Browsing by Author "Kapcia, Konrad"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Charge orderings and phase separations in the atomic limit of the extended Hubbard model with intersite density-density interactions(Polish Academy of Sciences, Institute of Physics, al. Lotników 32-46, Pl-02-668 Warsaw, Poland, 2010-08) Kapcia, Konrad; Kłobus, Waldemar; Robaszkiewicz, StanisławWe have studied a simple effective model of charge ordered insulators. The tight binding Hamiltonian consists of the effective on-site interaction U and the intersite density-density interaction Wij (both: nearest-neighbor and next-nearest-neighbor). In the analysis of the phase diagrams and thermodynamic properties of this model we have adopted the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. Our investigations of the general case (as a function of the electron concentration) have shown that the system exhibits various critical behaviors including among others bicritical, tricritical, critical-end and isolated critical points. In this report we concentrate on the metastable phases and transitions between them. One finds that the first- and second order transitions between metastable phases can exist in the system. These transitions occur in the neighborhood of first as well as second order transitions between stable phases. For the case of on-site attraction the regions of metastable homogeneous phases occurrence inside the ranges of phase separated states stability have been also determined.Item Interplay and competition between superconductivity and charge orderings in the zero-bandwidth limit of the extended Hubbard model with pair hopping and on-site attraction(Springer, 2013-08) Kapcia, KonradWe present studies of an effective model which is a simple generalization of the standard model of a local pair superconductor with on-site pairing (i.e., the model of hard core bosons on a lattice) to the case of finite pair binding energy. The tight binding Hamiltonian consists of (i) the effective on-site interaction U, (ii) the intersite density-density interactions W between nearest-neighbours, and (iii) the intersite charge exchange term I, determining the hopping of electron pairs between nearest-neighbour sites. In the analysis of the phase diagrams and thermodynamic properties of this model we treat the intersite interactions within the mean-field approximation. Our investigations of the U<0 and W>0 case show that, depending on the values of interaction parameters, the system can exhibit three homogeneous phases: superconducting (SS), charge-ordered (CO) and nonordered (NO) as well as the phase separated SS-CO state.Item Interplay between charge and magnetic orderings in the zero-bandwidth limit of the extended Hubbard model for strong on-site repulsion(Polish Academy of Sciences, Institute of Physics, al. Lotników 32-46, Pl-02-668 Warsaw, Poland, 2012-06) Kapcia, Konrad; Kłobus, Waldemar; Robaszkiewicz, StanisławA simple effective model of charge ordered and (or) magnetically ordered insulators is studied. The tight binding Hamiltonian analyzed consists of (i) the effective on-site interaction U, (ii) the intersite density-density interaction W and (iii) intersite magnetic exchange interaction Jz (or Jxy) between nearest-neighbors. The intersite interaction are treated within the mean-field approximation. One shows that the systems considered can exhibit very interesting multicritical behaviors, including among others bicritical, tricritical, tetracritical and critical end points. The analysis of the model has been performed for an arbitrary electron concentration as well as an arbitrary chemical potential in the limit of strong on-site repulsion. The phase diagrams obtained in such a case are shown to consist of at least 9 different states, including four homogenous phases: nonordered (NO), ferromagnetic (F), charge ordered (CO), ferrimagnetic (intermediate, I) and five types of phase separation: NO-NO, F-NO, F-F, CO-F, CO-I.Item Magnetic orderings and phase separations in the zero-bandwidth limit of the extended Hubbard model with intersite magnetic interactions(Polish Academy of Sciences, Institute of Physics, al. Lotników 32-46, Pl-02-668 Warsaw, Poland, 2010-08) Kłobus, Waldemar; Kapcia, Konrad; Robaszkiewicz, StanisławA simple effective model for a description of magnetically ordered insulators is analysed. The tight binding Hamiltonian consists of the effective on-site interaction (U) and intersite magnetic exchange interactions (Jz, Jxy) between nearest-neighbours. The phase diagrams of this model have been determined within the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. We show that, depending on the values of interaction parameters and the electron concentration, the system can exhibit not only homogeneous