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Chapter 1 

 

Introduction 

 

Cardiovascular diseases (CVDs), a group of disorders that affect the heart and blood vessels, 

are globally the leading cause of death. According to the World Health Organization,  

the number of people that will die annually from CVDs will increase from 17.3 million (2008) 

to 23.3 million in 2030 [1, 2]. Recently, several studies have identified an immune component 

as an important factor linking a distinct set of lifestyle elements that is involved in CVDs 

progression and that plays a significant role in the pathophysiology of CVDs [3].  

During the evolutionary process animals developed a highly complex system that maintains 

internal homeostasis. The immune system protects organisms against exogenous pathogens 

and enables repair of tissue damage caused by infection or trauma. This system can be divided 

into two strictly connected categories: innate and adaptive. The innate immune system, 

through a network of distinct pathogen recognition receptors (PRRs), recognizes pathogen-

associated molecular patterns (PAMPs) and creates the first line of defense [4]. Activation  

of the immune system leads through a distinct set of effector cells (e.g. macrophages, NK cells, 

dendritic cells) to an acute response which is nonspecific and limited to a number of irritants 

[5]. On the other hand, the adaptive immune system which consists of several subsets  

of T cells and B cells is far more diverse and refers to an antigen-specific immune response. 

Cytokines play a crucial role in regulating the immune response. These small proteins, 

expressed by different types of cells, can either stimulate proinflammatory responses  

(e.g. IL1β, IFNγ, TNFα) or suppress them (e.g. IL10, TGFβ). 

In spite of the immune system’s complexity in certain conditions, the inflammatory response 

may damage host tissue and participate in pathophysiology of the disease [6]. In some cases, 

e.g. sepsis, the acute and systemic immune response may cause multiple organ dysfunction 

[7]. In other diseases, loss of immunological tolerance to self-antigens, described as 

autoimmunity, plays an important role in progression of illness. This is a major health issue,  

as autoimmunity has been identified as a contributing factor of 80 different disorders that 

collectively impact 4-7% of the population in the United States [8]. Moreover, in many 

disorders that are related to CVDs, prolonged exposure to potentially toxic agents creates 
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damage-associated molecular patterns (DAMPs) that trigger chronic inflammation which 

affects progression of a disease [9].  

 

Chronic inflammation participates in the development of atherosclerosis, which is a leading 

cause of coronary artery disease (CAD) [10]. Pathomechanism of this disorder consists  

of endothelial dysfunction with leukocyte recruitment, de-differentiation of vascular smooth 

muscle cells and asymmetrical focal thickening of the vessel wall [11]. Over time, initial lesions 

may transform into fully developed atheroma characterized by the presence of different cell 

types and a lipid-rich core surrounded by a fibrotic cup (Fig. 1-1). 

 

 

Fig. 1-1. Involvement of inflammation in the plaque development. 1, In stress conditions, DAMPs and PAMPs 
are created. These ligands provoke innate immune responses in the arterial wall and increase the 
permeability of the blood vessels for lipoproteins. 2, Activation of the ECs leads to the expression of 
chemokines, cytokines which enhance adhesion and extravasation of the leukocytes (3). 4, Activated 
endothelial cells express macrophage colony-stimulating factor (CSF) and cause differentiation of the 
attracted monocytes into macrophages. Intimal macrophages can not only take-up oxLDL which transform 
them into foam cells but also express cytokines, matrix metalloproteinases (MMPs) and reactive oxygene 
species (ROS). 5, Other professional antigen-presenting cells, such as dendritic cells (DCs), can uptake 
lipoproteins and other DAMPs in order to present them on the cell surface for recognition by the T cells. 
Activated T cells produce inflammatory cytokines e.g. IFNγ or IL12. 6, Smooth muscle cells upon change their 
phenotype from contractile to synthetic and start to proliferate and produce inflammatory mediators.  

 
Atherosclerotic plaque can narrow the lumen of the vessel and cause ischemia of the 

surrounding tissue [12]. Furthermore, in certain conditions the plaque may rupture and 

release the content of the necrotic core which triggers blood clot formation in the vessel 

(thrombosis). A thrombus may cause stenosis of the vessel or can detach and become  

an embolus that can block the flow of blood distant from its point of origin [12].  
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In a healthy vessel the function of the endothelial cells (ECs) is to maintain vascular 

homeostasis by regulating blood flow and creating a semi-selective barrier between the lumen 

and surrounding tissue. At this stage the ECs exert anticoagulant, antiplatelet and fibrinolytic 

properties [13]. However, in stress conditions (e.g. dyslipidemia, hypertension or diabetes), 

DAMPs and PAMPs are created. These ligands provoke innate immune responses in the 

arterial wall and increase the permeability of the blood vessels for lipoproteins, such as for 

low-density lipoprotein (LDL) or its oxidized form called oxLDL. Indeed, it has been shown that 

activation of the ECs leads to the expression of adhesion molecules such as E-selectin and 

VCAM-1 which, together with CCL2 and CCL5 chemokines, begin to promote leukocyte 

adhesion and their recruitment to the vessel wall. Moreover, inhibition of these chemokines 

in hypercholesterolemic, atherosclerosis-susceptible apolipoprotein E-deficient mice leads to 

a 90% reduction in atherosclerosis [14-16]. Activated endothelial cells express the 

macrophage colony-stimulating factor and cause differentiation of the attracted monocytes 

into macrophages [17]. Intimal macrophages can take-up oxLDL that eventually transform 

them into foam cells. In this initial step an early lesion, called a fatty streak, consists  

of a subendothelial deposition of lipids, macrophage foam cells loaded with cholesterol and  

T cells [12]. Recent evidence indicates that not only the macrophages but also vascular 

smooth muscle cells (VSMCs) expressing scavenger receptors can uptake lipoproteins and thus 

significantly contribute to foam cell formation [18]. In addition, macrophages present at the 

lesion site play an important role in stimulation of the innate immune response. Endogenous 

danger ligands that accumulate during atherosclerotic plaque development activate the PRRs, 

including toll-like receptors (TLRs) or NOD-like receptors, thereby activating an inflammatory 

response [16]. Depending on the nature of the ligand, macrophages exhibit different 

phenotypes. Classically activated macrophages (called M1) are activated by ligands of TLR-like 

lipopolysaccharide (LPS) or cytokines, e.g. interferon (IFN)-γ. These macrophages are enriched 

in progressing plaques and express high levels of pro-inflammatory cytokines, including IL1β, 

IL12, and TNFα as well as reactive oxygen and nitrogen species which increase oxidative stress 

in the vessel [16, 19]. In contrast to M1, alternatively activated macrophages (called M2) 

secrete anti-inflammatory cytokines (e.g. IL10) and seem to play a protective role 

 in atherosclerosis [16, 20]. Not only macrophages but also other professional antigen-

presenting cells, such as dendritic cells (DCs), can uptake lipoproteins and other DAMPs  
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in order to present them on the cell surface for recognition by the T cells [21, 22]. Several 

subsets of T cells have been identified in atheroma [22, 23]. Among them the best 

characterized has been the role of TH1 cells which, upon activation, express IFNγ, enhance 

development of the atherosclerotic lesion and contribute to plaque rupture. IFNγ activates 

not only monocyte macrophages and DCs but also ECs and VSMCs to secrete cytokines and 

chemokines as well as a large amount of reactive oxygen species (ROS) and matrix 

metalloproteinases [24]. These findings have been confirmed in animal models of 

atherosclerosis where TH1-deficient mice had significantly reduced atherosclerotic lesion 

formation [25]. In contrast to TH1, Treg cells suppress the immune response, resolve 

inflammation in the plaque and thus have an atheroprotective role [24]. The role of the other 

two CD4+ lymphocytes, TH2 and TH17, remains unknown as there are some conflicting reports 

about their function in atherosclerosis [22]. Furthermore, recent studies pointed to the 

involvement of CD8+ T cells and B cells in atherosclerosis, however, here also their exact role is 

unknown [22, 24]. Taken together, numerous studies reveal the importance of inflammation 

in all stages of plaque development and allow to consider atherosclerosis as a chronic 

inflammatory disease.  

 

Another recently uncovered example of organ damage involving inflammation is hypertension 

[26]. Hypertension is defined as a chronic medical state with elevated blood pressure (systolic 

≥140 and/or diastolic ≥90). Although hypertension is a major risk factor for cardiovascular 

mortality and morbidity, etiology of this disease remains poorly understood [27, 28]. Besides 

atherosclerosis, recent studies point to the importance of innate and adaptive immunity in the 

progression of a pathological state caused by elevated blood pressure. Increased immune cell 

infiltration has been observed in different models of hypertension. Macrophage colony-

stimulating factor-deficient mice remain normotensive and develop less vascular remodeling 

and oxidative stress despite angiotensin (Ang) II or DOCA salt treatment [29, 30]. Ang II and 

DOCA salt-induced hypertension was ameliorated in T and B cell deficient mice [31]. 

Moreover, treatment with immunosuppressive drugs such as mycophenolate mofetil 

attenuates hypertensive organ damage and reduces renal and vascular immune cell 

infiltration [8]. Other studies have shown that inhibition of the proinflammatory cytokines, 

e.g. TNFα, IL6 or IL17, protects animals in an Ang II-induced model of hypertension [8].  
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Despite the large amount of data implicating inflammation in hypertension, the exact 

mechanism of immune activation is poorly understood. It is believed that elevated blood 

pressure may trigger activation of PRR by DAMPs and promotes an innate immune response. 

Upon DAMPs stimulation, ECs and VSMCs change their function and produce cytokines and 

chemokines that enhance extravasation. Activated immune cells produce cytokines and 

reactive oxygen species that exacerbate tissue damage. Additionally, important regulators of 

blood pressure, such as endothelin (ET)-1 or Ang II, induce an adaptive immune response 

either through activation of the DCs or directly by acting on the T cells, such as TH1 cells. 

Activated T cells produce inflammatory cytokines, e.g. IFNγ, thus enhancing low-grade 

inflammation which contributes to organ damage [31, 32] (Fig. 1-2). 

 

 

Fig. 1-2. Role of inflammation in hypertension and hypertensive end organ damage. Damage-
associated molecular patterns (DAMPs) activate vasculature and components of the immune 
system leading to accelerated blood pressure increase and organ damage. Additionally regulators 
of blood pressure, such as ET-1 or Ang II, induce an adaptive immune response through activation 
of the dendritic cells (DCs) or directly by acting on the T cells [26]. 

 

Many of these cytokines, PAMPs and DAMPs (activators of TLRs) have shown to trigger  

the JAK/STAT pathway which is one of the pivotal pathways that operates at the frontier 

of innate and adaptive immunity and orchestrates the immune response [33]. Activation of  

this pathway with IFNγ triggers a signal transduction cascade that modulates inflammation 

and as such has a prominent role in cardiovascular diseases. Although not completely 



6 | P a g e  
 

understood, the significance of the JAK/STAT pathway in chronic inflammatory processes has 

recently been recognized in immune cells [34]. Far less is known about the contribution of the 

JAK/STAT pathway in immunomodulatory functions of other non-immune cells [35, 36]. 

Considering the fact that non-immune cells such as ECs and vascular smooth muscle cells 

(VSMCs) are actively involved in the progression of inflammation, a better understanding  

of the processes behind a non-immune cells activation will have a substantial clinical benefit. 

 

IFNγ Signaling Pathway 

 

Interferons were discovered by Isaacs and Lindermann in the late 1950s and were initially 

considered as compounds that interfere with viral infection [37]. Later observations provided 

evidence for a more complex function of interferons, including anti-microbial responses, 

regulation of apoptosis, proliferation and regulation of leukocyte migration.  

According to their homology, interferons are subdivided into 3 categories. IFNγ is a sole 

member of the type II family. In contrast to the type I family, IFNγ is produced primarily by 

activated subsets of T cells and NK cells, and also NKT cells, macrophages and DCs [38-42]. 

Canonical activity of IFNγ is mediated through the JAK/STAT pathway (Fig. 1-3).  

Fig. 1-3. JAK/STAT pathway. Binding of IFNγ 
to its receptor triggers oligomerisation of the 
IFNGR1 and IFNGR2 receptor. Activated JAK 
kinases phosphorylate cytoplasmatic domains 
of the receptor, enabling association of the 
STAT1. STAT1 is phosphorylated and after 
dissociation forms a stable homodimer in a 
parallel conformational state that migrate to 
the nucleus and activates transcription by 
binding to the DNA motifs (e.g. GAS). 
Conformational change of the STAT1 exposes 
phosphorylated tyrosine residues and thus 
facilitates action of phosphatases such as 
TCP45. Dephosphorylated STAT1 migrates to 
the cytoplasm where it can be again activated 
by JAK kinases. Literature data indicates 
presence of some other posttranslational 
modifications such as acetylation (Ac), 
deacetylation (HDAC) and SUMOylation of 
STAT1. 
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Binding of IFNγ to its receptor triggers oligomerisation of the IFNGR1 and IFNGR2 receptor. 

These conformational changes bring pre-associated JAK1 and JAK2 kinases into close 

proximity and facilitate transphosphorylation. Activated JAK kinases phosphorylate 

cytoplasmatic domains of the receptor, which serve as docking sites for the signal transducer 

and activator of transcription (STAT1). 

STAT1 belongs to a family of transcription factors that consists of seven members with 

conserved structural similarity [43, 44] (Fig. 1-4). 
 

 

Fig. 1-4. Structure of the STAT proteins. The N-terminal domain (N) is mostly involved in dimer complex 
formation. The coiled coil domain (CC) facilitates an interaction with transcription factors other than STATs 
and is involved in nuclear translocation. The DNA binding domain (DNA) promotes binding of STAT to the 
enhancer element. The linking domain (LK) is necessary for the proper conformation of adjacent domains. 
SH2 domain mediates binding to the cognate receptor and takes part in the formation of active STAT dimer. 
Due to the phosphorylation, preserved tyrosine (Y) is exposed and mediates an interaction with the related 
SH2 domain of the partner STAT. The less conserved domain among STATs is the transcriptional activation 
domain (T) which recruits transcriptional machinery and regulates gene transcription.  

 

Receptor-bound STAT1 is phosphorylated and after dissociation creates a stable homodimer 

in a parallel conformational state that translocates to the nucleus and, by binding to the DNA 

motif, called an interferon-gamma-activated sequence (GAS), activates transcription [45, 46] 

(Fig. 1-3). Inactivation of STAT1-transcriptional activity is related to conformational change 

and subsequent dephosphorylation [47, 48]. STAT1 which dissociates from the DNA alters its 

conformation from a parallel into an antiparallel one. This modification exposes 

phosphorylated tyrosine residues and thus facilitates action of phosphatases such as TCP45. 

Dephosphorylated STAT1 migrates to the cytoplasm where it can be again activated by JAK 

kinases [49, 50]. There is some evidence indicating that in certain conditions the biological 



8 | P a g e  
 

activity of IFNγ can be mediated by proteins other than STAT1. However, due to strong affinity 

of the activated IFNGR1 receptor to STAT1, transcriptional responses to IFNγ are dominated 

by STAT1 [51]. Although tyrosine 701 phosphorylation is crucial for transcriptional activity of 

STAT1, other studies have indicated the importance of other modifications [52, 53]. It has 

been shown that serine 727 phosphorylation in the carboxy-terminal domain is necessary for 

full transcriptional activation of STAT1 [54, 55]. Additionally, other posttranslational 

modifications such as acetylation and SUMOylation of STAT1 also play a role in regulating its 

activity. However, in contrast to phosphorylation, these modifications seem to inhibit  

the transcriptional activity of STAT1 [56-60].  

Among the cardiovascular disorders, the role of IFNγ is best characterized in atherosclerosis 

[61]. Most research points to the proinflammatory role of cytokines manifested by 

involvement of IFNγ in the development and progression of atheroma; for example, IFNγ was 

found to be expressed in human lesions and in T cells cloned from human plaques [62]. It was 

shown that atheroma formation is markedly reduced in genetic knockouts of IFNγ [63-66]. 

Russell et al. showed that a monoclonal antibody to IFNγ strikingly inhibited formation of 

obstructive vascular lesions [67]. Furthermore, Tellides et el. showed that the 

immunomodulatory effect of IFNγ on media expansion was present in the absence  

of leukocytes, further proving critical role of IFNγ in atherogenesis and modelling of cell 

behavior and cell-cell interactions of all cell types existing in the vessel wall [68]. In addition,  

a number of research studies have indicated that IFNγ boosts macrophage and SMC foam cell 

formation and inhibits SMC proliferation [61, 69]. Interestingly, other reports suggested that 

IFNγ stimulates proliferation of VSMCs [70, 71]. The function of IFNγ in the pathology of 

atherosclerosis also includes activation and differentiation of T cells as well as stimulation  

of macrophages in order to express TNFα, IL6 and nitric oxide [61].  

 

Recent studies indicate this cytokine’s role in other CVDs. Most of the animal models suggest 

an important role of IFNγ in inflammatory cell recruitment, cytokine and chemokine 

production, and development of heart failure [72]. Expression of IFNγ was highly upregulated 

in an Ang II-induced model of hypertension [31], and IFNγ-deficient mice had reduced heart 

infiltration by macrophages, which was associated with decreased fibrosis [73, 74]. 

Additionally, transgenic mice with constitutive expression of IFNγ spontaneously developed 
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myocarditis characterized by inflammation, fibrosis, ventricular wall thinning and dilation as 

well as reduced systolic function [72, 75]. Clinical data are in line with these animal models 

and suggest a positive association between IFNγ and disease development [76, 77].  

In contrast, other reports revealed the protective effect of IFNγ. Garcia et al. showed that 

IFNγ-deficient mice have greater heart hypertrophy as compared to wild-type (WT) animals 

upon aldosterone infusion [78]. Furthermore, administration of IFNγ attenuated myocardial 

hypertrophy in the rat aortic banding model of pressure overload. Marko et al. demonstrated 

that in spite of reduced interstitial fibrosis, IFNγ-/- mice have more pronounced podocyte 

injury in the Ang II-induced model of hypertensive organ damage [74]. Not only IFNγ but also 

STAT1 was found to be involved in pathophysiology of CVDs. Agrawal et al. identified STAT1 as 

an important regulator of foam cell formation and atherosclerotic lesion development [79]. 

STAT1 was identified to play a role in macrophage apoptosis, a critical process for the 

formation of necrotic core in atherosclerotic plaques [80]. Mice transplanted with STAT1 

deficient bone marrow revealed reduced macrophage apoptosis and plaque necrosis [80].  

 

Taken together, these data suggest that IFNγ together with downstream activated STAT1 play 

a role in the cardiovascular system. However, whether this role is detrimental or protective  

in the development of CVDs is still not fully understood and should thus be elucidated.  

 

IFN and IRFs 

 

Response to IFNγ can be divided into two phases. In the early phase, phosphorylated STAT1 

activate genes containing the GAS sequence in their promoters (e.g. Cxcl9). Among these 

genes are also interferon regulatory factors (IRFs) [81] (Fig. 1-5).  
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Fig. 1-5. Phylogenetic relation and structure of the interferon regulatory factors (IRFs). The N-terminal 
region of each IRF contains DNA binding domain with five preserved tryptophan residues which form helix-
turn-helix structure and recognizes specific DNA sequence e.g. ISRE. Except IRF6, all IRFs contain IRF-
association domain (IAD) that allows them to interact with other proteins. Some IRFs contain repression 
domain and nuclear localization signal domain. Additionally IRF1, IRF2, IRF3 and IRF7 are prone to 
posttranslational modification e.g. phosphorylation. 

 

These IRFs, by recognizing the modulatory elements, e.g. the interferon stimulated response 

element (ISRE), trigger the second wave of reaction to the IFNγ. The family of IRFs comprises  

9 members that share structural similarities [82]. A crucial function of the IRFs in modulation 

of the transcriptional response is not only based on their ability to directly recognize 

conserved sequences of target genes, but also on their interaction with other members of the 

IRF family or other co-factors [83]. IRF3, IRF7, IRF9 play an important role in response to type I 

interferons. Activated IRF3 and IRF7 induce expression of type I interferons and IRF9 

participates in formation of the STAT1-STAT2-IRF9 complex and induces transcription of 

interferon-stimulated genes [84]. In turn, IRF1 and IRF8 play a particularly important role in 

IFNγ response [51]. Interestingly, recent studies indicate that IRF1 is not only a downstream 

gene of STAT1 but can also interact with it, thus forming a complex that affects expression  

of interferon-stimulated genes [85]. Moreover, Wessely et al. revealed an important role of 

IRF1 in neointimal growth after vessel injury and suggested IRF1 as a target for interventions 

to prevent hyperplasia [86]. Unlike STAT1 and IRF1, which are ubiquitously expressed,  

IRF8 expression is thought to be restricted to lymphoid-cell lineages such as B, T and dendritic 
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cells and macrophages. IRF8 can not only recognize the ISRE element but also, together with 

other transcription factors including PU.1, it can bind to elements recognized by STAT1 

(the GAS element) [87]. Thus, IRF8 may create a feedback loop for some STAT1-activated 

genes and partially account for the “immune cell-specific” STAT1-dependent functions of IFNγ 

[87]. Interestingly, recently we obtained evidence that IRF8 is highly expressed in ECs and 

VSMCs after IFNγ treatment (Chapter 3), thus suggesting that it can also regulate “vasculo-

specific” STAT1-dependent functions of IFNγ. Moreover, recent data indicate the function of 

IRF8 in pathological cardiac hypertrophy or atherosclerosis [88, 89]. Although the mechanism 

is not clear, it is tempting to speculate that IRF8 specifically regulates STAT1-dependent IFNγ-

directed transcriptional responses in cell types involved in the vascular function.  

 

TLRs signaling 

 

Toll-like receptors (TLRs) belong to the group of PRRs that play a pivotal role in the first line  

of defense against pathogens. Until now, 10 TLRs have been identified in humans (Fig. 1-6).  

 

Fig. 1-6. Pathogen recognition receptros (PRRs) and their ligands. Most of the PRRs are located on the cell 
surface but some receptors are also present in cytosol and endosome. PRRs are activated by multiple PAMPs 
and thus create first line of defense against infection. All TLRs and their adapters contain highly conservative 
Toll/IL-1 domain. The adapter protein myeloid differentiation primary response protein-88 (MyD88) seems to 
be involved in signaling by all TLRs, but not TLR3. TLR4, as the only member of the family, utilizes all four 
described TIR-containing adapters. 

 

They are expressed on a variety of cell types and play a distinct function in immune 

recognition [90]. In addition to multiple exogenous PAMPs, TLRs are activated by various 
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endogenous DAMPs; for example, bacterial lipoproteins and lipoteichoic acid are recognized 

by TLR2, double-stranded RNA by TLR3 and LPS by TLR4 and TLR2. Likewise, TLR4 recognizes 

DAMPs related to stress or injury of the host, which include heat shock proteins (HSP), 

fibrinogen, extra domain A of fibronectin and soluble hyaluronan [91]. All TLRs and their 

adapters contain highly conservative Toll/IL-1 domain [92, 93]. The adapter protein myeloid 

differentiation primary response protein-88 (MyD88) seems to be involved in signaling by all 

TLRs, but not TLR3 [94]. TLR4, as the only member of the family, utilizes all four of the 

described TIR-containing adapters. TLR4 together with MD2, CD14 and LBP form a complex 

that recognizes LPS [95]. Response to LPS can be divided into two stages: binding of LPS to the 

receptor complex located on the cell surface initiates the early phase of activation of  

the nuclear factor-kappa B (NFκB) through TIR domain-containing adaptors TIRAP (Mal) and 

MyD88. Subsequently, the TLR4-MD2-LPS complex is internalized to the endosome and used 

by TRIF and TRAM to activate NFκB. Interestingly, both phases of the response are necessary 

to activate NFκB [95]. Together this leads to the induction of various target genes that include 

type I IFNs (through IRF3), chemokines and cell surface molecules.  

 

There is a large number of research studies indicating the importance of the TLR4 pathway in 

the cardiovascular field [96]. Michelsen et al. showed that mice lacking either TLR4 or MyD88 

had reduced atherosclerosis correlated with reduced levels of inflammatory cytokines [97]. 

TLR4 was found to be overexpressed in the VSMCs of atherosclerotic arteries, even in regions 

with few inflammatory cells [98]. Other studies pointed to the role of TLR4 in intimal foam cell 

accumulation [99]. Expression of TLR4 was upregulated in patients with unstable angina and 

acute myocardial infarction [100]. Recent studies support the role of TLR4 in hypertension.  

