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Introduction

Methods of wavelet analysis are an important tool in investigating of properties of function
spaces. Due to wavelet bases we can de�ne isomorphisms between function spaces of Hardy-
Sobolev-Triebel type and corresponding sequence spaces. These isomorphisms reduce many
problems from the function spaces level to the sequence spaces level. The main advantage of
that approach is that interesting issues often simplify in sequence spaces. So the question
about existence of an unconditional basis in function spaces or wavelet characterization
is very important to investigate their properties. That way of research can be used to
investigate boundedness, compactness and spectral properties of operators acting between
function spaces. Among operators special attention is paid on Sobolev embeddings, because
they are simple and on the other side many other operators can be factorized by them.

Weighted function spaces are the subject of a research, because of many applications in
theory of di�erential equations, spectral operators theory, etc. Local Muckenhoupt weights
(class Aloc∞ ), that are important to the main part of that dissertation, and spaces with that
weights were introduced by V.Rychkov in 2001 in [34]. That weights are generalizations
of classical Muckenhoupt weights A∞ as well as admissible weights, which are smooth.
One of the breakthroughs in the history of function spaces of Sobolev-Besov-Hardy type
was wavelets characterizations of that spaces. The unweighted case was considered by
Y.Meyer et al. in [31] and [3]. Wavelet bases in function spaces with admissible weights
were constructed by D.Haroske and H.Triebel in [19]. In subsequent years Haroske and
Skrzypczak showed wavelet characterization of spaces with Muckenhoupt weights, cf. [16].
Most recently Izuki and Sawano proved that there exists wavelet bases in function spaces
with weights of Aloc∞ class, cf. [24]. Weighted function spaces with Muckenhoupt weights
are applied to consider di�erential operators like in [12], [18]. They have many applications
in theory of di�erential equations, spectral operators theory etc.

Wavelet theory is widely developed. Orthonormal wavelet bases in L2 are used in the-
oretical mathematics as well as in computer science. In that dissertation we deal with
inhomogeneous Besov and Triebel-Lizorkin spaces, which are described in monographic
series "Theory of Function Spaces" by H.Triebel, [39]-[41]. In de�nition of weighted func-
tion spaces we replace Lebesgue measure by w dx measure, where w is positive, locally
integrable function called weight. V. Rychkov introduce the theory of function spaces with
local Muckenhoupt weights, which are generalizations of earlier results. Izuki and Sawano
continue to develop that theory, by showing atomic decomposition in such a spaces, [23].
By now there has been shown wavelet characterization of Besov and Triebel-Lizorkin spaces
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with local Muckenhoupt weights, [24].
In Chapter 1 there are introduced wavelet bases. Basic kinds of wavelets are de�ned.

Special attention is paid to Daubechies wavelets. These systems of wavelets are orthogonal
bases in L2(Rn). They are especially useful because of compact supports and smoothness
to some order. That properties of Daubechies wavelets make proofs of theorems about
isomorphisms between function spaces and sequence spaces easier.

In further part of Chapter 1 we introduce inhomogeneous Besov and Triebel-Lizorkin
spaces. These are quasi-Banach spaces of tempered distributions. We recall development
of theory of function spaces following [40].

In Chapter 2 we concern weights and weighted function spaces. Classical Mucken-
houpt weights Ap was introduced by Muckenhoupt as a class of weights, for which Hardy-
Littlewood maximal operator is bounded in proper function spaces of p-integrable func-
tions. Bui, Taibleson and Weiss have developed theory of weighted Besov and Triebel-
Lizorkin spaces as spaces of tempered distributions. In the same time there have been
developed theory of function spaces with weights from another class, which consist of
smooth weights with such a behavior at in�nity that they do not belong to Ap, cf. [35].
Moreover, at least for some kind of weights, there was no possibility to continue the theory
inside spaces of tempered distributions. In 2001 Rychkov introduced in [34] so called local
Muckenhoupt weights, i.e. Alocp class, which embrace every considered classes of weights. It
revealed that local Muckenhoupt weights are natural family of weights for inhomogeneous
Besov and Triebel-Lizorkin spaces. Rychkov proved some properties of local Muckenhoupt
weights. Keep on researching we develop theory of properties of that class of weights to
get analogous theory of properties of classical Muckenhoupt weights, for example the local
version of the reverse Hölder inequality, the theorem about representation of weights, etc.

The main aim of Chapter 3 is to formulate the wavelet characterization of Bs,w
p,q (Rn)

and F s,w
p,q (Rn) spaces with local Muckenhoupt weight w. We follow H.Triebel's approach

in [44]. He made an observation that Daubechies wavelets can serve as kernels of local
means and as atoms. It can be adopted to spaces with local Muckenhoupt weights Aloc∞ .
To prove local means representation as well as Daubechies wavelet representation we use
atomic decomposition theorem for function spaces with local Muckenhoupt weights proved
by Izuki and Sawano in [23].

In the last part of Chapter 3 we show some applications of wavelet characterization
of Bs,w

p,q (Rn) and F s,w
p,q (Rn) spaces with local Muckenhoupt weight w. First we consider

continuous embeddings. Then we obtain results about dual spaces to function spaces with
local Muckenhoupt weights. At last we get complex interpolation for F s,w

p,q (Rn) spaces.
Sobolev embeddings of Besov and Triebel-Lizorkin spaces were widely studied. In paper

by D. Haroske and L. Skrzypczak [16] there were stated characterization of embeddings
between function spaces with classical Muckenhoupt weights. Using results from [27] we
get analogous results for embeddings of function spaces with local Muckenhoupt weights.
It turns out that in some special cases we get better results even for classical Muckenhoupt
weights cases when we use local Muckenhoupt weights. In this section we also study
embeddings from Bs,w

p,q (Rn) and F s,w
p,q (Rn) spaces to function spaces outside the Besov and

Triebel-Lizorkin scales, for example to C(Rn), L∞(Rn). In particular we study conditions
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on parameters s, p and q whether weighted function spaces consist of regular distributions.
In the book [43] H. Triebel proves, that Haar wavelets can be used to characterization

of unweighted function spaces Bs
p,q(Rn) and F s

p,q(Rn) as far as absolute value of smoothness
parameter is small enough. The aim of Chapter 4 is to show the weighted version of that
result. The conditions on smoothness s and weight w, that guarantee that Haar functions
form unconditional bases in Bs,w

p,q (Rn) and F s,w
p,q (Rn) are formulated. Here p and q must be

�nite.
In Chapter 5 we turn to Lp spaces. Wavelet systems in weighted Lp spaces were in-

vestigated by several authors. P. G. Lemarié-Rieusset considered one dimensional case, cf.
[29]. He proved that the homogeneous wavelet system of Daubechies type is an uncon-
ditional basis in Lp(Rn, dµ), 1 < p < ∞, if and only if dµ = wdx, where w is a weight
belonging to the Muckenhoupt class Ap. He also found a su�cient and necessary condi-
tion for inhomogeneous systems to be unconditional bases. Other one dimensional systems
were investigated by Kazarian [28] and García-Cuerva, Kazarian [14]. Multidimensional
homogeneous wavelet systems were considered by Aimar, Bernardis, Martín-Reyes, cf. [1].
They proved that a homogeneous wavelet system satisfying certain regularity conditions is
an unconditional basis in Lp(dµ) if and only if dµ = wdx with w ∈ Ap.

The aim of Chapter 5 is to prove the counterpart of Lemarié-Rieusset's result for mul-
tidimensional inhomogeneous wavelet systems. To formulate the necessary and su�cient
condition we use the class of local Muckenhoupt weights Aloc∞ . Furthermore it leads to
necessary conditions for the Paley-Littlewood characterization of Lp spaces with weights.
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Chapter 1

De�nitions and notation

1.1 Notation

Let us �x some notation. By N we denote the set of natural numbers, by N0 the set N∪{0},
by C the complex plane, by Rn the euclidean n-space, n ∈ N and by Zn the set of all lattice
points in Rn having integer components.

The positive part of a real function f is given by f+(x) = max(f(x), 0). For two positive
real sequences {ak}k∈N and {bk}k∈N we mean by ak ∼ bk that there exist constants c1, c2 > 0
such that c1ak ≤ bk ≤ c2ak for all k ∈ N, similarly for positive functions.

Given two quasi-Banach spaces X and Y we write X ↪→ Y if X ⊂ Y and the natural
embedding of X in Y is continuous.

All unimportant positive constants are denoted by c, occasionally with subscripts. Let
dx and | · | stand for the (n-dimensional) Lebesgue measure. Log is always taken with
respect to a base 2.

We denote by D(Rn) the space of C∞ functions with compact support. D′(Rn) is its
topological dual, the space of distributions.

Let S(Rn) be the Schwartz space of all complex-valued rapidly decreasing, in�nitely
di�erentiable functions on Rn. By S ′(Rn) we denote its topological dual, the space of
tempered distributions on Rn. Furthermore, Lp(Rn) with 0 < p ≤ ∞ is the standard
quasi-Banach space with respect to the Lebesgue measure, quasi-normed by

‖f |Lp(Rn)‖ =

(∫
Rn
|f(x)|p dx

)1/p

with the obvious modi�cation if p =∞.
Let C(Rn) be the Banach space of all complex-valued uniformly continuous bounded

functions in Rn and let for r ∈ N,

Cr(Rn) = {f ∈ C(Rn) : Dγf ∈ C(Rn), |γ| ≤ r},

obviously normed, where we use the standard abbreviation Dγ for derivatives.
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If ϕ ∈ S(Rn) then

ϕ̂(ξ) = (Fϕ)(ξ) = (2π)−
n
2

∫
Rn
e−iξxϕ(x) dx, ξ ∈ Rn, (1.1.1)

denotes the Fourier transform of ϕ. Here ξx is the scalar product in Rn. As usual, F−1ϕ
or ϕ∨, stands for the inverse Fourier transform, given by the right-hand side of (1.1.1) with
i in place of −i. Both F and F−1 are extended to S ′(Rn) in the standard way.

By a cube Q we understand the cube in Rn with sides parallel to the axis and |Q|
denotes the Lebesgue measure of Q. For some d > 0 by dQ we understand a cube with
the same center as Q and sides scaled by d. A dyadic cube is the cube with sides 2−j and
center 2−j(m+ 1

2
), where m+ 1

2
= (m1 + 1

2
,m2 + 1

2
, . . . ,mn + 1

2
), denoted by Qjm, for j ∈ Z

and m ∈ Zn.
Let B(x, r) denote an open ball in Rn centered at x with radius r > 0.
Given 1 ≤ p ≤ ∞, its dual index is the number 1 ≤ p′ ≤ ∞ satisfying

1 =
1

p
+

1

p′

and given 0 < p < 1 its dual index is ∞, where we use the conventions that 1/0 =∞ and
1/∞ = 0.

By

∆N =

(
n∑
i=1

∂2/∂x2
i

)N

, N ∈ N0,

we denote the N -th power of the Laplacian (∆0 = Id).

1.2 De�nitions and basic theorems

Let X be a quasi-normed vector space. A quasi-norm on X induces a locally bounded
topological vector space structure on X. Conversely if X is a locally bounded vector space
and B is a bounded neighborhood of zero then ‖x‖B := inf{r > 0; r−1x ∈ B}, x ∈ X, is
a quasi-norm and di�erent bounded neighborhoods of the origin de�ne equivalent quasi-
norms. Moreover if ‖ ·‖ is a quasi-norm on a linear space X then there exist 0 < p ≤ 1 and
a p-norm ‖ · ‖′ on X equivalent to ‖ · ‖, i.e. the p-norm ‖ · ‖′ such that there is a positive
constant c such that

c−1‖x‖ ≤ ‖x‖′ ≤ c‖x‖, x ∈ X,

cf. [33] Theorem 3.2.1. We recall that ‖ · ‖ : X → 〈0,∞) is called a p-norm if

(i) ‖x‖ = 0⇔ x = 0,

(ii) ‖λx‖ = |λ|‖x‖, λ ∈ C, x ∈ X,

(iii) ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

9



So ‖ · ‖p is a p-homogeneous F -norm, cf. [33] p. 4 for the de�nition.
We will always assume that quasi-Banach spaces are a vector spaces over C.

De�nition 1.1. A countable family {xn}n∈N of vectors in a separable quasi-Banach space
X is a basis for X if every x ∈ X can be written

x =
∑
n∈N

cnxn convergence in X

for a unique choice of scalars cn ∈ C.

De�nition 1.2. Let {xn}n∈N be a countable family of vectors from a quasi-Banach space
X. The series

∑
n∈N xn is unconditionally convergent if for every permutation σ : N→ N,

the series
∑∞

k=0 xσ(k) is convergent in X.

Theorem 1.1. Let {xn}n∈N be a countable family of vectors from a quasi-Banach space
X.

∑
n∈N xn converges unconditionally if and only if

∑
n∈N εnxn converges for every choice

of signs εn = ±1.

The proof can be found in [20] (Theorem 3.10) or [33] (Theorem 3.8.2).

De�nition 1.3. A basis {xn}n∈N in a separable quasi-Banach space X is called uncondi-
tional if for any x ∈ X the series

x =
∑
n∈N

cnxn

is unconditionally convergent.

Remark 1.1. Obviously {xn}n∈N is an unconditional basis in X if and only if {xσ(n)}n∈N is
a basis in X for all permutations σ : N→ N.

The basis that is not an unconditional basis is called a conditional basis. All the bases
we will work with in the thesis are unconditional.

De�nition 1.4. Given a basis {xn}n∈N for a quasi-Banach space X, then the sequence of
linear functionals x∗n de�ned by

x =
∑
n∈N

x∗n(x)xn

is called sequence of coe�cient functionals for {xn}n∈N.

De�nition 1.5. Let {xn}n∈N be a basis for a quasi-Banach space X and {x∗n}n∈N be the
coe�cient functionals. Then we say that {xn}n∈N is a Schauder basis for X if each x∗n is
continuous.

Theorem 1.2. A countable family {xn}n∈N is a Schauder basis for a quasi-Banach space
X if and only if {xn}n∈N is a basis for X.

The proof of the theorem can be found in [20], Theorem 4.13 for the Banach spaces
and [33] Corollary 2.6.2 for the quasi-Banach case.
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De�nition 1.6. Let X be a Banach space. System {xn, x∗n}n∈N of xn from X and func-
tionals x∗n from X∗ we call a biorthogonal system if

x∗n(xm) =

{
1 for n = m,

0 for n 6= m.

Lemma 1.1. Let X, Y be quasi-Banach spaces. If {xn}n∈N is a basis for X and T : X → Y
is a topological isomorphism, then {Txn}n∈N is a basis for Y .

The above lemma can be found in [20], Lemma 4.18.

Theorem 1.3. If {xn}n∈N is a (unconditional) basis for a re�exive Banach space X, then
its biorthogonal system {x∗n}n∈N is a (unconditional) basis for X∗.

The proof of the theorem can be found in [20], Corollary 5.22.
We can de�ne partial sum operators

SNx =
N∑
n=1

x∗n(x)xn, x ∈ X.

We say that the sequence {xn}n∈N is complete in a quasi-normed space X if span{xn}n∈N =
X.

A family U of continuous operators from a quasi-normed space X into a quasi-normed
space Y is called equicontinuous if for each positive ε there is a positive δ such that

sup{‖Ax‖ : A ∈ U , ‖x‖ ≤ δ} ≤ ε.

Theorem 1.4. Given a sequence {xn}n∈N in a quasi-Banach space X, the following state-
ments are equivalent.

(i) {xn} is a basis for X.

(ii) {xn} is complete and the operators SN are equicontinuous on the set of all linear
combinations of {xn}.

The above theorem for quasi-Banach spaces follows from Corollary 2.6.5 in [33], for
Banach spaces it is Theorem 5.12 in [20].

Theorem 1.5. Let {xn}n∈N be a complete sequence in a quasi-Banach space X such that
xn 6= 0 for every n. Then the following statements are equivalent.

(i) {xn} is an unconditional basis for X.

(ii) {xn} is a basis, and for each bounded sequence of scalars Λ = {λn} there exists a
continuous linear operator TΛ : X → X such that TΛ(xn) = λnxn for all n ∈ N.
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For Banach spaces the theorem is stated in [20] (Theorem 6.7). For quasi-Banach it
follows from Corollary 3.9.5, Proposition 3.9.13 and considerations on page 94 in [33].

Lemma 1.2 (Young's inequality). If {ak}k∈Z ∈ `p, {bk}k∈Z ∈ `q and 1
p

+ 1
q

= 1
r

+ 1 for
1 ≤ p, q, r ≤ ∞. Then ∥∥∥∥∥∑

l∈Z

albk−l|`r

∥∥∥∥∥ ≤ ‖ak|`p‖ ‖bk|`q‖ .
1.3 Wavelet systems

De�nition 1.7. We call a scaling function (father wavelet) a function ψF (t) ∈ L2(R) and
a wavelet (mother wavelet) a function ψM(t) ∈ L2(R) such that the system

{ψMjm(x) = 2j/2ψM(2jx−m)}∞j=0,m∈Z ∪ {ψF0,m(x) = ψF (x−m)}m∈Z,

is an orthonormal basis in the Hilbert space L2(R).

The �rst wavelet system consist of compactly supported functions was the Haar system.
We recall brie�y the construction, cf. [46], Chapter 2.1.

De�nition 1.8. Let

hM(x) =


1 if 0 ≤ x < 1/2,

−1 if 1/2 ≤ x < 1,

0 otherwise,

and
hF (x) = |hM(x)|

be the Haar wavelet and the Haar scaling function.

Theorem 1.6. The system

{hMjm(x) = 2j/2hM(2jx−m)}∞j=0,m∈Z ∪ {hF0,m(x) = hF (x−m)}m∈Z,

forms the orthogonal Haar basis in L2(R).

Haar wavelets on Rn we obtain by the usual tensor product procedure

HG
jm = 2jn/2

n∏
r=1

hGr(2jxr −mr), (1.3.1)

where j ∈ N0, m ∈ Zn, G = (G1, ..., Gn) ∈ Gj and G0 = {F,M}n and for j > 0
Gj = {F,M}n∗, where * indicates that at least one Gr must be an M .{

HG
jm : j ∈ N0,m ∈ Zn, G ∈ Gj

}
is an orthonormal basis in L2(Rn), cf. [46], Proposition 6.2.
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Theorem 1.7. The Haar system {HG
jm : j ∈ N0,m ∈ Zn, G ∈ Gj} is a Schauder basis in

Lp(Rn), 1 ≤ p <∞. If 1 < p <∞ then the basis is unconditional.

The proof can be found in [46], Theorem 9.13.
There are no wavelets belonging to the class C∞ with compact support. However I.

Daubechies constructed systems of compactly supported wavelets with any �nite smooth-
ness, cf. [10] Chapter 6 or [46] Chapter 5. Such a system of wavelets will be called the
Daubechies systems. The construction is based on the method of multiresolution analysis.

Theorem 1.8. There exists a constant C such that for every k = 1, 2, ... there are scaling
function ψF (x) and wavelet ψM(x) such that

(i) ψF (x) and ψM(x) are in Ck(R).

(ii) ψF (x) and ψM(x) have compact support and suppψF and suppψM are subsets of
[−Ck,Ck].

The proof of the theorem can be found in [46], Theorem 5.7.
Let ψF ∈ Ck(R) be a Daubechies scaling function and ψM ∈ Ck(R) a Daubechies

wavelet with
∫
R ψ(x)xv dx = 0, k ∈ N, v ∈ N0, v < k. We extend these wavelets from R to

Rn by the usual tensor product procedure

ΨG
jm = 2jn/2

n∏
r=1

ψGr(2jxr −mr), (1.3.2)

where j ∈ N0, m ∈ Zn, G = (G1, ..., Gn) ∈ Gj and G0 = {F,M}n and for j > 0
Gj = {F,M}n∗, where * indicates that at least one Gr must be an M .{

ΨG
jm : j ∈ N0,m ∈ Zn, G ∈ Gj

}
is an orthonormal basis in L2(Rn), cf. [46].

Theorem 1.9. The Daubechies system {ΨG
jm : j ∈ N0,m ∈ Zn, G ∈ Gj} is a Schauder

basis in Lp(Rn), 1 ≤ p <∞. If 1 < p <∞ then the basis is unconditional.

See Theorem 9.9, [46].

1.4 Besov and Triebel-Lizorkin spaces

Let ϕ0 ∈ S(Rn) with ϕ0(x) = 1 if |x| ≤ 1 and ϕ0(x) = 0 if |x| ≥ 3/2 and let ϕk(x) =
ϕ0(2−kx) − ϕ0(2k+1x), x ∈ Rn, k ∈ N. Since

∑∞
j=0 ϕj(x) = 1 for x ∈ Rn the ϕj form a

dyadic resolution of unity. The functions (ϕj f̂)∨(x) are entire analytic functions on Rn for
any f ∈ S ′(Rn), so the pointwise operations with the function have sense.

De�nition 1.9. Let ϕ = {ϕj}∞j=0 be the above dyadic resolution of unity.
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(i) Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R. Then Bs
pq(Rn) is the collection of all f ∈ S ′(Rn)

such that ∥∥f |Bs
pq(Rn)

∥∥
ϕ

=

(
∞∑
j=0

2jsq‖(ϕj f̂)∨|Lp(Rn)‖q
)1/q

<∞

(with the usual modi�cation if q =∞).

Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R. Then F s
pq(Rn) is the collection of all f ∈ S ′(Rn) such

that

‖f |F s
pq(Rn)‖ϕ = ‖

(
∞∑
j=0

2jsq|(ϕj f̂)∨(·)|q
)1/q

|Lp(Rn)‖ <∞

(with the usual modi�cation if q =∞).

Remark 1.2. The theory of the above spaces may be found in [39]-[41]. The de�nition of
Besov and Triebel-Lizorkin spaces is independent of the resolution of the unity ϕ up to
quasi-norm equivalence. The spaces are quasi-Banach spaces. They are Banach spaces if
p ≥ 1 and q ≥ 1. If p, q < ∞ the spaces are separable and the space S(Rn) is a dense
subspace of F s

pq(Rn) or Bs
pq(Rn). We have always

S(Rn) ↪→ Bs
pq(Rn) ↪→ S ′(Rn)

and
S(Rn) ↪→ F s

pq(Rn) ↪→ S ′(Rn).

