The separable quotient problem and the strongly normal sequences

Wiestaw Śliwa

Abstract

We study the notion of a strongly normal sequence in the dual E^{*} of a Banach space E. In particular, we prove that the following three conditions are equivalent: (1) E^{*} has a strongly normal sequence, (2) $\left(E^{*}, \sigma\left(E^{*}, E\right)\right)$ has a Schauder basic sequence, (3) E has an infinite-dimensional separable quotient.

Introduction

We put $S(X)=\{x \in X:\|x\|=1\}$ and $B(X)=\{x \in X:\|x\| \leq 1\}$ if X is a normed space. Let E be a Banach space. A sequence $\left(y_{n}\right) \subset S\left(E^{*}\right)$ is normal in E^{*} if $\lim _{n} y_{n}(x)=0$ for every $x \in E$; clearly, the normal sequences coincide with the normalized ω^{*}-null sequences. The excellent Josefson-Nissenzweig theorem states that the dual of any infinite-dimensional Banach space contains a normal sequence ([5], [12]). It is easy to see that a sequence $\left(y_{n}\right) \subset S\left(E^{*}\right)$ is normal if and only if the subspace $\left\{x \in E: \lim _{n} y_{n}(x)=0\right\}$ is dense in E. We will say that a sequence $\left(y_{n}\right) \subset S\left(E^{*}\right)$ is strongly normal if the subspace $\left\{x \in E: \sum_{n=1}^{\infty}\left|y_{n}(x)\right|<\infty\right\}$ is dense in E ([18]). Clearly, every strongly normal sequence in E^{*} is normal.

One of the most known open problems for Banach spaces is the separable quotient problem: Does every infinite-dimensional Banach space has an infinite-dimensional separable quotient? i.e. Does every infinite-dimensional Banach space E has a closed

[^0]subspace M such that the quotient space E / M is infinite-dimensional and separable? ([1], [8], [10], [11], [15]-[22])

Recall that a sequence $\left(x_{n}\right)$ in a locally convex space F is: (1) a Schauder basis of F if for each element x of F there is a unique sequence $\left(\alpha_{n}\right)$ of scalars such that $x=\sum_{n=1}^{\infty} \alpha_{n} x_{n}$ and the coefficient functionals $x_{n}^{*}, n \in \mathbb{N}$, defined by $x_{n}^{*}(x)=\alpha_{n}$, are continuous on F; (2) a Schauder basic sequence if it is a Schauder basis of its closed linear span X in F.

We shall prove that a Banach space E has an infinite-dimensional separable quotient iff E^{*} contains a strongly normal sequence iff $E_{\sigma}^{*}=\left(E^{*}, \sigma\left(E^{*}, E\right)\right)$ has a Schauder basic sequence (Theorem 3). Before, developing some ideas of [4], we shall show that every strongly normal sequence in the dual E^{*} of a Banach space E contains a Schauder basic subsequence in E_{σ}^{*} (Theorem 1).

We state the following.
Problem. Does every normal sequence in the dual E^{*} of a Banach space E contains a strongly normal subsequence?

If this problem has a positive answer for a given infinite-dimensional Banach space E, then by the Josefson-Nissenzweig theorem and Theorem 3, E has an infinite-dimensional separable quotient.

We show that for every WCG (i.e. weakly compactly generated) Banach space E our problem has a positive answer (Proposition 4). Next we give an example of a normal sequence in the dual E^{*} of some known non-WCG Banach space E, which is not strongly normal but every subsequence of it contains a strongly normal subsequence (Example).

Finally, we show that a Banach space E has no infinite-dimensional separable quotient iff every continuous linear map from a Banach space to E with dense range is a surjection iff every sequence of continuous linear maps from E to some non-zero (or to every) Fréchet space F, which is point-wise convergent on a dense subspace of E is point-wise convergent on E to some continuous linear map from E to F (Theorem 6).

Results

Johnson and Rosenthal proved that any normal sequence $\left(y_{n}\right)$ in the dual E^{*} of a separable Banach space E has a Schauder basic subsequence $\left(y_{k(n)}\right)$ in E_{σ}^{*} ([4], Theorem III.1). Developing some ideas of their proof we shall show the following.

Theorem 1. Let E be a Banach space. Any strongly normal sequence $\left(y_{n}\right)$ in E^{*} contains a Schauder basic subsequence $\left(y_{k(n)}\right)$ in E_{σ}^{*}.

Proof. Let $\varphi: E \rightarrow E^{* *}$ be the canonical embedding map.
(A1) First we shall show that for every finite-dimensional subspace Y of E^{*} and every $\varepsilon \in(0,1 / 2)$ there exists a finite subset H of $S(E)$ such that for every $f \in S\left(Y^{*}\right)$ there is an $x \in H$ with $\|f-\varphi(x) \mid Y\|<2 \varepsilon$.

