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Abstract

Abstract

In this dissertation, continuous homogeneous selections for the set-valued met-

ric generalized inverses T ∂ of linear operators T in Banach spaces are investigated

by means of the methods of geometry of Banach spaces. Necessary and sufficient

conditions in order that the set-valued metric generalized inverses T ∂ of bounded

linear operators T have continuous homogeneous selections are given. The results

give an answer to the problem posed by Nashed and Votruba. Secondly, the per-

turbations of the Moore-Penrose metric generalized inverses for linear operators in

Banach spaces are described. Using the notion of metric stable perturbation and

the theorem of generalized orthogonal decomposition, under some assumptions we

give some error estimates of the single-valued Moore-Penrose metric generalized

inverses for bounded linear operators. Moreover, an estimate of the norm of the

perturbation of the metric generalized inverse is given. The concepts of generalized

regular points and narrow spectrum points of bounded linear operators on Hilbert

spaces are introduced. It is proved that some properties of the narrow spectrum are

the same as of the spectrum but some other properties are distinguished by these

two notions. Finally, it is shown that the well known problem of the existence of

invariant subspaces for bounded linear operators on separable Hilbert spaces can be

restricted to the problem of the operators with the narrow spectrum only.

Keywords Generalized Inverses; Metric Generalized Inverses; Moore-Penrose

Metric Generalized Inverse; Perturbation; Spectrum; Regular Point; Narrow Spec-

trum; Invariant Subspace
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Generalized Inverses

The observation that generalized inverses are like prose (/Good Heavens! For

more than forty years I have been speaking prose without knowing it0- MoliYre, Le

Bourgois Gentilhomme ) is nowhere truer than in the literature of linear operators.

In fact, generalized inverses of integral and differential operators were studied by

Fredholm, Hilbert, Schmoidt, Bounitzky, Hurwitz, and others, before E. H. Moore

introduced formally the notion of generalized inverses in an algebraic setting, see,

e.g., the historic survey by W. T. Reid [84].

The theory of generalized inverses has its genetic roots essentially in the context

of so called “ ill-posed ” linear problems. It is well known that if A is a nonsingular

(square) matrix, then there exists a unique matrix B, which is called the inverse of

A, such that AB = BA = I, where I is the identity matrix. If A is a singular or a

rectangular (but not square) matrix, no such matrix B exist. Now if A−1 exists, then

the system of linear equations Ax = b has the unique solution x = A−1b for each

b. On the other hand, in many cases, solutions of a system of linear equations exist

even when the inverse of the matrix defining these equations does not exist. Also

in the case when the equations are inconsistent, there is often interested in a least-

squares solutions, i.e., vectors that minimize the sum of the squares of the residuals.

These problems, along with many others in numerical linear algebra, optimization

and control, statistics, and other areas of analysis and applied mathematics, are

readily handled via the concept of a generalized inverse (or pseudo inverse) of a

matrix or a linear operator.

In a paper given at the Fourteenth Western Meeting of the American Math-

ematical Society at the University of Chicago, April, 1920, Professor E. H. Moore
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§1.1 Generalized Inverses

first drew attention to a “useful extension of the classical notion of the reciprocal of

a nonsingular square matrix” [68]. The definition of the pseudo inverse of a m× n
matrix A, denoted by A+, originally given by E. H. Moore, has been interpreted by

A. Ben-Israel and A. Charnes [17] in the following way: A+ is the pseudo inverse of

A if

AA+ = PR(A), A
+A = PR(A+), (1.1)

where PR(A) is an orthogonal projection on the range space of A. E. H. Moore

established the existence and uniqueness of A+ for any A, and gave an explicit form

for A+ in terms of the subdeterminants of A and A∗, the conjugate transpose of A.

Various properties of A+ and the relationships among A, A∗ and A+ were incorpo-

rated in his General Analysis, and concurrently an algebraic basis and extensions

were given by J. von Neumann [77] in his studies on regular rings.

Unaware of Moore’s results, A. Bjerhammar [22, 23] and R. Penrose[79, 80]

both gave independent treatments of the pseudo inverse. In 1955 R. Penrose [79]

sharpened and extended A. Bjerhammar’s results on linear systems, and showed

that E. H. Moore’s inverse for a given matrix A is the unique matrix X satisfying

the following four equations:

AXA = A, (1.2)

XAX = X, (1.3)

(AX)∗ = AX, (1.4)

(XA)∗ = XA, (1.5)

where A∗ is the conjugate transpose of A. These conditions (1.2), (1.3), (1.4), (1.5)

are equivalent to Moore’s conditions equation (1.1). The latter discovery has been

so important and fruitful that this unique inverse (called by some mathematicans

the generalized inverse) is now commonly called the Moore-Penrose inverse.

Since the first publication on this subject by E. H. Moore [68] many other

papers appeared. Namely, generalized inverses for matrices were given by C. L.

Siegel in [88], and for operators by Y. Y. Tseng [92, 93, 94, 95], F. J. Murray and

J. von Neumann [70], F. V. Atkinson in [8, 9], and others. Revival of interest in

the subject centered around the least squares properties (not mentioned by E. H.

Moore) of certain generalized inverses.
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Chapter 1 Introduction

There are several types of generalized inverses such as generalized inverses of

matrices, generalized inverses of linear operators, algebraic generalized inverses,

metric generalized inverses, Moore-Penrose metric generalized inverses, generalized

inverses of nonlinear operators (see [3, 5, 10, 18, 19, 38]), etc. A lot of research on

the theory and applications of generalized inverses has been done in the last decades

(see [61, 66, 72, 104, 111, 117]), etc. In Chapter 6, two applications are showed,

which are extracted from [104] and [117], respectively. One of them is that least

extremal solutions of ill-posed Neumann boundary value problem for semilinear

elliptic equations in Lp. Another one concerns the structure of the set of extremal

solutions of ill-posed operator equation Tx = y with codimR(T ) = 1.

It is well known that linear generalized inverses have many important applica-

tions, especially in numerical approximation [72], nonlinear analysis [61], and the

structural theory of Banach manifolds [66], but generally speaking, other linear in-

verses than metric generalized inverses were not suitable to construct the extremal

solutions, the minimal norm solutions, and the best approximate solutions of an

ill-posed linear operator equations in Banach spaces [73]. In order to solve the best

approximation problems for ill-posed linear operator equations in Banach spaces,

it is necessary to study the metric generalized inverses of linear operators between

Banach spaces. This kind of generalized inverses, which are set-valued bounded ho-

mogeneous operators, was introduced by M. Z. Nashed and G. F. Votruba in 1974

in [73]. In the same paper they raised the following suggestion: “The problem of

obtaining selections with nice properties for the metric generalized inverses is worth

studying.”

Metric generalized inverses of linear operators between Banach spaces are multi-

valued and in general nonlinear, so the problem of constructing their selections is

natural and important. An important progress in this direction has been made by

constructing some selections of metric generalized inverses of linear operators in

Banach spaces (see [48, 97, 99]). In 2008, H. Hudzik, Y. W. Wang and W. J. Zheng

established bounded homogeneous selections for the set-valued metric generalized

inverses of linear operators on Banach spaces [48]. In 2009, C. Wang, S. P. Qu and

Y. W. Wang obtained linear continuous selections for metric generalized inverses of

bounded linear operators [97]. In Chapter 3 of this dissertation, some continuous

homogeneous selections for the set-valued metric generalized inverses of linear oper-
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§1.2 Perturbation Theory of Moore-Penrose Metric Generalized Inverses

ators in Banach spaces are investigated by using the methods of geometry of Banach

spaces. Some necessary and sufficient conditions in order that bounded linear oper-

ators have continuous homogeneous selections for the set-valued metric generalized

inverses are also given. These results are answers to the problem (mentioned above)

formulated by Nashed and Votruba in [73].