phases: (anti-)ferromagnetic (F) and nonordered (NO), but also phase separated states (PS: F-NO).Item Metastability and phase separation in a simple model of a superconductor with extremely short coherence length(Springer US, 233 Spring St, New York, NY 10013 USA, 2014-04) Kapcia, KonradWe present studies of the atomic limit of the extended Hubbard model with pair hopping for arbitrary electron density and arbitrary chemical potential. The Hamiltonian consists of (i) the effective on-site interaction U and (ii) the intersite charge exchange term I, determining the hopping of electron pairs between nearest-neighbour sites. In the analysis of the phase diagrams and thermodynamic properties of this model we treat the intersite interactions within the mean-field approximation. In this report we focus on metastable phases and determine their ranges of occurrence. Our investigations in the absence of the external magnetic field show that the system analysed exhibits tricritical behaviour. Two metastable phases (superconducting and nonordered) can exist inside the regions of the phase separated state stability and a first-order transition occurs between these metastable phases.Item On the phase diagram of the zero-bandwidth extended Hubbard model with intersite magnetic interactions for strong on-site repulsion limit(Polish Academy of Sciences, Institute of Physics, al. Lotników 32-46, Pl-02-668 Warsaw, Poland, 2012-06) Murawski, Szymon; Kapcia, Konrad; Pawłowski, Grzegorz; Robaszkiewicz, StanisławIn this report we have analyzed a simple effective model for a description of magnetically ordered insulators. The Hamiltonian considered consists of the effective on-site interaction (U) and the intersite Ising-like magnetic exchange interaction (J) between nearest neighbors. For the first time the phase diagrams of this model have been determined within Monte Carlo simulation on 2D-square lattice. They have been compared with results obtained within variational approach, which treats the on-site term exactly and the intersite interactions within mean-field approximation. We show within both approaches that, depending on the values of interaction parameters and the electron concentration, the system can exhibit not only homogeneous phases: (anti-)ferromagnetic (F) and nonordered (NO), but also phase separated states (PS: F-NO).Item Phase separation in a lattice model of a superconductor with pair hopping(IOP Publishing Ltd., Temple Circus, Temple Way, Bristol BS1 6BE, England, 2012-05-30) Kapcia, Konrad; Robaszkiewicz, Stanisław; Micnas, RomanWe have studied the extended Hubbard model with pair hopping in the atomic limit for arbitrary electron density and chemical potential. The Hamiltonian considered consists of (i) the effective on-site interaction U and (ii) the intersite charge exchange interactions I, determining the hopping of electron pairs between nearest-neighbour sites. The model can be treated as a simple effective model of a superconductor with very short coherence length in which electrons are localized and only electron pairs have possibility of transferring. The phase diagrams and thermodynamic properties of this model have been determined within the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. We have also obtained rigorous results for a linear chain (d=1) in the ground state. Moreover, at T=0 some results derived within the random phase approximation (and the spin-wave approximation) for d=2 and d=3 lattices and within the low density expansions for d=3 lattices are presented. Our investigation of the general case (as a function of the electron concentration and as a function of the chemical potential) shows that, depending on the values of interaction parameters, the system can exhibit not only the homogeneous phases: superconducting (SS) and nonordered (NO), but also the phase separated states (PS: SS-NO). The system considered exhibits interesting multicritical behaviour including tricritical points.Item Some properties of the model of a superconductor with pair hopping and magnetic interactions at half-filling(Polish Academy of Sciences, Institute of Physics, al. Lotników 32-46, Pl-02-668 Warsaw, Poland, 2012-04) Kapcia, KonradWe present our preliminary studies of an effective model of a superconductor with short coherence length involving magnetic interactions. The Hamiltonian considered consists of (i) the effective on-site interaction U, (ii) the intersite magnetic exchange interactions (Jz, Jxy) between nearest-neighbors and (iii) the intersite charge exchange term I, determining the hopping of electron pairs between nearest-neighbor sites. In the analysis of the phase diagrams and thermodynamic properties of this model for half-filling (n=1) we have adopted the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. One