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the strongly normal sequences
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Abstract. We study the notion of a strongly normal sequence in the dual E∗ of

a Banach space E. In particular, we prove that the following three conditions are

equivalent:

(1) E∗ has a strongly normal sequence,

(2) (E∗, σ(E∗, E)) has a Schauder basic sequence,

(3) E has an infinite-dimensional separable quotient.

Introduction

We put S(X) = {x ∈ X : ‖x‖ = 1} and B(X) = {x ∈ X : ‖x‖ ≤ 1} if X is a

normed space. Let E be a Banach space. A sequence (yn) ⊂ S(E∗) is normal in E∗

if limn yn(x) = 0 for every x ∈ E; clearly, the normal sequences coincide with the

normalized ω∗-null sequences. The excellent Josefson-Nissenzweig theorem states

that the dual of any infinite-dimensional Banach space contains a normal sequence

([5], [12]). It is easy to see that a sequence (yn) ⊂ S(E∗) is normal if and only if

the subspace {x ∈ E : limn yn(x) = 0} is dense in E. We will say that a sequence

(yn) ⊂ S(E∗) is strongly normal if the subspace {x ∈ E :
∑∞

n=1 |yn(x)| < ∞} is

dense in E ([18]). Clearly, every strongly normal sequence in E∗ is normal.

One of the most known open problems for Banach spaces is the separable quotient

problem: Does every infinite-dimensional Banach space has an infinite-dimensional

separable quotient? i.e. Does every infinite-dimensional Banach space E has a closed
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theorem.
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subspace M such that the quotient space E/M is infinite-dimensional and separable?

([1], [8], [10], [11], [15]-[22])

Recall that a sequence (xn) in a locally convex space F is: (1) a Schauder basis

of F if for each element x of F there is a unique sequence (αn) of scalars such that

x =
∑∞

n=1 αnxn and the coefficient functionals x∗n, n ∈ N, defined by x∗n(x) = αn,

are continuous on F ; (2) a Schauder basic sequence if it is a Schauder basis of its

closed linear span X in F .

We shall prove that a Banach space E has an infinite-dimensional separable

quotient iff E∗ contains a strongly normal sequence iff E∗σ = (E∗, σ(E∗, E)) has

a Schauder basic sequence (Theorem 3). Before, developing some ideas of [4], we

shall show that every strongly normal sequence in the dual E∗ of a Banach space E

contains a Schauder basic subsequence in E∗σ (Theorem 1).

We state the following.

Problem. Does every normal sequence in the dual E∗ of a Banach space E

contains a strongly normal subsequence?

If this problem has a positive answer for a given infinite-dimensional Banach

space E, then by the Josefson-Nissenzweig theorem and Theorem 3, E has an

infinite-dimensional separable quotient.

We show that for every WCG (i.e. weakly compactly generated) Banach space

E our problem has a positive answer (Proposition 4). Next we give an example

of a normal sequence in the dual E∗ of some known non-WCG Banach space E,

which is not strongly normal but every subsequence of it contains a strongly normal

subsequence (Example).

Finally, we show that a Banach space E has no infinite-dimensional separable

quotient iff every continuous linear map from a Banach space to E with dense range

is a surjection iff every sequence of continuous linear maps from E to some non-zero

(or to every) Fréchet space F , which is point-wise convergent on a dense subspace

of E is point-wise convergent on E to some continuous linear map from E to F

(Theorem 6).

Results

Johnson and Rosenthal proved that any normal sequence (yn) in the dual E∗ of

a separable Banach space E has a Schauder basic subsequence (yk(n)) in E∗σ ([4],

Theorem III.1). Developing some ideas of their proof we shall show the following.
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Theorem 1. Let E be a Banach space. Any strongly normal sequence (yn) in E∗

contains a Schauder basic subsequence (yk(n)) in E∗σ.

Proof. Let ϕ : E → E∗∗ be the canonical embedding map.