We have the following elementary but important embeddings:

• Bs1
pq1

(Rn) ↪→ Bs2
pq2

(Rn) and F s1
pq1

(Rn) ↪→ F s2
pq2

(Rn) if s1 ≥ s2.

• Bs
p,q1

(Rn) ↪→ Bs
p,q2

(Rn) and F s
p,q1

(Rn) ↪→ F s
p,q2

(Rn) if q1 ≤ q2.

• Bs
p,q1

(Rn) ↪→ F s
pq(Rn) ↪→ Bs

p,q2
(Rn) if q1 ≤ min(p, q) ≤ max(p, q) ≤ q2.

The both scales of function spaces have so called lift property. Let σ ∈ R. Then Iσ : f 7→(
(1 + | · |2)

σ/2
f̂
)∨

is a topological bijection of S(Rn) onto itself and S ′(Rn) onto itself.

Furthermore
IσB

s
pq(Rn) = Bs−σ

pq (Rn)

and
IσF

s
pq(Rn) = F s−σ

pq (Rn)

(equivalence of quasi-norms).

Remark 1.3. There are some well known special cases of these function spaces. Let 1 <
p <∞. Then

Lp(Rn) = F 0
p,2(Rn) (norm equivalence).
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This is the well-known Paley-Littlewood theorem. Let 1 < p <∞ and k ∈ N0. Then

W k
k (Rn) = F k

p,2(Rn)

are the classical Sobolev spaces usually equivalently normed by

∥∥f |W k
p (Rn)

∥∥ =

∑
|α|≤k

‖Dαf |Lp(Rn)‖p
1/p

.

More generally if 1 < p <∞, s ∈ R then

F s
p,2(Rn) = Hs

p(Rn)

where
Hs
p(Rn) := I−sLp(Rn)

is a Sobolev spaces with fractional smoothness.
One can de�ne an equivalent quasi-norm in Bs

pq(Rn) and F s
pq(Rn) spaces using iterated

di�erences

∆1
hf(x) = f(x+ h)− f(x), ∆m+1

h f(x) = ∆1
h (∆m

h f) (x), m ≥ 1

with x, h ∈ Rn.
In particular if s > 0 then

Bs
∞∞(Rn) = Cs(Rn).

Where Cs(Rn) is the Hölder-Zygmund space that is the space consisted of continuous
functions for which the following norm is �nite

‖f |Cs(Rn)‖ =
∥∥f |C [s](Rn)

∥∥+
∑
|α|=[s]

sup
06=h∈Rn

|h−{s}|
∥∥∆2

hD
αf(x)|C(Rn)

∥∥ , (1.4.1)

where s = [s] + {s}, [s] is an integer and 0 < {s} ≤ 1.
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Chapter 2

Function spaces with Alocp weights

2.1 Classes of weights

Let w be a nonnegative and locally integrable function on Rn. Such functions are called
weights and for measurable set E w(E) denotes

∫
E
w(x) dx. We consider Lwp (Rn) spaces,

i.e., Lp(Rn) spaces with Lebesgue measure replaced with measure w dx.

2.1.1 Locally regular weights

Several classes of weights were considered in the context of Sobolev and Besov type spaces.
I would like to mention some of them that are called admissible weights and regular weights.

Let w ∈ C∞(Rn) be a weight such that for all γ ∈ Nn
0 there exists a positive constant

cγ
|Dγw(x)| ≤ cγw(x) for all x ∈ Rn (2.1.1)

and there exist constants c > 0 and α ≥ 0

0 < w(x) ≤ cw(y)
(
1 + |x− y|2

)α/2
for all x, y ∈ Rn. (2.1.2)

These weights are called admissible weights, [19]. For example the functions w, v given by

w(x) = (1 + |x|2)α/2, v(x) =
(
1 + log(1 + |x|2)

)α
, α ≥ 0

are admissible weights.
If a function w ∈ C∞(Rn) satis�es (2.1.1) and the following exponential growth condi-

tion
0 < w(x) ≤ C exp

(
C |x− y|β

)
w(y) (2.1.3)

for all x, y ∈ Rn and �xed 0 < β ≤ 1, then it is called a general locally regular weight. For
example the weight

w(x) = exp(|x|β), 0 < β ≤ 1

is locally regular but not admissible, [35]. Of course any admissible weight is locally regular.
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2.1.2 Muckenhoupt weights

Let us recall the de�nition of the Muckenhoupt weights, [38], Chapter V.

De�nition 2.1. A weight w belongs to Ap, w ∈ Ap, 1 < p <∞, if

Ap(w) := sup
Q⊂Rn

1

|Q|p
∫
Q

w(x) dx

(∫
Q

w1−p′(x) dx

)p−1

<∞

and w ∈ A1 if

A1(w) := sup
Q⊂Rn

w(Q)

|Q|
∥∥w−1

∥∥
L∞(Q)

<∞.

where supremum is taken over all cubes Q ⊂ Rn.

De�nition 2.2. We say that w ∈ A∞ if for any α, 0 < α < 1, there exists β, 0 < β < 1,
such that for all cubes Q and all subsets F ⊂ B

|F | ≥ α|Q| ⇒ w(F ) ≥ w(Q).

As an example we can take

w(x) = |x|α ∈ Ap for

{
−n < α < n(p− 1), if 1 < p <∞,
−n < α ≤ 0, if p = 1

or weights with logarithmic part

v(x) = |x|α
{

(1− log |x|)−β , |x| ≤ 1,

(1 + log |x|)−β , |x| > 1.

Then

v ∈ A1 if

{
β ∈ R and − n < α < 0,

β ≥ 0 and α = 0,

and
v ∈ Ap, 1 < p <∞ if − n < α < n(p− 1), β ∈ R.

If β < 0 and α = 0 then v ∈ Ap for any p > 1 but not to A1, cf. [12].

2.1.3 Local Muckenhoupt weights

De�nition 2.3 (Rychkov, 2001). We de�ne a class of weights Alocp (1 < p < ∞), which
consist of all nonnegative locally integrable functions w de�ned on Rn for which

Alocp (w) := sup
|Q|≤1

1

|Q|p
∫
Q

w(x) dx

(∫
Q

w1−p′(x) dx

)p−1

<∞. (2.1.4)

Moreover w ∈ Aloc1 if

Aloc1 (w) := sup
|Q|≤1

w(Q)

|Q|
∥∥w−1

∥∥
L∞(Q)

<∞. (2.1.5)
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De�nition 2.4. Let f be locally integrable. Operator

M locf(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)| dy,

where supremum is taken over all cubes in Rn for which |Q| ≤ 1, is called a local maximal
function.

Remark 2.1. If w ∈ Aloc1 then there exists c > 0 such that for all cubes Q, |Q| ≤ 1,

w(Q)

|Q|
≤ cw(x) for a.e. x ∈ Q. (2.1.6)

In consequence there exists c′ > 0 such that

M locw(x) ≤ c′w(x) a.e. x ∈ Rn.

Remark 2.2. It follows directly from the de�nitions that Ap ⊂ Alocp and Alocp (w) ≤ Ap(w)
for any w ∈ Ap, 1 ≤ p <∞.

De�nition 2.5. We say that w ∈ Aloc∞ if for any α ∈ (0, 1)

sup
|Q|≤1

(
sup

F⊂Q,|F |≥α|Q|

w(Q)

w(F )

)
<∞,

where F is taken over all measurable sets in Rn.

Remark 2.3. Any Muckenhoupt weight of the class Ap belongs to the class Alocp . But local
Muckenhoupt weights cover also so called admissible weights and locally regular weights,
cf. [34], [19], [35].

As an example of a weight, which is in Aloc∞ , but not in A∞ and is not locally regular,
we can take

w(x) =

{
|x|α for |x| ≤ 1,

exp(|x| − 1) for |x| > 1,
α > −n.

If −n < α < n(p− 1) and 1 < p <∞ then w ∈ Alocp . If −n < α ≤ 0 then w ∈ Aloc1 .

2.1.4 Properties of classes Aloc
p

We would like to mention some important properties of classes Alocp .

Lemma 2.1 (Rychkov, 2001). Let 1 ≤ p1 ≤ p2 ≤ ∞. Then Alocp1
⊂ Alocp2

⊂ Aloc∞ .
Conversely, if w ∈ Aloc∞ , then w ∈ Alocp for some p <∞.
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The last lemma implies that Aloc∞ =
⋃
p≥1Alocp . In consequence we can de�ne for w ∈

Aloc∞ a positive number
rw = inf

{
1 ≤ p <∞ : w ∈ Alocp

}
.

In an analogous way we put r̃w = inf {1 ≤ p <∞ : w ∈ Ap}, for w ∈ A∞.
Next lemma shows us an important relation between Ap and Alocp weights.

Lemma 2.2 (Rychkov, 2001). Let 1 ≤ p <∞, w ∈ Alocp and I be a unit cube, i.e., |I| = 1.
Then there exists a w̄ ∈ Ap, such that w̄ = w on I and

Ap(w̄) ≤ cAlocp (w),

where constant c is independent of I.

We give an example of a weight, which is in Alocp ∩ A∞, but not in Ap for some p > 0.
Let

w(x) =

{
|x|α for |x| ≤ 1,

|x|β for |x| > 1,

for α, β > −n. If α < (p − 1)n then we have w ∈ Alocp and rw = max(0,α)
n

+ 1. On the

other hand if α, β < (p1− 1)n then we have w ∈ Ap1 and r̃w = max(0,α,β)
n

+ 1. Taking β big
enough we get that w is in Alocp ∩ A∞, but not in Ap and rw < r̃w.

Lemma 2.3. Let w ∈ Alocp , 1 ≤ p < ∞. Let S be a measurable set and Q a cube with
|Q| ≤ 1 such that S ⊂ Q. Then

w(Q) ≤ cw(S)

(
|Q|
|S|

)p
.

Proof. Suppose p > 1. By Hölder's inequality and the de�nition of Alocp class we get(
|S|
|Q|

)p
=

(
1

|Q|

∫
S

χS(x) dx

)p
≤
(

1

|Q|

∫
Q

χS(x) dx

)p
=

(
1

|Q|

∫
Q

χS(x)w1/p(x)w−1/p(x) dx

)p
≤
(

1

|Q|

∫
Q

χS(x)w(x) dx

)(
1

|Q|

∫
Q

w1−p′(x) dx

)p−1

≤ C

(
1

|Q|
w(S)

)(
|Q|
w(Q)

)
.

For p = 1 we get the result in analogous way.

Theorem 2.1 (Rychkov, 2001). For 1 ≤ p <∞ the weak (p, p) inequality

w({x ∈ Rn : M locf(x) > λ}) ≤ C

λp

∫
Rn
|f(x)|pw(x) dx

holds if and only if w ∈ Alocp .
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De�nition 2.6. Let 0 < p < ∞, 0 < q ≤ ∞ and w ∈ Aloc∞ . Then ¯̀
q(L

w
p (Rn)) is the

set of all sequences f = {fj(x)}∞j=0 of Lebesgue-measurable functions on Rn with �nite
quasi-norms given by

∥∥f |¯̀q(Lwp (Rn))
∥∥ =

(
∞∑
j=0

∥∥fj|Lwp (Rn)
∥∥q)1/q

.

Let 0 < p <∞, 0 < q ≤ ∞ or p = q =∞ and w ∈ Aloc∞ . Then Lwp ( ¯̀
q,Rn) is the set of all

sequences f = {fj(x)}∞j=0 of Lebesgue-measurable functions on Rn with �nite quasi-norms
given by ∥∥f |Lwp ( ¯̀

q,Rn)
∥∥ =

∥∥∥∥∥∥
(
∞∑
j=0

(fj)
q

)1/q

|Lwp (Rn)

∥∥∥∥∥∥ .
De�nition 2.7. We de�ne a special convolution operator

KBf(x) =

∫
Rn
|f(y)|2−B|x−y|dy (B ≥ 0).

The Fe�erman-Stein maximal inequality holds for the operator M loc and KB and local
Muckenhoupt weights.

Theorem 2.2 (Rychkov, 2001). Let 1 < p <∞, 1 < q ≤ ∞ and w ∈ Alocp . Then for any
sequence of measurable functions {fj}∞j=0 we have∥∥{M locfj}|Lwp ( ¯̀

q,Rn)
∥∥ ≤ c

∥∥{fj}|Lwp ( ¯̀
q,Rn)

∥∥ .
Also, there is a B0 = B0(w, n) > 0 such that for B ≥ B0/p we have∥∥{KBfj}|Lwp ( ¯̀

q,Rn)
∥∥ ≤ c

∥∥{fj}|Lwp ( ¯̀
q,Rn)

∥∥ .
Lemma 2.4 (Rychkov, 2001). Let w ∈ Alocp and 1 < p <∞. Then

w(tQ) ≤ exp(cwt)w(Q) t ≥ 1, |Q| = 1,

where cw > 0 is a constant depending on n and Alocp (w).

It follows from the above lemma that classes Alocp are independent of the upper bound
for the cube size used in their de�nition, i.e. for any C > 0 we could have replaced |Q| ≤ 1
by |Q| ≤ C in De�nition 2.3.

2.1.5 Further properties of classes Aloc
p

Let fQ = 1
|Q|

∫
Q
f(x) dx.

We can de�ne dyadic maximal operator

M∆f(x) = sup
x∈Q

1

|Q|

∫
Q

|f(y)| dy,

where supremum is taken over all dyadic cubes Q ⊂ Rn.
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Lemma 2.5. Let f be a locally integrable function on Rn, and let α be a positive constant
so that

Ωα = {x : M∆f(x) > α}

has �nite measure. Then Ωα may be written as a disjoint union of dyadic cubes {Qj} with

(i) α < |Qj|−1
∫
Qj
|f(x)| dx

and

(ii) |Qj|−1
∫
Qj
|f(x)| dx ≤ 2nα,

for each cube Qj. This has the immediate consequences:

(iii) |f(x)| ≤ α for a.e. x ∈ Rn\
⋃
j Qj

and

(iv) |Ωα| ≤ α−1
∫
Rn |f(x)| dx.

The proof of the above lemma can be found in Chapter IV, �3.1 in [35].
Next proposition is analogous to the reverse Hölder inequality, which is an important

property of Muckenhoupt weights.

Proposition 2.1. If w ∈ Aloc∞ , then there exists r > 1 and c > 0 (both depending on w)
such that (

1

|Q|

∫
Q

wr dx

)1/r

≤ c

|Q|

∫
Q

w dx, (2.1.7)

for all cubes Q such that |Q| ≤ 1.

Proof. For w ∈ Aloc∞ there exist constants γ, δ ∈ (0, 1) such that

|E| ≤ γ |Q| ⇒ w(E) ≤ δw(Q), (2.1.8)

for every Q, |Q| ≤ 1 and E ⊂ Q.
Let us consider dilation given by Dαw(t) = α−nw( t

α
) for α ≥ 1. If w satis�es condition

(2.1.8), then Dαw also does. Actually

Dαw(E) =

∫
E

1

αn
w(

t

α
)dt =

∫
α−1E

w(x) dx = w(α−1E).

From |α−1E| ≤ γ |α−1Q|, we have w(α−1E) ≤ δw(α−1Q), that is Dαw(E) ≤ δDαw(Q).
Because the class of w that satis�es (2.1.7) is invariant under multiplication by positive

scalars, translation and dilations with α ≥ 1 similar to the class Aloc∞ , we can follow the
ideas of the proof of Proposition 4 in Chapter 5, �3.1 in [35].

Let Q0 be a cube such that w(Q0) = |Q0| = 1. We must show that∫
Q0

wr ≤ c.
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Let f = wχQ0 . Set Ek =
{
x ∈ Q0 : M∆f(x) > 2Nk

}
, where N is a large integer to be

chosen momentarily. From Lemma 2.5 we know that for every x ∈ Ek there exists maximal
dyadic cube Qj such that x ∈ Qj and

1

|Qj|

∫
Qj

f(x) dx ≥ 2Nk.

These maximal dyadic cubes are pairwise disjoint, their union is Ek and every of such
a cube is contained in some dyadic cube contained in Ek−1. Summing over all maximal
dyadic cubes Qj ⊂ Q, where cube Q ⊂ Ek−1, we have

∣∣Ek ∩Q
∣∣ =

∑
j

|Qj| ≤ 2−Nk
∫
Q

f(x) dx.

For Q ∫
Q

f(x) dx ≤ 2n2N(k−1) |Q| .

Finally we have ∣∣Ek ∩Q
∣∣ ≤ 2−Nk2n2Nk−N |Q| = 2n−N |Q| .

Now we choose N such that 2n−N ≤ γ and from property of class Aloc∞ w(Ek∩Q) ≤ δw(Q).
Taking the union over all Q consisting of Ek−1 gives

w(Ek) ≤ δw(Ek−1)

and therefore
w(Ek) ≤ δkw(E0) ≤ δk.

Now ∫
Q0

wr(x) dx ≤
∫
Q0

(
M∆f(x)

)r−1
w(x) dx =

∫
Q0∩{x:M∆f(x)≤1}

+
∞∑
k=0

∫
Ek\Ek+1

.

The �rst integral is bounded by 1 and the k-th integral in the sum is bounded by

2N(k+1)(r−1)w(Ek) ≤ 2N(k+1)(r−1)δk.

Since δ < 1, the sum
∞∑
k=0

2N(k+1)(r−1)δk

converges if r is su�ciently close to 1.

Proposition 2.2. Let w1 and w2 be Aloc1 weights. If 1 ≤ p <∞, then w = w1w
1−p
2 belongs

to Alocp . Conversely, let w ∈ Alocp , then there exist w1 and w2 in Aloc1 such that w = w1w
1−p
2 .
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Proof. Let w1, w2 ∈ Aloc1 . Then for any cube Q it follows from (2.1.6) that
ess infx∈Qwi(x) > 0, i = 1, 2. Thus for 1 ≤ p <∞, |Q| ≤ 1 and w = w1w

1−p
2 we have∫

Q

w(x) dx ≤
∫
Q

w1(x) dx

(
ess inf

x∈Q
w2(x)

)1−p

,(∫
Q

w
1

1−p (x) dx

)p−1

≤
(∫

Q

w2(x) dx

)p−1(
ess inf

x∈Q
w1(x)

)−1

.

Hence(
1

|Q|

∫
Q

w(x) dx

)(
1

|Q|

∫
Q

w
1

1−p (x) dx

)p−1

≤

≤ 1

|Q|

∫
Q

w1(x) dx

(
ess inf

x∈Q
w1(x)

)−1
[

1

|Q|

∫
Q

w2(x) dx

(
ess inf

x∈Q
w2(x)

)−1
]p−1

is bounded by (2.1.5). So w ∈ Alocp from (2.1.4).
Now we prove the converse. Let w ∈ Alocp , p ≥ 2. Consider an operator T de�ned by

Tf =
(
w−1/pM loc(fp/p

′
w1/p)

)p′/p
+ w1/pM loc(fw−1/p).

BecauseM loc is bounded on Lwp (Rn) and on Lw
−p′/p

p′ (Rn), cf. Lemma 2.2, thus T is bounded
on Lp(Rn), that is

‖Tf‖p ≤
∥∥∥∥(w−1/pM loc

(
fp/p

′
w1/p

))p′/p∥∥∥∥
p

+
∥∥w1/pM loc

(
fw−1/p

)∥∥
p

≤
∥∥∥M loc

(
fp/p

′
w1/p

)∥∥∥p′/p
p′,w−p′/p

+
∥∥M loc

(
fw−1/p

)∥∥
p,w

≤ C

(∥∥∥fp/p′w1/p
∥∥∥p′/p
p′,w−p′/p

+
∥∥fw−1/p

∥∥
p,w

)
= C ‖f‖p ,

(2.1.9)

for some C > 0. Since p ≥ 2, p/p′ ≥ 1, Minkowski inequality gives T (f1 +f2) ≤ Tf1 +Tf2.
Fix now a nonnegative f with ‖f‖p = 1. It follows from (2.1.9) that the series

η =
∞∑
k=1

(2C)−kT k(f),

where T k(f) = T (T k−1(f)) is convergent in Lp(Rn). But f is nonnegative, so the functions
T kf are also nonnegative. Thus the series converges to η a.e. Since T is sublinear we have

Tη ≤
∞∑
k=1

(2C)−kT k+1f =
∞∑
k=2

(2C)1−kT kf ≤ (2C)η a.e
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Now we can write w1 = w1/pηp/p
′
, then

M locw1(x) ≤M loc
(
w1/pηp/p

′
)

(x) ≤ (T (η))p/p
′
w1/p ≤ (2Cη)p/p

′
w1/p = C̃w1(x) a.e..

So w1 ∈ Aloc1 . Similarly, if w2 = w−1/pη, then M locw2(x) ≤ C̃w2(x) a.e. and w2 ∈ Aloc1 .
Now w = w1w

1−p
2 .

The case p ≤ 2 follows immediately by factorization for w−p
′/p ∈ Alocp′ , w1, w2 ∈ Aloc1 ,

we have
w−p

′/p = w1w
1−p′
2 ,

so

w =
(
w1w

1−p′
2

)−p/p′
= w

−p/p′
1 w

−p/p′+p
2 = w1−p

1 w2.

Proposition 2.3. Let w satisfy conditions (2.1.1) and (2.1.3), i.e. w is a locally regular
weight. Then w ∈ Aloc1 .

Proof. We check Aloc1 (w) condition. Let Q be some cube with |Q| ≤ 1. Let y ∈ Q. From
(2.1.3) we get

w(Q)

|Q|
∥∥w−1

∥∥
L∞(Q)

=
1

|Q|

∫
Q

w(x) dx ess sup
x∈Q

w−1(x)

≤ c
1

|Q|
w(y)

∫
Q

exp(C|x− y|β) dx ess sup
x∈Q

w−1(x)

≤ c

|Q|
w(y)

∫
Q

exp(Cnβ/2) dx ess sup
x∈Q

w−1(x)

≤ cw(y) exp(Cnβ/2) ess sup
x∈Q

w−1(x)

≤ c ess sup
x∈Q

exp(C|x− y|β) ≤ c.

So w ∈ Aloc1 .

