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Introduction

Methods of wavelet analysis are an important tool in investigating of properties of function
spaces. Due to wavelet bases we can define isomorphisms between function spaces of Hardy-
Sobolev-Triebel type and corresponding sequence spaces. These isomorphisms reduce many
problems from the function spaces level to the sequence spaces level. The main advantage of
that approach is that interesting issues often simplify in sequence spaces. So the question
about existence of an unconditional basis in function spaces or wavelet characterization
is very important to investigate their properties. That way of research can be used to
investigate boundedness, compactness and spectral properties of operators acting between
function spaces. Among operators special attention is paid on Sobolev embeddings, because
they are simple and on the other side many other operators can be factorized by them.

Weighted function spaces are the subject of a research, because of many applications in
theory of differential equations, spectral operators theory, etc. Local Muckenhoupt weights
(class Al°), that are important to the main part of that dissertation, and spaces with that
weights were introduced by V.Rychkov in 2001 in [34]. That weights are generalizations
of classical Muckenhoupt weights A., as well as admissible weights, which are smooth.
One of the breakthroughs in the history of function spaces of Sobolev-Besov-Hardy type
was wavelets characterizations of that spaces. The unweighted case was considered by
Y.Meyer et al. in [31] and [3]. Wavelet bases in function spaces with admissible weights
were constructed by D.Haroske and H.Triebel in [19]. In subsequent years Haroske and
Skrzypczak showed wavelet characterization of spaces with Muckenhoupt weights, cf. [16].
Most recently Izuki and Sawano proved that there exists wavelet bases in function spaces
with weights of A% class, cf. [24]. Weighted function spaces with Muckenhoupt weights
are applied to consider differential operators like in [12], [18]. They have many applications
in theory of differential equations, spectral operators theory etc.

Wavelet theory is widely developed. Orthonormal wavelet bases in Lo are used in the-
oretical mathematics as well as in computer science. In that dissertation we deal with
inhomogeneous Besov and Triebel-Lizorkin spaces, which are described in monographic
series "Theory of Function Spaces" by H.Triebel, [39]-[41]. In definition of weighted func-
tion spaces we replace Lebesgue measure by w dx measure, where w is positive, locally
integrable function called weight. V. Rychkov introduce the theory of function spaces with
local Muckenhoupt weights, which are generalizations of earlier results. Izuki and Sawano
continue to develop that theory, by showing atomic decomposition in such a spaces, [23].
By now there has been shown wavelet characterization of Besov and Triebel-Lizorkin spaces



with local Muckenhoupt weights, [24].

In Chapter 1 there are introduced wavelet bases. Basic kinds of wavelets are defined.
Special attention is paid to Daubechies wavelets. These systems of wavelets are orthogonal
bases in Ly(R™). They are especially useful because of compact supports and smoothness
to some order. That properties of Daubechies wavelets make proofs of theorems about
isomorphisms between function spaces and sequence spaces easier.

In further part of Chapter 1 we introduce inhomogeneous Besov and Triebel-Lizorkin
spaces. These are quasi-Banach spaces of tempered distributions. We recall development
of theory of function spaces following [40].

In Chapter 2 we concern weights and weighted function spaces. Classical Mucken-
houpt weights A, was introduced by Muckenhoupt as a class of weights, for which Hardy-
Littlewood maximal operator is bounded in proper function spaces of p-integrable func-
tions. Bui, Taibleson and Weiss have developed theory of weighted Besov and Triebel-
Lizorkin spaces as spaces of tempered distributions. In the same time there have been
developed theory of function spaces with weights from another class, which consist of
smooth weights with such a behavior at infinity that they do not belong to A,, cf. [35].
Moreover, at least for some kind of weights, there was no possibility to continue the theory
inside spaces of tempered distributions. In 2001 Rychkov introduced in [34] so called local
Muckenhoupt weights, i.e. Aﬁ,"c class, which embrace every considered classes of weights. It
revealed that local Muckenhoupt weights are natural family of weights for inhomogeneous
Besov and Triebel-Lizorkin spaces. Rychkov proved some properties of local Muckenhoupt
weights. Keep on researching we develop theory of properties of that class of weights to
get analogous theory of properties of classical Muckenhoupt weights, for example the local
version of the reverse Holder inequality, the theorem about representation of weights, etc.

The main aim of Chapter 3 is to formulate the wavelet characterization of By (R")
and F*(R™) spaces with local Muckenhoupt weight w. We follow H.Triebel’s approach
in [44]. He made an observation that Daubechies wavelets can serve as kernels of local
means and as atoms. It can be adopted to spaces with local Muckenhoupt weights A%°,
To prove local means representation as well as Daubechies wavelet representation we use
atomic decomposition theorem for function spaces with local Muckenhoupt weights proved
by Izuki and Sawano in [23].

In the last part of Chapter 3 we show some applications of wavelet characterization
of By'(R") and FJ"(R™) spaces with local Muckenhoupt weight w. First we consider
continuous embeddings. Then we obtain results about dual spaces to function spaces with
local Muckenhoupt weights. At last we get complex interpolation for F;;;“(R”) spaces.

Sobolev embeddings of Besov and Triebel-Lizorkin spaces were widely studied. In paper
by D. Haroske and L. Skrzypczak [16] there were stated characterization of embeddings
between function spaces with classical Muckenhoupt weights. Using results from [27] we
get analogous results for embeddings of function spaces with local Muckenhoupt weights.
It turns out that in some special cases we get better results even for classical Muckenhoupt
weights cases when we use local Muckenhoupt weights. In this section we also study
embeddings from B;'(R") and F»*(R") spaces to function spaces outside the Besov and
Triebel-Lizorkin scales, for example to C(R™), L, (R™). In particular we study conditions
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on parameters s, p and ¢ whether weighted function spaces consist of regular distributions.

In the book [43] H. Triebel proves, that Haar wavelets can be used to characterization
of unweighted function spaces B, (R") and F; (R") as far as absolute value of smoothness
parameter is small enough. The aim of Chapter 4 is to show the weighted version of that
result. The conditions on smoothness s and weight w, that guarantee that Haar functions
form unconditional bases in Byv'(R™) and F;7"(R") are formulated. Here p and ¢ must be
finite.

In Chapter 5 we turn to L, spaces. Wavelet systems in weighted L, spaces were in-
vestigated by several authors. P. G. Lemarié-Rieusset considered one dimensional case, cf.
[29]. He proved that the homogeneous wavelet system of Daubechies type is an uncon-
ditional basis in L,(R",du), 1 < p < oo, if and only if du = wdz, where w is a weight
belonging to the Muckenhoupt class A,. He also found a sufficient and necessary condi-
tion for inhomogeneous systems to be unconditional bases. Other one dimensional systems
were investigated by Kazarian [28] and Garcia-Cuerva, Kazarian [14]. Multidimensional
homogeneous wavelet systems were considered by Aimar, Bernardis, Martin-Reyes, cf. [1].
They proved that a homogeneous wavelet system satisfying certain regularity conditions is
an unconditional basis in L,(du) if and only if du = wdx with w € A,

The aim of Chapter 5 is to prove the counterpart of Lemarié-Rieusset’s result for mul-
tidimensional inhomogeneous wavelet systems. To formulate the necessary and sufficient
condition we use the class of local Muckenhoupt weights A%¢. Furthermore it leads to
necessary conditions for the Paley-Littlewood characterization of L, spaces with weights.



Chapter 1

Definitions and notation

1.1 Notation

Let us fix some notation. By N we denote the set of natural numbers, by Ny the set NU{0},
by C the complex plane, by R" the euclidean n-space, n € N and by Z" the set of all lattice
points in R™ having integer components.

The positive part of a real function f is given by f(z) = max(f(z),0). For two positive
real sequences {ay }reny and {by }ren we mean by ay, ~ by that there exist constants ¢y, co > 0
such that ciap < by < coay for all k£ € N, similarly for positive functions.

Given two quasi-Banach spaces X and Y we write X — Y if X C Y and the natural
embedding of X in Y is continuous.

All unimportant positive constants are denoted by ¢, occasionally with subscripts. Let
drx and | - | stand for the (n-dimensional) Lebesgue measure. Log is always taken with
respect to a base 2.

We denote by D(R™) the space of C*° functions with compact support. D'(R") is its
topological dual, the space of distributions.

Let S(R™) be the Schwartz space of all complex-valued rapidly decreasing, infinitely
differentiable functions on R". By S'(R™) we denote its topological dual, the space of
tempered distributions on R”. Furthermore, L,(R") with 0 < p < oo is the standard
quasi-Banach space with respect to the Lebesgue measure, quasi-normed by

e = ([ 1ra)”

with the obvious modification if p = co.
Let C'(R™) be the Banach space of all complex-valued uniformly continuous bounded
functions in R™ and let for r € N,

C'(R") ={f € CR"): D"f € C(R"), || <},

obviously normed, where we use the standard abbreviation D7 for derivatives.



If ¢ € S(R™) then

B(6) = (Fo)(€) = (2n)° / i o(r)dr, € R, (L11)

n

denotes the Fourier transform of . Here £x is the scalar product in R”. As usual, Fto
or ¢, stands for the inverse Fourier transform, given by the right-hand side of (1.1.1) with
i in place of —i. Both F and F~! are extended to S'(R") in the standard way.

By a cube @ we understand the cube in R™ with sides parallel to the axis and |Q|
denotes the Lebesgue measure of (). For some d > 0 by d@) we understand a cube with
the same center as () and sides scaled by d. A dyadic cube is the cube with sides 277 and
center 277 (m + %), where m—l—% = (my+ %,mg + %, R T %), denoted by Qj,, for j € Z
and m € Z".

Let B(x,r) denote an open ball in R™ centered at x with radius r > 0.

Given 1 < p < o0, its dual index is the number 1 < p’ < oo satisfying

1 1

1 - - + —/

p p
and given 0 < p < 1 its dual index is co, where we use the conventions that 1/0 = oo and

1/o0 = 0.
By

n N
AN = <Z a?/@ﬁ) . N eN,,
=1

we denote the N-th power of the Laplacian (A° = Id).

1.2 Definitions and basic theorems

Let X be a quasi-normed vector space. A quasi-norm on X induces a locally bounded
topological vector space structure on X. Conversely if X is a locally bounded vector space
and B is a bounded neighborhood of zero then ||z||p := inf{r > 0;r~'z € B}, x € X, is
a quasi-norm and different bounded neighborhoods of the origin define equivalent quasi-
norms. Moreover if || - || is a quasi-norm on a linear space X then there exist 0 < p < 1 and
a p-norm || - ||" on X equivalent to || - ||, i.e. the p-norm || - || such that there is a positive
constant ¢ such that
cHal < =l < cllefl, e X,

cf. [33] Theorem 3.2.1. We recall that || - || : X — (0, 00) is called a p-norm if
(i) fJzl =0 = = =0,
(i) Azl = [Mllll, A € C, z € X,

(i) [l + yll” < fl=[” + [yl



So || - ||” is a p-homogeneous F-norm, cf. [33] p. 4 for the definition.
We will always assume that quasi-Banach spaces are a vector spaces over C.

Definition 1.1. A countable family {z, },en of vectors in a separable quasi-Banach space
X is a basis for X if every x € X can be written

T = E CnXn  convergence in X
neN

for a unique choice of scalars ¢, € C.

Definition 1.2. Let {x,},en be a countable family of vectors from a quasi-Banach space
X. The series ) &y, is unconditionally convergent if for every permutation o : N — N,
the series ), ZTo(r) is convergent in X.

Theorem 1.1. Let {z,}nen be a countable family of vectors from a quasi-Banach space
X. Y hen Tn converges unconditionally if and only if Y enxyn converges for every choice
of signs €, = £1.

neN

The proof can be found in [20] (Theorem 3.10) or [33] (Theorem 3.8.2).

Definition 1.3. A basis {z, },en in a separable quasi-Banach space X is called uncondi-
tional if for any = € X the series
x = Z Cnn

neN

is unconditionally convergent.

Remark 1.1. Obviously {x,}ren is an unconditional basis in X if and only if {Z4(n) }rnen is
a basis in X for all permutations ¢ : N — N.

The basis that is not an unconditional basis is called a conditional basis. All the bases
we will work with in the thesis are unconditional.

Definition 1.4. Given a basis {2, },en for a quasi-Banach space X, then the sequence of
linear functionals = defined by
T = xr(z)xy,
neN

is called sequence of coefficient functionals for {x,}nen.

Definition 1.5. Let {x,},en be a basis for a quasi-Banach space X and {z},cn be the
coefficient functionals. Then we say that {z, },en is a Schauder basis for X if each z is
continuous.

Theorem 1.2. A countable family {x,}nen is a Schauder basis for a quasi-Banach space
X if and only if {x,}nen is a basis for X.

The proof of the theorem can be found in [20], Theorem 4.13 for the Banach spaces
and [33]| Corollary 2.6.2 for the quasi-Banach case.
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Definition 1.6. Let X be a Banach space. System {z,, 2} },en of 2, from X and func-
tionals z; from X* we call a biorthogonal system if

() 1 for n=m,
r (T) =
" 0 forn#m.

Lemma 1.1. Let X, Y be quasi-Banach spaces. If {x, }nen 18 a basis for X and T : X —Y
is a topological isomorphism, then {Tx,}nen 18 a basis for'Y .

The above lemma can be found in [20], Lemma 4.18.

Theorem 1.3. If {z, }nen is a (unconditional) basis for a reflexive Banach space X, then
its biorthogonal system {x¥}nen is a (unconditional) basis for X*.

The proof of the theorem can be found in [20], Corollary 5.22.
We can define partial sum operators

N
Syx = Zx;(m)xn, r e X.
n=1

We say that the sequence {z,, },en is complete in a quasi-normed space X if Span{z, }neny =
X.

A family U of continuous operators from a quasi-normed space X into a quasi-normed
space Y is called equicontinuous if for each positive € there is a positive ¢ such that

sup{|[Az|| : A e U, [lz]| <o} <e.

Theorem 1.4. Given a sequence {x, }nen in a quasi-Banach space X, the following state-
ments are equivalent.

(i) {x,} is a basis for X.

(i) {xn} is complete and the operators Sy are equicontinuous on the set of all linear
combinations of {x,}.

The above theorem for quasi-Banach spaces follows from Corollary 2.6.5 in [33], for
Banach spaces it is Theorem 5.12 in [20].

Theorem 1.5. Let {x,},en be a complete sequence in a quasi-Banach space X such that
Tn # 0 for every n. Then the following statements are equivalent.

(1) {x,} is an unconditional basis for X.

(i1) {x,} is a basis, and for each bounded sequence of scalars A = {\,} there exists a
continuous linear operator Ty : X — X such that Th(x,) = Az, for alln € N.

11



For Banach spaces the theorem is stated in [20] (Theorem 6.7). For quasi-Banach it
follows from Corollary 3.9.5, Proposition 3.9.13 and considerations on page 94 in [33].

Lemma 1.2 (Young’s inequality). If {ar},c; € lp, {bi}yey € €q and % +% =141 for
1 <p,q,r <oo. Then
Zalbkflwr

leZ

< llanl €[l [1bx]€q]l -

1.3 Wavelet systems

Definition 1.7. We call a scaling function (father wavelet) a function %' (¢t) € Ly(R) and
a wavelet (mother wavelet) a function ¥ (t) € Ly(R) such that the system

{Wjm(@) = 272N (22 — M)} ey U {Wg (@) = 7 (2 — m) ez,
is an orthonormal basis in the Hilbert space Lo(R).

The first wavelet system consist of compactly supported functions was the Haar system.
We recall briefly the construction, cf. [46], Chapter 2.1.

Definition 1.8. Let
1 if0<z<1/2,

M) =< -1 if1/2<z<1,
0 otherwise,

and
hE (x) = |h™ ()]

be the Haar wavelet and the Haar scaling function.
Theorem 1.6. The system
[h () = 220 (D — )} s U ARE (1) = B (@ = m) }one,
forms the orthogonal Haar basis in Ly(R).
Haar wavelets on R™ we obtain by the usual tensor product procedure

Hf, =22 T e (22, —m,), (1.3.1)

r=1

where j € Ng, m € Z", G = (Gy,....,G,) € G and G° = {F,M}" and for j > 0
G’ = {F, M}"™, where * indicates that at least one G, must be an M.
{HS,, :jeNy,meZ"GeG}

m

is an orthonormal basis in Ly(R"), cf. [46], Proposition 6.2.
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Theorem 1.7. The Haar system {HS :j € No,m € Z", G € G’} is a Schauder basis in

jm

L,(R"), 1<p<oo. If1<p< oo then the basis is unconditional.

