
s )ϕ(pn−u),

because

H0(Z/pn−s, Q
[
ξpn−s−u

]
) = homQ[Z/pn](Q, Q

[
ξpn−s−u

]
) = 0,

when n− s− u > 1, by Schur’s Lemma. Consequently

Jpn,pn−u(Tk·pn+f) =

n∑
s=n−u

qdimMk,f
s ,

DJn,n−u(Tk·pn+f) = qdimMk,f
n−u.
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One of the most important properties of the Jones polynomials is
the skein relation from Proposition 2.3.25. As it turns out, the differ-
ence polynomials satisfy an analogue of this property.

Theorem 5.1.5. The difference Jones polynomials have the following
properties

1. DJ0 satisfies the following version of the skein relation

q−2p
n

DJn,0

(
. . .

)
− q2p

n

DJn,0

(
. . .

)
=

=
(
q−p

n

− qp
n
)

DJn,0

(
. . .

)
,

where . . . , . . . and . . . denote the orbit
of positive, negative and orientation preserving resolutions of
crossing, respectively.

2. for any 0 6 s 6 n, DJs satisfies the following congruences

q−2p
n

DJn,n−s

(
. . .

)
− q2p

n

DJn,n−s

(
. . .

)
≡

≡
(
q−p

n

− qp
n
)

DJn,n−s

(
. . .

)
(mod qp

s

− q−p
s

).

Remark 5.1.6. We defer the proof of Theorem 5.1.5 to Section 5.3.

The above theorem has a number of consequences regarding the
Jones polynomial of a periodic link. For example, it enables us to
write down a few criterions for the periodicity of a link in terms of
its Jones polynomial. One such example was given by J.H. Przytycki
in [17].

Theorem 5.1.7. Suppose that L is a pn-periodic link. Then the follow-
ing congruence holds

J(L)(q) ≡ J(L)(q−1) (mod Ipn),

where Ipn is an ideal generated by the following monomials

pn,pn−1
(
qp − q−p

)
, . . . ,p

(
qp

n−1
− qp

−n−1
)

,qp
n

− q−p
n

.

Proof. Notice that

J
(

. . .
)
− J
(

. . .
)
≡

q2p
n

J
(

. . .
)
− q−2p

n

J
(

. . .
)
≡

n∑
s=0

pn−s
(
q2p

n

DJn,n−s

(
. . .

)
− q−2p

n

DJn,n−s

(
. . .

))
≡

≡ 0 (mod Ipn).
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Hence, switching crossings from a single orbit does not change the
Jones polynomial modulo Ipn . Since we can pass from L to its mirror
image L! by switching one orbit at at time, it follows that

J(L) ≡ J(L!) (mod Ipn).

Taking into account the relation between the Jones polynomials of L
and L!

J(L!)(q) = J(L)(q−1)

concludes the proof

The above theorem can be considerably strengthen with the aid of
Theorem 5.1.1.

Theorem 5.1.8. Suppose that L is a pn-periodic link and for all i, j we
have dimQ Khi,j(L; Q) < ϕ(ps), then the following congruence holds

J(L)(q) ≡ J(L)(q−1) (mod Ipn,s),

where Ipn,s is the ideal generated by the following monomials

qp
n

− q−p
n

,p
(
qp

n−1
− q−p

n−1
)

, . . . ,ps−1
(
qp

n−s+1
− q−p

n−s+1
)

.

Proof. First notice that Theorem 5.1.1 implies that for s ′ > s the equiv-
ariant Jones polynomials Jn,ps ′ (L) vanish. Therefore DJs ′ = 0. Corol-
lary 5.1.3 implies that

J(L) =
s−1∑
i=0

piDJi .

Now argue as in the proof of the previous Theorem to obtain the
desired result.

Example 5.1.9. Consider the 1061 knot from the Rolfsen table [23]. If
we are interested in the symmetry of order 5, then according to SAGE
[25], the following congruence holds

J(1061)(q) − J(1061)(q−1) ≡ 0 (mod q5 − q−5, 5(q− q−1)).