2.2 Weighted function spaces with Aloc∞ weights

In the de�nition of weighted function spaces we replace in integration Lebesgue measure
with w dx measure, where w is nonnegative, locally integrable function called a weight. In
natural way then we can de�ne weighted function spaces Lwp (Rn). In [34] Rychkov de�ne
weighted Besov spaces Bs,w

p,q (Rn) and weighted Triebel-Lizorkin spaces F s,w
p,q (Rn) related to

Lwp (Rn). To incorporate the wide class of weights into the theory he introduced a class
of distributions which is generalization of the class of tempered distributions. Then he
developed Fourier approach to the above spaces. That approach is a natural generalization
of prior de�nitions and gathers di�erent weighted function spaces in one theory. In that
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subsection we describe basic parts of that theory with properties of weighted function
spaces.

Following Rychkov we de�ne Besov and Triebel-Lizorkin spaces with local Muckenhoupt
weights, [34]. Because the class of tempered distributions S ′(Rn) is too narrow for this
purpose we introduce a class S ′e(Rn), which is a topological dual to a Se(Rn) space. The
spaces Se(Rn) and S ′e(Rn) were introduced by Th. Schott in [35].

De�nition 2.8. By Se(Rn) we denote the set of all ψ ∈ C∞(Rn) such that

qN(ψ) := sup
x∈Rn

eN |x|
∑
|α|≤N

|Dαψ(x)| <∞ for all N ∈ N0.

We equip Se(Rn) with the locally convex topology which is de�ned by the system of the
semi norms qN .

Proposition 2.4. (i) Se(Rn) is a complete locally convex space.

(ii) D(Rn) ↪→ Se(Rn) ↪→ S(Rn).

(iii) D(Rn) is dense in Se(Rn). Se(Rn) is dense in S(Rn).

(iv) If w ∈ Aloc∞ then Se(Rn) ↪→ Lwp (Rn) for any p, 0 < p <∞.

Proof. Proof of parts (i), (ii) and (iii) can be found in [35].
Proof of part (iv). It follows from Lemma 2.4 that the function ϕ(x) = e−N |x| belongs

to Lwp (Rn) for su�ciently large N . We have∫
Rn
e−N |x|pw(x) dx =

∞∑
M=1

∫
B(0,M)\B(0,M−1)

e−N |x|pw(x) dx

≤
∞∑

M=1

e−N(M−1)pecwMw(B(0, 1)) = c
∞∑

M=1

e−(Np−cw)M <∞

if Np > cw. Thus for f ∈ Se(Rn)∫
Rn
|f(x)|pw(x) dx ≤ qN(f)

∫
Rn
e−N |x|pw(x) dx ≤ CqN(f).

De�nition 2.9. S ′e(Rn) is the collection of all continuous linear forms on Se(Rn). We
equip S ′e(Rn) with the strong topology.

We can identify the class S ′e(Rn) with the set of those distributions f ∈ D′(Rn) for
which the estimate

|〈f, ψ〉| ≤ A sup {|Dαψ(x)| exp (N |x|) : x ∈ Rn, |α| ≤ N} for all ψ ∈ C∞0 (Rn),
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is valid with some constants A,N depending on f . Such a distribution f can be extended
to a continuous functional on Se(Rn).

We take a function ϕ0 ∈ D such that∫
Rn
ϕ0(x) dx 6= 0 (2.2.1)

We put

ϕ(x) = ϕ0(x)− 2−nϕ0(
x

2
) (2.2.2)

and ϕj(x) = 2(j−1)nϕ(2j−1x) for j = 1, 2, .... One can �nd ϕ0 such that∫
Rn
xβϕ(x) dx = 0 (2.2.3)

for any multindex β ∈ Nn
0 , |β| ≤ B, where B is a �xed natural number. We will write

B = −1 if condition (2.2.3) doesn't hold. Indeed in [35] the following proposition is proved.

Proposition 2.5. Let L ∈ N. There exist functions ΦL,ΨL ∈ D(Rn) such that∫
Rn

ΦL(x) dx = 1

and
∆LΨL(x) = ΦL(x)− 2−nΦL(

x

2
).

Thus taking ϕ0 = ΦL and ϕ = ∆LΨL we get the pair of functions satisfying (2.2.1)-
(2.2.3). In particular (2.2.3) follows by integration by parts formula if L is su�ciently
large.

De�nition 2.10. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R and w ∈ Aloc∞ . Let a function
ϕ0 ∈ D(Rn) satisfy ∫

Rn
ϕ0(x) dx 6= 0

and ∫
Rn
xβϕ(x) dx = 0, |β| < B,

where ϕ(x) = ϕ0(x)− 2−nϕ0(x
2
) and B ≥ [s]. We de�ne a weighted Besov space Bs,w

pq (Rn)
to be a set of all f ∈ S ′e for which the following quasi-norm

∥∥f |Bs,w
pq (Rn)

∥∥
ϕ0

=

(
∞∑
j=0

2jsq
∥∥ϕj ∗ f |Lwp (Rn)

∥∥q)1/q
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(with the usual modi�cation if q = ∞) is �nite, and a weighted Triebel-Lizorkin space
F s,w
pq (Rn) to be a set of all f ∈ S ′e for which the following quasi-norm

∥∥f |F s,w
pq (Rn)

∥∥
ϕ0

=

∥∥∥∥∥∥
(
∞∑
j=0

2jsq|ϕj ∗ f |q
)1/q

|Lwp (Rn)

∥∥∥∥∥∥
(with the usual modi�cation if q =∞) is �nite.

Remark 2.4. The de�nition of the above spaces is independent of a choice of the function
ϕ0, up to the equivalence of quasi-norms. The spaces are quasi-Banach and Banach spaces
if p ≥ 1 and q ≥ 1.

Remark 2.5. To simplify the notation we write As,wpq (Rn) instead of Bs,w
pq (Rn) and F s,w

pq (Rn),
when both scales of spaces are meant simultaneously in some context.

Remark 2.6. The de�nition covers the earlier de�nitions of Besov and Triebel-Lizorkin
spaces for Muckenhoupt weights, admissible and locally regular weights, cf. [6], [19], [35]
and references given there. One can also de�ne the Besov and Triebel-Lizorkin spaces for
doubling measures, cf. [5]. This approach also covers the weighted spaces with A∞ weights,
but not with Aloc∞ weights (e.g. exponential weights are not doubling). On the other hand
there are the doubling measures that do not belong to the class Aloc∞ , cf. [45].

Remark 2.7. The spaces As,wpq (Rn) have a lot of properties similar to the unweighted spaces
Bs
pq(Rn) and F s

pq(Rn). In particular

• As1,wpq1
(Rn) ↪→ As2,wpq2

(Rn) if s1 ≥ s2.

• As,wp,q1(Rn) ↪→ As,wp,q2(Rn) if q1 ≤ q2.

• Bs,w
p,q1

(Rn) ↪→ F s,w
pq (Rn) ↪→ Bs,w

p,q2
(Rn) if q1 ≤ min(p, q) ≤ max(p, q) ≤ q2.

Moreover if 1 < p <∞ and w ∈ Alocp then

F 0,w
p,2 (Rn) = Lwp (Rn) (norm equivalence).

All the above properties can be found in [34].

Proposition 2.6. Let 0 < p <∞, 0 < q ≤ ∞, s ∈ Rn and w ∈ Aloc∞ . Then

Se(Rn) ↪→ As,wpq (Rn) ↪→ S ′e(Rn).

Moreover if q <∞ then Se(Rn) is dense in As,wpq (Rn).

Proof. Step 1. The embeddings As,wpq (Rn) ↪→ S ′e(Rn) are shown in [34], Lemma 2.15. Now
it is su�cient to prove that Se(Rn) ↪→ Bs,w

p,q (Rn) for any s ∈ Rn. The rest is similar or
follows by elementary embeddings.
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Let f ∈ Se(Rn). We take ϕ0 = ΦL and ϕ = ∆LΨL from Proposition 2.5. Then the
properties of convolution implies

f ∗ ϕj(x) = f ∗
(
∆LΨL

)
j
(x) = 2j(n−2L)

(
∆Lf ∗ΨL(2j·)

)
(x).

But 2jn∆Lf ∗ ΨL(2j·) → ∆Lf in Se(Rn), cf. Proposition 2.7 in [35]. So 2jn∆Lf ∗ ΨL(2j·)
converges uniformly to ∆Lf and∣∣2jn∆Lf ∗ΨL(2j·)(x)

∣∣ ≤ e−N |x|qN
(
2jn∆Lf ∗ΨL(2j·)(x)−∆Lf(x)

)
+ |∆Lf(x)|

≤ Ce−N |x| + |∆Lf(x)|.

The function e−N |x| + |∆Lf(x)| ∈ Lwp (Rn) if N is su�ciently large. Therefore by
Lebesgue's theorem of dominated convergence 2jn∆Lf ∗ ΨL(2j·) → ∆Lf in Lwp (Rn) if
j →∞. Thus

2js
∥∥f ∗ ϕj|Lwp (Rn)

∥∥ ≤ 2j(s−2L)
∥∥(2jn∆Lf ∗ΨL(2j·)

)
(·)|Lwp (Rn)

∥∥
≤ C2j(s−2L)

∥∥∆Lf |Lwp (Rn)
∥∥

and the constant C is independent of j. From Proposition 2.4 (iv) and if 2L > s we get

∞∑
j=0

2jsq
∥∥f ∗ ϕj|Lwp (Rn)

∥∥q <∞.
Step 2. Now we prove the density of Se(Rn) in As,wpq (Rn). The idea follows from Theorem

3.2 in [35]. We show that D(Rn) is dense in F s,w
pq (Rn). The proof for Bs,w

pq (Rn) is similar.
Let f ∈ F s,w

pq (Rn). Let ϕ0 ∈ D(Rn),
∫
Rn ϕ0(x) dx 6= 0 and ϕ = ϕ0 − 2−nϕ0( ·

2
). Take

ψ0, ψ ∈ D(Rn) such that for any given A ≥ 0 ψ has vanishing moments up to A and

f =
∞∑
k=0

ψk ∗ ϕk ∗ f in D′(Rn).

We can �nd such ψ by Theorem 1.6 in [34].
Substep 2.1. Put

fm =
m∑
k=0

ψk ∗ ϕk ∗ f, m ∈ N0.

We want to show that fm → f when m→∞, in F s,w
pq (Rn). Let 0 ≤ m < m′. Then

|ϕj ∗ (fm′ − fm)| (x) ≤
∞∑

k=m+1

|ϕj ∗ ψk ∗ ϕk ∗ f | (x).

From Lemma 2.9 in [34] for every A,B ≥ 0 there is a constant c such that for each x ∈ Rn

we have if j ≥ m+ 1

|ϕj ∗ (fm′ − fm)| (x) ≤ c
∞∑
k=j

2(j−k)A2kn
∫
Rn

|ϕk ∗ f(x− y)|
(1 + 2j|y|)A 2|y|B

dy
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and if j < m+ 1

|ϕj ∗ (fm′ − fm)| (x) ≤ c

∞∑
k=m+1

2(j−k)A2kn
∫
Rn

|ϕk ∗ f(x− y)|
(1 + 2j|y|)A 2|y|B

dy.

From Lemma 2.10 in [34], Young's inequality (q > 1) and monotonicity of `q (q ≤ 1) we
get

∞∑
j=0

2jsq |ϕj ∗ (fm′ − fm)|q (x)

≤ c
m∑
j=0

∣∣∣∣∣
∞∑

k=m+1

2(j−k)(A−n+s)2ks
(
M loc(|ϕk ∗ f |)(x) +KB(|ϕk ∗ f |)(x)

)∣∣∣∣∣
q

+

+ c

∞∑
j=m+1

∣∣∣∣∣
∞∑
k=j

2(j−k)(A−n+s)2ks
(
M loc(|ϕk ∗ f |)(x) +KB(|ϕk ∗ f |)(x)

)∣∣∣∣∣
q

≤
∞∑

k=m+1

2ksq
∣∣M loc(|ϕk ∗ f |)(x) +KB(|ϕk ∗ f |)(x)

∣∣q
for A− n+ s > 0.

Lemma 2.2 gives

∥∥fm′ − fm|F s,w
pq (Rn)

∥∥ ≤
∥∥∥∥∥∥
(

∞∑
j=m+1

2jsq|ϕj ∗ f |q
)1/q

|Lwp (Rn)

∥∥∥∥∥∥ .
By Lebesgue's theorem of dominated convergence {fm} is a Cauchy sequence in F s,w

pq (Rn).

So there is some limit element f̃ ∈ F s,w
pq (Rn). From the �rst step we get fm → f̃ in S ′e(Rn).

But from Theorem 1.6 in [34] we have fm → f in S ′e(Rn). Thus f = f̃ .
Substep 2.2. Let ψ ∈ C∞(Rn) such that ψ(x) = 1 for |x| ≤ 1 and ψ(x) = 0 for |x| ≥ 2.

Let ψm(x) = ψ(2−mx), m ∈ N0. Let f ∈ F s,w
pq (Rn) and �x k ∈ N0. Put g = ψk ∗ ϕk ∗ f .

Then ψmg ∈ D(Rn). To prove the density of D we show ψmg → g when m → ∞ in
F s,w
pq (Rn).
From the �rst step we get∥∥ψm′g − ψmg|F s,w

pq (Rn)
∥∥ ≤ c

∥∥∆L(ψm′g − ψmg)|Lwp (Rn)
∥∥

≤ c̃
∑

0≤|γ|≤2L

(∫
|x|≥2m

|Dγg(x)|pw(x) dx

)1/p

+
∑

0<|β|≤2L

2−m|β|
∥∥Dγg|Lwp (Rn)

∥∥ ,

where 0 ≤ m < m′ and 2L > s. Using inequalities from Substep 2.1 and from ψ ∈ Se we
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get ∥∥Dγg|Lwp (Rn)
∥∥ =

∥∥Dγψk ∗ ϕk ∗ f |Lwp (Rn)
∥∥

≤
(∫

Rn

(∫
Rn
|Dγψk(y)| |ϕk ∗ f(x− y)| dy

)p
w(x) dx

)1/p

≤ c

(∫
Rn

(∫
Rn
|Dγψk(y)| (1 + |y|)L2|y|L

|ϕk ∗ f(x− y)|
(1 + |y|)L2|y|L

dy

)p
w(x) dx

)1/p

≤ c

(∫
Rn

(∫
Rn
q2L(ψ)

|ϕk ∗ f(x− y)|
(1 + |y|)L2|y|L

dy

)p
w(x) dx

)1/p

≤ c̃

(∫
Rn

(
M loc(|ϕk ∗ f |) +KL(|ϕk ∗ f |)

)p
w(x) dx

)1/p

≤ c̃

(∫
Rn
|ϕk ∗ f |pw(x) dx

)1/p

≤ ˜̃c
∥∥f |F s,w

pq (Rn)
∥∥ .

With the same argumentation as in the conclusion of Substep 2.1 we get that {ψm} is a
Cauchy sequence in F s,w

pq (Rn). From Proposition 2.8 in [35] we get the result.
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Chapter 3

Local means and Daubechies wavelet

bases in function spaces with Alocp
weights

3.1 Local means and wavelet bases in weighted spaces

In this section we follow the main idea of H. Triebel from [44], that Daubechies wavelets can
serve both as atoms and kernels of local means. So, �rst we recall the atomic decomposition
of function spaces with the local Muckenhoupt weights due to Izuki and Sawano, cf. [23],
also [24]. Then we introduce local means and prove characterizations of function spaces.
Our approach to wavelet decomposition is more direct than this one presented in [24] since
we avoid some density arguments.

3.1.1 Atomic decomposition

All results of this section come from [23].
First we de�ne atoms, which are smooth (to some order K) functions, which satisfy

moment condition up to some L.

De�nition 3.1. Let s ∈ R, 0 < p < ∞, K,L ∈ N0 and d ≥ 1. Then CK−functions
ajm : Rn 7→ C with j ∈ N0, m ∈ Zn, are called (s,p)-atoms if

supp ajm ⊂ dQjm, j ∈ N0, m ∈ Zn,

and there exist all (classical) derivatives Dαajm ∈ C(Rn) with |α| ≤ K such that

|Dαajm(x)| ≤ 2−j(s−
n
p

)+j|α|, |α| ≤ K, j ∈ N0, m ∈ Zn, (3.1.1)

and ∫
Rn
xβajm(x) dx = 0, |β| < L, j ∈ N, m ∈ Zn. (3.1.2)
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Remark 3.1. Please note that the last condition is omitted if j = 0.

In connection with atoms and function spaces we always have sequence spaces for
sequences of coe�cients, which will appear in atomic decompositions.

De�nition 3.2. Let 0 < p < ∞, 0 < q ≤ ∞ and w ∈ Aloc∞ . Then bwpq is a collection of all
sequences

λ = {λjm ∈ C : j ∈ N0, m ∈ Zn} (3.1.3)

such that ∥∥λ|bwpq∥∥ =

∥∥∥∥∥∥
{∑
m∈Zn

λjmχ
(p)
jm

}
j∈N0

| ¯̀q(Lwp (Rn))

∥∥∥∥∥∥ <∞,
and let 0 < p < ∞, 0 < q ≤ ∞ or p = q = ∞ then fwp,q is a collection of all sequences λ
according to (3.1.3) such that

∥∥λ|fwp,q∥∥ =

∥∥∥∥∥∥
{∑
m∈Zn

λjmχ
(p)
jm

}
j∈N0

|Lwp ( ¯̀
q,Rn)

∥∥∥∥∥∥ <∞,
where χ

(p)
jm = 2

jn
p χQjm . Once more we use the notation awpq.

Izuki and Sawano proved in [23] that distributions from Bs,w
pq (Rn) and F s,w

pq (Rn) admit
atomic decompositions, cf. also [24].

For w ∈ Aloc∞ let us de�ne

σp(w) = n

(
rw

min(p, rw)
− 1

)
+ (rw − 1)n,

σq =
n

min(1, q)
− n

and
σpq(w) = max(σp(w), σq).

Theorem 3.1 (Izuki, Sawano). Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R and w ∈ Aloc∞ . Let
K,L ∈ Z satisfy

K ≥ (1 + [s])+ and L ≥ max (−1, [σp(w)− s])

when As,wpq (Rn) denotes Bs,w
pq (Rn) and

K ≥ (1 + [s])+ and L ≥ max (−1, [σpq(w)− s])

when As,wpq (Rn) denotes F s,w
pq (Rn). Let f ∈ As,wpq (Rn). Then there exists a sequence of

(s, p)-atoms {ajm}j∈N0,m∈Zn and λ ∈ awpq such that

f =
∞∑
j=0

∑
m∈Zn

λjmajm and
∥∥λ|awpq∥∥ ≤ c

∥∥f |As,wpq (Rn)
∥∥
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with convergence in S ′e(Rn). Conversely, let {ajm}j∈N0,m∈Zn be a sequence of (s, p)-atoms
and λ ∈ awpq. Then the series

f =
∞∑
j=0

∑
m∈Zn

λjmajm

converges in S ′e(Rn) and belongs to As,wpq (Rn) and∥∥f |As,wpq (Rn)
∥∥ ≤ c

∥∥λ|awpq∥∥ .
3.1.2 Characterization by local means

First let us de�ne kernels of local means.

De�nition 3.3. Let A,B ∈ N0 and C > 0. Then CA−functions kjm : Rn 7→ C with
j ∈ N0, m ∈ Zn, are called kernels if

supp kjm ⊂ CQjm, j ∈ N0, m ∈ Zn,

there exist all (classical) derivatives Dαkjm ∈ C(Rn) with |α| ≤ A such that

|Dαkjm(x)| ≤ 2jn+j|α|, |α| ≤ A, j ∈ N0, m ∈ Zn, (3.1.4)

and ∫
Rn
xβkjm(x) dx = 0, |β| < B, j ∈ N, m ∈ Zn. (3.1.5)

Since the kernels have �nite smoothness we will work with distributions of �nite order.
Let us consider a set Cm

K (Rn) of functions ϕ in Cm(Rn) such that supp ϕ ⊂ K, where
K ⊂ Rn is compact and a set Cm

0 (Rn) consists of functions belonging to Cm(Rn) with
compact support.

De�nition 3.4. A distribution f ∈ D′(Rn) is of order m, m ∈ N0, if for every compact
K ⊂ Rn there exists a constant c such that

|f(ϕ)| ≤ c
∑
|α|≤m

sup
x∈K
|Dαϕ(x)| for every ϕ ∈ C∞0 (Rn).

We denote the set of all distributions of order m by D′m(Rn).

Distributions of �nite order can be identi�ed with continuous linear functionals on
Cm

0 (Rn).

Theorem 3.2. If f ∈ D′m(Rn) then f can be extended to a continuous linear functional
on Cm

0 (Rn), moreover (Cm
0 (Rn))′ = D′m(Rn).

The proof of the above theorem can be found in [22], Theorem 2.1.6.
Now we can de�ne local means as dual pairing with with distributions of �nite order.
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De�nition 3.5. Let f ∈ D′A(Rn)∩S ′e(Rn). Let kjm be kernels according to De�nition 3.3
(with the same constant A). Then

kjm(f) = 〈f, kjm〉 =

∫
Rn
kjm(y)f(y) dy, j ∈ N0, m ∈ Zn, (3.1.6)

are called local means. Furthermore we put,

k(f) = {kjm(f) : j ∈ N0,m ∈ Zn} . (3.1.7)

As in section devoted to atoms (De�nition 3.2) we de�ne sequence spaces now related
to local means.

De�nition 3.6. Let s ∈ R, 0 < p <∞, 0 < q ≤ ∞ and w ∈ Aloc∞ . Then b̄s,wpq is a collection
of all sequences λ according to (3.1.3) such that

∥∥λ|b̄s,wpq ∥∥ =

 ∞∑
j=0

2j(s−
n
p

)q

(∫
Rn

∣∣∣∣∣∑
m∈Zn

λjmχ
(p)
jm(x)

∣∣∣∣∣
p

w(x) dx

)q/p
1/q

and f̄ s,wp,q is a collection of all sequences λ according to (3.1.3) such that

∥∥λ|f̄ s,wp,q ∥∥ =

∥∥∥∥∥∥
(
∞∑
j=0

∑
m∈Zn

2jsq |λjmχjm|q
)1/q

|Lwp (Rn)

∥∥∥∥∥∥ <∞
The following lemma and corollary give us the conditions on the function spaces to

consist of distributions of �nite order.

