Please use this identifier to cite or link to this item: https://hdl.handle.net/10593/2418
Title: Wpływ magnetycznego podłoża oraz gaussowskich fluktuacji pól molekularnych na własności dwuwarstwy magnetycznej opisywanej modelem Blume-Emery-Griffithsa
Other Titles: Influence of the magnetic substrate and of the Gaussian fluctuations of the molecular fields on the properties of the magnetic bilayer described by the Blume-Emery-Griffiths model
Authors: Jaworski, Wojciech
Advisor: Jacyna-Onyszkiewicz, Zbigniew. Promotor
Keywords: Dwuwarstwa magnetyczna
Magnetic bilayer
Model BEG
BEG model
Fluktuacje gaussowskie
Gaussian fluctuations
Pole molekularne
Molecular field
Termodynamika kwantowa
Quantum thermodynamics
Issue Date: 16-Apr-2012
Abstract: Głównym przedmiotem badań tej pracy doktorskiej jest klasyczny model spinowy dla spinu S = 1, znany jako model Blume-Emery-Griffithsa (BEG). Zastosowano go do opisu dwuwartswy ferromagnetycznej, będącej przykładem cieszących się dużym zainteresowaniem fizyków, ultracienkich warstw magnetycznych. W badaniu własności termodynamicznych i magnetycznych dwuwarstwy BEG wykorzystano metody obliczeń analitycznych jak i symulacji komputerowych. Do tych pierwszych należą przybliżenie pola molekularnego (MFA) oraz, będące jego rozszerzeniem, przybliżenie gaussowskich fluktuacji pól molekularnych (GFA). Wpływ dwóch typów takich fluktuacji na termodynamikę układu omówiono na przykładzie uzyskanych w ramach trzech wariantów metody GFA diagramów fazowych modelu BEG. Przedyskutowano przy tym zmiany w występowaniu linii przemian fazowych i punktów krytycznych, co dało też możliwość porównania diagramów fazowych z metody GFA i innych metod obliczeniowych (CVMPA, MC). Szczególny nacisk położono tu na przemiany fazowe zachodzące między fazami meta- i niestabilnymi, znacznie rozszerzając znany dotąd zakres ich występowania na diagramach fazowych modelu BEG. W pracy tej wykorzystano też metodę symulacji komputerowych Monte Carlo (MC) w podejściu Metropolisa. Z jej pomocą zbadano zmiany własności dwuwarstwy BEG zachodzące pod wpływem sprzężonego z nią ferromagnetycznego podłoża. Zaproponowano tu modele tegoż podłoża oraz jego oddziaływania z dwuwarstwą, a rachunki przeprowadzono w ramach formalizmu termodynamiki kwantowej.
The main object of this PhD thesis is the classical spin model for the spin S = 1, known as the Blume-Emery-Griffiths model (BEG). It has been used to describe a ferromagnetic bilayer, being an example of ultrathin magnetic layers, which physicians are very interested in. In order to investigate the thermodynamic and magnetic properties of the BEG bilayer the methods of both analytic calculations and computer simulations have been used. First of them included the molecular field approximation (MFA) and its extension – the Gaussian fluctuations approximation (GFA). The effect of two types of fluctuations has been examined using the phase diagrams of the BEG model, which have been obtained within three variants of the GFA method. Variations in the occurrences of phase transition lines and critical points have been discussed and the results have been compared with the ones obtained within different methods (CVMPA, MC). Moreover, an emphasis has been put on phase transitions occurring between meta- and unstable phases, the existence regions of which have been broadened. What is more, the Metropolis type Monte Carlo simulations (MC) have been used to investigate the influence of the coupling to a ferromagnetic substrate on the properties of the BEG bilayer. The models of the substrate and its interaction with the bilayer have been proposed and the calculations were made with the help of the quantum thermodynamic formalism.
Description: Wydział Fizyki: Zakład Fizyki Kwantowej
URI: http://hdl.handle.net/10593/2418
Appears in Collections:Doktoraty (WF)
Doktoraty 2010-2022 /dostęp ograniczony, możliwy z komputerów w Bibliotece Uniwersyteckiej/

Files in This Item:
File Description SizeFormat 
phd_w_jaworski.pdf
  Restricted Access
57.05 MBAdobe PDFView/Open
Show full item record



Items in AMUR are protected by copyright, with all rights reserved, unless otherwise indicated.