(A1) First we shall show that for every finite-dimensional subspace Y of E∗

and every ε ∈ (0, 1/2) there exists a finite subset H of S(E) such that for every

f ∈ S(Y ∗) there is an x ∈ H with ‖ f − ϕ(x)|Y ‖< 2ε.

Let ψ : (E/⊥Y ) → (E/⊥Y )∗∗ be the canonical embedding map; clearly ψ is an

isometric isomorphism. Since (⊥Y )⊥ = Y , the map

α : Y → (E/⊥Y )∗, α(y)(x+⊥ Y ) = y(x), for y ∈ Y, x ∈ E,

is an isometric isomorphism ([14], 4.9(b)). Thus the adjoint map

α∗ : (E/⊥Y )∗∗ → Y ∗, α∗(ψ(x+⊥ Y )) = ϕ(x)|Y, for x ∈ E,

is also an isometric isomorphism ([2], 8.6.18(a)).

Hence for every f ∈ S(Y ∗) there is an x ∈ S(E) with ‖f −ϕ(x)|Y ‖ < ε. Indeed,

for every f ∈ S(Y ∗) there exist v ∈ E and z ∈⊥ Y such that ϕ(v)|Y = f, ‖ v+⊥Y ‖=
1 and 1 ≤ ‖v + z‖ < 1 + ε. Thus for u = v + z and x = u/‖u‖ we have x ∈ S(E)

and ‖ f − ϕ(x)|Y ‖= 1− ‖u‖−1 < ε.

The set S(Y ∗) is compact, so there exists a finite subset {f1, . . . , fn} of S(Y ∗)

with S(Y ∗) ⊂
⋃n
m=1K(fm, ε). Let x1, . . . , xn ∈ S(E) with ‖fm − ϕ(xm)|Y ‖ < ε for

1 ≤ m ≤ n. Put H = {x1, . . . , xn}. Then for every f ∈ S(Y ∗) there is an x ∈ H
with ‖f − ϕ(xm)|Y ‖ < 2ε.

(A2) Since limn yn(x) = 0 for every x ∈ E, using (A1) we can choose inductively

a strictly increasing sequence (k(n)) ⊂ N and an increasing sequence (Hn) of finite

subsets of S(E) such that for every n ∈ N we have

(i) for every f ∈ S(Y ∗n ) there is an x ∈ Hn with ‖f − ϕ(x)|Yn‖ < 2−n−1, where

Yn is the linear span of the set {yk(i) : 1 ≤ i ≤ n};
(ii) |yk(n+1)(x)| < 2−n−2 for every x ∈ Hn.

(A3) For every n ∈ N and for all α1, . . . , αn+1 ∈ K we have

‖
n∑
i=1

αiyk(i)‖ ≤ (1 + 21−n)‖
n+1∑
i=1

αiyk(i)‖.

Indeed, let n ∈ N and α1, . . . , αn+1 ∈ K. Put y =
∑n

i=1 αiyk(i) and z = αn+1yk(n+1).

Then there is f ∈ S(Y ∗) with f(y) = ‖y‖ ([14], 3.3). By (A2) there is an x ∈ Hn with
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‖f −ϕ(x)|Yn‖ < 2−n−1 and |yk(n+1)(x)| < 2−n−2. If ‖z‖ > 2‖y‖, then ‖y+ z‖ > ‖y‖.
If ‖z‖ ≤ 2‖y‖, then ‖y+z‖ ≥ |(y+z)(x)| ≥ |y(x)|− |z(x)| ≥ |f(y)|− |f(y)−y(x)|−
|z(x)| = ‖y‖−|(f−ϕ(x)|Yn)(y)|−‖z‖|yk(n+1)(x)| ≥ (1−2−n)‖y‖ ≥ (1+21−n)−1‖y‖.

Since
∏∞

n=1(1 + 21−n) <∞, using [9], 4.1.24, we infer that (yk(n)) is a Schauder

basic sequence in E∗ such that ‖Pn‖ ≤
∏∞

k=n(1 + 21−k) < 1 + 24−n, n ∈ N, where

Pn : Y → Y,
∑∞

i=1 αiyk(i) →
∑n

i=1 αiyk(i) and Y is the closed linear span of (yk(n)).