1.2 Perturbation Theory of Moore-Penrose Met-

ric Generalized Inverses

Throughout this dissertation, /perturbation theory0means /perturbation

theory for linear operators0. There are other disciplines in mathematics called

perturbation theory, such as the ones in analytical dynamics (celestial mechanics)

and in nonlinear oscillation theory. All of them are based on the idea of studying a

system deviating slightly from a simple ideal system for which the complete solution

of the problem under consideration is known. However the problems they treat and

the tools that they use are quite different.

Perturbation theory was created by L. Rayleigh and E. Schrödinger [51, 71],

and it occupies an important place in applied mathematics. L. Rayleigh gave a

formula for computing the natural frequencies and modes of a vibrating system

deviating slightly from a simpler system which admits a complete determination of

the frequencies and modes [83]. E. Schrödinger developed a similar method, with

higher generality and systematization, for the eigenvalue problems that appear in

quantum mechanics [86].

In the last years the group of mathematicians working in the perturbation

theory, involving several directions in analytical dynamics and nonlinear oscillation

theory etc, increased essentially [15, 26, 27, 28, 39, 51, 54, 108]. There is a wide

literature of the results towards linear operators, especially generalized inverses

[28, 33, 34, 35, 36, 47, 56, 57, 105, 115], etc. Since its creation, the theory has

occupied an important place in applied mathematics. During the last decades it

has grown into a mathematical discipline with its own interests and techniques [51].

There are some perturbations theories for generalized inverses such as linear

generalized inverses and nonlinear generalized inverses. Although the perturbation
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Chapter 1 Introduction

of linear generalized inverses have been studied, and numerous results were obtained

[55, 85, 90, 91, 107, 109], the problems of nonlinear generalized inverses remaind

unsolved except some initiated study of this theory by us in [56, 57].

The Moore-Penrose metric generalized inverses of operators between Banach

spaces are bounded homogeneous and nonlinear (in general) operators, which can

be applied to of ill-posed boundary value problems concerning some equations. In

1995, Z. W. Li and Y. W. Wang introduced the notion of Moore-Penrose general-

ized inverses for closed linear operators with dense domain between Banach spaces

[103]. In 2003, H. Wang and Y. W. Wang introduced the notion of Moore-Penrose

metric generalized inverses of linear operators between Banach spaces [104]. In

2006, some description concerning the solution of the equality Tx = b through the

Moore-Penrose metric generalized inverse was obtained in [56]. In 2008, H. F. Ma

and Y. W. Wang gave the definition of metric stable perturbation. After that a new

method has been developed in [57] to analyze the perturbation problems for Moore-

Penrose metric generalized inverses with respect to a special norm. In Chapter 4,

the perturbations theory of Moore-Penrose metric generalized inverses for opera-

tors between Banach spaces was further studied. By using the continuity of the

metric projection operators and the quasi-additivity of metric generalized inverses,

we obtain a complete description of Moore-Penrose single-valued metric generalized

inverses of operators on Banach spaces.

1.3 Spectrum and Narrow Spectrum

Spectral theory of operators is an important part of functional analysis. Many

applications require the spectral theory. This theory has numerous applications

in many branches of mathematics and physics including matrix theory, function

space theory, complex analysis, differential and integral equations, control theory

and quantum physics [32, 46, 53, 81]. In the recent years, spectral theory has

witnessed an explosive development. There are many types of spectra for one or

several commuting operators, for example, the approximate point spectrum, Taylor

spectrum, local spectrum, essential spectrum, etc [24, 37, 41, 69], all of them with

important applications. In Chapter 5, we introduce a new type of spectrum, which

is called the narrow spectrum for bounded linear operators on Hilbert spaces, by
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§1.3 Spectrum and Narrow Spectrum

using the concept of locally fine points. Some properties and applications of the

narrow spectrum are presented. We show that the narrow spectrum, which form

a smaller set than the spectrum, can still keep some important properties of the

spectrum. In our studies of the narrow spectrum, the concept of locally fine points

plays an important role.

In 1999, J. P. Ma (one of the students of Y. Y. Tseng) introduced the concept

of locally fine points for operator valve maps through the concept of generalized

inverses, as the notion which guarantee some stabilities of the existence of gener-

alized inverses (see [61, 63]). This concept has been extensively studied in the last

years. Such studies appear for example in: a local linearization theorem , a local

conjugacy theorem, a generalized preimage theorem in global analysis, a series of

the rank theorems for some operators [61, 62, 63, 64, 65, 66, 67].

Let E be a separable infinite-dimensional complex Hilbert space, B(E) be

the set of all bounded linear operators from E into itself. The invariant subspace

problem can be formulated as: /Does every operator in B(E) have a nontrivial

invariant subspace ? 0, and it is one of the most important problems in functional

analysis. This problem remains still open for non-separable infinite-dimensional

complex Hilbert spaces.

It has its origins approximately in 1935 when (according to [6]) J. von Neu-

mann proved (in his unpublished paper) that every compact operator on a separable

infinite dimensional complex Hilbert space has a non-trivial invariant subspace (the

proof uses the spectral theorem for normal operators [76]). Since then, the invari-

ant subspace problem has motivated enormous literature in operator theory. The

books [16, 20, 78, 82], the lecture notes [7] and [44], and the survey papers [1] and

[40] are centered around the invariant subspace problem. Related open problems

and some conjectures appeared in [2]. The invariant subspaces appear in a natural

way in prediction theory (see A. N. Kolmogorov [52], and N. Wiener [114]), and in

mathematical physics.

The problem of the existence of nontrivial invariant subspaces for bounded

linear operators on separable Hilbert spaces is reformulated in my dissertation as a

problem of the narrow spectrum of bounded linear operators on Hilbert spaces . A

sufficient condition for this is given in Theorem 5.2.11.
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Chapter 2 Preliminaries

Throughout this dissertation, we will denote by D(T ), R (T ) and N (T ) the

domain, the range and the null space of an operator T , respectively. Let X and Y

be two real Banach spaces. The space of all bounded linear operators from X to

Y is denoted by B(X, Y ) , B(X,X) =: B(X). Write H(X, Y ) for the space of all

bounded homogenous operators from X to Y , H(X,X) =: H(X). Similarly, write

L(X, Y ) for the space of all linear operators from X to Y ( if T ∈ L(X, Y ), the

domain D(T ) of T is just a subspace of X). In this dissertation, θ is always a zero

vector in vector space. X∗ is the conjugate space of X and x∗(x) =:< x∗, x >. F

will denote either the real field, R, or the complex field C.

2.1 Some Geometric Properties of Banach Spaces

Definition 2.1.1 [13] The operator FX : X → X∗ defined by

FX(x) =
{
x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2} , x ∈ X

is called the duality mapping of X.

