Browsing by Author "Przestacki, Adam"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Operatory kompozycji na przestrzeni funkcji gładkich(2015-05-21) Przestacki, Adam; Domański, Paweł. PromotorCelem rozprawy jest zbadanie kilku własności operatorów kompozycji i wagowych operatorów kompozycji działających na przestrzeni funkcji gładkich, to jest, operatorów postaci Cψ: C∞(Ω)→ C∞(Ω), F→F◦ψ, lub postaci Cw,ψ: C∞(Ω)→ C∞(Ω), F→w(F◦ψ), gdzie ΩсRd jest zbiorem otwartym, C∞(Ω) jest przestrzenią Frécheta funkcji gładkich na Ω a funkcje ψ: Ω→Ω, w: Ω→C są gładkie. Operatory te są bardzo naturalnymi przykładami operatorów działających na przestrzeni funkcji gładkich, która jest bardzo ważnym obiektem w analizie. Pierwsza część rozprawy poświęcona jest pytaniu dla jakich gładkich funkcji ψ: R→R obraz operatora kompozycji Cψ jest domknięty w C∞(R). Podajemy kilka warunków koniecznych i dostatecznych. W szczególności dowodzimy, że jeśli ψ:R→R jest gładką funkcją semiwłaściwą, która nie ma punktów płaskich, to obraz operatora kompozycji Cψ jest domknięty. Druga część rozprawy poświęcona jest badaniu kilku dynamicznych własności operatorów kompozycji i wagowych operatorów kompozycji działających na C∞(Ω), gdzie ΩcRd jest zbiorem otwartym. Charakteryzujemy hipercykliczne (w przypadku wag rzeczywistych), słabo mieszające i mieszające wagowe operatory kompozycji. Jako wniosek otrzymujemy charakteryzację hipercyklicznych, słabo mieszających i mieszających operatorów kompozycji. Następnie pokazujemy, że te trzy klasy operatorów pokrywają się w przypadku jednowymiarowym.