(A4) The operator T : E → Y ∗, (Tx)(y) = y(x), x ∈ E, y ∈ Y, is well defined,

linear and continuous. Let (fn) ⊂ Y ∗ be the sequence of coefficient functionals

associated with the Schauder basis (yk(n)) in Y . Clearly, (fn) is a Schauder basis of

its closed linear span F in Y ∗ ([9], 4.4.1). Put G = {x ∈ E :
∑∞

n=1 |yn(x)| <∞}.
For x ∈ E we have Tx =

∑∞
n=1 yk(n)(x)fn. Indeed, let x ∈ G. For n ≥ 2 we get

‖fn‖ = ‖fn‖‖yk(n)‖ = ‖Pn − Pn−1‖ ≤ 2 + 26−n ≤ 18, so the series
∑∞

n=1 yk(n)(x)fn

is convergent in F . For y ∈ Y we have (Tx)(y) = y(x) = (
∑∞

n=1 fn(y)yk(n))(x) =∑∞
n=1 fn(y)yk(n)(x) = (

∑∞
n=1 yk(n)(x)fn)(y), so Tx =

∑∞
n=1 yk(n)(x)fn ∈ F. Hence

T (E) = T (G) ⊂ T (G) ⊂ F. Let x ∈ E. Then Tx =
∑∞

j=1 αjfj for some scalars

α1, α2, . . . . Hence αn = (
∑∞

j=1 αjfj)(yk(n)) = (Tx)(yk(n)) = yk(n)(x), n ∈ N, so

Tx =
∑∞

n=1 yk(n)(x)fn.

(A5) For every g ∈ F and every ε > 0 there is x ∈ E with ‖x‖ = ‖g‖ such

that ‖g − Tx‖ < ε. Indeed, for every g ∈ S(F ) there is a sequence (gn) ⊂ S(F )

with lim gn = g such that gn ∈ Fn for n ∈ N, where Fn is the linear span of the set

{f1, . . . , fn}. Thus it is enough to show that for every n ∈ N and every g ∈ S(Fn)

there is x ∈ S(E) with ‖g − Tx‖ ≤ 27−n. Let n ∈ N, g ∈ S(Fn) and h = ‖g|Yn‖−1g.

Since h|Yn ∈ S(Y ∗n ), by (A2) there is an x ∈ Hn with ‖h|Yn − ϕ(x)|Yn‖ <
2−n−1. Put f =

∑n
i=1 yk(i)(x)fi. For y ∈ Yn we have f(y) =

∑n
i=1 yk(i)(x)fi(y) =

(
∑n

i=1 fi(y)yk(i))(x) = y(x) = ϕ(x)(y), so f |Yn = ϕ(x)|Yn.
By (A4) and (A2) we get ‖Tx − g‖ = ‖

∑∞
i=1 yk(i)(x)fi − g‖ ≤ ‖f − g‖ +∑∞

i=n+1 |yk(i)(x)|‖fi‖ ≤ ‖f−g‖+
∑∞

i=n+1 2−i−1(2+26−i) ≤ (‖f−h‖+‖h−g‖)+26−n.

For u ∈ Fn we have ‖u‖ = sup{|u(Pny)| : y ∈ S(Y )} ≤ ‖u|Yn‖‖Pn‖, so ‖f − h‖ ≤
‖f |Yn − h|Yn‖‖Pn‖ = ‖ϕ(x)|Yn − h|Yn‖‖Pn‖ < 2−n−1(1 + 24−n) ≤ 24−n. Moreover

‖h− g‖ = ‖g|Yn‖−1 − 1 ≤ ‖g‖−1‖Pn‖ − 1 ≤ 24−n. Thus ‖Tx− g‖ ≤ 27−n.