Let $\psi:\left(E /{ }^{\perp} Y\right) \rightarrow\left(E /{ }^{\perp} Y\right)^{* *}$ be the canonical embedding map; clearly ψ is an isometric isomorphism. Since $\left({ }^{\perp} Y\right)^{\perp}=Y$, the map

$$
\alpha: Y \rightarrow\left(E /{ }^{\perp} Y\right)^{*}, \alpha(y)\left(x+{ }^{\perp} Y\right)=y(x), \text { for } y \in Y, x \in E \text {, }
$$

is an isometric isomorphism ([14], 4.9(b)). Thus the adjoint map

$$
\alpha^{*}:\left(E /{ }^{\perp} Y\right)^{* *} \rightarrow Y^{*}, \alpha^{*}\left(\psi\left(x+^{\perp} Y\right)\right)=\varphi(x) \mid Y, \text { for } x \in E,
$$

is also an isometric isomorphism ([2], 8.6.18(a)).
Hence for every $f \in S\left(Y^{*}\right)$ there is an $x \in S(E)$ with $\|f-\varphi(x) \mid Y\|<\varepsilon$. Indeed, for every $f \in S\left(Y^{*}\right)$ there exist $v \in E$ and $z \in^{\perp} Y$ such that $\varphi(v) \mid Y=f,\left\|v+{ }^{\perp} Y\right\|=$ 1 and $1 \leq\|v+z\|<1+\varepsilon$. Thus for $u=v+z$ and $x=u /\|u\|$ we have $x \in S(E)$ and $\|f-\varphi(x) \mid Y\|=1-\|u\|^{-1}<\varepsilon$.

The set $S\left(Y^{*}\right)$ is compact, so there exists a finite subset $\left\{f_{1}, \ldots, f_{n}\right\}$ of $S\left(Y^{*}\right)$ with $S\left(Y^{*}\right) \subset \bigcup_{m=1}^{n} K\left(f_{m}, \varepsilon\right)$. Let $x_{1}, \ldots, x_{n} \in S(E)$ with $\left\|f_{m}-\varphi\left(x_{m}\right) \mid Y\right\|<\varepsilon$ for $1 \leq m \leq n$. Put $H=\left\{x_{1}, \ldots, x_{n}\right\}$. Then for every $f \in S\left(Y^{*}\right)$ there is an $x \in H$ with $\left\|f-\varphi\left(x_{m}\right) \mid Y\right\|<2 \varepsilon$.
(A2) Since $\lim _{n} y_{n}(x)=0$ for every $x \in E$, using (A1) we can choose inductively a strictly increasing sequence $(k(n)) \subset \mathbb{N}$ and an increasing sequence $\left(H_{n}\right)$ of finite subsets of $S(E)$ such that for every $n \in \mathbb{N}$ we have
(i) for every $f \in S\left(Y_{n}^{*}\right)$ there is an $x \in H_{n}$ with $\left\|f-\varphi(x) \mid Y_{n}\right\|<2^{-n-1}$, where Y_{n} is the linear span of the set $\left\{y_{k(i)}: 1 \leq i \leq n\right\}$;
(ii) $\left|y_{k(n+1)}(x)\right|<2^{-n-2}$ for every $x \in H_{n}$.
(A3) For every $n \in \mathbb{N}$ and for all $\alpha_{1}, \ldots, \alpha_{n+1} \in \mathbb{K}$ we have

$$
\left\|\sum_{i=1}^{n} \alpha_{i} y_{k(i)}\right\| \leq\left(1+2^{1-n}\right)\left\|\sum_{i=1}^{n+1} \alpha_{i} y_{k(i)}\right\| .
$$

Indeed, let $n \in \mathbb{N}$ and $\alpha_{1}, \ldots, \alpha_{n+1} \in \mathbb{K}$. Put $y=\sum_{i=1}^{n} \alpha_{i} y_{k(i)}$ and $z=\alpha_{n+1} y_{k(n+1)}$. Then there is $f \in S\left(Y^{*}\right)$ with $f(y)=\|y\|([14], 3.3)$. By (A2) there is an $x \in H_{n}$ with
$\left\|f-\varphi(x) \mid Y_{n}\right\|<2^{-n-1}$ and $\left|y_{k(n+1)}(x)\right|<2^{-n-2}$. If $\|z\|>2\|y\|$, then $\|y+z\|>\|y\|$. If $\|z\| \leq 2\|y\|$, then $\|y+z\| \geq|(y+z)(x)| \geq|y(x)|-|z(x)| \geq|f(y)|-|f(y)-y(x)|-$ $|z(x)|=\|y\|-\left|\left(f-\varphi(x) \mid Y_{n}\right)(y)\right|-\|z\|\left|y_{k(n+1)}(x)\right| \geq\left(1-2^{-n}\right)\|y\| \geq\left(1+2^{1-n}\right)^{-1}\|y\|$.

Since $\prod_{n=1}^{\infty}\left(1+2^{1-n}\right)<\infty$, using [9], 4.1.24, we infer that $\left(y_{k(n)}\right)$ is a Schauder basic sequence in E^{*} such that $\left\|P_{n}\right\| \leq \prod_{k=n}^{\infty}\left(1+2^{1-k}\right)<1+2^{4-n}, n \in \mathbb{N}$, where $P_{n}: Y \rightarrow Y, \sum_{i=1}^{\infty} \alpha_{i} y_{k(i)} \rightarrow \sum_{i=1}^{n} \alpha_{i} y_{k(i)}$ and Y is the closed linear span of $\left(y_{k(n)}\right)$.
(A4) The operator $T: E \rightarrow Y^{*},(T x)(y)=y(x), x \in E, y \in Y$, is well defined, linear and continuous. Let $\left(f_{n}\right) \subset Y^{*}$ be the sequence of coefficient functionals associated with the Schauder basis $\left(y_{k(n)}\right)$ in Y. Clearly, $\left(f_{n}\right)$ is a Schauder basis of its closed linear span F in $Y^{*}([9], 4.4 .1)$. Put $G=\left\{x \in E: \sum_{n=1}^{\infty}\left|y_{n}(x)\right|<\infty\right\}$.

