Browsing by Author "Machowiak, Katarzyna"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Sedimentation style of a Pleistocene kame terrace from the Western Sudety Mountains, S Poland(Bogucki wydawnictwo Naukowe, 2010-06) Pisarska-Jamroży, Małgorzata; Machowiak, Katarzyna; Krzyszkowski, DariuszThe depositional conditions of kame terraces in a mountain valley were analysed sedimentologically and petrologically through a series of kame terraces in the Rudawy Janowickie mountains. The kame terraces comprise five lithofacies associations. Lithofacies association GRt, Sp originates from deposition in the high-energy, deep gravel-bed channel of a braided river. Lithofacies association GC represents a washed out glacial till. Probably a thin layer of till was washed out by sandy braided rivers (Sp). The fourth association (Fh, Fm) indicates a shallow and quite small glaciomarginal lake. The last association (GRt, GRp) indicates the return of deposition in a sandy-bed braided channel. The petrography of the Janowice Wiekie pit and measurements of cross-stratified beds indicate a palaeocurrent direction from N to S. The Janowice Wielkie sedimentary succession accumulated most probably during the Saalian (Odranian, Saale I, Drenthe) as the first phase of ice-sheet melting, because the kame terrace under study is the highest one, 25-27 m above the Bóbr river level. The deposits under study are dominated by local components. The proglacial streams flowed along the margin of the ice sheet and deposited the kame terrace. The majority of the sedimentary succession was deposited in a confined braided-river system in quite deep channels.Item The effect of water activity on the eutectic point in natural granitic system(Mineralogical Society of Poland, 2012-09) Ciazela, Jakub; Bolte, Torsten; Holtz, Francois; Muszynski, Andrzej; Machowiak, KatarzynaThe water activity except for pressure is known to be the most important parameter affecting the eutectic point in granitic systems. Water saturated magmas have lower solidus temperatures than water undersaturated magmas (Johannes, Holtz 1996). Water activity influences also Ab-Or relation in granitic systems (Holtz et al. 1992). Mineral phases present in water saturated conditions differ from those present in water poor conditions (Dall’Agnol et al. 1999). This effect of water activity on the granitic system has so far been analyzed on synthetic materials. Other parameters which would affect the eutectic point might exist in a natural granitic system. Therefore, two natural samples of Wangrah granites from Australia were taken to analyze their crystallization path. They were chosen so they had very similar composition in terms of Qz-Ab-Or, but different in terms of Ca and Fe contents. The homogenous glass powder was used as a starting material. The water was added to reach water saturated conditions. The water and silver oxalate were added to reach water undersaturated conditions. Crystallization experiments with both samples were performed in cold seal pressure vessel (CSPV) in the temperature range of 680-720ºC for water saturated conditions and 765-815ºC for water undersaturated conditions. The pressure of 2 kbar and oxygen buffer NNO were established for 15 days. The phases were identified and glass composition was determined by an electron microprobe. The water content of glass was measured with the use of near infrared spectroscopy. The results were plotted on the Qz-Ab-Or diagram with application of Blundy and Cashman corrections (Blundy, Cashman 2001) for the An content. Two very similar compositions in terms of Qz-Ab-Or show a different position of their cotectic lines for water saturated conditions. One possible explanation of this fact is that the projection of Blundy and Cashman does not account accurately for the effect of Ca. The alternative explanation is that there must be other parameters controlling the position of the cotectic line, one of them may be Fe. In any case, one cannot simply project natural granite or rhyolites on the Qz-Ab-Or diagram to extract quantitative information on pressure or water activity of granites or rhyolites. A new set of experiments should be performed to clarify this problem.