(A6) We show that T (E) = F. Let g ∈ F. Using (A5) we choose an element x1 ∈
E with ‖x1‖ = ‖g‖ such that ‖g − Tx1‖ < 2−1. Next we choose an element x2 ∈ E
with ‖x2‖ = ‖g−Tx1‖ such that ‖g−Tx1−Tx2‖ < 2−2. This way we can obtain a

sequence (xn) ⊂ E such that ‖xn+1‖ = ‖g−
∑n

j=1 Txj‖ and ‖g−
∑n+1

j=1 Txj‖ < 2−n−1
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for n ∈ N. Clearly, the series
∑∞

j=1 xj is convergent in E to some x and Tx = g.

(A7) The sequence (gn) ⊂ F ∗ of coefficient functionals associated with the

Schauder basis (fn) in F is a Schauder basis in F ∗σ . The adjoint map T ∗ : F ∗ → E∗

is an isomorphism of F ∗σ and the closed subspace T ∗F ∗ of E∗σ ([14], 4.14 and 4.15).

Thus the sequence (T ∗gn) is a Schauder basic sequence in E∗σ. We have (T ∗gn)(x) =

gn(Tx) = gn(
∑∞

i=1 yk(i)(x)fi) = yk(n)(x) for x ∈ E and n ∈ N, so T ∗gn = yk(n) for

n ∈ N. We have shown that (yk(n)) is a Schauder basic sequence in E∗σ. 2

Let E be a Banach space. By the Banach-Steinhaus theorem every sequence

(yn) ⊂ E∗ which is point-wise bounded on E is bounded. We will say that a sequence

(yn) ⊂ E∗ is pseudobounded if it is point-wise bounded on a dense subspace of E

and supn ‖yn‖ =∞.

For Schauder basic sequences in E∗σ we have the following.

Proposition 2. Let E be a Banach space and let (yn) be a Schauder basic sequence

in E∗σ. If (yn) ⊂ S(E∗), then (yn) is strongly normal in E∗. If supn ‖yn‖ = ∞,
then (yn) is pseudobounded in E∗. Every pseudobounded sequence (zn) in E∗ has a

Schauder basic subsequence in E∗σ.

Proof. Denote by Y the closure of the linear span of the set {yn : n ∈ N} in

E∗σ. Then there is a sequence (xn) ⊂ E such that yn(xm) = δn,m for all n,m ∈ N
and y(x) =

∑∞
n=1 y(xn)yn(x) for all y ∈ Y, x ∈ E. For the linear span X of the set

{xn : n ∈ N} we have

(X +⊥ Y )⊥ = (X ∪⊥ Y )⊥ = X⊥ ∩ (⊥Y )⊥ = X⊥ ∩ Y = {0}.

Thus X +⊥ Y is dense in E, so the subspaces {x ∈ E :
∑∞

n=1 |yn(x)| < ∞} and

{x ∈ E : supn |yn(x)| <∞} are dense in E, too.

Let (k(n)) ⊂ N be a strictly increasing sequence with ‖zk(n)‖ ≥ n2 for n ∈ N.
Put vn = zk(n)/‖zk(n)‖ for n ∈ N. The sequence (vn) is strongly normal in E∗, since

{x ∈ E : supn |zn(x)| < ∞} ⊂ {x ∈ E :
∑∞

n=1 |vn(x)| < ∞}. Using Theorem 1 we

infer that the sequence (zk(n)) has a Schauder basic subsequence in E∗σ. 2

Using the last proposition we get the following.

Theorem 3. Let E be a Banach space. Then the following conditions are equivalent:

(1) E has an infinite-dimensional separable quotient;
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(2) E∗ has a strongly normal sequence;

(3) E∗σ has a Schauder basic sequence;

(4) E∗ has a pseudobounded sequence.

Proof. (1) ⇒ (2). By [6], Proposition 1, there exists a biorthogonal sequence

((xn, yn)) ⊂ E × E∗ such that A = (lin{xn : n ∈ N} +
⋂∞
n=1 ker yn) is a dense

subspace in E; clearly we can assume that (yn) ⊂ S(E∗). The sequence (yn) is

strongly normal in E∗, since {x ∈ E :
∑∞

n=1 |yn(x)| <∞} ⊃ A.