Lemma 3.1. Let s ∈ R, 0 < p < ∞ and w ∈ Aloc∞ . Then Bs,w
pp (Rn) ⊂ D′l(Rn) for any

l ≥ max(0, [−s+ nrw
p
− n

p
] + 1).

Proof. Let f ∈ Bs,w
pp (Rn). From the atomic decomposition we have

f =
∑
j,m

λjmajm

and λjm ∈ bwpp, with convergence in D′(Rn). It means, that we can approximate f by
functions fk =

∑
j≤k,|m|≤k λjmajm, i.e. f = limk→∞ fk in D′(Rn), that is

f(ϕ) = lim
k→∞

fk(ϕ)

for all ϕ ∈ C∞0 (Rn).
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For p > 1 from Hölder's inequality we have

|fk(ϕ)| =

∣∣∣∣∣∣
∑

j,|m|≤k

λjmajm(ϕ)

∣∣∣∣∣∣ ≤
∑

j,|m|≤k

|λjm|
∣∣∣∣∫

Rn
ajm(x)ϕ(x) dx

∣∣∣∣
≤

 ∑
j,|m|≤k

2jn |λjm|pw(Qjm)

 1
p
 ∑
j,|m|≤k

2−
jnp′
p w−

p′
p (Qjm)

∣∣∣∣∫
Rn
ajm(x)ϕ(x) dx

∣∣∣∣p′
 1

p′

Since λ ∈ bwpp, we have
∞∑
j=0

∑
m∈Zn

2jn |λjm|pw(Qjm) <∞. (3.1.8)

From |ajm(x)| ≤ 2−j(s−
n
p

) we get∣∣∣∣∫
Rn
ajm(x)ϕ(x) dx

∣∣∣∣p′ ≤ c |Qjm|p
′
2−j(s−

n
p

)p′ sup
x
|ϕ(x)|p

′

≤ c2−j(s−
n
p

)p′−jnp′ sup
x
|ϕ(x)|p

′
.

Let supp ϕ ⊂ K, where K is a compact subset in Rn. If Qjm ⊂ Q0,l then from Lemma 2.3
we have

w−p
′/p(Qjm) ≤ cw−p

′/p(Q0,l)2
jnup′/p, (3.1.9)

since w ∈ Alocu for some rw < u <∞. So∑
m:Qjm∩K 6=∅,|m|≤k

w−
p′
p (Qjm) ≤ 2jnu

p′
p

+jn
∑

l:Q0,l∩K 6=∅

w(Q0,l)
− p
′
p . (3.1.10)

Now we can keep on estimating

∑
j,|m|≤k

2−jnp
′/pw−p

′/p(Qjm)

∣∣∣∣∫
Rn
ajm(x)ϕ(x) dx

∣∣∣∣p′
≤ c

∑
j,|m|≤k

2−j(s+n)p′ sup
x∈Rn
|ϕ(x)|p

′
w(Qjm)−

p′
p

≤ c
∑

j≤k,l:Q0,l∩K 6=∅

2−j(s+n)p′2jnu
p′
p

+jn sup
x∈K
|ϕ(x)|p

′
w(Q0,l)

− p
′
p

≤ CK sup
x∈K
|ϕ(x)|p

′∑
j∈N0

2−j(s−
nu
p

+n
p

)p′ .

For s > nu
p
− n

p
we have

|fk(ϕ)| ≤ CK sup
x∈K
|ϕ(x)| ,
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where CK depends only on K. Hence

|f(ϕ)| ≤ CK sup
x∈K
|ϕ(x)| .

So f is a distribution of order 0 if s > nu
p
− n

p
. Now let s ≤ nu

p
− n

p
and l > −s + nu

p
− n

p
.

Using the Taylor expansion of ϕ and the moment conditions if j > 0 we get∣∣∣∣∫
Rn
ajm(x)ϕ(x) dx

∣∣∣∣
= c

∣∣∣∣∣∣
∫
Rn
ajm(x)

∑
|α|=l

Dαϕ(x0 + Θ(x− x0))(x− x0)α dx

∣∣∣∣∣∣
≤ c2−j(l+s−

n
p

+n)
∑
|α|=l

sup
x∈Rn
|Dαϕ(x)| .

(3.1.11)

Summing over j, |m| ≤ k, we get from (3.1.11) and (3.1.9)

∑
j,m

2−jnp
′/pw−

p′
p (Qjm)

∣∣∣∣∫
Rn
ajm(x)ϕ(x) dx

∣∣∣∣p′

≤ cK
∑
j∈N0

2−j(l+s−
nu
p

+n
p

)p′

∑
|α|=l

sup
x∈K
|Dαϕ(x)|

p′

.

Incorporating the term with j = 0 we get

|fk(ϕ)| ≤ cK
∑
|α|≤l

sup
x∈K
|Dαϕ(x)|.
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For 0 < p ≤ 1 we have an estimate

|fk(ϕ)| =

∣∣∣∣∣∣
∑

j,|m|≤k

λjmajm(ϕ)

∣∣∣∣∣∣
≤

 ∑
j,|m|≤k

Qjm∩K 6=∅

|λjm|p
∣∣∣∣∫

Rn
ajm(x)ϕ(x) dx

∣∣∣∣p


1
p

≤

 ∑
j,|m|≤k

Qjm∩K 6=∅

2jn |λjm|pw(Qjm) sup
x∈K
|ϕ(x)|p |Qjm|pw−1(Qjm)2−j(s−

n
p

)p2−jn


1
p

≤ sup
x∈K
|ϕ(x)| sup

j,|m|≤k
Qjm∩K 6=∅

2−j(s+n)w−
1
p (Qjm)

 ∑
j,|m|≤k

Qjm∩K 6=∅

2jn |λjm|pw(Qjm)


1/p

.

Using the fact that λ ∈ bwpp we get

|fk(ϕ)| ≤ C sup
x∈K
|ϕ(x)| sup

j,|m|≤k,Qjm∩K 6=∅
2−j(s+n)w−

1
p (Qjm).

In the same manner as in (3.1.9) we can see that

|fk(ϕ)| ≤ C sup
x∈K
|ϕ(x)| sup

j,l,Q0,l∩K 6=∅
2−j(s+n)2jnu/pw−

1
p (Q0,l)

≤ C(K) sup
x∈K
|ϕ(x)| sup

j∈N0

2−j(s−
nu
p

+n).

For s > nu/p− n we have
|fk(ϕ)| ≤ C sup

x∈K
|ϕ(x)| .

For s ≤ nu/p − n and l > −s + nu/p − n using the above estimations and the same
inequalities as in (3.1.11) we get

|fk(ϕ)| ≤

 ∑
j,|m|≤k

|λjm|p
∣∣∣∣∫

Rn
ajm(x)ϕ(x) dx

∣∣∣∣p
1/p

≤
∑
|α|=l

sup
x∈K
|Dαϕ(x)| sup

j,|m|≤k,K∩Qjm 6=∅
2−j(l+s+n)w−1/p(Qjm)

≤ cK
∑
|α|=l

sup
x∈K
|Dαϕ(x)| sup

j∈N0

2−j(l+s+n−nu/p).

So f is a distribution of order l for any l ≥ max(0, [−s+ nrw
p
− n

p
] + 1).
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Corollary 3.1. Let a weight w belong to the class Aloc∞ . The spaces F s,w
pq (Rn) and Bs,w

pq (Rn)
consist of distributions of �nite order l for any l ≥ max(0, [−s+ nrw

p
− n

p
] + 1).

Proof. Let us choose s′ < s such that l ≥ max(0, [−s′ + nrw
p
− n

p
] + 1). Then by the

elementary embeddings and Lemma 3.1 we have

F s,w
pq (Rn) ⊂ Bs′,w

pp (Rn) ⊂ D′l(Rn).

A similar argument works for Besov spaces.

The next theorem gives us the characterization of Besov and Triebel-Lizorkin spaces
with Aloc∞ weights by local means.

Theorem 3.3. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R. Assume that w ∈ Aloc∞ . Let kjm be
kernels according to De�nition 3.3, where A,B ∈ N0 with

A ≥ max

(
0, [−s+ σp(w)], [

nrw
p
− n

p
− s] + 1

)
, B ≥ max(0, [s] + 1),

when As,wpq (Rn) denotes Bs,w
pq (Rn) and

A ≥ max

(
0, [σpq(w)− s], [nrw

p
− n

p
− s] + 1

)
, B ≥ max(0, [s] + 1),

when As,wpq (Rn) denotes F s,w
pq (Rn). Let C > 0 be �xed. Let k(f) be as in (3.1.6) and (3.1.7).

Then for some c > 0 and all f ∈ As,wpq (Rn),∥∥k(f)|ās,wpq
∥∥ ≤ c

∥∥f |As,wpq (Rn)
∥∥ .

Proof. We prove the theorem for Besov spaces. The proof for F s,w
pq spaces is similar. The

changes are analogous to the changes in unweighted case, cf [44].
Let

f(x) =
∞∑
r=0

∑
l∈Zn

λrlarl(x), f ∈ Bs,w
pq (Rn), (3.1.12)

be an atomic decomposition according to Theorem 3.1 where

K = B ≥ max(0, [s] + 1) and L = A ≥ max

(
0, [−s+ σp(w)], [

nrw
p
− n

p
− s] + 1

)
For j ∈ N we split (3.1.12) into the parts

f = fj + f j =

j∑
r=0

∑
l∈Zn

λrlarl +
∞∑

r=j+1

∑
l∈Zn

λrlarl

and get ∫
Rn
kjm(y)f(y) dy =

∫
Rn
kjm(y)fj(y) dy +

∫
Rn
kjm(y)f j(y) dy.
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Let r ≤ j and l ∈ ljr(m) where

ljr(m) = {l : CQjm ∩DQrl 6= ∅} ,

where C,D ∈ R are positive constants independent of j, r.
By the Taylor expansion of arl and properties of atoms (3.1.1) and local means (3.1.5)

we have

2j(s−
n
p

)

∣∣∣∣∫
Rn
kjm(y)arl(y) dy

∣∣∣∣
≤ c2j(s−

n
p

)
∑
|γ|=B

sup
x
|Dγarl(x)|

∫
Rn
|kjm(y)|

∣∣y − 2−jm
∣∣B dy

= c2(j−r)(s−n
p
−B).

Thus for any ε > 0 we have

2j(s−
n
p

)p |kjm(fj)|p ≤ c

j∑
r=0

∑
l∈ljr(m)

|λrl|p 2(j−r)(s−n
p
−B+ε)p.

Summing over m ∈ Zn we get

2j(s−
n
p

)p
∑
m∈Zn

|kjm(fj)|p
w(Qjm)

|Qjm|

≤ c

j∑
r=0

2(j−r)(s−n
p
−B+ε)p

∑
m∈Zn

∑
l∈ljr(m)

|λrl|p
w(Qjm)

|Qjm|

= c

j∑
r=0

2(j−r)(s−n
p
−B+ε)p

∑
l∈Zn

∑
m:l∈ljr(m)

|λrl|p
w(Qjm)

|Qjm|

≤ c

j∑
r=0

2(j−r)(s−B+ε)p
∑
l∈Zn
|λrl|p

w(Qrl)

|Qrl|

(3.1.13)

where the last inequality is a consequence of the estimate card ljr(m) ∼ 1, which follows
from the assumption r ≤ j.

Now let r > j. Using the Taylor expansion of kjm and moment conditions of atoms
(3.1.2) and (3.1.4) we have

2j(s−
n
p

)

∣∣∣∣∫
Rn
kjm(y)arl(y) dy

∣∣∣∣
≤ 2j(s−

n
p

)
∑
|γ|=A

sup
x
|Dγkjm(x)|

∫
Rn
|arl(y)|

∣∣y − 2−rl
∣∣A dy

= c2(j−r)(s−n
p

+n+A).
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Thus for any ε > 0 we get

2j(s−
n
p

)p

∣∣∣∣∫
Rn
kjm(y)f j(y) dy

∣∣∣∣p ≤ c
∑
r>j

2(j−r)(s−n
p

+n+A−ε)p

 ∑
l∈ljr(m)

|λrl|

p

.

From Hölder's inequality and the estimates card ljr(m) ∼ 2n(r−j)

2j(s−
n
p

)p

∣∣∣∣∫
Rn
kjm(y)f j(y) dy

∣∣∣∣p ≤ c
∑
r>j

2(j−r)(s+A−ε)p
∑

l∈ljr(m)

|λrl|p .

Summing over m ∈ Zn

2j(s−
n
p

)p
∑
m∈Zn

∣∣kjm(f j)
∣∣p w(Qjm)

|Qjm|

≤ c
∑
r>j

2(j−r)(s+A−ε)p
∑
m∈Zn

∑
l∈ljr(m)

|λrl|p
w(Qjm)

|Qjm|

≤ c
∑
r>j

2(j−r)(s+A+n
p
−ε)p

∑
m∈Zn

∑
l∈ljr(m)

|λrl|p
w(Qrl)

|Qrl|

(
|Qjm|
|Qrl|

)u
≤ c

∑
r>j

2(j−r)(s+A+n
p
−ε−nu

p
)p
∑
l∈Zn
|λrl|p

w(Qrl)

|Qrl|
,

(3.1.14)

where the second inequality follows from the fact, that for w ∈ Alocu and Qrl ⊂ Qjm and
from Lemma 2.3 we have

w(Qjm) ≤ cw(Qrl)

(
|Qjm|
|Qrl|

)u
.

Taking (3.1.13) and (3.1.14) together we get

2j(s−
n
p

)p
∑
m∈Zn

|kjm(f)|p w(Qjm)

|Qjm|
≤ c

j∑
r=0

2(j−r)(s−B+ε)p
∑
l∈Zn
|λrl|p

w(Qrl)

|Qrl|

+ c
∑
r>j

2(j−r)(s+A+n
p
−ε−nrw

p
)p
∑
l∈Zn
|λrl|p

w(Qrl)

|Qrl|
≤ c

∞∑
r=0

2−|j−r|κp
∑
l∈Zn
|λrl|p

w(Qrl)

|Qrl|
,

where κ = min(s+ A+ n
p
− nrw

p
− ε, B − s− ε). Summing over j we have ∞∑

j=0

2j(s−
n
p

)q

(∑
m∈Zn

|kjm(f)|p w(Qjm)

|Qjm|

)q/p
1/q

≤ c

 ∞∑
j=0

(
∞∑
r=0

2−|j−r|κp
∑
l∈Zn
|λrl|p

w(Qrl)

|Qrl|

)q/p
1/q

.
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Now using the Young inequalities (Lemma 1.2) for convolution of sequences if q
p
≥ 1 or

monotonicity of the lp space if
q
p
< 1 we proved that∥∥k(f)|b̄s,wpq
∥∥ ≤ c

∥∥λ|bwpq∥∥ ≤ c
∥∥f |Bs,w

pq (Rn)
∥∥ ,

where the constant c is independent of the given atomic decomposition.

3.1.3 Characterization by wavelets

We are going to deal with Daubechies wavelets on Rn. We de�ne sequence spaces related
to wavelets. That spaces are de�ned similar to that one in De�nition 3.6, but here we have
additional �nite sums taken on wavelet indexes G.

De�nition 3.7. Let s ∈ R, 0 < p <∞, 0 < q ≤ ∞ and w ∈ Aloc∞ . Then bs,wpq is a collection
of all sequences λ according to (3.1.3) such that

∥∥λ|bs,wpq ∥∥ =

 ∞∑
j=0

2j(s−
n
p

)q
∑
G∈Gj

(∫
Rn

∣∣∣∣∣∑
m∈Zn

λGjmχ
(p)
jm(x)

∣∣∣∣∣
p

w(x) dx

)q/p
1/q

<∞.

and f s,wpq is a collection of all sequences λ according to (3.1.3) such that

∥∥λ|f s,wpq ∥∥ =

∥∥∥∥∥∥
(∑
j,m,G

2jsq
∣∣λGjmχjm∣∣q

)1/q

|Lwp (Rn)

∥∥∥∥∥∥ <∞.
Theorem 3.4. Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R and w ∈ Aloc∞ . For wavelets de�ned in
(1.3.2) we take

k ≥ max

(
0, [s] + 1, [

nrw
p
− n

p
− s] + 1, [σp(w)− s]

)
in Bs,w

pq case and

k ≥ max

(
0, [s] + 1, [

nrw
p
− n

p
− s] + 1, [σpq(w)− s]

)
in F s,w

pq case. Let f ∈ S ′e(Rn). Then f ∈ As,wpq (Rn) if and only if it can be represented as

f =
∑
j,G,m

λGjm2−jn/2ΨG
jm,

where λ ∈ as,wpq and the series converges in S ′e(Rn). This representation is unique with

λGjm = 2jn/2〈f,ΨG
jm〉

and
I : f 7→ {2jn/2〈f,ΨG

jm〉}
is a linear isomorphism of As,wpq (Rn) onto as,wpq .

If 0 < p, q <∞ then the system
{

ΨG
jm

}
j,m,G

is an unconditional basis in As,wpq (Rn).
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Proof. Step 1.
Let f ∈ S ′e(Rn) and f =

∑
j,G,m λ

G
jm2−jn/2ΨG

jm (convergence in S ′e(Rn)) with λ ∈ bs,wpq .
Then aGjm = 2−j(s−

n
p

)2−jn/2ΨG
jm is an (s, p)-atom. Indeed

supp aGjm ⊂ dQjm and
∣∣DαaGjm

∣∣ ≤ 2−j(s−
n
p

)+j|α|

for |α| ≤ k and k = K = L in the de�nition of atoms. So f ∈ Bs,w
pq (Rn) and

∥∥f |Bs,w
pq (Rn)

∥∥ ≤ c

∥∥∥∥{2j(s−
n
p

)λGjm

}
j,m,G

|bwpq
∥∥∥∥ = c

∥∥λ|bs,wpq ∥∥
from Theorem 3.1.

Step 2.
Now let f ∈ Bs,w

pq (Rn). We take kGjm = 2jn/2ΨG
jm as kernels of local means. Indeed

supp kGjm ⊂ CQjm and
∣∣DαkGjm(x)

∣∣ ≤ 2jn+j|α|,

where |α| ≤ k and A = B = k. So from Theorem 3.3 we have∥∥k(f)|bs,wpq
∥∥ ≤ c

∥∥f |Bs,w
pq (Rn)

∥∥ . (3.1.15)

From the atomic decomposition and (3.1.15) we have

g =
∑
j,G,m

kGjm(f)2−jn/2ΨG
jm ∈ Bs,w

pq (Rn).

It follows from Lemma 3.1 that 〈g,ΨG′

j′m′〉 make sense. By orthogonality of wavelet basis
we get

〈g,ΨG′

j′m′〉 =
∑
j,G,m

kGjm(f)2−jn/2〈ΨG
jm,Ψ

G′

j′m′〉 = 〈f,ΨG′

j′m′〉.

This could be extended to �nite linear combinations of ΨG′

j′m′ . Both distributions f and
g are locally contained in the space Bσ

pp(Rn) for any σ < s − nrw
p

+ n
p
. This follows easily

from the corresponding result for the spaces with Muckenhoupt weights, cf. [16], since any
local Muckenhoupt weight w ∈ Alocp can be extended outside a �xed ball to a Muckenhoupt
weight belonging to Ap. Any ϕ ∈ C∞0 (Rn) has the unique wavelet representation. We can
choose σ such that k > max(−σ+σp, σ) so this representation converges in the dual space
of Bσ

pp(Rn), cf. [44]. This implies that 〈g, ϕ〉 = 〈f, ϕ〉 for all ϕ ∈ C∞0 (Rn) and g = f .
Step 3.
By the above steps f ∈ S ′e(Rn) belongs to Bs,w

pq (Rn) if and only if

f =
∑

j,G,m λ
G
jm2−jn/2ΨG

jm and {λGjm} ∈ bs,wpq . This representation is unique so λGjm = kGjm(f)
and ∥∥f |Bs,w

pq (Rn)
∥∥ ∼

∥∥k(f)|bs,wpq
∥∥ .
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It follows from the uniqueness of the coe�cients that I is a monomorphism. We show
that I is onto. Let

{
λGjm
}
∈ bwpq. Then by the atomic decomposition theorem

f =
∑
j,G,m

λGjmΨG
jm ∈ Bs,w

pq (Rn).

But the uniqueness of the coe�cients implies that λGjm = 〈f,ΨG
jm〉.

Step 4. Let f ∈ Bs,w
pq (Rn) and p, q <∞. Then f =

∑
j,m,G λ

G
jm2−jn/2ΨG

jm (convergence
in S ′e(Rn)) with λ ∈ bs,wpq . For any N ∈ N we have

0 ≤

∥∥∥∥∥f −
N∑
j=0

∑
G,m

λGjm2−jn/2ΨG
jm|Bs,w

pq (Rn)

∥∥∥∥∥
=

∥∥∥∥∥
∞∑

j=N+1

∑
G,m

λGjm2−jn/2ΨG
jm|Bs,w

pq (Rn)

∥∥∥∥∥
≤ C

∥∥∥{2j(s−np )λGjm}∞j=N+1,m,G|bwpq
∥∥∥

= c

 ∑
j=N+1

(∑
G,m

|λGjm2j(s−
n
p

)|p
)q/p

1/q

<∞.

The last converges to 0 if N →∞, since q <∞. This proves the convergence of the series
to f in Bs,w

pq (Rn) using the order exhibited above.
Let εGjm = ±1 then the sequence εGjmλ

G
jm belongs to bs,wpq . So by atomic decomposition

theorem fε =
∑

j,m,G ε
G
jmλ

G
jm2−jn/2ΨG

jm ∈ Bs,w
pq (Rn). By the same argument as above the

series converges to fε in B
s,w
pq (Rn). By the general theory of unconditional series, the series

converges unconditionally.
Spaces F s,w

pq can be regarded similarly.

3.2 Sobolev embeddings of Besov and Triebel-Lizorkin

spaces

Now we prove theorems of embeddings of weighted Besov spaces into local Lp spaces and
into the space of continuous functions. We will need the embeddings in Chapter 4, where
we construct Haar bases in Bs,w

pq and F s,w
pq spaces.