For $x \in E$ we have $T x=\sum_{n=1}^{\infty} y_{k(n)}(x) f_{n}$. Indeed, let $x \in G$. For $n \geq 2$ we get $\left\|f_{n}\right\|=\left\|f_{n}\right\|\left\|y_{k(n)}\right\|=\left\|P_{n}-P_{n-1}\right\| \leq 2+2^{6-n} \leq 18$, so the series $\sum_{n=1}^{\infty} y_{k(n)}(x) f_{n}$ is convergent in F. For $y \in Y$ we have $(T x)(y)=y(x)=\left(\sum_{n=1}^{\infty} f_{n}(y) y_{k(n)}\right)(x)=$ $\sum_{n=1}^{\infty} f_{n}(y) y_{k(n)}(x)=\left(\sum_{n=1}^{\infty} y_{k(n)}(x) f_{n}\right)(y)$, so $T x=\sum_{n=1}^{\infty} y_{k(n)}(x) f_{n} \in F$. Hence $T(E)=T(\bar{G}) \subset \overline{T(G)} \subset F$. Let $x \in E$. Then $T x=\sum_{j=1}^{\infty} \alpha_{j} f_{j}$ for some scalars $\alpha_{1}, \alpha_{2}, \ldots$. Hence $\alpha_{n}=\left(\sum_{j=1}^{\infty} \alpha_{j} f_{j}\right)\left(y_{k(n)}\right)=(T x)\left(y_{k(n)}\right)=y_{k(n)}(x), n \in \mathbb{N}$, so $T x=\sum_{n=1}^{\infty} y_{k(n)}(x) f_{n}$.
(A5) For every $g \in F$ and every $\varepsilon>0$ there is $x \in E$ with $\|x\|=\|g\|$ such that $\|g-T x\|<\varepsilon$. Indeed, for every $g \in S(F)$ there is a sequence $\left(g_{n}\right) \subset S(F)$ with $\lim g_{n}=g$ such that $g_{n} \in F_{n}$ for $n \in \mathbb{N}$, where F_{n} is the linear span of the set $\left\{f_{1}, \ldots, f_{n}\right\}$. Thus it is enough to show that for every $n \in \mathbb{N}$ and every $g \in S\left(F_{n}\right)$ there is $x \in S(E)$ with $\|g-T x\| \leq 2^{7-n}$. Let $n \in \mathbb{N}, g \in S\left(F_{n}\right)$ and $h=\left\|g \mid Y_{n}\right\|^{-1} g$.

Since $h \mid Y_{n} \in S\left(Y_{n}^{*}\right)$, by (A2) there is an $x \in H_{n}$ with $\left\|h\left|Y_{n}-\varphi(x)\right| Y_{n}\right\|<$ 2^{-n-1}. Put $f=\sum_{i=1}^{n} y_{k(i)}(x) f_{i}$. For $y \in Y_{n}$ we have $f(y)=\sum_{i=1}^{n} y_{k(i)}(x) f_{i}(y)=$ $\left(\sum_{i=1}^{n} f_{i}(y) y_{k(i)}\right)(x)=y(x)=\varphi(x)(y)$, so $f\left|Y_{n}=\varphi(x)\right| Y_{n}$.

By (A4) and (A2) we get $\|T x-g\|=\left\|\sum_{i=1}^{\infty} y_{k(i)}(x) f_{i}-g\right\| \leq\|f-g\|+$ $\sum_{i=n+1}^{\infty}\left|y_{k(i)}(x)\right|\left\|f_{i}\right\| \leq\|f-g\|+\sum_{i=n+1}^{\infty} 2^{-i-1}\left(2+2^{6-i}\right) \leq(\|f-h\|+\|h-g\|)+2^{6-n}$. For $u \in F_{n}$ we have $\|u\|=\sup \left\{\left|u\left(P_{n} y\right)\right|: y \in S(Y)\right\} \leq\left\|u \mid Y_{n}\right\|\left\|P_{n}\right\|$, so $\|f-h\| \leq$ $\left\|f\left|Y_{n}-h\right| Y_{n}\right\|\left\|P_{n}\right\|=\left\|\varphi(x)\left|Y_{n}-h\right| Y_{n}\right\|\left\|P_{n}\right\|<2^{-n-1}\left(1+2^{4-n}\right) \leq 2^{4-n}$. Moreover $\|h-g\|=\left\|g \mid Y_{n}\right\|^{-1}-1 \leq\|g\|^{-1}\left\|P_{n}\right\|-1 \leq 2^{4-n}$. Thus $\|T x-g\| \leq 2^{7-n}$.
(A6) We show that $T(E)=F$. Let $g \in F$. Using (A5) we choose an element $x_{1} \in$ E with $\left\|x_{1}\right\|=\|g\|$ such that $\left\|g-T x_{1}\right\|<2^{-1}$. Next we choose an element $x_{2} \in E$ with $\left\|x_{2}\right\|=\left\|g-T x_{1}\right\|$ such that $\left\|g-T x_{1}-T x_{2}\right\|<2^{-2}$. This way we can obtain a sequence $\left(x_{n}\right) \subset E$ such that $\left\|x_{n+1}\right\|=\left\|g-\sum_{j=1}^{n} T x_{j}\right\|$ and $\left\|g-\sum_{j=1}^{n+1} T x_{j}\right\|<2^{-n-1}$
for $n \in \mathbb{N}$. Clearly, the series $\sum_{j=1}^{\infty} x_{j}$ is convergent in E to some x and $T x=g$.
(A7) The sequence $\left(g_{n}\right) \subset F^{*}$ of coefficient functionals associated with the Schauder basis $\left(f_{n}\right)$ in F is a Schauder basis in F_{σ}^{*}. The adjoint map $T^{*}: F^{*} \rightarrow E^{*}$ is an isomorphism of F_{σ}^{*} and the closed subspace $T^{*} F^{*}$ of E_{σ}^{*} ([14], 4.14 and 4.15). Thus the sequence $\left(T^{*} g_{n}\right)$ is a Schauder basic sequence in E_{σ}^{*}. We have $\left(T^{*} g_{n}\right)(x)=$ $g_{n}(T x)=g_{n}\left(\sum_{i=1}^{\infty} y_{k(i)}(x) f_{i}\right)=y_{k(n)}(x)$ for $x \in E$ and $n \in \mathbb{N}$, so $T^{*} g_{n}=y_{k(n)}$ for $n \in \mathbb{N}$. We have shown that $\left(y_{k(n)}\right)$ is a Schauder basic sequence in E_{σ}^{*}.