Remark 2.1.1 There always exists the non-zero duality mapping of X. In fact,

for any x1, x2 ∈ X, if x1 6= x2, then x1 − x2 6= θ. Let us define

x0 = x1 − x2, X0 = { λx0 | λ ∈ C},

and

f0(λx0) = λ‖x0‖ (∀λ ∈ C).
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§2.1 Some Geometric Properties of Banach Spaces

Then

f0(x0) = ‖x0‖ and ‖f0‖0 = 1,

where ‖f0‖0 is the norm of f0 on X0. By the Hahn-Banach Theorem, there exist

some f ∈ X∗ such that

f(x0) = f0(x0) = ‖x0‖ and ‖f‖ = ‖f0‖0 = 1.

Therefore, there exist some f ∈ X∗\θ such that

< f,
x0

‖x0‖
> = ‖ x0

‖x0‖
‖2 = 1 = ‖f‖2 .

Proposition 2.1.2 [13] The duality mapping of X has the following properties:

1. it is homogeneous.

2. it is injective or strictly monotone if and only if X is strictly convex.

3. it is surjective if and only if X is reflexive.

4. it is single-valued if and only if X is smooth.

5. it is additive if and only if X is a Hilbert space.

Definition 2.1.2 [89] If K ⊂ X, the set-valued mapping PK : X → K defined by

PK(x) = {y ∈ K : ‖x− y‖ = dK(x)} , (x ∈ X),

where dK(x) = infy∈K ‖x− y‖, is called the metric projection.

1. K is said to be proximinal if PK(x) 6= ∅ for any x ∈ X.

2. K is said to be semi-Chebyshev if PK(x) is at most a single point set for each

x ∈ X.

3. K is called a Chebyshev set if it is both proximinal and semi-Chebyshev.

When K is a Chebyshev set, we denote PK(x) by πK(x) for any x ∈ X.
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Chapter 2 Preliminaries

Remark 2.1.3 Every Chebyshev set is closed and every closed convex set in a

rotund reflexive space is Chebyshev. In particular every non-empty closed convex

set in Hilbert space is Chebyshev (see [25]).

Lemma 2.1.4 [89] If X is a normed linear space, and L is a subspace of X, then

(i) π2
L(x) = πL(x) for all x ∈ D(πL), i.e. πL is idempotent;

(ii) ‖x− πL(x) ‖ ≤ ‖x‖ for all x ∈ D(πL).

Furthermore, if L is a semi-Chebyshev subspace, then

(iii) πL(αx) = απL(x) for all x ∈ X and α ∈ R, i.e. πL is homogeneous;

(iv) πL(x + y) = πL(x) + πL(y) = πL(x) + y for all x ∈ D(πL) and y ∈ L, i.e.

πL is quasi-additive.

Lemma 2.1.5 If L is a closed subspace of X, then the following statements are

equivalent

(i) πL is a linear operator;

(ii) π−1
L (θ) is a linear subspace of X;

(iii) π−1
L (y) is a linear manifold of X for every y ∈ L .

Remark 2.1.6 This result has been obtained in [89] under the assumption that the

underlying Banach space X is reflexive and strictly convex, but it is easy to show

that the result remains valid under the weaker assumption that L be a Chebyshev

subspace of X.

Theorem 2.1.7 [102] (Generalized Orthogonal Decomposition Theorem) Let

L be a proximinal subspace of X. Then for any x ∈ X, we have the decomposition

x = x1 + x2,

where x1 ∈ L and x2 ∈ F−1
X

(
L⊥
)
. In this case we have X = L + F−1

X (L⊥). If L is

a Chebyshev subspace of X, then the decomposition is unique and

x = PL(x) + x2, x2 ∈ F−1
X (L⊥).

In this case we have X = PL(x)u F−1
X (L⊥), where PL(x) = {πLx}.

Lemma 2.1.8 [48] Let L be a subspace of X, x ∈ X\L and x0 ∈ L. Then x0 ∈
PL (x) if and only if

FX (x− x0) ∩ L⊥ 6= ∅,

where FX is the duality mapping of X and L⊥ = {x∗ ∈ X∗ : 〈x∗, x〉 = θ, x ∈ L} .
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§2.2 Metric Generalized Inverse

Definition 2.1.3 [50] A nonempty subset C of X is said to be approximately

compact, if for any sequence {xn} in C and any y ∈ X such that ||xn − y|| →
dist (y, C) := inf {||y − z|| : z ∈ C} , we have that {xn} has a Cauchy subsequence.

X is called approximately compact if any nonempty closed and convex subset of X

is approximately compact.

Remark 2.1.9 (i) If C is approximatively compact, then C 6= ∅.
(ii) If C is approximatively compact, then C is a closed and approximinal set.

Lemma 2.1.10 [30] Let C be a semi-Chebyshev closed subset of X. If C is an

approximately compact, then C is a Chebyshev subset and the metric projector πC

is continuous.

Definition 2.1.4 [51] Let T ∈ B(X, Y ). The minimum modulus γ(T ) of T is

defined by

γ(T ) = inf{‖T (x)‖ : dist(x,N(T )) = 1}.

Thus, from the definition of γ(T ), we deduce that

‖T (x)‖ ≥ γ(T )dist(x,N(T )), ∀x ∈ X.

Lemma 2.1.11 [100] If T ∈ H(X, Y ), the addition and the scalar multiplication

are defined as usual in linear structures. If the norm of T is defined as

‖T‖ = sup
‖x‖=1

‖Tx‖, T ∈ H(X, Y ), (2.1)

then (H(X, Y ), ‖ · ‖) is a Banach space.

Definition 2.1.5 [31] Let T ∈ L(X, Y ). If D(T ) is dense in X, T is said to be

densely defined.

Definition 2.1.6 [116] Let T ∈ L(X, Y ). If x ∈ D(T ), and y = Tx when xn ∈
D(T ), xn → x and Txn → Y , then T is said to closed operator.
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2.2 Metric Generalized Inverse

Definition 2.2.1 An operator T+ ∈ B(Y,X) is said to be a generalized inverse of

an operator T ∈ B(X, Y ) provided

TT+T = T and T+TT+ = T+.

Remark 2.2.1 This is of course an extension of the notion of the bounded linear

inverse T−1 of T . It is well known that an operator T ∈ B(X, Y ) has a generalized

inverse in B(Y,X) if and only if N(T ) and R(T ) are both splited, which means

that there exist linear subspaces R+ ⊂ X and N+ ⊂ Y such that the following

decompositions of X and Y hold:

X = N(T )⊕R+, Y = R(T )⊕N+.

In this case, R+ and N+ are called topological complements of N(T ) and R(T ),

respectively. In this case T is said to be double splited.

For any T ∈ L (X, Y ), an element x0 ∈ X is said to be an extremal solution of

the equation Tx = y, if x = x0 minimizes the functional ||Tx− y|| on X, that is,

inf{‖Tx−y‖ : x ∈ X} = ‖Tx0−y‖. Any extremal solution with the minimal norm

is called the best approximate solution (b.a.s. for short). In 1974, M. Z. Nashed and

G. F. Votruba introduced the concept of the metric generalized inverse for linear

operators between Banach spaces, which are set-valued operators in general.

Definition 2.2.2 [73] Let T ∈ L (X, Y ), and consider a y ∈ Y such that Tx = y

has the best approximate solution in X. We define

T ∂ (y) = {x ∈ X : x is the best approximate solution to Tx = y}

and call the set-valued mapping y → T ∂ (y) the metric generalized inverse of T .

Here

D
(
T ∂
)

= {y ∈ Y : Tx = y has a best approximate solution in X} .