The proof can be found in [46], Theorem 9.13.

There are no wavelets belonging to the class C*° with compact support. However 1.
Daubechies constructed systems of compactly supported wavelets with any finite smooth-
ness, cf. [10] Chapter 6 or [46] Chapter 5. Such a system of wavelets will be called the
Daubechies systems. The construction is based on the method of multiresolution analysis.

Theorem 1.8. There exists a constant C' such that for every k = 1,2, ... there are scaling
function ¥ () and wavelet Y™ (x) such that

(i) ¥ (x) and Y (z) are in C*(R).

(ii) () and YM(x) have compact support and suppyt and suppy™ are subsets of
—Ck, CH).

The proof of the theorem can be found in [46], Theorem 5.7.

Let ¥ € CK(R) be a Daubechies scaling function and ¥ € C*(R) a Daubechies
wavelet with wa(x)x” dr =0, ke N, v e Ny, v<k. We extend these wavelets from R to
R™ by the usual tensor product procedure

\IJJGm = /2 H¢GT(2j$T - mr)7 (1'3'2)
r=1

where j € Ng, m € Z", G = (Gy,...,G,) € G and G° = {F,M}" and for j > 0
G? = {F, M}", where * indicates that at least one G, must be an M.

{5, jeNy,meZ",Ge G}
is an orthonormal basis in Ly(R™), cf. [46].

Theorem 1.9. The Daubechies system {5 : j € No,m € Z",G € G’} is a Schauder
basis in L,(R"), 1 <p < oo. If 1 < p < oo then the basis is unconditional.

See Theorem 9.9, |46].

1.4 Besov and Triebel-Lizorkin spaces

Let @9 € S(R™) with ¢o(x) = 1if |z] < 1 and ¢o(x) = 0 if |z| > 3/2 and let ¢i(z) =
@o(27%x) — po(2"'x), © € R*, k € N. Since 3372 @;(x) = 1 for 2 € R” the ¢; form a

~

dyadic resolution of unity. The functions (¢;f)"(x) are entire analytic functions on R™ for
any f € §’'(R"), so the pointwise operations with the function have sense.

Definition 1.9. Let ¢ = {;}32, be the above dyadic resolution of unity.

13



(i) Let 0 <p <o0,0<qg< o0, s€R Then By (R") is the collection of all f € S'(R")
such that

00 1/q
1B, ®)|), = (Z 2jsqll(<pjf>vle(R”>Hq> <o
=0
(with the usual modification if ¢ = c0).

Let 0 < p < 00,0 < ¢ < o0, s€R. Then Fj,(R") is the collection of all f € §'(R") such
that

[e.e]

1/q
1S [ Fpg (Rl = || (Z 2jsq\(90jf)v(~)!q> | Lp(R™)|| < o0

J=0

(with the usual modification if ¢ = o0).

Remark 1.2. The theory of the above spaces may be found in [39]-[41]. The definition of
Besov and Triebel-Lizorkin spaces is independent of the resolution of the unity ¢ up to
quasi-norm equivalence. The spaces are quasi-Banach spaces. They are Banach spaces if
p>1and ¢ > 1. If p,qg < oo the spaces are separable and the space S(R") is a dense
subspace of F; (R") or B5 (R™). We have always

S(R") = B, (R") — S'(R")
and

S(R") = F, (R") — S'(R").
We have the following elementary but important embeddings:

e B (R") — B2 (R") and F,} (R") — F32 (R") if 51 > so.

pa1 pa1

e By (R") = B (R")and F;, (R") — F; (R")if ¢ < gy,

p,q1 psq2 p,q2

e B> (R") — I3 (R") — By (R") if ¢ < min(p,q) < max(p,q) < g

The both scales of function spaces have so called lift property. Let o € R. Then [, : f —
<(1 +- |2)U/2 f)v is a topological bijection of S(R™) onto itself and S’(R™) onto itself.
Furthermore

I, B, (R") = B, 7 (R")
and

IL,F(R") = F, 77 (R")
(equivalence of quasi-norms).

Remark 1.3. There are some well known special cases of these function spaces. Let 1 <
p < 0o. Then
L,(R") = F),(R")  (norm equivalence).

14



This is the well-known Paley-Littlewood theorem. Let 1 < p < co and k € Ny. Then
Wi (R") = F;5(R")
are the classical Sobolev spaces usually equivalently normed by

1/p

/W@ = | > 1D fILy(R™)|"

la|<k
More generally if 1 < p < 0o, s € R then
F»(R") = HJ(R")
where
Hy(R™) := I_,L,(R")

is a Sobolev spaces with fractional smoothness.
One can define an equivalent quasi-norm in B; (R") and F;, (R") spaces using iterated
differences

ALf(2) = fla+h) = f(2), AP+ f(x) = AL (ARS) (@), m > 1

with z,h € R™.
In particular if s > 0 then
Bl (R") = C*(R").

Where C*(R") is the Holder-Zygmund space that is the space consisted of continuous
functions for which the following norm is finite

IFiC @) = [ACT @]+ 3 swp (b [AFDUF@)C®Y]. (141)

jaf=[s] 771"

where s = [s] + {s}, [s] is an integer and 0 < {s} < 1.
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Chapter 2

Function spaces with A]lfc weights

2.1 Classes of weights

Let w be a nonnegative and locally integrable function on R™. Such functions are called
weights and for measurable set E w(E) denotes [, w(z)dz. We consider L¥(R") spaces,
i.e., L,(R™) spaces with Lebesgue measure replaced with measure w dz.

2.1.1 Locally regular weights

Several classes of weights were considered in the context of Sobolev and Besov type spaces.
[ would like to mention some of them that are called admissible weights and regular weights.
Let w € C*°(R") be a weight such that for all v € Njj there exists a positive constant

Cy
|D"w(z)| < cyw(z) for all x € R" (2.1.1)

and there exist constants ¢ > 0 and o« > 0
0<w(z) <cwly) (1+|z— y|2)a/2 for all z,y € R". (2.1.2)
These weights are called admissible weights, [19]. For example the functions w, v given by

w(z) = (1+ |3:|2)0“/27 v(z) = (1 +log(1 + |a:|2))a, a>0

are admissible weights.
If a function w € C*°(R") satisfies (2.1.1) and the following exponential growth condi-
tion

0 <w(z) < Cexp (C |z — y[6> w(y) (2.1.3)

for all z,y € R™ and fixed 0 < 8 < 1, then it is called a general locally reqular weight. For
example the weight
w(w) =exp(|z]”), 0<p<1

is locally regular but not admissible, [35]. Of course any admissible weight is locally regular.
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2.1.2 Muckenhoupt weights

Let us recall the definition of the Muckenhoupt weights, [38], Chapter V.
Definition 2.1. A weight w belongs to A,, we A,, 1 <p < oo, if

p—1
Ay (w) = ngﬂgn ﬁ/@w(z) dx (/Q W () dx> < 00

w(@) | _
Ai(w) := ngﬂglwﬂw 1||LOO(Q)

and w € A, if

where supremum is taken over all cubes @) C R".

Definition 2.2. We say that w € A, if for any «, 0 < a < 1, there exists 5, 0 < § < 1,
such that for all cubes () and all subsets ' C B

|F| > al@Q| = w(F) = w(Q).
As an example we can take

—n<a< —-1), fl<p<
w(z) =|z|* € 4, for n<a<nlp-l), 1 b= oo
—n<a<o, ifp=1
or weights with logarithmic part
@ (1_10g|x|)7ﬁ7 |fL’| < 17
o(z) = | s
(1+1logla)) ™, Ja > 1.

Then
R d — 0
ve A if g€ an n<a<o,
>0 and a=0,

and
veA,l<p<oo if —n<a<n(p—1), R

If <0 and a =0 then v € A, for any p > 1 but not to A, cf. [12].

2.1.3 Local Muckenhoupt weights

Definition 2.3 (Rychkov, 2001). We define a class of weights Al (1 < p < c0), which
consist of all nonnegative locally integrable functions w defined on R"™ for which

Al (w) ;—3151'@’/ (/ P’(x)dg;>pl<oo. (2.1.4)

Moreover w € Al if

w
Alee(w) == sup

IQSI% HwilHL«»(Q) < 0. (2.1.5)
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Definition 2.4. Let f be locally integrable. Operator

loc
f(x) =sup — /If )| dy,
Q>x |Q|

where supremum is taken over all cubes in R™ for which |Q| < 1, is called a local mazimal
function.

Remark 2.1. 1f w € A% then there exists ¢ > 0 such that for all cubes Q, |Q] < 1,

w(Q)
ol <cw(x) forae x€Q. (2.1.6)

In consequence there exists ¢ > 0 such that
MYw(z) < dw(r) ae z€R™

Remark 2.2. It follows directly from the definitions that A, C A and A“(w) < A,(w)
for any w € A,, 1 <p < o0.

Definition 2.5. We say that w € A% if for any « € (0,1)
sup sup M < 0,
QI<1 \ Fe,|F>al) W(F)

where F' is taken over all measurable sets in R".

Remark 2.3. Any Muckenhoupt weight of the class A, belongs to the class .Ai,oc. But local
Muckenhoupt weights cover also so called admissible weights and locally regular weights,
cf. [34], [19], [35].

As an example of a weight, which is in A%, but not in A, and is not locally regular,
we can take
|| for |z| <1,
w(x) = a> —n.
exp(|z] — 1) for |x| > 1,

If —n <o <n(p—1)and 1 <p < oo then w € A If —n < a <0 then w € AP

2.1.4 Properties of classes Aéoc
We would like to mention some important properties of classes Aﬁf’c.

Lemma 2.1 (Rychkov, 2001). Let 1 < p; < py < 0o. Then Aéof C Aﬁf;c C Aloe,
Conversely, if w € A, then w € .Ai,oc for some p < oco.
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The last lemma implies that A% = Ups1 Alec. In consequence we can define for w €

A a positive number
ry = inf {1 §p<oo:w€¢4§fc}.

In an analogous way we put 7, = inf {1 <p < oo:w € A,}, for w € A.
Next lemma shows us an important relation between A, and Aﬁf’c weights.

Lemma 2.2 (Rychkov, 2001). Let 1 < p < o0, w € Aﬁ;’c and I be a unit cube, i.e., |I| = 1.
Then there exists a w € A,, such that w = w on I and

Ap(@) < A (w),
where constant ¢ is independent of 1.

We give an example of a weight, which is in Aﬁj’c N A, but not in A, for some p > 0.

Let
w(z) = |z|*  for |x| <1,
|z|? for |z| > 1,

for a, f > —n. If & < (p — 1)n then we have w € AY and r, = W + 1. On the

other hand if a, 8 < (p; — 1)n then we have w € A, and 7, = M + 1. Taking 3 big
enough we get that w is in Aﬁ,"c N A, but not in A, and r,, < 7.

Lemma 2.3. Let w € A, 1 < p < oo. Let S be a measurable set and Q a cube with
|Q| <1 such that S C Q. Then

w@ <eos) (14"

Proof. Suppose p > 1. By Holder’s inequality and the definition of .Aé"c class we get

(ED (rclz|/ s<x>da;>”§ (@%/QXS(@%);;
(’Cl?|/xs() l/p(x)w_l/p(x)dx)p
(@ | xstte) ) (& [ dm)
<(ig%®) (ui@)

For p = 1 we get the result in analogous way. [

Theorem 2.1 (Rychkov, 2001). For 1 < p < co the weak (p,p) inequality
w({z € R : MY f(z) > \}) < Ap/ () Pz
holds if and only if w € Aéoc.

19



Definition 2.6. Let 0 < p < 00, 0 < ¢ < oo and w € A%, Then {,(L¥(R")) is the
set of all sequences f = {f;(7)}32, of Lebesgue-measurable functions on R"™ with finite
quasi-norms given by

© 1/q
el - (S lnel)

Let 0 <p<oo,0<g<ocorp=gq=ocand w e A%, Then L;"(@,R”) is the set of all
sequences f = { f;(r)}32, of Lebesgue-measurable functions on R" with finite quasi-norms
given by

o

1/q
| F1Ly (6, R™)|| = (Z(fj)q) Ly (R")

§=0
Definition 2.7. We define a special convolution operator
Kpf(x)= | |f@2~""dy (B > 0).
]Rn
The Fefferman-Stein maximal inequality holds for the operator M'¢ and Kz and local

Muckenhoupt weights.

Theorem 2.2 (Rychkov, 2001). Let 1 <p <oo, 1 <g< o0 and w € Aﬁ,"c. Then for any
sequence of measurable functions {f;}52, we have

[0 £ {26 R < c [{FHLE(E R
Also, there is a By = Bo(w,n) > 0 such that for B > By/p we have
K YL G B < | (LR (G B
Lemma 2.4 (Rychkov, 2001). Let w € A and 1 < p < co. Then
w(tQ) < expleatw(@Q) t>1, |Q =1,
where ¢, > 0 15 a constant depending on n and Aﬁj’c(w).

It follows from the above lemma that classes Aﬁfc are independent of the upper bound
for the cube size used in their definition, i.e. for any C' > 0 we could have replaced |Q| <1
by |Q| < C in Definition 2.3.

2.1.5 Further properties of classes Aéoc

Let fo = |Q| fQ r)dx.
We can define dyadzc maximal operator

A _
M f(a sup‘Q|/|f )l dy,

z€eQ

where supremum is taken over all dyadic cubes () C R".
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Lemma 2.5. Let [ be a locally integrable function on R™, and let a be a positive constant
so that
Qo = {z: M2 f(z) > a}

has finite measure. Then Q, may be written as a disjoint union of dyadic cubes {Q);} with

(i) a < Q™" fy, 1f(@)] da

and

(i6) 1Q;17 f,, (@) de < 27,

for each cube Qj. This has the immediate consequences:

(117) |f(x)] < « for a.e. x € R™\ Uj Q;

and

(iv) || < a7t [o, |f(2)|da.

The proof of the above lemma can be found in Chapter IV, §3.1 in [35].
Next proposition is analogous to the reverse Holder inequality, which is an important
property of Muckenhoupt weights.

Proposition 2.1. If w € A, then there exists v > 1 and ¢ > 0 (both depending on w)

such that
(a1 / )W ‘ (21.7)
— | w'dx < —/wd:c, 2.1.7
QI Jg Ql Jo

for all cubes Q such that |Q] < 1.

Proof. For w € A% there exist constants v,d € (0, 1) such that
|E] <71Q] = w(E) < dw(Q), (2.1.8)

for every @, |Q| <1 and F C Q.
Let us consider dilation given by Dyw(t) = o "w(L) for @ > 1. If w satisfies condition
(2.1.8), then D,w also does. Actually

Daw(E):/Eiw(i)dt:/Q_le(a:) dz = w(a ).

From |a'E| < v|a™1Q|, we have w(a™'E) < dw(a™tQ), that is Dow(E) < dDw(Q).
Because the class of w that satisfies (2.1.7) is invariant under multiplication by positive
scalars, translation and dilations with a > 1 similar to the class .Af)ff, we can follow the
ideas of the proof of Proposition 4 in Chapter 5, §3.1 in [35].
Let Qo be a cube such that w(Qy) = |Qo| = 1. We must show that

/ w" < e.
Qo
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Let f = wxg,. Set By = {z € Qo: M?f(x) > 2"k} where N is a large integer to be
chosen momentarily. From Lemma 2.5 we know that for every z € Fj, there exists maximal
dyadic cube @); such that z € (); and

1
— (z)dx > 2NF.
|QJ’ Qj

These maximal dyadic cubes are pairwise disjoint, their union is E* and every of such
a cube is contained in some dyadic cube contained in E*~!. Summing over all maximal
dyadic cubes Q; C @, where cube Q C E*'| we have

EF N = jSQ*Nk ) dx.
B0 Q] ;m /Qf()

For @)
/ F@) da < 272861 ]
Q

Finally we have

Now we choose N such that 2"~ < v and from property of class A% w(E*NQ) < dw(Q).
Taking the union over all Q consisting of E*~! gives

w(E*) < dw(E)

and therefore
w(EY) < 6*w(E°) < 6.

