Please use this identifier to cite or link to this item: https://hdl.handle.net/10593/940
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŚliwa, Wiesław-
dc.date.accessioned2011-03-24T07:31:49Z-
dc.date.available2011-03-24T07:31:49Z-
dc.date.issued2002-
dc.identifier.citationBull. Belg. Math. Soc. 9 (2002), 465-472.pl_PL
dc.identifier.urihttp://hdl.handle.net/10593/940-
dc.description.abstractWe prove that any non-archimedean metrizable locally convex space E with a regular orthogonal basis has the quasi-equivalence property, i.e. any two orthogonal bases in E are quasi-equivalent. In particular, the power series spaces, the most known and important examples of non-archimedean nuclear Frechet spaces, have the quasi-equivalence property. We also show that the Frechet spaces: K^N, c_0xK^N, c_0^N have the quasi-equivalence property.pl_PL
dc.language.isoenpl_PL
dc.publisherThe Belgian Mathematical Societypl_PL
dc.subjectGuasi-equivalence propertypl_PL
dc.subjectNon-archimedean Frechet spacespl_PL
dc.titleOn the quasi-equivalence of orthogonal bases in non-archimedean metrizable locally convex spacespl_PL
dc.typeArtykułpl_PL
Appears in Collections:Artykuły naukowe (WMiI)

Files in This Item:
File Description SizeFormat 
Sliwa 12.pdf149.08 kBAdobe PDFView/Open
Show simple item record



Items in AMUR are protected by copyright, with all rights reserved, unless otherwise indicated.