Let E be a Banach space. By the Banach-Steinhaus theorem every sequence $\left(y_{n}\right) \subset E^{*}$ which is point-wise bounded on E is bounded. We will say that a sequence $\left(y_{n}\right) \subset E^{*}$ is pseudobounded if it is point-wise bounded on a dense subspace of E and $\sup _{n}\left\|y_{n}\right\|=\infty$.

For Schauder basic sequences in E_{σ}^{*} we have the following.
Proposition 2. Let E be a Banach space and let $\left(y_{n}\right)$ be a Schauder basic sequence in E_{σ}^{*}. If $\left(y_{n}\right) \subset S\left(E^{*}\right)$, then $\left(y_{n}\right)$ is strongly normal in E^{*}. If $\sup _{n}\left\|y_{n}\right\|=\infty$, then $\left(y_{n}\right)$ is pseudobounded in E^{*}. Every pseudobounded sequence $\left(z_{n}\right)$ in E^{*} has a Schauder basic subsequence in E_{σ}^{*}.

Proof. Denote by Y the closure of the linear span of the set $\left\{y_{n}: n \in \mathbb{N}\right\}$ in E_{σ}^{*}. Then there is a sequence $\left(x_{n}\right) \subset E$ such that $y_{n}\left(x_{m}\right)=\delta_{n, m}$ for all $n, m \in \mathbb{N}$ and $y(x)=\sum_{n=1}^{\infty} y\left(x_{n}\right) y_{n}(x)$ for all $y \in Y, x \in E$. For the linear span X of the set $\left\{x_{n}: n \in \mathbb{N}\right\}$ we have

$$
\left(X+^{\perp} Y\right)^{\perp}=\left(X \cup^{\perp} Y\right)^{\perp}=X^{\perp} \cap\left({ }^{\perp} Y\right)^{\perp}=X^{\perp} \cap Y=\{0\}
$$

Thus $X+{ }^{\perp} Y$ is dense in E, so the subspaces $\left\{x \in E: \sum_{n=1}^{\infty}\left|y_{n}(x)\right|<\infty\right\}$ and $\left\{x \in E: \sup _{n}\left|y_{n}(x)\right|<\infty\right\}$ are dense in E, too.

Let $(k(n)) \subset \mathbb{N}$ be a strictly increasing sequence with $\left\|z_{k(n)}\right\| \geq n^{2}$ for $n \in \mathbb{N}$. Put $v_{n}=z_{k(n)} /\left\|z_{k(n)}\right\|$ for $n \in \mathbb{N}$. The sequence $\left(v_{n}\right)$ is strongly normal in E^{*}, since $\left\{x \in E: \sup _{n}\left|z_{n}(x)\right|<\infty\right\} \subset\left\{x \in E: \sum_{n=1}^{\infty}\left|v_{n}(x)\right|<\infty\right\}$. Using Theorem 1 we infer that the sequence $\left(z_{k(n)}\right)$ has a Schauder basic subsequence in E_{σ}^{*}.

Using the last proposition we get the following.
Theorem 3. Let E be a Banach space. Then the following conditions are equivalent:
(1) E has an infinite-dimensional separable quotient;
(2) E^{*} has a strongly normal sequence;
(3) E_{σ}^{*} has a Schauder basic sequence;
(4) E* has a pseudobounded sequence.

Proof. (1) $\Rightarrow(2)$. By [6], Proposition 1, there exists a biorthogonal sequence $\left(\left(x_{n}, y_{n}\right)\right) \subset E \times E^{*}$ such that $A=\left(\operatorname{lin}\left\{x_{n}: n \in \mathbb{N}\right\}+\bigcap_{n=1}^{\infty} \operatorname{ker} y_{n}\right)$ is a dense subspace in E; clearly we can assume that $\left(y_{n}\right) \subset S\left(E^{*}\right)$. The sequence $\left(y_{n}\right)$ is strongly normal in E^{*}, since $\left\{x \in E: \sum_{n=1}^{\infty}\left|y_{n}(x)\right|<\infty\right\} \supset A$.

Using Theorem 1 we get $(2) \Rightarrow(3)$. By [20], Proposition 1, we obtain $(3) \Rightarrow(1)$. Using Proposition 2 we get the equivalence $(3) \Leftrightarrow(4)$.

It is known that every infinite-dimensional WCG Banach space has an infinitedimensional separable quotient. We shall show the following ([18]).

Proposition 4. Let E be a WCG Banach space. Then every normal sequence (y_{n}) in E^{*} contains a strongly normal subsequence.