3.2.1 Embeddings for unweighted spaces

First we recall the analogous results for unweighted spaces.
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Theorem 3.5. Let s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. Then Bs
pq(Rn) ⊂ Llocmax(1,p)(Rn) if

and only if

s > n

(
1

p
− 1

)
+

, 0 < p <∞, 0 < q ≤ ∞ (3.2.1)

or

s = n

(
1

p
− 1

)
, 0 < p ≤ 1, 0 < q ≤ 1 (3.2.2)

or
s = 0, 1 < p <∞, 0 < q ≤ min(p, 2). (3.2.3)

The proof of the above theorem can be found in [37] (Theorem 3.3.2 and Corollary
3.3.1).

Theorem 3.6. Let s ∈ R, 0 < p ≤ ∞ and 0 < q ≤ ∞. Then the following assertions are
equivalent:

(i) Bs
pq(Rn) ↪→ L∞(Rn),

(ii) Bs
pq(Rn) ↪→ C(Rn),

(iii) either s > n
p
or s = n

p
and 0 < q ≤ 1.

The above theorem can be found in [37] (Theorem 3.3.1).

3.2.2 Embeddings for weighted function spaces

The following proposition was proved in [16] for weights belonging to the A∞ class, but
the similar result holds also for local Muckenhoupt weights due to Daubechies wavelet
characterization theorem, Theorem 3.4.

Proposition 3.1. Let w1 and w2 be two Aloc∞ weights and let −∞ < s2 ≤ s1 < ∞,
0 < p1, p2 ≤ ∞, 0 < q1, q2 ≤ ∞. We put

1

p∗
:=

(
1

p2

− 1

p1

)
+

and
1

q∗
:=

(
1

q2

− 1

q1

)
+

.

(i) There is a continuous embedding Bs1,w1
p1,q1

(Rn) ↪→ Bs2,w2
p2,q2

(Rn) if, and only if,{
2−ν(s1−s2)

∥∥∥{(w2(Qν,m))1/p2 (w1(Qν,m))−1/p1

}
m
|`p∗
∥∥∥}

ν
∈ `q∗ . (3.2.4)

(ii) The embedding Bs1,w1
p1,q1

(Rn) ↪→ Bs2,w2
p2,q2

(Rn) is compact if, and only if, (3.2.4) holds
and, in addition,

lim
ν→∞

2−ν(s1−s2)
∥∥∥{(w2(Qν,m))1/p2 (w1(Qν,m))−1/p1

}
m
|`p∗
∥∥∥ = 0 if q∗ =∞,

and

lim
|m|→∞

(w2(Qν,m))−1/p2 (w1(Qν,m))1/p1 =∞ for all ν ∈ N0 if p∗ =∞.
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The proof is rewritten version of the proof of Proposition 2.1 in [16], so it is omitted
here.

Theorem 3.7. (i) Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R, w ∈ Aloc∞ . There is an embedding
Bs,w
pq (Rn) ⊂ Llocmax(1,p)(Rn) if

s >
n

p
(rw −min(1, p)) .

For every 1 ≤ ρ < ∞ there exists a weight w ∈ Aloc∞ with rw = ρ such that if the
embedding Bs,w

pq ⊂ Llocmax(1,p) holds, then

s ≥ n

p
(rw −min(1, p)) if

{
0 < p <∞ and 0 < q ≤ 1,

1 < p <∞ and 1 < q <∞
(3.2.5)

or

s >
n

p
(rw −min(1, p)) if

{
0 < p ≤ 1 and 1 < q <∞,
0 < p <∞ and q =∞.

(3.2.6)

(ii) Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, w ∈ Aloc1 . There is an embedding Bs,w
pq (Rn) ⊂

Llocmax(1,p)(Rn) if

s >
n

p
(1−min(1, p)) , 0 < p <∞, 0 < q ≤ ∞

or
s =

n

p
(1− p) , 0 < p ≤ 1, 0 < q ≤ 1

or
s = 0, 1 < p <∞, 0 < q ≤ min(p, 2).

There exists an Aloc1 weight w such that if the embedding Bs,w
pq (Rn) ⊂ Llocmax(1,p)(Rn)

holds, then the above conditions are ful�lled.

Proof. Step 1. We begin with the �rst part of (i). We are interested in local embeddings.
We say that a function spaceX is locally embedded into a function space Y , X, Y ⊂ S ′(Rn),
if for any function ϕ ∈ C∞0 (Rn) an operator X 3 f 7→ ϕf ∈ Y is bounded. We write

X
loc
↪→ Y .
We want to use the embeddings of the type

Bs,w
p,q (Rn)

loc
↪→ Bs1

p,q(Rn) (3.2.7)

and
Bs1
p,q(Rn) ⊂ Llocmax(1,p)(Rn). (3.2.8)

Let s > n
p
(rw − min(1, p)). We choose u > rw such that w ∈ Alocu and s > n

p
(u −

min(1, p)). We must �nd s1 such that su�cient conditions for the above embeddings are
ful�lled.
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First we consider the embeddings (3.2.7). The condition (3.2.4) reads

{2−j(s−s1)
∥∥{(w(Qjm))−1/p|Qjm|1/p1}m|`∞

∥∥}j ∈ `∞.
We get

sup
j

2−j(s−s1) sup
m

(w(Qjm))−1/p2−jn/p

= sup
j

2−j(s−s1+n
p

) sup
m

(w(Qjm))−1/p <∞.
(3.2.9)

But w ∈ Alocu and by Lemma 2.3 we get

w(Qjm)−1 ≤ c2jnuw(Q0,l)
−1 if Qjm ⊂ Q0,l.

Since we get into account only �nite many cubes Q0,l the condition (3.2.9) is equivalent to

sup
j

2−j(s−s1+n
p

)2jnu/p <∞. (3.2.10)

So the embeddings (3.2.7) hold if

s− s1 +
n

p
− nu

p
≥ 0.

Thus

s1 ≤ s− n

p
(u−min(1, p)) + n

(
1

p
− 1

)
+

.

Now we consider the embeddings (3.2.8).
It follows from (3.2.1) that we can �nd s1 such that

n

(
1

p
− 1

)
+

< s1 ≤ s− n

p
(u−min(1, p)) + n

(
1

p
− 1

)
+

.

Thus Theorem 3.5 implies that embeddings (3.2.7), (3.2.8) hold.
Step 2. Now we prove the second part of (i).
For 1 < ρ < ∞ we take a weight w(x) = |x|α with α = n(ρ − 1). Then w ∈ Aloc∞ and

rw = ρ. For this weight we have

w(Qjm) ∼ 2−j(α+n)|m|α if m 6= 0,

w(Qjm) ∼ 2−j(α+n) if m = 0.

Using the atomic decomposition we construct f ∈ Bs,w
pq (Rn), that doesn't belong to

Llocmax(1,p)(Rn), if the indexes do not satisfy (3.2.5) or (3.2.6).

First we construct atoms belonging to CK(Rn) and with vanishing moments up to order
L, where K,L > 0.
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Let ϕ̃ ∈ C∞0 (Rn) with supp ϕ̃ ⊂ [−1
2
, 1

2
)n and |Dαϕ̃(x)| ≤ 1, |α| ≤ K, 0 ≥ ϕ̃(x),

0 < c ≤ ϕ̃(x) on x ∈ [−1
4
, 1

4
)n.

Let ϕ̃j(x) = 2−j(s−
n
p

)ϕ̃(2jx). So supp ϕ̃j ⊂ [− 1
2j+1 ,

1
2j+1 )n. Now let ϕj,1 be a translation

of ϕ̃j, such that suppϕj,1 ⊂ Qjm and ϕ̃j,1 be a translation of ϕ̃j, such that supp ϕ̃j,1 ⊂ Qjm′ ,
where Qjm′ ⊂ 3Qjm, m 6= m′.

Taking ψj,1 = ϕj,1 − ϕ̃j,1 we get an atom with

suppψj,1 ⊂ 3Qjm

|Dαψj,1| ≤ cα2−j(s−
n
p

)+j|α|∫
ψj,1(x) dx = 0

In the next step we construct ψj,2 = ψj,1 − ψ̃j,1, where ψ̃j,1 is a translation of ψj,1,
such that supp ψ̃j,1 ⊂ 32Qjm and suppψj,1∩ supp ψ̃j,1 = ∅. Now we get an atom with two
vanishing moments:∫

ψj,2(x)xk dx =

∫
ψj,1(x)xk dx−

∫
ψj,1(x− a)xk dx

=

∫
ψj,1(x)xk dx−

∫
ψj,1(x)(xk − ak) dx = 0,

where 1 ≤ k ≤ n and a ∈ Rn.
Iterating this process we have ψj,i+1 = ψj,i− ψ̃j,i, where ψ̃j,i is a translation of ψj,i, such

that supp ψ̃j,i ⊂ 3i+1Qjm, i ≥ 1. We get atoms with vanishing moments up to order L
associated with the cubes Qjm, i.e. the support of the atom is contained in 3L+1Qjm. We

will denote that atoms by a
(L)
jm .

There exist sequences {jk}∞k=0, jk ∈ N0, 0 = j0 < j1 < j2 < . . . and {mk}∞k=0, mk ∈
Zn such that the corresponding cubes Qjk,mk satisfy dQjk,mk ∩ dQjl,ml = ∅, k 6= l and
dQjk+1,mk+1

⊂ dQjk,0. Thus
⋃∞
k=0 dQjk,mk ⊂ [−R,R)n for some R > 0.

We take a sequence {λk}∞k=0 of positive numbers, such that(
∞∑
k=0

|λk|qw(Qjk,mk)
q/p2jnq/p

)1/q

<∞.

If we put

λjm =

{
λk if j = jk, m = mk,

0 otherwise,

then {λjm} ∈ bwpq and by the atomic decomposition theorem f =
∑∞

k=0 λka
(L)
jk,mk

∈ Bs,w
pq (Rn).

From our construction of atoms we have |mk| < c and w(Qjk,mk) ∼ 2−jk(α+n). From
atomic decomposition theorem for weighted function spaces given by Izuki and Sawano in
[23] we have f ∈ Bs,w

pq (Rn) if and only if(
∞∑
k=0

|λjk |q2−jkαq/p
)1/q

<∞.
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The last condition is ful�lled for

λjk = 2jk
α
p if q =∞, (3.2.11)

λjk = 2jk
β
p , β < α, if 0 < q ≤ 1, (3.2.12)

and
λjk = 2jk

α
p k−1 if 1 < q <∞. (3.2.13)

Let fN(x) =
∑N

k=0 λjka
(L)
jk,mk

(x) and f(x) = limN→∞ fN(x). By the construction of atom

there is a cube Q̃jk,mk ⊂ Qjk,mk of side length 4−jk such that∫
Q̃jk,mk

a
(L)
jk,mk

(x) dx ≥ c2−jk(s−n
p

)2−jkn = c2
−jk(s+ n

p′ ).

In consequence ∫
[−R,R)n

|f(x)| dx = lim
N→∞

∫
[−R,R)n

|fN(x)| dx

= lim
N→∞

N∑
k=0

λjk

∫
[−R,R)n

|a(L)
jk,mk

(x)| dx

≥ c lim
N→∞

N∑
k=0

λjk2
−jk(s+ n

p′ )

(3.2.14)

The sequence
∑N

k=0 λjk2
−jk(s+ n

p′ ) is divergent for the sequence {λjk} de�ned by (3.2.11)
or (3.2.13) and s ≤ n

p
(ρ−p). There is also a divergence if {λjk} is given by formula (3.2.12)

and s < n
p
(ρ−p). Thus f is not locally integrable if 0 < p ≤ 1, s ≤ n

p
(ρ−p) and 1 < q ≤ ∞

or 0 < p ≤ 1, s < n
p
(ρ− p) and 0 < q ≤ 1.

In the similar way for p > 1 we have∫
[−R,R)n

|f(x)|p dx = lim
N→∞

∫
[−R,R)n

|fN(x)|p dx

= lim
N→∞

N∑
k=0

∫
[−R,R)n

λpjk |a
(L)
jk,mk

(x)|p dx

≥ lim
N→∞

N∑
k=0

λpjk2
−jksp.

Using conditions (3.2.11) to (3.2.13) we get

lim
N→∞

N∑
k=0

2jkα2−jksp =∞ if s ≤ n

p
(ρ− 1), q =∞,
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lim
N→∞

N∑
k=0

2jkβ2−jksp =∞ if s <
n

p
(ρ− 1), 0 < q ≤ 1

and

lim
N→∞

N∑
k=0

2jkαj−p2−jksp =∞ if s <
n

p
(ρ− 1), 1 < q <∞.

Step 3. We are going to prove part (ii) of theorem. If w ∈ Aloc1 then w(Qjm)−1 ≤
2jnw(Q0,l)

−1 if Qjm ⊂ Q0,l. So instead of (3.2.10) we have

sup
j

2−j(s−s1) <∞.

Thus Bs,w
pq (Rn)

loc
↪→ Bs1

pq(Rn) and su�ciency of the conditions follow from Theorem 3.5.
Since the conditions are necessary for Lebesgue measure, they could not be weaker for Aloc1

weights.

Corollary 3.2. Let 1 ≤ p < ∞, 0 < q ≤ ∞, s ∈ R, w ∈ Aloc∞ . There is an embedding
Bs,w
pq (Rn) ⊂ Lloc1 (Rn) if

s >
n

p
(rw − 1) .

From Theorem 3.7 and elementary embeddings between weighted Besov and Triebel-
Lizorkin spaces we get the following corollary

Corollary 3.3. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, w ∈ Aloc∞ . If s > n
p

(rw −min(1, p))

then F s,w
pq (Rn) ⊂ Llocmax(1,p)(Rn). In particular if s > n

p
(rw − 1) and 1 ≤ p < ∞ then

F s,w
pq (Rn) ⊂ Lloc1 (Rn).

Theorem 3.8. (i) Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R, w ∈ Aloc∞ . There is a continuous
embedding Bs,w

pq (Rn) ↪→ C(Rn), if

s >
n

p
rw.

For every 1 ≤ ρ < ∞ there exists a weight w ∈ Aloc∞ with rw = ρ such that if
s ≤ n

p
rw and 1 < q ≤ ∞ or if s < n

p
rw and 0 < q ≤ ∞ then there is no embedding

Bs,w
pq (Rn) ↪→ L∞(Rn).

(ii) Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, w ∈ Aloc1 . There is a continuous embedding
Bs,w
pq (Rn) ↪→ C(Rn), if

s >
n

p
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or
s =

n

p
, 0 < q ≤ 1.

There exists an Aloc1 weight w such that if the continuous embedding Bs,w
pq (Rn) ↪→

L∞(Rn) holds, then the above conditions are ful�lled.

Proof. Step 1. Let us start with �rst part of (i). We choose u > rw such that w ∈ Alocu and
s > nu

p
. Analogously like in Step 1 of the proof of Theorem 3.7 we can regard embeddings

(3.2.7) and (3.2.8). We take s1 such that

n

p
< s1 ≤ s− nu

p
+
n

p
.

Thus Theorem 3.6 implies that the continuous embeddings hold.
Step 2. Now we prove the second part of (i). For 1 < ρ < ∞ we take a weight

w(x) = |x|α with α = n(ρ− 1). Then w ∈ Aloc∞ and rw = ρ.
Using the atomic decomposition we can construct f ∈ Bs,w

pq (Rn), that doesn't belong to
L∞(Rn). The construction of atoms can be the same as in Step 2 of the proof of Theorem
3.7. We also take a sequence {λjk}∞k=0 with the same properties as in the proof above. We

have f =
∑∞

k=0 λjka
(L)
jkmk
∈ Bs,w

pq (Rn), cf. [23].
In the same way as in (3.2.14) we get

sup
x∈[−R,R)n

|f(x)| ≥ c lim
N→∞

N∑
k=0

λjk2
−jk(s−n

p
)

and the sequence
∑N

k=0 λjk2
−jk(s−n

p
) is divergent for the sequence {λjk} de�ned by (3.2.11)

or (3.2.13) and s ≤ n
p
ρ. There is also a divergence if {λjk} is given by formula (3.2.12) and

s < n
p
ρ.

Step 3. The rest of the proof can be rewritten from Step 3 of the proof of Theorem 3.7.

Corollary 3.4. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, w ∈ Aloc∞ . If s > n
p
rw then

F s,w
pq (Rn) ↪→ C(Rn).

3.3 Dual spaces

In this section we calculate the dual spaces of As,wp,q (Rn). We consider the Banach case,
more precisely 1 < p < ∞, 1 ≤ q < ∞. We present two approaches. The �rst one covers
all weights w ∈ Aloc∞ and the whole range of p and q, but the duality does not coincides
with the usual duality between Se(Rn) and S ′e(Rn). We recall that

Se(Rn) ↪→ As,wpq (Rn) ↪→ S ′e(Rn).

In the second approach the representation of the functional coincides with the dual
pairing (Se(Rn),S ′e(Rn)) but we should assume that w ∈ Alocp . The similar approach for
the regular weights can be found in Th. Schott paper [35].
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3.3.1 Dual spaces with general Aloc
∞ weights

By Daubechies wavelet characterization we can study the dual spaces of Besov spaces with
local Muckenhoupt weights. First we determine the dual spaces of sequence spaces bs,wpq (Rn)
and f s,wpq (Rn). The main idea of the proof is based on the similar assertions for spaces with
doubling measures in [5].

Let `q(L
w
p (Rn)) be the set of all sequences f = {fGj (x)}∞j=0,G∈Gj of Lebesgue-measurable

functions on Rn with �nite quasi-norms given by

∥∥f |`q(Lwp (Rn))
∥∥ =

(
∞∑
j=0

∑
G∈Gj

∥∥fGj |Lwp (Rn)
∥∥q)1/q

and Lwp (Rn, `q) be the set of all sequences f = {fGj (x)}∞j=0,G∈Gj of Lebesgue-measurable
functions on Rn with �nite quasi-norms given by

∥∥f |Lwp (Rn, `q)
∥∥ =

∥∥∥∥∥∥
(
∞∑
j=0

∑
G∈Gj

∣∣fGj ∣∣q
)1/q

|Lwp (Rn)

∥∥∥∥∥∥
By dual space we understand topological dual and the norms ‖g‖ of a continuous linear
functional g is calculated in the usual way.

Proposition 3.2. Let 1 < p <∞ and 0 < q <∞, w ∈ Aloc∞ . Then

(i) g ∈
(
`q(L

w
p (Rn))

)′
if and only if it can be represented uniquely as

g(f) =
∞∑
j=0

∑
G∈Gj

∫
Rn
gGj (x)fGj (x)w(x) dx

for every f = {fGj }j,G ∈ `q(L
w
p (Rn)), where {gGj }j,G ∈ `q′(L

w
p′(Rn)) and ‖g‖ =∥∥{gGj }j,G|`q′(Lwp′(Rn))

∥∥.
(ii) g ∈

(
Lwp (Rn, `q)

)′
if and only if it can be represented uniquely as

g(f) =
∞∑
j=0

∑
G∈Gj

∫
Rn
gGj (x)fGj (x)w(x) dx

for every f = {fGj }j,G ∈ Lwp (Rn, `q), where {gGj }j,G ∈ Lwp′(Rn, `q′)

and ‖g‖ =
∥∥{gGj }j,G|Lwp′(Rn, `q′)

∥∥.
The proof of the above theorem can be found in [39], Proposition in �2.11.1 for the case

of Lp-spaces with Lebesgue measure, but it can be rewritten for measure of type w(x) dx,
w ∈ Aloc∞ .
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Proposition 3.3. Let 1 < p <∞, 1 ≤ q <∞, s ∈ Rn and w ∈ Aloc∞ . Then λ̃ ∈
(
as,wpq

)′
if

and only if it can be represented uniquely as

λ̃(λ) =
∞∑
j=0

∑
G∈Gj

∑
m∈Zn

λGjmλ̃
G
jmw(Qjm), λ = {λGjm}j,m,G ∈ as,wpq , (3.3.1)

where {λ̃Gjm}j,m,G ∈ a
−s,w
p′,q′ . Moreover

∥∥∥λ̃∥∥∥ =
∥∥∥{λ̃Gjm}j,m,G|a−s,wp′,q′

∥∥∥.
Proof. Step 1. First we prove that the formula (3.3.1) de�nes a continuous functional on

bs,wpq , if {λ̃Gjm}j,m,G ∈ b
−s,w
p′,q′ . By Hölder's inequality we get

λ̃(λ) ≤
∑
j

∑
G

∑
m

∣∣λGjm∣∣ ∣∣∣λ̃Gjm∣∣∣ ∫
Qjm

w(x) dx

=
∑
j

∑
G

∑
m

∫
Rn

∣∣λGjm∣∣ ∣∣∣λ̃Gjm∣∣∣χjm(x)w(x) dx

=
∑
j

∑
G

∫
Rn

(∑
m

∣∣λGjm∣∣χjm(x)

)(∑
m

∣∣∣λ̃Gjm∣∣∣χjm(x)

)
w(x) dx

≤
∑
j,G

(∫
Rn

(∑
m

∣∣λGjm∣∣χjm(x)

)p

w(x) dx

) 1
p

∫
Rn

(∑
m

∣∣∣λ̃Gjm∣∣∣χjm(x)

)p′

w(x) dx

 1
p′

≤

∑
j

2jsq
∑
G

(∫
Rn

(∑
m

∣∣λGjm∣∣χjm(x)

)p

w(x) dx

) q
p

 1
q

×

×

∑
j

2−jsq
′∑
G

∫
Rn

(∑
m

∣∣∣λ̃Gjm∣∣∣χjm(x)

)p′

w(x) dx


q′
p′


1
q′

≤

∑
j

2j(s−
n
p

)q
∑
G

(∫
Rn

∣∣∣∣∣∑
m

λGjmχ
(p)
jm(x)

∣∣∣∣∣
p

w(x) dx

) q
p

 1
q

×

×

∑
j

2
j(−s− n

p′ )q
′∑
G

∫
Rn

∣∣∣∣∣∑
m

λ̃Gjmχ
(p′)
jm (x)

∣∣∣∣∣
p′

w(x) dx


q′
p′


1
q′

with usual modi�cation if q′ =∞. So b−s,wp′,q′ ⊂ (bs,wpq )′ and
∥∥∥λ̃∥∥∥ ≤ ∥∥∥{λ̃Gjm}j,m,G|b−s,wp′,q′

∥∥∥.
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In the same way we get that the formula (3.3.1) de�nes a continuous functional on f s,wpq ,

if {λ̃Gjm}j,m,G ∈ f
−s,w
p′,q′

λ̃(λ) ≤
∫
Rn

∑
j

∑
G

∑
m

∣∣λGjm∣∣χjm ∣∣∣λ̃Gjm∣∣∣χjmw(x) dx

≤
∫
Rn

(∑
j,G,m

∣∣λGjm∣∣q χjm
)1/q(∑

j,G,m

∣∣∣λ̃Gjm∣∣∣q′ χjm
)1/q′

w(x) dx

≤
∥∥{λGjm}j,m,G|f s,wp,q ∥∥∥∥∥{λ̃Gjm}j,m,G|f−s,wp′,q′

∥∥∥
with usual modi�cation if q′ =∞. So we get f−s,wp′,q′ ⊂ (f s,wpq )′ and

∥∥∥λ̃∥∥∥ ≤ ∥∥∥{λ̃Gjm}j,m,G|f−s,wp′,q′

∥∥∥.
Step 2. We prove that λ̃ ∈ (bs,wpq )′ can be represented according to (3.3.1). The statement

that λ̃ ∈ (f s,wpq )′ can be represented according to (3.3.1) can be proved similarly using
appropriate norms and second part of Proposition 3.2.