Using Theorem 1 we get (2)⇒ (3). By [20], Proposition 1, we obtain (3)⇒ (1).

Using Proposition 2 we get the equivalence (3)⇔ (4). 2

It is known that every infinite-dimensional WCG Banach space has an infinite-

dimensional separable quotient. We shall show the following ([18]).

Proposition 4. Let E be a WCG Banach space. Then every normal sequence (yn)

in E∗ contains a strongly normal subsequence.

Proof. Case 1: E is separable. Let X = {xn : n ∈ N} be a countable dense

subset of E. For every n ∈ N we choose k(n) ∈ N with |yk(n)(xi)| < n−2 for

1 ≤ i ≤ n; we can assume that the sequence (k(n)) is strictly increasing. Then the

sequence (yk(n)) is strongly normal in E∗, since {x ∈ E :
∑∞

n=1 |yk(n)(x)| <∞} ⊃ X.

Case 2: E is not separable. By [3], Proposition 1, there is a continuous linear

projection Q : E → E with ‖Q‖ = 1 such that F = Q(E) is a separable closed

subspace of E and (yn) ⊂ Q∗(E∗). Let i : F → E be the identity embedding.

Put P : E → F, x → Qx. Then Q = iP and Q∗(E∗) = P ∗(i∗(E∗)) ⊂ P ∗(F ∗), so

(yn) ⊂ P ∗(F ∗). Moreover P (B(E)) = B(F ). Therefore for every z ∈ F ∗ we have

‖P ∗z‖ = sup{|(P ∗z)(x)| : x ∈ B(E)} = sup{|z(Px)| : x ∈ B(E)} =

sup{|z(x)| : x ∈ B(F )} = ‖z‖.

Since (yn) ⊂ P ∗(F ∗)∩S(E∗), there is (zn) ⊂ S(F ∗) with P ∗zn = yn, n ∈ N. Thus (zn)

is a normal sequence in F ∗. By Case 1, (zn) contains a strongly normal subsequence

(zk(n)) in F ∗. Then the subspace ({x ∈ F :
∑∞

n=1 |zk(n)(x)| < ∞} + kerP ) is dense

in E, so the subspace {x ∈ E :
∑∞

n=1 |yk(n)(x)| <∞} is dense in E. Thus (yk(n)) is

strongly normal in E∗. 2

Example. The linear space E = {(xn) ∈ c0 : supk |
∑k

n=1 xn| < ∞} with the

norm ‖x‖ = supk |
∑k

n=1 xn|, x = (xn), is a Banach space and it is not WCG ([17]).
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Let fn : E → K, x = (xk) → xn, n ∈ N. Then (fn) ⊂ E∗, limn fn(x) = 0 for every

x ∈ E and 1 ≤ ‖fn‖ ≤ 2 for n ∈ N. Put yn = fn/‖fn‖, n ∈ N; clearly (yn) is a

normal sequence in E∗. We shall prove that a subsequence (yk(n)) of (yn) is strongly

normal in E∗ if and only if the sequence (k(n)) ⊂ N does not contain arbitrary long

series of successive integers. In particular the normal sequence (yn) is not strongly

normal but every subsequence of it contains a strongly normal subsequence.

Proof. Let (k(n)) ⊂ N be a strictly increasing sequence.

Assume that (k(n)) contains arbitrary long series of successive integers. Then for

every s ∈ N there is n(s) ∈ N such that k(n(s) + 1); . . . ; k(n(s) + 2s) are successive

integers; we can assume that n(s+ 1) > n(s) + 2s for s ∈ N. Put

zl =


s−1 if k(n(s) + 1) ≤ l ≤ k(n(s) + s) for some s ∈ N;

−s−1 if k(n(s) + s+ 1) ≤ l ≤ k(n(s) + 2s) for some s ∈ N;

0 for all other l ∈ N.