Proof. Case 1: E is separable. Let $X=\left\{x_{n}: n \in \mathbb{N}\right\}$ be a countable dense subset of E. For every $n \in \mathbb{N}$ we choose $k(n) \in \mathbb{N}$ with $\left|y_{k(n)}\left(x_{i}\right)\right|<n^{-2}$ for $1 \leq i \leq n$; we can assume that the sequence $(k(n))$ is strictly increasing. Then the sequence $\left(y_{k(n)}\right)$ is strongly normal in E^{*}, since $\left\{x \in E: \sum_{n=1}^{\infty}\left|y_{k(n)}(x)\right|<\infty\right\} \supset X$.

Case 2: E is not separable. By [3], Proposition 1, there is a continuous linear projection $Q: E \rightarrow E$ with $\|Q\|=1$ such that $F=Q(E)$ is a separable closed subspace of E and $\left(y_{n}\right) \subset Q^{*}\left(E^{*}\right)$. Let $i: F \rightarrow E$ be the identity embedding. Put $P: E \rightarrow F, x \rightarrow Q x$. Then $Q=i P$ and $Q^{*}\left(E^{*}\right)=P^{*}\left(i^{*}\left(E^{*}\right)\right) \subset P^{*}\left(F^{*}\right)$, so $\left(y_{n}\right) \subset P^{*}\left(F^{*}\right)$. Moreover $P(B(E))=B(F)$. Therefore for every $z \in F^{*}$ we have

$$
\begin{gathered}
\left\|P^{*} z\right\|=\sup \left\{\left|\left(P^{*} z\right)(x)\right|: x \in B(E)\right\}=\sup \{|z(P x)|: x \in B(E)\}= \\
\sup \{|z(x)|: x \in B(F)\}=\|z\| .
\end{gathered}
$$

Since $\left(y_{n}\right) \subset P^{*}\left(F^{*}\right) \cap S\left(E^{*}\right)$, there is $\left(z_{n}\right) \subset S\left(F^{*}\right)$ with $P^{*} z_{n}=y_{n}, n \in \mathbb{N}$. Thus $\left(z_{n}\right)$ is a normal sequence in F^{*}. By Case $1,\left(z_{n}\right)$ contains a strongly normal subsequence $\left(z_{k(n)}\right)$ in F^{*}. Then the subspace $\left(\left\{x \in F: \sum_{n=1}^{\infty}\left|z_{k(n)}(x)\right|<\infty\right\}+\operatorname{ker} P\right)$ is dense in E, so the subspace $\left\{x \in E: \sum_{n=1}^{\infty}\left|y_{k(n)}(x)\right|<\infty\right\}$ is dense in E. Thus $\left(y_{k(n)}\right)$ is strongly normal in E^{*}.

Example. The linear space $E=\left\{\left(x_{n}\right) \in c_{0}: \sup _{k}\left|\sum_{n=1}^{k} x_{n}\right|<\infty\right\}$ with the norm $\|x\|=\sup _{k}\left|\sum_{n=1}^{k} x_{n}\right|, x=\left(x_{n}\right)$, is a Banach space and it is not WCG ([17]).

Let $f_{n}: E \rightarrow \mathbb{K}, x=\left(x_{k}\right) \rightarrow x_{n}, n \in \mathbb{N}$. Then $\left(f_{n}\right) \subset E^{*}, \lim _{n} f_{n}(x)=0$ for every $x \in E$ and $1 \leq\left\|f_{n}\right\| \leq 2$ for $n \in \mathbb{N}$. Put $y_{n}=f_{n} /\left\|f_{n}\right\|, n \in \mathbb{N}$; clearly $\left(y_{n}\right)$ is a normal sequence in E^{*}. We shall prove that a subsequence $\left(y_{k(n)}\right)$ of $\left(y_{n}\right)$ is strongly normal in E^{*} if and only if the sequence $(k(n)) \subset \mathbb{N}$ does not contain arbitrary long series of successive integers. In particular the normal sequence $\left(y_{n}\right)$ is not strongly normal but every subsequence of it contains a strongly normal subsequence.

Proof. Let $(k(n)) \subset \mathbb{N}$ be a strictly increasing sequence.
Assume that $(k(n))$ contains arbitrary long series of successive integers. Then for every $s \in \mathbb{N}$ there is $n(s) \in \mathbb{N}$ such that $k(n(s)+1) ; \ldots ; k(n(s)+2 s)$ are successive integers; we can assume that $n(s+1)>n(s)+2 s$ for $s \in \mathbb{N}$. Put

$$
z_{l}= \begin{cases}s^{-1} & \text { if } k(n(s)+1) \leq l \leq k(n(s)+s) \text { for some } s \in \mathbb{N} \\ -s^{-1} & \text { if } k(n(s)+s+1) \leq l \leq k(n(s)+2 s) \text { for some } s \in \mathbb{N} \\ 0 & \text { for all other } l \in \mathbb{N}\end{cases}
$$

Clearly $z=\left(z_{l}\right) \in E$. Let $x \in E$ with $\sum_{n=1}^{\infty}\left|y_{k(n)}(x)\right|<\infty$. Then $\sum_{n=1}^{\infty}\left|x_{k(n)}\right|=$ $\sum_{n=1}^{\infty}\left|f_{k(n)}(x)\right|=\sum_{n=1}^{\infty}\left\|f_{k(n)}\right\|\left|y_{k(n)}(x)\right|<\infty$. For $s \in \mathbb{N}$ we have

$$
\begin{aligned}
& 1=\sum_{l=k(n(s)+1)}^{k(n(s)+s)} z_{l}=\left|\sum_{l=1}^{k(n(s)+s)}\left(z_{l}-x_{l}\right)-\sum_{l=1}^{k(n(s)+1)-1}\left(z_{l}-x_{l}\right)+\sum_{l=k(n(s)+1)}^{k(n(s)+s)} x_{l}\right| \leq \\
&\|z-x\|+\|z-x\|+\sum_{m=n(s)+1}^{n(s)+s}\left|x_{k(m)}\right| .
\end{aligned}
$$