A (in general nonlinear) function T σ (y) ∈ T ∂ (y) is called a selection for the metric

generalized inverse.
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§2.2 Metric Generalized Inverse

Definition 2.2.3 [106] Let T ∈ L(X, Y ), N(T ) and R(T ) be Chebyshev subspaces

of X and Y , respectively. If there exists a homogeneous operator TM : D(TM) →
D(T ) such that:

1. TTMT = T on D(T ).

2. TMTTM = TM on D(TM).

3. TMT = ID(T ) − πN(T ) on D(T ).

4. TTM = πR(T ) on D(TM),

then TM is called the Moore-Penrose metric generalized inverse of T , where ID(T )

is the identity operator on D(T ) and D(TM) = R(T )u F−1
Y (R(T )⊥).

Lemma 2.2.2 Let X and Y be Banach spaces, T ∈ L(X, Y ), N(T ) and R(T ) be

Chebyshev subspaces of X and Y , respectively. If T has a Moore-Penrose metric

generalized inverse TM , then

(1) TM is unique on D(TM), and TMy = (T |C(T ))
−1πR(T )y when y ∈ D(TM),

where D(TM) = R(T )u F−1
Y (R(T )⊥);

(2) there exists a linear inner inverse T− from R(T ) to D(T ) (i.e., TT−T = T )

such that

TMy = (ID(T ) − πN(T ))T
−πR(T )y, (2.2)

for y ∈ D(TM).

Remark 2.2.3 This result has been obtained in [106] by H. Wang and Y. W. Wang

under the assumption that the underlying Banach spaceX and Y are strictly convex,

but it is easy to show that the result remains valid under the weaker assumption

that N(T ) and R(T ) be Chebyshev subspaces of X and Y , respectively.

Theorem 2.2.4 [75, 98] Let T ∈ B(X, Y ), N(T ) and R(T ) be Chebyshev subspaces

of X and Y , respectively. Then there exists a unique Moore-Penrose metric gener-

alized inverse TM of T such that

TM(y) = (T |C(T ))
−1πR(T )(y)

for any y ∈ D(TM), where D(TM) = R(T ) u F−1
Y (R(T )⊥), C(T ) = D(T ) ∩

F−1
X (N(T )⊥).

– 12 –



Chapter 2 Preliminaries

Remark 2.2.5 In Theorem 2.2.4, since πR(T ) and (T |C(T ))
−1 are all bounded ho-

mogenous operators, TM is also bounded homogenous operator. Thus, the norm of

TM is well defined by (2.1) in Lemma 2.1.11.
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Chapter 3 Selections of Metric

Generalized Inverses

3.1 Criteria for the Metric Generalized Inverses

of Linear Operators

To get continuous selections of the metric generalized inverses in a Banach

space, we first refine Theorem 3.1 and Theorem 3.2 in [48] , obtaining Theorems

3.1.1 and 3.1.2.

Theorem 3.1.1 Let T ∈ L (X, Y ) and assume that R (T ) is an approximatively

compact subspace of Y and N (T ) is a proximinal subspace of X. If PR(T ) (y) ⊂
R (T ) for each y ∈ R (T )u F−1

Y

(
R (T )⊥

)
, then

1. D
(
T ∂
)

= R (T )u F−1
Y

(
R (T )⊥

)
;

2. for all y ∈ D
(
T ∂
)

T ∂ (y) = P
(
T−1PR(T ) (y) ; θ

)
,

where T−1PR(T ) (y) =
{
x ∈ D (T ) : T (x) ∈ PR(T ) (y)

}
.

Proof 1. Since R (T ) is approximatively compact in Y, which is a proximinal

subspace. If Y = R (T ), then

D
(
T ∂
)

= R (T ) = R (T )u F−1
Y

(
R (T )⊥

)
.

If Y 6= R (T ), it follows from the Hahn-Banach Theorem that there exists a y∗ ∈
R (T )

⊥
= R (T )⊥ ⊂ Y ∗ such that ||y∗|| = 1. Hence R (T )⊥ 6= {θ} .
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Take any y ∈ Y \R (T ). Since R (T ) is a proximinal subspace of Y , we have

that PR(T ) (y) 6= ∅. Taking any y0 ∈ PR(T ) (y) , by Lemma 2.1.8, we have

FY (y − y0) ∩R (T )⊥ 6= ∅.

Hence θ 6= y − y0 ∈ F−1
Y

(
R (T )⊥

)
, whence

F−1
Y

(
R (T )⊥

)
6= {θ} .

We claim that

D
(
T ∂
)

= R (T )u F−1
Y

(
R (T )⊥

)
.

Indeed, the operator equation Tx = y has a best approximate solution x0 ∈ D (T )

for any y ∈ D
(
T ∂
)
. Thus y0 = Tx0 ∈ R (T ) satisfies the equalities

||y − y0|| = ||y − Tx0||

= inf
x∈D(T )

||y − Tx||

= dist (y,R (T ))

= dist
(
y, R (T )

)
.

Hence y0 ∈ PR(T ) (y) . It follows from Lemma 2.1.8 that

FY (y − y0) ∩R (T )⊥ 6= ∅.

Setting y1 = y − y0, we have y1 ∈ F−1
Y

(
R (T )⊥

)
, whence

y = y0 + y1 ∈ R (T )u F−1
Y

(
R (T )⊥

)
.

Therefore

D
(
T ∂
)
⊂ R (T )u F−1

Y

(
R (T )⊥

)
. (3.1)

Conversely, for any y ∈ R (T ) u F−1
Y

(
R (T )⊥

)
, we claim that the operator

equation Tx = y has a best approximate solution in D (T ) , that is,

R (T )u F−1
Y

(
R (T )⊥

)
⊂ D

(
T ∂
)
. (3.2)

We will divide the proof of (3.2) into three steps.

Step 1. For any y ∈ R (T )u F−1
Y

(
R (T )⊥

)
, there exists by ∈ PR(T ) (y) with

||y − by|| = inf
z∈R(T )

||y − z|| .
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In fact, for any y ∈ R (T ) u F−1
Y

(
R (T )⊥

)
, there exist by ∈ R (T ) and y1 ∈

F−1
Y

(
R (T )⊥

)
such that

y = by + y1,

i.e.

y − by = y1 ∈ F−1
Y

(
R (T )⊥

)
,

whence

FY (y − by) ∩R (T )⊥ 6= ∅.

Again, by Lemma 2.1.8, we have

by ∈ PR(T ) (y) .

Step 2. For any by ∈ PR(T ) (y) , we claim that there exists x̂by ∈ D (T ) such

that

(i) x̂by is a minimal norm solution to the operator equation Tx = by;

(ii) x̂by is an extremal solution to the operator equation Tx = y.

Indeed, by ∈ R (T ) for any by ∈ PR(T ) (y), whence there exists x′ ∈ D (T )

such that Tx′ = by. Since N (T ) is a proximinal subspace of X, we may choose

x′′ ∈ PN(T ) (x′) . Defining x̂by = x′ − x′′, we have

x̂by ∈
(
ID(T ) − PN(T )

)
(x′) ,

whence

T x̂by = Tx′ = by,

i.e. x̂by ∈ T−1by,

Next, we are going to show that x̂by ∈ PT−1by (θ) , i.e. x̂by is a minimal norm

solution to the operator equation Tx = by, which will prove (i). For any v ∈ N (T ) ,

setting w = x′′ + v, we have w ∈ N (T ) . Since x′′ ∈ PN(T ) (x′) , we get

||x̂by − θ|| = ||x′ − x′′||

≤ ||x′ − w ||

= ||x′ − x′′ − v||

= ||x̂by − v||,
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i.e. θ ∈ PN(T )

(
x̂by
)
. Now it follows from Lemma 2.1.8 that

FX
(
x̂by
)
∩N (T )⊥ 6= ∅.