Now
/ w'(x) dx S/ (MAf(x))Tflw(x) dx :/ + / :
0 0 Qoﬁ{l‘:MAf(x)Sl} k=0 Ek\Ek+1
The first integral is bounded by 1 and the k-th integral in the sum is bounded by

2N(k+1)(r—1)w(Elc) < 2N(k+1)(r—1)5k.
Since < 1, the sum

Z 2N(l€+1)(r71)5k
k=0

converges if r is sufficiently close to 1. ]

Proposition 2.2. Let w; and wy be Al weights. If 1 < p < oo, then w = wlw;_p belongs

to Aﬁ;’c. Conversely, let w € Aﬁfc, then there exist wy and wo in A° such that w = wlw;p.
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Proof. Let wy, ws € AP¢. Then for any cube Q it follows from (2.1.6) that
essinf,cqw;(x) > 0,0 =1,2. Thusfor 1 <p < oo, |Q] <1 and w= wiwy P we have

/Q w(zr)dr < /Q wi (z) du (ess ggg wz(x))lp,
</Qw1 P (z )dx)p_ < </Qw2(a:)dm>p_ <eSS§Ielcgw1(x))_ :

<|?12|/Qw(:r) da:) (|712|/Qw11p(95) dx)ﬁ—l )
<t (o) [ [ (st |

is bounded by (2.1.5). So w € Al from (2.1.4).
Now we prove the converse. Let w € Aﬁf’c, p > 2. Consider an operator T defined by

Hence

p—1

Tf= (w—l/leoc(fp/p’wl/p))p//p + wl/leOC(fw—l/p).

Because M is bounded on L¥(R") and on L;f,fp//p (R"), cf. Lemma 2.2, thus 7" is bounded
on L,(R™), that is

p

711, < | (wer (fp/p'wl/p))’”p

+ [[w! s (fo )|
p

”Mloc <fp/p 1/p> I HMloc (fw—l/p) prw (219)
<C (’ fp/p’wl/p v'/p > wa—l/pH ) =C Hpr?
P w

for some C' > 0. Since p > 2, p/p’ > 1, Minkowski inequality gives T'(f1 + f2) < T f1 +T fo.
Fix now a nonnegative f with || f||, = 1. It follows from (2.1.9) that the series

- ka

where T*(f) = T(T*(f)) is convergent in L,(R"). But f is nonnegative, so the functions
T* f are also nonnegative. Thus the series converges to 1 a.e. Since T is sublinear we have

<> QO)FTMf = Z (2C)FTRF < (2C)n  ae

k=1 k=2
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Now we can write w; = w'/PnP/?’ | then
My () < M ( 1/p77p/p> () < (T)"" w'? < 20" w'? = Cw(z) ae..

So wy € Alc. Similarly, if wy = w™/Pp, then M"wy(x) < Cwy(x) a.e. and wy, € Ae.
Now w = wywy *.

The case p < 2 follows immediately by factorization for w=>/? € Al, , wy,wy € Alee)
we have

—p 1—p'
w p/p:w1w2 P

SO

/
1—p/ 7p/p _ / _ /+ 1—
w:<w1w2 p) = w PP PP = i Py,

]

Proposition 2.3. Let w satisfy conditions (2.1.1) and (2.1.3), i.e. w is a locally regular
weight. Then w € Ale.

Proof. We check AY¢(w) condition. Let @ be some cube with |Q] < 1. Let y € Q. From
(2.1.3) we get

Q) _
%”w 1||Loo( o= \Q!/ x) dx esssupw(z)

zEQ

1
< c—w(y)/ exp(Clz — y|?) dz esssupw ™ ()
‘Q| Q T€EQ

< @w( )/ exp(CnP’?) dz esssupw ™ (z)

zEQ
< cw(y) exp(CnP’?) esssupw ()
zeQ
< cesssupexp(Clz — y|?) < c.
z€Q
So w € Ale. O

2.2 Weighted function spaces with A° weights

In the definition of weighted function spaces we replace in integration Lebesgue measure
with w dx measure, where w is nonnegative, locally integrable function called a weight. In
natural way then we can define weighted function spaces L;)(R"). In [34] Rychkov define
weighted Besov spaces Byt'(R") and weighted Triebel-Lizorkin spaces I, (R") related to
Ly(R"™). To incorporate the wide class of weights into the theory he introduced a class
of distributions which is generalization of the class of tempered distributions. Then he
developed Fourier approach to the above spaces. That approach is a natural generalization
of prior definitions and gathers different weighted function spaces in one theory. In that
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subsection we describe basic parts of that theory with properties of weighted function
spaces.

Following Rychkov we define Besov and Triebel-Lizorkin spaces with local Muckenhoupt
weights, [34]. Because the class of tempered distributions S’(R") is too narrow for this
purpose we introduce a class S.(R™), which is a topological dual to a S.(R™) space. The
spaces S.(R"™) and S/ (R") were introduced by Th. Schott in [35].

Definition 2.8. By S.(R") we denote the set of all ¢ € C*°(R") such that

an(¥) = sup ™1 N~ |D(x)| <00 for all N € Ny,

n
zeR la|<N

We equip S.(R") with the locally convex topology which is defined by the system of the
semi norms qy.

Proposition 2.4. (i) S.(R") is a complete locally convex space.
(ii) D(R") — S.(R™) — S(R").

(i11) D(R™) is dense in Se(R™). S.(R™) is dense in S(R™).

(iv) If w € A then S.(R") — Ly (R™) for any p, 0 < p < co.

Proof. Proof of parts (i), (ii) and (iii) can be found in [35].
Proof of part (iv). It follows from Lemma 2.4 that the function ¢(z) = e VI*l belongs
to Ly (R") for sufficiently large N. We have

o0

/ ] e NPy () do =) /B e NPy (z) da

M=1"Y B(0O,M)\B(0,M—1)

< Z e’N(M’l)peC“’Mw(B(O, 1) =c Z e~ Wp=ew)M
M=1 M=1
it Np > ¢,. Thus for f € S.(R")

[ If@Puta) s < ax(r) [ Moty de < Can(h),

n

]

Definition 2.9. S/(R") is the collection of all continuous linear forms on S.(R"). We
equip S/ (R™) with the strong topology.

We can identify the class S.(R™) with the set of those distributions f € D'(R") for
which the estimate

[(f, )| < Asup{|D(x)|exp (N |z|) : x € R",|o] < N} for all ¢ € Cg°(R"),
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is valid with some constants A, N depending on f. Such a distribution f can be extended
to a continuous functional on S.(R™).
We take a function ¢y € D such that

/n wo(x)dx #0 (2.2.1)

We put
x

o(r) = @o(z) — 2’”900(5) (2.2.2)

and p;(x) = 2U=Ynp(27717) for j = 1,2,.... One can find ¢, such that

/ 2P p(z)dr =0 (2.2.3)

for any multindex § € Nj, |8| < B, where B is a fixed natural number. We will write
B = —1if condition (2.2.3) doesn’t hold. Indeed in [35] the following proposition is proved.

Proposition 2.5. Let L € N. There exist functions &y, ¥y, € D(R™) such that

/n O (z)de =1

AR (z) = Oy (2) — 2*"@(%).

and

Thus taking ¢y = @, and ¢ = AL, we get the pair of functions satisfying (2.2.1)-
(2.2.3). In particular (2.2.3) follows by integration by parts formula if L is sufficiently
large.

Definition 2.10. Let 0 < p < 00, 0 < ¢ < 00, s € R and w € A%, Let a function

vo € D(R™) satisfy
[ enlwyds 20

/xﬁgo(a:)dxzo, 18| < B,

where p(z) = wo(r) — 27"po(5) and B > [s]. We define a weighted Besov space B, (R")
to be a set of all f € S. for which the following quasi-norm

and

1/q
Hf’Bsw Rn (Z 238(1 HQOJ % f’Lw Rn HQ>
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(with the usual modification if ¢ = oo) is finite, and a weighted Triebel-Lizorkin space
Fom(R™) to be a set of all f € S! for which the following quasi-norm

o0 1/q
F1E R = (Z?”\w*ﬂq) Ly (R")

=0
(with the usual modification if ¢ = co) is finite.

Remark 2.4. The definition of the above spaces is independent of a choice of the function
o, up to the equivalence of quasi-norms. The spaces are quasi-Banach and Banach spaces
ifp>1and qg>1.

Remark 2.5. To simplify the notation we write A;*(R") instead of B,;*(R") and F;*(R"),
when both scales of spaces are meant simultaneously in some context.

Remark 2.6. The definition covers the earlier definitions of Besov and Triebel-Lizorkin
spaces for Muckenhoupt weights, admissible and locally regular weights, cf. [6], [19], [35]
and references given there. One can also define the Besov and Triebel-Lizorkin spaces for
doubling measures, cf. [5|. This approach also covers the weighted spaces with A, weights,
but not with A% weights (e.g. exponential weights are not doubling). On the other hand
there are the doubling measures that do not belong to the class A, cf. [45].

o0

Remark 2.7. The spaces A;;;“(]R”) have a lot of properties similar to the unweighted spaces
By (R™) and Fy, (R™). In particular
o ASLW(R™) — A%2W(R"™) if 51 > so.

pa1 Pq2

o ASY(R™) — A3™ (R™) if ¢1 < ¢o.

p,q1 P;q2

o B (R™) — Fpsq’w(R”) — B (R") if ¢; < min(p,q) < max(p,q) < ¢o.

p,q1 Psq2

Moreover if 1 < p < oo and w € Aﬁ;’c then
Fz?, y (R") = LJ(R")  (norm equivalence).
All the above properties can be found in [34].
Proposition 2.6. Let 0 <p < oo, 0 < ¢ < o0, s € R" and w € A, Then
Se(R™) — A2 (R") — S;(R™).
Moreover if ¢ < 0o then S.(R™) is dense in A3 (R").

Proof. Step 1. The embeddings A% (R") — S/(R") are shown in [34], Lemma 2.15. Now
it is sufficient to prove that S.(R") — Bsi’'(R") for any s € R™. The rest is similar or
follows by elementary embeddings.
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Let f € S.(R"). We take py = ®; and ¢ = ALW, from Proposition 2.5. Then the
properties of convolution implies

frpi(z)=f=* (AL\IIL)]. (x) = 97 (n=2L) (ALf * \IIL(2j~)) (x).

But 27"ALf « U (27.) — AL f in S.(R"), cf. Proposition 2.7 in [35]. So 2mALf x Wy (27.)
converges uniformly to A*f and
27" AL f U (2) ()| < e MWlgy (2MAf 0L (27)(2) — AP f(2)) + AT f ()]
< Ce Nl | AT f(2)].

The function e N + [AFf(z)] € L¥(R") if N is sufficiently large. Therefore by
Lebesgue’s theorem of dominated convergence 2/"AFf « Wp(27.) — AFf in LY(R") if
jJ — oo. Thus

2% || f o | LY (R™)|| < 276728 || (277 AF f 5 Wy, (27)) () [LY (R™)|
< Cot= Ak iy @)

and the constant C' is independent of j. From Proposition 2.4 (iv) and if 2L > s we get

o0

D2 || £ x oy L (RM)| < o0

J=0

Step 2. Now we prove the density of S.(R") in A57*(R"). The idea follows from Theorem
3.2 in [35]. We show that D(R") is dense in F“”(R") The proof for Bs"(R™) is similar.
Let f € F3"(R"). Let 9o € D(R"), [no(x)dz # 0 and ¢ = @y — 27"po(5). Take
1o, € D(R™) such that for any glven A>04 has vanishing moments up to A and

f= Zwk xopx [ in D'(R™).

k=0
We can find such ¢ by Theorem 1.6 in [34].
Substep 2.1. Put
:Z%*%*f, m € Np.
k=0

We want to show that f,, — f when m — oo, in F;»*(R"). Let 0 < m < m/. Then

|05 % (far — fin)| ( Z ;% U * x| ().

k=m+1

From Lemma 2.9 in [34] for every A, B > 0 there is a constant ¢ such that for each z € R”
we have if j > m +1

k=j

e (14 2y ) 212
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and if j <m+1

05 % (for — fun)| (z) < € i 2”"“"‘2’”/ onx fe =yl

— re (14 2y|)" 2P

From Lemma 2.10 in [34], Young’s inequality (¢ > 1) and monotonicity of ¢, (¢ < 1) we
get

32y # e = "0

Sed| 30 2T (U o e 1)) + Kallon s SD@)| +
te D0 (D020 (Ao s f)(x) + Kl * 1) (@)
j=m+1 | k=j
< 30 2 M (s (@) + Kl « f) ()|

for A—n+s>0.
Lemma 2.2 gives

00 1/q
[ frnr = Fnl Ep (R™)]] < < > 2jsq\90j*f!q> L, (R")

j=m+1

By Lebesgue’s theorem of dominated convergence {f,,} is a Cauchy sequence in Fo(R™).
So there is some limit element f € Fo?(R™). From the first step we get f,, — fin S/ (R™).

But from Theorem 1.6 in [34] we have f,, — f in S'(R"). Thus f = f.

Substep 2.2. Let 1 € C*°(R"™) such that ¢(z) =1 for |z| <1 and ¢(z) = 0 for |z| > 2.
Let ¢, () = ¢(27™x), m € No. Let f € F3*(R") and fix k € No. Put g = ¢ % o * f.
Then v¢,,g € D(R™). To prove the density of D we show 1,9 — g when m — oo in
F(R™),

From the first step we get

HQ/)m’g - 77Zng|178w Rn H < CHAL Q/Jm’g ¢mg)|Lw(Rn)||

1/p
<c Z </|x>2m |D7g(x)[Pw(x) dx> + Z 9—ml|B| HD'YglLZJ(Rn)H 7

0<|y|<2L 0<|B|<2L

where 0 < m < m' and 2L > s. Using inequalities from Substep 2.1 and from ¢ € S, we
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get

HD79|L;U(RH)H = HDVW * (g * f\LzJ(Rn)”

< (/n (/n | DV (y)| | on * fz —y)| dy)pw(x) dx) 1/p

<o [ ([ el ) e )

’ </ . ( / u(v) |2'1'f f; %”L;ﬁ | dy)p o) m) 1/p

¢ (/ (M (Jor = fI) + Kr(Jow = f1)" w(z) dx) 1/p

IN

IN

p
<o [ tonsrutoan)  <élme@).

With the same argumentation as in the conclusion of Substep 2.1 we get that {¢,,} is a
Cauchy sequence in F»*(R™). From Proposition 2.8 in [35] we get the result.
O
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Chapter 3

Local means and Daubechies wavelet
bases 1n function spaces with Afooc
weights

3.1 Local means and wavelet bases in weighted spaces

In this section we follow the main idea of H. Triebel from [44], that Daubechies wavelets can
serve both as atoms and kernels of local means. So, first we recall the atomic decomposition
of function spaces with the local Muckenhoupt weights due to Izuki and Sawano, cf. [23],
also [24]. Then we introduce local means and prove characterizations of function spaces.
Our approach to wavelet decomposition is more direct than this one presented in [24] since
we avoid some density arguments.

3.1.1 Atomic decomposition

All results of this section come from [23].
First we define atoms, which are smooth (to some order K) functions, which satisfy
moment condition up to some L.

Definition 3.1. Let s € R, 0 < p < oo, K,L € Ny and d > 1. Then C¥ —functions
Ajm : R" — C with j € Ng, m € Z", are called (s,p)-atoms if

Supp Gjm C dQ]TTu j € N07 m e Zn7
and there exist all (classical) derivatives D%a;,, € C(R") with |a| < K such that
|D%aj, ()] < 277670 0| < K, je Ny, meZ, (3.1.1)

and
/ Paj,(v)de =0, |B| <L, jEN, meZ" (3.1.2)
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Remark 3.1. Please note that the last condition is omitted if j = 0.

In connection with atoms and function spaces we always have sequence spaces for
sequences of coefficients, which will appear in atomic decompositions.