Hence for $s \in \mathbb{N}$ we get $1 \leq 2\|z-x\|+\sum_{m=n(s)+1}^{n(s)+s}\left|x_{k(m)}\right|$. Since $\sum_{m=1}^{\infty}\left|x_{k(m)}\right|<\infty$ we have $\lim _{s} \sum_{m=n(s)+1}^{n(s)+s}\left|x_{k(m)}\right|=0$. Thus $\|z-x\| \geq 1 / 2$. It follows that the set $\left\{x \in E: \sum_{m=1}^{\infty}\left|y_{k(m)}(x)\right|<\infty\right\}$ is not dense in E, so the subsequence $\left(y_{k(n)}\right)$ of $\left(y_{n}\right)$ is not strongly normal in E^{*}.

Assume now that $(k(n))$ does not contain arbitrary long series of successive integers. Then there are two strictly increasing sequences $(t(n)),(w(n)) \subset \mathbb{N}$ and $m \in \mathbb{N}$ such that
(1) $t(n) \leq w(n) \leq t(n)+m-2$ for $n \in \mathbb{N}$;
(2) $w(n)+1<t(n+1)$ for $n \in \mathbb{N}$;
(3) $\bigcup_{n}\{l \in \mathbb{N}: t(n) \leq l \leq w(n)\}=\{k(n): n \in \mathbb{N}\}$.

Let $z \in E$. For $s \in \mathbb{N}$ we put $x_{s}=\left(x_{s, l}\right)$, where

$$
x_{s, l}= \begin{cases}0 & \text { if } t(n) \leq l \leq w(n) \text { for some } n \geq s \\ \sum_{i=t(n)}^{w(n)+1} z_{i} & \text { if } l=w(n)+1 \text { for some } n \geq s \\ z_{l} & \text { for all other } l \in \mathbb{N}\end{cases}
$$

Since $\left|\sum_{i=t(n)}^{w(n)+1} z_{i}\right| \leq m \max \left\{\left|z_{i}\right|: i \geq t(n)\right\}, n \in \mathbb{N}$ and $\lim _{n} \max \left\{\left|z_{i}\right|: i \geq t(n)\right\}=$ 0 , we have $x_{s} \in c_{0}$. Moreover for $l \in \mathbb{N}$ we have $\sum_{i=1}^{l} x_{s, i}=\sum_{i=1}^{t(n)-1} z_{i}$ if $t(n) \leq l \leq$ $w(n)$ for some $n \geq s$, and $\sum_{i=1}^{l} x_{s, i}=\sum_{i=1}^{l} z_{i}$ for all other $l \in \mathbb{N}$. Thus $x_{s} \in E$. Since $x_{s, k(n)}=0$ if $k(n) \geq t(s)$, we have

$$
\sum_{n=1}^{\infty}\left|y_{k(n)}\left(x_{s}\right)\right|=\sum_{n=1}^{\infty}\left|f_{k(n)}\left(x_{s}\right)\right| /\left\|f_{k(n)}\right\|=\sum_{n=1}^{\infty}\left|x_{s, k(n)}\right| /\left\|f_{k(n)}\right\|<\infty
$$

so $\left(x_{s}\right) \subset\left\{x \in E: \sum_{n=1}^{\infty}\left|y_{k(n)}(x)\right|<\infty\right\}$. For $s \in \mathbb{N}$ we have $\sum_{i=1}^{l}\left(z_{i}-x_{s, i}\right)=$ $\sum_{i=t(n)}^{l} z_{i}$, if $t(n) \leq l \leq w(n)$ for some $n \geq s$; and $\sum_{i=1}^{l}\left(z_{i}-x_{s, i}\right)=0$ for all other $l \in \mathbb{N}$. Thus $\left\|z-x_{s}\right\| \leq m \max \left\{\left|z_{i}\right|: i \geq t(s)\right\}$ for $s \in \mathbb{N} ;$ so $\lim _{s}\left\|z-x_{s}\right\|=0$. Hence the set $\left\{x \in E: \sum_{n=1}^{\infty}\left|y_{k(n)}(x)\right|<\infty\right\}$ is dense in E. Therefore $\left(y_{k(n)}\right)$ is strongly normal in E^{*}.

By the equivalence (1) $\Leftrightarrow(4)$ in Theorem 3 we obtain the following well known result ([1], [17]); our proof is quite different from the the original one.

Corollary 5. A Banach space has an infinite-dimensional separable quotient if and only if it contains a dense non-barrelled subspace.

Proof. Assume that a Banach space E has an infinite-dimensional separable quotient. By Theorem 3, the space E^{*} has a pseudobounded sequence $\left(y_{n}\right)$. Put $G=\left\{x \in E: \sup _{n}\left|y_{n}(x)\right|<\infty\right\}$ and $V=\left\{x \in E: \sup _{n}\left|y_{n}(x)\right| \leq 1\right\}$. Using the Banach-Steinhaus theorem we infer that G is a proper and dense subspace of E. The set V is a barrell in G and it is not a neighbourhood of zero in G, since V is closed in E. Thus G is not barrelled.