Then, we take x̂∗ ∈ FX
(
x̂by
)
∩N (T )⊥ , obtaining

〈x̂∗, x̂by〉 = ||x̂∗||2 = ||x̂by ||2.

For any x ∈ T−1by, we have Tx = by = T x̂by , whence

x0 := x− x̂by ∈ N (T )

and

||x̂by ||2 = 〈x̂∗, x̂by〉 = 〈x̂∗, x̂by + x0〉

= 〈x̂∗, x〉 ≤ ||x̂∗|| · ||x||

≤ ||x̂by || · ||x||.

This implies that x̂by ∈ PT−1by (θ) .

Since by ∈ PR(T ) (y) and by = T x̂by , we have

||y − T x̂by || = ||y − by||

= inf
z∈R(T )

||y − z||

= inf
x∈D(T )

||y − Tx||,

i.e. x̂by is an extremal solution to the operator equation Tx = y, so (ii) follows.

Step 3. For any y ∈ R (T )uF−1
Y

(
R (T )⊥

)
, we claim that the operator equation

Tx = y has a best approximate solution, i.e.

R (T )u F−1
Y

(
R (T )⊥

)
⊂ D

(
T ∂
)
. (3.3)

Indeed, we define for any y ∈ D(T ∂) = R (T )u F−1
Y

(
R (T )⊥

)
:

L (y) = inf
by∈PR(T )(y)

{
||x̂by || : x̂by is a minimal norm solution to Tx = by

}
.

Next, we choose a sequence
{
||x̂

b
(n)
y
||
}

such that

||x̂
b
(n)
y
|| ≥ ||x̂

b
(n+1)
y
||, Tx

b
(n)
y

= b(n)
y (n = 1, 2, · · · )
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and

L (y) = lim
n→∞

||x̂
b
(n)
y
||.

Since R (T ) is an approximately compact subspace of Y, {b(n)
y } ⊂ PR(T ) (y) ⊂

R (T ) ⊂ R (T ), and

||y − b(n)
y || = inf

z∈R(T )
||y − z||. (3.4)

We may assume without loss of generality that {b(n)
y } is a Cauchy sequence in Y.

By the completeness of Y, there exists b
(0)
y ∈ R (T ) such that

b(0)
y = lim

n→∞
b(n)
y .

From (3.4), we have

||y − b(0)
y || = inf

z∈R(T )
||y − z||.

Hence b
(0)
y ∈ PR(T ) (y) . Since y ∈ R (T ) u F−1

Y

(
R (T )⊥

)
, then by using the fact

that PR(T ) (y) ⊂ R (T ) for each y ∈ R (T )u F−1
Y

(
R (T )⊥

)
, we have

b(0)
y ∈ PR(T ) (y) ⊂ R (T ) ,

and hence

b(0)
y ∈ PR(T ) (y) .

From the Steps 1 and 2, we know that there exists an x̂
b
(0)
y
∈ D (T ) such that

x̂
b
(0)
y

is a minimal norm solution to the operator equation Tx = b
(0)
y , and a best

approximate solution to the operator equation Tx = y.

For any extremal solution x̄ ∈ D (T ) to the operator equation Tx = y, we have

T x̄ ∈ PR(T ) (y) . Let us set by = T x̄ ∈ PR(T ) (y) in Step 2. There exists x̂by ∈ D (T )

such that x̂by is a minimal norm solution of the operator equation Tx = by, so

||x̂by || ≤ ||x̄||.

By the definition of
{
||x̂

b
(n)
y
||
}

, let n→∞ such that

||x̂
b
(0)
y
|| ≤ ||x̂by || ≤ ||x̄||.

Hence x̂
b
(0)
y

is a best approximate solution of the operator equation Tx = y and then

(3.3) follows.
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Combining (3.1) and (3.3) we obtain

D
(
T ∂
)

= R (T )u F−1
Y

(
R (T )⊥

)
.

2. For any y ∈ D
(
T ∂
)
, by the definition of T ∂, there exists a best approximate

solution x0 ∈ D (T ) , whence

Tx0 ∈ R (T ) ⊂ R (T ) and Tx0 ∈ PR(T ) (y) ,

i.e. PR(T ) (y) 6= ∅.
It is obvious that PR(T ) (y) is a closed convex subset of Y . Since y ∈ D

(
T ∂
)

=

R (T ) u F−1
Y

(
R (T )⊥

)
, by the condition PR(T ) (y) ⊂ R (T ) for each y ∈ R (T ) u

F−1
Y

(
R (T )⊥

)
, we see that

T−1PR(T ) (y) 6= ∅,

where T−1PR(T ) (y) =
{
x ∈ D (T ) : Tx ∈ PR(T ) (y)

}
, which is a nonempty convex

subset of X. For any y ∈ D
(
T ∂
)

and any x0 ∈ T ∂ (y) , by the definition of T ∂ (y) ,

we see that x0 ∈ T−1PR(T ) (y) and

||x0|| = inf
{
||x|| : x ∈ T−1PR(T ) (y)

}
,

whence P
(
T−1PR(T ) (y) ; θ

)
6= ∅ and

T ∂ (y) ⊂ P
(
T−1PR(T ) (y) ; θ

)
. (3.5)

Conversely, for any y ∈ P
(
T−1PR(T ) (y) ; θ

)
, by the definition of the set-valued

metric projection and the definition of the set-valued metric generalized inverse, we

see that y ∈ T ∂ (y) , i.e.

P
(
T−1PR(T ) (y) ; θ

)
⊂ T ∂ (y) . (3.6)

Combining (3.5)and (3.6), we obtain

T ∂ (y) = P
(
T−1PR(T ) (y) ; θ

)
, y ∈ D

(
T ∂
)
.

This finishes the proof. �

Theorem 3.1.2 Let T ∈ L (X, Y ) and R (T ) be an approximately compact Cheby-

shev subspace of Y , and N (T ) be a proximinal subspace of X. Then
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1. D
(
T ∂
)

= R (T )u F−1
Y

(
R (T )⊥

)
;

2. for all y ∈ D
(
T ∂
)
, we have

T ∂ (y) =
(
ID(T ) − PN(T )

)
T−1πR(T ) (y) .

Proof First we show that

πR(T ) (y) ∈ R (T ) , ∀y ∈ R (T )u F−1
Y

(
R (T )⊥

)
. (3.7)

Indeed, since R (T ) is an approximately compact Chebyshev subspace of Y, for any

y ∈ R (T ) u F−1
Y

(
R (T )⊥

)
, there exists a unique πR(T ) (y) such that PR(T ) (y) ={

πR(T ) (y)
}
. On the other hand, there exist y0 ∈ R (T ) and y1 ∈ F−1

Y

(
R (T )⊥

)
such that y = y0 + y1, whence

y − y0 = y1 ∈ F−1
Y

(
R (T )

⊥)
= F−1

Y

(
R (T )⊥

)
.

Therefore

FY (y − y0) ∩R (T )⊥ 6= ∅.

From Lemma 2.1.8, we have y0 ∈ PR(T ) (y) =
{
πR(T ) (y)

}
, and hence

πR(T ) (y) = y0 ∈ R (T ) ,

which shows that (3.7) holds.