Definition 3.2. Let 0 < p < 00, 0 < ¢ < oo and w € A%, Then by, 1s a collection of all
sequences

A={A\m€eC:jeNy, meZ"} (3.1.3)
such that

[ Albg, || = '{ > Ajmxﬁ-’;i} 10,(LE(R™) || < o0,
J€No

mezZ”

and let 0 < p < 00, 0 < g < oo orp=gq=ocothen f7 is a collection of all sequences A
according to (3.1.3) such that

| - {Z%mxﬁl} Lo B < oo,
j€Np

mezLm™

» _

in .
where x;., =27 xq;,,- Once more we use the notation a,,.

Izuki and Sawano proved in [23] that distributions from B;;*(R™) and F*(R") admit
atomic decompositions, cf. also [24].
For w € A let us define

Tw
(1) 4 (ry — D,
o,(w) ”(mm@,rw) )+<r n
n
=——-—n
71 min(L,q)

and
Opg(w) = max(oy(w), o).

Theorem 3.1 (Izuki, Sawano). Let 0 < p < 00, 0 < ¢ < 00, s € R and w € A, Let
K, L € Z satisfy

K> (1+]s]), and L >max(—1,o,(w)— s])
when A%Y(R") denotes By (R") and
K> (1+[s]), and L >max(—1,[op(w)— s])

when AS*'(R") denotes Fy"(R™). Let f € ASY(R™). Then there evists a sequence of

(s, p)-atoms {ajm}cr, mezn and A € agy, such that

F=30 3 Mt and Ny < e |l @)

=0 meznr
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with convergence in SL(R™). Conversely, let {aj,}
and A € a,,. Then the series

ieNomezn D€ 4 sequence of (s,p)-atoms

F=2 2 Amtim
j=0 mezZn
converges in S, (R") and belongs to A5"(R") and

171455 ®R]| < ¢ |[Xa

pall
3.1.2 Characterization by local means

First let us define kernels of local means.

Definition 3.3. Let A, B € Ny and C > 0. Then C4—functions Eim : R" = C with
7 € Ng, m € Z", are called kernels if

supp kjm C CQjm, j€Nyg, meZ",
there exist all (classical) derivatives D%k, € C(R") with |a| < A such that
| D%k ()] < 277411 a| < A, j €Ny, m € Z, (3.1.4)
and

/ P kjm(r)dr =0, |Bl< B, jEN, meZ" (3.1.5)

Since the kernels have finite smoothness we will work with distributions of finite order.

Let us consider a set CP(R™) of functions ¢ in C™(R™) such that supp ¢ C K, where
K C R" is compact and a set CJ*(R") consists of functions belonging to C"™(R™) with
compact support.

Definition 3.4. A distribution f € D'(R") is of order m, m € Ny, if for every compact
K C R” there exists a constant ¢ such that

[f(@)l < e D sup|D%(x)|  for every o € CF°(R").

la|<m zeK

We denote the set of all distributions of order m by D/, (R™).

Distributions of finite order can be identified with continuous linear functionals on

CJH(R™).

Theorem 3.2. If f € D, (R") then f can be extended to a continuous linear functional
on CI'(R™), moreover (C'(R™))" = D! (R").

The proof of the above theorem can be found in [22], Theorem 2.1.6.
Now we can define local means as dual pairing with with distributions of finite order.
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Definition 3.5. Let f € D, (R") NS.(R™). Let k., be kernels according to Definition 3.3
(with the same constant A). Then

n

1) = ki) = [ Ko@) ) dy. € N, m € 2 (3.1.6)
are called local means. Furthermore we put,

k(f)=A{kjm(f):jeNy,meZ"}. (3.1.7)

As in section devoted to atoms (Definition 3.2) we define sequence spaces now related
to local means.

Definition 3.6. Let s € R, 0 < p < 00, 0 < ¢ < oo and w € AY. Then B;’qw is a collection
of all sequences \ according to (3.1.3) such that
P a/p
w(z) dx)

and f5 is a collection of all sequences A according to (3.1.3) such that

1/q

> Nmx ()

mezn

N = S22 < /
=0 R

7=0 mezn"

s 1/q
A\ |l = (Z > 2jsq\>\ijjm|q> |L, (R")|| < o0

The following lemma and corollary give us the conditions on the function spaces to
consist of distributions of finite order.

Lemma 3.1. Let s € R, 0 < p < 00 and w € A, Then Bs"(R") C Dy(R") for any
> max(0,[—s + ®2= — 2] +1).

Proof. Let f € B,7*(R"). From the atomic decomposition we have
f = Z )\jmajm
j’m

and \j, € by, with convergence in D'(R"). It means, that we can approximate f by
functions f; = ngk,\m\gk Njm@jm, 1.e. f=1limy_, fi in D'(R™), that is
flp) = lim fi(y)

k—o0

for all ¢ € C3°(R").

34



For p > 1 from Hélder’s inequality we have

|fk Z )\]ma]m < Z ’)\]m‘

Jilm|<k Jlm|<k

/n ajm () p(x) dx

[ amle)eteyda

< X 2"l w(Qm) S Q)

Jrlm|<k Jslml|<k

Since A € by, we have

DY Y Nl w(Qm) < o (3.1.8)

j=0 mezn
From |a;,(z)| <27 16573) we get

/

p

[ o) ds

< c|Quuml” 277 sup ()"

< DI up (o)

Let supp ¢ C K, where K is a compact subset in R™. If Q);,,, C Qp; then from Lemma 2.3
we have |
w P P(Qjm) < cw ™ P(Qo )2, (3.1.9)

since w € AW for some r,, < u < 0o. So

> W (Qm) 2T N w(Qog) v (3.1.10)
m:QjmNK#0,|m|<k 1:Qo,iNK#0
Now we can keep on estimating

/

P
Z Q—jnp’/pw—p’/p(Qjm)

Jrlml|<k

<e S 27 sup () w(Qu) T

Jim|<k el

Se 30 2 eI aup (o) w(Qn)”
J<k1:Qo,iNK#D zeK

< Ciesup (o) 3277075

J€No

[ amle)eteyda

L
P

For s > % — 2 we have

3

| fe(p)] < Cresup |p(x)],

rzeK
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where C'x depends only on K. Hence

|f(p)] < Ck SEEKO(JJ)\-

So f is a distribution of order 0 if s > % — %. Now let s < % — % and [ > —s + % — %.
Using the Taylor expansion of ¢ and the moment conditions if 7 > 0 we get

[ aml@lota) ds

=c / ajm(z) Y D(10 + O (2 — 20)) (7 — 20)* dat (3.1.11)
=t

< @ S sup Do),

o=l z€R™

Summing over j,|m| < k, we get from (3.1.11) and (3.1.9)

/

/ p
Z o—inp' [Py~ (Qjm)

j’m

| am@ots) ds

e D 27T N sup [Dop(x)]

jeNg jaj=1 °E

Incorporating the term with j = 0 we get

[fe(@)] < exc Y sup [ D¥p(x)].

\a|§lweK
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For 0 < p <1 we have an estimate

| fi(ep Z Ajm@jm (¢

Jim|<k

D=

p

IN

Z |)‘jm|p

Jlm|<k
QimNK#D

[ amla)eterda

AL

IN

> 2" NP w(Qjm) sup ()P Q[ w0 (Qn )27 R P2
Jilml<k vek
QjimNK#0D

1/p

<suplp(z)] sup 27 TVwTE(Q) | Y 2" Nl w(Qjm)

veK golml<k

QimNK#D Qi;l;})l}%i;@
Using the fact that A € by, we get
Je@) < Csuplp@)] — sup 27T H Q).
ek oM <k,Qm K0

In the same manner as in (3.1.9) we can see that

[fe(9) < Csuplp(z)]  sup 27942200 (Qq )

zeK 3,L,Qo, NK#0
< O(K) sup | p(x)| sup 27965+,
zeK j€Ng

For s > nu/p —n we have
()] < Csup ()]
Te

For s < nu/p —n and [ > —s + nu/p — n using the above estimations and the same
inequalities as in (3.1.11) we get

, 1/p
| fr (@ |)\]m|p ajm(x)cp(x) dxr
J,im|<k R
Z sup |[D%p sup 2_j(l+5+")w_1/p(Qjm)
— :):EK j |m|<k,KNQjm#~0

< ci Y sup [Dp(x)| sup 27t mmep),
laf=1 "€ j€No

So f is a distribution of order [ for any [ > max(0, [—s + *2= — 2]+ 1). O
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Corollary 3.1. Let a weight w belong to the class A'%°. The spaces F5(R™) and B3 (R™)
consist of distributions of finite order | for any | > max(0, [=s + == — 2] +1).

Proof. Let us choose s’ < s such that [ > max(0,[—s" + ™= — 2] + 1). Then by the
elementary embeddings and Lemma 3.1 we have

F(R") C By (R") C Dy(R™).
A similar argument works for Besov spaces. ]

The next theorem gives us the characterization of Besov and Triebel-Lizorkin spaces
with A!¢ weights by local means.

Theorem 3.3. Let 0 < p < 00, 0 < ¢ < 00, s € R. Assume that w € A%. Let kj,, be
kernels according to Definition 3.3, where A, B € Ny with

A > max (0, [—s 4+ ap(w)], [% — g — 5]+ 1) , B >max(0,[s] + 1),

when A" (R™) denotes By (R™) and

A > max (O, [0pg(w) — 3], [% - % — s+ 1) , B >max(0,[s] + 1),

when A5 (R™) denotes F(R™). Let C > 0 be fived. Let k(f) be as in (8.1.6) and (3.1.7).
Then for some ¢ > 0 and all f € A>"(R™),

pq
IR @z || < el 145 @]

Proof. We prove the theorem for Besov spaces. The proof for F;* spaces is similar. The
changes are analogous to the changes in unweighted case, cf [44].
Let

F@) =3 Auan(z), [e€ By (R"), (3.1.12)

r=0 leZn
be an atomic decomposition according to Theorem 3.1 where

K =B >max(0,[s] +1) and L= A > max (o, [—s + op(w)], [ — 2 — g + 1)
p P
For j € N we split (3.1.12) into the parts

F=1+P =) dan+ YD Auay

r=0 leZ™ r=j+11eZ™

and get

/nkj (y)f(y)dyz/n kim(y) fi(y) dy+/ kim(y) £ (y) dy.

n
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Let r < j and [ € l2(m) where

B(m) = {1: CQjm N DQui # 0},

where C, D € R are positive constants independent of j, r
By the Taylor expansion of a,; and properties of atoms (3.1.1) and local means (3.1.5)
we have

97 (s=3)

[ Fntaits) s

< 296 p) Z sup |D7a,(x |/ kjmW)| |y —277m dy
=8 *
_ olir)s=2-B).

Thus for any € > 0 we have

J
9i(s=3)p e (f)]F < CZ Z Al oi=r)(s=5 —B+e)p

=0 11l (m)

Summing over m € Z" we get

TN kg ()1 Q)

<Ci2(] r) s—f—B—&-s Z Z ’)\ ‘p ng)
1Rl
r=0 meZ™ lElJ Jm
(3.1.13)
CEJ:Q(] T) S—*—B-i-E Z Z |/\ |p Qjm)
|Qjim|
r=0 €2 el (m) m
<CZ ] r)(s—B+¢€)p Zp\ |P er
rl |Q
r=0 lezn rl

where the last inequality is a consequence of the estimate card i#(m) ~ 1, which follows
from the assumption r < j.

Now let r > j. Using the Taylor expansion of kj,, and moment conditions of atoms
(3.1.2) and (3.1.4) we have

23'(5*%)

[ Fntantnay

<2675 Z sup | Dk, (z |/ laq(y ||y—2 Sk dy
=4 *
_ U=t A)
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Thus for any € > 0 we get

p
9i(s=2)p <Y aumepemeaar [T

T>j Ll (m)

[ b))y

From Hélder’s inequality and the estimates card I7(m) ~ 27—

2/ / Eim @) (y) dy| < 207 Ny
R r>j leli(m)
Summing over m € Z"
5 ) )
mezZm" ’ |Q m|
w(Qjm)
<CZQJ r)(s+A—e)p Z Z |>\rl|p J
T>j 7nEan€V ) |C?7n|
w(Qn) {1Qiml “ (3.1.14)
<c 9i=r)(s+A+ 7 —€)p |>w|p rl ( jm )
> T T nrt (g
n_ ﬂ er
<CZQJ rs+A+ e— )pZ|)\ |p
r>j lezm |QT

where the second inequality follows from the fact, that for w € A and Q,; C Qj, and

from Lemma 2.3 we have O] “
w(@m) < cu@a) (22])

Taking (3.1.13) and (3.1.14) together we get

j(s—2 Qm r)(s—B+e€)p QTZ
2ET N g () |QJ| <c E:zﬂ Bte) E:IM\” O]
im r

mezZmn lezn

+CZQJ ) (s+A+E —e— ) Z|>\N|p |QQr’l <CZ2 li— rl%pZ‘)\ﬂp

T>.7 ez lezmn

where s = min(s + A + % — % —&,B — s —¢). Summing over j we have

1/q

mEZ”

) ) q/p
9i(s—=3)a ’km
Z <Z ] l%l)
1/q

lezn
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Now using the Young inequalities (Lemma 1.2) for convolution of sequences if % >1or
monotonicity of the [, space if % < 1 we proved that

R | < el ]| < el £1B5° @]

where the constant c is independent of the given atomic decomposition. O

3.1.3 Characterization by wavelets

We are going to deal with Daubechies wavelets on R™. We define sequence spaces related
to wavelets. That spaces are defined similar to that one in Definition 3.6, but here we have
additional finite sums taken on wavelet indexes G.

Definition 3.7. Let s € R, 0 < p < 00, 0 < ¢ < o0 and w € AY. Then by, is a collection
of all sequences A according to (3.1.3) such that

b= (325 3 (|3 o

1/q

P a/p
w(x) dx) < 00.

GeGi mezn
and f5% is a collection of all sequences A according to (3.1.3) such that
1/q
el = (5 2 k) 185080 <o
jm,G

Theorem 3.4. Let 0 < p < o0, 0 < ¢ < o0, s €R and w € A. For wavelets defined in
(1.5.2) we take

k2mw(@M+&Jﬂ£—ﬁ—ﬂH%ﬂ%@0—ﬂ)
p p
m quw case and

kzmmOMﬂ+1g%—%—ﬂ+l@M)—ﬂ>

in Fov case. Let f € S[(R™). Then f € A5 *(R™) if and only if it can be represented as
—in/2\q,G
f= Z )\j jn/ v,
7,Gm
where \ € a;i" and the series converges in S{(R"). This representation is unique with
G, =296,
and
: in/2 €
L f = {27550}
is a linear isomorphism of A5 (R™) onto a,

If 0 < p,q < oo then the system {\Ifjm imG

Pa -
is an unconditional basis in Aj(R™).

41



Proof. Step 1.
Let f € S{(R") and f =", AG,27"/2¥E  (convergence in S/(R™)) with A € b3,

4 . ' 7,G,m “tjm
Then af, = 27](375)2*3"/2\115»’m is an (s, p)-atom. Indeed

supp afm C dQjm and |Daaij’ < 9 Ils=)Hlel

for [a| <k and k = K = L in the definition of atoms. So f € B;;*(R") and

i(s—2)\G w
{QJ ' )\jm}j,m,G ’bpq

| f1Bs (R < ¢

= c|[Mle |

from Theorem 3.1.
Step 2.
Now let f € B5”(R™). We take k%, = 27"/2U%  as kernels of local means. Indeed

supp kS, C CQjn and  |DOKS (x)| < 2/l
where |a| < k and A = B = k. So from Theorem 3.3 we have
1R || < e || 1By @™ - (3.1.15)

From the atomic decomposition and (3.1.15) we have

g= Y k(277G € By (R).

3,Gm

It follows from Lemma 3.1 that (g, \Iff;ﬁ make sense. By orthogonality of wavelet basis
we get
‘I]G Z 2 jn/2<qJ]Gm7 \Iljcfm’> = <f7 \I[]G/m/>
7,Gm

This could be extended to finite linear combinations of \IIG,m, Both distributions f and
g are locally contained in the space By (R") for any o < s — ”;w + %. This follows easily
from the corresponding result for the spaces with Muckenhoupt weights, cf. [16], since any
local Muckenhoupt weight w € A;OC can be extended outside a fixed ball to a Muckenhoupt
weight belonging to A,. Any ¢ € C§°(R") has the unique wavelet representation. We can
choose o such that k > max(—o + 0, o) so this representation converges in the dual space
of BY (R"), cf. [44]. This implies that (g, p) = (f, ) for all p € C°(R") and g = f.