Assume that a Banach space E contains a dense non-barrelled subspace G. Let W be a barrell in G which is not a neighbourhood of zero in G. The closure V of W in E is absolutely convex and closed in E. The linear span H of V is a dense proper subspace of E. For every $n \in \mathbb{N}$ there is $x_{n} \in(E \backslash V)$ with $\left\|x_{n}\right\|<n^{-2}$. By the Hahn-Banach theorem for every $n \in \mathbb{N}$ there is $z_{n} \in E^{*}$ with $\left|z_{n}\left(x_{n}\right)\right|>1$ such that $\left|z_{n}(x)\right| \leq 1$ for all $x \in V$. Then $\left\|z_{n}\right\| \geq n^{2}$ for $n \in \mathbb{N}$ and $\sup _{n}\left|z_{n}(x)\right|<\infty$ for $x \in H$; so $\left(z_{n}\right)$ is pseudobounded in E^{*}. By Theorem $3, E$ has an infinite-dimensional separable quotient.

Applying Corollary 5 we get our last result.
Theorem 6. Let E be an infinite-dimensional Banach space. Let F be a non-zero locally convex space. Then the following conditions are equivalent:
(1) Every separable quotient of E is finite-dimensional;
(2) Every continuous linear map from a Banach space to E with dense range is a surjection;
(3) Every family $\left\{T_{\gamma}: \gamma \in \Gamma\right\} \subset L(E, F)$ which is point-wise bounded on a dense subspace H of E is equicontinuous;
(4) Every sequence $\left(T_{n}\right) \subset L(E, F)$ which is point-wise convergent to zero on a dense subspace G of E is point-wise convergent to zero on E;

If additionally F is sequentially complete then above conditions are equivalent to the following
(5) Every sequence $\left(T_{n}\right) \subset L(E, F)$ which is point-wise convergent on a dense subspace G of E is point-wise convergent on E to some $T \in L(E, F)$.

Proof. (1) \Rightarrow (2). Let T be a continuous linear map from a Banach space X to E such that the range $T(X)$ is dense in E. By Corollary $5, T(X)$ is barrelled. Using the open mapping theorem we infer that the map T is open (i.e. for every open subset U in X the set $T(U)$ is open in $T(X)$). By the Banach-Schauder theorem ([7], 15.12(2)), $T(X)$ is closed in E; so $T(X)=E$.
$(2) \Rightarrow(1)$. By Corollary 5 it is enough to show that every dense subspace M of E is barrelled. Let D be a barrell in M and let B be the closed unit ball in M. Denote by S the closure of the set $C=D \cap B$ in E and by H the linear span of S. Let $p: H \rightarrow[0 ; \infty)$ be the Minkowski functional of S. Since S is a bounded and complete barrell in H, p is a complete norm in H and the embedding map $i:(H, p) \rightarrow E$ is a continuous linear map with dense range; so $H=E$. Thus S is a neighbourhood of zero in E. Hence D is a neighbourhood of zero in M, because $D \supset C=S \cap M$. Thus M is a barrelled space.
$(1) \Rightarrow(3)$. By Corollary $5, H$ is a dense barrelled subspace of E. Using the Banach-Steinhaus theorem we infer that the family $\left\{T_{\gamma} \mid H: \gamma \in \Gamma\right\}$ is equicontinuous. Let V be a closed neighbourhood of zero in F. For some open neighbourhood U of zero in E we have $T_{\gamma}(U \cap H) \subset V$ for all $\gamma \in \Gamma$. Hence $T_{\gamma}(U) \subset T_{\gamma}(\overline{U \cap H}) \subset$ $\overline{T_{\gamma}(U \cap H)} \subset V$ for all $\gamma \in \Gamma$. Thus the family $\left\{T_{\gamma}: \gamma \in \Gamma\right\}$ is equicontinuous.
$(3) \Rightarrow(4)$. By (3) the sequence $\left(T_{n}\right)$ is equicontinuous. Let $x \in E$. Let W, V be neighbourhoods of zero in F with $V-V \subset W$. For some neighbourhood U of zero in E we have $T_{n}(U) \subset V$ for $n \in \mathbb{N}$. Moreover there exists $y \in E$ with $y-x \in U$ such that $\lim _{n} T_{n}(y)=0$. For some $n_{0} \in \mathbb{N}$ we have $T_{n}(y) \in V$ for $n \geq n_{0}$. Since $T_{n}(x)=T_{n}(y)-T_{n}(y-x)$ and $V-T_{n}(U) \subset V-V \subset W$, so $T_{n}(x) \in W$ for $n \geq n_{0}$.

Thus $\lim _{n} T_{n}(x)=0$ for every $x \in E$.
$(4) \Rightarrow(1)$. Suppose, to the contrary, that E has an infinite-dimensional separable quotient. By Theorem 3, E_{σ}^{*} has a Schauder basic sequence $\left(y_{n}\right)$; we can assume that $\lim _{n}\left\|y_{n}\right\|=\infty$, so $\left(y_{n}\right)$ is pseudobounded in E^{*} (Proposition 2). Put $z_{n}=$ $y_{n} / \sqrt{\left\|y_{n}\right\|}$ for $n \in \mathbb{N}$. Then $\lim _{n}\left\|z_{n}\right\|=\infty$. Let $z \in F$ with $z \neq 0$. For every $n \in \mathbb{N}$ the map $T_{n}: E \rightarrow F, x \rightarrow z_{n}(x) z$, is linear and continuous. Since $\{x \in E$: $\left.\sup _{n}\left|y_{n}(x)\right|<\infty\right\} \subset\left\{x \in E: \lim _{n} z_{n}(x)=0\right\}$, the sequence $\left(T_{n}\right) \subset L(E, F)$ is point-wise convergent to zero on a dense subspace of E. By (4), (T_{n}) is point-wise convergent to zero on E. By the Banach-Steinhaus theorem, $\left(T_{n}\right)$ is equicontinuous, so $\sup _{n}\left\|z_{n}\right\|<\infty$; a contradiction.