finds that the system considered can exhibit very interesting multicritical behaviors (including tricritical, critical-end and bicritical points) caused by the competition between magnetism and superconductivity, even for n=1. Our investigations show that, depending on the values of interaction parameters, the system at half-filling can exhibit three homogeneous phases: superconducting (SS), (anti-)ferromagnetic (F) and nonordered (NO). The transitions between ordered phases (SS, F) and the NO phase can be first order as well as second order ones, whereas SS-F transition is first order one. Temperature dependencies of the order parameters and thermodynamic properties of the system at the sequence of transitions: SS-F-NO with increasing temperature for J/I=0.3, U/I0 = 0.69 and n=1 are also presented.Item Stable and metastable phases in the atomic limit of the extended Hubbard model with intersite density-density interactions(Polish Academy of Sciences, Institute of Physics, al. Lotników 32-46, Pl-02-668 Warsaw, Poland, 2012-06) Kapcia, Konrad; Robaszkiewicz, StanisławWe have studied a simple effective model of charge ordered insulators. The tight binding Hamiltonian consists of the effective on-site interaction U and the intersite density-density interaction Wij (both: nearest-neighbor and next-nearest-neighbor). In the analysis of the phase diagrams and thermodynamic properties of this model we have adopted the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. Our investigations of the general case (as a function of the electron concentration) have shown that the system exhibits various critical behaviors including among others bicritical, tricritical, critical-end and isolated critical points. In this report we concentrate on the metastable phases and transitions between them. One finds that the first- and second order transitions between metastable phases can exist in the system. These transitions occur in the neighborhood of first as well as second order transitions between stable phases. For the case of on-site attraction the regions of metastable homogeneous phases occurrence inside the ranges of phase separated states stability have been also determined.Item The effects of the next-nearest-neighbour density-density interaction in the atomic limit of the extended Hubbard model(IOP Publishing Ltd., Temple Circus, Temple Way, Bristol BS1 6BE, England, 2011-03-16) Kapcia, Konrad; Robaszkiewicz, StanisławWe have studied the extended Hubbard model in the atomic limit. The Hamiltonian analyzed consists of the effective on-site interaction U and the intersite density-density interactions Wij (both: nearest-neighbour and next-nearest-neighbour). The model can be considered as a simple effective model of charge ordered insulators. The phase diagrams and thermodynamic properties of this system have been determined within the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. Our investigation of the general case taking into account for the first time the effects of longer-ranged density-density interaction (repulsive and attractive) as well as possible phase separations shows that, depending on the values of the interaction parameters and the electron concentration, the system can exhibit not only several homogeneous charge ordered (CO) phases, but also various phase separated states (CO-CO and CO-nonordered). One finds that the model considered exhibits very interesting multicritical behaviours and features, including among others bicritical, tricritical, critical-end and isolated critical points.Item The magnetic field induced phase separation in a model of a superconductor with local electron pairing(IOP Publishing Ltd., Temple Circus, Temple Way, Bristol BS1 6BE, England, 2013-02-13) Kapcia, Konrad; Robaszkiewicz, StanisławWe have studied the extended Hubbard model with pair hopping in the atomic limit for arbitrary electron density and chemical potential and focus on paramagnetic effects of the external magnetic field. The Hamiltonian considered consists of (i) the effective on-site interaction U and (ii) the intersite charge exchange interactions I, determining the hopping of electron pairs between nearest-neighbour sites. The phase diagrams and thermodynamic properties of this model have been determined within the variational approach (VA), which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. Our investigation of the general case shows that the system can exhibit not only the homogeneous phases: superconducting (SS) and nonordered (NO), but also the phase separated states (PS: SS-NO). Depending on the values of interaction parameters, the PS state can occur in higher fields than the SS phase (field-induced PS). Some ground state results beyond the VA are also presented.