Step 3.

By the above steps f € S{(R") belongs to By*(R") if and only if
fF=>0m NG 27206 and {AG,} € b, This representation is unique so A&, = kS (f)
and

171853 @) ~ [R5 ]|
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It follows from the uniqueness of the coefficients that [ is a monomorphism. We show
that I is onto. Let {)\ } € by, Then by the atomic decomposition theorem

G G S, W (TN
f = Z )‘]m‘ljjm qu (R )

73,Gm

But the uniqueness of the coefficients implies that A, = (f, U5 ).
Step 4. Let f € By*(R") and p,q < oo. Then f = Z]mG)\ij2 J”/Q\IJG (convergence
in S/(R™)) with A € b>7*. For any N € N we have

f ZZ)\G 9= ]n/Q\IIG |Bsw(Rn)

7=0 G,m
G o—jin/2q,G S, W (TN
>3 NG 2 B (R
J=N+1Gm

<C H{zﬂs—%uf il

1/q

=c| > (ZMGQ“ )q/p < 0.

j=N+1

The last converges to 0 if N — oo, since ¢ < oco. This proves the convergence of the series
to f in ng“’(R") using the order exhibited above.
Let €5, = &1 then the sequence €5 A belongs to b%“. So by atomic decomposition

theorem f8 =D imac e A 27206 e Bsw(R™). By the same argument as above the

series converges to f. in By*(R"). By the general theory of unconditional series, the series
converges unconditionally.
Spaces F can be regarded similarly. ]

3.2 Sobolev embeddings of Besov and Triebel-Lizorkin
spaces

Now we prove theorems of embeddings of weighted Besov spaces into local L, spaces and
into the space of continuous functions. We will need the embeddings in Chapter 4, where
we construct Haar bases in B, and F;* spaces.

3.2.1 Embeddings for unweighted spaces

First we recall the analogous results for unweighted spaces.
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Theorem 3.5. Let s € R, 0 < p < o0 and 0 < ¢ < oo. Then By, (R") C Le | (R") if
and only if

1
8>n<——1) , 0<p<oo, 0<qg< o (3.2.1)
p +
or .
s:n<——1>,0<p§1,0<q§1 (3.2.2)
p
or
s=0, 1 <p<oo, 0<q<min(p,2). (3.2.3)

The proof of the above theorem can be found in [37] (Theorem 3.3.2 and Corollary
3.3.1).

Theorem 3.6. Let s € R, 0 < p < o0 and 0 < ¢ < co. Then the following assertions are
equivalent:

(i) Byy(R") = Loo(R™),
(ii) By, (R") — C(R"),
(iii) either s> % ors =2 and 0 < g < 1.
The above theorem can be found in [37] (Theorem 3.3.1).

3.2.2 Embeddings for weighted function spaces

The following proposition was proved in [16] for weights belonging to the A, class, but
the similar result holds also for local Muckenhoupt weights due to Daubechies wavelet
characterization theorem, Theorem 3.4.

Proposition 3.1. Let wy; and wy be two .Affoc weights and let —oco0 < s9 < 51 < 00,
0 <p1,p2 <00, 0<qr,q2 < 00. We put

1 (1 1) 1 (1 1>
—=|——-— and —:=|———] .
p* P2 P/ * @2 ¢/,

q
(i) There is a continuous embedding B (R™) — B2w2(R™) if, and only if,

P1,q1 p2,q2
{2—1/(51—82) ’{(U)Q(Qy,m))l/m (wl(Qu,m))_l/pl}m |€p*

}V €l (3.2.4)

(ii) The embedding B (R") — B52%2(R™) is compact if, and only if, (3.2.4) holds

. I Ppra P2,42
and, in addition,

lim 2751 7#2)
v—00

=0 if ¢ = o0,

{02 Qua) P (wr(@un)) 7} 1ty

and

lim (wg(QV’m))*l/p2 (11}1(621,7,71))1/101 =00 foralveNy ifp*=occ.

|m|—o0
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The proof is rewritten version of the proof of Proposition 2.1 in [16], so it is omitted
here.

Theorem 3.7. (i) Let0<p<o0,0<q<o0,s€cR, we AY. Thereis an embedding
By (R") € Lie 1 ) (R") if
s> 2 (re, —min(1,p)).
p

For every 1 < p < oo there exists a weight w € A% with r, = p such that if the
embedding B,," C Llee ) holds, then

max(1,p

0<p< d0<q<1
s> (ry —min(L,p)) i peooaneli=q= = (3.2.5)
D l<p<ooandl <qg<oo
or
O<p<landl<qg<
s> (ry —min(1,p)) if p=2and b= a= oo (3.2.6)
D 0<p<ooandq=oc.

(ii) Let 0 < p < o0, 0 < qg<oo, s €R, we Ac. There is an embedding By (R™) C
Lloc (Rn) Zf
)

max(1,p

s>ﬁ(1—min(1,p)), 0<p<oo, 0<qg< oo
p

or
s=2(1=p), 0<p<1,0<g<1
p

or
s=0, 1<p<oo, 0<qg<min(p,2).

There exists an A weight w such that if the embedding Bg"(R™) C Lfﬁgx(l,p) (R™)
holds, then the above conditions are fulfilled.

Proof. Step 1. We begin with the first part of (i). We are interested in local embeddings.
We say that a function space X is locally embedded into a function space Y, X, Y C §'(R"),

if for any function ¢ € C§°(R™) an operator X > f +— ¢f € Y is bounded. We write

loc

X =Y.
We want to use the embeddings of the type

ByU(R™) % B (R™) (3.2.7)

and
Bl (R") C Ligisi p)(R). (3.2.8)
Let s > %(rw — min(1,p)). We choose u > r, such that w € A and s > %(u —

min(1,p)). We must find s; such that sufficient conditions for the above embeddings are
fulfilled.
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First we consider the embeddings (3.2.7). The condition (3.2.4) reads

27907 {0 Qi)™ 1@ 7 bl e} € Lo
We get

sup 279(s=s1) sup(w(Qjm))‘l/pQ‘j"/p
J m

—— (3.2.9)

= sup 277 o) sup(w(Qjm)) P < 0.

J

But w € A and by Lemma 2.3 we get

W(Qjm) " < 2™ w(Qoy)™" i Qjm C Qoy

Since we get into account only finite many cubes (), the condition (3.2.9) is equivalent to

sup 2 /T gimu/p < o, (3.2.10)
J

So the embeddings (3.2.7) hold if

n  nu
s—8+———2>0.
p p

Thus

1
51Ss—ﬁ(u—min(l,p))an(——l) :
p P/,

Now we consider the embeddings (3.2.8).
It follows from (3.2.1) that we can find s; such that

1 1
n(——l) <51Ss—ﬁ(u—min(l,p))—kn(——l) :
p N p p .

Thus Theorem 3.5 implies that embeddings (3.2.7), (3.2.8) hold.

Step 2. Now we prove the second part of (i).

For 1 < p < oo we take a weight w(x) = |2|* with a = n(p — 1). Then w € A% and
ry = p. For this weight we have

W(Qjm) ~ 2_j(a+")|m|a if m#0,
W(Qjm) ~ 27T if = 0.

Using the atomic decomposition we construct f € B, *(R"), that doesn’t belong to
Llee . (R™), if the indexes do not satisfy (3.2.5) or (3.2.6).

max(1,p)
First we construct atoms belonging to C¥(R™) and with vanishing moments up to order
L, where K, L > 0.
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Let ¢ € Cg°(R™) with suppg@ C [—3,3)" and [D*@(z)] < 1, |a| < K, 0 > §(x),
0<c<@(z)onwel[—1, 1)

Let ¢;(z) = 27775 5(20 7). So supp @; C [—547, 557)™ Now let ;1 be a translation
of ¢;, such that supp ;1 C @, and ¢;; be a translation of ;, such that supp ¢;1 C Qjnv,
where Q) C 3Qjm, m # m/.

Taking v;1 = ;1 — ¢;1 we get an atom with

supp ;1 C 3Qjm
Da¢]1| < Cor 2~ J(S**)+]|a‘

[ vista

In the next step we construct ¢;2 = ;1 — %17 where %1 is a translation of 1;,
such that supp dzj 1 C 32°Qjm and supp ¥;1Nsupp ;1 = 0. Now we get an atom with two
vanishing moments:

/%‘72(95)%0@ = /l/}j,l(x)xk d$—/¢j71(x—a)xk dx
= /%,1(37)371« dr — /wj,l(x)(ask —ay)dr =0,

where 1 < k <n and a € R™

Iterating this process we have 1,11 = 1, — @jﬂ;, where 1;“ is a translation of 1;;, such
that supp4);; C 371Qjm, i > 1. We get atoms with vanishing moments up to order L
associated with the cubes Q;,, i.e. the support of the atom is contained in 3¥71Q;,,. We
will denote that atoms by @gf,z.

There exist sequences {ji}iq, jk € No, 0 = Jo < j1 < Jo < ... and {mg}2,, mx €
Z"™ such that the corresponding cubes Qj, m, satisty dQj, m, N dQj.m = 0, k # 1 and
dQjy, 1 mpps C dQjy 0. Thus ;2 dQj, m, C [-R, R)" for some R > 0.

We take a sequence {\}32, of positive numbers, such that

o0 1/q
(Z |70 (Qj ) P27 p) < o0.
k=0
If we put

I Ae i =gk, mo=my,
I 0 otherwise,

then {)j,} € by and by the atomic decomposition theorem f = > 77 )\ka]k my, € Boi'(R™).
From our Constructlon of atoms we have [my| < ¢ and w(Qj, m,) ~ 279%™ From

atomic decomposition theorem for weighted function spaces given by Izuki and Sawano in
[23] we have f € By*(R") if and only if

o 1/q
k=0
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The last condition is fulfilled for

A, =25 if g = oo, (3.2.11)
Ny =2%5, f<a, if 0<g<l, (3.2.12)

and A
N, =2%pk7h if 1< g < oo (3.2.13)

Let fy(z) = Zk 0 i @5, mk( z)and f(x) = limy_,o fn(x). By the construction of atom
there is a cube ka,mk C Qj,.m,, of side length 477+ such that

JkyMk

/ oD (@) dy > 2 g _ comin(s )
Q

Jk M

In consequence

o ()
—]}IL%okZAjk/RRn |05y, ()] d (3.2.14)

N—o0

The sequence S\, 277(757) is divergent for the sequence {\;.} defined by (3.2.11)
or (3.2.13) and s < 2(p— p) There is also a divergence if {);, } is given by formula (3.2.12)
and 5 < (p D). Thus f is not locally integrable if 0 < p <1, s < 2 (p p)and 1 < g < o0

0r0<p<1 s<2(p—p)and 0 <gq <1
In the similar Way for p > 1 we have

| = gm [ e
[-R.R)"

N

= lim / |a m( )P dx
N%oog [7R,R) Tk

N
> lim Y AP 279k,

N—oo

Using conditions (3.2.11) to (3.2.13) we get

N
lim szkaw'ksp —o0 if s<—(p—1), g =00,

N—o0 p

48



N—o0

N
lim Y 2402797 =00 if s < (p—1), 0<q< 1
p
k=0

and

N
lim 320 P2 — o0 if s < “(p—1), 1< q< oo,
p
k=

N—o0

Step 3. We are going to prove part (i) of theorem. If w € AY® then w(Q;,)™" <
27"w(Qo) ™ if Qjm C Qoy. So instead of (3.2.10) we have

sup 2776751 < 0.
J

loc

Thus B;*(R") — B;L(R") and sufficiency of the conditions follow from Theorem 3.5.
Since the conditions are necessary for Lebesgue measure, they could not be weaker for A
weights.

]

Corollary 3.2. Let 1 <p < o0, 0 < ¢ < oo, s € R, we A. There is an embedding
B (R?) C Lle¢(R™) if
s> 2 (ro —1).
p
From Theorem 3.7 and elementary embeddings between weighted Besov and Triebel-

Lizorkin spaces we get the following corollary

Corollary 3.3. Let 0 < p<o0,0<qg<o00,sE€R, we A Ifs> %(rw — min(1, p))
then F3v(R™) C Ll ap®R"). In particular if s > 2 (r, —1) and 1 < p < oo then

max

Fs@(R™) C Lie(R™).

Theorem 3.8. (i) Let 0 <p<oo, 0 < q< o0, se€R, we A. There is a continuous
embedding By,"(R") — C(R"), if

n
5> —Ty.
p

For every 1 < p < oo there erists a weight w € A with r, = p such that if
s < %rw and 1 < g < oo orifs< %rw and 0 < g < 0o then there is no embedding
By?(R™) — Loo(R™).

(i1) Let 0 < p < 00, 0 < g < 00, s € R, w € Al°°. There is a continuous embedding
By (R™) — C(R™), if .
s> —

p
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or N
s=—, 0<qg<1.
p

There exists an Al weight w such that if the continuous embedding B;;;”(R”) —
Lo (R™) holds, then the above conditions are fulfilled.

Proof. Step 1. Let us start with first part of (i). We choose u > r,, such that w € A!°° and
s > %. Analogously like in Step 1 of the proof of Theorem 3.7 we can regard embeddings
(3.2.7) and (3.2.8). We take s; such that

nu n
— < s1<8s——+—
p p p
Thus Theorem 3.6 implies that the continuous embeddings hold.
Step 2. Now we prove the second part of (i). For 1 < p < oo we take a weight
w(z) = |2|* with a = n(p — 1). Then w € A% and r,, = p.
Using the atomic decomposition we can construct f € By(R"), that doesn’t belong to
Lo (R™). The construction of atoms can be the same as in Step 2 of the proof of Theorem
3.7. We also take a sequence {\;, }?2, with the same properties as in the proof above. We

have f =32\, ank € Bs(R™), cf. [23].
In the same way as in (3.2.14) we get
N
sup |f(z)| > ¢ lim N2~ Ie(s=p)

z€[-R,R)" N—oo

and the sequence Y1 A;, 2757 5) is divergent for the sequence {\;, } defined by (3.2.11)

or (3.2.13) and s < 2p. There is also a divergence if {\;, } is given by formula (3.2.12) and
5 < Zp.

LSZ;fep 3. The rest of the proof can be rewritten from Step 3 of the proof of Theorem 3.7.

[

Corollary 3.4. Let 0 < p < 00, 0 < ¢ < o0, s € R, w € A%, Ifs > %rw then
Fyr(R™) — C(R™).

3.3 Dual spaces

In this section we calculate the dual spaces of A>¥'(R™). We consider the Banach case,
more precisely 1 < p < 0o, 1 < ¢ < co. We present two approaches. The first one covers
all weights w € A% and the whole range of p and ¢, but the duality does not coincides
with the usual duality between S.(R"™) and S.(R™). We recall that

Se(R™) — AZ*(R") — S;(R™).

In the second approach the representation of the functional coincides with the dual
pairing (Sc(R"),S.(R")) but we should assume that w € A, The similar approach for
the regular weights can be found in Th. Schott paper [35].
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3.3.1 Dual spaces with general A" weights

By Daubechies wavelet characterization we can study the dual spaces of Besov spaces with
local Muckenhoupt weights. First we determine the dual spaces of sequence spaces b;;]w(R”)
and f,*(R"). The main idea of the proof is based on the similar assertions for spaces with
doubling measures in [5|.

Let £o(L¥(R™)) be the set of all sequences f = {f&(x) 2 0.geqs Of Lebesgue-measurable
functions on R™ with finite quasi-norms given by

s 1/q
L@y = (Z > HfflL;”(R”)Hq>

Jj=0 GeGv

and LY(R",{,) be the set of all sequences f = {f () Zo.cecs of Lebesgue-measurable
functions on R™ with finite quasi-norms given by

00 1/q
| F1Ly (R, £,)]| = ‘ (Z > \fﬂ") | Ly (R™)

j=0 GeGJ

By dual space we understand topological dual and the norms ||g|| of a continuous linear
functional g is calculated in the usual way.

