Wydział Matematyki i Informatyki (WMiI)/Faculty of Mathematics and Computer Science
Permanent URI for this community
Browse
Browsing Wydział Matematyki i Informatyki (WMiI)/Faculty of Mathematics and Computer Science by Author "Banaszak, Grzegorz. Promotor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Arytmetyka Grupy Mordella-Weila na rozmaitości abelowej nad ciałem skończenie generowanym nad Q(2010-06-07T08:48:40Z) Rzonsowski, Piotr; Banaszak, Grzegorz. PromotorNiniejsza rozprawa jest poświęcona rozwiązaniu dwóch problemów. Pierwszym zagadnieniem jakie jest rozważany w rozprawie jest problem nośnika. Jako pierwszy sformułował go P. Erdös w następujący sposób: Załóżmy, że dla pewnych liczb całkowitych x, y następujący warunek jest spełniony:Supp(xn − 1) implikuje Supp(yn − 1),dla wszystkich liczb naturalnych n. Czy z tego wynika, że x = y.Problem ten został rozwiązany przez C. Corrales-Rodrigáñez i R. Schoof. Następnie problem ten został uogólniony na rozmaitości abelowe nad ciałem liczbowym i był rozwiązany dla szczególnych klas rozmaitości abelowych przez Banaszaka, Gajdę, Krasonia, Khare, Prasada i innych.W swojej rozprawie rozszerzam ten wynik dla abelowych rozmaitości nad ciałem skończenie generowanym nad Q.Drugi problem dotyczy liniowej zależności punktów na rozmaitości abelowej. Pytanie to sformułował W. Gajda w 2002 r. w następujący sposób:Czy dla rozmaitości abelowej A i jej podgrupy G następujące warunki są równoważne:· P należy do podgrupy G;· rv(P) należy do rv(G), dla prawie wszystkich v z pierścienia OFProblematyka ta była rozważana w przeciągu kilku następnych lat. Jednakże wszystkie wyniki uzyskiwane w tych pracach były dla rozmaitości abelowych nad ciałem liczbowym. W rozprawie rozszerzam ten problem na ciała skończenie generowane nad Q.Item Zasada lokalno-globalna dla rozmaitości semiabelowych(2017) Blinkiewicz, Dorota; Banaszak, Grzegorz. PromotorJednym z głównych wyników pracy jest twierdzenie rozwiązujące problem badania liniowej zależności, z dokładnością do podgrupy elementów torsyjnych, dla pewnej klasy rozmaitości semiabelowych G, które są produktem torusa i rozmaitości abelowej nad ciałem liczbowym F i dowolnej skończenie generowanej podgrupy X grupy Mordella-Weila G(F). Zaprezentowane są też kontrprzykłady w przypadku, gdy założenie tegoż twierdzenia nie jest spełnione. Kolejnym wynikiem jest twierdzenie dla G, jak wyżej, mówiące, że wystarczy rozpatrywać tylko skończoną liczbę przekształceń redukcji, by stwierdzić, czy punkt należy do X (modulo podgrupa torsyjna). Wyniki rozprawy dotyczą również badania współmierności podgrup w grupach Mordella-Weila przez przekształcenia redukcji. Są to wspólne wyniki z G. Banaszakiem. Dotyczą one relacji między lokalno-globalnymi własnościami współmierności oraz liniowej zależności. Pokazano m.in. równoważność Lokalno-globalnej własności silnej współmierności i Własności liniowej zależności. Jako wniosek otrzymano, że dla rozmaitości semiabelowej G (jak wyżej), zachodzi Lokalno-globalna własność silnej współmierności. Udowodniono też kryterium sprawdzania współmierności skończenie generowanych podgrup, używające tylko skończonej liczby przekształceń redukcji. Przedstawiono kontrprzykłady dla współmierności. Prowadzą one do interesujących klas 1-motywów w sensie P. Deligne'a.