Let us de�ne I : bs,wpq → `q(L
w
p (Rn)), which assigns {λGjm} → {fGj } in the following way

fGj (x) =
∑
m

λGjm2jsχjm(x).

We have

∥∥{fGj }j,G|`q(Lwp (Rn))
∥∥ =

(∑
j

∑
G

∥∥fGj |Lwp (Rn)
∥∥q)1/q

=

(∑
j

∑
G

(∫
Rn

∣∣fGj ∣∣pw(x) dx

)q/p)1/q

=

∑
j

2j(s−
n
p

)q
∑
G

(∫
Rn

∣∣∣∣∣∑
m

λGjmχ
(p)
jm

∣∣∣∣∣
p

w(x) dx

)q/p
1/q

,

so I is an isometry.

From the Hahn-Banach Theorem we get that there exists
˜̃
λ ∈ (`q(L

w
p (Rn)))′, such that˜̃

λ◦I = λ̃ and

∥∥∥∥˜̃λ∥∥∥∥ =
∥∥∥λ̃∥∥∥. By Proposition 3.2 we have

˜̃
λ(f) = 〈f, g〉, where g ∈ `q′(Lwp′(Rn))

and f ∈ `q(Lwp (Rn)), with dual pairing

〈f, g〉 =
∞∑
j=0

∑
G∈Gj

∫
Rn
gGj (x)fGj (x)w(x) dx.
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We de�ne projection P : `q′(L
w
p′(Rn))→ b−s,wp′,q′ by

P
(
{hGj }j,G

)
= {λ̃Gjm}j,m,G =

{
2js

w(Qjm)

∫
Qjm

hGj (x)w(x) dx

}
j,m,G

for {hGj }j,G ∈ `q′(Lwp′(Rn)).

From Hölder's inequality we have∥∥P ({hGj }j,G) |b−s,wp′,q′

∥∥
=

∑
j

2
j(−s− n

p′ )q
′∑
G

∫
Rn

∣∣∣∣∣∑
m

2js

w(Qjm)

∫
Qjm

hGj (x)w(x) dxχ
(p)
jm(y)

∣∣∣∣∣
p′

w(y)dy


q′
p′


1
q′

≈

∑
j

2−jsq
′∑
G

∑
m

∣∣∣∣∣ 2js

w(Qjm)

∫
Qjm

hGj (x)w(x) dx

∣∣∣∣∣
p′

w(Qjm)


q′
p′


1
q′

=

∑
j

2−jsq
′∑
G

∑
m

2jsp
′

∣∣∣∣∣
∫
Qjm

hGj (x)w(x) dx

∣∣∣∣∣
p′

w(Qjm)−p
′
w(Qjm)


q′
p′


1
q′

≤

∑
j

∑
G

(∑
m

∫
Qjm

∣∣hGj (x)
∣∣p′ w(x) dxw(Qjm)

p′
p w(Qjm)1−p′

) q′
p′


1
q′

=

∑
j

∑
G

(∑
m

∫
Qjm

∣∣hGj (x)
∣∣p′ w(x) dx

) q′
p′


1
q′

=

∑
j

∑
G

(∫
Rn

∣∣hGj (x)
∣∣p′ w(x) dx

) q′
p′

 1
q′

=
∥∥{hGj }j,G|`q′(Lwp′(Rn))

∥∥ .
Thus the projection is continuous.
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Using Proposition 3.2 we get

λ̃(λ) =
˜̃
λ(I(λ))

=
∞∑
j=0

∑
G∈Gj

∫
Rn
gGj (x)fGj (x)w(x) dx

=
∞∑
j=0

∑
G∈Gj

∫
Rn
gGj (x)

∑
m∈Zn

λGjm2jsχjm(x)w(x) dx

=
∞∑
j=0

∑
G∈Gj

∑
m∈Zn

λGjm2js
∫
Rn
gGj (x)χjm(x)w(x) dx

=
∞∑
j=0

∑
G∈Gj

∑
m∈Zn

λGjm2js
∫
Qjm

gGj (x)w(x) dx

=
∞∑
j=0

∑
G∈Gj

∑
m∈Zn

λGjm2jsw(Qjm)−1

∫
Qjm

gGj (x)w(x) dxw(Qjm)

=
∞∑
j=0

∑
G∈Gj

∑
m∈Zn

λGjmP (gGj )w(Qjm) =
∞∑
j=0

∑
G∈Gj

∑
m∈Zn

λGjmλ̃
G
jmw(Qjm).

Step 3. Norm equivalence we get by Step 1 and from Step 2 with inequalities∥∥∥{λ̃Gjm}j,m,G|b−s,wp′,q′

∥∥∥ =
∥∥P ({gGj }j,G) |b−s,wp′,q′

∥∥
≤
∥∥{gGj }j,G|`q′(Lwp′(Rn))

∥∥ =

∥∥∥∥˜̃λ∥∥∥∥ =
∥∥∥λ̃∥∥∥

and similarly for f s,wpq case.

Now it follows from Proposition 3.3 and Theorem 3.4:

Theorem 3.9. Let 1 < p <∞, 1 ≤ q <∞, s ∈ Rn and w ∈ Aloc∞ . Then(
As,wpq (Rn)

)′
= A−s,wp′,q′ (Rn).

3.3.2 Dual spaces with weights with rw > p

Let s ∈ R, 1 < p <∞, 1 < q <∞ and w ∈ Aloc∞ . If rw < p then w ∈ Alocp . It follows easily

from the de�nition of Aloc∞ class that w1−p′ ∈ Alocp′ . Thus the assumption rw < p implies

w,w1−p′ ∈ Aloc∞ . This allows to prove another representation of continuous functionals on
As,wpq (Rn).

The space Se(Rn) is dense in As,wpq (Rn) and Se(Rn) ↪→ As,wpq (Rn), cf. Theorem 2.6.
Therefore any continuous functional on As,wpq (Rn) can be incorporated as a distribution
belonging to S ′e(Rn). In that sense we have(

As,wpq (Rn)
)′

= {f ∈ S ′e(Rn) : ∃c > 0, |f(ϕ)| ≤ c‖ϕ|As,wpq (Rn)‖ for all ϕ ∈ Se(Rn)}
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If rw < p then
(
As,wpq (Rn)

)′
can be identify with A−s,w

1−p′

p′,q′ (Rn).

The operator Tw : f 7→ w1/pf is an isometry from `q(L
w
p (Rn)) onto `q(Lp(Rn)) and from

Lwp (Rn, `q) onto Lp(Rn, `q). Therefore we have the following counterpart of Proposition 3.2.

Proposition 3.4. Let 1 < p <∞ and 0 < q <∞, w ∈ Aloc∞ and rw < p. Then

(i) g ∈
(
`q(L

w
p (Rn))

)′
if and only if it can be represented uniquely as

g(f) =
∞∑
j=0

∑
G∈Gj

∫
Rn
gGj (x)fGj (x) dx

for every f = {fGj }j,G ∈ `q(L
w
p (Rn)), where {gGj }j,G ∈ `q′(L

w1−p′

p′ (Rn)) and ‖g‖ =∥∥∥{gGj }j,G|`q′(Lw1−p′

p′ (Rn))
∥∥∥.

(ii) g ∈
(
Lwp (Rn, `q)

)′
if and only if it can be represented uniquely as

g(f) =
∞∑
j=0

∑
G∈Gj

∫
Rn
gGj (x)fGj (x) dx

for every f = {fGj }j,G ∈ Lwp (Rn, `q), where {gGj }j,G ∈ Lw
1−p′

p′ (Rn, `q′) and ‖g‖ =∥∥∥{gGj }j,G|Lw1−p′

p′ (Rn, `q′)
∥∥∥.

In consequence we get also

Proposition 3.5. Let 1 < p < ∞, 1 < q < ∞, s ∈ Rn, w ∈ Aloc∞ and rw < p. Then

λ̃ ∈
(
as,wpq

)′
if and only if it can be represented uniquely as

λ̃(λ) =
∞∑
j=0

∑
G∈Gj

∑
m∈Zn

λGjmλ̃
G
jm|Qjm|, λ = {λGjm}j,m,G ∈ as,wpq ,

where {λ̃Gjm}j,m,G ∈ a
−s,w1−p′

p′,q′ . Moreover
∥∥∥λ̃∥∥∥ =

∥∥∥{λ̃Gjm}j,m,G|a−s,w1−p′

p′,q′

∥∥∥.
Corollary 3.5. Let 1 < p < ∞, 1 < q < ∞, s ∈ Rn and w ∈ Aloc∞ with rw < p. If

f ∈ A−s,w
1−p′

p′,q′ (Rn) then the mapping

Se(Rn) 3 ϕ 7→ f(ϕ) ∈ C

can be extended to a continuous linear functional on As,wpq (Rn) and

|f(ϕ)| ≤
∥∥∥f |A−s,w1−p′

p′,q′ (Rn)
∥∥∥∥∥ϕ|As,wpq (Rn)

∥∥ . (3.3.2)

On the other hand any g ∈
(
As,wpq (Rn)

)′
can be represented uniquely by f ∈ As,w

1−p′

p′,q′ (Rn)
with (3.3.2).
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3.4 The Calderón product and the complex interpola-

tion

The last consequence of Theorem 3.4 we would like to prove is a characterization of the
complex interpolation spaces for the pairs of F s,w

pq (Rn) spaces. The general introduction to
the complex method of interpolation can be found in [2]. We follow the approach developed
by Frazier and Jawerth in [13] and Mendez and Mitrea in [30]. The approach used the
concept of Calderón product of quasi-Banach lattices. We recall the needed de�nitions.

De�nition 3.8. Suppose (M,µ) is a measure space and X is a quasi-Banach space of
µ-measurable functions. Let g be a measurable function on M . Then X is said to be a
quasi-Banach lattice on M if the conditions f ∈ X and |g(x)| ≤ |f(x)| µ-a.e. imply that
g ∈ X and ‖g‖X ≤ ‖f‖X .

De�nition 3.9. A quasi-Banach lattice of functions (X, ‖ · ‖X) is called lattice r-convex if∥∥∥∥∥∥
(

m∑
j=1

|fj|r
)1/r

∥∥∥∥∥∥
X

≤

(
m∑
j=1

‖fj‖rX

)1/r

for any �nite family {fj}mj=1 of functions belonging to X.

Remark 3.2. Spaces f s,wp,q are quasi-Banach lattices and lattice r-convex for any 0 < r ≤
min(p, q, 1). We have from the Minkowski inequality

∥∥∥∥∥∥
(

l∑
k=1

|λk|r
)1/r

|f s,wpq

∥∥∥∥∥∥ =

∫
Rn

∑
j,m,G

2jsq

(
l∑

k=1

|λG,kjm |r
)q/r

χjm(x)

p/q

w(x)dx


1/p

=

∫
Rn

∑
j,m,G

2jsq

(
l∑

k=1

|λG,kjm |r
)q/r

χjm(x)

pr/qr

w(x)dx


(r/p)(1/r)

≤

∫
Rn

l∑
k=1

(∑
j,m,G

2jsq|λG,kjm |qχjm(x)

)pr/qr

w(x)dx

(r/p)(1/r)

≤

 l∑
k=1

∫
Rn

(∑
j,m,G

2jsq|λG,kjm |qχjm(x)

)p/q

w(x)dx

(r/p)


(1/r)

≤

(
l∑

k=1

∥∥λk|f s,wpq ∥∥r
)1/r

for any �nite family {λk}lk=1 of λk = {λG,kjm }j,m,G ∈ f s,wpq .
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De�nition 3.10. Let X0, X1 be quasi-Banach lattices on (M,µ). The Calderón product
X1−θ

0 Xθ
1 , where 0 < θ < 1, is a space of µ-measurable functions f on M such that there

exist f0 ∈ X0 and f1 ∈ X1 such that

|f(x)| ≤ |f0(x)|1−θ|f1(x)|θ for µ− a.e.x ∈M.

We put

‖f‖X1−θ
0 Xθ

1
:= inf{‖f0‖1−θ

X0
‖f1‖θX1

: |f | ≤ |f0|1−θ|f1|θ, f0 ∈ X0, f1 ∈ X1}.

The next proposition describes the relation between complex interpolation spaces
[X0, X1]θ and Calderón product of quasi-Banach function spaces.

Proposition 3.6. Let M be a separable complete metric space, µ a σ-�nite Borel measure
on M and X0, X1 be a pair of quasi-Banach function spaces on (M,µ). Then if both X0

and X1 are lattice r-convex for some r > 0 and separable it follows that X0 +X1 is lattice
r-convex and [X0, X1]θ = X1−θ

0 Xθ
1 .

The above proposition is due to Kalton and Mitrea, [25], [26], see also [30].
The next theorem is a weighted version of Theorem 8.2 proved in [13].

Theorem 3.10. Let s0, s1 ∈ R, 0 < p0, p1 < ∞, 0 < q0, q1 < ∞, w ∈ Aloc∞ , 0 < θ < 1,
1/p = (1− θ)/p0 + θ/p1, 1/q = (1− θ)/q0 + θ/q1 and s = (1− θ)s0 + θs1. Then

f s,wpq =
(
f s0,wp0,q0

)(1−θ) (
f s1,wp1,q1

)θ
.

Proof. The proof of the above theorem can be rewritten similarly as the proof of Theorem
8.2 in [13], because a weight doesn't play an important role in calculations. The only
change is that instead of Proposition 2.7 in [13] we use the following proposition:

Proposition 3.7. Let ε > 0, 0 < p, q < ∞, s ∈ R, w ∈ Aloc∞ . Let for every cube Qjm,
j ≥ 0,m ∈ Zn, Ejm ⊆ Qjm be a measurable set with |Ejm|/|Qjm| ≥ ε. Then

‖λ|f s,wpq ‖ ∼

∥∥∥∥∥∥
(∑
j,m,G

2jsq|λGjm|qχEjm

)1/q

|Lwp (Rn)

∥∥∥∥∥∥ .
Proof. The proof is similar to the one of Theorem 2.7 in [13] and is based on Fe�erman-
Stein inequality for maximal function. So in our case it is an easy consequence of Theorem
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2.2. For 0 < v < min
(

1, p
rw
, q
)
we have

‖λ|f s,wpq ‖ =

∥∥∥∥∥∥
(∑
j,m,G

2jsq|λGjm|qχQjm

)1/q

|Lwp (Rn)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
(∑
j,m,G

2jsq
(

1

|Ejm|

∫
Rn
|λGjm|χEjm(y) dyχQjm

)q)1/q

|Lwp (Rn)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
(∑
j,m,G

2jsq
(
|Qjm|
|Ejm|

M loc
(
|λGjm|χEjm

))q)1/q

|Lwp (Rn)

∥∥∥∥∥∥
≤ 1

ε

∥∥∥∥∥∥
(∑
j,m,G

2jsq
(
M loc

(
|λGjm|vχEjm

))q/v)v/q

|Lwp/v(Rn)

∥∥∥∥∥∥
1/v

≤ c

ε

∥∥∥∥∥∥
(∑
j,m,G

2jsq|λGjm|qχEjm

)1/q

|Lwp (Rn)

∥∥∥∥∥∥ .
The other direction is trivial since χEjm ≤ χQjm .

Next theorem follows immediately from Theorem 3.4, Proposition 3.6 and Theorem
3.10.

Theorem 3.11. Let s0, s1 ∈ R, 0 < p0, p1 < ∞, 0 < q0, q1 < ∞, w ∈ Aloc∞ , 0 < θ < 1,
1/p = (1− θ)/p0 + θ/p1, 1/q = (1− θ)/q0 + θ/q1 and s = (1− θ)s0 + θs1. Then

f s,wpq =
[
f s0,wp0,q0

, f s1,wp1,q1

]
θ

and
F s,w
pq (Rn) =

[
F s0,w
p0,q0

(Rn), F s1,w
p1,q1

(Rn)
]
θ
.

Remark 3.3. Rychkov in [34] proved real interpolation for Besov spaces with local Muck-
enhoupt weights.

Theorem 3.12. Let 0 < p < ∞, 0 < q, q0, q1 ≤ ∞, −∞ < s0 < s1 < ∞, 0 < θ < 1, s =
(1− θ)s0 + θs1 and w ∈ Aloc∞ . Then(

F s0,w
p,q0

, F s1,w
p,q1

)
θ,q

=
(
Bs0,w
p,q0

, Bs1,w
p,q1

)
θ,q

= Bs,w
pq .
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Chapter 4

Haar bases in weighted function spaces

Haar functions are the simplest example of compactly supported wavelets. Their plain
construction based on characteristic function of a unit cube allows many applications. In
this chapter we consider the Haar system in the spaces Bs,w

pq (Rn) and F s,w
pq (Rn). We follow

the approach in the book [43], where H. Triebel proves, that Haar wavelets can be used
to characterization of unweighted function spaces Bs

p,q(Rn) and F s
p,q(Rn) as far as absolute

value of smoothness parameter is small enough.

4.1 Haar wavelets as local means

We want to use Theorem 3.3 to our purpose, i.e. to treat Haar wavelets as local means.
To do this we must restrict the de�nition of the local means to regular distributions

(locally integrable functions). If A = 0 and B = 1 then Theorem 3.3 is valid for spaces
As,wpq (Rn) consisting of regular distributions.

Taking constants A = 0 and B = 1 we get the following inequalities

0 ≥ max

(
0, [−s+ σp(w)], [

nrw
p
− n

p
− s] + 1

)
(4.1.1)

and
1 ≥ max(0, [s] + 1) (4.1.2)

in B-case and

0 ≥ max

(
0, [−s+ σpq(w)], [

nrw
p
− n

p
− s] + 1

)
(4.1.3)

and
1 ≥ max(0, [s] + 1)

in F -case. From (4.1.1) we get

0 ≥ [−s+ σp(w)]

1 > −s+ σp(w)

s > n

(
rw

min(p, rw)
− 1

)
+ n (rw − 1)− 1
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and

0 ≥ [
nrw
p
− n

p
− s] + 1

−1 ≥ [
nrw
p
− n

p
− s]

s >
n

p
(rw − 1).

From (4.1.2) we get

1 ≥ max(0, [s] + 1)

[s] ≤ 0

s < 1.

Thus we get

max

(
σp(w)− 1,

n

p
(rw − 1)

)
< s < 1

for Bs,w
pq (Rn) spaces.

From (4.1.3) we get

0 ≥ [−s+ σpq(w)]

1 > −s+ σpq(w)

s > max

(
n

(
rw

min(p, rw)
− 1

)
+ n (rw − 1) ,

n

min(1, q)
− n

)
− 1

and
s >

n

p
(rw − 1).

Thus we get

max

(
σpq(w)− 1,

n

p
(rw − 1)

)
< s < 1

for F s,w
pq (Rn) spaces.

We are looking for the weight w ∈ Aloc∞ such that the corresponding Besov and Triebel-
Lizorkin spaces satisfy the above inequalities and Corollary 3.2 and Corollary 3.3 respec-
tively.

4.2 Smoothness of series of characteristic functions

In this section we �nd the su�cient condition for the function
∑∞

j=0,m∈Rn µjmχjm to belong
to the spaces Bs,w

pq and F s,w
pq .

It appears that we need some regularity conditions on weights to prove further results.
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De�nition 4.1. Let w ∈ Aloc∞ . We say that the weight w satis�es a regularity condition if
there exist constants D > 1 and d > 0 such that for every k, j ∈ N0, k > j the following
inequalities

w(Qkl)

|Qkl|
≤ d

w(Qjm)

|Qjm|
(4.2.1)

hold if DQkl ∩Qjm 6= ∅ and DQkl * Qjm.

Remark 4.1. The regularity condition is independent of the choice of a constant D in the
sense that if it holds for some D > 1 with d > 0 then it holds for any D̃ > 1 with some d̃.
It should be clear that if the condition (4.2.1) holds for D > 1 and d > 0 then it holds for
1 < D̃ < D and d̃ = d. We show that if the condition (4.2.1) holds for D > 1 then it holds
also for D̃ = 2D.

Let Qkl and Qjm be cubes such that k > j, 2DQkl ∩ Qjm 6= ∅ and 2DQkl * Qjm. Let
us assume that DQkl ∩Qjm = ∅ or DQkl ⊆ Qjm.

If DQkl ⊆ Qjm and 2DQkl * Qjm then there exist two cubes Qkl′ and Qkl′′ such that
Qkl′ ∩DQkl 6= ∅, Qkl′′ ∩DQkl′ 6= ∅ and DQkl′′ * Qjm. Then

w(Qkl)

|Qkl|
≤ d

w(Qkl′)

|Qkl′|
≤ d2w(Qkl′′)

|Qkl′′|
≤ d3w(Qjm)

|Qjm|
. (4.2.2)

If DQkl ∩ Qjm = ∅ and 2DQkl ∩ Qjm 6= ∅ then there exist two cubes Qkl′ ∩ DQkl 6= ∅,
Qkl′′ ∩DQkl′ 6= ∅ and DQkl′′ ∩Qjm 6= ∅, DQkl′′ * Qjm such that (4.2.2) holds.