Proposition 3.2. Let 1 <p < oo and 0 < g < oo, w € A. Then

i) g€ ({,(LY(R" ' if and only if it can be represented uniquely as
q\"p

gH=>_> /R 95 () f (2)w() dw

Jj=0 GeGYy

for every f = {f]‘G}j,G € L(L¥(R™)), where {ng}j,G € Ly(LY(R") and ||g| =
o5} clte (Ly @R

(ii) g € (L;”(]R”,Eq))/ if and only if it can be represented uniquely as

=33 [ sf@rf @ d
j=0 Gegi *R"
for every f = {ij}j,G € Ly(R", (,), where {gf}j@ € Ly(R™, £y)
and ||gl| = [[{g5'};.cI Ly (R™, by)
The proof of the above theorem can be found in 39|, Proposition in §2.11.1 for the case

of L,-spaces with Lebesgue measure, but it can be rewritten for measure of type w(x) dz,
w e Al
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Proposition 3.3. Let 1 <p < oo, 1 < ¢g< oo, s €R" and w € A. Then \e (a;bw)/ if
and only if it can be represented uniquely as

Z Yo D AAw(@m), A=A Yima € a, (3.3.1)

7=0 GeGI meZm

where {)\jm}]ma € ay,’y’. Moreover H H = H{)\]m}jmg\a_sw .

Proof. Step 1. First we prove that the formula (3.3.1) defines a continuous functional on
byt if {)\j'G’m}j7m7G € b;,f;,”. By Holder’s inequality we get

SE B I
—zzz/ G
>y, (zu ) (£

<Z</ (Z ! | gm() )pw(x)dx>;

< Z2jsqz (/Rn (Z |/\]Gm‘ ij(x)> w(z) dx) P X

w(x) dx

jm

| Xgm (@) w(2) dz

J G m

J(s—3)a
<(zeere ()
j G

< | Sy, /R
J G

> TAG A (x)

> OAGE A (@)

. . . . - —s,w s,w N NG . —S,w
with usual modification if ¢’ = co. So b,°" C (b;;")" and H)\’ < ‘{Ajm}j7m7g|bp/7q/
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In the same way we get that the formula (3.3.1) defines a continuous functional on
if {)‘jm}j,m,G € f;;i]’w

/HZZZ\%GMXW\A ’X]mw dx

1/q o 1/¢
/ <Z|)‘ ‘ij> ( Jm ij> w(z) dz

pQ’

J,G,m 7,G,m
<0G Yimel |5 imel £y
with usual modification if ¢’ = co. So we get f, %" C (f;"*) and H H < H{)\ mtimalfya|l-

Step 2. We prove that \e (byn") can be represented accordlng to (3.3.1). The statement

that A € ( )" can be represented according to (3.3.1) can be proved similarly using

appropriate norms and second part of Proposition 3.2.
Let us define I : b5 — (,(LY(R™)), which assigns {A§,} — {f{’} in the following way

Z A& 235X]m

We have

1/q
el ) | = (ZZ Hffw;%w)
i G

_ (;; (/R 1P () dx)q/p> "

_ ZQJ(S*%)GZ (
J

so [ is an isometry.

From the Hahn-Banach Theorem we get that there exists X € (€g(Ly (R™)))’, such that
Mol = X and HX‘ = HXH By Proposition 3.2 we have A(f) = (f, g), where g € Ly (L (R™))
and f € ly(Ly(R")), with dual pairing

D=3 % [ f@fwe

j=0 GeGJy
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We define projection P : £,/(Li(R™)) — b % by

P ({r§}6) = {X]Gm}j7m7G = {UJ(%Q;;)/

for {9}, € Ly (L4(R™)).

h,]G(a:)w(x) d:z:}

jm

Jm,G

From Hoélder’s inequality we have

1P ({rS} i) b,

(L

G

@ / ) dndw w(y)dy>

/ o

— Zstq/Z(Zstp// h$ (@)w(w) de w(Qjm)p,w(Qjm)>

J G m jm

Q

ZQ‘jsq Z (Z ‘—)/ hG(x)w(x) dx
G \ m

J jm

VAN
-
2]
M

™
S
=
<o
©

B

£

L
2

k]
&
L

3
~

<

- (Z2( |h?<x>}”'w<x>dx)”’) = [l Ly @)
j G

Thus the projection is continuous.
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Using Proposition 3.2 we get

>
—~
=
I
>
~

%Mg HME_% |PH48 ||FH48 ||FH48 Fllﬂé%

QM QM QM QM QM QM e

G

G

¥ J o
2 J o
ZA
zZ:

G2’ X (2)w(2) de

23" / S (@) ()0 () da
g /Q )

2]5 W(Qjm)” / ng(x)w(x) dzw(Qjm)

J

BD DD PPURTAT

J=0 GeGI meZ"

ng Q]m>

Step 3. Norm equivalence we get by Step 1 and from Step 2 with inequalities

|G ity | = 1P ({9 hie) 15,5

and similarly for /5" case.

< |Hgf il (L (R) II—H H—H |

Now it follows from Proposition 3.3 and Theorem 3.4:

Theorem 3.9. Let 1 <p<oo, 1 <qg<oo, s€R" and w € A. Then

(A B = Ay ),

3.3.2 Dual spaces with weights with r, > p

Let seR, 1<p<oo,1<q<ooandwe A%, If r, < pthen w € Ai,"c. It follows easily
from the definition of A% class that w'™* € Al
w,w e Alc. This allows to prove another representation of continuous functionals on

A (R™).

The space S.(R") is dense in A>(R") and S, (R") — A>¥(R"), cf. Theorem 2.6.
Therefore any continuous functional on A%*(R") can be incorporated as a distribution

belonging to SL(R™). In that sense we have

(A (®") = {f € SUR™) : 3e > 0, [7(9)] < cllpl Az (R for all o € S.(R"))
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If r,, < p then (Af;q“’(R”))/ can be identify with A;,‘Zf”lip (R™).
The operator T, : f + w'/? f is an isometry from Ly(Ly (R™)) onto £,(L,(R™)) and from
Ly (R ¢,) onto L,(R"™, {,). Therefore we have the following counterpart of Proposition 3.2.

Proposition 3.4. Let 1 <p < oo and 0 < g < oo, w € A and r, < p. Then
(i) g € (@(L;’(R”))), if and only if it can be represented uniquely as

o= [ @i

Jj=0 GeGvy

for every [ = {[$}ia € L(LERY), where {gf};6 € (L™ (R") and |g]| =
|to8icltr s ™ @)

(ii) g € (L;f’(]R”, €q))/ if and only if it can be represented uniquely as

for every f = {fS};¢ € LU(R™,(,), where {g§};c € L% " (R",(y) and ||g|| =
|t hslzy ™ ®e, £)

In consequence we get also

Proposition 3.5. Let 1 < p < oo, 1 < ¢ < o0, s € R", we A and r, < p. Then

)€ (afg’qw)/ if and only if it can be represented uniquely as

AN =D Y AL Qiml, A=A b € a3,

7=0 GeGI meZr

/ /
NG —s,wl™P NI NG —s,wl=P
where {5, }jimac € a, . . Moreover H)\H = H{)\jm}j,m,G’|afp/’q/

Corollary 3.5. Let 1 < p < o0, 1 < q¢ < 0o, s € R" and w € A with r, < p. If
fe A;,i;"l_p (R™) then the mapping

Se(R") 3> o f(p) €C

can be extended to a continuous linear functional on A5:*(R") and

) < | 1A @)

|l Az (R™)]] - (3.3.2)

On the other hand any g € (Af;qw(]R"))/ can be represented uniquely by f € A;’,ﬁipl (R™)
with (3.3.2).
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3.4 The Calder6n product and the complex interpola-
tion

The last consequence of Theorem 3.4 we would like to prove is a characterization of the
complex interpolation spaces for the pairs of F;=*(R") spaces. The general introduction to
the complex method of interpolation can be found in [2|. We follow the approach developed
by Frazier and Jawerth in [13] and Mendez and Mitrea in [30]. The approach used the
concept of Calderén product of quasi-Banach lattices. We recall the needed definitions.

Definition 3.8. Suppose (M, u) is a measure space and X is a quasi-Banach space of
p-measurable functions. Let g be a measurable function on M. Then X is said to be a
quasi-Banach lattice on M if the conditions f € X and |g(x)| < |f(x)| p-a.e. imply that
g € X and [lglx < [Iflx-

Definition 3.9. A quasi-Banach lattice of functions (X, || - ||x) is called lattice r-convex if
m 1/r
Zm < (Z ||fj|!;>
X i=1

for any finite family {f;}72, of functions belonging to X.

Remark 3.2. Spaces f7." are quasi-Banach lattices and lattice r-convex for any 0 < r <
min(p, ¢, 1). We have from the Minkowski inequality

! Lr 1 q/r p/q 1/p
k=1 B \ =
a/r pr/qr (r/p)(1/7)
Lz () o) oto
n imG
l pr/qr (r/p)(1/7)
- / Z (Z 2jsq|)‘?ﬁk|q>(jm($)> w(z)dx
k= 7,m,G
p/a /p)\ /") z U

< Z / (Z 25\ (2 )) w(x)dx < (Z H)\k‘f;}er>

k= 7,m,G Pt

for any finite family {\*},_, of \* = {A7*}; . ¢ €
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Definition 3.10. Let Xy, X; be quasi-Banach lattices on (M, ). The Calderon product
Xé_eXf, where 0 < 6 < 1, is a space of p-measurable functions f on M such that there
exist fo € Xo and f; € X; such that

If(2)] < |fo(z)]* 0| fr(z)]® for p— a.e.x € M.

We put

£l -0 xco = it foll 3 1A ll%, = 1AL < 1Sl P 1AL fo € Xo, fr € X}

The next proposition describes the relation between complex interpolation spaces
[ X0, X1]p and Calderén product of quasi-Banach function spaces.

Proposition 3.6. Let M be a separable complete metric space, i a o-finite Borel measure
on M and Xo, Xy be a pair of quasi-Banach function spaces on (M, u). Then if both X,
and X1 are lattice r-convex for some r > 0 and separable it follows that Xy + X, s lattice
r-convex and [Xo, X1]o = X5 0 X,

The above proposition is due to Kalton and Mitrea, [25], [26], see also [30].
The next theorem is a weighted version of Theorem 8.2 proved in [13].

Theorem 3.10. Let sg,s1 € R, 0 < po,p1 < 00, 0 < qo,q1 < 00, w € A%, 0 <6 <1,
/p=01-=0)/po+6/p1, 1/g=(1-0)/q0+0/q1 and s = (1 —0)sg+ 0s1. Then

S, w So,w ( _9) S1, W 9
fpt} - (fpg,’qo> ' (fml,’tn) :

Proof. The proof of the above theorem can be rewritten similarly as the proof of Theorem
8.2 in [13], because a weight doesn’t play an important role in calculations. The only
change is that instead of Proposition 2.7 in [13] we use the following proposition:

Proposition 3.7. Let ¢ > 0, 0 < p,q < o0, s € R, w € A%. Let for every cube Qjn,
j>0,meZ", Ejm C Qim be a measurable set with |Ejy|/|Qjm| > €. Then

1/q
[ALfpl ~ (Z 2jsqlkfm!qujm) |L, (R")

j7m7G

Proof. The proof is similar to the one of Theorem 2.7 in [13] and is based on Fefferman-
Stein inequality for maximal function. So in our case it is an easy consequence of Theorem
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2.2. For 0 < v < min (1, %,q) we have

1/q
AL 1l = (Z 274X, IqXQjm) L, (R")

Jym G

g\ V4
_ <Z 9isq (m 5 XS B (y )dyXQjm>) | Ly (R")

7,m,G

Z 2]511 ’Q]m’Mloc (‘)\G | ! e w (TN
jm XEjm) ‘Lp (R )

<
i,m,G m‘
U/q 1/’0
1 s oc /v
= (Z 2 (M1 (A5, ") ) (R
7,m,G
1/q
c S w n
<t (2 ne.) g
im,G
The other direction is trivial since xg;,, < XQ;.- O

O

Next theorem follows immediately from Theorem 3.4, Proposition 3.6 and Theorem
3.10.

Theorem 3.11. Let sg,s; € R, 0 < po,p1 < 00, 0 < qo,q1 < 00, w € A, 0 <6 <1,
1/p=0-=0)/po+0/p1, 1/g=(1—0)/q0+60/q1 and s = (1 — 0)so + Os,. Then
_ [ S0,W sl,w}
P0,90° Y P1,9114
and
Fo'(R") = [Fpon (RY), Fyl i (R™)]

Remark 3.3. Rychkov in [34] proved real interpolation for Besov spaces with local Muck-
enhoupt weights.

Theorem 3.12. Let 0 < p < 00, 0 < q,q0,q1 < 00, —00 < 59 < 8§71 <00, 0 <O <1,5=
(1—0)so +0s, and w € A. Then

(Fsow F51 w) » (Bsow le w) 0 :B;(,Iw

P90 7~ Pq1 P90 ’ T Pq1
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Chapter 4

Haar bases in weighted function spaces

Haar functions are the simplest example of compactly supported wavelets. Their plain
construction based on characteristic function of a unit cube allows many applications. In
this chapter we consider the Haar system in the spaces B"(R") and F;*(R"). We follow
the approach in the book [43], where H. Triebel proves, that Haar wavelets can be used
to characterization of unweighted function spaces B; (R") and F; (R") as far as absolute
value of smoothness parameter is small enough.

4.1 Haar wavelets as local means

We want to use Theorem 3.3 to our purpose, i.e. to treat Haar wavelets as local means.
To do this we must restrict the definition of the local means to regular distributions
(locally integrable functions). If A = 0 and B = 1 then Theorem 3.3 is valid for spaces
As ' (R™) consisting of regular distributions.
Taking constants A = 0 and B = 1 we get the following inequalities

0 > max (0, [—s + oy (w)], [% - % — ]+ 1) (4.1.1)
and
1 > max(0, [s] + 1) (4.1.2)
in B-case and
0 > max (0, [—s + opg(w)], [% — % —s]+ 1) (4.1.3)

and
1 > max(0, [s] + 1)

in F-case. From (4.1.1) we get
0> [—s+0,(w)]
1> —s+o0,(w)

Tw
s —2 w—1)—1
s>n <min(p,7"w) ) +n(r )
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and

0> 2w g4
p P
> e g
p P

From (4.1.2) we get

1 > max(0, [s] + 1)
[s] <0
s < 1.

Thus we get

for B,:*(IR™) spaces.
From (4.1.3) we get

0> [=5 -+ 0y )
1> =54 0pe(w)

Tw n
> T w1, —  _pn) -1
§ > max <”<min<p,m> )*”“ ) (L g) ”)

and

s> —(ry, —1).

n
p

Thus we get

max <apq(w) -1, E(rw — 1)) <s<1
p

for F3(R™) spaces.

We are looking for the weight w € A!°¢ such that the corresponding Besov and Triebel-
Lizorkin spaces satisfy the above inequalities and Corollary 3.2 and Corollary 3.3 respec-
tively.

4.2 Smoothness of series of characteristic functions
In this section we find the sufficient condition for the function Z;iqmew timXjm to belong

to the spaces By, and I
It appears that we need some regularity conditions on weights to prove further results.
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Definition 4.1. Let w € A!°. We say that the weight w satisfies a regularity condition if
there exist constants D > 1 and d > 0 such that for every k,j € Ny, £ > 7 the following

inequalities
w(Qrr) < dw(Qjm)
| Qi |Qjm|

hold if Dle N Qjm 7é @ and Dle g Qjm~

Remark 4.1. The regularity condition is independent of the choice of a constant D in the
sense that if it holds for some D > 1 with d > 0 then it holds for any D > 1 with some d.
It should be clear that if the condition (4.2.1) holds for D > 1 and d > 0 then it holds for
1 < D < D and d = d. We show that if the condition (4.2.1) holds for D > 1 then it holds
also for D = 2D.

Let Q and @}, be cubes such that k& > 7, 2DQy N Qi # 0 and 2DQy € Qjm- Let
us assume that DQy N Qjm = 0 or DQg C Qjpm-

If DQw C Qjm and 2DQy g Qjm then there exist two cubes Qr and @y such that

Qi N DQ # 0, Qur N DQy # B and DQpr € Qjym- Then

w(Qrr) w(Qrrr) L W(Qrr) sW(Qjm)
d d d )
| Qi = Q| = | Q| = |Qjm|

If DQr N Qjm = 0 and 2DQp N Qjrm # O then there exist two cubes Qpr N DQp # 0,
le// N Dle’ 7é @ and Dle// N Qjm 7é @, Dle” g Qjm such that <422> holds.