By Theorem 3.1.1, we have

D
(
T ∂
)

= R (T )u F−1
Y

(
R (T )⊥

)
,

and

T ∂ (y) = P
(
T−1πR(T ) (y) ; θ

)
, ∀y ∈ D

(
T ∂
)
.

In order to finish the proof, we need only to show that

P
(
T−1πR(T ) (y) ; θ

)
=
(
ID(T ) − PN(T )

)
T−1πR(T ) (y) , ∀y ∈ D

(
T ∂
)
, (3.8)

where πR(T ) (y) ∈ R (T ) .
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Taking arbitrary y ∈ D
(
T ∂
)

and x ∈ P
(
T−1πR(T ) (y) ; θ

)
, we obtain

x ∈ T−1PR(T ) (y)

and

‖x‖ = inf{‖w‖ : w ∈ T−1πR(T )(y)}. (3.9)

Theorem 2.1.7 implies that x can be decomposed in the form x = x1 + x2, where

x1 ∈ PN(T )(x) , x2 ∈ F−1
X (N(T ))⊥ .

Hence

T (x2) = T (x− x1) = T (x) = πR(T )(y),

i.e.

x2 ∈ T−1πR(T )(y).

For any v ∈ N(T ), we have x2 − v ∈ T−1πR(T )(y), and hence it follows from (3.9)

that

‖x2 − (−x1)‖ = ‖x‖ ≤ ‖x2 − v‖,

i.e. x1 ∈ PN(T )(x2). Therefore

x = x2 − (−x1)

∈ ID(T ) − PN(T )(x2)

⊂ ID(T ) − PN(T )T
−1πR(T )(y),

and consequently

P
(
T−1πR(T ) (y) ; θ

)
⊂
(
ID(T ) − PN(T )

)
T−1πR(T ) (y) . (3.10)

Conversely, taking arbitrary x̃ ∈ (ID(T ) − PN(T ))T
−1πR(T )(y), y ∈ D

(
T ∂
)
,

there exists x′ ∈ T−1πR(T )(y) such that

x̃ ∈ (ID(T ) − PN(T ))(x̃).

Hence, there exists x′′ ∈ PN(T )(x
′) such that

x̃ = x′ − x′′ and x′′ ∈ N(T ),
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consequently

T (x̃) = T (x′) = πR(T )(y).

Thus we have x̃ ∈ T−1πR(T )(y). Next, we will verify that x̃ ∈ P(T−1πR(T )(y); θ).

Taking arbitrary v ∈ N(T ) and setting w = x′′+v, we get w ∈ N(T ). Noticing

that x′′ ∈ PN(T )(x
′), for all v ∈ N(T ), we have

‖x̃− θ‖ = ‖x′ − x′′‖

≤ ‖x′ − w‖

= ‖x′ − x′′ − v‖

= ‖x̃− v‖.

Whence θ ∈ PN(T )(x̃). It follows from Theorem 2.1.8 that

FX(x̃) ∩N(T )⊥ 6= ∅.

Choosing x̃∗ ∈ FX(x̃) ∩N(T )⊥ such that

〈x̃∗, x̃〉 = ‖x̃∗‖2 = |x̃‖2.

For any x ∈ T−1πR(T )(y), we have T (x) = T (x̃) = πR(T )(y), whence x− x̃ ∈ N(T ).

Let x0 = x− x̃. Then x = x0 + x̃, x0 ∈ N(T ). Therefore

‖x̃‖2 = 〈x̃∗, x̃〉

= 〈x̃∗, x̃+ x0〉

= 〈x̃∗, x〉

≤ ‖x̃∗‖‖x‖

= ‖x̃‖‖x‖.

Hence, it follows that ‖x̃‖ ≤ ‖x‖ for any x ∈ T−1πR(T )(y), i.e. x̃ ∈ P (T−1πR(T )(y); θ).

Thus (
ID(T ) − PN(T )

)
T−1πR(T ) (y) ⊂ P

(
T−1πR(T ) (y) ; θ

)
. (3.11)

Combining (3.10) and (3.11), we obtain(
ID(T ) − PN(T )

)
T−1πR(T ) (y) = P

(
T−1πR(T ) (y) ; θ

)
,

which finished the proof. �
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3.2 Continuous Homogeneous Selections of Met-

ric Generalized Inverses of Linear Opera-

tors

Theorem 3.2.1 Let T ∈ L (X, Y ) be a densely defined closed linear operator.

Suppose that R (T ) is an approximately compact Chebyshev subspace of Y and

N (T ) is a proximinal subspace that is topologically complemented in X. If the set-

valued projection P̂N(T ) : D (T ) → 2N(T ) has a continuous homogeneous selection

π̂N(T ) : D (T )→ N (T ) , where P̂N(T ) is the restriction of PN(T ) to D (T ) and π̂N(T ) is

the restriction of πN(T ) to D (T ), then the metric generalized inverse T ∂ : Y → 2D(T )

has a continuous homogeneous selection T σ : Y → D (T ). In this case, we have

T σ =
(
ID(T ) − π̂N(T )

)
T−1

0 πR(T ),

where T0 = T |N(T )c∩D(T ) is the restriction of T to the subspace N (T )c∩D (T ), and

N (T )c is a topologically complemented subspace of N (T ) in X.

Proof Since R (T ) is an approximately compact Chebyshev subspace of Y, by

Lemma 2.1.4 and Lemma 2.1.10, the metric projection πR(T ) : Y → R (T ) is a

single-valued continuous homogeneous operator.

On the other hand, since N (T ) is a topologically complemented subspace of

X, there exists a closed subspace N (T )c of X such that

X = N (T )⊕N (T )c .

Let T0 := T |N(T )c∩D(T ) be the restriction of T to the subspace N (T )c ∩D (T ).

Then we claim that

T0 : N (T )c ∩D (T )→ R (T )

is one-to-one and onto, whence the converse operator T−1
0 : R (T )→ N (T )c∩D (T )

exists and is a linear operator.

Indeed, if x, y ∈ N (T )c ∩D (T ) are such that T0 (x) = T0 (y) , then

x− y ∈ N (T ) and x− y ∈ N (T )c .

Since N (T ) ∩N (T )c = {θ} , we see that x = y, i.e. T0 is one-to-one.
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On the other hand, for any y ∈ R (T ) , there exists an x ∈ D (T ) such that

y = Tx. Since x ∈ D (T ) ⊂ X = N (T ) ⊕ N (T )c , there exist x0 ∈ N (T ) and

x1 ∈ N (T )c such that x = x0 + x1. Hence

x1 = x− x0 ∈ N (T )c ∩D (T ) ,

which satisfies the equalities Tx1 = Tx = y, i.e. T0 is onto.

Next, we will prove that T−1
0 : R (T ) → N (T )c ∩ D (T ) is a closed linear

operator. Let {xn} ⊂ N (T )c ∩D (T ) be such that

xn → x0 and T0 (xn) = Txn → y0 as n→∞.

Since T is a closed linear operator, we have that x0 ∈ D (T ) and y0 = Tx0. On the

other hand, N (T )c is a closed linear subspace, we see that

x0 ∈ N (T )c ∩D (T ) , y0 = T0 (x0) .

Therefore T0 is a closed linear operator, which converse operator

T−1
0 : R (T )→ N (T )c ∩D (T )

is also a closed linear operator. Since R (T ) is a closed linear subspace of Y, whence

R (T ) is complete, it follows by the Closed Graph Theorem that

T−1
0 : R (T )→ N (T )c ∩D (T )

is a continuous linear operator.