The following weights satisfy the regularity condition:
1. Polynomial weights

w(x) = |x|α, −n < α < n(p− 1), p > 1,

then w ∈ Alocp .

w(Qjm) ∼

{
|m|α2−j(α+n), m 6= 0

2−j(α+n), m = 0.

We can check the regularity condition explicitly:

w(Qkl)

w(Qjm)
=

max(1, |l|α)2−k(α+n)

max(1, |m|α)2−j(α+n)
= 2(j−k)n2(j−k)α

(
max(1, |l|α)

max(1, |m|α)

)
. (4.2.3)

We take D = 2. Then DQkl ∩Qjm 6= ∅ and DQkl * Qjm implies

|2−kl − 2−jm| ≤ 2−j
√
n

and
2−k max(1, |l|) ∼ 2−j max(1, |m|).

So
w(Qkl)

w(Qjm)
≤ c2(j−k)n.
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2. Weights with logarithmic factor

v(x) = |x|α
{

(1− log |x|)−β , |x| ≤ 1,

(1 + log |x|)−β , |x| > 1,

with −n < α < n(p− 1), p > 1, β ∈ R, then w ∈ Alocp .

w(Qjm) ∼

{
|m|α2−j(α+n) max((1− log(|m|2−j))−β, (1 + log(|m|2−j))−β), m 6= 0,

2−j(α+n)(1− log(2−j))−β, m = 0.

Using above estimations we check the condition similarly as in (4.2.3).
3. Polynomial weight with di�erent powers near zero and at in�nity

w(x) =

{
|x|α, |x| ≤ 1

|x|β, |x| > 1.

and α, β > −n, α < n(p− 1), p > 1, then w ∈ Alocp .
Now we give an example of a weight, that doesn't satisfy the regularity condition Let

−n < α < 0. We put

w(x) =

{
1, |x| ≥ 1 or |x| < 1 and x1 ≤ 0,

|x|α, |x| < 1 and x1 > 0

for x ∈ Rn.
We will show that w ∈ Aloc1 . Outside the ball B(0, 1) the weight is equal to 1, so it is

su�cient to check Aloc1 (w) condition near zero. Let Q ⊂ [−2, 2]n be such that Q1 6= ∅ and
Q2 6= ∅, where Q1 = Q ∩ {x ∈ Rn : x1 ≤ 0} and Q2 = Q ∩ {x ∈ Rn : x1 > 0}.

w(Q)

|Q|
||w−1|L∞(Q)|| ≤ c

|Q|

∫
Q

|x|α dx 1

infx∈Qw(x)

≤ c

|Q|

∫
Q

|x|α dx 1

min(infx∈Q |x|α, 1)
≤ C

since |x|α ≥ c > 0 for any x ∈ [−2, 2]n.
This weight doesn't satisfy the regularity condition. Let us choose cubes Qjm and

Qkl with j = 0,m = (−1, 0, ..., 0) and k > 0, l = (0, ..., 0). With that choice we have
w(Qjm) = 2−jn and w(Qkl) ∼ 2−k(α+n). Therefore

w(Qkl)

w(Qjm)
2(k−j)n ≥ c

2−k(α+n)

2−jn
2(k−j)n = c2−kα.

Taking k arbitrarily large condition (4.2.1) is not satis�ed since α < 0.
Let us recall that b̄s,wpq , f̄

s,w
pq spaces are de�ned in De�nition 3.6. Now we can state the

representation of weighted Besov and Triebel-Lizorkin spaces by characteristic functions of
dyadic cubes.
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Proposition 4.1. Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R. Let w ∈ Aloc∞ satisfy the regularity
condition. If

n

p
(rw −min(1, p)) < s <

1

p
,

then f =
∑

jm µjmχjm (convergence in S ′e(Rn)) with µ ∈ b̄s,wpq belongs to Bs,w
pq (Rn) and∥∥f |Bs,w

pq (Rn)
∥∥ ≤ c

∥∥µ|b̄s,wpq ∥∥
for some c > 0 and all µ ∈ b̄s,wpq .

If q <∞ and

n

(
max

(
1,
rw
p
,
1

q

)
− 1

)
< s < min

(
1

p
,
1

q

)
,

then f =
∑

jm µjmχjm (convergence in S ′e(Rn)) with µ ∈ f̄ s,wpq belongs to F s,w
pq (Rn) and∥∥f |F s,w

pq (Rn)
∥∥ ≤ c

∥∥µ|f̄ s,wpq ∥∥
for some c > 0 and all µ ∈ f̄ s,wpq .

Proof. Let

f =
∑
jm

µjmχjm (4.2.4)

with µ ∈ ās,wpq . Let w ∈ Alocu for some u ≥ rw. We take Daubechies wavelet expansion of
χjm in L2(Rn) by wavelets belonging to Cr(Rn), where r ≥ max(1, [s] + 1, [nrw−1

p
− s] +

1, [σp(w)−s]) in the case of Besov spaces and r ≥ max(1, [s]+1, [nrw−1
p
−s]+1, [σpq(w)−s])

in the case of Triebel-Lizorkin spaces. Then suppψGkl ⊂ DQkl for some D = D(r) and ψGk,l
satisfy moment conditions of order r for every j ∈ N0, k ∈ Zn and G ∈ {F,M}n∗. We have

χjm(x) =
∑
k,l,G

λGkl2
−kn/2ψGkl, (4.2.5)

where λGkl = 2kn/2〈χjm, ψGkl〉.
First we estimate λGkl(χjm). We have

∣∣λGkl(χjm)
∣∣ =

∣∣∣∣∫
Rn

2kn/2χjm(y)ψGkl(y)dy

∣∣∣∣
≤ 2kn/2

∫
Rn

∣∣χjm(y)ψGkl(y)
∣∣ dy

= 2kn/2
∫
Qjm

∣∣ψGkl(y)
∣∣ dy

= 2kn
∫
Qjm

∣∣ψG(2ky − l)
∣∣ dy ≤ cmin(1, 2n(k−j)).

(4.2.6)
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We also know that λGkl(χjm) = 0 if suppψGkl ∩Qjm = ∅ or suppψGkl ⊂ Qjm if G ∈ {F,M}n∗
because of the moment conditions.

We are going to show that f ∈ As,wpq (Rn). According to (4.2.4) and (4.2.5) we get

f =
∑
jm

µjm
∑
k,l,G

λGkl2
−kn/2ψGkl

=
∑
k,l,G

∑
j,m

2−kn/2µjmλ
G
klψ

G
kl

=
∞∑
k=0

∑
l∈Zn

∑
G

2−kn/2
∑
j,m

µjmλ
G
klψ

G
kl

=
∞∑
k=0

∑
l∈Zn

∑
G

νGkl2
−kn/2ψGkl

=
∞∑
k=0

∑
l∈Zn

∑
G

(
νG,1kl + νG,2kl

)
2−kn/2ψGkl,

where

νGkl =
∞∑
j=0

∑
m∈Zn

µjmλ
G
kl,

and
νG,1kl =

∑
j≥k

∑
m∈Zn

µjmλ
G
kl, (4.2.7)

νG,2kl =
k−1∑
j=0

∑
m∈Zn

µjmλ
G
kl. (4.2.8)

Step 1. We start with the sum over j ≥ k. We estimate

∣∣∣νG,1kl

∣∣∣ =

∣∣∣∣∣∑
j≥k

∑
m∈Zn

µjmλ
G
kl

∣∣∣∣∣ ≤∑
j≥k

∑
m∈Zn

|µjm|
∣∣λGkl∣∣

≤ c
∑
j≥k

∑
m:λGkl(χjm)6=0

2n(k−j) |µjm| ,
(4.2.9)

cf. (4.2.6).
From µ ∈ b̄s,wpq we have

∞∑
j=0

2jsq

(∑
m∈Zn

|µjm|pw(Qjm)

)q/p

<∞.
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Substep 1.1.
First we consider the case p ≤ 1. We have

∑
l∈Zn

∣∣∣νG,1kl

∣∣∣pw(Qkl) ≤ c
∑
l∈Zn

∑
j≥k

∑
m:λGkl(χjm)6=0

2n(k−j) |µjm|

p

w(Qkl)

≤ c
∑
l∈Zn

∑
j≥k

∑
m:λGkl(χjm) 6=0

2np(k−j) |µjm|pw(Qkl)

≤ c
∑
j≥k

2np(k−j)
∑
l∈Zn

∑
m:λGkl(χjm)6=0

|µjm|pw(Qkl).

But λGk,l(χj,m) 6= 0 only if suppψGkl ∩Qjm 6= ∅. Moreover j ≥ k so the relation λGkl(χjm) 6= 0
implies that there exists C ≥ 1 independent of j and k such that Qjm ⊂ CQkl. Now the
properties of the weights belonging to Alocu (Lemma 2.3) give us

w(Qkl) ≤ w(CQkl) ≤ cw(Qjm)2(j−k)nu. (4.2.10)

Then ∑
l∈Zn

∣∣∣νG,1kl

∣∣∣pw(Qkl) ≤ c
∑
j≥k

2(j−k)nu2np(k−j)
∑
l∈Zn

∑
m:λGkl(χjm)6=0

|µjm|pw(Qjm)

≤ c
∑
j≥k

2−n(j−k)(p−u)
∑
m∈Zn

|µjm|pw(Qjm),
(4.2.11)

since
∣∣{l : λGkl(χjm) 6= 0}

∣∣ ≤ c.
Substep 1.2.
Now we consider the case p > 1. The inequality j ≥ k implies

∣∣{m : λGkl(χjm) 6= 0}
∣∣ ≤

c2n(j−k). Using Hölder's inequality and (4.2.9) we get∣∣∣νG,1kl

∣∣∣ ≤ c
∑
j≥k

∑
m:λGkl(χjm)6=0

2n(k−j) |µjm|

≤ c
∑
j≥k

2n(k−j)2n(j−k)/p′

 ∑
m:λGkl(χjm)6=0

|µjm|p
1/p

.

For any ε > 0 we have

∑
l∈Zn

∣∣∣νG,1kl

∣∣∣pw(Qkl) ≤ c
∑
l∈Zn

∑
j≥k

2−np(j−k)( 1
p
−ε)

∑
m:λGkl(χjm)6=0

|µjm|pw(Qkl)

≤ c
∑
j≥k

2−np(j−k)( 1
p
−ε)2nu(j−k)

∑
m∈Zn

|µjm|pw(Qjm)

= c
∑
j≥k

2−np(j−k)( 1−u
p
−ε)

∑
m∈Zn

|µjm|pw(Qjm),
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where we used inequality (4.2.10) once more.
Substep 1.3. In case of F -spaces we use the maximal inequality of Fe�erman-Stein type∥∥∥∥∥∥

(∑
k,l

(M loc|gkl|v)(·)q/v
)1/q

|Lwp (Rn)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
(∑

k,l

|gkl(·)|q
)1/q

|Lwp (Rn)

∥∥∥∥∥∥
for 0 < v < min(1, p

u
, q), cf. Theorem 2.2. We have for x ∈ Qklχkl(x)
∑

m:λGkl(χjm)6=0

|µjm|

v

≤ χkl(x)
∑

m:λGkl(χjm)6=0

|µjm|v

= χkl(x)2jn
∫
Rn

∑
m:λGkl(χjm)6=0

|µjm|vχjm(y)dy

≤ c2n(j−k)M loc

 ∑
m:λGkl(χjm)6=0

|µjm|vχjm(·)

 (x).

It follows from (4.2.9) and the above inequality that for ε > 0 we have∣∣∣vG,1kl χkl(x)
∣∣∣q

≤ c

∣∣∣∣∣∣
∑
j≤k

2n(k−j)
∑

m:λGkl(χjm)6=0

|µjm|χkl(x)

∣∣∣∣∣∣
q

≤ c
∑
j≤k

2n(j−k)q(ε−1)

 ∑
m:λGkl(χjm)6=0

|µjm|χkl(x)

q

≤ c
∑
j≤k

2n(j−k)q(ε−1)2n(j−k) q
vM loc

 ∑
m:λGkl(χjm)6=0

|µjm|vχjm(·)

 (x)q/v

In consequence∑
l∈Zn

∣∣∣νG,1kl

∣∣∣q χkl(x)

≤ c
∑
l∈Zn

∑
j≥k

2−nq(j−k)(− 1
v

+1−ε)M loc

 ∑
m:λGkl(χjm)6=0

|µjm|vχjm(·)

 (x)q/v.

(4.2.12)

Since s > n
(

max
(

1, rw
p
, 1
q

)
− 1
)
we can choose ε > 0, u > rw and v < min

(
1, p

u
, q
)
such
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that s > n
(

1
v

+ ε− 1
)
. Then by (4.2.12)∥∥∥∥∥∥

(∑
k,l,G

2ksq
∣∣∣νG,1kl

∣∣∣q χkl(·))1/q

|Lwp (Rn)

∥∥∥∥∥∥
≤ c

∥∥∥∥∥∥∥∥
∑

k,G

2ksq
∑
l∈Zn

∑
j≥k

2−nq(j−k)(− 1
v

+1−ε)M loc

 ∑
m:λGkl(χjm)6=0

|µjm|vχjm(·)

q/v

v/q

|Lwp (Rn)

∥∥∥∥∥∥∥∥
≤ c

∥∥∥∥∥∥∥
∑

k,G

2ksq
∑
l∈Zn

∑
j≥k

2−nq(j−k)(− 1
v

+1−ε)
∑

m:λGkl(χjm)6=0

|µjm|qχjm(·)

1/q

|Lwp (Rn)

∥∥∥∥∥∥∥
≤ c

∥∥∥∥∥∥
(∑

j

2jsq
∑
k≤j

2−q(j−k)(−n
v

+n−nε+s)
∑
m∈Zn

|µjm|qχjm(·)

)1/q

|Lwp (Rn)

∥∥∥∥∥∥
≤ c

∥∥∥∥∥∥
(∑

j,m

2jsq|µjm|qχjm(·)

)1/q

|Lwp (Rn)

∥∥∥∥∥∥
(4.2.13)

Step 2.
We are going to estimate the second term in the decomposition of f . We have

∣∣∣νG,2kl

∣∣∣ =

∣∣∣∣∣∣
∑
j<k

∑
m:λGkl(χjm) 6=0

µjmλ
G
kl

∣∣∣∣∣∣
≤ c

∑
j<k

∑
m:λGkl(χjm)6=0

|µjm|

from (4.2.6).
Substep 2.1.
Let p ≤ 1. Now

∣∣{l : λGkl(χjm) 6= 0}
∣∣ ≤ c2(k−j)(n−1). Because w satis�es the regularity
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condition we get∑
l∈Zn

∣∣∣νG,2kl

∣∣∣pw(Qkl) ≤ c
∑
j<k

∑
l∈Zn

∑
m:λGkl(χjm) 6=0

|µjm|pw(Qkl)

≤ c
∑
j<k

∑
l∈Zn

∑
m:λGkl(χjm)6=0

|µjm|pw(Qkl)w(Qjm)w(Qjm)−1

≤ c
∑
j<k

∑
m∈Zn

∑
l:λGkl(χjm)6=0

|µjm|pw(Qjm)2(j−k)n

≤ c
∑
j<k

∑
m∈Zn

2(k−j)(n−1) |µjm|pw(Qjm)2(j−k)n

≤ c
∑
j<k

∑
m∈Zn

2j−k |µjm|pw(Qjm).

(4.2.14)

Substep 2.2.
Now let p > 1 and ε > 0. The inequality j < k implies

∣∣{m : λGkl(χjm) 6= 0}
∣∣ ≤ c for

some constant c independent of j, k and l. Using Hölder's inequality, (4.2.6), the regularity
condition on w and the estimate

∣∣{l : λGkl(χjm) 6= 0}
∣∣ ≤ c2(k−j)(n−1) we get

∑
l∈Zn

∣∣∣νG,2kl

∣∣∣pw(Qkl) ≤
∑
l∈Zn

∑
j<k

∑
m:λGkl(χjm) 6=0

|µjm|

p

w(Qkl)

≤ c
∑
l∈Zn

∑
j<k

 ∑
m:λGkl(χjm)6=0

|µjm|p
1/p


p

w(Qkl)

≤ c
∑
l∈Zn

∑
j<k

2(k−j)εp
∑

m:λGkl(χjm)6=0

|µjm|pw(Qkl)

≤ c
∑
j<k

2(k−j)εp
∑
m∈Zn

|µjm|p
∑

l:λGkl(χjm)6=0

w(Qkl)

≤ c
∑
j<k

2(k−j)εp
∑
m∈Zn

|µjm|p 2(j−k)n2(k−j)(n−1)w(Qjm)

≤ c
∑
j<k

2(k−j)(εp−1)
∑
m∈Zn

|µjm|pw(Qjm).
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Substep 2.3.
In case of F -spaces we get∑

l∈Zn

∣∣∣νG,2kl

∣∣∣q χkl(x)

≤ c
∑
l∈Zn

∑
j<k

2−q(j−k)ε
∑

m:λGkl(χjm)6=0

|µjm|q χkl(x)

≤ c
∑
j<k

2−q(j−k)ε
∑
m∈Zn

|µjm|q
∑

l:λGkl(χjm)6=0

χkl(x)

≤ c
∑
j<k

2−q(j−k)ε
∑
m∈Zn

|µjm|q χdQjm(x),

(4.2.15)

where d > 1 is such that
⋃
l:λGkl(χjm)6=0 DQkl ⊂ dQjm and is �nite. Moreover, since j < k

the constant d can be chosen independently of k.
Let us assume that s < 0.∥∥∥∥∥∥

(∑
k,l,G

2ksq
∣∣∣νG,2kl

∣∣∣q χkl(·))1/q

|Lwp (Rn)

∥∥∥∥∥∥
≤ c

∥∥∥∥∥∥
(∑

k,G

2ksq
∑
j<k

2−q(j−k)ε
∑
m∈Zn

|µjm|q χdQjm(·)

)1/q

|Lwp (Rn)

∥∥∥∥∥∥
≤ c

∥∥∥∥∥∥
(∑

j

2jsq
∑
k>j

2−q(j−k)(ε+s)
∑
m∈Zn

|µjm|qχdQjm(·)

)1/q

|Lwp (Rn)

∥∥∥∥∥∥
≤ c

∥∥∥∥∥∥
(∑

j,m

2jsq|µjm|qχjm(·)

)1/q

|Lwp (Rn)

∥∥∥∥∥∥
where the last inequality follows from Proposition 3.7.
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Step 3.
For p ≤ 1 we get by (4.2.7), (4.2.8), (4.2.11) and (4.2.14)

∞∑
k=0

2ksq
∑
G

(∑
l∈Zn

∣∣νGkl∣∣pw(Qkl)

)q/p

≤ c
∞∑
k=0

2ksq
∑
G

(∑
j≥k

2−n(j−k)(p−u)
∑
m∈Zn

|µjm|pw(Qjm)

+
∑
j<k

2(j−k)
∑
m∈Zn

|µjm|pw(Qjm)

)q/p

≤ c̃
∞∑
k=0

(
∞∑
j=0

2jsp
∑
m

|µjm|pw(Qjm)2−|k−j|κp

)q/p

,

where κ = min
(
n− nu

p
+ s, 1

p
− s
)
.

From monotonicity of `p spaces if q
p
≤ 1 or Young's inequalities if q

p
> 1 we have for

κ > 0  ∞∑
k=0

2ksq
∑
G

(∑
l∈Zn

∣∣νGkl∣∣pw(Qkl)

)q/p
1/q

≤ c̃

 ∞∑
j=0

2jsq

(∑
m

|µjm|pw(Qjm)

)q/p
1/q

.

In the same way we get the result for p > 1 with κ = min
(
n
p
− nu

p
− nε+ s, 1

p
− ε− s

)
.

Thus ∥∥ν|bs,wpq ∥∥ ≤ c
∥∥µ|b̄s,wpq ∥∥ .

Step 4. To prove the result for f s,wpq spaces we use the complex interpolation.
The mapping

ν2 : {µjm}j,m 7→ {νG,2kl =
∑
j<k

∑
m∈Zn

µjmλ
G
jm}k,l,G

is a linear operator. It follows from (4.2.13) that it is a bounded operator from f̄ s,wpq to f s,wpq
if s < 0 and from b̄s,wpq to bs,wpq if n

p
(rw −min(1, p)) < s < 1

p
. In consequence it is a bounded

operator from f̄ s,wpp to f s,wpp if s < 1
p
.

Because of Theorem 3.11 we have

[f s0,wp0,q0
, f s1,wp1,q1

]θ = f s,wpq

for 0 < θ < 1, 1/p = (1 − θ)/p0 + θ/p1, 1/q = (1 − θ)/q0 + θ/q1 and s = (1 − θ)s0 + θs1.

We show that if s0 < 0 and s1 <
1
p1

we can reach any s < min
(

1
p
, 1
q

)
for 0 < p, q < ∞.
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We choose a sequence {p(j)
1 }j∈N in such a way that s < 1

p
(j)
1

→ s if j →∞ and afterwards

sequences {s(j)
1 }j, {θ(j)}j and {p(j)

0 }j such that

s < s
(j)
1 <

1

p
(j)
1

,

s = (1− θ(j))s0 + θ(j)s
(j)
1 , for some s0 > 0,

1

p
=

1− θ(j)

p
(j)
0

+
θ(j)

p
(j)
1

.

Then θ(j) → 1 since s
(j)
1 → s if j →∞. Moreover

1

q(j)
=

1− θ(j)

q0

+
θ(j)

p
(j)
1

= s+ ε(j) +
1− θ(j)

q0

.

with ε(j) → 0 if j → ∞ since s−s0
p

(j)
1 −(s

(j)
1 −s0)

→ s if j → ∞. Thus if θ(j) → 1 then 1
q(j) → s.

So any 1
q
> s can be reached. In consequence∥∥ν2|f s,wpq

∥∥ ≤ c
∥∥µ|f̄ s,wpq ∥∥ .

for s < min
(

1
p
, 1
q

)
.