An elevated level of TLR4 was found in spontaneously hypertensive (SHR) rats as well as in  

the L-NAME-induced model of hypertension and blocking of TLR4 reduced blood pressure, 

inflammation and maximal mesenteric artery contractile response to noradrenaline [29, 101, 

102]. Furthermore, experiments performed in our laboratory provided evidence for the direct 

role of TLR4 on vascular contractility and blood pressure [103]. The blood pressure of  

TLR4-deficient mice was not increased upon treatment with L-NAME. This effect was 

associated by decreased production of reactive oxygen species (ROS) which are known to 

affect the contraction apparatus of the vessel [104, 105].  
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STAT1 and IRFs involved in TLR signaling 

 

As is shown on Figure 1-7, stimulation of TLR4 leads to the phosphorylation of IRF3 and 

consequently to expression of IFNβ (type I IFN).  

 

IFNβ in the autocrine/paracrine loop bind to its receptor and activate the pathway. Similarly 

to IFNγ, conformational changes of the receptor facilitate recruitment of the JAK1 and TYK2 

kinases which enable formation of predominantly STAT1-STAT2 heterodimers and STAT1 

homodimers. Complexes containing STAT1 are transferred to the nucleus. Then the STAT1-

STAT2 heterodimers recruit IRF9 (called ISGF3) that bind to promoter regions of genes 

containing ISRE, whereas STAT1-STAT1 homodimers bind to GAS elements [43, 106].  

It is worth noting that both type I and type II IFN (IFNγ) pathways share common features. 

These two pathways utilize similar transcription factors, e.g. STAT1, IRF1 or IRF8, and 

transcription factor complexes, and as such regulate partially overlapping genes [107].  

Many of the genes (including Cxcl9, Ccl2, Ccl5, Isg15 and Nos2) activated by the TLR pathway 

are regulated secondary to LPS-induced type I IFN in a STAT1-dependent manner [108]. 

Activation of IFN is essential to develop a full transcriptional response to TLR4 stimulation;  

for example, macrophages from Tyk2-deficient mice fail to produce nitric oxide (NO) following 

Fig. 1-7. Components of the JAK/STAT 
pathway are involved in a TLR signaling. 
Stimulation of TLR4 allows TIR domain to 
interact with accessory molecules which 
leads to the activation of Myd88 and 
TRAM. Myd88 activates NFκB, which 
induces expression of inflammatory 
cytokines. TRAM activates IRFs e.g. IRF3, 
IRF8. IRF3 is phosphorylated, 
homodimerizes and induces IFNβ 
production, which in an auto- and 
paracrine manner can stimulate cells to 
induce IRF1 and STAT1 in the JAK/STAT 
dependent manner. Other IRFs e.g. IRF8 
during TLR activation interacts with other 
transcription factors leading to 
inflammatory gene expression. 
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LPS stimulation [109]. As such, STAT1 has been identified as an important mediator in  

the biological response to TLRs, including TLR4. These studies were further supported by the 

observation that Socs1 (negative regulator of STAT1 action)-deficient macrophages have 

increased sensitivity to TLR4 ligands such as LPS and palmitic acid [110]. In addition to IRF3, 

IRF1, IRF5, IRF7 and IRF8 were shown to contribute to TLR-mediated signaling [82].  

Direct interaction of IRF1, IRF5 and IRF7 with MyD88 allows for their activation and 

subsequent translocation to the nucleus, where they can induce gene expression [111-113]. 

IRF8-deficient mice fail to induce TLR9-mediated expression of IL6 and TNFα [114]. IRF8 also 

facilitates TLR2- and TLR4-mediated induction of interleukins, NO synthase and TNFα [115]. 

Moreover, macrophages from IRF8−/− mice produce diminished levels of TNFα, IL1β and 

IL12p70 in response to LPS [116].  

 

Crosstalk between IFNγ and TLR 

 

In physiological conditions the action of immune cells is regulated by the activity of many 

stimuli. Exposure to one cytokine followed by stimulation with the same or different stimuli 

may cause either synergistic or antagonistic effects [117]. A similar situation occurs with 

respect to IFNγ, whose pleiotropic action cannot be explained only by the direct function of 

STAT1 on target genes [118]. Crosstalk between IFNγ and TLRs has been associated with host 

defense against pathogens and injury, but can also contribute to pathophysiology of chronic 

inflammatory diseases such as rheumatoid arthritis [119]. Indeed, stimulation of DCs and 

macrophages with IFNγ is required to enhance TLR signaling and thus efficient induction  

of inflammatory mediators [120, 121]. Moreover, it has been shown that IFNγ breaks 

tolerance toward endotoxins (the ligands of TLRs) and increases expression  

of proinflammatory genes [122]. There are several proposed mechanisms describing 

functional cooperation between IFNγ and TLRs. First, IFNγ not only upregulates expression of 

genes related to TLR signaling such as receptors or genes that participate in signal 

transduction [120, 123, 124], but also inhibits the negative feedback loop by abrogation of 

IL10 expression as well as the transcriptional repressors Hes1 and Hey1 [118]. IL10 is an 

important anti-inflammatory mediator induced by TLR4 to inhibit the inflammatory actions  

of genes such as TNFα [125]. IFNγ increases the activity of serine/tyrosine kinase GSK3β which 
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in turn inhibits the action of AP-1 and CREB. These two transcription factors are mandatory in 

order to induce expression of the Il10 gene, thus inhibition of their action ameliorates the 

expression of IL10 [126]. Furthermore, IFNγ suppress the action of Hes1 and Hey1 repressors 

and thus augments expression of genes related to inflammation, e.g. IL6 and IL12 [127].  

 

IFNγ and STAT1 not only inhibit the negative feedback loop but also enhance positive 

signaling. Since the discovery that STAT1 can be phosphorylated upon LPS stimulation,  

the role of STAT1 as an important mediator of the crosstalk between IFNγ and TLR4 has been 

appreciated. Increased phosphorylation of STAT1 and cooperation of STAT1 with other 

transcription factors may play a role in this amplification mechanism (Fig. 1-8).  

 

Indeed, it has been shown that the activity of STAT1 is enhanced by TLR-dependent induction 

and the subsequent autocrine activities of IFNγ [108, 128, 129]. In contrast, stimulation of 

macrophages with another TLR ligand, CpG DNA, did not affect phosphorylation of STAT1 and 

as a consequence did not influence synergistic amplification of the inflammatory genes. 

Because CpG stimulation does not affect expression of type I IFN, this experiment confirms 

the importance of the type I IFN autocrine loop in the crosstalk between IFNγ and TLR4 [130]. 

Other studies indicate that STAT1 cooperation with other transcription factors such as NFκB 

Fig. 1-8. Functional crosstalk between 
JAK/STAT and TLR pathway. IFNγ may 
inhibits the negative feedback loop 
(details in text). JAK/STAT and TLR4 
pathway use STAT1 to elicit cell 
response. Increased phosphorylation 
of STAT1 upon treatment with IFNγ 
and LPS together with cooperation of 
STAT1 with other transcription factors 
like NFκB or IRFs play an important 
role in the amplification mechanism in 
immune cells. 
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at the level of target gene promoters is mandatory for the synergistic amplification of 

inflammatory genes [120].  

 

These phenomena were observed for example for an expression of chemokines such as Cxcl9, 

Cxcl10 adhesion molecule Icam1 or Nos2 in response to IFNγ and LPS or other inflammatory 

mediators [131-137]. In addition, STAT1 targets IRF1 and IRF8 have also been shown to 

contribute to signal integration between IFNγ and LPS. Sequences recognized by both STAT1 

and NFκB were found in the promoter regions of IRF1, thus indicating that not only IFNγ but 

also TLR agonists can regulate expression of IRF1 [138-141]. Similarly, cooperation between 

IRF1 and NFκB was found to be involved in the transcriptional regulation of Cxcl10 and Nos2 

(iNOS) [142, 143]. Moreover, other reports have suggested the role of IRF8 in IFNγ- and  

LPS-mediated synergistic induction of pro-inflammatory genes such as Il1, Il6, Il12 and Tnfα  

as well as the chemokine Ccl5 (RANTES) [115, 144]. These findings suggest that in immune 

cells, STAT1 and IRFs together with NFκB coordinate antimicrobial and inflammatory 

synergism between IFNγ and TLRs. 

 

Recently, a new mechanism of signal integration between IFNγ and TLR4 has been proposed 

[85]. This mechanism is based on epigenetic changes triggered by IFNγ which augments 

expression of TLR4 downstream genes. Qiao et al. suggested that IFNγ-activated STAT1 affects 

histone acetylation and thus causes increased and prolonged recruitment of additional 

transcription factors and pol II after TLR4 stimulation. Consequently this mechanism increases 

transcription of proinflammatory genes. As such, STAT1 may not only be considered as  

a transcription factor but also as an element that initiates chromatin remodeling.  

 

Most studies performed so far have indicated the importance of signal integration between 

JAK/STAT and TLR4 pathways in immune cells. However, our knowledge about this functional 

cooperation in non-immune cells is limited.   
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Goals /Scope of the thesis 

 

We hypothesized that STAT1- and IRF-mediated gene expression accelerates an inflammatory 

response, which negatively affects the cardiovascular system.  

In Chapter 2 we introduce the concept of signal integration in non-immune cells represented 

by ECs, VSMCs and proximal tubular cells. Data presented in this chapter provide evidence for 

crosstalk between IFNγ and LPS. Increased activity of STAT1 and IRF1 resulted in amplified 

expression of proinflammatory cytokines Cxcl10, Cxcl9, Ccl5 and an inducible nitric oxide 

producer – Nos2 (iNOS). Thus we consider STAT1 as a novel target for therapeutic intervention 

also in non-immune cells.  

In Chapter 3 we elucidate the role of STAT1 and IRF8 in mediating the interplay between  

a damaged organ and host immunity. In this chapter we present the results of a genome-wide 

analysis in VSMCs which identified a set of STAT1-dependent genes that were synergistically 

affected by interactions between IFNγ and TLR4. Among the highly amplified genes we 

distinguished not only chemokines, adhesion molecules, antiviral and antibacterial genes,  

but also the gene encoding Irf8, the transcription factor that was not known to be expressed 

in the vasculature. We identify Ccl5 and Nos2 as the potential targets of Irf8. Finally,  

the functional assays together with the immunohistochemical stainings of phosphorylated 

STAT1- and STAT1-dependent genes presented in this chapter support the importance of 

STAT1 in the regulation of vascular inflammation.  

Data presented in Chapter 4 disclose the role of STAT1 as an important regulator of 

inflammation and vessel function in the model of Ang II-induced hypertensive end organ 

damage. Compared with the control, STAT1-deficient animals infused with Ang II had 

ameliorated immune cell infiltration of the heart and kidney, reduced fibrosis and, foremost, 

improved vessel function. We identified several STAT1-dependent genes that may participate 

in the progression of vascular damage and thus contribute to progression of the disease. 

Among them, Cxcl10, Ccl2 and Cxcl10 chemokines and proteins involved in regulating 

oxidative stress (Nox4, p47phox, p22phox) revealed to be regulated by STAT1. Interestingly, 

despite diminished CD45+ cell infiltration and expression of fibrotic markers, STAT1-/- animals 

as compared to wild type (WT) animals had a significantly higher concentration of urinary 
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albumin, thus indicating increased glomerular damage. We hypothesize disturbance of 

autophagy to be a cause of albuminuria in STAT-/- and suggest a novel role of STAT1  

in response to stress in the kidney.  

Chapter 5 summarizes findings presented in the thesis and discuss potential applications as 

well as future research directions.  
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Chapter 2  

STAT1-dependent signal integration between IFNγ and TLR4 in non-immune cells 

 

Introduction 

 

Cell signaling is a complex system that facilitates perception and reaction to stimuli. Proper 

processing of the signaling is mandatory for the functioning of cells, tissue homeostasis and, 

consequently, survival of the organism as a whole. Many diseases are related to improper 

response to intra- or extracellular ligands. Until very recently scientists studied linear signaling 

cascades; however, because cells have to integrate multiple signals in order to regulate 

manifold cellular processes, it became clear that there must be crosstalk between them. 

Inflammation is a sophisticated mechanism of response to an infectious agent and injury 

[145]. This mechanism is based on a complex cell signaling network that maintains 

homeostasis of the host. However, in certain conditions the system that prevents injury may 

contribute to its progression. Excessive inflammation is involved in the pathophysiology of 

many diseases, including atherosclerosis, aortic aneurysm formation or acute kidney injury. 

One of the essential contributors of inflammation is IFNγ, which is produced mostly by  

T and NK cells [38-42]. IFNγ signaling plays an important role in innate and adaptive immunity 

by activating immune cells such as macrophages or T cells. Recent evidence have indicated the 

significance of IFNγ signaling in non-immune cells; for example, in the absence of immune 

cells, IFNγ can cause proliferation of SMCs in the media layer of the vessel wall [68].  

IFNγ-dependent chemokines, such as Cxcl10 (IFN-induced protein of 10 kDa, or IP10) or Cxcl9  

(a monokine induced by IFNγ or MIG), are highly expressed upon stimulation in endothelial 

cells (ECs) and vascular smooth muscle cells (VSMCs), and are present in dysfunctional vessels 

[146-149]. Other studies revealed that IFNγ deficient mice demonstrated decreased 

tubulointerstitial damage upon treatment with Angiotensin [74]. The signal transducer and 

activator of transcription (STAT)-1 is a canonical mediator of IFNγ signaling. Activation of 

STAT1 by IFNγ leads to its phosphorylation and formation of the dimer that triggers expression 

of STAT1-dependent genes. Importantly, recent experiments performed in macrophages have 

shown that STAT1 is not only involved in the activation of the JAK/STAT pathway, but also 

contributes to signaling events mediated by Toll-like receptor 4 (TLR4) [108, 150]. 
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TLR4 belongs to the receptor family that recognizes pathogen-associated molecular patterns 

such as lipopolysaccharide (LPS) and activates expression of proinflammatory genes.  

In the second stage of the response to TLR4 stimulation, TIR-domain-containing adapter-

inducing interferon-β (TRIF) triggers phosphorylation of transcription factor IRF3 and 

consequently expression of IFNβ which, in turn, facilitates activation of STAT1 [151]. 

Moreover, IFNγ can sensitize immune cells to the action of LPS, which greatly amplifies the 

inflammatory response [152]. Thus STAT1 may be considered as an important point of 

crosstalk between LPS and INFγ signaling in macrophages [120].  

In this chapter we provide evidence to support the idea that in addition to the immune 

system, signal integration between these two pathways is present in other tissue types.  

IFNγ-mediated activation of STAT1 serves as a platform for increased LPS signaling, resulting in 

augmented STAT1 phosphorylation and expression of genes related to chemotaxis and 

oxidative stress. As evidence for this concept we use inhibitors of the JAK/STAT pathway that 

are known to affect directly (stattic) or indirectly (Ag490 – JAK2 inhibitor) the action of STAT1. 

 

Material and Methods 

 

Cell culture 

HMECs 

Human Microvascular Endothelial Cells (HMECs) obtained from Centers for disease control 

and prevention (Atlanta, GA, USA) were cultivated in MCDB-131 (Life Technologies) medium 

containing 10% FBS (PAA), 100U/ml penicillin, 100μg/ml streptomycin, 0.01µg/ml EGF, 

0.05µM hydrocortisone (Sigma), 2mM L-glutamine (PAA). 

 

Isolation of primary VSMC 

WT mice (strain background C57BL/6) were obtained from Charles River Laboratories 

(Sulzfeld, Germany). Primary Vascular Smooth Muscle cells (VSMCs) were isolated by 

enzymatic digestion [153] in a solution containing collagenase type II 1mg/ml, soybean trypsin 

inhibitor 1mg/ml (Life Technologies), elastase 0.744u/ml (Sigma) in HBSS (Life Technologies). 

Isolated aortas from 2 mice were cleaned from perivascular fat and predigested for 10min. 

Subsequently adventitia was removed, aortas were cut lengthwise and intima was removed 
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by gentle scraping. So prepared aortas were enzymatically digested for 1h at 37˚C. After 

digestion aortas were passed through 100µm cell strainer (BD Falcon) and left undisturbed on 

3 wells of a 48 well plate for 1 week. Until passage number 3 cells were cultivated in DMEM 

(PAA) medium with 20% FBS. After 3rd passage SMC were cultivated in DMEM (PAA) medium 

containing 4.5mg/l Glucose, 2mM L-glu, supplemented with 100U/ml penicillin and 100μg/ml 

streptomycin and 10% FBS (PAA). Homogeneity of the culture was assessed by the expression 

of α-smooth muscle actin, calponin and smoothelin.  

 

Isolation of tubular cells 

Freshly isolated kidneys were minced and placed in a HBSS solution containing collagenase II, 

1mM HEPES and 100U/ml penicillin, 100µg/ml streptomycin (Life Technologies). After 1h 

incubation at 37˚C in water bath, solution were sieved over a 70µM cell strainer and 

centrifuged. Subsequently cells were washed and resuspended in the DMEM/F12 medium 

containing GlutaMAX (Life Technologies) with 5% FBS (Sigma), 25mM HEPES, 100U/ml 

penicillin, 100µg/ml streptomycin (Life Technologies), 25ng/ml epidermal growth factor 

(Sigma) and 5ml of hormone mixture containing Insulin (0.5mg/ml), PGE1 (0.125µg/ml), 

Triiodothyronine (3.38ng/ml), Hydrocortisone (1.8µg/ml), Transferrin (0.173µg/ml) and 

Sodium Selenite (0.5mg/ml) (Sigma). Cell were placed on a collagen covered plate and used 

for the experiments after second splitting. Homogeneity of the culture was assessed by the 

expression of sodium/potassium-transporting ATPase gamma chain (FXYD2). 

 

Isolation of splenocytes  

Freshly isolated spleens were placed in the RPMI 1640 (Life Technologies) medium containing 

25mM Hepes (Gibco), 1% FBS (Sigma), 2mM L-glutamine, 100U/ml penicillin, 100µg/ml 

streptomycin (PAA). Afterwards, spleens were minced with scalpel and passed through pre-

wetted 70µm and 40µm cell strainers (BD Biosciences). To lyse red blood cells, cell suspension 

was centrifuged and resuspended in RBC lysis buffer (eBiosciences). After 45sec of incubation 

medium was added and cells suspension was centrifuged. Next, cells were counted and 

treated with indicated concentration of either LPS or IFNγ or both. 
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In general, all cells were treated with 10ng/ml of IFNγ and/or 1µg/ml of LPS. Treatment of 

VSMCs and HMECs was performed in medium containing 2% (splenocytes in 1%) serum 

without the addition of growth factors (starving medium), after starvation of at least 12h 

before an experiment. Treatment of proximal tubular cells was performed in regular medium 

after refreshment. 

 

Western analysis 

Protein extracts from cells as well were prepared using RIPA buffer (Sigma) containing 

protease and phosphatase inhibitors (Roche). Cell lysates were collected and stored at -80°C. 

Protein concentrations were measured using BCA protein assay (Pierce). Protein extracts were 

heated with sample buffer (Life Technologies) containing dithiothreitol (90˚C, 10min) and 

loaded on NuPAGE Bis-Tris Gel (Life Technologies). After electrophoresis (200V, 40min to 1h 

30min, depending on protein size), proteins were transferred onto PVDV membranes 

(Millipore) using wet transfer system (Bio-rad, 30V, 90mA, 16h at 4˚C). Membranes were 

blocked either with 5% nonfat dry milk or with 5% BSA in TBS-Tween (TBST) and incubated 

with primary antibodies: phospho-STAT1 (Tyr 701) antibody (overnight, 1:1000, Cell Signaling, 

cat no. 3171 ), phospho-STAT1 (Ser 727) (overnight, 1:1000, Cell Signaling, 8826), STAT1 (1h at 

room temperature, 1:200 Santa Cruz, SC346) or GAPDH (overnight, 1:15000, Cell Signaling, 

5174). After washing in TBST, membranes were incubated with secondary goat anti-rabbit 

antibody (30min 1:10000 for STAT1 and 1:15000 for all the others, Santa Cruz Biotechnology 

SC2004). Antibody-antigen complexes were visualized using Luminata Forte or Luminata 

Classico (only for GAPDH) Western HRP substrate (Millipore) in INTAS imaging system (Intas, 

Germany). 

 

Measurement of nitric oxide (NO) 

VSMCs were treated as depicted in cell experiment section. After treatment medium was 

refreshed and cells were cultivated for further 24h. Subsequently, medium was collected and 

100ul was used to measure amount of NO by Griess diazotization reaction [154]. Medium was 

incubated with freshly prepared solution containing 1% sulfanilamide 5% HCl, 0.1% aqueous 

solution of 2-(1-Naphthylamino)ethylamine dihydrochloride (Sigma). After 10min incubation 

OD at 560mm was measured and compared to the standard curve. 
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RNA isolation and PCR and real-time PCR 

Total RNA was isolated using RNAeasy Mini Kit (Qiagen, Hilden, Germany) together with 

DNAse digestion step according to the manufacture’s protocol. Complementary DNA was 

synthesized using iScript cDNA Synthesis Kit (Bio-Rad, Hercules, USA), according to 

manufacturer’s protocol. Quantitative reverse transcriptase PCR (qRT-PCR) was performed 

using SSoFast Evagreen (MyiQ ICycler, Bio-Rad). Forward and reverse primers are depicted in 

Table 2-1. The 2-ddCt method was applied for quantification [155]. Fold change in the target 

gene were normalized to GAPDH and relative to the expression at untreated sample.  

 

Table 2-1. List of primers used in chapter 2. 

Gene Name Forward  Reverse 

Gapdh TCGGTGTGAACGGATTTGGC TTTGGCTCCACCCTTCAAGTG 

α-actin CAACTGGTATTGTGCTGGACT GAAAGATGGCTGGAAGAGAGT 

calponin ACGGCTTGTCTGCTGAAGTA AAGATGTCGTGGGGTTTCAC 

smoothelin AGAACTGGCTACACTCTCAAC GGGTCCAATGTGTGTGCTG 

Ccl5 (Rantes) CGCACCTGCCTCACCATAT CACTTCTTCTCTGGGTTGGC 

Cxcl10 TCATCCCTGCGAGCCTATCC GGAGCCCTTTTAGACCTTTTT 

Cxcl9 CTGCCATGAAGTCCGCTGTTCT TCCCCCTCTTTTGCTTTTTCTT 

iNOS (nos2) TGGGGCAGTGGAGAGATTTT TCTGGTCAAACTCTTGGGGT 

FXYD2 ATGGCTGGGGAAATATCAGAT ACCTGCCTATGTTTCTTACCG 

IRF1 AAAAGAGCCAGATCCCAAGAC AACATCTCCACACAGCTTCC 

STAT1 AACATACGGAAAAGCAAGCG GCTGTTCCTGTTTTTGGTCG 

TNFα Qiagen cat no. QT00104006 

Gapdh_human CAACTGCTTAGCACCCCTGG CAGGTCAGGTCCACCACTGA 

Ccl5 human CCCTCGCTGTCATCCTCATT GTGACAAAGACGACTGCTGG 

Cxcl10 human CGTGTTGAGATCATTGCTACAA GACCTTTCCTTGCTAACTGCT 

Cxcl9 human GTGGTGTTCTTTTCCTCTTGGG CTCACTACTGGGGTTCCTTGC 

 

Data analysis 

Statistical analysis: Results are expressed as mean ± SEM for at least 3 experiments. Data were 

compared by a One Way ANOVA and the Tukey post-hoc test or T-test, when appropriate.  

A probability value p<0.05 was considered statistically significant. All statistical tests were 

performed with GraphPad Prism ® 5.0.  
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Results 

 

IFNγ sensitizes splenocytes for LPS-induced STAT1-phosphorylation and target gene 

expression. 

To verify in our laboratory presence of the signal integration between IFNγ and LPS in immune 

cells, we isolated splenocytes from C57BL/6 mice. Spleen is the largest secondary immune 

organ that contains mostly T and B cells [156].  