Hence, Przytycki’s Theorem does not obstruct 1061 to have symmetry
of order 5. However, if we notice that, as depictected on Figure 19,
dimension of Khi,j(1061) is always smaller that ϕ(5) = 4 and apply
Theorem 5.1.8 we obtain

J(1061)(q) − J(1061)(q−1) 6≡ 0 (mod q5 − q−5)

Consequently 1061 is not 5-periodic.
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i
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Figure 19: Ranks of Khi,j(1061) according to [24].

5.2 state sum for the difference polynomials

One of the most import property of the Jones polynomial is that it can
be written as a certain sum over all Kauffman states obtained from
the given diagram. This point of view on the Jones polynomial was
pioneered in [9]. In particular, if D is a link diagram, then the Jones
polynomial of the corresponding links expands into the following
sum

J(D) = (−1)n−(D)qn+(D)−2n−(D)
∑

s∈S(D)

(−q)r(s)(q+ q−1)k(s),

where k(s) denotes the number of components of the Kauffman state
s and r(s) denotes the number of 1-smoothings used to get the Kauff-
man state s, see [32, Lect. 1]. The purpose of this section is to show
that the difference Jones polynomials admit analogous expansion.

Theorem 5.2.1. Let D be a pn-periodic diagram of a link. Then for
any 0 6 m 6 n we have the following equality

DJn,n−m(D) = (−1)n−qn+−2n−
∑

m6v6n

∑
s∈Spv(D)

(−q)r(s) DJpv,pv−s(s).

For a Kauffman state s we write r(s) = r if s ∈ Sr(D), compare
Definition 3.1.6.
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Remark 5.2.2. The proof of the above Theorem is deffered to Section
5.3.

First application of the state sum formula of the difference Jones
polynomials is concerned with the following criterion for a knot to
be periodic. This is the classical criterion of Murasugi from [16].

Theorem 5.2.3. Let D be a pn-periodic link diagram. Let D∗ denote
the quotient diagram.

J(D) ≡ J(D∗)p
n

(mod p, (q+ q−1)α(D)(pn−1) − 1),

where

α(D) =

{
1, 2 - lk(D, F),

2, 2 | lk(D, F).

Above, F denotes the fixed point set.

Proof. Let us analyze the relation between DJn,0(D) and J(D∗).

Proposition 5.2.4. The following congruence holds.

DJn,0(D) ≡ J(D∗)p
n

(mod p, (q+ q−1)α(D)(pn−1) − 1).

Proof. Notice that the state formula for DJn,0(D) involves only Kauff-
man states which inherit Z/pn-symmetry. Such Kauffman states cor-
respond bijectively to the Kauffman states of the quotient diagram.

Let s be a Kauffman state obtained fromD such that Iso(s) = Z/pn.
Assume that s consists of k free orbits and f fixed circles. Thus, ac-
cording to Example 5.1.4 and Corollary 3.2.10 the Kauffman state con-
tributes

(−1)n−(D)+r(s)qn+(D)−2n−(D)+r(s)(qp
n

+ q−p
n

)k(q+ q−1)f ≡

≡ (−1)n−(D)+r(s)qn+(D)−2n−(D)+r(s)(q+ q−1)kp
n+f (mod p).

to the state sum for DJn,0. The quotient Kauffman state s∗ consists of
k+ f components. Hence, it contributes

(−1)p
n(n−(D∗)+r(s∗))qp

n(n+(D∗)−2n−(D∗)+r(s∗))(q+ q−q)p
n(k+f)

to J(D∗)p
n

mod p. The difference of both contributions is divisible by
(q+ q−1)f(p

n−1) − 1. Since

f ≡ lk(D, F) (mod 2),

the proposition follows.

We can conclude the proof once we note that

J(D) ≡ DJn,1(D) (mod p)

by Corollary 5.1.3.
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5.3 proofs

This section is entirely devoted to the presentation of proofs of The-
orems 5.1.5 and 5.2.1. These two proofs are very alike in principle,
therefore we only perform detailed calculations in the first proof, be-
cause the very same calculations are present in the second proof as
well.

5.3.1 Proof of Theorem 5.1.5

Let us begin with a definition.

Definition 5.3.1. Let {E∗,∗s ,ds} be a spectral sequence of graded finite-
dimensional F-modules, where F is a field, converging to some doubly-
graded finite-dimensional F-module H∗,∗. Suppose that the spectral
sequence collapses at some finite stage. Define the Poincaré polyno-
mial of the Es page to be the following polynomial.