Clearly z = (zl) ∈ E. Let x ∈ E with
∑∞

n=1 |yk(n)(x)| < ∞. Then
∑∞

n=1 |xk(n)| =∑∞
n=1 |fk(n)(x)| =

∑∞
n=1 ‖fk(n)‖|yk(n)(x)| <∞. For s ∈ N we have

1 =

k(n(s)+s)∑
l=k(n(s)+1)

zl = |
k(n(s)+s)∑

l=1

(zl − xl)−
k(n(s)+1)−1∑

l=1

(zl − xl) +

k(n(s)+s)∑
l=k(n(s)+1)

xl| ≤

‖z − x‖+ ‖z − x‖+

n(s)+s∑
m=n(s)+1

|xk(m)|.

Hence for s ∈ N we get 1 ≤ 2‖z − x‖ +
∑n(s)+s

m=n(s)+1 |xk(m)|. Since
∑∞

m=1 |xk(m)| <∞
we have lims

∑n(s)+s
m=n(s)+1 |xk(m)| = 0. Thus ‖z − x‖ ≥ 1/2. It follows that the set

{x ∈ E :
∑∞

m=1 |yk(m)(x)| <∞} is not dense in E, so the subsequence (yk(n)) of (yn)

is not strongly normal in E∗.

Assume now that (k(n)) does not contain arbitrary long series of successive

integers. Then there are two strictly increasing sequences (t(n)), (w(n)) ⊂ N and

m ∈ N such that

(1) t(n) ≤ w(n) ≤ t(n) +m− 2 for n ∈ N;

(2) w(n) + 1 < t(n+ 1) for n ∈ N;

(3)
⋃
n{l ∈ N : t(n) ≤ l ≤ w(n)} = {k(n) : n ∈ N}.

Let z ∈ E. For s ∈ N we put xs = (xs,l), where

xs,l =


0 if t(n) ≤ l ≤ w(n) for some n ≥ s;∑w(n)+1

i=t(n) zi if l = w(n) + 1 for some n ≥ s;

zl for all other l ∈ N.
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Since |
∑w(n)+1

i=t(n) zi| ≤ mmax{|zi| : i ≥ t(n)}, n ∈ N and limn max{|zi| : i ≥ t(n)} =

0, we have xs ∈ c0. Moreover for l ∈ N we have
∑l

i=1 xs,i =
∑t(n)−1

i=1 zi if t(n) ≤ l ≤
w(n) for some n ≥ s, and

∑l
i=1 xs,i =

∑l
i=1 zi for all other l ∈ N. Thus xs ∈ E.

Since xs,k(n) = 0 if k(n) ≥ t(s), we have

∞∑
n=1

|yk(n)(xs)| =
∞∑
n=1

|fk(n)(xs)|/‖fk(n)‖ =
∞∑
n=1

|xs,k(n)|/‖fk(n)‖ <∞;

so (xs) ⊂ {x ∈ E :
∑∞

n=1 |yk(n)(x)| < ∞}. For s ∈ N we have
∑l

i=1(zi − xs,i) =∑l
i=t(n) zi, if t(n) ≤ l ≤ w(n) for some n ≥ s; and

∑l
i=1(zi − xs,i) = 0 for all other

l ∈ N. Thus ‖z−xs‖ ≤ mmax{|zi| : i ≥ t(s)} for s ∈ N; so lims ‖z−xs‖ = 0. Hence

the set {x ∈ E :
∑∞

n=1 |yk(n)(x)| < ∞} is dense in E. Therefore (yk(n)) is strongly

normal in E∗. 2

By the equivalence (1)⇔ (4) in Theorem 3 we obtain the following well known

result ([1], [17]); our proof is quite different from the the original one.

Corollary 5. A Banach space has an infinite-dimensional separable quotient if and

only if it contains a dense non-barrelled subspace.