 

 

 

 

 

 

Fig. 2-1. Signal integration between IFNγ and LPS in splenocytes. Isolated splenocytes from  
3 animals were treated with 10ng/ml of IFNγ for 8h or 1 μg/ml of LPS for 4h, or both. A, Protein 
extracts were analyzed by western blotting for tyrosine phosphorylated STAT1 (pSTAT1), total 
STAT1 and GAPDH. Beside classical presentation, palette of inverted false colors for pSTAT1 was 
applied where white indicates low and blue high intensity of the band. B, Splenocytes were 
treated as in A. RNA was isolated and subjected to qRT-PCR for Cxcl10, Cxcl9, Ccl5 and iNOS. 
p<0.05 was considered significant.  
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Preliminary experiments (verifying different time points and ligand concentrations) performed 

in our laboratory revealed that the highest level of sensitization for the action of LPS occurs when 

the cells are treated with 10ng/ml of IFNγ for 4h followed by 1µg/ml of LPS for another 4h.  

Pretreatment of splenocytes with such a conditions (Fig. 2-1 A) resulted in a significant 

increase in STAT1 phosphorylation as compared to both factors alone. Increased STAT1 

expression was also observed and was strictly dependent on IFNγ (Fig. 2-1 A). Next, we 

examined expression of proinfnlammatory genes, chemokines: Cxcl10, Cxcl9, Ccl5 and 

inducible nitric oxide producer – Nos2 (iNOS) (Fig. 2-1 B). We identified chemokine Cxcl10 and 

Nos2 as genes that are synergistically amplified upon combined treatment. Both were 

expressed moderately upon treatment with IFNγ or LPS alone and highly amplified in the 

presence of IFNγ and LPS (Fig. 2-1 B, left panel). These results correlated with increased STAT1 

phosphorylation (Fig. 2-1 A). On the contrary we could not detect significantly increased 

mRNA levels of both Cxcl9 and Ccl5 treated with IFNγ and LPS compared to both factors alone 

(Fig. 2-1 B, right panel). Interestingly, expression pattern of this two genes were different. 

Cxcl9 expression was IFNγ dependent and LPS independent whereas Ccl5 was expressed only 

upon treatment with LPS.  

 

IFNγ sensitizes SMCs and ECs for LPS-induced STAT1-phosphorylation and target gene 

expression. 

Next, we studied the possibility of STAT1-dependent cross-talk in cells from the vasculature. 

We isolated primary VSMCs from C57BL/6 aortas according to the method described  

in section material and methods. Representative picture of isolated VSMCs is present in  

Fig. 2-2 A.  

Fig. 2-2. Isolation of aortic VSMCs and 
assessment of their homogoenity. Cells 
were isolated by enzymatic digestion. 
Representative picture of cultivated VSMCs 
is given in A. B, To evaluate homogeneity of 
the culture, RNA was isolated and subjected 
to PCR for α-acitn, smoothelin and calponin. 
All cells expressed markers characteristic 
for VSMCs. 
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Assessment of the homogeneity was performed using markers specific to VSMCs (Fig. 2-1 B). 

Indeed, VSMCs expressed α-actin, smoothelin and calponin that are characteristic for VSMCs 

[157]. Pretreatment of VSMCs with IFNγ for 4h followed by LPS for another 4h resulted in  

a significant increase in STAT1 phosphorylation as compared to both factors alone (Fig. 2-3 B). 

Increased levels of phosphorylated STAT1 were correlated with synergistic amplification of 

chemokines Cxcl10, Cxcl9 and Ccl5 upon combined treatment (Fig. 2-3 A). 

 

 

 

 

 

 

 

 

Fig. 2-3. Signal integration between IFNγ and LPS in VSMCs. A, Isolated primary VSMCs from murine 
aortas were treated with 10ng/ml of IFNγ for 8h or 1 μg/ml of LPS for 4h, or both. RNA was isolated 
and subjected to qRT-PCR for Cxcl10, Cxcl9, Ccl5. B, VSMCs were treated as in A. Expression of Nos2 
upon stimulation (left panel) and the product of Nos2- nitrite in the conditioned medium (right 
panel) was investigated. p<0.05 was considered significant. C, VSMCs were treated as in A. Protein 
extracts were analyzed by western blotting for pTyrSTAT1, total STAT1 and GAPDH. Beside classicall 
visualsation, palette of inverted false colors for pTyrSTAT1 was applied where white indicates low and 
blue high intensity. Represenative picture is present.  
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Interestingly, 3 different chemokines revealed 3 different patterns of expression upon 

treatment suggesting different mechanism of activation. Cxcl10 (Fig. 2-3 A,) was highly 

expressed upon treatment with IFNγ and LPS alone and combined treatment synergistically 

amplified this response. Expression of Cxcl9 (Fig. 2-3 A, middle panel) upon treatment with LPS 

was very low compared to IFNγ stimulation and highly amplified in the presence of both.  

In contrast expression of Ccl5 was very low upon treatment with IFNγ, highly expressed with LPS 

and synergistically amplified in the presence of both stimuli (Fig. 2-3 A). Likewise expression of 

Nos2 (iNOS) was high upon treatment with LPS and highly amplified upon combined treatment 

(Fig. 2-3 C). The RNA levels reflected nitrite accumulation for Nos2 (Fig. 2-3 C, lower panel).  

Because we were not able to isolate a homogeneous population of endothelial cells (data not 

shown), we instead used the human microvascular endothelial cell line (HMEC). This cell line 

retains morphologic, phenotypic, and functional characteristics of normal microvascular ECs 

[158]. Similarly to VSMCs, synergistic expression of chemokines Cxcl10, Cxcl9 and Ccl5 was 

identified in HMECs treated with IFNγ and LPS (Fig. 2-4 A), which coincided with STAT1 

phosphorylation (Fig. 2-4 B).  

 

 

 

 

Fig. 2-4. Signal integration between IFNγ and LPS in HMECs. A, Cultivated HMECs were treated with 10ng/ml of 

IFNγ for 8h or 1 μg/ml of LPS for 4h, or both. RNA was isolated and subjected to qRT-PCR for Cxcl10, Cxcl9, Ccl5. 

p<0.05 was considered significant. B, HMECs were treated as in A. Protein extracts were analyzed by western 

blotting for pTyrSTAT1, total STAT1 and GAPDH. Beside classicall visualsation, palette of inverted false colors for 

pTyrSTAT1 was applied where white indicates low and blue high intensity. Represenative picture is present.  
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Likewise, expression of the chemokines had the same profile as in VSMCs. Moreover,  

we observed that pretreatment of HMECs with IFNγ for 4h followed by LPS for another 4h 

resulted in a significant increase in STAT1 phosphorylation as compared to both factors alone 

(Fig. 2-4 B). Increased STAT1 protein levels, strictly dependent on IFNγ, could provide a 

possible explanation for the increased STAT1 phosphorylation under conditions when both 

IFNγ and LPS are present. 

 

Signal integration is present in proximal Tubular cells. 

Similarly to cells from the vasculature also tubular epithelial cells are the target of 

inflammatory response [159]. Thus to support hypothesis that signal integration is present  

in non-immune cells, we isolated proximal tubular cells from C57BL/6 mice. Representative 

picture of tubular cells is present in Fig. 2-5 B Homogeneity of the isolated cells was assessed 

by expression of FXYD2.  

Isolated cells expressed high levels of FXYD2, marker for tubular cells and low levels  

of calponin which is preferentially expressed in smooth muscle cells (Fig. 2-5) [157].  

 

 

Next, we analyzed expression and activity of STAT1 protein. Treatment with either IFNγ alone 

or together with LPS revealed upregulation of STAT1 expression (Fig. 2-6 A). In contrast to cell 

from the vasculature, we could not detect neither increased STAT1 expression upon combined 

treatment nor phosphorylation upon treatment with LPS alone. Interestingly, also 

Fig. 2-5. Isolation of proximal tubular cells 
and assessment of their homogoenity.  
A, To evaluate homogeneity of the culture, 
RNA was isolated and subjected to qRT-PCR 
for FXYD2 and calponin. All cells expressed 
marker characteristic for proximal tubular 
cells and were negative for calponin.  
B, Representative picture of cultivated 
proximal tubular cells. 
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phosphorylated serine was not different between IFNγ and IFNγ + LPS treated samples  

(Fig. 2-6 B). Subsequently, we examined expression of chemokines Cxcl10, Cxcl9, Ccl5 and 

Nos2 (Fig. 2-6 C). All investigated genes were moderately expressed upon treatment with IFNγ 

or LPS and synergistically amplified upon combined treatment. ELISA performed on the 

medium remained after treatment of proximal tubular cells with IFNγ and LPS, confirmed 

synergistic amplification of Cxcl9 after treatment with both stimuli (Fig. 2-6 D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-6. Signal integration between IFNγ and 
LPS in proximal tubular cells. A and B, Isolated 
primary proximal tubular cells were treated with 
10ng/ml of IFNγ for 8h or 1 μg/ml of LPS for 4h, 
or both. Protein extracts were analyzed by 
western blotting for pTyrSTAT1 (A), pSerSTAT1 (B) 
total STAT1 and GAPDH. Beside classicall 
visualsation, palette of inverted false colors for 
pSTAT1 was applied where white indicates low 
and blue high intensity. Represenative pictures are 

present. C, Tubular cells were treated as in A. RNA was isolated and subjected to qRT-PCR for 
Cxcl10, Cxcl9, Ccl5 and iNOS. D, Cells were treated as in A. On the medium remained after 
treatment ELISA for Cxcl19 was performed. p<0.05 was considered significant. N/a - not detected. 
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Promoter analysis of the potential STAT1-targets 

Next, to provide in silico evidence for the importance of STAT1 and to locate other 

transcription factors that potentially may be involved in the synergistic amplification of the 

gene expression, we searched their promoter regions for overrepresented motifs recognized 

by transcription factors (Fig. 2-7). Promoter analysis of the synergistically upregulated genes 

predicted the presence of STAT-NFκB and IRF-NFκB motifs, strongly suggesting the 

cooperative involvement of NFκB, STAT1 and/or IRFs in the transcriptional regulation of Cxcl9, 

Cxcl10, Ccl5 and Nos2 in response to IFNγ and LPS.  

 

 

 
Fig. 2-7. Promoter analysis of the Cxcl9, Cxcl10, Ccl5, Nos2. The promoter regions from -1000 to +100bp from 
transcription start site were searched for binding sites. Promoters for amplified STAT1 dependent genes were 
screened using GENOMATIX software (http://www.genomatix.de/ [160]) for binding sites. Predefined 
matrices were used (V$IRF1.01 V$ISGF3G.01 V$ISRE.01 V$ISRE.02V$CREL.01 V$NFKAPPAB.01 
V$NFKAPPAB.02 V$NFKAPPAB65.01 V$STAT.01 V$STAT1.01 V$STAT1.02). Only sites with core similarity 
above 0.85 were selected. Start indicates position of ATG codon. 

 

To further elucidate the role of STAT1 and IRF1 in tubular cells, we confirmed their expression 

by performing qPCR (Fig. 2-8). Abundance of STAT1 mRNA was in line with western results for 

tubular cells (Fig. 2-6 A, B). Treatment with IFNγ resulted in high amplification of STAT1 and 

IRF1 which was not significantly different after incubation with LPS. Subsequently, we verified 

NFκB activity in tubular cells. For that reason we analyzed expression of TNFα. Abundance of 

this cytokine depends directly on the activity of NFκB but not STAT1. Indeed, treatment with 

LPS resulted in increased expression of TNFα. Prestimulation with IFNγ slightly but not 
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significantly increased levels of TNFα suggesting that NFκB activity is not the primary factor 

that contributes to the synergistic amplification.  

 

 

Ag-490 and Stattic attenuates STAT1-dependent crosstalk between IFNγ and LPS.  

To obtain further evidence for a role of STAT1 and JAK/STAT pathway in cross-talk between 

IFNγ and LPS, we treated VSMCs and proximal tubular cells with IFNγ and LPS in the absence 

or presence of inhibitors that are known to affect either JAK2 (Ag490) or STAT1 (stattic)  

(Fig. 2-9). Indeed, Ag490 and stattic diminished expression of Cxcl10, Cxcl9, Ccl5, Nos2 in 

VSMCs and in proximal tubular cells (Fig. 2-9 A and B) compared to controls treated with IFNγ 

and LPS. Attenuated response to IFNγ and LPS in proximal tubular cells was confirmed by 

ELISA for Cxcl9 (Fig. 2-9 C). 

 

Fig. 2-8. Expression of STAT1, IRF1 and marker 

of NFκB activity, TNFα in tubular cells. Primary 

proximal tubular cells were treated with 

10ng/ml of IFNγ for 8h or 1 μg/ml of LPS for 4h, 

or both. RNA was isolated and subjected to 

qRT-PCR for STAT1, IRF1 and TNFα. p<0.05 was 

considered significant. N/S - not significant. 
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Discussion 

 

The pleiotropic functions of IFNγ and LPS cannot be explained only by separate action of 

individual transcription factors such as STAT1 or NFκB. Indeed, another mechanism (called 

priming) by which IFNγ and TLR4 ligands achieve strong responsiveness was observed in 

immune cells. It was shown that prestimulation of macrophages with IFNγ and subsequent 

treatment with TLR4 agonists greatly amplified expression of downstream-dependent genes 

[152]. This crosstalk between IFNγ and TLR4 has a fundamental role in host response against 

pathogens, but it can also participate in the pathophysiology of many diseases. To date there 

Fig. 2-9. Crosstalk between IFNγ and LPS in VSMCs and proximal tubular cells is inhibited in the 
presence of Ag490 or stattic. Cells were treated with 10ng/ml of IFNγ for 8h and 1 μg/ml of LPS for 4 
hrs. A, VSMCs were pre-treated with Ag490 or Stattic for 12h and then treated as above. RNA was 
isolated and subjected to qRT-PCR for Cxcl10, Cxcl9, Ccl5 and iNOS. B, Proximal tubular cells. B. Proximal 
tubular cells were pre-treated with Ag490 or Stattic for 12h and then treated as above. RNA was 
isolated and subjected to qRT-PCR for Cxcl9, Cxcl10, Ccl5 and iNOS. C, On the medium remained after 
treatment as in B, ELISA for Cxcl19 was performed. p<0.05 was considered significant.  
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is limited information about potential signal integration between IFNγ and TLR4 in non-

immune cells. Our results suggest that also in ECs, VSMCs and proximal tubular cells, crosstalk 

between IFNγ and LPS results in amplification of genes related to inflammation.  

 

Several mechanisms have been suggested by which the IFNγ and TLR4 pathway can 

cooperate. Experiments performed in macrophages revealed that in addition to IFNγ also TLR4 

stimulation triggers phosphorylation of STAT1 at tyrosine 701. LPS-mediated phosphorylation 

of STAT1 is utilized by the induction and subsequent autocrine activities of type I IFN (IFNβ) 

and as such this crosstalk is protein synthesis-dependent. Indeed, we observed STAT1 

phosphorylation upon treatment with LPS, which was blocked in the presence of 

cyclohexamide, the substance that inhibits protein synthesis (data published here [161]).  

One of the models explaining functional cooperation between IFNγ and LPS in macrophages 

was a mechanism suggested by Schroder et al. [120]. In this model the transactivator ability of 

STAT1 is highly amplified upon treatment with both IFNγ and TLR ligands. Similarly to 

macrophages and splenocytes (Fig. 2-1), treatment of ECs and VSMCs with IFNγ followed by 

LPS resulted in increased STAT1 phosphorylation as compared to both factors alone. 

Stimulation with IFNγ followed by LPS revealed a synergistic amplification of Cxcl9, Cxcl10, 

Ccl5, and an important contributor of oxidative stress, Nos2 (iNOS), in vascular cells as well as 

in proximal tubular cells. This coincided with increased STAT1 phosphorylation in ECs and 

VSMCs. Taken together, our results suggest that also in vascular cells increased STAT1 

phosphorylation and thus transactivator ability is mediated by TLR-dependent expression of 

type I IFN.  

Interestingly, pretreatment of proximal tubular cells with IFNγ followed by LPS did not result 

in amplified phosphorylation of STAT1 (Fig. 2-4). Wen et al. suggested the importance of 

serine 727 phosphorylation in maximal STAT1 activity [54]. Thus we verified whether this 

phenomenon occurs in proximal tubular cells. We observed increased serine phosphorylation 

of STAT1 upon treatment with IFNγ that was not changed upon addition of LPS. Together with 

the lack of response to LPS, these results suggest the existence of other, phosphorylation-

independent and tissue-specific mechanisms that are involved in functional cooperation 

between IFNγ and TLR4 in proximal tubular cells. One mechanism which may explain this 

amplification may be related to increased expression of STAT1 and other transcription factors 
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that are STAT1-dependent, e.g. IRF1. Indeed, promoter analysis predicted the presence of 

binding sites for NFκB and IRF1 in the regulatory regions of Cxcl9, Cxcl10, Ccl5 and Nos2  

(Fig. 2-7). Expression analysis of IRF1 confirmed a higher abundance of IRF1 and STAT1 upon 

treatment with IFNγ that was not affected by LPS (Fig. 2-8). Because phosphorylation of STAT1 

does not seem to play a role, either increased interaction of STAT1 or IRF1 or activity of NFκB 

may contribute to synergistic amplification. We examined the expression of TNFα to verify 

whether the transcriptional activity of NFκB is increased during stimulation with both stimuli. 

Literature data indicate that abundance of this cytokine depends directly on the activity of 

NFκB but not STAT1 [143]. We observed induction of TNFα expression upon LPS stimulation 

that was not significantly different from the expression observed in samples treated with IFNγ 

and LPS. These data suggest that not the transcriptional activity of NFκB but increased 

expression of IRF1 and STAT1 upon IFNγ stimulation contribute to the synergistic amplification 

of proinflammatory mediators in tubular cells. A higher abundance of STAT1 and IRF1 may 

lead to increased sensitivity to LPS and, as a consequence, to amplification of Cxcl10, Ccl5 and 

Nos2.  

Recently, a new model which may also explain the mechanism of signal integration between 

IFNγ and TLR4 was proposed [85]. In this model STAT1 is considered to be a factor that 

initiates chromatin remodeling. IFNγ-activated STAT1 affects histone acetylation and thus 

causes increased and prolonged recruitment of additional transcription factors and 

polymerase II after TLR4 stimulation. Further studies are necessary to clarify the mechanism 

contributing to signal integration in proximal tubular cells. 

The transcriptional regulation of proinflammatory mediators has shown to involve several 

transcription factors, including STAT1, NFκB or IRFs [129, 136, 137, 162-166]. Indeed, in silico 

promoter analysis predicted the presence of binding sites recognized not only by STAT1 but 

also other factors such as NFκB or IRF1 (Fig. 2-7). Our experiments suggest that cooperation 

between STAT1, IRF1 and other transcription factors is crucial for synergistic amplification of 

Cxcl9, Cxcl10, Ccl5 and Nos2 also in vascular cells as well as in tubular cells. Expression of Nos2 

was highly amplified upon combined treatment in all investigated cells. Additionally,  

this result was confirmed by measurements of nitrite in VSMCs (Fig. 2-3 C). The promoter of 

the Nos2 gene contains regulatory sequences recognized not only by NFκB but also by STAT1 

homodimer complexes, (gamma interferon-activated site, GAS) and IRFs [167-170] (Fig. 2-7). 
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In addition, recently published data pointed to the important role of the ISGF3 complex 

(containing STAT1-STAT2-IRF9) involved in the regulation of iNOS expression upon 

concomitant stimulation with type I IFN and the agonist of pathogen recognition receptors 

[164]. In macrophages, combined stimulation with IFNγ and LPS or TNFα results in increased 

upregulation of NO [171]. Foremost, this upregulation is IRF1-dependent, thus suggesting 

cooperation between STAT1, IRF1 and NFκB in response to IFNγ and LPS [169]. Taking into 

consideration the fact that the abundance of Nos2 after stimulation with IFNγ was barely 

detectable, it is tempting to speculate that transcription of iNOS is rather dependent on the 

ISGF3 complex than on functional cooperation between STAT1 homodimers and IRF1.  

 

Similarly to iNOS, expression of Cxcl10 was synergistically increased in ECs and VSMCs treated 

with IFNγ followed by LPS, and was ameliorated in the presence of Ag490 or stattic. This result 

correlates with a predominant STAT1-dependent mechanism engaged in the integration of 

both stimuli. Indeed, literature data suggest that, like iNOS, maximal expression of Cxcl10 

requires activation of both pathways. However, in contrast to Nos2 transcription, synergistic 

amplification of Cxcl10 requires cooperation between STAT1 and IRF1, but not NFκB [136, 163, 

172]. Importantly, experiments performed in our laboratory revealed that also in the vascular 

cells, transcription of Cxcl10 is protein synthesis-dependent [161]. Because expression of IRF1 

can be triggered not only by IFNγ but also by LPS, it is very likely that a similar IRF1-dependent 

mechanism mediates expression of Cxcl10 in VSMCs and ECs upon treatment with IFNγ and 

LPS. However, in tubular cells, LPS stimulation did not result in a statistically significant 

increase in IRF1 expression. Thus it is very likely that NFκB plays a more substantial role in 

regulating Cxcl10 abundance in tubular cells.  

In contrast to iNOS and Cxcl10, whose expression pattern was similar for all investigated cell 

types, abundance of Cxcl9 and Ccl5 was different between cells isolated from spleens and 

non-immune cells. While there was strong transcriptional activation of Ccl5 and Cxcl9 upon 

combined treatment in vascular cells and tubular cells, we could not detect a synergistic effect 

of IFNγ and LPS in murine splenocytes (Fig. 2-1). This phenomenon can be explained by the 

partially different transcriptional regulation of specified genes in myeloid and lymphoid cells. 

Literature data suggest that in immune cells, expression of Cxcl9 and Ccl5 is controlled by 

tissue-specific transcription factors [144, 173]. These factors are often present in the latent 
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stage, therefore additional stimulation with extracellular ligands (e.g. IFNγ or LPS) is not 

mandatory for efficient upregulation of downstream targets; for example, IFNγ-mediated 

transcription of Cxcl9 is dependent on cooperation between STAT1 and tissue-specific 

transcription factor Pu.1 in myeloid cells [173].  

 

Although the patterns of expression upon combined treatment are similar for Cxcl9 and Ccl5, 

treatment with LPS or IFNγ alone indicates different regulatory mechanisms. As opposed to 

Cxcl9, whose expression is IFNγ-dependent, transcription of Ccl5 relies rather on activation of 

TLR4. Despite the fact that IFNγ stimulation leads to expression of Ccl5 in macrophages [174], 

in other cell types, e.g. synovial fibroblasts, mesothelial cells, alveolar epithelial cells or 

peritoneal fibroblasts, stimulation only by IFNγ is insufficient for expression of Ccl5 [175-179]. 

This is in line with our observations for vascular and tubular cells. Indeed, literature data 

suggest the importance of NFκB in the regulation of Ccl5 expression [137, 178].  

To obtain further evidence for the role of the STAT1 and JAK/STAT pathway in crosstalk 

between IFNγ and LPS, we used inhibitors that are known to affect either JAK2 (Ag490)  

or STAT1/STAT3 (stattic) [180]. Expression of STAT1-dependent genes was only partially 

attenuated upon stimulation with the antagonist of the JAK/STAT pathway (Fig. 2-7). Ag490 is 

an inhibitor of the JAK2 kinase which participates in the formation of active STAT1 dimers 

upon stimulation with IFNγ. Indeed, Ag490 can effectively block the IFNγ response, as samples 

treated only with IFNγ did not express STAT1-dependent genes (data not shown). However, 

during the crosstalk, STAT1 phosphorylation is partially mediated through the activity of JAK1 

and Tyk2 kinases. This mechanism could explain only the partial inhibition of STAT1 action by 

Ag490 and further indicates the importance of the autocrine activities of type I IFN (IFNβ).  

Although stattic was considered as a specific inhibitor of STAT3, experiments performed in our 

laboratory revealed that it can also antagonize STAT1 phosphorylation upon stimulation with 

type I interferon [180, 181]. However, experiments based on IFNγ stimulation, which is a far 

more powerful activator of STAT1, revealed only partial efficacy of stattic. This suggests that 

STAT3 is indeed a primary target of stattic and that partial inhibition of STAT1 action is rather 

a side effect of stattic, as both STATs share structural similarities. Importantly, both inhibitors 

can affect STAT1 and STAT3 action. Thus, we cannot exclude the role of STAT3 in upregulation 
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of these genes. Further experiments with STAT1- and STAT3-deficient animal models are 

mandatory.  