P(Es)(t,q) =
∑
i,j

ti+j qdimF E
i,j
s

Poincaré polynomial admits the following decomposition

P(Es) =
∑
i

tiPi(Es),

where
Pi(Es) =

∑
j

tj qdimF E
i,j
s .

Lemma 5.3.2. For any s > 0 the following equality holds, whenever
it makes sense,

P(Es)(−1,q) = P(E∞)(−1,q).
Proof. This is a direct consequence of [13, Ex. 1.7].

Let us now analyze E1 pages of the spectral sequences from Theorem
4.1.11, for odd p. Let us make the following notation. If 1 6 i 6 pn−1,
then i = puig, where gcd(p,g) = 1. Poincaré polynomials of columns
are given below.

P0(pn−sE1) = t
c(Dα0)q3c(Dα0) KhPpn,pn−s(Dα0), (10)

Ppn(pn−sE1) = t
c(Dα1)q3c(Dα1)+2p

n

KhPpn,pn−s(Dα1), (11)

Pi(pn−sE1) =
∑

06v6min (s,ui)

∑
α∈Bp

v

i (X)

tc(Dα)qi+3c(Dα)+p
n

KhPpv,p1(Dα)+

+
∑

min (s,ui)<v6ui

∑
α∈Bp

v

i

tc(Dα)qi+3c(Dα)+p
n

KhPpv,pv−s(Dα).

(12)
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In order to make further computations more manageable let us intro-
duce the following notation.

Gi(v,w) =
∑
α∈Bp

v

i

tc(Dα)q3c(Dα) KhPpv,pw(Dα),

DJGi(v,w) = Gi(v,w)(−1,q) =
∑
α∈Bp

v

i

(−1)c(Dα)q3c(Dα) DJv,w(Dα)

so for 1 6 i 6 pn − 1 the Poincaré polynomial can be expressed as
the following more compact sum.

Pi(pn−sE1) = q
i+pn

min(s,ui)∑
v=0

Gi(v, 0)+ (13)

= qi+p
n

ui∑
v=min(s,ui)+1

Gi(v, v− s). (14)

Lemma 5.3.3. Following formula holds for the Poincaré polynomials

P(pn−sE1) − P(pn−s+1E1) =∑
16j6pn−s−1

tj·p
s

qj·p
s+pn

ui∑
v=s

(
Gjps(v, s− v) −Gjps(v, v− s+ 1)

)
+ tc(Dα0)q3c(Dα0)+p

n (
KhPpn,pn−s(Dα0) − KhPpn,pn−s+1(Dα0)

)
+ tc(Dα1)+p

n

q3c(Dα1)+2p
n (

KhPpn,pn−s(Dα1) − KhPpn,pn−s+1(Dα1)
)

.

Proof. Indeed, because

Pi(pn−sE1) − Pi(Epn−s+1E1) =

=

{ ∑ui
v=s (Gi(v, s− v)) −Gi(v, v− s+ 1)) , ps | i,

0, ps - i,

which can be easily verfied using formula (13).

Corollary 5.3.4. The following formula holds for the difference poly-
nomials

DJn,n−s(D) =∑
16j6pn−s−1

(−1)j·p
s

qj·p
s+pn

ui∑
v=s

DJGjps(v, v− s)

+ (−1)c(Dα0)q3c(Dα0)+p
n

DJn−s(Dα0)

+ (−1)c(Dα1)+p
n

q3c(Dα1)+2p
n

DJn−s(Dα1).

Proof. It follows easily from previous Lemma by substituting t = −1

and noting that P(pn−sE1)(−1,q) = Jpn,pn−s(D), by Lemma 5.3.2.
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Definition 5.3.5. For any 0 6 i 6 pn define a map

κ : Bi(X)→ Bpn−i(X)

κ(β)(c) =

{
1−β(c), c ∈ X,

β(c), c /∈ X.