The following weights satisfy the regularity condition:
1. Polynomial weights

(4.2.1)

(4.2.2)

w(z)=|z*, —n<a<n(p-1), p>1,

then w € Aﬁf’c.

Im|e277e+n) - m £ 0

w<Qjm) ~ {Q—j(a—i-n), m = 0.

We can check the regularity condition explicitly:

w(Q) _ max(L, )27 o Goa (max(1 1) (4.2.3)
w(Qym) — max(Lm]*)25 0 max(1, m|) ) ;

We take D = 2. Then DQiy N Qjm # 0 and DQp € Q) implies
127K —279m| < 279y/n

and .
2 % max(1, |I|) ~ 277 max(1, |m|).
So
w(Qr) _ coli—km
w(@jm) ~
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2. Weights with logarithmic factor

U(.ZU) — |I|Ot (1 - log |x|)_ﬁ7 |I'| S 17
(1 +1loglz)™, |z > 1,

with —n <a <n(p—1),p>1, f €R, then w € Ai,o"’.

|27 max((1 — log(Im|2779)) =%, (1 +log(Im|279)) "), m #0,
2-i(e+n) (1 —log(277)) 77, m = 0.

W(Qjm) ~ {

Using above estimations we check the condition similarly as in (4.2.3).
3. Polynomial weight with different powers near zero and at infinity

w(z) = {|x|a, 2l <1

27, Jal > 1.

and a, 8 > —n, a <n(p—1), p>1, then w € Aé"c.
Now we give an example of a weight, that doesn’t satisfy the regularity condition Let
—n < a < 0. We put

(2) 1, |z > 1or|z] <1and x; <0,
xTr) =
|z|*, |z] < 1and x; >0

for x € R™.

We will show that w € APc. Outside the ball B(0,1) the weight is equal to 1, so it is
sufficient to check AY¢(w) condition near zero. Let Q C [—2,2]" be such that Q; # () and
Qs # 0, where Q1 =QN{x € R": 27 <0} and Q2 = QN {x € R": 21 > 0}.

w(@), ede— L
S E@ < o /Q o s

c 1
< [ |z|"der——: <C
Q /Q' e toeg [ 1)

since |z|* > ¢ > 0 for any = € [—2,2]".

This weight doesn’t satisfy the regularity condition. Let us choose cubes Q;, and
Qr with 7 = 0,m = (—1,0,...,0) and k£ > 0, = (0,...,0). With that choice we have
w(Qjm) = 27" and w(Qp) ~ 27¥+™) Therefore

—k(a+n
w(Qr) o(k—j)n > CLQ(k_j)” = 27 he,

w(Qjm) N 2-m
Taking k arbitrarily large condition (4.2.1) is not satisfied since o < 0.
Let us recall that by, [ spaces are defined in Definition 3.6. Now we can state the
representation of weighted Besov and Triebel-Lizorkin spaces by characteristic functions of
dyadic cubes.
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Proposition 4.1. Let 0 <p < o0, 0 < ¢ < 0o, s € R. Let w € A satisfy the regularity

condition. If

n 1
— (ry —min(1,p)) < s < —,
p (1,p)) 5

then f =3 .. ljmXjm (convergence in S,(R™)) with p € b belongs to Bs(R™) and
17185 R < el ulby|

for some ¢ > 0 and all p € l_);g”.

If ¢ < o0 and
Ty 1 . (11
nmax|(1l,—, -] —-1)<s<min|-,-|,
p q P q

then f =3 ., ljmXjm (convergence in Sy (R™)) with u € faw belongs to Fi®(R™) and
15 RN < elul
for some ¢ >0 and all p € ;f;;”.
Proof. Let
f - Z Kgm X jm (424)

with € a,;". Let w € Aloc for some u > r,. We take Daubechies wavelet expansion of
Xjm I LQ(R”) by wavelets belonging to C"(R"), where 7 > max(L, [s] + 1, [*2= — s] +
1, [op(w) —s]) in the case of Besov spaces and r > max(1, [s] +1, [*= L_s]+1, [apq( )—s])

in the case of Triebel-Lizorkin spaces. Then supp¢$ C DQy for some D = D(r) and @/J,CGJ
satisfy moment conditions of order r for every j € Ny, k € Z" and G € {F, M'}"*. We have

Xim (@) = MGy, (4.2.5)
k,l,G

where \§ = 287/2(y ., &),
First we estimate A\ (xjm). We have

)05 )

})\k’l Xjm |:
s2’“”/2/ o ()E ()] dy

=2’“”/2/ v (y)| dy

jm

= Zk"/ % (2% — 1)| dy < cmin(1, onlk=i))y,

jm

(4.2.6)
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We also know that A (yjm) = 0 if supp ¢S N Qi = 0 or supp g C Qjp if G € {F, M}™
because of the moment conditions.
We are going to show that f € A5*(R"). According to (4.2.4) and (4.2.5) we get

f= ZungA 2~/ 2y

k.G

= Z 22 kn/Qﬂjm)‘kl Kl

k,l,G jm

= Z Z Z 2~ n/2 Z /~ij>‘kl kl

=0 lezn

Z > Z vi2 g

0 lezn

Z Z (Vkl + Vi )2_kn/2¢13,
ez

g 1

TTM8 I

where
kG = Z Z :u]mAk'l?
7=0 mezn"
and

Vk:l Z Z MmN (4.2.7)
j>k mez™

vt = Z > pimAG (4.2.8)
7=0 mez"

Step 1. We start with the sum over j > k. We estimate

Z Z :L‘Jm)‘ < Z Z |Mjm| ’/\kGl‘

j>k mezZn 7>k mez™ (429)

<eY o Y 26 g,

Jzk m: )‘G 1 (Xjm)#0

’sz

cf. (4.2.6).
From p € b;” we have

q/p
zzw (z il 0 cw) .

meZ”
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Substep 1.1.
First we consider the case p < 1. We have
p

Z‘Vkl ‘ (Qrr) <CZ Z Z 2" | | w0(Qra)

lezn 1€Z™ \ =k m:XG (xjm)#0

<c Z Z Z 2"PE ) | 1 [P w0 Q)

€27 2K m:AG, (xjm) 0

< CZ gnp(k—j) Z Z ’Mjm‘p w(le).

j>k lezn m/\kl(xjm);éo

But A, (xjm) 7 0 only if supp ¢ N Qjm # 0. Moreover j > k so the relation A (x;m) 7# 0
implies that there exists C' > 1 independent of j and k such that @);,, C CQy. Now the
properties of the weights belonging to A°¢ (Lemma 2.3) give us

w(Qr) < w(CQ) < cw(Qm)2V e, (4.2.10)
Then
> | wi@u) < €320t D ST ST gl (@)
20 (@211)
<c22 070N gl w(Qjm),
ji>k mez"
since [{l: AZ(x;jm) # 0}] < c.
Substep 1.2.

Now we consider the case p > 1. The inequality 7 > k implies ‘{m MG (X jm) # 0}‘
c2"0=k)  Using Holder’s inequality and (4.2.9) we get

Z Z Qn(k_j) |p“jm|

Jzk m: )‘kl(XJm)7éO

<c Z gn(k—j)on(i—Fk)/p’ Z ‘,ujm |P

Jj=k m:)\kGl(ijHéO

sz

1/p

For any £ > 0 we have

Z vy ’ (Qr) <CZZQ =R (=e) Z |t |” w(Qr)

lezn lez™ j>k m:/\kGl(ij)#o
< sznp(jfk)(ifs@nu(j—k) Z | im]” w(Qjm)
P>k mezn
= ST S P (),
i>k mez"

66



where we used inequality (4.2.10) once more.
Substep 1.3. In case of F-spaces we use the maximal inequality of Fefferman-Stein type

1/q

1/q
Mloc|g\)()q/”> 1Ly (R™)|| < (Z!gkz q) Ly (R™)

k.l

for 0 < v < min(1,2,q), cf. Theorem 2.2. We have for z € Qy

v

xu@ Y Al | <xe@ D gl

m:Akql(Xj'rrL)3£0 m')\kGl(XjnL)¢O

= xui(z / Z K] Xgm (y) dy

m/\G X]m)?éo
< "0t S gl xim () | (@).
mAG (Xjm)#0

It follows from (4.2.9) and the above inequality that for ¢ > 0 we have

q

UEJXM(I)

e 2D N i)

i<k m:AG (X jm)#0
q
com o (5 s

<c Z 2n(jfk)q(sfl)2n(jfk)%Mloc Z |/’L]m’Uij(> (x)q/v

i<k m:)\kGl(xjm)#O

In consequence

> vt xml@)
lezr
(4.2.12)
SeY D 2O ST gl () | @)
lezr j>k m:Ag](ij)?éO

Since s > n (max (1,2, 1) — 1) we can choose ¢ > 0, v > r,, and v < min (1, B,q) such
P’y u
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that s > n (1 +—1). Then by (4.2.12)

. 1/q
v m(-)) LY(R")

-

kLG
q/v v/q
—nag(i—k)(=L41— c v w n
<c Z2ksq222 q(i=k) (=5 +1=¢) p rlo Z |Mjm’ ij(.) |Lp (]R )
k,G lezn j>k m:AG (X jm)#0
1/q
s —nag(i—k)(—L141— w (TN
e[ o2 D oI N () | (L (R
k,G lezn j>k m:AS (X jm)#0
1/q
<ol (T ot 3 i) i
J k<j mezn
1/q
<c (zzﬁqwmww») L)
J,m
(4.2.13)

Step 2.
We are going to estimate the second term in the decomposition of f. We have

Fr I ) SR SEY;

J<k m:/\gl (ij)?éo

<ed D il

J<k mAG (xjm)#0

from (4.2.6).
Substep 2.1.
Let p < 1. Now [{l: A§(xjm) # 0} < c2k=D(=D " Because w satisfies the regularity
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condition we get

Z ‘Vk:l w(Q) < CZ Z Z | 1tjm]” w(Qrr)

lezn J<k I€Z™ m: )\kl(ij)#O

< CZ Z Z | tgm " w0 (Qr)w(Qjim ) w(Qm) ™

5 L™ miAG, ()0

<ed Y DY gl w(Qm)20 7P (4.2.14)

<k mez" lz)‘gl(ij)#O

< CZ Z 9(k—=j)(n—1) !ujm\pw(Qjm)Q(]_k

i<k mezZm

< CZ Z 2jik ‘Mjm’pﬂ)(Qjm)-

i<k meZm

Substep 2.2.

Now let p > 1 and € > 0. The inequality j < k implies |{m MG (Xjm) # 0}| < ¢ for
some constant ¢ independent of j, k and [. Using Holder’s inequality, (4.2.6), the regularity
condition on w and the estimate |[{l : A (x;m) # 0}] < 2® D071 we get

p

S @Y S bl | wi@w)

lezn 1€Z™ \ 5<k m:AC (xjm)#0

1/p\ P

<Y = ] | w@

lezr \ j<k \m:XG (xjm)#0

<c Z Z 2(k=F)er Z | ttjm|” w( Qi)

lezn j<k m:Agl(ij);éO
<ed 2Tyl YL w(@u)
i<k mezn LG (X jm)#0
< CZQ(k—j)sp Z | P 207 R E=D =Dy )
j<k mezn
< ey 28N [P w( Q)
j<k mezn
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Substep 2.3.
In case of F-spaces we get

q

S| xm(e)
lezn
<eY N 2R N | ()

lezn j<k MG (Xjm )70 (4.2.15)
ST Y gl Y o)

j<k mezZm EXG (xjm)#0
<SS iy gy (o)

j<k meZL"

where d > 1 is such that Ul:)\kGl(ijﬁéo D@y C dQ)j,, and is finite. Moreover, since j < k
the constant d can be chosen independently of k.
Let us assume that s < 0.

-

klG

. 1/q
vl xkz<~>> ILy(R")

1/q
<ec (Z oksq Z 9—4(j—Fk)e Z ’,Ujm‘q Xdem(')) ‘Lz)(Rn)

kG j<k mezn

1/q
<c (Z 9dsq Z 9—4(i—Fk)(e+s) Z ’/’ij‘quQjm(.)> ‘L;}(Rn)

J k>j mezn

1/q
<c (Zstq’Hijij(')) L, (R™)
7,m

where the last inequality follows from Proposition 3.7.
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Step 3.
For p <1 we get by (4.2.7), (4.2.8), (4.2.11) and (4.2.14)

00 q/p
3 gk Y (z \ugw@m)

G \lezn
922’“‘12(22 GRS Tl (@)

k=0 7>k mezZ"

a/p
DD IR
j<k mezn

00 a/p
<3 (L2 S b u@uztoe)

k=0

Where%—mm(n—?—i—s,%—s)

From monotonicity of ¢, spaces if z% < 1 or Young’s inequalities if ]% > 1 we have for
x>0

- a/p\ V1
ZkaqZ <Z ‘Vkl‘ w le >
k=0 lezn

1/q

q/p
S c szsq <Z ’Mjm‘ w Qym))

7=0

In the same way we get the result for p > 1 with sz = min (% — % —ne+ s, é —&— s).
Thus
it || < e fltbs |-

Step 4. To prove the result for f.* spaces we use the complex interpolation.

The mapping
V2 {:ujm}j,m = {VIS’Q = Z Z :uijJGm}k',l,G

j<k mezn
is a linear operator. It follows from (4.2.13) that it is a bounded operator from f
if s <0 and from b5 to b5 if 2 ( —min(1,p)) < s < 5 In consequence it is a bounded
operator from fpp o for 1f S < 5
Because of Theorem 3.11 we have

[ S0,W 51,w] — s, w
p0,q0° J p1,q110 pq

for0<0<1,1/p=(1-0)/po +9/p1, 1/g=(1-=0)/q0+0/q and s = (1 — 0)sy + Os;.
We show that if sp < 0 and s < —1 we can reach any s < min (p ) for 0 < p,q < o0.
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We choose a sequence {pgj)}jeN in such a way that s < -5 — s if j — oo and afterwards
Py

sequences {s%'};, {#0)}; and {p{’}, such that

1
s < ng) < 5
by

s=(1—09)s9+ 697 for some sy > 0,

1 1—=000 g0
- = —|— .
o

Then 69 — 1 since s — s if j — 0o. Moreover

1 1—00) g0 .
B T st
qv qo Py qo

1 — W)

Wlthz-:])—>01fj—>oosmceﬁ—)sifj—)oo. Thus if 6U) — 1 then -5 — s.
(s’ —s0) q

So any = . L~ 5 can be reached. In consequence

11557 < ellud el

for s < min (l,l
P’

Now the inequality B
175" | < elll 753

follows from the above inequality and (4.2.13).
Step 5. From the Daubechies wavelet characterization (Theorem 3.4) we get f €
A '(R™) and
171455 @) < eflmlay]]

4.3 Characterization of function spaces by Haar
wavelets

We recall that sequence spaces b;" and f.* are defined in Definition 3.7.

Theorem 4.1. Let 0 < p < 00, 0 < ¢ < 00, s € R and w € A% satisfies the regularity
condition.

(i) Let r, <min(1,p) (1+ 1). Let one of the following conditions be satisfied
e 0 <p<oo, 0<qg< oo, max (% (ry —min(1, p)), op(w) — 1> < § < min (1,%).

72



(ii)

e l<p<oo, 0<qg<oo, %—1<5<%, re <min (p,1+ 1) and w'™?" satisfies

the regularity condition and r—y <14 %
Let f € S{(R"). Then f € By;*(R") if and only if it can be represented as

o G o—jn/2 171G
f= ) An27PHG

j7G7m

where A € b3 and the series converges in S[(R™). This representation is unique with
XS =202 (F HE Y
and
Isf s {272(F HLD Y
is a linear isomorphism of Byy*(R™) onto by°.
If 0 < p,q < oo then the system {Hfm}j’m’G is an unconditional basis in B> (R").