 

Our results presented in this section as well as those published in the American Journal of 

Physiology – Cell Physiology [161] provide further evidence for the crosstalk between IFNγ and 

TLR in ECs, VSMCs and proximal tubular cells. Although the mechanisms of transcription  

of genes prone to synergistic amplification may vary in detail, one common feature is the 

involvement of STAT1 and IRF1 in the regulation of amplified genes.  

 

Similarly to splenocytes, stimulation with IFNγ and TLR4 in ECs and VSMCs resulted in 

augmented STAT1 phosphorylation and increased expression of the chemokines Cxcl9, Cxcl10, 

Ccl5 and Nos2. Inhibition of JAK2 (Ag490) or STAT1 phosphorylation (stattic) partially 

prevented this effect. In proximal tubular cells it was not augmented STAT1 phosphorylation 

but rather increased abundance of IRF1 that contributed to the synergistic amplification.  

 

Altogether, STAT1 and IRF1 could potentially represent a novel target of therapeutic 

intervention that would have a crucial role in mediating the interplay between damaged organ 

and host immunity in order to control progression of inflammation mediated by IFNγ and TLR4.  

Fig. 2-10. STAT1 as a central point 
of crosstalk between IFNγ and TLR4 
induced pathways. Treatment with 
IFNγ leads to increased expression 
of STAT1 and STAT1-dependnet 
transcription factor that participate 
in the TLR4 signaling - IRF1. 
Increased STAT1-dependent 
expression of the IRF1 and their 
subsequent collaboration with other 
transcription factors resulted in 
synergistic amplification of Nos2, 
Cxcl10, Cxcl9 and Ccl5. 
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Chapter 3 

STAT1 and IRF8 orchestrate IFNγ and LPS-mediated signal integration in the 

vasculature that leads to amplified pro-atherogenic responses 

 

Introduction 

 

A variety of diseases, including those which affect the cardiovascular system, have 

pathophysiological important role of the immune component. Atherosclerosis is a type of 

arteriosclerosis in which the function of the artery is affected by the accumulation of fatty 

plaques and cholesterol in the vessel wall. Recent studies have provided evidence for the 

crucial role of inflammation in all stages of the disease, starting from early endothelial cell (EC) 

dysfunction and altered contractility of vascular smooth muscle cells (VSMCs) through 

recruitment of blood leukocytes to the injured vascular wall and, ultimately, thrombus 

formation in the lumen [11, 182, 183]. Interferon (IFN)γ is a pivotal mediator of innate and 

adaptive immunity. Since the discovery that IFNγ is highly expressed in lesions, its role in 

atherosclerosis has been broadly studied [63, 68]. IFNγ mediates its own action through 

activation of the JAK/STAT pathway. Binding of this cytokine to IFNGR receptors leads through 

phosphorylation and homodimer formation to transcriptional activation of the protein called 

the signal transducer and activator of transcription (STAT) 1. Recently obtained data indicate 

that STAT1 is not only involved in signal transduction upon treatment with IFNγ but also 

contributes to the biological response to different toll-like receptors (TLRs). TLRs are  

a family of innate immune pattern-recognition receptors which recognize pathogen- and 

damage-associated molecular patterns, e.g. lipopolysaccharide (LPS), or heat shock proteins 

(HSP), and play an important role in the progression of atherosclerosis [184]. Activation of 

TLR4 signaling triggers the induction of various target genes that include those encoding type I 

IFNs, chemokines and cell surface molecules [150]. Some of these genes are regulated 

secondary to LPS-induced IFNβ which, after secretion, binds to the type I IFN receptor to 

activate gene expression in a STAT1-dependent manner [185]. As such, STAT1 has been 

identified as an important mediator in the biological response to different TLRs, including 

TLR4. Signal integration between IFNγ and TLRs has been described especially in immune cells 
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and was related to host defense against pathogens and injury. Stimulation of macrophages 

and dendritic cells with IFNγ and LPS was mandatory for efficient expression of 

proinflammatory mediators [120, 121]. Moreover, STAT1 was identified as an important 

mediator of this crosstalk [118, 128]. In addition to STAT1, also STAT1 target genes which 

belong to the family of interferon regulatory factors (IRF) have been involved in signal 

integration between IFNγ and LPS; for instance, IRF8, which was thought to be immune 

specific, was identified as being involved in the synergistic induction of proinflammatory 

genes, such as Il1, Il6, Il12, TNFα and Ccl5. [115, 144]. These data imply that STAT1 and the 

IRFs coordinate the crosstalk between IFNγ and TLRs and therefore positively regulate 

inflammation. Our recent observations suggest that the mechanism that was previously 

identified in immune cells is also present in cells that build the vascular wall [161]. Augmented 

STAT1 phosphorylation was associated with increased expression of chemokine CXCL10 and 

the adhesion molecule ICAM-1. We could observe increased adhesion of U937 leukemia cells 

to ECs in a STAT1-dependent manner [161].  

 

In this chapter we provide results to further support the hypothesis that activated STAT1 

together with downstream-regulated IRFs serve as a platform for increased TLR4 signaling in 

cells from the vasculature, thus resulting in the expression of genes related to inflammatory 

processes. We conducted expression profiling on VMSCs in order to identify sets of STAT1 

target genes prone to synergistic amplification. We identified sets of new, potentially 

interesting targets. We showed for the first time that transcription factor IRF8 is also 

expressed in the vessel wall and may be involved in the progression of inflammatory response. 

Moreover, by performing immunohistochemistry on human data sets we provided further 

evidence for the importance of the above-mentioned signaling in human atherosclerosis.  

 

Material and Methods  

 

Cell culture experiments  

WT mice (strain background C57BL/6) were obtained from Charles River Laboratories 

(Sulzfeld, Germany). STAT1-/-and IRF8-/- mice (both C57BL/6 background) were kindly provided 

by Thomas Decker and Carol Stocking, respectively [186], TLR4-/- (C57BL/6 background) were 
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bred in our own facility [187]. Primary murine Vascular Smooth Muscle cells (VSMCs) were 

isolated from WT or STAT1-/- or IRF8-/- mice by enzymatic digestion [188] in a solution 

containing collagenase type II 1mg/ml, soybean trypsin inhibitor 1mg/ml (Life Technologies, 

Carlsbad, USA), elastase 0.744u/ml (Sigma-Aldrich, Missouri, USA) in HBSS (Life Technologies). 

Isolated aortas from 2 mice were cleaned from perivascular fat and predigested for 10min. 

Subsequently adventitia was removed, aortas were cut lengthwise and intima was removed 

by gentle scraping. Next aortas were enzymatically digested for 1h at 37˚C. After digestion 

aortas were passed through 100µm cell strainer (BD, Heidelberg, Germany) and left 

undisturbed on 3 wells of a 48 well plate for 1 week. Until passage number 3 cells were 

cultivated in DMEM medium (PAA, Linz, Austria) containing 4.5mg/l Glucose, 2mM L-Glu, 

supplemented with 100U/ml penicillin and 100μg/ml streptomycin and 20% FBS (PAA). After 

3rd passage 10% FBS was used. Human Microvascular Endothelial Cells (HMECs) obtained from 

Centers for disease control and prevention (Atlanta, GA, USA) were cultivated in MCDB-131 

(Life Technologies) medium containing 10% FBS (PAA), 100U/ml penicillin, 100μg/ml 

streptomycin, 0.01µg/ml EGF, 0.05µM hydrocortisone, 2mM L-glutamine (PAA). On the day 

before an experiment for both cell types full medium was exchanged into medium containing 

2% serum. Afterwards cells were treated with 10ng/ml of IFNγ (Life Technologies) and/or 

1µg/ml of LPS (Sigma).  

 

RNA isolation and real-time PCR 

Total RNA was isolated from VSMCs and HMECs using RNAeasy Mini Kit (Qiagen, Hilden, 

Germany) together with DNAse digestion step according to the manufacture’s protocol. 

Complementary DNA was synthesized using iScript cDNA Synthesis Kit (Bio-Rad, Hercules, 

USA), according to manufacturer’s protocol. Quantitative reverse transcriptase PCR (qRT-PCR) 

was performed using SSoFast Evagreen (MyiQ ICycler, Bio-Rad). Forward and reverse primers 

are depicted in Table 3-1. The 2-ddCt method was applied for quantification [155]. Fold change 

in the target gene were normalized to GAPDH and relative to the mean expression at 

untreated sample. The results are expressed as fold of control from at least 3 independent 

assays. Regular PCR was performed using AmpliTaq Gold 360 DNA polymerase kit (Life 

Technologies) together with dNTP mix (Sigma). Bands were visualized by staining gels with 

peqGreen (Peqlab).   
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Table 3- 1. Primer sequences used in experimental procedures 

Gene Name Forward Reverse 

Gapdh TCGGTGTGAACGGATTTGGC TTTGGCTCCACCCTTCAAGTG 

Irf8 GCAGGATGTGTGACCGGAAC CCACCTCCTGATTGTAATCCT 

Ccl5 (Rantes) CGCACCTGCCTCACCATAT CACTTCTTCTCTGGGTTGGC 

Cxcl10 TCATCCCTGCGAGCCTATCC GGAGCCCTTTTAGACCTTTTT 

Cxcl9 CTGCCATGAAGTCCGCTGTTCT TCCCCCTCTTTTGCTTTTTCTT 

Ccl12 AGCTACCACCATCAGTCCTCA CAAGGATGAAGGTTTGAGACG 

Ccrl2 ACAGTACGACCTCCACAAGC GGAACAGGCTGCGAAGGTAT 

β-actin CCAGCCTTCCTTCTTGGGTAT 
 

ACTCATCGTACTCCTGCTTGC 
 GAPDH _human CAACTGCTTAGCACCCCTGG CAGGTCAGGTCCACCACTGA 

IRF8_human GGGAGAATGAGGAGAAGAGCA CCGCACTCCATCTCTGTAACT 

 

Microarray analysis  

VSMCs from WT and STAT1-/- were treated as described in Fig. 1. RNA from control and 

treated samples was isolated and labeled according to Illumina® TotalPrep™ RNA 

Amplification Kit (LifeTechnologies, CA). Standard Illumina Expression BeadChip MouseRef-8v2 

(Illumina, SA) hybridization protocol was used to obtain the raw data. Chips were scanned 

using HiScanSQ system. The complete data of the Illumina Expresion BeadChip analysis can be 

found at the NCBI GEO, with the accession number GSE49519. The average gene expression 

signals from 3 independent biological experiments were taken for statistical testing. Only 

genes from treated samples with detection p-value <0.05 were chosen for further analysis. 

Background subtraction and quantile normalization were used to obtain statistically significant 

( p<0.05 ) at least 2-fold upregulated genes. Genes which expression after co-treatment was at 

least 2-fold higher upon stimulation with IFNγ + LPS as compared to the sum of the 

treatments with both factors alone were considered as amplified. Promoters for amplified 

STAT1 dependent genes were screened using GENOMATIX software 

(http://www.genomatix.de/) [160]. The promoter regions from -1000 to +100bp were 

searched for binding sites (V$IRF1.01 V$ISGF3G.01 V$ISRE.01 V$ISRE.02 V$CREL.01 

V$NFKAPPAB.01 V$NFKAPPAB.02 V$NFKAPPAB65.01 V$STAT.01 V$STAT1.01 V$STAT1.02)  

or models with core similarity at least 0.85.  
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Western blot analysis 

Total IRF8, STAT1 (Santa Cruz, sc6058, sc346), GAPDH and phosphorylated STAT1  

(Cell Signaling, 5174s, 9171l) were determined by western blotting in VSMCs and HMECs. 

After treatment cells were homogenized in a Ripa lysis buffer (Sigma-Aldrich) containing 

phosphatases and proteases inhibitors (Roche). Protein concentration was determined using a 

bicinchoninic acid protein assay kit (Thermo Fisher Scientific). 40µg of protein per lane was 

loaded and resolved by SDS-poly-acrylamide gel electrophoresis (PAGE) under reducing 

conditions. Proteins were transferred onto PVDV (Millipore, Billerica, USA) membrane. After 

incubation with primary and horseradish peroxidase-conjugated secondary antibodies (Santa 

Cruz), immunoreactivity was detected by adding Luminata Forte Western Substrate (EMD 

Millipore) and measured by INTAS imaging system (Intas, Goettingen, Germany). 

 

Cytokine detection ELISA 

Expression of murine Cxcl10, Ccl5 (Peprotech, Hamburg, Germany) as well as Cxcl9 (Sigma) 

was performed on medium remained after treatment of VSMCs using sandwich ELISA tests 

according to the manufacturer’s instructions.  

 

Measurement of nitric oxide (NO) 

VSMCs were treated as depicted in cell experiment section. After treatment medium was 

refreshed and cells were cultivated for further 24h. Subsequently medium was collected and 

100ul was used to measure amount of NO by Griess diazotization reaction. Medium was 

incubated with freshly prepared solution containing 1% sulfanilamide 5% HCl, 0.1% aqueous 

solution of 2-(1-Naphthylamino)ethylamine dihydrochloride (Sigma). After 10min incubation 

OD at 560mm was measured and compared to the standard curve. 

 

Histology and immunohistochemistry 

Histological analyses and immunohistochemistry were performed on representative sections 

(2-3 µm) of formalin fixed in paraffin embedded tissue samples from six human carotid 

atherosclerotic lesions and four healthy controls. Hematoxylin-Eosin (HE) and Elastica-van-

Gieson (EvG) staining were performed in order to assess sample morphology.  

For characterisation of the cells within atherosclerotic plaques, specimens were treated with 
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antibodies against vascular smooth muscle cells (smooth muscle myosin heavy chain 1 and 2 

(SM-M10), rabbit polyclonal, dilution 1:4.000 (Abcam, ab81031) and endothelial cells  

(anti-CD31, mouse monoclonal, clone JC70A, dilution 1:100; Dako).  

For the detection of specific cytokines, CXCL9 (MIG) and CXCL10 (IP10), as well as the 

phosphorylated transcription factor STAT1, following primary antibodies were used: rabbit 

polyclonal anti-MIG (Abcam, ab9720; dilution 1:500), rabbit polyclonal anti-IP10 (Abcam, 

ab47045; dilution 1:200), and rabbit monoclonal phospho-Stat1 (Cell Signaling, 9171l; dilution 

1:400). All antibodies were first optimised on tonsil using different dilutions, staining 

conditions and with or without blocking. Optimal results were achieved by blocking anti-MIG 

and anti-phospho-Stat1 with goat serum, anti-IP10 without the blocking procedure.  

Following incubation with primary antibody visualisation was performed by peroxidase/DAB 

ChemMate Detection Kit according to the manufacturer’s instruction (biotinylated goat  

anti-mouse/anti-rabbit secondary antibody; Dako). 

 

Histology and fluorescent immunohistochemistry 

Histological analyses and fluorescent immunohistochemistry were performed on 

representative sections (2-3 µm) of formalin fixed, paraffin embedded human carotid artery 

tissue specimens obtained from patients with high-grade carotid artery stenosis (>70%) after 

carotid endarterectomy in the Department of Vascular and Endovascular Surgery (Klinikum 

rechts der Isar, Technical University Munich). Immunostaining war performed using antibodies 

to detect VSMCs (mouse monoclonal anti-SMA, HHF35, dilution 1:200; Dako, Glostrup, 

Denmark), endothelial cells (mouse monoclonal anti-CD31, JC70A, dilution 1:100; Dako), 

mouse monoclonal macrophages/monocytes (anti-CD68, KP1, dilution 1:1000; Dako), 

leukocytes (rabbit polyclonal anti-CD45, dilution 1:200; Dako) and IRF8 (goat polyclonal 

antibody, dilution 1:500; Santa Cruz Biotechnology, Santa Cruz, CA, USA). Primary antibodies 

(combined in the following way: CD68/IRF8, CD45/IRF8, CD31/IRF8, SMA/IRF8) were 

incubated over night at 4°C, and visualized by secondary antibody incubation for one hour 

(Alexa Fluor 488-conjugated goat-anti-mouse IgG, Alexa Fluor 488-conjugated donkey-anti-

rabbit, or Cy3-conjugated donkey-anti-goat, dilution 1:200; Dianova, Hamburg, Germany). 

VECTASHIELD mounting medium containing DAPI fluorescence dye for staining of the cell 
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nuclei was used (Axxora, Loerrach, Germany). Images were recorded using a Leica microscope 

DM4000B (Leica Microsystems, Wetzlar, Germany). 

 

Migration assay 

Migration assay was performed according to Guo et al [189]. Briefly, 106 of isolated red blood 

cells depleted splenocytes were loaded into the upper chamber of Transwell 24-well plates 

(Corning). The bottom chamber was filled with 600ul of the medium collected after treatment 

of VSMCs with LPS, IFNγ or IFNγ and LPS. After incubation for 3h at 37˚C, migrated cells were 

stained with CD45FITC and CD3APC antibody (Miltenyi Biotec 130091609, 130092977) and 

analyzed by flow cytometer (Miltenyi Biotec).  

 

Ex vivo experiments and contractility studies 

Cleaned form perivascular fat aortas were cut into 2mm long rings (for myograph) and placed 

in DMEM medium containg 2% FBS (Sigma). Next, aortas were treated with 10ng/ml of IFNγ 

and/or 1µg/ml of LPS. Vascular contractility studies were performed according to the 

technique described by Mulvany et al. [190]. After treatment, 2mm long rings were mounted 

in a 4-channel myograph (620M, Danish Myo Technology, Denmark) in the organ chamber 

filled with physiological saline solution (PSS; 118.99mM NaCl, 4.69mM KCl, 1.17mM 

MgSO4*7H2O, 1.18mM KH2PO4, 2.5mM CaCl2*2H2O, 25mM NaHCO3, 0.03mM EDTA, 5.5mM 

Glucose). During the experiment PSS buffer was aerated with carbogen (95% O2+ 5%CO2). 

After calibration, vessels were pre-streched to obtain optimal passive tension. Next, vascular 

functions were analyzed. Contractility was evaluated by substitution of PSS buffer for high 

potassium physiological saline solution (KPSS; 74.7mM NaCl, 60mM KCl, 1,17mM 

MgSO4*7H2O, 1,18mM KH2PO4, 1.6mM CaCl2, 14.9mM NaHCO3, 0.026mM EDTA, 5.5mM 

Glucose). For testing viability, vessels were subjected to noradrenaline-induced constriction 

followed by acetylcholine-induced dilation (Sigma). After washing out with PSS buffer and 

resting for 15 minutes, noradrenaline dose-response curves was performed. Noradrenaline 

was used in stepwise increased, cumulative concentration ranging from 10-11 to 10-6 mol/L. To 

study vasodilatation, sodium nitroprusside (Sigma) was used in concentrations from 10-10 to  

10-5 mol/L.  
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Statistical Analysis  

Data are presented as mean ± SEM of at least 3 experiments ±SEM. For comparisons between 

more than two groups one-way ANOVA with Tukey post-hoc test was used. In all other 

experiments comparing two groups, Student’s t-test was used. A probability value (p) <0.05 

was considered statistically significant (GraphPad Prism ® 5.0). In contractility studies,  

two-way ANOVA test with Bonferroni post hoc test was used. 

 

Results  

 

In SMCs signal integration between IFNγ and LPS is TLR4 and STAT1-dependent. 

Our observations presented in previous chapter suggest that both in HMECs and VSMCs, 

STAT1 orchestrates a platform for cross-talk between IFNγ and TLR4. This resulted in 

augmented STAT1 phosphorylation and increased expression of the genes like chemokine 

Cxcl10 and iNOS (Nos2). In addition, treatment with fludarabine which thought to be an 

specific STAT1 inhibitor, resulted in ameliorated expression of Cxcl10 [161, 191, 192]. 

However, recently obtained data in our laboratory indicate that fludarabine is not an STAT1 

specific inhibitor and do affects other STATs [180]. Thus, to confirm that this mechanism is 

STAT1 dependent, VSMCs were isolated from WT, STAT1-/- and TLR4-/-mice and treated as 

depicted in Fig. 3-1. Indeed, we could observe synergistic mRNA amplification of Cxcl10  

(Fig. 3-1 A, left panel) and iNOS (Fig. 3-1 A, right panel) in WT-VSMCs upon combined 

treatment, compared with IFNγ or LPS alone. Synergistic amplification in WT-VSMCs was 

present at the mRNA level as well as at the protein level for Cxcl10 (Fig. 3-1 B, left panel). 

Griess reaction which measures indirectly activity of the nitric oxide synthase, reflected results 

obtained at mRNA level for iNOS in WT-VSMCs (Fig. 3-1C). In contrast, this IFNγ and LPS-

induced signal integration in Cxcl10 and iNOS gene expression was dramatically abrogated in 

STAT1-/-and TLR4-/--VSMCs (Fig. 3-1 A), which coincided with Cxcl10 protein levels and amount 

of the nitrite in the medium (Fig. 3-1B, 3-1 C).  

These results further confirm importance of STAT1 in crosstalk between both pathways. 

Interestingly, whereas TLR4 deficient VSMCs failed to express Cxcl10 and iNOS upon 

stimulation with LPS, STAT1-/--VSMCs not only did not express both genes upon treatment 
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with IFNγ but also treatment with LPS alone resulted with blunted response (Fig. 3-1 A and B). 

Presented results allow us to suggest that STAT1 is not only involved in the IFNγ signal 

transduction and crosstalk between JAK/STAT and TLR4 but also participates in response to 

LPS. This could explain lower potency of the response to LPS in STAT1-/--VSMCs as compared 

to WT-VSMCs. 

 

 

 

 

 

 

 

 

 

Fig. 3-1. Cxcl10 and iNOS amplification by IFNγ and LPS is STAT1 dependent. A, VSMCs were 
treated with 10ng/ml IFNγ for 8h or with 1ug/ml of LPS for 4h or with IFNγ for 4h followed by IFNγ 
and LPS for additional 4h. RNA was isolated and qRT-PCR for Cxcl10 and iNOS using Gapdh as 
internal control was performed. B, Cells were treated as in A. On the medium remained after 
treatment ELISA for Cxcl10 was performed. C, After treatment medium was refreshed and cells were 
cultivated for further 24h. 100µl was used to measure nitrite. Data represent means of at least 3 
independent biological experiments ±SEM and p<0.05 was considered as significant. 
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Table 3-2. Genes prone to synergistic amplification upon stimulation with IFNγ and/or LPS and their promoter analysis 
The Table introduces genes that expression is at least 2-fold higher upon stimulation with IFNγ+LPS as compared to the sum of the treatments with both factors alone 
(see column “Signal integration”). Other numbers represent fold changes compared to control. Cross indicates presence of specific sequence in the promoter regions.  
 

SYMBOL WT 
IFNγ 

WT 
LPS 

Signal 
integration 

WT 
IFNγ+LPS 

STAT1-/-

IFNγ 
STAT1-/-

LPS 
STAT1-/-

IFNγ+LPS 
STAT_NFκB IRF_NFκB ISRE STAT NFκB Cluster 

Cxcl9 150.73 20.25 15.46 2643.50 0.93 9.87 9.52 x - - - - A 
Cxcl10 343.62 665.68 2.25 2273.44 0.47 119.63 66.53 x x - - -  
Rsad2 22.91 209.45 2.19 509.05 1.53 2.93 2.71 - - x x x  
Gbp5 53.48 82.66 2.85 388.28 1.28 65.64 72.68 x - x x x 
Batf2 134.37 3.23 2.29 314.46 5.35 5.10 8.31 x - x x x B 
Ubd 21.54 3.38 13.11 326.57 0.80 4.71 6.44 x - x - - 
Cd74 37.66 2.93 5.09 206.50 0.78 8.01 8.24 x x - - - 
Fam26f 43.02 13.60 2.42 137.16 0.95 13.25 13.07 - - x x - 
Serpina3g 24.76 13.36 2.59 98.56 2.12 5.12 7.79 x - x - - 
Ccl5 2.14 249.59 2.04 512.54 0.83 64.48 52.22 x x - - - C 
Tnfaip2 6.52 45.55 2.27 118.00 1.14 28.83 27.04 x - - - - 
Cd40 1.03 15.21 7.83 127.14 0.70 14.09 14.14 - - x x x 
Lincr 1.07 21.38 4.84 108.75 1.16 29.33 25.78 - - x x x 
Nos2 0.71 33.99 2.08 72.15 0.73 22.52 24.13 x x - - - 
Ccrl2 4.18 8.16 3.72 45.93 0.76 5.87 4.65 x - x - - D 
Mx1 3.10 12.73 2.49 39.41 0.91 1.68 1.18 x - x - - 
Has1 1.40 8.71 2.16 21.84 1.17 11.64 14.92 - - - x x 
Oasl1 1.80 7.61 2.13 20.10 1.03 1.45 1.83 - - x - x 
MCP-2 6.12 3.75 3.83 37.77 5.21 44.53 58.31 - - - x - 
Atf3 3.73 2.47 3.27 20.29 1.21 4.34 3.96 - - - x x 
Ifi205 5.39 2.99 2.28 19.10 0.64 4.24 4.81 - - x x - 
Upp1 2.67 2.37 2.87 14.45 1.17 2.25 3.53 x - x - - 
Tnfrsf11a 0.20 5.87 2.12 12.85 1.46 7.44 12.33 x - - - - 
Irf8 6.13 0.41 2.98 19.51 1.40 1.03 0.77 x - - - - E 
MCP-5 1.05 0.32 8.65 11.86 0.69 0.59 0.78 - - x x x 
Sectm1a 1.21 0.27 2.45 3.62 0.30 0.37 1.16 x - x - - 
Gja4 1.25 0.83 4.50 9.35 0.55 0.37 0.27 - - - - x 
Egr2 1.74 1.96 1.98 7.32 0.98 2.31 1.73 x - - - - 
Itpk1 1.12 1.29 2.19 5.29 0.86 0.97 1.30 - - - x x 
Etsrp71 0.48 0.83 2.43 3.18 1.39 0.96 0.96 - - - x x 
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Transcriptional responses in IFNγ and LPS treated VSMCs depend on STAT1, NFκB and 

IRF and predict pro-atherogenic phenotype. 