Proposition 5.3.6. Let D be pn-periodic link diagram and let X ⊂
CrD be a chosen orbit of crossings. Suppose that all crossings from X

are positive and letD! denote invariant link diagram obtained fromD

by changing all crossings from X to negative ones. Then the following
equalities hold

Dα = D!
κ(α)

|κ(α)|u = pn − |α|u, for u = 0, 1,

c(Dα) = c(D
!
κ(α)) + p

n

Proof. The first two equalities are direct consequences of definitions.
To prove the third one notice that

n−(D) = n−(D
!) − pn.

Therefore

c(Dα) = n−(Dα) −n−(D) = n−(D
!
κ(α)) −n−(D

!) + pn =

= c(D!
κ(α)) + p

n.

Proof of Theorem 5.1.5. To prove the first part notice that from corol-
lary 5.3.4 it follows that

DJn,0(D) = (−1)c(Dα0)q3c(Dα0)+p
n

DJn,0(Dα0)

+ (−1)c(Dα1)+p
n

q3c(Dα1)+2p
n

DJn,0(Dα1),

because Dα0 and Dα1 are the only diagrams with isotropy group
equal to Z/pn, because these are the only invariant diagrams.

Now without loss of generality assume that the chosen orbit of
crossings consists of positive crossings. Then Dα0 inherits orienta-
tions from D and therefore c(Dα0) = 0. Therefore

DJn,0

(
. . .

)
= qp

n

DJn,0

(
. . .

)
+ (−1)c(Dα1)+p

n

q3c(Dα1)+2p
n

DJn,0(Dα1),

On the other hand for D! as in the previous proposition D!
α1

inher-
its orientation. Furthermore c(D!

α1
) = −pn. This gives the following

equality

DJn,0

(
. . .

)
= (−1)c(D

!
α0

)q3c(D
!
α0

)+pn DJn,0(D
!
α0

)

+ q−p
n

DJn,0

(
. . .

)
,
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Denote c = c(Dα1), then Dα1 = D!
α0

and c(D!
α0

) = c− pn by Propo-
sition 5.3.6. Therefore

DJn,0

(
. . .

)
= qp

n

DJ0
(

. . .
)

+ (−1)c+p
n

q3c+2p
n

DJn,0(Dα1),

DJn,0

(
. . .

)
= (−1)c−p

n

q3c−2p
n

DJn,0(Dα0)

+ q−p
n

DJ0
(

. . .
)

.

From the above equalities the first part of the theorem follows easily.
To prove the second part, notice that Proposition 5.3.6 implies that

for v > s the following equality holds.

(−1)iqi−p
n

DJGi(v, v− s)(D) − (−1)p
n−iq4p

n−iDJGi(v, v− s)(D!) =

=
∑
α∈Bp

v

i

(−1)c+p
n+1q3c+3p

n

DJv,v−s

(
qi−p

n

− qp
n−i
)
(Dα).

Consequently, if ps | i, then the above difference is divisible by qp
s
−

q−p
s
. To finish the proof combine formula 5.3.4 and with the discus-

sion above.

5.3.2 Proof of Theorem 5.2.1

Proof of Theorem 5.2.1. According to the definition, the equivariant Jones
polynomials, can be written as the following sum.

q−n+(D)+n−(D) Jpn,pn−s(D) =

=

n+(D)∑
r=n−(D)

(−q)r qdim
Q[ξpn−s ]

HomQ[Z/pn]

(
Q
[
ξpn−s

]
, CKhr−n−(D),∗(D)

)
.

(15)

Thus, the only thing we need to do is to determine the quantum
dimension of the following graded module

HomQ[Z/pn]

(
Q
[
ξpn−s

]
, CKhr−n−(D),∗(D)

)
for 0 6 r 6 n+(D) + n−(D). Performing calculations as in the proof
of Theorem 4.1.11. Let r = purg, where gcd(p,g) = 1. We obtain the
following formula.

qdim HomQ[Z/pn]

(
Q
[
ξpn−s

]
, CKhr−n−(D),∗(D)

)
=

=

min(s,ur)∑
v=0

∑
s∈Sp

v
r (D)

Jpv,1(s) +

ur∑
v=min(s,ur)+1

∑
s∈Sp

v
r

Jpv,pv−s(s).

Plugging the above formula into (15) and taking the difference

Jpn,pn−s(D) − Jpn,pn−s+1(D)

yields the desired formula.
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