Now the inequality ∥∥ν|f s,wpq ∥∥ ≤ c
∥∥µ|f̄ s,wpq ∥∥

follows from the above inequality and (4.2.13).
Step 5. From the Daubechies wavelet characterization (Theorem 3.4) we get f ∈

As,wpq (Rn) and ∥∥f |As,wpq (Rn)
∥∥ ≤ c

∥∥µ|ās,wpq ∥∥ .

4.3 Characterization of function spaces by Haar

wavelets

We recall that sequence spaces bs,wpq and f s,wpq are de�ned in De�nition 3.7.

Theorem 4.1. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R and w ∈ Aloc∞ satis�es the regularity
condition.

(i) Let rw < min(1, p)
(
1 + 1

n

)
. Let one of the following conditions be satis�ed

• 0 < p <∞, 0 < q ≤ ∞, max
(
n
p

(rw −min(1, p)) , σp(w)− 1
)
< s < min

(
1, 1

p

)
.
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• 1 < p <∞, 0 < q ≤ ∞, 1
p
− 1 < s < 1

p
, rw < min

(
p, 1 + 1

n

)
and w1−p′ satis�es

the regularity condition and rw1−p′ < 1 + 1
n
.

Let f ∈ S ′e(Rn). Then f ∈ Bs,w
pq (Rn) if and only if it can be represented as

f =
∑
j,G,m

λGjm2−jn/2HG
jm,

where λ ∈ bs,wpq and the series converges in S ′e(Rn). This representation is unique with

λGjm = 2jn/2〈f,HG
jm〉

and
I : f 7→ {2jn/2〈f,HG

jm〉}

is a linear isomorphism of Bs,w
pq (Rn) onto bs,wpq .

If 0 < p, q <∞ then the system
{
HG
jm

}
j,m,G

is an unconditional basis in Bs,w
pq (Rn).

(ii) Let rw < p

(
min(1, 1

p
, 1
q )

n
+ min

(
1, 1

p

))
. Let one of the following conditions be satis�ed

• 0 < p <∞, 0 < q <∞,

max
(
n
p
(rw −min(1, p)), n

q
(1−min(1, q)), σp(w)− 1

)
< s < min

(
1, 1

p
, 1
q

)
.

• 1 < p <∞, 1 < q <∞, max
(

1
p
, 1
q

)
− 1 < s < min

(
1
p
, 1
q

)
,

rw < pmin
(

1, 1
p

+ 1
n

min
(

1
q
, 1
p

))
and w1−p′ satis�es the regularity condition and

rw1−p′ < 1 + 1
n

min
(

1, p
′

q′

)
.

Let f ∈ S ′e(Rn). Then f ∈ F s,w
pq (Rn) if and only if it can be represented as

f =
∑
j,G,m

λGjm2−jn/2HG
jm,

where λ ∈ f s,wpq and the series converges in S ′e(Rn). This representation is unique
with

λGjm = 2jn/2〈f,HG
jm〉

and
I : f 7→ {2jn/2〈f,HG

jm〉}

is a linear isomorphism of F s,w
pq (Rn) onto f s,wpq .

If 0 < p, q <∞ then the system
{
HG
jm

}
j,m,G

is an unconditional basis in F s,w
pq (Rn).
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Proof. Step 1. First we consider the case when

max

(
n

p
(rw −min(1, p)) , σp(w)− 1

)
< s < min

(
1,

1

p

)
for A = B and

max

(
n

p
(rw −min(1, p)) , σp(w)− 1,

n

q
(1−min(1, q))

)
< s < min

(
1,

1

p
,
1

q

)
for A = F .

Substep 1.1
Let f ∈ S ′e(Rn) and f =

∑
j,G,m λ

G
jm2−jn/2HG

jm. From Proposition 4.1 we obtain that
f ∈ As,wpq (Rn) and ∥∥f |As,wpq (Rn)

∥∥ ≤ c
∥∥λ|as,wpq ∥∥ .

Substep 1.2.
Now let f ∈ As,wpq (Rn). We take kGjm = 2jn/2HG

jm as kernels of local means. From
Theorem 3.3 we have ∥∥k(f)|as,wpq

∥∥ ≤ c
∥∥f |As,wpq (Rn)

∥∥ .
The expansion

f =
∑
j,G,m

kGjm(f)2−jn/2HG
jm

follows from analogical considerations as in proof of Theorem 3.4.
Substep 1.3.
Uniqueness of the representation and unconditional convergence are also consequences

of proof of Theorem 3.4.
Step 2. Now let 1 < p < ∞, 1 < q < ∞ and rw < p. By duality we have As,wpq (Rn)′ =

A−s,w
1−p′

p′,q′ (Rn). If

− 1

p′
=

1

p
− 1 < s < −max

(
n

p′
(rw1−p′ − 1), σp′(w

1−p′)− 1

)
(4.3.1)

then by Step 1 the Haar system is an unconditional basis in B−s,w
1−p′

p′,q′ (Rn) space. Since the
Haar basis is a biorthonormal system and by Theorem 1.3 it follows that the Haar system
is an unconditional basis in Bs,w

pq (Rn) if (4.3.1) holds.
In the similar way the Haar system is a basis in F s,w

pq (Rn) if

−min

(
1,

1

p′
,

1

q′

)
< s < −max

(
n

p′
(rw1−p′ −min(1, p′), σp′(w

1−p′)− 1,
n

q′
(1−min(1, q′))

)
that is

max

(
1

p
− 1,

1

q
− 1

)
< s < −max

(
n

p′
(rw1−p′ − 1), σp′(w

1−p′)− 1

)
.
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Step 3. The rest for the case of B-spaces can be proved by real interpolation(
Bs0,w
p,q0

, Bs1,w
p,q1

)
θ,q

= Bs,w
pq ,

where 0 < p < ∞, 0 < q, q0, q1 ≤ ∞, −∞ < s0 < s1 < ∞, 0 < θ < 1, s = (1− θ)s0 + θs1,
proved by Rychkov in [34]. Let 1 < p, q0 <∞, 0 < q, q1 ≤ ∞ and

1

p
− 1 < s0 < −max

(
n

p′
(rw1−p′ − 1), σp′(w

1−p′)− 1

)
< max

(
n

p
(rw − 1), σp(w)− 1

)
< s1 <

1

p
.

From Step 1 and Step 2 we know that there is the Haar bases in Bs0,w
p,q0

(Rn) and Bs1,w
p,q1

(Rn).

Thus
{
HG
jm

}
j,m,G

is complete in Bs1,w
p,q1

(Rn). Because Bs1,w
p,q1

(Rn) ↪→ Bs,w
pq (Rn) and Bs1,w

p,q1
(Rn)

is dense in Bs,w
pq (Rn) we get that span

{
HG
jm

}
j,m,G

= Bs,w
pq (Rn). From Theorem 1.4 we know

that supN ‖SN : Bs0,w
p,q0

(Rn)→ Bs0,w
p,q0

(Rn)‖ <∞ and supN ‖SN : Bs1,w
p,q1

(Rn)→ Bs1,w
p,q1

(Rn)‖ <
∞. Interpolation gives us

‖SN : Bs,w
pq (Rn)→ Bs,w

pq (Rn)‖
≤ ‖SN : Bs0,w

p,q0
(Rn)→ Bs0,w

p,q0
(Rn)‖1−θ‖SN : Bs1,w

p,q1
(Rn)→ Bs1,w

p,q1
(Rn)‖θ <∞.

Now to prove that the Haar basis is unconditional in Bs,w
pq (Rn) we use Theorem 1.5 and

get

‖TΛ : Bs,w
pq (Rn)→ Bs,w

pq (Rn)‖
≤ ‖TΛ : Bs0,w

p,q0
(Rn)→ Bs0,w

p,q0
(Rn)‖1−θ‖TΛ : Bs1,w

p,q1
(Rn)→ Bs1,w

p,q1
(Rn)‖θ <∞.

Step 4. The rest for the case of F -spaces can be proved by complex interpolation[
F s0,w
p,q , F s1,w

p,q

]
θ

= F s,w
pq ,

where 1 < p < ∞, 1 < q < ∞, −∞ < s0 < s1 < ∞, 0 < θ < 1, s = (1 − θ)s0 + θs1, from
Theorem 3.11. Let

max

(
1

p
,
1

q

)
− 1 < s0 < −max

(
n

p′
(rw1−p′ − 1), σp′(w

1−p′)− 1

)
<

max

(
n

p
(rw − 1), σp(w)− 1

)
< s1 < min

(
1

p
,
1

q

)
.

Now using Step 1 and Step 2 and similar argumentation as for Besov spaces (Step 3) we
get the result.
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Corollary 4.1. Let 1 < p < ∞, w ∈ Aloc∞ and rw < min
(
p, 1 + 1

n
min

(
1, p

2

))
, rw1−p′ <

1 + 1
n

min
(

1, p
′

2

)
and w, w1−p′ satisfy the regularity condition. Then the Haar system is

an unconditional basis in Lwp (Rn).

Proof. Let w ∈ Alocu for some rw < u ≤ p. Then from [34] we have Lwp (Rn) = F 0,w
p,2 (Rn). So

by Theorem 4.1 we know that the Haar system is an unconditional basis in Lwp (Rn).

Remark 4.2. We give examples of weights that satisfy the assumptions of Theorem 4.1.
1. If w is an admissible weight or a general locally regular weight then w satis�es

the regularity condition as well as w1−p′ . Moreover rw = rw1−p′ = 1. So for example
the Haar system is an unconditional basis in F s,w

pq (Rn) if 1 < p < ∞, 1 < q < ∞ and

max
(

1
p
, 1
q

)
− 1 < s < min

(
1
p
, 1
q

)
. In particular it is a basis in Lwp (Rn) for any 1 < p <∞.

2. If vβ(x) =

{
(1− log |x|)−β, |x| ≤ 1,

(1 + log |x|)−β, |x| > 1
, β ∈ R. Then rvβ = 1 for any β ∈ R and vβ

satis�es the regularity condition for any β. So the Haar system is and unconditional basis
in F

s,vβ
pq (Rn) and L

vβ
p (Rn) with the same conditions on s and p, q as above.

3. If wα(x) = |x|α, α > −n, then rwα = 1 + max(0,α)
n

and wα satis�es the regularity
condition. In consequence the Haar system is an unconditional basis in Lwαp (Rn) if 1 <

p <∞ and −min
(
n, p− 1, p

2

)
< α < min

(
1, p

2
, n(p− 1)

)
. Moreover it is an unconditional

basis in F s,wα
p,2 (Rn) with the same conditions on α and suitable assumptions on s and p. The

situation doesn't change if we perturb wα by a logarithmic factor vβ and take w = wαvβ.
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Chapter 5

Wavelet bases in Lwp (Rn) spaces

By an inhomogeneous wavelet system we understand the system consisting of integer trans-
lations of the scaling function and translations of dilations of wavelet by dyadic factor bigger
or equal to 1, i.e. the system

{ψMjm}j≥0,m∈Zn ∪ {ψF0,m}m∈Zn .

In contrast to an inhomogeneous wavelet system a homogeneous wavelet system does not
contain the scaling function and its translations, but contains dilations of wavelet also by
factors smaller then 1. So it is a system of the form

{ψMjm}j∈Z,m∈Zn .

Both the homogeneous and inhomogeneous wavelet systems of Daubechies type are the
orthonormal basis in the space L2(Rn) and unconditional basis in the space Lp(Rn) (1 <
p < ∞). In weighted Lp spaces the behavior of the both types of wavelet systems is not
equivalent. We proved that the inhomogeneous wavelet system is an unconditional basis
for more general type of weights than the homogeneous one.

The main theorem of this chapter asserts that the inhomogeneous wavelet system of
Daubechies type is an unconditional basis in Lp(dµ) if and only if dµ = w dx with w ∈ Alocp .
In consequence we can prove that Lwp (Rn) spaces can be characterized by a square function
if and only if w ∈ Alocp . Thus the counterpart of the Paley-Wiener theorem holds if
the power of an integration is the same as the index of weight class w belongs to. The
similar results for the homogeneous wavelet system was proved by Lemarié-Rieusset [29]
and Aimar, Bernardis, Martín-Reyes [1]. It was proved that the homogeneous wavelet
system of Daubechies type is an unconditional basis in Lp(dµ,Rn) if and only if dµ = wdx
with w ∈ Ap. Thus if w ∈ Alocp \Ap then there is a wavelet such that the corresponding
inhomogeneous wavelet system is an unconditional basis in Lwp (Rn) but the corresponding
homogeneous system is not.
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5.1 Lp spaces with local Muckenhoupt weights

In this section we prove our main result. We use the fact that wavelet projection operators
satisfy condition (5.1.1) below. We follow the main idea of Aimar, Bernardis, Martín-Reyes
in [1]. On the other side we have the wavelet characterization theorem stated in Theorem
3.4.

Lemma 5.1. Let ϕ be a continuous function absolutely bounded by an L1(Rn) radial
decreasing function such that

∑
k∈Zn ϕ(x − k) 6= 0 for all x ∈ Rn. Then F (x, y) =∑

k∈Zn ϕ(x− k)ϕ(y − k) satis�es

{(x, y) ∈ R2n : |x− y| < `} ⊂ {(x, y) ∈ R2n : F (x, y) > δ},

for some positive real numbers ` and δ.

A proof of the above lemma can be found in [1]. Following [1] we can �nd that lemma
applies to P0(x, y) =

∑
k∈Zn ΨGF (x− k)ΨGF (y − k) with GF = (F, ..., F ), where ΨGF is a

Daubechies scaling function. By the properties of the multiresolution analysis {ΨGF (x −
k)}k∈Zn is an orthonormal basis in V0 = span{ΨGF (x−k)}k∈Zn and the sum

∑
k∈Zn ΨGF (x−

k) equals to the constant with the module 1 a.e. On the other hand the function ΨGF is a
continuous function with compact support therefore it is bounded by a radial decreasing
function belonging to L1(Rn) and series

∑
k∈Zn ΨGF (x − k) is convergent to a continuous

function. In consequence
∑

k∈Zn ΨGF (x− k) 6= 0 for any x ∈ Rn.
Now for a family {Pj(x, y)}j≥0 = {2jnP0(2jx, 2jy)}j≥0 we obtain that it satis�es condi-

tions {
(x, y) ∈ R2n : |x− y| < `j

}
⊂
{

(x, y) ∈ R2n : Pj(x, y) > C`−nj+1

}
(5.1.1)

for every j ≥ 0 and a positive constant C > 0, where {`j}j≥0 is a decreasing sequence of
positive real numbers and `j → 0 as j →∞.

Theorem 5.1. Let 1 < p <∞ and µ be a positive Borel measure on Rn �nite on compact
sets. Let k ≥ max([n− n

p
] + 1, n(p− 1)). There exists an unconditional Daubechies wavelet

basis in Lp(Rn, dµ) with smoothness k if and only if dµ = w(x) dx with w ∈ Alocp .

Proof. Let w ∈ Alocp . From Theorem 3.4 we have an unconditional basis in F s,w
pq (Rn). In [34]

Rychkov shows the Littlewood-Paley characterization of spaces with local Muckenhoupt
weights, it means F 0,w

p,2 (Rn) = Lwp (Rn). Hence we have an unconditional basis in Lwp (Rn),
cf Theorem 3.4.

On the other side. Let {ΨG
jm : j ∈ N0,m ∈ Zn, G ∈ Gj} be a Daubechies wavelet

system, which is an unconditional basis in Lp(Rn, dµ). So every f ∈ Lp(Rn, dµ) has the
representation

f(x) =
∑
j,k,G

〈f,ΨG
jk〉ΨG

jk(x).
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Operators

P̃0f =
∑
k

〈f,ΨGF
0,k 〉Ψ

GF
0,k ,

P̃mf =
∑

0≤j<m,k,G

〈f,ΨG
jk〉ΨG

jk, m > 0

are uniformly bounded on Lp(Rn, dµ). We can write P̃mf(x) =
∫
Rn P̃m(x, y)f(y)dy, where

P̃0(x, y) =
∑

k ΨGF
0,k (x)ΨGF

0,k (y) and P̃m(x, y) =
∑

0≤j<m,k,G ΨG
jk(x)ΨG

jk(y) if m > 0, be-
cause wavelets have compact supports and we deal with locally �nite sums. Hence kernels
P̃m(x, y) are bounded.

On the other hand by the properties of the multiresolution analysis the kernel P̃m(x, y)
coincides with Pm(x, y) = 2mnP0(2mx, 2my), if it is regarded as a kernel of projection in L2.
Again, because wavelets and the scaling function are compactly supported we deal with
locally �nite sums and get Pm(x, y) = P̃m(x, y) almost everywhere. So the last equality is
valid also for Lp spaces and the kernels Pm(x, y) are bounded.

We are going to show that µ is absolutely continuous. Let E be a set such that |E| = 0.
For every ε > 0 there exists an open set F such that E ⊂ F and µ(F\E) < ε. Set F
can be decomposed into a countable union of disjoint and dyadic cubes Qi. From Lemma
5.1 we get that {Pj(x, y)}j≥0 satis�es the same conditions as weakly positive family. Let
{`j}j≥0 be a sequence connected with that family. Without lost of generality we assume
that `0 > max(d(Qi)), where d(Q) denote a diameter of Q and maximum is taken over
all cubes Qi from decomposition of F . For �xed i let j0 ≥ 0 be the integer such that
`j0+1 ≤ d(Qi) < `j0 . If x, y ∈ Qi we get |x− y| < `j0 and Pj0(x, y) > C`−nj0+1. So for every
x ∈ Qi we have ∣∣Pj0(χQi\E)(x)

∣∣ =

∣∣∣∣∫
Qi\E

Pj0(x, y)dy

∣∣∣∣ > C`−nj0+1|Qi\E|.

Therefore
∣∣Pj0(χQi\E)(x)

∣∣ > cn, for some constant depending only on C and n. From weak
type inequality for operators Pj we get

µ(Qi) ≤ µ
(
{x : |Pj0(χQi\E)(x)| > cn}

)
≤ Cc−pn µ(Qi\E).

Summing over i we have

µ(F ) =
∑
i

µ(Qi) ≤ Cc−pn
∑
i

µ(Qi\E) = Cc−pn µ(F\E) < Cc−pn ε

for every ε > 0. Hence µ(E) = 0. From Radon-Nikodym Theorem we get that there exists
locally integrable function w such that dµ = w(x) dx.

Now we can show that w ∈ Alocp . We pick a sequence {`j}j≥0. Let Q ⊂ Rn be a cube
with |Q| ≤ `0. We can �nd m0 ≥ 0 with `m0+1 ≤ d(Q) < `m0 . Inequalities

|Pm0(σεχQ)(x)| =
∣∣∣∣∫
Q

Pm0(x, y)σε(y)dy

∣∣∣∣ > C`−nm0+1

∫
Q

σε ≥ cn |Q|−1

∫
Q

σε ≡ λ,
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where σε = (w+ ε)−
1
p−1 , ε > 0, holds for every x ∈ Q. Since operators Pm are of weak type

(p, p) we get

w(Q) ≤ w ({x : |Pm0(σεχQ)(x)| > λ}) ≤ Cc−pn |Q|
p

(∫
Q

σε

)−p ∫
Q

σpεw.

Multiplying both sides by
(∫

Q
σε

)p (∫
Q
σpεw

)−1

and choosing ε close to zero we get

w(Q)

(∫
Q

w−
1
p−1

)p(∫
Q

w−
1
p−1

)−1

≤ C |Q|p

for every Q, |Q| < `0. From Lemma 1.4 in [34] we know that classes Alocp are independent
of the upper bound for the cube size in their de�nition. So we get a condition for Alocp .

Following [34] we can state square-function characterization. Let us de�ne

S(f)(x) =

(∑
j

|ϕj ∗ f(x)|2
)1/2

,

where ϕ0 ∈ D have nonzero integral and ϕ = ϕ0− 2−nϕ0( ·
2
) and ϕj(x) = 2jnϕ(2jx), j > 0.

Corollary 5.1. Let 1 < p <∞ and w ∈ Aloc∞ . The following equivalence holds∥∥S(f)|Lwp (Rn)
∥∥ ∼ ∥∥f |Lwp (Rn)

∥∥
if and only if w ∈ Alocp .

Proof. Let w ∈ Alocp . From [34] we have that F 0,w
p,2 (Rn) = Lwp (Rn) with norm equivalence

∫
Rn

(∑
j∈Z

|ϕj ∗ f(x)|2
)p/2

w(x) dx ∼
∫
Rn
|f(x)|pw(x) dx.

Conversely, if we assume w ∈ Aloc∞ then from Theorem 3.4 we get that in F 0,w
p,2 (Rn)

there exists an unconditional basis consisting of Daubechies wavelets. But ‖S(f)|Lwp (Rn)‖
is a norm in F 0,w

p,2 (Rn). So the norms equivalence implies that F 0,w
p,2 (Rn) and Lwp (Rn) are

isomorphic. In consequence there is an unconditional basis by Daubechies wavelet in
Lp(Rn). Now from Theorem 5.1 we obtain that w ∈ Alocp .

Remark 5.1. It is known that above statements are not true for general Muckenhoupt
weights. Taking for example weight

w(x) =

{
|x|α for |x| ≤ 1,

|x|β for |x| > 1,
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for α, β > −n. For α < (p1−1)n we have w ∈ Alocp1
and rw = max(0,α)

n
+1, for α, β < (p2−1)n

we have w ∈ Ap2 and r̃w = max(0,α,β)
n

+1. Taking β big enough we get that w is in Alocp ∩A∞,
but not in Ap.

For ϕ0 ∈ C∞0 (Rn) with
∫
ϕ0(x) dx 6= 0 and f ∈ S ′e we introduce the �vertical� maximal

function
ϕ+

0 f(x) = sup
j∈N
|(ϕ0)j ∗ f(x)|.

The following corollary follows from Theorem 2.25 in [34] and Corollary 5.1.

Corollary 5.2. Let 1 < p <∞ and w ∈ Aloc∞ . The following equivalence holds

||ϕ+
0 f |Lwp || ∼ ||f |Lwp ||

if and only if w ∈ Alocp .

Please note that it follows from the last corollary that if 1 < p <∞ and w ∈ Aloc∞ then
the weighted local Hardy space

hwp = {f ∈ S ′e : ||ϕ+
0 f || <∞}

coincides with Lwp if and only if w ∈ Alocp .
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