To examine how pretreatment of VSMCs with IFNγ affected the response to LPS at a genome 

wide level, and in particular whether distinct sets of STAT1-dependent genes could be 

identified, we performed expression profiling. Complete results of microarray can be found at 

the NCBI GEO, with the accession number GSE49519. We aimed to identify genes that similar 

to Cxcl10 and iNOS were synergistically affected by the interactions between IFNγ and LPS. We 

selected genes which expression was at least 2 fold higher upon stimulation with IFNγ + LPS as 

compared to the sum of the treatments with both factors alone.  

 

Table 3-3. Gene ontology classification of synergistically amplified genes 

Term ID Description Frequency log10 p-value Uniqueness Dispensability 

GO:0051707 response to other organism 0.01 -10.10 0.56 0.00 

GO:0009607 response to biotic stimulus 0.01 -9.62 0.66 0.40 

GO:0006952 defense response 0.01 -8.91 0.63 0.41 

GO:0002376 immune system process 0.01 -7.61 0.97 0.00 

GO:0071345 cellular response to cytokine 
stimulus 

0.00 -6.87 0.52 0.32 

GO:0006950 response to stress 0.04 -6.59 0.61 0.50 

GO:0006955 immune response 0.01 -6.26 0.41 0.39 

GO:0006954 inflammatory response 0.00 -5.91 0.68 0.49 

GO:0045071 negative regulation of viral 
genome replication 

0.00 -5.04 0.76 0.47 

GO:0009611 response to wounding 0.00 -4.93 0.68 0.53 

 

Table 3-2 presents 30 genes prone to signal integration. Functional analysis of the genes listed 

in Table 3-2 revealed substantially enriched gene ontology terms that are related to biological 

functions involved in host defense, immune response, inflammatory response, cytokine 

response, response to stress and to wound healing (Table 3-3). Among them were genes 

involved in chemotaxis like Cxcl9 (fifteen fold higher after combined treatment), Cxcl10, Ccl5, 

Ccl12, Ccl8, Ccrl2, Cxcl10, adhesion molecules Cd40, Cd74, and the antiviral and antibacterial 

response genes Irf8, Rsad2, Mx1, Oasl1, Gbp5, Nos2, Batf2 and Tnfrsf11a. Depending on their 

characteristic response pattern in WT-VSMCs, we could divide genes listed in Table 3-2 into 

five groups (Fig. 3-2).  
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First group consist of Cxcl9, Cxcl10, Rsad2 and Gbp5. These genes were highly expressed upon 

treatment with IFNγ and LPS alone and highly amplified upon combined treatment (Cluster A 

in Table 3-2 and Fig. 3-2 A). Genes form the second group (Batf2, Ubd, Cd74, Fam26f and 

Serpina3g) responded moderately to LPS, were highly expressed upon treatment with IFNγ 

and synergistically amplified upon combined treatment (Cluster B in Table 3-2 and Fig. 3-2 A). 

Alike, genes from the third group responded moderately to IFNγ, highly to LPS and were highly 

amplified upon combined treatment. This group was represented by Ccl5, Tnfaip2, Cd40, Lincr 

and Nos2 (Cluster C in Table 3-2 and Fig. 3-2 A). The fourth group of genes was represented by 

Ccrl2, Mx1, Has1, Oasl1, MCP-2, Atf3, Ifi205, Upp1 and Tnfrsf11a and displayed mild or no 

response to IFNγ, mild response to LPS, and mild amplification after combined treatment 

Fig. 3-2. Analysis of genes prone to synergistic amplification upon treatment 
with IFNγ and LPS. VSMCs from WT and STAT1-/- were treated as described in  
Fig 3-1. On RNA isolated from treated samples transcritpome profiling was 
performed. Complete results of microarray can be found at the NCBI GEO, with 
the accession number GSE49519. Genes which expression was at least 2 fold 
higher upon stimulation with IFNγ + LPS as compared to the sum of the 
treatments with both factors alone were selected for further analysis.  
A, Clustering of the synergistically upregulated genes according to their 
expression profile in WT-VSMCs. B, Heat map representing expression of the 
synergistically amplified genes in WT-VSMCs and STAT1-/--VSMCs.  
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(Cluster D in Table 3-2 and Fig. 3-2 A). Finally, we could also identify genes which showed 

minor or no response to IFNγ and LPS alone, but were highly amplified in expression after 

combined treatment [e.g., Irf8, MCP-5, Sectm1a, Gja4, Egr2, Itpk1 and Etsrp71] (Cluster E 

(Cluster D in Table 3-2 and Fig. 3-2A). Next, we compared expression profile between WT-

VSMCs and STAT1-/- VSMCs with respect to the genes listed in Table 3-2 (Fig. 3-2 B). The 

synergistic effect of combined treatment with IFNγ and LPS was no longer present in STAT1-

deficient VSMCs. As expected, lack of STAT1 resulted in lack of response to IFNγ, except Mcp-2 

(Ccl8) which expression seemed to be STAT1 independent (Table 3-2, 6.12 vs. 5.12). Although 

effect of LPS stimulation was not completely abolished in STAT1-/- VSMCs, in 50% of the genes 

listed In Table 3-2 response to LPS was ameliorated. Only expression of Mcp-2 had a different 

characteristic. STAT1-deficient VSMCs triggered accelerated expression of Mcp-2 in response 

to LPS compared with WT-VSMCs (Table 3-2, 3.75 vs. 44.53).  

Additionally, to provide in silico evidence that STAT1 is involved in the regulation of above 

mentioned genes, we searched their promoter regions for overrepresented motifs that may 

be involved in the regulation of expression (Table 3-2). Promoter analysis of the synergistically 

upregulated genes predicted the presence of STAT-NFκB and IRF-NFκB modules or 

combinations of separate ISRE, STAT or NFκB binding sites, strongly suggesting the 

cooperative involvement of NFκB, STAT1 and/or IRFs in the transcriptional regulation of all of 

these genes in response to IFNγ and LPS.  
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Signal integration between IFNγ and LPS in VSMCs leads to increased migration of  

T-lymphocytes. 

Subsequently, by performing qPCR and ELISA on selected genes involved in inflammatory 

processes, we aimed to confirm results obtained in microarray experiments (Fig. 3-3).  

 

 

Fig. 3-3. Effect of STAT1 dependent signal integration on chemokines expression. VSMCs from WT and 
STAT1-/- were treated as described in Fig 3-1. A, RNA from VSMCs was isolated and qRT-PCR transcriptase 
PCR for Ccl5, Cxcl9, Ccrl2, Ccl12 using Gapdh as internal control was performed.  
B, On the medium remained after treatment of VSMCs ELISA for Ccl5 and Cxcl9 was performed. Data 
represent means of at least 3 independent biological experiments ±SEM and p<0.05 was considered as 
significant. 

 

Indeed, combined treatment led to amplification of Ccl5, Cxcl9, Ccl12, Ccrl2 only in WT-VSMCs 

as compared to stimulation with IFNγ and LPS alone (Fig. 3-3A). Analysis of the proteins in the 

medium, reflected results obtained at mRNA level (Fig. 3-3B). In contrast response to 

stimulation in STAT1-/- VSMCs was abolished (Fig. 3-3). Next, we analyzed whether synergistic 

amplification of the genes has functional consequence. Many of the chemokines listed in 

Table 3-2 are known to be involved in chemotaxis of T-lymphocytes [193].  
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Thus, we examined the effect of IFNγ and LPS crosstalk in T-cell trafficking towards 

conditioned medium (Fig. 3-4). While the migration of CD3+/CD45+ cells towards medium of 

WT-VSMCs treated with IFNγ and LPS alone led to increase of 125% and 175% respectively, 

treatment with both IFNγ and LPS was 234%. As expected, the chemotactic response  

of splenocytes towards the conditioned medium obtained after treatment of STAT1-/--VSMCs 

was highly attenuated (Fig. 3-4). 
 

 

 

Signal integration between IFNγ and LPS in aortic rings leads to abolished response to 

norepinephrine and sodium nitroprusside. 

To further confirm functional relevance of concomitant IFNγ and LPS stimulation, we verified 

expression of Cxcl9 and Cxcl10 in ex vivo stimulated aortas isolated from WT animals. Indeed 

stimulation with IFNγ followed by LPS led to synergistic amplification of Cxcl9 and Cxcl10  

(Fig. 3-5). 

Fig. 3-4. Amplification of chemokines 
expression leads to increased splenocytes 
migration. Migration assay of CD45+/CD3+ 
performed on conditioned medium 
remained after treatment of VSMCs WT and 
STAT1-/-. Data represent means of at least  
3 independent biological experiments ±SEM 
and p<0.05 was considered as significant.  

Fig. 3-5. Cxcl9 and Cxcl10 overexpression 
upon IFNγ and LPS stimulation in WT 
aortas. Isolated aortas from WT animals 
were cleaned from perivascular fat and 
placed in DMEM medium with 2% FBS. 
Next aortas were stimulated as in Fig. 3-1. 
RNA was isolated and qRT-PCR for Cxcl9 
and Cxcl10 using Gapdh as internal 
control was performed. Data represent 
means of 3 experiments ±SEM and p<0.05 
was considered as significant. 
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Among the genes that were highly amplified upon treatment with IFNγ and LPS was inducible 

nitric oxide synthase (iNOS, Nos2). Activity of iNOS was found to be crucial in regulating vessel 

function. Thus, to further evaluate physiological ramifications of our experimental conditions, 

we tested vessel function using myograph (Fig. 3-6). While treatment with IFNγ did not result 

in a significant change of the response neither to norepinephrine nor sodium nitroprusside, 

stimulation with LPS resulted in reduced response to norepinephrine in WT but also STAT1-/-. 

Moreover, treatment of the WT aortic rings with IFNγ followed by LPS, resulted in ameliorated 

contractile response to norepinephrine and dilator response to sodium nitroprusside.  

In contrast aortic rings isolated from STAT1 null mice did not reveal ameliorated response to 

noradrenaline and sodium nitroprusside as compared to LPS stimulated vessel.  

 

 

 

 

 

 

Fig. 3-6. Abolished response to norepinephrine and sodium nitroprusside in aortic rings stimulated 
with IFNγ and LPS. Isolated aortic rings from WT and STAT-/- mice were incubated with 10ng/ml IFNγ 
for 8h or with 1ug/ml of LPS for 4h or with IFNγ for 4h followed by IFNγ and LPS for additional 4h. 
Next, response to norepinephrine and sodium nitroprusside was tested on the wire myograph.  
A, Response to noradrenaline in WT and STAT1-deficient mice presented as a percentage of maximal 
constriction to KPSS.*p<0.001 vs. WT control; •p<0.001 vs. WT LPS; ○p<0.001 vs. STAT1-/- control.  
B, Response to stepwise increased concentration of sodium nitroprusside. xp<0.05 vs. WT control; 
∞p<0.01 vs. WT LPS; ԏp<0.05 STAT1-/-control. Aortas isolated from 3-4 animals per group were taken. 
Two-way ANOVA test with Bonferroni post hoc test was used. 
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STAT1 activation and CXCL9 and CXCL10 expression in ECs and VSMCs from human carotid 

atherosclerotic plaques. 

To gain further insight into the role of STAT1 in atherosclerosis, we performed 

immunohistochemistry staining for phosphorylated STAT1 as well as STAT1-dependent 

chemokines, CXCL9 and CXCL10 in human advanced atherosclerotic plaques of carotid 

arteries. As it is shown in Fig. 3-7 neither phosphorylated STAT1 nor CXCL9, nor CXCL10 where 

present in carotid arteries form the control group (Fig. 3-7 A, upper row). In contrast, VSMCs 

in the lesions highly expressed phosphorylated STAT1 which was associated with expression of 

chemokine CXCL9 and to a lesser extent CXCL10 (Fig. 3-7 A, middle row). Additionally, ECs 

covering the plaque likewise showed predominant staining for phosphorylated STAT1 

associated with CXCL9, and to a lesser extent with CXCL10 staining. This result gives an 

additional proof for a pro-atherogenic role of STAT1 in vascular cells of atherosclerotic 

plaques.   

Fig. 3-7. Expression of pSTAT1, CXCL9, CXCL10 in human atherosclerotic lesions in situ. Staining of the 
sections prepared from normal human artery exhibited no presence of pSTAT1, CXCL9, CXCL10 (A, upper 
panel). In contrast, all three proteins could be detected in SM-M10 positive cells in atherosclerotic 
plaques (A, middle panel) as well as in the endothelial cells at the lumen side (B). A representative 
analysis is shown of 6 human carotid atherosclerotic lesions and 4 healthy controls. Arrows represent 
examples of positive staining. In B arrows with asterix indicate an examples of positively stained VSMCs. 
Scale bar = 100µm.  
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IRF8 is highly expressed in SMCs and ECs in response to IFNγ and LPS. 

Among, the genes which were synergistically amplified upon combined treatment with IFNγ 

and LPS was also IRF8. This transcription factor is considered to be expressed only in 

lymphoid-cell lineages such as B, T, dendritic cells and macrophages [82]. According to 

microarray results, expression of IRF8 was IFNγ dependent and highly upregulated upon 

treatment with IFNγ and LPS (Tab 3-2). Treatment with LPS alone did not affect expression of 

IRF8. To support our genome-wide studies, we treated VSMCs isolated from WT, STAT1 and 

IRF8 deficient mice with IFNγ. We observed time dependent upregulation of IRF8 only in WT-

VSMCs. Expression of IRF8 was not present either in IRF8-/- or STAT1-/--VSMCs (Fig. 3-8 A). 

Next, we verified susceptibility of IRF8 to signal integration in cells from the vasculature. IRF8 

was not present in basal condition in WT-VSMCs and HMECs (Fig. 3-8 B).  

 

 

 

 

 

 

Fig. 3-8. IRF8 is expressed in the vasculature. A, VSMCs from WT STAT1-/-,and IRF8-/- were treated with 
IFNγ for indicated time points. RNA was isolated and subjected to PCR for IRF8 using βActin as internal 
control. B, Cell were treated as in Fig 3-1. qRT-PCR for IRF8, using GAPDH as internal control was 
performed in VSMCs (left panel) and HMECs (right panel). Data represent means of at least  
3 independent experiments ±SEM and p<0.05 was considered as significant. C, Representative Blot for 
IRF8. Protein extracts from treated cells were analyzed for IRF8 and GAPDH. Left panel presents data 
obtained from VSMCs and right from HMECs. 
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Only treatment with IFNγ led to the upregulation of IRF8 in WT-VSMCs and HMECs. Moreover, 

pretreatment of VSMCs and HMECs with IFNγ for 4h followed by LPS for another 4h resulted 

in amplification of IRF8 expression. IRF8 was not present in STAT1-/--VSMCs indicating STAT1 

dependent expression of IRF8. In analogy to the mRNA results, Western experiment confirmed 

upregulation of IRF8 upon treatment with IFNγ and amplification of its expression in the 

presence of both IFNγ and LPS in HMECs and WT-VSMCs but not STAT1-/ (Fig. 3-8 C).  

This result indicates STAT1 dependent expression of IRF8 upon stimulation with IFNγ and 

confirms amplification of IRF8 upon stimulation with IFNγ and LPS. 

 

IRF8 mediates IFNγ and LPS induced gene expression in vascular cells. 

IRF8 is an important transcription factor which regulates not only immune cells development 

but also their function and is associated with expression of several proinflammatory genes 

[82, 194]. Therefore, to further characterize the role of IRF8 in the vasculature, we evaluated 

expression patterns of Ccl5 and Nos2. Literature data indicates that expression of above 

mentioned genes in immune cells is IRF8-dependent [195].  
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Fig. 3-9. IRF8 participates in a crosstalk between IFNγ and LPS be regulating expression of Ccl5 and iNOS 
but not Cxcl10 and Cxcl9. VSMCs from WT and STAT1-/-, IRF8-/- were treated as described in Fig 1. RNA was 
isolated and qRT-PCR for Ccl5, iNOS (A) and Cxcl10, Cxcl9 (C) using Gapdh as internal control was 
performed. B, On the medium remained after treatment ELISA for Ccl5was performed. C, After treatment 
medium was refreshed and cells were cultivated for further 24h. 100µl was used to measure nitrite. Data 
represent means of at least 3 independent biological experiments ±SEM and p<0.05 was considered as 
significant. NS – not significant 

 

Expression patterns were evaluated by qPCR and compared with WT and STAT1-/- cells  

(Fig. 3-9). Indeed the IRF8 dependent regulation of Ccl5 and Nos2 on mRNA and on protein 

level (Fig. 3-9 A and B) was observed. Treatment with IFNγ and LPS led to amplification of Ccl5 

and Nos2 in WT and IRF8-/- VSMCs. However, response to both stimuli was highly attenuated 

in IRF8-/--VSMCs compared with WT-VSMCs. Nitrite accumulation (Fig. 3-9 C) and Ccl5 

expression (Fig. 3-9 B) measured in the medium confirmed that result. In contrast to Ccl5 and 

Nos2, expression of Cxcl10 and Cxcl9 in response to IFNγ and LPS in WT VSMCs was similar to 

that in IRF8-/--VSMCs (Fig. 3-9 D). 
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IRF8 is expressed in ECs and VSMCs from human carotid atherosclerotic plaques. 

To obtain further evidence for the expression of IRF8 in vascular cells in human tissue, we 

performed immunohistochemistry staining of IRF8 in human advanced atherosclerotic plaques 

of carotid arteries and compared to healthy vessels. While there was no positive IRF8 staining 

in control vessels (Fig. 3-10 A), human atherosclerotic lesions were positive for IRF8 and 

expressed in areas positive for SMCs (Fig. 3-10 B).  

 

 
 

 

To specify which cells express IRF8, we performed fluorescent immunohistochemistry.  

We identified strong expression of IRF8 in CD68 positive cells (Fig. 3-11).    

Fig. 3-10. Expression of IRF8 in human atherosclerotic lesions. Staining of the sections prepared from normal human 
artery exhibited no presence of IRF8 (A, upper panel). In contrast, IRF8 could be detected in cells that correlate with 
expression for SMC marker in atherosclerotic plaque. Arrows represent examples of positive staining.  

 

Fig. 3-11. Fluorescent staining 
of in advanced carotid athero-
sclerotic plaques for IRF8. 
Abundance of IRF8 correlated 
with expression of macrophage 
marker (cells expressing CD68 
marker). Combined staining 
with FITC (macrophage) and 
Cy3 (IRF8) fluorescence dye 
were used. Cell nuclei were 
counterstained with DAPI.  
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In addition to macrophages (cells expressing CD68 marker), VSMCs seemed to be positive for 

this staining (Fig. 3-12 upper panel). However, the expression was very weak and not all cells 

were stained. Furthermore, ECs of intra-plaque neovessels were also positive for IRF8  

(Fig. 3-12 lower panel). In contrast, ECs covering the plaque showed negative staining (data 

not shown). Presented results indicate that IRF8 is expressed in human carotid plaques among 

inflammatory as well as non-inflammtory cells. However, these results are still not 

unambiguous and further experiments are necessary to confirm the presence of IRF8 in 

ahteromata. 

 

 

Fig. 3-12. Staining for IRF8 in human carotid plaques. Selected examples of fluorescent staining of 
VSMCs and ECs within neovessels in advanced carotid atherosclerotic plaques for IRF8. A combined 
staining with FITC (green, cells specific) and Cy3 (red, IRF8) fluorescence dye were used. Cell nuclei 
were counterstained with DAPI.  

 

Discussion 

 

ECs and VSMCs sustain the blood flow and regulate the vascular tone, thus they play a pivotal 

role in maintaining homeostasis of the cardiovascular system. Nevertheless, in the presence of 

cardiovascular risk factors the cells that form the vessel wall are activated and demonstrate  

a phenotype that is characteristic of the host defense response. This change of the phenotype 
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results in the expression of proinflammatory genes such as cytokines and chemokines and  

is fundamental in the pathophysiology of many disorders, including atherosclerosis [196, 197]. 

  

In a previous chapter we showed that signal integration between important contributors  

of the inflammation is also present in non-immune cells. Our results suggested that in ECs and 

VSMCs, STAT1 creates a platform for crosstalk between IFNγ and TLR4 and thus triggers 

expression of proinflammatory genes such as Cxcl10. Here we present results which clearly 

confirm previous findings. Signal integration between both pathways led to high expression of 

Cxcl10 and iNOS, which was TLR4- and STAT1-dependent (Fig. 3-1). We carried out 

transcription profiling to further investigate how signal integration between IFNγ and TLR4 

modulates gene expression and, consequently, how this alteration affects vascular function. 

We identified 30 STAT1-dependent genes whose expression upon combined treatment was at 

least two-fold higher as compared to treatment with IFNγ and LPS alone. Functional analysis 

as presented in Table 3-3 revealed that these genes are involved in a number of biological 

processes related to inflammation, stress and wound healing. These included chemokines 

Cxcl9, Ccl12, Ccl8, Ccrl2, Cxcl10 and Ccl5, adhesion molecules (Cd40, Cd74), and the antiviral 

and antibacterial response genes Irf8, Rsad2, Mx1, Oasl, Gbp5, Nos2, Batf2 and Tnfrsf11a. 

Interestingly, meta-analysis performed in our laboratory identified the expression of a subset 

of genes in human plaques from the carotid and coronary artery [198]. Some of these genes, 

including CXCL9, CXCL10, CCL5, CCL8, CRCL2, CD74 and IRF8, have previously been implicated 

in atherosclerosis [89, 199]. However, other genes were not, such as GBP5, UBD, SECTM1, 

IFI16, UPP1 and FAM26F, and could therefore represent the potential novel biomarkers of 

atherosclerosis.  

 

Depending on the characteristic response pattern in WT-VSMCs, we could divide the genes 

listed in Table 3-2 into five groups (Fig. 3-2). Next we verified the expression pattern of 

synergistically amplified genes in STAT1-/--VSMCs. As was expected, a lack of STAT1 resulted in 

an abolished IFNγ response and in deprivation of signal integration upon combined treatment 

(Fig. 3-2 B). With regard to the LPS response, a lack of STAT1 resulted in ameliorated 

expression in 50% of the genes listed in Table 3-2. ELISA and qPCR, which was used to 

additionally determine the expression profile of selected genes, validated our microarray 
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results (Fig. 3-3). Promoter analysis confirmed the presence of a variety of cis-regulatory 

elements such as STAT-NFκB and IRF-NFκB modules, or combinations of separate ISRE-, STAT- 

or NFκB-binding sites. Most of the genes listed in Table 3-2 do not have a unique cis-

regulatory element, which strongly suggests the cooperative involvement of distinct 

transcription factors including NFκB, STAT1 and/or IRF in the transcriptional regulation of all of 

these genes in response to IFNγ and LPS. These results are in line with several studies that 

were performed in immune cells where the cooperative action of STAT1 and NFκB was related 

to gene expression in response to stimuli such as IFNγ and TNFα, IL-1β or LPS [132, 135-137, 

139, 143]. For example, it was recently reported that IFNγ and TNFα synergistically regulated 

the transcription of many inflammatory genes [135-137, 139] including CXCL9 [131], where 

independent interaction of STAT1 and NFκB was sufficient to mediate the transcriptional 

synergy [139]. Similar phenomena were observed for genes containing ISRE and NFκB 

elements. In this respect the NFκB motif in the GBP1 promoter was required for  

a transcriptional response to TNFα and IL-1β in cooperation with IRF1-binding ISRE [200]. 