Since π̂N(T ) : D (T )→ N (T ) is a single-valued continuous homogeneous selec-

tion for the set-valued projection P̂N(T ) : D (T )→ 2N(T ), we get

ID(T ) − π̂N(T ) : D (T )→ N (T )

is also a single-valued continuous homogeneous selection for the set-valued mapping

ID(T ) − P̂N(T ) : D (T )→ 2N(T ).

We define T σ : Y → D (T ) by the formula

T σ (y) =
(
ID(T ) − π̂N(T )

)
T−1

0 πR(T ) (y) , y ∈ Y.

Then, by Theorem 3.1.2, we have

T σ (y) ∈
(
ID(T ) − P̂N(T )

)
T−1

0 πR(T ) (y)
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⊂
(
ID(T ) − PN(T )

)
T−1πR(T ) (y)

= T ∂ (y)

for any y ∈ D
(
T ∂
)
.

Since R (T ) is an approximately compact Chebyshev subspace of Y, by Theorem

3.1.2 and Theorem 2.1.7, we obtain that

D
(
T ∂
)

= R (T )u F−1
Y

(
R (T )⊥

)
= Y

and

T σ =
(
ID(T ) − π̂N(T )

)
T−1

0 πR(T )

is a continuous homogeneous selection for the metric generalized inverse T ∂ : Y →
2D(T ). �

Theorem 3.2.2 Suppose L (X, Y ) be the space of all bounded linear operators T

from X to Y with closed range R (T ) (the domain D(T ) of T is just a subspace of

X). Let T ∈ L (X, Y ), R (T ) be an approximately compact Chebyshev subspace

of Y , N (T ) be a proximinal subspace and is topologically complemented in X.

Then the metric generalized inverse T ∂ : Y → 2X has a continuous homogeneous

selection T σ : Y → X if and only if the set-valued projection PN(T ) : X → 2N(T )

has a continuous homogeneous selection πN(T ) : X → N (T ) . In this case, we have

T σ =
(
ID(T ) − πN(T )

)
T−1

0 πR(T ),

where T0 = T |N(T )c is the restriction of T to the subspace N (T )c, and N (T )c is a

topologically complemented subspace of N (T ) in X.

Proof Necessity. If the set-valued metric generalized inverse T ∂ : Y → 2X of T has

a continuous homogeneous selection T σ : Y → X, defining

πN(T ) (x) := x− T σTx,

then πN(T ) : X → N (T ) is a continuous homogeneous operator. By the definition

of T ∂ and T σ, we see that

T
(
πN(T ) (x)

)
= Tx− TT σTx = θ,
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i.e. πN(T ) (x) ∈ N (T ) , and for any y ∈ T−1Tx = x+N (T ):

||T σTx|| ≤ ||y|| . (3.12)

Let y = x − z for any z ∈ N (T ) . Then y ∈ x + N (T ) = T−1Tx. From (3.12) we

have ∣∣∣∣x− πN(T ) (x)
∣∣∣∣ = ||T σTx||

≤ ||y||

≤ ||x− z||

for any z ∈ N (T ) . Hence,

πN(T ) (x) ∈ PN(T ) (x) , (x ∈ X),

i.e. πN(T ) : X → N (T ) is a continuous homogeneous selection for the set-valued

projection

PN(T ) : X → 2N(T ).

Sufficiency. Since T ∈ L (X, Y ) is a bounded linear operator defined on X, the

fact that T is a densely defined closed linear operator with D (T ) = X follows from

Theorem 3.2.1. �
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Chapter 4 Perturbations of

Moore-Penrose Metric Generalized

Inverses of Linear Operators

4.1 Perturbation of the Solution of the Opera-

tor Equation Tx = b

Let T ∈ B(X, Y ). Throughout this section, let δT ∈ B(X, Y ), T = T + δT,

b ∈ R(T ) and b 6= θ. Let us define S(T, b) = {x ∈ X | Tx = b}, S(T , b) = { x ∈
X | Tx = b}.

Lemma 4.1.1 Let T ∈ B(X, Y ). If N(T ) and R(T ) are Chebyshev subspaces of

X and Y , respectively. Then there exists the Moore-Penrose metric generalized

inverse TM of T such that

1

‖TM‖
≤ γ(T ) ≤ ‖T

MT‖‖TTM‖
‖TM‖

.

Proof By Theorem 2.2.4, there exists a unique Moore-Penrose metric generalized

inverse TM of T such that

TM(y) = (T |C(T ))
−1πR(T )(y), y ∈ D(TM).

It follows from Remark 2.2.5 that the norm of TM is well defined by (2.1). For any

x ∈ X and y ∈ N(T ), we have

‖TMT (x− y)‖ = ‖TMTx‖ ≤ ‖TMT‖ ‖x− y‖ (4.1)
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and

dist(x,N(T )) ≤ ‖x− (I − TMT )x‖ = ‖TMTx‖.

It follows from (4.1) that

‖x− y‖ ≥ ‖TMTx‖‖TMT‖−1,

or equivalently

dist(x,N(T )) ≥ ‖TMTx‖‖TMT‖−1.

Therefore

‖TM‖ ‖Tx‖ ≥ ‖TMTx‖ ≥ dist(x,N(T )) ≥ ‖T
MTx‖
‖TMT‖

. (4.2)

By the definition of γ(T ), inequality (4.2) implies that

γ(T ) ≥ 1

‖TM‖

and

‖Tx‖ ≥ γ(T )dist(x,N(T )) ≥ γ(T )
‖TMTx‖
‖TMT‖

. (4.3)

For any z ∈ Y , if we substitute TMz for x in inequality (4.3), we get

‖T TMz‖ ≥ γ(T )
‖TMTTMz‖
‖TMT‖

= γ(T )
‖TMz‖
‖TMT‖

.

Therefore

γ(T ) ≤ ‖T
MT‖ ‖TTM‖
‖TM‖

.

The proof is completed. �

Lemma 4.1.2 Let T ∈ B(X, Y ). If N(T ) and R(T ) are Chebyshev subspaces of

X and Y , respectively, then

‖T‖−1 ‖δTx‖ ≤ dist(x, S(T, b)) ≤ ‖TM‖ ‖δT‖‖x‖

for every x ∈ S(T , b)
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Proof By Definition 2.1.4, it is easy to see that

‖Tx‖ ≥ γ(T ) dist(x,N(T )), x ∈ X.

Therefore, for any x ∈ S(T , b)

dist(x, S(T, b)) = dist(x− TMb,N(T )) ≤ γ(T )−1 ‖T (x− TMb)‖. (4.4)

It follows from Lemma 4.1.1 that

γ(T )−1 ≤ ‖TM‖. (4.5)

This inequality together with (4.4) gives

dist(x, S(T, b)) ≤‖TM‖ ‖T (x− TMb)‖

=‖TM‖ ‖Tx− TTMb‖.

The definition of TM shows that TTM = πR(T ). Thus TTMb = b. Moreover,

dist(x, S(T, b)) ≤ ‖TM‖ ‖Tx− b‖

= ‖TM‖ ‖(T − δT )x− b‖

= ‖TM‖ ‖Tx− b− δTx‖

= ‖TM‖ ‖δTx‖.

