Doktoraty (WMiI)
Permanent URI for this collection
Browse
Browsing Doktoraty (WMiI) by Subject "algorytmiczna teoria liczb"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Zastosowania metod kombinatoryki addytywnej do wybranych zagadnień multiplikatywnych(2019) Bystrzycki, Rafał; Schoen, Tomasz. PromotorGłównym celem pracy jest badanie różnych sposobów, w jakie kombinatoryka addytywna może być wykorzystana do radzenia sobie z pewnymi zagadnieniami pojawiającymi się w multiplikatywnej teorii liczb. Najważniejsza część pracy dotyczy następującego problemu: dla pewnej liczby naturalnej n i pewnej liczby pierwszej p jest nam dany zbiór reszt modulo p wszystkich dzielników liczby n i chcielibyśmy stwierdzić, które z nich odpowiadają jej czynnikom pierwszym. Przedstawiony jest algorytm rozwiązujący ten problem dla p i n spełniających pewne naturalne warunki i zostaje pokazane, że jest wiele takich liczb. Interesującą cechą przedstawionego dowodu jest to, że wymaga on użycia kombinatoryki addytywnej. W kolejnej części pracy rozważana jest suma wyrażeń exp(a2r/q ) dla wszystkich r należących do podgrupy multiplikatywnej reszt modulo q generowanej przez element 2. Podajemy górne oszacowanie wartości bezwzględnej z lepszą stałą niż dotychczas znana. W ostatniej części pracy rozważane są oszacowania na wielkość zbioru wszystkich sum postaci c1a1+c2a2+…+ckak, gdzie ci są ustalonymi współczynnikami, zaś ai są elementami zbioru A. Seria oszacowań górnych wielkości tego zbioru jest udowodniona dla A spełniającego |A+A| < K |A|. Najlepsze oszacowania dostajemy w przypadkach, gdy K jest znacznie mniejsze niż h oraz gdy zbiór współczynników ci ma pewną strukturę addytywną.