A similar synergistic effect of TNFα with IFNγ and LPS with IFNγ was observed on the promoter 

activity of several other genes, such as ICAM-1 [201], NOS2 [202], CXCL10 or CCL5 [137, 203]. 

Our results strongly suggest that a mechanism of synergistic amplification, primarily described 

in immune cells and based on cooperation between NFκB and STAT1 or NFκB and IRF1, is also 

present in cells from the vasculature [185]. Because there were no specific cis-elements that 

could explain the differences in the expression patterns of these 30 genes, we suggest that  

the affinity of the different transcription factors and their interplay most likely determines the 

transcriptional response of a particular gene.  

 

A large group of genes listed in Table 3-2 belongs to the family of chemokines. This group of 

genes mediates chemotaxis of immune CD3+/CD45+ cells and, consequently, directs them 

towards the inflammation site. We performed migration assay (Fig. 3-4) to verify whether 

synergistic amplification of genes related to chemotaxis has a functional consequence. Indeed, 

we observed that increased migration of T-cells towards the medium remained after 

treatment of WT-VSMCs with IFNγ and LPS as compared to the conditioned medium from cells 

treated with each factor alone. In contrast, migration towards the medium remained after 

treatment of STAT1-/--VSMCs was attenuated. In addition, we confirmed amplification of Cxcl9 
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and Cxcl10 in ex vivo-treated aortas isolated from WT mice (Fig. 3-5). Furthermore, the 

literature data indicate the involvement of many chemokines, including CXCL9, CXCL10, CCL5, 

CCL8 and CCRL2, in leukocyte recruitment to the injured artery during vascular remodeling 

[193, 204, 205], and as such involvement in the pathogenesis of atherosclerosis. Therefore, to 

further confirm the results we performed IHC staining of atherosclerotic lesions isolated from 

human carotid arteries. In agreement with previously published data, we could confirm the 

presence of CXCL9 and CXCL10 in atherosclerotic lesions (Fig. 3-7). Importantly, we detected, 

for the first time, the presence of phosphorylated STAT1 which correlated with the expression 

of CXCL9 and CXCL10. These results, together with previously published data, point to the pro-

atherogenic role of STAT1 in cells from the vasculature in human vascular disease [79]. Most 

importantly, signal integration between IFNγ and LPS resulted not only in an increased 

abundance of chemokines but also contributed to vessel function by upregulation of Nos2. 

Inducible nitric oxide synthase has been found to promote vessel dysfunction and 

atherosclerosis [206]. Indeed, aortic rings isolated from WT treated by both stimuli had a 

highly ameliorated contractile response to norepinephrine and a dilator response to sodium 

nitroprusside (Fig. 3-6).  

 

IRF8 was also among the genes that were synergistically amplified upon treatment with IFNγ 

and LPS. This transcription factor was thought to be expressed only in immune cells. Our 

experiments clearly revealed its presence in VSMCs and HMECs at the mRNA as well as 

protein level (Fig. 3-8). However, expression of IRF8 was strictly regulated by IFNγ and was not 

present at the basal condition. These results suggest that IRF8 is involved in the regulation of 

gene expression downstream of STAT1. Promoter analysis identified the presence of the 

regulatory element that was recognized by both STAT1 and NFκB in the IRF8 promoter  

(Table 3-2), which thus suggests the importance of the cooperation of STAT1 and NFκB in the 

amplification of IRF8 expression. Consequently, IRF8 can be considered as an additional 

platform for the regulation of crosstalk between IFNγ and LPS in vascular cells. Interestingly, 

some evidence for IRF8’s role in this crosstalk exists in immune cells. Zhao et al. showed that 

the synergistic induction of pro-inflammatory genes, such as IL1, IL6, IL12 and TNFα, is IRF8-

dependent in macrophages [115]. Moreover, recent data pointed to the role of IRF8 in TLR4-

mediated NFκB activation [207]. Indeed, our experiments performed in ECs and VSMCs 
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identified Ccl5 and iNOS (but not Cxcl9 and Cxcl10) as potential IRF8 targets (Fig. 3-9).  

These data are in line with results obtained in macrophages where cooperation of IRF8 with 

IRF1 and NFκB was essential for the IFNγ and LPS response. While interaction of IRF8 with IRF1 

facilitated the response to IFNγ, the response to LPS was mediated by interaction between 

IRF8 and NFκB at the promoter site [115, 144, 208]. We hypothesize that a similar mechanism 

of interaction between IRF8 and other transcription factors regulates the expression of genes 

involved in inflammation, such as Ccl5 and Nos2, which play a crucial role in atherogenic 

processes [209]. Indeed, in silico promoter analysis predicted the presence of an IRF-NFκB 

module in Ccl5 and Nos2 promoters. On the other hand, the promoters of both genes also 

contain a potential STAT1-NFκB module, which suggests the additional involvement of STAT1 

as well.  

 

Finally, we performed IHC staining of the material isolated from arteries affected with 

atherosclerosis to study whether IRF8 is expressed in the vessel wall. While expression of IRF8 

was not detected in the control material, IRF8 expression could be detected in infiltrating 

macrophages and in VSMCs and ECs in the atherosclerotic plaque (Figs. 3-10-12). However, 

the expression in vascular cells seemed weaker and not all of these cells were positive for 

IRF8; thus further research will be required to prove the expression of IRF8 in atherosclerotic 

lesions. Nevertheless, our IHC results correlate with the fact that IRF8 expression is not 

detected in vascular cells but is completely dependent on pro-atherogenic stimuli, such as 

IFNγ and LPS, whereas a constitutive IRF8 expression pattern is present in immune cells [82].  

 

In conclusion, our results indicate that in ECs and VSMCs, STAT1 and IRF8 together with the 

cooperation of other transcription factors such as IRF1 and NFκB orchestrate a platform for 

crosstalk between IFNγ and TLR4. Consequently, STAT1- and IRF8-mediated signal integration 

leads to synergistic amplification of genes involved in several proinflammatory processes such 

as chemotaxis, migration and oxidative stress. Because these processes are involved in the 

development and progression of atherosclerosis, STAT1 and IRF8 together with their 

downstream genes could represent potential targets of therapeutic intervention.  
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Chapter 4  

Signal Transducer and Activator of Transcription protein (STAT)-1 in 

Angiotensin II-induced hypertensive organ damage 

 

Introduction 

 

Hypertension is one of the major risk factors for cardiovascular mortality and morbidity [210].  

In Poland, prevalence of hypertension was reported in 32% of the adult population [211]. 

Among them only one third was aware of the disease and etiology of the disease remained 

unknown in 95% of the cases [211]. Angiotensin (Ang) II, a crucial mediator of the renin-

angiotensin system, not only regulates the vascular tone but also induces inflammation and 

contributes to end organ damage. Ang II-induced hypertension causes cardiac remodeling 

characterized by inflammation, fibrosis and hypertrophy [212]. Genetically modified mice with 

kidney specific elevation of Ang II, have elevated inflammation and kidney fibrosis [213]. 

Although the exact mechanism of immune system sensitization remains unknown, it has been 

observed that Ang II stimulates the expression of chemokines (Ccl2, Cxcl10), cytokines (Il6 or 

TNFα), and adhesion molecules (VCAM) [214-217]. Ang II can also act on monocyte 

differentiation and T cell function [31]. Treatment with angiotensin-converting enzyme (ACE) 

inhibitors and Ang II receptor blockers not only lowers the blood pressure but also diminishes 

the expression of adhesion molecules and decreases the number of adhered leukocytes [218-

220]. Recent studies indicate that at least partially the function of Ang II is mediated through 

the activation of lymphocytes and subsequent IFNγ secretion [73, 74, 221]. IFNγ or IFNγ 

receptor-deficient mice revealed not only improved vessel but also cardiac function, reduced 

inflammation and heart fibrosis despite Ang II infusion. The action of IFNγ is mediated through 

the JAK/STAT pathway [118]. Stimulation with IFNγ triggers conformational changes of the 

receptor and facilitates phosphorylation of the JAK1 and JAK2 kinases, which consequently 

phosphorylates transcription factor STAT1. This canonical mediator of IFNγ signaling forms 

active dimers that trigger expression of STAT1-dependent genes such as Cxcl10 and Ccl2 [161, 

222]. Importantly, not only IFNγ but also Ang II can reveal its actions via activation of 

important components of the JAK/STAT pathway [223]. Ang II cooperates with the JAK2 kinase 
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to induce vessel contraction, and inhibition of JAK2 phosphorylation blocks blood pressure 

elevation [224, 225]. Similarly to IFNγ, also Ang II contributes to activation of the JAK/STAT 

pathway, thus leading to the expression of nicotinamide adenine dinucleotide oxidase 

(NADPH) and, as a consequence, upregulation of ROS production [226, 227]. Mechanical 

stretch activates JAK/STAT via autocrine/paracrine-secreted Ang II [228].  

 

Despite providing evidence for the importance of the JAK/STAT pathway in the regulation of 

Ang II response, surprisingly little is known about the role of transcription factor STAT1- and 

STAT1-dependent genes in such pathological settings. Although it has been shown that 

activated Ang II receptor I (AT1R) associates with the JAK2 kinase and triggers STAT1 

phosphorylation, potential consequences of STAT1 activation are not fully understood [229, 

230]. Both Ang II and STAT1 were identified to regulate autophagy, a catabolic process that 

degrades cytoplasmic components within the lysosome and is related to fibrosis and 

hypertrophy [231, 232].  

Thus, to investigate the role of STAT1 in hypertension and hypertensive end-organ damage,  

we applied an Ang II-induced model of hypertension in STAT1-deficient mice. We 

hypothesized that activation of STAT1 during Ang II infusion upregulates chemokines, 

enhances chemotaxis and consequently results in heart fibrosis and vessel dysfunction. 

 

Methods 

 

Animal experiments 

Mice wild-type C57BL/6 (WT) were obtained from Charles River Laboratories. STAT1-/- 

knockouts mice on C57BL/6 background were kindly provided by Thomas Decker All strains 

were housed under controlled conditions of temperature (21°C) and were maintained on 

normal mouse chow diet and water ad libitum. All experiments performed in accordance with 

institutional guidelines. Angiotensin II (Sigma) in a concentration 1,5µg/g/day was infused 

using mini-osmotic pump (Alzet, model 2004) which was implanted subcutaneously under 

inhaled isoflurane anesthesia and buprenorphin. Blood pressure was measured using tail cuff 

pletysmography.  
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Wire myograph and contractility studies 

To measure circulatory function, descending thoracic aorta were cut into 2mm long rings and 

mounted in a 4-channel wire myograph (620M, Danish Myo Technology, Aarhus, Denmark) in 

the organ chamber filled with physiological saline solution (PSS) containing 118,99mM NaCl, 

4,69mM KCl, 1,17mM MgSO4*7H2O, 1,18mM KH2PO4, 2,5mM CaCl2*2H2O, 25mM NaHCO3, 

0,03mM EDTA, 5,5mM Glucose (Fig. 4-1 A).  

 

 

 

 

 

 

During the experiment PSS buffer was aerated with carbogen (95% O2+ 5%CO2). After 20min 

of incubation (at 37°C), calibration of the force transducer was performed [190]. 

Subsequently, vessels were pre-streched to obtain optimal passive tension. Next, vascular 

functions were analyzed. Contractility was evaluated by substitution of PSS buffer for high 

potassium physiological saline solution (KPSS; 74,7mM NaCl, 60mM KCl, 1,17mM 

MgSO4*7H2O, 1,18mM KH2PO4, 1,6mM CaCl2, 14,9mM NaHCO3, 0,026mM EDTA, 5,5mM 

Glucose). For testing viability, vessels were subjected to norepinephrine-induced constriction 

followed by acetylcholine dilation (Fig. 4-1 B). Activation of α-adrenergic receptors by 

noradrenaline triggers the release of Ca+2 from the sarcoplasmic reticulum followed  

by membrane depolarization by activated chloride channels. This results in augmented 

Fig. 4-1. Protocol for the myograph experiment. A, The wire myograph 620M (left picture) and the chamber 
with mounted aortic ring (right picture). B, On the isolated aortic rings, viability test with 10-5 mol/L of 
noradrenaline (NE) followed by 10-5 mol/L of acetylcholine was perfomed. C, Noradrenaline was used in 
stepwise increased, cumulative concentration ranging from 10-11 to 10-6 mol/L (N1-N9) and followed by 
acetylcholine dose-response curve from 10-10 to 10-5 mol/L (A1 to A11). D, Calcium-induced (receptor 
independetn) vasoconstriction dose-response curve was perfomed. The myograph gives output readings as 
absolute tension generated elicited by vasoconstriction/vasodilatation in millinewton (mN). 
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extracellular Ca+2 influx in the plasma membrane of the VSMCs and leads to an increase in 

intracellular Ca+2 concentration and vasoconstriction [233]. Opposite to norepinephrine, 

acetylcholine triggers endothelium-dependent vasodilatation via stimulation of muscarinic 

receptors. Acetylcholine leads to the release of nitric oxide from endothelium and causes 

opening of the potassium channels in the VSMCs thereby leading to hyperpolarization [234]. 

Action of acetylcholine is endothelium mediated and thus only vessels with intact 

endothelium fully respond to acetylcholine-mediated dilation. After washing out with PSS 

buffer and resting for 15 minutes, norepinephrine and acetylcholine dose-response curves 

were performed (Fig. 4-1 C). Noradrenaline was used in stepwise increased, cumulative 

concentration ranging from 10-11 to 10-6 mol/L (N1-N9), followed by acetylcholine dose-

response curve from 10-10 to 10-5 mol/L (A1 to A11). Subsequently, vessels were washed with 

PSS buffer and left resting for 20 minutes. Finally, cells were washed with PSS buffer and 

calcium sensitivity was assessed by stepwise increases of calcium concentration (0 - 3mmol/L) 

in the organ bath under depolarizing conditions (125mmol/L potassium) starting at 0mmol/L 

calcium in the bath solution (Fig. 4-1 D).  

 

RNA analysis 

Total RNA from kidney and heart was isolated using RNAeasy Mini Kit (Qiagen). 10-20mg of 

the tissue was lysed using TissueLyser (Qiagen, 2x30Hz, 2min) in RLT buffer. Next, samples 

were homogenized using QIAshredder columns and RNA isolation was perfomed according to 

the manufacture’s protocols. Isolated aortas were cleaned from perivascular fat and snap 

frozen on liquid nitrogen. Aorta was ground up with pestle and 1ml of Trizol was added. Total 

RNA from aorta was isolated using Trizol method followed by PureLink RNA kit (Life 

Technologies). cDNA was prepared using iScript cDNA synthesis kit (Bio-rad) following the 

manufacture’s protocols. Quantitative real-time PCR was performed by using a MyiQ Real 

Time PCR detection system provided by Bio-rad. Forward and reverse primers are depicted in 

Table 4-1. The 2-ddCt method was applied for quantification [155]. Fold change in the target 

gene were normalized to GAPDH and relative to the mean expression at untreated sample. 

The results are expressed as fold of control from at least 3 independent assays. 
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Table 4-1. List of primers used in chapter 4 

Gene Name Forward Reverse 

Gapdh TCGGTGTGAACGGATTTGGC TTTGGCTCCACCCTTCAAGTG 

MCP1 (CCL2) GCTGTAGTTTTTGTCACCAAG GATTTACGGGTCAACTTCACA 

Nox4 ACAGAAGGTCCCTAGCAGGAG CAACAAACCACCTGAAACATGC 

Cxcl10 TCATCCCTGCGAGCCTATCC GGAGCCCTTTTAGACCTTTTT 

Cxcl9 CTGCCATGAAGTCCGCTGTTCT TCCCCCTCTTTTGCTTTTTCTT 

Col type 3A1 
 

CCTCAGACTTCTTTCCAGCCG GTCTTGCTCCATTCCCCAGTG 

iNOS (NOS2) TGGGGCAGTGGAGAGATTTT TCTGGTCAAACTCTTGGGGT 

p47phox AGAAGGCTGGGGAGGAGATA TTCCGTTTGGTGCTCTCTGTG 

p22phox GCCCTCCACTTCCTGTTGTC CCTCCTCTTCACCCTCACTC 

NGAL  CCAGGGCTGGCCAGTTCACTC 
 

TGGGTCTCTGCGCATCCCAGT[235] 
  

 

Western blot analysis 

10-20mg of tissue was lysed using TissueLyser (Qiagen, 2x30Hz, 2min) in RIPA (Sigma) 

containing protease and phosphatase inhibitors (Roche). Protein concentrations were 

measured using BCA protein assay (Pierce). Protein extracts were heated with sample buffer 

(Life Technologies) containing dithiothreitol (90˚C, 10min) and loaded on NuPAGE 4-12% Bis 

Tris Gel (Life Technologies). After electrophoresis (200V, 45min), proteins were transferred 

onto PVDV filter using wet transfer system (Bio-rad, 30V, 90mA, 16h at 4˚C). Membranes were 

blocked with 5% BSA in TBS-Tween (TBST) and incubated with primary antibodies: rabbit 

monoclonal to LC3A/B antibody (overnight, 1:1000, Cell Signaling, 12741), or GAPDH 

(overnight, 1:15000, Cell Signaling, 5174). After washing in TBST for 30min at RT, membranes 

were incubated with secondary goat anti-rabbit antibody (1:15000, 30min at RT, Santa Cruz 

Biotechnology sc-2004). Next, membranes were washed in TBS for 30min and visualized using 

Luminata Forte or Luminata Classico (for GAPDH) Western HRP substrate (Millipore) in INTAS 

imaging system (Intas, Germany). 

 

Hydroxyproline measurement assay 

Hydroxyproline was measured using Hydroxyproline assay provided by QuickZyme 

Biosciences. Briefly, approx. 20mg of the tissue were hydrolyzed in 6M HCl (Sigma) and 

incubated for 20h at 95°C together with provided standard. Samples were cooled to the RT, 
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centrifuged and transferred into new tube. Supernatants were diluted in 4M HCl and mixed 

with 75ul of the assay buffer and incubated 20min at RT. Next, 75ul of the detection reagent 

was added and incubated for 60min at 60°C in an oven. After incubation absorbance at 570nm 

was measured. Data were analyzed using MARS data analysis software (BMG Labtech). 

 

Immunohistochemical analysis 

Part of the isolated tissue were fixed in 10% buffered formalin and embedded in paraffin. 

Sections (4 µm thick) were cut and stained for collagen via Picosirius red. For characterisation 

of the cells within isolated tissues, sections were treated with antibody for all nucleated 

hematopoietic cells (rat anti mouse CD45 BD Pharmingen 550539) dilution 1:50 overnight at 

RT. Following incubation with primary antibody visualisation was performed by 

peroxidase/DAB ChemMate Detection Kit according to the manufacturer’s instructions. 

 

Promoter Analysis  

Promoters for amplified STAT1 dependent genes were screened using GENOMATIX software 

(http://www.genomatix.de/). [160] The promoter regions from -1000 to +100bp were 

searched for binding sites (V$IRF1.01 V$ISGF3G.01 V$ISRE.01 V$ISRE.02 V$CREL.01 

V$NFKAPPAB.01 V$NFKAPPAB.02 V$NFKAPPAB65.01 V$STAT.01 V$STAT1.01 V$STAT1.02)  

or models with core similarity at least 0.85 (V$STAT3.02 V$STAT3.01). 

 

Statistical Analysis  

Data are presented as mean ± SEM. For comparisons between more than two groups one-way 

ANOVA with Tukey post-hoc test was used. In all other experiments comparing two groups, 

Student’s t-test was used. In contractility studies, for comparison of maximum constriction 

among groups two-way ANOVA test with Bonferroni post hoc test was used. A probability 

value <0.05 was considered statistically significant (GraphPad Prism ® 5.0). 

 

 

Results 

 

http://www.genomatix.de/cgi-bin/matinspector_prof/matrix_help.pl?s=8945d264ccdf85ed093c486ec8e71765;ML=91;NAME=V%24STAT3.02
http://www.genomatix.de/cgi-bin/matinspector_prof/matrix_help.pl?s=8945d264ccdf85ed093c486ec8e71765;ML=91;NAME=V%24STAT3.01
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Ang II-induced and STAT1 mediated cardiac damage 

To characterize the role of STAT1 in hypertension and hypertensive induced end organ 

damage we subcutaneously infused Ang II in WT and STAT1-/- mice. Basal systolic blood 

pressure (BP) was the same among all groups and Ang II increased systolic BP in the same 

manner in WT and STAT1-/- (Fig. 4-2 A). Likewise, there was no difference in basal heart weight 

to body weight (HW/BW) ratio and both groups presented the same rate of cardiac 

hypertrophy upon stimulation with Ang II (Fig. 4-2 B).  

 

 

 

Fig. 4-2. Role of STAT1 in hypertension and hypertensive induced end-organ damage. C57BL/6 (WT) and 
STAT1-/- mice (C57BL/6 background) were treated for 28d with 1,5µg/g/day angiotensin II (Ang II), which was 
administered subcutaneously via osmotic minipump. A, Noninvasive blood pressure measurements obtained 
via the tail cuff method (n≥6 per group) B, Heart weight to body weight ratio (HW/BW) measured in Ang II 
treated STAT1 knockout vs WT mice. 

 

Next, we investigated the role of STAT1 in Ang II-induced inflammation of the heart.  

Staining for CD45+ cells disclosed significantly increased infiltration of inflammatory cells in WT 

hearts which was markedly reduced in STAT1-/- mice upon chronic infusion of Ang II (Fig. 4-3). 

Sirius red staining demonstrated less perivascular fibrosis in STAT1-/- compared to WT treated 

with Ang II (Fig. 4-4 A). This result correlated with ameliorated expression of collagen in 

knockout mice (Fig. 4-4 B) and reduced tissue content of hydroxyproline in STAT1-/- exposed to 

Ang II (Fig. 4-4 C). Because STAT1 play an important role in the regulation of chemokine 

expression, we studied expression of these genes in heart tissue. Indeed, we observed 

increased expression of Ccl2 (Mcp-1), Cxcl9, Cxcl10 chemokines and marker of nitric oxide iNos 

only in hearts of stimulated WT animals (Fig. 4-5). Expression of inflammatory mediators 

correlated with the immune cell infiltration.  
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Fig. 4-3. Inflammatory cell infiltration in heart of animals exposed to Ang II. A, Representative images of 
CD45 immunohistochemical staining of heart tissue. B, The column graph represents the number of 
positive cells per tissue slide examined (data are presented as mean ± SEM, n≥4 mice/group). 

 

 

Fig. 4-4. STAT1 deficiency reduces heart fibrosis. A, Representative images of Sirius red staining of the 
heart tissue. B, RNA from heart was isolated and subjected to qRT-PCR for collagen (col3a1) using GAPDH 
as internal control. B, additionally, to evaluate cardiac collagen content, tissue hydroxyproline assay was 
perfomed (C). Data for n≥4 per group ±SEM. 
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Fig. 4-5. STAT1 deficiency reduced expression of proinflammatory mediators in animals 
exposed to Ang II. RNA from heart was isolated and subjected to qRT-PCR for Cxcl10, 
MCP-1 (CCL2), Cxcl9 and iNOS using GAPDH as internal control n≥4 per group ±SEM.  
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Fig. 4-6. Macrovascular function in WT and STAT1-deficient mice exposed to Ang II vs. 
control. WT and STAT1-/- mice were treated for 14d with 1,5µg/g/day Ang II, administered 
subcutaneously via osmotic minipump. Isolated aortic rings were tested for. response to 
norepinephrine and acetylcholine using the wire myograph. Noradrenaline was used in 
stepwise increased, cumulative concentration ranging from 10-11 to 10-6 mol/L and followed 
by acetylcholine dose-response curve from 10-10 to 10-5 mol/L A, Reaction to noradrenaline 
and acetylcholine in WT. ***p0.001< vs. WT control; *p<0.001 vs. WT control; •••p0.001< 
vs. WT control; ••p0.01< vs. WT control. B, Reaction to noradrenaline and acetylcholine in 
aortic rings isolated from STAT1-/-. ***p0.001< vs. STAT1-/- control; *p0.05< vs. STAT1-/- 
control; NS not significant. Aortas isolated from at least 3 animals per group were taken 
±SEM. Two-way ANOVA test with Bonferroni post hoc test was used. 
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Stat1-mediated effects of Ang II-infusion on vessel wall 

One key factor for Ang II-induced hypertension is the macrocirculatory function.  