]-7
n

min(1,%,1
Letr, <p (M -+ min (1, %)) Let one of the following conditions be satisfied

e < p<oo, 0<qg< o0,
max (%(rw —min(1, p)), 7 (1 — min(1, q)), o, (w) — 1) < s < min <1,

D=
Q=
N——

° 1<p<oo71<q<oo,max<%,%>—1<s<min(%,%>,

11

h p)) and W' satisfies the reqularity condition and

Ty < pmin (1,%4— %min(

P < 1 min (1,2)).
Let f € S{(R™). Then f € Fy*(R") if and only if it can be represented as

. G o—jn/2 17G
f=> X 27"?HS

45,G,m
where A € f3* and the series converges in S,(R"). This representation is unique
with
NS, = 2"2(f HE )
and '
I:f e {22 f HE))

S, W

. . : ‘ 8.0 (T
is a linear isomorphism of F,»*(R") onto fi*.

If 0 < p,q < oo then the system {Hij}ij 18 an unconditional basis in FIfq’“’(R”).
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Proof. Step 1. First we consider the case when

nmx<ﬁ(mu—nmepD,%xw)—1)<<S<rmn<L%)

p
for A= B and
max <E (ry —min(1,p)),o,(w) — 1, L (1 —min(1, q))) < s < min <1, 1, 1)
p q P q
for A=F.
Substep 1.1

Let f € S/(R") and f = Y, ;. A5,277"/2HS,,. From Proposition 4.1 we obtain that
f e A;(R") and
17145 ®™)]] < e [[Mag || -

Substep 1.2.
Now let f € A5*(R"). We take kS, = 2/"/2H$ as kernels of local means. From

Theorem 3.3 we have
[ (F)lapg|| < e || F1A @™

The expansion
5,Gym
follows from analogical considerations as in proof of Theorem 3.4.
Substep 1.5.
Uniqueness of the representation and unconditional convergence are also consequences
of proof of Theorem 3.4.
Step 2. Now let 1 < p < o0, 1 < ¢ < oo and r, < p. By duality we have A>*(R")" =

_sywlfp' n
AT (RY). I

1 1 n 1— /
i 1 < s < —max (E(rwlp/ —1),0p(w ") — 1) (4.3.1)

then by Step 1 the Haar system is an unconditional basis in B;}Sq’fulfp (R™) space. Since the
Haar basis is a biorthonormal system and by Theorem 1.3 it follows that the Haar system
is an unconditional basis in By (R") if (4.3.1) holds.

In the similar way the Haar system is a basis in F»*'(R") if

. 11 n : - n .
— min (1, 17, E) < s < —max (E(rwl_p/ — mm(Lpl)7 ap/(wl Py —1, —/(1 — min(1, q’)))

q
that is

1 1 /
max (— —-1,-— 1) < s < —max (g(rwl_p/ — 1),0p/(wlfp ) — 1) .
q p

p
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Step 3. The rest for the case of B-spaces can be proved by real interpolation

(Bzoéo ’leq,l ) B;qw’
where 0 < p < 00,0 < q,q0,q1 < 00, —00 < 9 < 81 <00,0<0<1,8=(1—0)sg+ sy,
proved by Rychkov in [34]. Let 1 < p,qp < 00, 0 < ¢,¢; < oo and

1 n 1—p/
phe 1 < 59 < —max (E(rwl_p/ —1),0p(w 7)) — 1)
< (”( 1), 0 () 1) <<
max | —(ry, — 1), 0,(w) — S —.
p g T

From Step 1 and Step 2 we know that there is the Haar bases in B;%"(R") and B,-"(R").

p,a1

Thus {Hij}jm is complete in B;LY(R”). Because Byl (R™) — Byr*(R") and Byl (R™)
is dense in Bs”(R™) we get that span { H m} = By*(R"). From Theorem 1.4 we know
that supy || Sy : B2 (R™) — B2W(R")|| < 00 and supy [|Sn : B3 (R™) — BsLw(R™)|| <

17 q0 psq0 p,q1 p,q1
oo. Interpolation gives us

1w = By (R™) — B’ (R")]]
< |18y = Byl (R™) = Byl (R[S « By (R™) — Byl (RM)]|” < oo
Now to prove that the Haar basis is unconditional in B5*(R") we use Theorem 1.5 and
get
ITa = Bpy*(R") — By (R™)]|
<|ITh : By (R™) = By (RO Ty = Byl (R™) — By (RM)[|” < oo

Ppsq0 P,q0 p,q1 p,a1

Step 4. The rest for the case of F-spaces can be proved by complex interpolation
(F F, = B

pgq pq

where 1 < p < o0, 1 <g<o00, —00< <8 <00,0<0<1,5s=(1l—0)sy+ 0sy, from
Theorem 3.11. Let

11 /
max (— —) —1 < sp < —max (g(rwlp/ —1),0p(w'?) — 1) <

P q
n 11
max | —(ry —1),0,(w) — 1) < sy <min | —, —
(p( h o) ) ' (p Q>

Now using Step 1 and Step 2 and similar argumentation as for Besov spaces (Step 3) we
get the result.
]
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Corollary 4.1. Let 1 < p < oo, w € A and r,, < min (p,1+ %min (l,g)), Ty <

14 %min (1, %/) and w, W' satisfy the regularity condition. Then the Haar system is

an unconditional basis in Ly (R").

Proof. Let w € Al for some r,, < u < p. Then from [34] we have L¥(R") = Fg’;"(R”). So
by Theorem 4.1 we know that the Haar system is an unconditional basis in Ly'(R"). [

Remark 4.2. We give examples of weights that satisfy the assumptions of Theorem 4.1.

1. If w is an admissible weight or a general locally regular weight then w satisfies
the regularity condition as well as w'™". Moreover r, = Tpi—p» = 1. So for example
the Haar system is an unconditional basis in F;*(R") if 1 < p < 00, 1 < ¢ < oo and

max <%, %) —1 < s <min <%, %) In particular it is a basis in L;U(R") for any 1 < p < oo.

2. I vg(z) = {(1 B 10g‘x|):ﬂ’ .

(1+1loglz))=?, |z >1

satisfies the regularity condition for any 8. So the Haar system is and unconditional basis
in Fp,”(R") and L,”(R") with the same conditions on s and p, ¢ as above.

3. If wa(z) = |#]|%, a > —n, then r,, = 1 4 22x(0e)

, B € R. Then r,, = 1 for any 3 € R and vg

) and w, satisfies the regularity
condition. In consequence the Haar system is an unconditional basis in Ly=(R") if 1 <
p < oo and — min (n,p -1, g) < «a < min (1, Eon(p— 1)) Moreover it is an unconditional
basis in F,* (R") with the same conditions on « and suitable assumptions on s and p. The
situation doesn’t change if we perturb w, by a logarithmic factor vg and take w = w,vg.
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Chapter 5

Wavelet bases in L;(R") spaces

By an inhomogeneous wavelet system we understand the system consisting of integer trans-
lations of the scaling function and translations of dilations of wavelet by dyadic factor bigger
or equal to 1, i.e. the system

{0l }is0mezn U {Uf m tmezn-

In contrast to an inhomogeneous wavelet system a homogeneous wavelet system does not
contain the scaling function and its translations, but contains dilations of wavelet also by
factors smaller then 1. So it is a system of the form

{¥jm}iezmenn.

Both the homogeneous and inhomogeneous wavelet systems of Daubechies type are the
orthonormal basis in the space Lo(R™) and unconditional basis in the space L,(R") (1 <
p < 00). In weighted L, spaces the behavior of the both types of wavelet systems is not
equivalent. We proved that the inhomogeneous wavelet system is an unconditional basis
for more general type of weights than the homogeneous one.

The main theorem of this chapter asserts that the inhomogeneous wavelet system of
Daubechies type is an unconditional basis in L,(dp) if and only if dp = w dx with w € Aﬁfc.
In consequence we can prove that L;J(R”) spaces can be characterized by a square function
if and only if w € A:ff’c. Thus the counterpart of the Paley-Wiener theorem holds if
the power of an integration is the same as the index of weight class w belongs to. The
similar results for the homogeneous wavelet system was proved by Lemarié-Rieusset [29]
and Aimar, Bernardis, Martin-Reyes [1]. It was proved that the homogeneous wavelet
system of Daubechies type is an unconditional basis in L,(du, R") if and only if dyu = wdzx
with w € A,. Thus if w € A\ A, then there is a wavelet such that the corresponding
inhomogeneous wavelet system is an unconditional basis in L)(R") but the corresponding
homogeneous system is not.

7



5.1 L, spaces with local Muckenhoupt weights

In this section we prove our main result. We use the fact that wavelet projection operators
satisfy condition (5.1.1) below. We follow the main idea of Aimar, Bernardis, Martin-Reyes
in [1]. On the other side we have the wavelet characterization theorem stated in Theorem
3.4.

Lemma 5.1. Let ¢ be a continuous function absolutely bounded by an Li(R™) radial
decreasing function such that Y, ;. o(x — k) # 0 for all x € R*. Then F(x,y) =

Y orezn (@ — k)p(y — k) satisfies
{(z,y) Rt o —y| < €} C {(z,y) € R™: F(a,y) > 0},
for some positive real numbers £ and §.

A proof of the above lemma can be found in [1]. Following [1] we can find that lemma
applies to Py(z,y) = > pepn YO (x — k)U9" (y — k) with Gp = (F, ..., F), where U is a
Daubechies scaling function. By the properties of the multiresolution analysis {WF (z —
k)}kezn is an orthonormal basis in Vy = span{ V" (z—k)}ez» and the sum >, . WOF (z—
k) equals to the constant with the module 1 a.e. On the other hand the function WEr is a
continuous function with compact support therefore it is bounded by a radial decreasing
function belonging to L;(R™) and series >, ;. ¥¢¥ (z — k) is convergent to a continuous
function. In consequence >, . WOF (z — k) # 0 for any = € R".

Now for a family {P;(z,y)};>0 = {2/ Po(2/x,27y) } ;50 we obtain that it satisfies condi-
tions

{(z,y) ERY™: |z —y| < fj} C {(ac,y) € R*™: Pj(z,y) > Cl (5.1.1)

for every j > 0 and a positive constant C' > 0, where {{;};>¢ is a decreasing sequence of
positive real numbers and ¢; — 0 as j — 0.

Theorem 5.1. Let 1 < p < oo and p be a positive Borel measure on R™ finite on compact
sets. Let k > max([n— 2]+ 1,n(p—1)). There exists an unconditional Daubechies wavelet

basis in L,(R™, dp) with smoothness k if and only if dp = w(x) dx with w € .Aé"c.

Proof. Let w € Al From Theorem 3.4 we have an unconditional basis in F3*(R"). In [34]
Rychkov shows the Littlewood-Paley characterization of spaces with local Muckenhoupt
weights, it means FIS’Q“’(R”) = LJ(R™). Hence we have an unconditional basis in L}(R"),
ct Theorem 3.4.

On the other side. Let {\11ij :j € Noym € Z",G € G’} be a Daubechies wavelet
system, which is an unconditional basis in L,(R",du). So every f € L,(R", du) has the
representation

f(x) = D {F V50 W ().

kG
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Operators

Pyf = Z (fUgEweT,
Puf= Y (£U)T5, m>0

0<j<m,k,G

are uniformly bounded on L,(R", d,u) We can write Pm f(x fRn f(y)dy, where

Po(z,y) = 324 \IJOGI?WNIOGH?J) and Pm( T,y) = Zogj<m,k,G \IJ]G;@( )\Pﬁ( ) lf m > 0, be-
cause wavelets have compact supports and we deal with locally finite sums. Hence kernels
P,.(z,y) are bounded.

On the other hand by the properties of the multiresolution analysis the kernel ﬁm(x, Y)
coincides with P, (z,y) = 2™" Py(2™z, 2™y), if it is regarded as a kernel of projection in Ls.
Again, because wavelets and the scaling function are compactly supported we deal with
locally finite sums and get P,,(z,y) = P, (z,y) almost everywhere. So the last equality is
valid also for L, spaces and the kernels P, (z,y) are bounded.

We are going to show that u is absolutely continuous. Let E be a set such that |E| = 0.
For every ¢ > 0 there exists an open set F' such that £ C F and pu(F\FE) < . Set F
can be decomposed into a countable union of disjoint and dyadic cubes @);. From Lemma
5.1 we get that {P;(x,y)};>o satisfies the same conditions as weakly positive family. Let
{¢;};>0 be a sequence connected with that family. Without lost of generality we assume
that ¢y > max(d(Q;)), where d(Q) denote a diameter of @) and maximum is taken over
all cubes (); from decomposition of F. For fixed 7 let j, > 0 be the integer such that
ligr1 < d(Qi) < by If 1,y € Q; we get |z — y| < €, and Pj(v,y) > CL . So for every
r € (Q; we have

1Py (X ) !—\ / mxy>dy\>%ﬂ\c2i\E|.

Therefore |Pj,(xq,\£)(x)| > ¢, for some constant depending only on C' and n. From weak
type inequality for operators P; we get

1w(@Qi) < ({2 [Py (xone)(@)] > en}) < CcPu(Qi\E).

Summing over ¢ we have

Zu ) < Cec, pz,u (Q\E) =Cc,Pu(F\E) < Cc,Pe

for every € > 0. Hence p(F) = 0. From Radon-Nikodym Theorem we get that there exists
locally integrable function w such that dy = w(z) dz.

Now we can show that w € Aéoc. We pick a sequence {{;};>o. Let @ C R™ be a cube
with |Q| < £y. We can find my > 0 with £,,,,11 < d(Q) < {p,. Inequalities

[P (0:x0) ()] = / P (2, )0.(y >dy\>0£;g+1 /Q 0. > e QI /Q o= A
Q
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where 0. = (w —|—€)_T£1, g > 0, holds for every x € (). Since operators P,, are of weak type
(p; p) we get

(@) < w({ : |Pog(0ex@)(@)] > A}) < Ce? QI ( /Q ag)p /Q o,

p -1
Multiplying both sides by (fQ 0€> (fQ Jg)w) and choosing ¢ close to zero we get

w(Q) (/Qw)(/Qw) <ClQP

for every Q, |Q| < €o. From Lemma 1.4 in [34] we know that classes A are independent
of the upper bound for the cube size in their definition. So we get a condition for Aé"c.
]

Following [34] we can state square-function characterization. Let us define

1/2
S(N) = (Z oy f(w)|2> ,

where ¢y € D have nonzero integral and ¢ = o — 27" (5) and p;(x) = 2"p(2z), j > 0.
Corollary 5.1. Let 1 < p < oo and w € A°. The following equivalence holds

SIS R} ~ | F1L5 )]
if and only if w € AL

Proof. Let w € Al From [34] we have that F; 5 (R") = LY(R") with norm equivalence

p/2
/Rn (Z |pj * f(:v)P) w(z) dx ~ /n |f(2)[Pw () dz.

jez
Conversely, if we assume w € A% then from Theorem 3.4 we get that in Flgg“(R”)
there exists an unconditional basis consisting of Daubechies wavelets. But [|.S(f)|L; (R")]
is a norm in F;g”(R”). So the norms equivalence implies that F]g’Qw(R”) and Ly(R") are
isomorphic. In consequence there is an unconditional basis by Daubechies wavelet in

Ly(R™). Now from Theorem 5.1 we obtain that w € A
[

Remark 5.1. Tt is known that above statements are not true for general Muckenhoupt
weights. Taking for example weight

(2) || for |z] <1,
w(x) =
|z|® for |z| > 1,
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for a, 5 > —n. For a < (p1—1)n we have w € Aé"f and r,, = %—1—1, for a, B < (p2—1)n
we have w € A, and r,, = M%—l. Taking /3 big enough we get that w is in A N.A,

but not in A,,.

For ¢y € C5°(R™) with [ @o(x)dz # 0 and f € S, we introduce the “vertical“ maximal
function

o f(x) = sup [(o); * f ()]
jEN
The following corollary follows from Theorem 2.25 in [34] and Corollary 5.1.
Corollary 5.2. Let 1 < p < oo and w € A%°. The following equivalence holds
g LGN~ ILFILY
if and only if w e AL*.

Please note that it follows from the last corollary that if 1 < p < oo and w € A% then
the weighted local Hardy space

hy =A{f € 8¢+ [leg fl| < oo}

coincides with LY if and only if w € AY*.
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