Assume now that F is additionally sequentially complete.
$(3) \Rightarrow(5)$. $\mathrm{By}(3)$, the sequence $\left(T_{n}\right)$ is eqiucontinuous. Let $x \in E$. Let W, V be neighbourhoods of zero in F with $(V-V)-(V-V) \subset W$. For some neighbourhood U of zero in E we have $T_{n}(U) \subset V$ for $n \in \mathbb{N}$. Moreover there exists $y \in E$ with $y-x \in U$ such that the sequence $\left(T_{n}(y)\right)$ is convergent in F to some element z. Let $n_{0} \in \mathbb{N}$ with $T_{n}(y)-z \in V$ for $n \geq n_{0}$. For $n, m \geq n_{0}$ we have $T_{n} x-T_{m} x=$ $\left[\left(\left(T_{n} y-z\right)-T_{n}(y-x)\right)-\left(\left(T_{m} y-z\right)-T_{m}(y-x)\right)\right] \in(V-V)-(V-V) \subset W$. It follows that $\left(T_{n} x\right)$ is a Cauchy sequence in F, so it is convergent in F to some T_{x} for every $x \in E$. Clearly, the map $T: E \rightarrow F, x \rightarrow T_{x}$ is linear. If $x \in U$, then $\left(T_{n} x\right) \subset V$; hence $T x \in W$. Thus $T(U) \subset W$; so T is continuous.

The implication (5) $\Rightarrow(4)$ is obvious. Thus (5) is equivalent to conditions (1)-(4).

Acknowledgment. The author wishes to thank the referee for helpful comments.

References

[1] Bennett, G. and Kalton, N., Inclusion theorems for K-spaces, Canad. J. Math., 25(1973), 511-524.
[2] Edwards, R.E., Functional analysis. Theory and applications, Dover Publications, Inc., New York, 1995.
[3] John, K. and Zizler, V., Projections in dual weakly compactly generated Banach spaces, Studia Math., 49(1973), 41-50.
[4] Johnson, W.B. and Rosenthal, H.P., On ω^{*}-basic sequences and their applications to the study of Banach spaces, Studia Math., 43(1972), 77-95.
[5] Josefson, B., Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Ark. Mat., 13(1975), 78-89.
[6] Kąkol, J. and Śliwa, W., Remarks concerning the separable quotient problem, Note Mat., 13(1993), 277-282.
[7] Köthe, G., Topological vector spaces I, Springer-Verlag, Berlin, 1969.
[8] Lacey, H.E., Separable quotients of Banach spaces, An. Acad. Brasil. Ciénc., 44(1972), 185-189.
[9] Megginson, R.E., An Introduction to Banach Space Theory, Springer-Verlag, New York, 1998.
[10] Mujica, J., Separable quotients of Banach spaces, Rev. Mat. Univ. Complut. Madrid, 10(1997), 299-330.
[11] Narayanaswami, P.P., The separable quotient problem for barrelled spaces, in: Functional analysis and related topics, Springer-Verlag, Berlin, 1993, pp. 289-308.
[12] Nissenzweig, A., On ω^{*} sequential convergence, Israel J. Math., 22(1975), 266-272.
[13] Rosenthal, H.P., On quasicomplemented subspaces of Banach spaces with an appendix on compactness of operators from $L^{p}(\mu)$ to $L^{r}(\nu)$, J. Funct. Anal., 4(1969), 176-214.
[14] Rudin, W., Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.
[15] Saxon, S.A. and Narayanaswami, P.P., Metrizable (LF)-spaces, (db)-spaces and the separable quotient problem, Bull. Austral. Math. Soc., 23(1981), 6580.
[16] Saxon, S.A. and Narayanaswami, P.P., Metrizable [normable] (LF)-spaces and two classical problems in Fréchet [Banach] spaces, Studia Math., 43(1989), 1-16.
[17] Saxon, S.A. and Wilansky, A., The equivalence of some Banach space problems, Colloq. Math., 37(1977), 217-226.
[18] Śliwa, W., (LF)-spaces and the separable quotient problem, Thesis, in Polish, unpublished, Poznań, 1996.
[19] Śliwa, W., The separable quotient problem for symmetric function spaces, Bull. Polish Acad. Sci. Math., 48(2000), 13-27.
[20] Śliwa, W. and Wójtowicz, M., Separable quotients of locally convex spaces, Bull. Polish Acad. Sci. Math., 43(1995), 175-185.
[21] Wójtowicz, M., Generalizations of the $c_{0}-l_{1}-l_{\infty}$ Theorem of Bessaga and Petczyński, Bull. Polish Acad. Sci. Math., 50(2002), 373-382.
[22] Wójtowicz, M., Reflexivity and the Separable Quotient Problem for a Class of Banach Spaces, Bull. Polish Acad. Sci. Math., 50(2002), 383-394.

Author's address:
Faculty of Mathematics and Computer Science, A. Mickiewicz University, ul. Umultowska 87, 61-614 Poznań, POLAND;
e-mail: sliwa@amu.edu.pl

[^0]: ${ }^{1} 2010$ Mathematics Subject Classification: 46B26, 46B10.
 Key words : Banach space, separable quotient problem, normal sequence, Josefson-Nissenzweig theorem.