Using myograph device, the noradrenaline dependent vasoconstriction and acetylcholine 

dependent relaxation was assessed. Aortic rings from WT mice exposed to Ang II had 

increased vasoconstriction responses to noradrenaline, presented as a percentage of maximal 

constriction to KPSS. (Fig. 4-6 A left panel) (Control WT: 75% vs. Ang II WT: 135%). In line with 

these results we observed that chronic Ang II infusion impaired endothelium-dependent 

vasodilatation (Fig. 4-6 A right panel) (control WT: 81.7% vs. Ang II WT: 39.2%). Aortic rings 

from STAT1-/- mice exposed to Ang II had increased vasoconstriction responses  

to noradrenaline, (Fig. 4-6 B left panel) (control STAT: 80.8% vs. Ang II STAT1-/-: 128.9%). 

Interestingly, STAT1 animals infused with Ang II did not reveal impaired endothelium-

dependent vasodilatation (Fig. 4-6 B right panel) (control STAT1: 81.9% vs. Ang II STAT1-/-: 

78.6%). 

 

 

 

 

In the next step we compared aortic function of WT and STAT1-/- animals exposed to Ang II. 

STAT1−/− and WT groups had a similar maximum vasoconstriction after chronic angiotensin 

infusion (Fig. 4-7 A). Most importantly, only WT tend to have ameliorated acetylcholine 

Fig. 4-7. STAT1 protects against endothelial dysfunction. Macrovascular function in WT mice 
exposed to Ang II vs STAT1

-/-
 was analyzed via wire myograph. Noradrenaline was used in 

stepwise increased, cumulative concentration ranging from 10
-11 

to 10
-6 

mol/L (A) and followed 
by acetylcholine dose-response curve from 10

-10 
to 10

-5 
mol/L (B). **p<0.01, NS not significant. 

Data for n≥3 per group ±SEM. Two-way ANOVA test with Bonferroni post hoc test was used. 
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dependent vasodilation in aortas which indicates that STAT1-/- are protected from Ang II 

infused vascular dysfunction (Fig. 4-7 B). 
 

 

Fig. 4-8. STAT1 deficiency reduces expression of ROS marker in animals exposed to Ang II. 
RNA from aorta was isolated and subjected to qRT-PCR for Ccl2 (MCP-1), Nox4, p47phox, 
p22phox  using GAPDH as internal control n≥4 per group ±SEM. 

 

Similarly as in the case of the heart, increased expression of inflammatory marker was 

detected in the aortic tissue of WT but not STAT1-/-. WT infused with Ang II revealed increased 

abundance of Mcp-1 (Ccl2) as compared to the control (Fig. 4- 8, upper left panel). To identify 

the potential cause of the abolished acetylcholine-mediated vessel relaxation, we verified 

presence of oxidative burst. ROS are known to be upregulated during Ang II stimulation and 

are associated with endothelial dysfunction. Indeed, we observed increased expression of 

oxidative stress markers p22phox, p47phox and Nox4 only in aortas of WT but not STAT1-/- 

exposed to Ang II (Fig. 4-8). Promoter analysis of p22phox, p47phox and Nox4 revealed 

presence of binding sites characteristic for STAT1, STAT3 but also for IRF1, NFκB and ISGF3γ 

complex, providing additional evidence for the direct role of STAT1 in regulating NADPH 

oxidase expression (Fig. 4-9).  
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Fig. 4-9. Promoter analysis of Nox4, p47phox, p22phox. The promoter regions from -1000 to +100bp 
were searched for binding sites using a prediction algorithm (MatInspector, GENOMATIX software, 
http://www.genomatix.de/ [160]). To locate binding sites for STAT1, STAT3 IRF1 predefined matrices 
were used (V$IRF1.01 V$ISGF3G.01 V$ISRE.01 V$ISRE.02V$CREL.01 V$NFKAPPAB.01 V$NFKAPPAB.02 
V$NFKAPPAB65.01 V$STAT.01 V$STAT1.01 V$STAT1.02, V$STAT3.02 V$STAT3.01) Only sites with core 
similarity above 0.85 were selected. Start indicates position of ATG codon. In brackets matrix similarity 
score is given (the higher the number, the more conserved sequence is present). 

 

 

Stat1-mediated effects of Ang II-infusion on kidney. 

Next, we evaluated role of STAT1 in Ang II mediated renal damage. Alike in heart we could 

observe upregulation of inflammatory mediators Cxcl9, Ccl2 as well as fibrotic (col3a1)  

and nitric oxide marker (Nos2) in WT but not STAT1-/- mice upon chronic infusion of Ang II  

(Fig. 4-11). This was accompanied by reduced infiltration of CD45+ cells STAT1-/- animals  

(Fig. 4-10). 
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Fig. 4-10. Inflammatory cell infiltration in kidney of animals exposed to Ang II.  
A, Representative images of CD45 immunohistochemical staining of kidney tissue. B,  
The column graph represents the number of positive cells per tissue slide examined (data are 
presented as mean ± SEM, n≥4 mice/group).  

 

 

Fig. 4-11. Reduced expression of proinflammatory mediators in kidneys of STAT1-deficient 
animals exposed to Ang II. RNA from kidney was isolated and subjected to qRT-PCR for Cxcl9, 
MCP-1 (Ccl2), col3a1 and iNOS using GAPDH as internal control n≥4 per group ±SEM. 
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Interestingly, despite of decreased inflammatory cells infiltration, STAT1-/- exposed to Ang II 

revealed markedly higher expression of Neutrophil gelatinase-associated lipocalin (NGAL)  

as well as massive increase in albuminuria, indicating increased tubular and glomerular 

damage in the absence of STAT1 (Fig. 4-12). 

 
 

Fig. 4-12. STAT1 deficiency disturb kidney function. A, RNA from kidney was isolated and 
subjected to qRT-PCR for NGAL using GAPDH as internal control. B, Urine was collected in 
metabolic cage for 24h. Albumin and creatinine was measured using commercially available 
ELISA. n≥4 per group ±SEM. 

 

 

Fig. 4-13. STAT1 participates in autophagy. Protein extracts from kidneys of 3 animals 
exposed to Ang II and their controls (3) were analysed by Western blot for LC3. 

 

We hypothesized disturbed autophagy to be a cause of ameliorated kidney damage. Thus, we 

verified expression of one of the most important marker of autophagy, LC3-II protein which is 

created by cleavage of soluble LC3-I [236]. While expression of LC3-II did not change in WT 

animals treated with Ang II, expression of LC3-II was increased in STAT1-deficient mice 

exposed to Ang II (Fig. 4-13). These results indicate that STAT1 not only activates expression of 

proinflammatory genes that are important for immune cell infiltration but also may disturb 

processes related to autophagy and thus influence organ damage.  
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Discussion 

 

Although the mechanism is not fully understood, several studies indicate that Ang II not only 

upregulates blood pressure but also affects the immune response by amplifying genes related 

to inflammation. The results presented in this chapter indicate that STAT1 may participate in 

an Ang II-mediated inflammatory response. We have shown that chronic Ang II infusion 

causes similar increases in systolic BP and heart hypertrophy in WT- and STAT1-deficient mice. 

However, STAT1-/- animals with Ang II-induced hypertension exhibited highly ameliorated 

expression of proinflammatory mediators (Cxcl9, Cxcl10, Ccl2, iNOS) in the heart and kidney, 

which was correlated with reduced CD45+ cell infiltration, decreased production of 

extracellular matrix components and, consequently, reduced organ injury. Recent evidence 

pointed to the importance of the JAK/STAT pathway in Ang II-mediated hypertension and 

hypertensive end-organ damage. Expression of IFNγ was upregulated in an Ang II-induced 

model of hypertension [31], and IFNγ-deficient mice had reduced heart infiltration by 

macrophages, which was associated with decreased fibrosis [73, 74].  

Furthermore, these experiments indicated that, at least partially, the function of Ang II is 

mediated through the activation of lymphocytes and subsequent IFNγ secretion [73, 74, 221]. 

Importantly, recent studies pointed to the fact that also Ang II can reveal its actions via 

activation of important components of the JAK/STAT pathway [223]. Ang II cooperates with 

the JAK2 kinase to induce vessel contraction, and inhibition of JAK2 phosphorylation blocks 

blood pressure elevation [224, 225]. Our results demonstrate that the mechanism of Ang II 

blood pressure regulation is STAT1-independent. STAT1 infused with Ang II had similar 

increases in systolic BP and heart hypertrophy as WT animals (Fig. 4-2). However, STAT1 

animals exposed to Ang II revealed reduced expression of inflammatory markers and reduced 

inflammatory cell infiltration (Figs. 4-3-4-5). Several studies have indicated the contribution of 

inflammation to the progression of fibrosis, which is defined by the accumulation of an 

extracellular matrix component (e.g. collagen, fibronectin) and gradual loss of organ function 

[237, 238]. During chronic Ang II infusion, resident and infiltrating leukocytes promote injury 

by production of proinflammatory cytokines and ROS as well as activating myofibroblasts that 

express extracellular matrix components. Thus, expression of chemokines is one of the initial 

steps of organ damage and preventing their recruitment may ameliorate tissue injury. Indeed, 
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literature data support this theory. Mice lacking the receptor for Ccl2 (Mcp1) infused with Ang 

II had ameliorated vascular inflammation and remodeling accompanied by reduced ROS 

production and fibrosis as compared to the CCR2+/+ animals [239, 240]. Expression of Mcp1 

correlated with macrophage infiltration and albuminuria in patients with chronic kidney 

disease [241]. Elevated levels of chemokines were observed in patients with hypertension 

[211]. Increased levels of Cxcl10 and Ccl2 were found in patients with essential hypertension, 

and treatment with angiotensin-converting-enzyme inhibitor lowered their expression [242, 

243]. Our data indicate that STAT1 plays a crucial role in regulating chemokine expression in 

response to Ang II stimulation. Mice lacking STAT1 had reduced expression of Ccl2 and Cxcl10 

but also Cxcl9 as compared to WT infused with Ang II (Fig. 4-5). These results, together with 

reduced production of ROS, may explain ameliorated fibrosis in STAT1-/- animals.  

 

To answer the question whether inflammatory activity of STAT1 is directly mediated through 

the action of Ang II, we performed in vitro stimulation of vascular cells with Ang II (data not 

shown). Although we were able to observe temporal STAT1 tyrosine phosphorylation,  

we could not detect any of the proinflammatory markers that were observed in our in vivo 

model. This suggests that action of Ang II on the activity of STAT1 is indirect and very likely 

IFNγ-dependent. Other potential activators of STAT1 may be related to the TLR4 and NFκB 

pathway [244, 245]. Spontaneously hypertensive rats demonstrated enhanced expression of 

the TLR4 receptor in cardiac tissue and the central blockade of TLR4, improved cardiac 

function and attenuated myocardial inflammation [101, 246]. Moreover, NFκB suppression 

markedly attenuated Ang II-induced organ injury [247]. It is very likely that functional 

cooperation between NFκB and STAT1 also appears in such a model of inflammation and is 

essential for efficient expression of many chemokines, such as Cxcl9, Cxcl10, or Ccl2.  

 

We found increased production of chemokines in the vasculature which was accompanied by 

increased expression of oxidative stress markers in WT but not STAT1-/- exposed to Ang II (Fig. 

4-8). Accelerated production of ROS by NADPH oxidases initiates endothelial dysfunction,  

a hallmark of the onset and progression of vascular disease [248]. There are seven members 

of the family, of which Nox1, Nox2, Nox4 and Nox5 enzymes are expressed in cardiovascular 

tissues. These enzymes, together with their regulatory subunits, e.g. p22phox or p47phox, 
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in pathological conditions contribute to progression of the disease, including hypertension 

[249]. Interestingly, there is cooperation between the JAK/STAT1 pathway and NADPH 

oxidases. Some studies have indicated that activation of the JAK/STAT pathway by Ang II 

depends on the Nox-derived ROS [227]. Recently, expression of this regulatory component of 

NADPH oxidase was hypothesized to be STAT3, but also STAT1-dependent [226]. Our in silico 

promoter analysis (Fig. 4-9) confirmed the observation indicating that action of STAT1 is not 

only limited to the regulation of chemokine expression but may also affect expression of 

NADPH oxidases in the vessel wall. In addition to the STAT3-binding sequence, we could 

identify the presence of a characteristic sequence for the STAT1, IRF1, NFκB and ISGF3γ 

complex, thus indicating possible functional cooperation of these transcription factors in 

regulating NADPH oxidase expression.  

 

Increased production of ROS by NADPH oxidases causes reduced nitric oxide (NO) 

bioavailability leading to ameliorated vessel relaxation [250] (Fig.4-6, 4-7). Dilation of the 

vessel is mediated mainly through the conversion of L-arginine to L-citrulline and nitric oxide 

synthesis by NO synthase with the involvement of many cofactors, including NADPH, FMN, 

FAD, calmodulin, heme, and tetrahydrobiopterin (BH4). However, in the presence of ROS, NO 

synthase is “uncoupled”. At that stage the enzyme is not able to convert amino acids but is 

still able to transfer electrons from NADPH to molecular oxygen and to form superoxide (Oˉ2) 

[251]. This process reduces the amount of available NO and promotes endothelial 

dysfunction. Due to lower NO bioavailability, vessels are not able to fully dilate in response to 

the release of endothelial-mediated vasodilators such as acetylcholine. Thus, increased 

expression of ROS has an effect on macro- and microcirculatory function. Treatment with Ang 

II led to increased maximal response and the left shift in noradrenaline sensitivity in WT 

animals. Furthermore, there was a highly reduced response of endothelial cells to 

acetylcholine. Compared to WT, STAT1 animals treated with Ang II had similar maximal 

constriction. As there was no difference in systolic BP, this result was expected. However, in 

contrast to WT, STAT-/- exhibited preserved endothelium function manifested by unaffected 

response to acetylcholine. Ameliorated ROS production together with decreased expression of 

proinflammatory mediators may explain the protective phenotype of STAT1-/- animals in the 

vasculature. 
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Similarly as with the heart and vasculature, abolished expression of inflammatory genes and 

markers of fibrosis in the kidneys of STAT1-deficient animals was detected (Figs. 4-10, 4-11). 

Nonetheless, we observed increased expression of NGAL, a marker of tubulointerstitial 

damage, and highly increased albuminuria indicating enhanced Ang II–induced glomerular 

damage in STAT1-deficient mice (Fig. 4-12). The mechanism which explains this phenomenon 

may be related to autophagy [252]. Autophagy is a prosurvival, highly regulated catabolic 

process responsible for the degradation of cytoplasmic components. It is based on the 

formation of double membrane vesicles containing damaged proteins or organelles which 

fuse with the lysosome, thus leading to digestion of their content. This process is essential for 

cells exposed to stress factors such as hypoxia, infection, or oxidative stress, and alteration of 

autophagy may be a source of a pathological state [253, 254]. Autophagy can also regulate 

inflammation and fibrosis [255, 256]. Zhao et al. showed that an autophagy-deficient mouse 

exposed to Ang II had an increased level of reactive oxygen species (ROS) production as well 

as increased levels of inflammation and cardiac injury. Ang II was found to promote autophagy 

in podocytes and its abrogation triggered glomerulopathy and proteinuria [257, 258]. 

 

Our results indicate that a lack of STAT1 disturbed autophagy in the kidney (Fig. 4-13). STAT1 

animals exposed to Ang II had higher levels of LC3-II as compared to WT animals. These results 

are in line with studies performed by Marko et al. [74]. IFNγ receptor knockout mice infused 

with Ang II had highly elevated levels of albuminuria accompanied by a decreased number of 

podocytes and an increased amount of LC3 in the glomeruli. LC3 is crucial for vesicle 

(autophagosome) formation and maturation [236]. After synthesis, proLC3 is processed to 

LC3-I and conjugated with phosphatidylethanolamine to form LC3-II. Increased levels of LC3-II 

may indicate either enhanced autophagosome synthesis (increased autophagy) or reduced 

vesicle turnover (decreased autophagy). In order to interpret observable changes in the LC3 

amount, further experiments including transmission electron microscopy (TEM) as well as 

stimulation with compounds inhibiting autophagosome degradation are needed [259].  
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Moreover, it is still unclear how STAT1 affects autophagy, and studies that have been 

performed until now are partially contradictory. Increased activation of STAT1 caused by 

histone deacetylase 4 was associated with ameliorated autophagy, accelerated inflammation 

and podocyte injury in the model of diabetic nephropathy [260]. McCormick et al. showed 

that STAT1-/- mice undergoing ischemia-reperfusion (I/R) injury had smaller infarcts and 

enhanced levels of autophagy. Inhibition of autophagy abrogated cardioprotection observed 

in STAT1-/- animals following I/R injury [232]. These results indicate that STAT is involved in the 

inhibition of autophagy. STAT1 was also found to co-immunoprecipitate with LC3, and hearts 

from STAT1-/- subjected to ex vivo I/R had an increased number of damaged mitochondria 

located within double-membrane structures. The authors suggested an increased rate of 

autophagy in the absence of STAT1 [261]. In line with these results, STAT1-deficient human 

fibrosarcoma cells exhibited increased autophagic activity [262].  

In contrast, another group proposed the role of STAT1 in the induction of autophagy. 

Formation of the autophagosome in the breast cancer cell line was STAT1-dependent [263] 

Fig. 4-14. Hypothesized role of STAT in Ang II-mediated end-organ damage. Activity of 
STAT1 is crucial for efficient expression of Cxcl9, Cxcl10 or Ccl2 upon Ang II infusion. 
Enhanced chemokine expression facilitates leukocyte trafficking and tissue injury. 
Additionally, STAT1 affects expression of iNOS and important components of NADPH 
oxidase, thus further contributing to ROS production. For details see text. 

 

 



84 | P a g e  
 

and IFNγ was found to induce cell autophagy [264, 265]. Taken together, these data imply  

a novel STAT1-dependent and tissue-specific role in the regulation of autophagy.  

Altogether, the results presented in this chapter provide experimental evidence for the 

function of STAT1 in Ang II-mediated tissue injury (Fig. 4-14). During Ang II infusion, activated 

STAT1 promotes expression of Ccl2, Cxcl10, Cxcl9 chemokines, thus leading to increased 

CD45+ infiltration. Activated leukocytes induce the oxidative burst, thus promoting damage 

and contributing to tissue fibrosis and organ malfunction. Additionally, the transcriptional 

activity of STAT1 in the vessel wall affects expression of iNOS and important components of 

NADPH oxidase, thus further contributing to ROS production. An increased oxidative burst 

limits the amount of bioavailable NO and causes endothelial dysfunction. In contrast to the 

vasculature lack of STAT1 in the kidney resulted in deterioration of the organ function.  

This phenotype occurred most likely due to the impaired autophagy mechanism after 

stimulation with Ang II.  
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Chapter 5 

STAT1 and IRFs in Cardiovascular disease 

 

Cardiovascular diseases are globally the leading cause of death. According to the World Health 

Organization, the number of people that will die from CVDs will increase to 23.3 million in 

2030 [1, 2]. In Poland, cardiovascular disorders are the reason for 46% of total deaths [266], 

and atherosclerosis accounts for 18% of those deaths. Therefore, a detailed understanding of 

the mechanisms contributing to the progression of this type of diseases together with 

prevention is a true challenge to the modern health care system. Recently, more attention has 

been paid to the role of the immune component in the progression of CVDs. Transcription 

factor STAT1 together with downstream-activated IRFs play a crucial role in regulating the 

immune response. In this chapter we further summarize the findings presented in the thesis 

and discuss potential applications as well as future research directions.  

 

STAT1-dependent signal integration between IFNγ and TLR4 in non-immune cells  

First, we studied the role of STAT1 and IRFs as potential regulators of inflammation in non-

immune cells. We hypothesized that STAT1- and IRF-mediated gene expression accelerates 

the inflammatory response which negatively affects the cardiovascular system. Indeed,  

the results presented in Chapter 2 and further extended in Chapter 3 showed that in addition 

to myeloid and lymphoid cells, STAT1 in the vascular cells together with downstream-

activated IRF1 and IRF8 orchestrate a platform for crosstalk between the JAK/STAT and TLR4 

pathway. In addition, we were able to, for the first time, identify IRF8 in cells from the 

vasculature. Interestingly, by analyzing expression profiles in non-immune cells we could 

distinguish cell type-specific regulatory mechanisms activating the IFNγ- and LPS-mediated 

response. In cells from the vasculature, synergistic amplification of the genes was dependent 

on an increased amount of phosphorylated STAT1 and its subsequent interaction with LPS-

activated transcription factors. In contrast to the ECs and VSMCs, we did not detect increased 

phosphorylation of STAT1 in stimulated proximal tubular cells. We postulated the mechanism 

in which not increased STAT1 activity but increased expression of STAT1-mediated 

transcription factors and subsequent interaction with NFκB facilitated signal integration of the 
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downstream genes. Indeed, expression of IRF1 was highly amplified upon treatment with 

IFNγ, but not upon LPS. These results indicated the involvement of IRF1 in the synergistic 

amplification of downstream genes in proximal tubular cells and emphasized tissue-specific 

mechanisms regulating signal integration. 

Although not fully understood, functional cooperation between STAT1 and IRF8 was observed 

in immune cells. IRF8 abundance was synergistically amplified upon treatment with IFNγ and 

LPS in macrophages [115]. Moreover, its expression and subsequent interaction with IRF1 was 

mandatory for Nos2 activation. IRF8-deficient macrophages stimulated with IFNγ did not 

produce nitrite [208, 267]. Our results pointed to STAT1-dependent expression and synergistic 

amplification of IRF8 in VSMCs and ECs. However, the precise role of IRF8 still has to be 

addressed. First, it is not known which genes are regulated by IRF8 in non-immune cells. Based 

on evidence in the literature, we studied the expression of Nos2 and Ccl5, although it is very 

likely that there are other IRF8-dependent genes. Microarray experiments combined with 

chromatin immunoprecipitation (ChIP) sequencing or ChIP-PCR performed on IRF8-deficient 

ECs and VSMCs should answer this question. Moreover, the precise mechanism by which IRF8 

contributes to gene expression upon signal integration is still not fully understood. Zhao et al. 

suggested that IRF8 promotes crosstalk between TLR and IFNγ signaling through interaction 

with crucial components of the TLR4 pathway [115]. Additionally, IRF8 was found to interact 

with other members of the TLR family such as TLR3 and TLR2, which have recently been 

recognized as playing a role in the cardiovascular system [268]. It would be interesting to 

verify whether a similar phenomenon occurs in the vascular cells and whether this mechanism 

is related to the activity of STAT1. Recently, IRF8 was proposed as playing a crucial role in 

regulating the induction of the M1 phenotype in macrophages [195]. These classically 

activated macrophages express a high level of pro-inflammatory cytokines and contribute  

to the progression of cardiovascular disease. Additionally, modification of IRF8 by small 

ubiquitin-like modifiers (SUMO) inhibits IRF8 action and, as a consequence, the macrophage 

phenotype switch that prevents expression of proinflammatory mediators such as IL12p40 

[269]. Since expression of IRF8 in ECs and VSMCs seems to be STAT1-dependent, it is tempting 

to suggest a mechanism where IRF8 may in part account for the “immune cell-specific” STAT1-

dependent functions of IFNγ. In this process the ECs and VSMCs change their phenotype and 

actively participate in amplifying and sustaining the inflammatory process. As such, IRF8 can 
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be considered as an interesting therapeutic target that modulates the STAT1-mediated 

proinflammatory response. 