Proof. Assume that a Banach space E has an infinite-dimensional separable

quotient. By Theorem 3, the space E∗ has a pseudobounded sequence (yn). Put

G = {x ∈ E : supn |yn(x)| < ∞} and V = {x ∈ E : supn |yn(x)| ≤ 1}. Using the

Banach-Steinhaus theorem we infer that G is a proper and dense subspace of E.

The set V is a barrell in G and it is not a neighbourhood of zero in G, since V is

closed in E. Thus G is not barrelled.

Assume that a Banach space E contains a dense non-barrelled subspace G. Let

W be a barrell in G which is not a neighbourhood of zero in G. The closure V of

W in E is absolutely convex and closed in E. The linear span H of V is a dense

proper subspace of E. For every n ∈ N there is xn ∈ (E \ V ) with ‖xn‖ < n−2. By

the Hahn-Banach theorem for every n ∈ N there is zn ∈ E∗ with |zn(xn)| > 1 such

that |zn(x)| ≤ 1 for all x ∈ V. Then ‖zn‖ ≥ n2 for n ∈ N and supn |zn(x)| < ∞ for

x ∈ H; so (zn) is pseudobounded in E∗. By Theorem 3, E has an infinite-dimensional

separable quotient. 2

Applying Corollary 5 we get our last result.

Theorem 6. Let E be an infinite-dimensional Banach space. Let F be a non-zero

locally convex space. Then the following conditions are equivalent:
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(1) Every separable quotient of E is finite-dimensional;

(2) Every continuous linear map from a Banach space to E with dense range is

a surjection;

(3) Every family {Tγ : γ ∈ Γ} ⊂ L(E,F ) which is point-wise bounded on a dense

subspace H of E is equicontinuous;

(4) Every sequence (Tn) ⊂ L(E,F ) which is point-wise convergent to zero on a

dense subspace G of E is point-wise convergent to zero on E;

If additionally F is sequentially complete then above conditions are equivalent to

the following

(5) Every sequence (Tn) ⊂ L(E,F ) which is point-wise convergent on a dense

subspace G of E is point-wise convergent on E to some T ∈ L(E,F ).

Proof. (1)⇒ (2). Let T be a continuous linear map from a Banach space X to

E such that the range T (X) is dense in E. By Corollary 5, T (X) is barrelled. Using

the open mapping theorem we infer that the map T is open (i.e. for every open

subset U in X the set T (U) is open in T (X)). By the Banach-Schauder theorem

([7], 15.12(2)), T (X) is closed in E; so T (X) = E.

(2)⇒ (1). By Corollary 5 it is enough to show that every dense subspace M of

E is barrelled. Let D be a barrell in M and let B be the closed unit ball in M .

Denote by S the closure of the set C = D ∩ B in E and by H the linear span of

S. Let p : H → [0;∞) be the Minkowski functional of S. Since S is a bounded

and complete barrell in H, p is a complete norm in H and the embedding map

i : (H, p) → E is a continuous linear map with dense range; so H = E. Thus S is

a neighbourhood of zero in E. Hence D is a neighbourhood of zero in M, because

D ⊃ C = S ∩M. Thus M is a barrelled space.

(1) ⇒ (3). By Corollary 5, H is a dense barrelled subspace of E. Using the

Banach-Steinhaus theorem we infer that the family {Tγ|H : γ ∈ Γ} is equicontinu-

ous. Let V be a closed neighbourhood of zero in F . For some open neighbourhood

U of zero in E we have Tγ(U ∩H) ⊂ V for all γ ∈ Γ. Hence Tγ(U) ⊂ Tγ(U ∩H) ⊂
Tγ(U ∩H) ⊂ V for all γ ∈ Γ. Thus the family {Tγ : γ ∈ Γ} is equicontinuous.