 

STAT1 and IRFs in atherosclerosis and hypertension  

The results presented in Chapters 1 and 2 strongly suggest that STAT1 together with 

upregulated IRF1, IRF8 and the activated TLR4 pathway coordinate a platform for synergistic 

amplification of genes, which results in phenotypic changes of the vascular cells and leads to 

amplified pro-atherogenic responses. Thus, ECs and VSMCs can be considered not only as 

passive receivers of the immune-driven stimuli but also as active modulators of vessel 

damage. Increased activation of STAT1 and STAT1-dependent IRF1 and IRF8 (e.g. in the 

presence of JAK/STAT and TLR4 agonists) can be the reason for synergistic amplification of 

multiple chemokines, adhesion molecules and antiviral and antibacterial response proteins 

which, in turn, facilitate white blood cell trafficking and further contributes to the progression 

of cardiovascular disease such as atherosclerosis. Microarray analysis performed on 

stimulated VSMCs identified a whole set of STAT1-dependent genes that were prone to 

synergistic amplification. Promoter analysis predicted the presence of transcription binding 

sites containing GAS, ISRE or NFkB elements either alone or in different combinations. 

Moreover, immunohistochemistry performed on human specimens revealed the presence of 

phosphorylated STAT1 as well as STAT1-dependent genes in carotid plaque.  

 

Atherosclerosis is not the only immune-driven CVD disease. Recent data indicate that also in 

hypertension the immune system is an important contributor to its progression. In Chapter 4 

we studied the role of STAT1 in an Ang II-induced model of hypertension and tissue injury. 

Just as in the model of atherosclerosis, here too we could identify several STAT1 downstream 

genes that were upregulated upon treatment with Ang II, including genes involved in 

leukocyte trafficking and oxidative burst. Immunohistochemistry together with the analysis of 

vessel function confirmed the importance of STAT1 in regulating Ang II-mediated tissue 

damage. Based on our results we hypothesized that Ang II-increased leukocyte infiltration is at 

least partially mediated through the transcriptional activity of STAT1. Increased expression  

of chemokines resulted in increased CD45+ cell infiltration, accelerated oxidative burst and,  
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as such, contributed to tissue fibrosis and organ malfunction. Importantly, our in silico analysis 

predicted the presence of STAT- binding sites in the promoter region of genes involved in the 

regulation of oxidative stress. These results allow us to suggest that the action of STAT1 is not 

only limited to the induction of chemokine synthesis but can also actively participate in 

promoting tissue injury by stimulation of NADPH oxidase expression. Thus, due to its 

involvement in the regulation of ROS production, STAT1 might be considered as an interesting 

therapeutic target. This is particularly important in the context of CVDs, as ROS has been 

associated in the pathogenesis of many of them. Indeed, some studies have pointed to  

the role of the STAT family in regulating NADPH expression [226]. Johnson et al. showed that 

the inhibitors of STAT3 prevented Ang II-mediated oxidative stress and EC dysfunction [270]. 

Since all known inhibitors of the JAK/STAT pathway that block STAT3 also interfere with 

STAT1, these results suggest the involvement of STAT1 and STAT3 in the regulation of 

oxidative stress. Our in vivo studies together with promoter analysis support this hypothesis 

and open up a new and interesting research area.  

Interestingly, abolished expression of inflammatory genes and markers of fibrosis in the 

kidneys of STAT1-deficient animals did not improve organ function but surprisingly 

accelerated the injury. We observed increased albuminuria indicating enhanced Ang II-

induced glomerular damage in STAT1-deficient mice. Our findings indicate that systemic 

inhibition of factors that participate in inflammation in certain conditions may not be 

beneficial to organ function. Moreover, we proposed that disturbed autophagy was the 

reason for ameliorated organ damage in the absence of STAT1. However, how exactly STAT1 

modulates autophagy remains an open question. Further experiments with the use of tissue-

specific knockouts are mandatory to determine the role of STAT1 in this aspect. 

Similar to atherosclerosis, the role of the JAK/STAT pathway in obesity and obesity-related 

insulin resistance has been investigated. This is particularly important as obesity is associated 

with increased cardiovascular risk [271-273]. Compared with the control, animals fed a high-

fat diet had an increased amount of infiltrating Th1 cells and produced a higher amount of 

IFNγ. Obese IFNγ-deficient mice expressed less proinflammatory mediators such as Ccl2 or 

TNFα and had better glucose tolerance [274]. McGillicuddy et al. demonstrated that 

stimulation of adipocytes with IFNγ induces insulin resistance and ameliorates triglyceride 
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storage [275]. The authors suggested that JAK1 and STAT1 are crucial players of these events. 

Indeed, our preliminary studies suggested the role of STAT1 in the progression of insulin 

resistance. Genome-wide studies comparing the expression profiles of fat pads isolated from 

WT and STAT1-/- animals fed a high-fat diet revealed significant changes in the expression of 

genes involved in the glucose metabolism (data not shown). Nevertheless, it is not known how 

STAT1 modulates adipocyte functions and whether STAT1-mediated alterations contribute to 

vessel function. These issues will be the subject of further investigation.  

 

Besides STAT1, recent data indicate the involvement of proteins from the IRF family in the 

progression of cardiovascular disease. IRFs were found to be involved in the regulation of 

cardiac hypertrophy and remodeling in response to stress [276]. Expression of IRF7 was 

downregulated upon treatment with Ang II or phenylephrine in cardiomyocytes. In line with 

these results, in vivo studies performed on animals with disturbed IRF7 expression revealed 

the crucial role of IRF7 in the regulation of cardiac hypertrophy [277]. In this model, aortic 

constriction was performed and cardiac hypertrophy together with heart failure were 

investigated. Similarly to IRF7, IRF3 and IRF9 were protective against pressure overload-

induced hypertrophy. Interestingly, IRF8 has, on the one hand, been found to enhance smooth 

muscle cell proliferation and neointima formation but, on the other hand, IRF8 has also been 

evidenced to protect against cardiac hypertrophy and heart failure in a model of pressure 

overload [88, 278]. Expression of IRF1 was found to be altered in the tissue samples of 

patients with heart disease and in mice subjected to a model of pressure overload [279].  

Mice overexpressing IRF1 had increased ventricular dilation and fibrosis and dysfunction.  

Jiang et al. suggested that IRF1 participates in heart damage by direct activation of iNOS in 

response to stress conditions, thus further supporting the role of iNOS [279, 280]. Altogether, 

new evidence indicates the novel role of IRFs in the development of cardiovascular diseases. 

Yet their function is ambiguous; for example, it is still not known how IRFs are activated and 

whether their activation is interferon- and STAT-mediated. Therefore, further studies using 

different animal models are needed to determine the function of IRFs in CVDs.  
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STAT1 and IRFs as therapeutic targets  

The data presented here but also data published by other groups suggest that STAT and IRF 

proteins can be considered as therapeutic targets affecting inflammatory processes during 

CVDs. Until now there have been no admitted drugs that specifically target STAT1 or IRF8. 

Besides STAT3, research on potential inhibitors of other STATs including STAT1 is very limited 

[281]. To the best of our knowledge there is no information on the modulators of IRF action.  

 

Several inhibition approaches that interfere with proteins from the STAT family have been 

suggested [281]. Among them we can distinguish strategies based on indirectly blocking STAT 

action, such as antibody-mediated prevention of pathway activation or inhibition of JAK 

kinases phosphorylation. Other strategies interfere with the binding of active STAT complexes 

to the promoters by applying decoy oligodeoxynucleotides, or they interfere with STAT mRNA 

using antisense oligonucleotides. Finally, the most common approach includes blocking the 

STAT SH2 domain and subsequent prevention of phosphorylation and dimer formation. 

Unfortunately, there are some pitfalls for such strategies. Targeting proteins upstream from 

STAT will result in interference of molecules that are not necessarily related to one pathway; 

for example, inhibition of JAK2 kinase phosphorylation with a compound such as AG490 will 

result in suppression of not only STAT1 but also STAT3. Inhibition of several targets at once 

may contribute to increased toxicity.  

Moreover, crystal structures are available only for a few members of the family, and as such 

quality models for virtual screening are poor [282]. STAT proteins share important structural 

similarities, and without detailed crystallography of human STAT (or their homologs), 

designing a specific STAT compound will be difficult. Indeed, our results showed that the 

inhibitors which were considered as specific toward STAT3 could also affect the activity of 

STAT1 and vice versa.  

Recently, our group presented a new strategy for the screening and validation of pre-selected 

STAT inhibitors [282]. Based on the available crystal models, we generated 3D structures for 

all human STATs. By using these models we could verify whether pre-selected compounds are 

specific to the targeted STAT or can associate with other proteins of the family. Following  

in silico comparative screening, we suggested cell-based multiple STAT activation in vitro 
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phosphorylation assay. This assay allows to verify the effect of the inhibitory compounds on 

the activity of STAT1 (constitutive or ligand-induced). 

Although targeting of STAT1 is an interesting research area, we might expect potential side 

effects due to the extensive regulatory features of STAT1. Fludarabine, the commercially 

available drug that is known to inhibit STAT1 action, is toxic [283]. Naturally, this could be 

explained by the reduced specificity of fludarabine to STAT1, but there is also other evidence 

indicating the potential risk of using STAT1 inhibitors. In the model of Ang II-induced 

abdominal aortic aneurysm, IFNγ-deficient mice had increased aneurysm incidence and death, 

although there was decreased atherosclerotic plaque formation [284]. In line with these 

results, Eagleton et al. noticed that loss of STAT1 was associated with higher incidence of 

aortic rupture [285]. In contrast, others noticed that mutation resulting in a gain of STAT1 

phosphorylation manifested aneurysm incidence [286]. Together with our results concerning 

kidney function as presented in Chapter 4, these studies postulate careful consideration in 

using the potential inhibitors of STAT1 and enforce a more specific approach. Importantly,  

our experiments suggest not only STAT1 but also IRFs as potential targets of novel drugs. 

Indeed, recent data presented in the subsection above seem to support the relevance of such 

an approach. Considering the structural similarities among proteins from the IRF family,  

we believe that the strategy proposed for STAT proteins can also be applied for IRFs.  

 

Diagnostic potential of STAT1 and IRFs  

A biomarker is defined as “a characteristic that is objectively measured and evaluated as  

an indicator of normal biological processes, pathogenic processes, or pharmacologic 

responses to a therapeutic intervention” [287]. Biomarkers play a constantly increasing role in 

modern medicine. The Framingham Heart Study identified a whole set of traditional markers 

that are commonly accepted as predictors of cardiovascular disease. Among them we can 

distinguish age, gender, cigarette smoking, high blood pressure, elevated cholesterol levels, 

diabetes mellitus, obesity and familial history of coronary heart disease. However, there was 

no observable risk factor in 10-15% of patients who developed CVDs [288, 289]. On the 

contrary, some people with traditional risk factors do not develop CVDs. Moreover, classical 

risk factors are not optimal in reference to the efficacy assessment of new cardiovascular 
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drugs. In order to demonstrate the substantial benefit of a new therapeutic drug, clinical trials 

including large cohorts followed for many years have to be conducted. The lack of good 

biomarkers limits our ability to exclude potential therapeutics that do not meet the expected 

outcome at early stages of drug development.  

 

Table 5-1. Genes prone to signal integration are associated with CVDs.  
Genomatix software were used to assign 30 synergistically amplified genes listed in table 3-2  to 
the MeSH terms associated with diseases. 20 most relevant terms related to CVDs is presented.  
 

MeSH-Term P-value List of observed genes 

Systemic Inflammatory 
Response Syndrome 

1,06E-12 
Tnfaip2, Gja4, Neurl3, Gbp5, Tnfrsf11a, Rsad2, Mx1, Ccl5, Nos2, Cxcl10,  

Irf8, Cd40, Ccl12, Has1, Egr2, Ccl8, Cxcl9, Cd74, Ubd, Atf3 
Hypertension, 
Pulmonary 

1,48E-09 
Tnfaip2, Gja4, Tnfrsf11a, Mx1, Ccl5, Nos2, Cxcl10, Irf8, Cd40, Has1, Cxcl9, 

Serpina3g, Atf3 

Inflammation 6,31E-09 
Tnfaip2, Gja4, Neurl3, Ccrl2, Gbp5, Tnfrsf11a, Rsad2, Mx1, Ccl5, Nos2, Cxcl10, 

Irf8, Cd40, Ccl12, Has1, Egr2, Ccl8, Cxcl9, Serpina3g, Cd74, Ubd, Atf3, Ifi205 

Atherosclerosis 4,24E-08 
Tnfaip2, Gja4, Tnfrsf11a, Mx1, Ccl5, Nos2, Cxcl10, Irf8, Cd40, Has1, Egr2, Ccl8, 

Cxcl9, Cd74, Atf3 

Fibrosis 1,92E-07 
Tnfaip2, Gja4, Tnfrsf11a, Mx1, Ccl5, Nos2, Cxcl10, Cd40, Ccl12, Has1, Egr2, 

Ccl8, Cxcl9, Cd74, Atf3 

Autoimmune Diseases 3,01E-07 
Tnfaip2, Gja4, Ccrl2, Tnfrsf11a, Rsad2, Mx1, Ccl5, Nos2, Cxcl10, Irf8, Cd40, 

Ccl12, Has1, Egr2, Ccl8, Cxcl9, Serpina3g, Cd74, Ubd, Atf3, Ifi205, Upp1 

Arteriosclerosis 1,01E-06 
Tnfaip2, Gja4, Tnfrsf11a, Mx1, Ccl5, Nos2, Cxcl10, Irf8, Cd40, Has1, Egr2, Ccl8, 

Cxcl9, Cd74, Atf3, Upp1 

Aortic Arch Syndromes 1,84E-06 Tnfaip2, Tnfrsf11a, Ccl5, Nos2, Cd40 

Carotid Artery 
Diseases 

2,12E-06 
Tnfaip2, Gja4, Tnfrsf11a, Rsad2, Ccl5, Nos2, Cxcl10, Cd40, Ccl8, Cxcl9, Cd74 

Arterial Occlusive 
Diseases 

2,37E-06 
Tnfaip2, Gja4, Tnfrsf11a, Mx1, Ccl5, Nos2, Cxcl10, Irf8, Cd40, Has1, Egr2, Ccl8, 

Cxcl9, Cd74, Atf3, Upp1 

Myocardial Infarction 5,82E-06 
Tnfaip2, Gja4, Tnfrsf11a, Ccl5, Nos2, Cxcl10, Cd40, Has1, Egr2, Ccl8, Cxcl9, 

Cd74, Atf3 

Myocarditis 8,65E-06 Tnfaip2, Tnfrsf11a, Ccl5, Nos2, Cxcl10, Cd40, Ccl12, Cxcl9 

Coronary Disease 2,32E-05 
Tnfaip2, Gja4, Tnfrsf11a, Ccl5, Nos2, Cxcl10, Irf8, Cd40, Has1, Ccl8, Cxcl9, 

Cd74 
Aortic Aneurysm, 
Abdominal 

2,63E-05 
Tnfaip2, Mx1, Ccl5, Nos2, Cxcl10, Cd40, Cxcl9 

Carotid Stenosis 2,63E-05 Tnfaip2, Gja4, Tnfrsf11a, Ccl5, Nos2, Cd40, Cd74 

Myocardial Ischemia 2,77E-05 
Tnfaip2, Gja4, Tnfrsf11a, Ccl5, Nos2, Cxcl10, Irf8, Cd40, Has1, Egr2, Ccl8, 

Cxcl9, Cd74, Ubd, Atf3 

Hypertension, Portal 2,84E-05 Tnfaip2, Gja4, Ccl5, Nos2, Cxcl10, Cxcl9 

Aneurysm, Ruptured 3,56E-05 Tnfaip2, Ccl5, Nos2, Cxcl10, Cxcl9 

Acute Coronary 
Syndrome 

5,24E-05 
Tnfrsf11a, Ccl5, Nos2, Cxcl10, Cd40, Cxcl9 

Hyperlipidemias 6,06E-05 Tnfaip2, Tnfrsf11a, Ccl5, Nos2, Cxcl10, Irf8, Cd40, Has1, Ccl8, Atf3 

 

As a consequence, there has been a dramatic increase in R&D costs and in the pharmaceutical 

industry’s shift of resources towards other research areas [290]. Thus, identifying new 

markers of clinical endpoints in CVDs is crucial for public health. Such new, validated 

biomarkers will help detect and monitor progression of the disease. Additionally, new 
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biomarkers will aid in quick identification of potential targets that are toxic or did not provide 

better clinical efficacy.  

 

Recent results obtained in our laboratory as well as data presented in this thesis suggest that 

sets of synergistically amplified STAT1-dependent genes can be considered as novel diagnostic 

markers of CVDs. Indeed, by using the Medical Subject Headings Database (MeSH) [291] we 

could observe a significant association between 30 investigated genes (Table 3-2) and 

cardiovascular diseases (Table 5-1). The results of the screening confirmed statistically 

significant enrichment of MeSH terms related to CVDs and pointed to the role of amplified 

genes in CVDs. Furthermore, we used two microarray datasets obtained from human coronary 

plaques and human carotid plaques (acc. no. GSE40231 and GSE21545, respectively [292, 

293]) and compared them with the 30 IFNγ- and LPS-amplified STAT1-target genes. Our data 

mining of the microarray studies obtained from human specimens identified 12 out of 30 

synergistically amplified genes to be expressed in carotid plaques and 6 out of 30 in coronary 

plaques (Table 5-2). 

 

Table 5-2. Expression of synergistically amplified genes from Table 3-2 in human atherosclerotic vessels 
[198]  

Gene 

Name 

Human 

carotid plaques 

Human 

coronary plaques 

CD74 +  

CCL5 + + 

CXCL10 + + 

GBP5 +  

IRF8 +  

CCL8 +  

CXCL9 + + 

CCRL2 +  

UBD +  

SECTM1 +  

IFI16 +  

UPP1 + + 

ATF3  + 

FAM26F  + 
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Additional studies from our group predicted potential STAT1 but also STAT1-NFκB and STAT1-

IRF modules in many of the genes expressed in these types of plaques [198]. These genes 

were involved in processes that are crucial for formation of the plaque, such as cell adhesion, 

migration, matrix remodeling and calcification. Importantly, many of the potentially STAT1-

dependent proteins are either membrane-bound or secreted, and as such can be detected in 

the serum [198]. Therefore, it is tempting to suggest a selection of these genes as markers of 

the onset of atherosclerosis. Studies with the multi-marker approach using the above 

identified STAT1-dependent genes may reveal a substantial clinical benefit. Although further 

research is needed to confirm our hypothesis, data provided by other groups seem to support 

it; for example, Harder et al. showed that in addition to traditional risk factors,  

13 inflammatory markers (including STAT1-dependent ones such as CXCL10, CCL2, CCL5) 

significantly improved the prediction of coronary events and type 2 diabetes [294]. Kharti et 

al. analyzed microarray studies from 236 graft biopsy samples from four different organs and 

identified 11 genes (e.g. CXCL10, CXCL9,) overexpressed in acute rejection [295].  

More importantly, they found that STAT1 and NFκB are central regulators of 10 identified 

genes and that their expression correlates with the degree of organ damage. Then they 

confirmed that STAT1- and NFκB-dependent genes are expressed in the animal model of the 

heart transplant and showed that treatment with atorvastatin reduces expression of these 

genes and as such is beneficial for allograft survival [295]. It is tempting to suggest a similar 

approach in studying the role of STAT1, IRFs and genes regulated by their activity in different 

models of CVDs.  
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Conclusions 

 

Taken together, our results provide further evidence for the crosstalk between IFNγ and TLR4 

in non-immune cells and indicate the central role of STAT1, activated IRF1 and IRF8 in the 

mechanism underlying expression of proinflammatory mediators. A genome-wide analysis in 

VSMCs identified a whole set of STAT1-dependent genes that were synergistically affected by 

interactions between IFNγ and TLR4. Among the highly amplified genes we could 

predominantly distinguish chemokines and adhesion molecules. Functional assays together 

with immunohistochemical stainings of phosphorylated STAT1 and STAT1-dependent genes 

confirmed the importance of STAT1 in the regulation of vascular inflammation. Moreover, 

analysis of STAT1 function in Ang II-induced hypertensive end organ damage further 

supported its role in the regulation of inflammation and vessel function. These data provide 

new insight into understanding the role of STAT1-driven inflammatory processes which,  

in turn, play a crucial role in the pathophysiology of CVDs. 
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Streszczenie w języku polskim 
 

Najnowsze badania z zakresu etiologii chorób układu krążenia wskazują na negatywną rolę 

układu immunologicznego. W specyficznych warunkach środowiskowych ściśle powiązanych 

ze stylem życia, układ immunologiczny może przyczyniać się do rozwoju takich chorób jak 

miażdżyca czy nadciśnienie tętnicze. Wraz z aktywacją systemu odporności dochodzi do 

uszkodzenia śródbłonka, co z kolei skutkuje osłabieniem zdolność regulowania wazodylatacji. 

Dysfunkcja komórek budujących naczynia krwionośne związana jest również z ekspresją 

substancji prozapalnych (m.in. chemokin, cytokin i cząsteczek adhezyjnych), które umożliwiają 

migrację oraz adhezję komórek układu immunologicznego do ściany naczynia. 

Istotną rolę w regulacji procesów zapalnych odgrywa interferon gamma (IFNγ) oraz czynniki 

wpływające na receptor Toll-podobny 4 (TLR4). IFNγ stymuluje szlak sygnałowy JAK/STAT 

poprzez aktywację czynnika transkrypcyjnego STAT1 oraz czynników transkrypcyjnych 

regulowanych interferonem (IRF). Doświadczenia przeprowadzone na komórkach układu 

immunologicznego wykazały, że zarówno szlak przekazywania sygnału JAK/STAT, jak i TLR4 

współdziałają ze sobą za pośrednictwem białek STAT1 oraz białek z rodziny IRF. Eksperymenty 

przedstawione w tej pracy miały na celu zweryfikowanie funkcji czynnika transkrypcyjnego 

STAT1 oraz IRF w integracji szlaków sygnalizacyjnych IFNγ i receptora TLR4 w aktywacji 

procesów zapalnych związanych z chorobami układu krążenia.  

Nasza hipoteza zakładała, że w komórkach nienależących do układu immunologicznego, takich 

jak komórki śródbłonka oraz mięśni gładkich, integracja szlaków sygnalizacyjnych JAK/STAT 

oraz TLR4 za pośrednictwem STAT1 oraz IRF prowadzi do synergistycznego wzrostu ekspresji 

białek zaangażowanych w proces zapalny. W pierwszym rozdziale podsumowano aktualną 

wiedzę na temat szlaków sygnalizacyjnych JAK/STAT, TLR4 oraz czynników transkrypcyjnych 

STAT1 oraz IRF ze szczególnym uwzględnieniu ich roli w chorobach układu krążenia. Rozdział 

drugi zawiera serię eksperymentów na komórkach śródbłonka, mięśni gładkich oraz komórek 

budujących kanaliki nerkowe, które udowadniają istnienie integracji szlaków sygnalizacyjnych 

JAK/STAT oraz TLR4 za pośrednictwem STAT1 oraz IRF. Eksperymenty omówione w trzecim 

rozdziale nie tylko identyfikują grupy genów podatnych na integrację wyżej wymienionych 

szlaków sygnalizacyjnych, ale również dostarczają dowodów na jej funkcjonalne znaczenie w 

patogenezie chorób układu krążenia. Ponadto rozdział ten opisuje nowo zidentyfikowany 
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czynnik transkrypcyjny IRF8 oraz wskazuje jego potencjalną rolę. W kolejnej części 

weryfikowana jest funkcja STAT1 w modelu nadciśnienia indukowanego angiotensyną II. 

Poprzez analizę eksperymentów wykonanych na zwierzętach pozbawionych genu STAT1 

wykazano istotną funkcję białka STAT1 w mechanizmie ekspresji genów związanych z 

procesem zapalnym oraz białek uczestniczących w indukcji stresu oksydacyjnego. W ostatnim 

rozdziale podsumowane zostały wyniki doświadczeń oraz przeanalizowane wady i zalety 

potencjalnych możliwości zastosowania związków wpływających na aktywność STAT1 oraz 

potencjalne zastosowanie w diagnostyce chorób układu krążenia.  

 

Badania przeprowadzone w tej pracy poszerzyły wiedze z zakresu etiologii chorób układu 

krążenia takich jak miażdżyca i nadciśnienie tętnicze. Wykonane eksperymenty potwierdziły 

istnienie mechanizmu kooperacji pomiędzy szlakiem JAK/STAT i TLR4 w komórkach 

nieimmunologicznych, wskazując jednocześnie na kluczową rolę białek STAT1 oraz IRF 
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