(3)⇒ (4). By (3) the sequence (Tn) is equicontinuous. Let x ∈ E. Let W,V be

neighbourhoods of zero in F with V − V ⊂ W. For some neighbourhood U of zero

in E we have Tn(U) ⊂ V for n ∈ N. Moreover there exists y ∈ E with y − x ∈ U
such that limn Tn(y) = 0. For some n0 ∈ N we have Tn(y) ∈ V for n ≥ n0. Since

Tn(x) = Tn(y)− Tn(y− x) and V − Tn(U) ⊂ V − V ⊂ W, so Tn(x) ∈ W for n ≥ n0.
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Thus limn Tn(x) = 0 for every x ∈ E.
(4)⇒ (1). Suppose, to the contrary, that E has an infinite-dimensional separable

quotient. By Theorem 3, E∗σ has a Schauder basic sequence (yn); we can assume

that limn ‖yn‖ = ∞, so (yn) is pseudobounded in E∗ (Proposition 2). Put zn =

yn/
√
‖yn‖ for n ∈ N. Then limn ‖zn‖ = ∞. Let z ∈ F with z 6= 0. For every

n ∈ N the map Tn : E → F, x → zn(x)z, is linear and continuous. Since {x ∈ E :

supn |yn(x)| < ∞} ⊂ {x ∈ E : limn zn(x) = 0}, the sequence (Tn) ⊂ L(E,F ) is

point-wise convergent to zero on a dense subspace of E. By (4), (Tn) is point-wise

convergent to zero on E. By the Banach-Steinhaus theorem, (Tn) is equicontinuous,

so supn ‖zn‖ <∞; a contradiction.

Assume now that F is additionally sequentially complete.

(3)⇒ (5). By (3), the sequence (Tn) is eqiucontinuous. Let x ∈ E. Let W,V be

neighbourhoods of zero in F with (V −V )− (V −V ) ⊂ W. For some neighbourhood

U of zero in E we have Tn(U) ⊂ V for n ∈ N. Moreover there exists y ∈ E with

y − x ∈ U such that the sequence (Tn(y)) is convergent in F to some element z.

Let n0 ∈ N with Tn(y) − z ∈ V for n ≥ n0. For n,m ≥ n0 we have Tnx − Tmx =

[((Tny − z) − Tn(y − x)) − ((Tmy − z) − Tm(y − x))] ∈ (V − V ) − (V − V ) ⊂ W.

It follows that (Tnx) is a Cauchy sequence in F , so it is convergent in F to some

Tx for every x ∈ E. Clearly, the map T : E → F, x → Tx is linear. If x ∈ U , then

(Tnx) ⊂ V ; hence Tx ∈ W. Thus T (U) ⊂ W ; so T is continuous.

The implication (5)⇒ (4) is obvious. Thus (5) is equivalent to conditions (1)-(4).

2
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44(1972), 185-189.

[9] Megginson, R.E., An Introduction to Banach Space Theory, Springer-Verlag,

New York, 1998.

[10] Mujica, J., Separable quotients of Banach spaces, Rev. Mat. Univ. Complut.

Madrid, 10(1997), 299-330.

[11] Narayanaswami, P.P., The separable quotient problem for barrelled spaces,

in: Functional analysis and related topics, Springer-Verlag, Berlin, 1993, pp.

289-308.

[12] Nissenzweig, A., On ω∗ sequential convergence, Israel J. Math., 22(1975),

266-272.

[13] Rosenthal, H.P., On quasicomplemented subspaces of Banach spaces with an

appendix on compactness of operators from Lp(µ) to Lr(ν), J. Funct. Anal.,

4(1969), 176-214.

[14] Rudin, W., Functional analysis, International Series in Pure and Applied

Mathematics, McGraw-Hill, Inc., New York, 1991.

[15] Saxon, S.A. and Narayanaswami, P.P., Metrizable (LF )-spaces, (db)-spaces

and the separable quotient problem, Bull. Austral. Math. Soc., 23(1981), 65-

80.

[16] Saxon, S.A. and Narayanaswami, P.P., Metrizable [normable] (LF )-spaces

and two classical problems in Fréchet [Banach] spaces, Studia Math.,

43(1989), 1-16.

11



[17] Saxon, S.A. and Wilansky, A., The equivalence of some Banach space prob-

lems, Colloq. Math., 37(1977), 217-226.
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