On the other hand, it is easy to see that

‖T (x − TMb)‖ = ‖T (x − TMb − y)‖

≤ ‖T‖ ‖x − (TMb + y)‖

for any y ∈ N(T ). Therefore

dist(x, S(T, b)) ≥ ‖T‖−1 ‖T (x− TMb)‖

= ‖T‖−1 ‖(T − δT )x− TTMb‖

= ‖T‖−1 ‖Tx− δTx− b‖

= ‖T‖−1 ‖δTx‖.

The proof is completed. �

– 29 –



§4.1 Perturbation of the Solution of the Operator Equation Tx = b

Theorem 4.1.3 Let T ∈ B(X, Y ), N(T ) and R(T ) be Chebyshev subspaces of X

and Y , respectively. If ‖TM‖ ‖δT‖ < 1, then there exists a unique x ∈ S(T, b)

such that

‖x− x‖
‖x‖

≤ ‖TM‖ ‖δT‖
1− ‖TM‖ ‖δT‖

, x ∈ S(T , b).

Proof For any x ∈ S(T, b), it follows from b 6= θ that ‖x‖ 6= θ. Since S(T, b) =

TMb+N(T ) and N(T ) is a Chebyshev subspace of X, S(T, b) is a Chebyshev linear

manifold. Thus, there exists a unique x ∈ S(T, b) such that

‖x− x‖ = dist(x, S(T, b)),

for any x ∈ S(T , b) ⊂ X. By Lemma 4.1.2, we have

‖x− x‖ ≤ ‖TM‖ ‖δT‖ ‖x‖,

or equivalently
‖x− x‖
‖x‖

≤ ‖TM‖ ‖δT‖ ‖x‖
‖x‖

. (4.6)

Moreover
‖x‖
‖x‖

≤ ‖x− x‖ + ‖x‖
‖x‖

,

and
‖x‖
‖x‖

≤ 1 +
‖x− x‖
‖x‖

. (4.7)

This means by inequality (4.6) that

‖x− x‖
‖x‖

≤ ‖TM‖ ‖δT‖
1− ‖TM‖ ‖δT‖

,

which finishes the proof. �

In the following, let δb ∈ R(T ), b = b + δb ∈ R(T ) and b 6= θ. Suppose

S(T , b) = {x ∈ X | Tx = b}.
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Lemma 4.1.4 Let T ∈ B(X, Y ), N(T ) and R(T ) be Chebyshev subspaces of X

and Y , respectively. Then

‖T‖−1‖δTx− δb‖ ≤ dist(x, S(T, b)) ≤ ‖TM‖‖δTx− δb‖

for every x ∈ S(T , b).

Proof It follows from the definition of γ(T ) that

‖T (x− TMb)‖ ≥ γ(T ) dist(x, S(T, b))

= γ(T ) dist(x− TMb,N(T ))
(4.8)

for all x̄ ∈ S(T , b). Lemma 4.1.1 means that

γ(T )−1 ≤ ‖TM‖. (4.9)

In addition, (4.8) implies that

dist(x, S(T, b)) ≤ ‖TM‖‖T (x− TMb)‖ = ‖TM‖‖Tx− TTMb‖.

By the definition of TM , TTM = πR(T ). Thus, TTMb = b and

dist(x, S(T, b)) ≤ ‖TM‖‖Tx− b‖

= ‖TM‖‖(T − δT )x− b‖

= ‖TM‖‖Tx− b− δTx‖

= ‖TM‖‖δTx− δb‖.

On the other hand,

‖T (x− TMb)‖ = ‖T (x− TMb− y)‖

≤ ‖T‖‖x− (TMb+ y)‖

for any y ∈ N(T ). Hence

dist(x, S(T, b)) ≥ ‖T‖−1‖T (x− TMb)‖

= ‖T‖−1‖Tx− TTMb‖

= ‖T‖−1‖(T − δT )x− b‖
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= ‖T‖−1‖Tx− δTx− b‖

= ‖T‖−1‖b− b− δTx‖

= ‖T‖−1‖δb− δTx‖.

The proof is completed. �

Theorem 4.1.5 Let T ∈ B(X, Y ), N(T ) and R(T ) be Chebyshev subspaces of X

and Y , respectively. If ‖TM‖ ‖δT‖ < 1, then there exists a unique x ∈ S(T, b) such

that
‖x− x‖
‖x‖

≤ ‖T
M‖(‖δT‖+ ‖T‖‖δb‖‖b‖−1)

1− ‖TM‖‖δT‖

for every x ∈ S(T , b).

Proof By the proof of Theorem 4.1.3, there exists a unique x ∈ S(T, b) such that

x 6= θ and

‖x− x‖ = dist(x, S(T, b)), ∀x ∈ S(T , b).

By Lemma 4.1.4, we have

‖x− x‖ ≤ ‖TM‖ ‖δTx− δb‖.

for every x ∈ S(T , b). Therefore

‖x− x‖
‖x‖

≤ ‖T
M‖ ‖δTx− δb‖
‖x‖

≤ ‖T
M‖ (‖δT‖ ‖x‖+ ‖δb‖)

‖x‖

= ‖TM‖ ‖δT‖‖x‖
‖x‖

+
‖δb‖
‖x‖
‖TM‖. (4.10)

Furthermore, it follows from ‖Tx‖ = ‖b‖ ≤ ‖T‖ ‖x‖ that

1

‖x‖
≤ ‖T‖
‖b‖

.

This implies by (4.10) that

‖x− x‖
‖x‖

≤ ‖TM‖ ‖δT‖‖x‖
‖x‖

+
‖T‖
‖b‖
‖δb‖ ‖TM‖. (4.11)
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On the other hand, it is easy to see that

‖x‖
‖x‖

≤ ‖x− x‖ + ‖x‖
‖x‖

= 1 +
‖x− x‖
‖x‖

. (4.12)

By (4.12) and (4.11), we get

‖x− x‖
‖x‖

≤ ‖T
M‖(‖δT‖+ ‖T‖‖δb‖‖b‖−1)

1− ‖TM‖‖δT‖
.

The proof is completed. �

4.2 Perturbation of Moore-Penrose Metric Gen-

eralized Inverse

Definition 4.2.1 [57] Let T ∈ B(X, Y ), N(T ) and R(T ) be Chebyshev subspaces

of X and Y , respectively. Suppose that δT ∈ B(X, Y ), T = T + δT , and N(T )

and R(T ) are Chebyshev subspaces of X and Y , respectively. Then δT is called the

metric stable perturbation of T . In addition,

∆(T ) = {δT ∈ B(X, Y ) : δT is the metricly stable perturbation of T}

is called the metric stable perturbation set of T .

Remark 4.2.1 For any δT ∈ ∆T , it follows from Theorem 2.2.4 that there exist

the Moore-Penrose metric generalized inverse T
M

and TM of T and T , respectively,

such that

D(TM) = R(T )u F−1
Y (R(T )⊥),

D(T
M

) = R(T )u F−1
Y (R(T )⊥).

Since R(T ) and R(T ) are all Chebyshev subspaces of Y . Then Theorem 2.1.7 means

D(TM) = D(T
M

) = Y. Let us define

YδT (T ) := {b ∈ Y : FX(T
M
b− TMb) ∩N(T )⊥ 6= ∅}.

It is obvious that θ ∈ YδT (T ). Therefore,

1. YδT (T ) 6= ∅,
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2. YδT (T ) ⊂ Y is a homogenous set.

Remark 4.2.2 Let T ∈ B(X, Y ). If N(T ) and R(T ) are Chebyshev subspaces of

X and Y , respectively, then ∆(T )\{θ} 6= ∅.
Indeed, if δT = τT for any τ ∈ R , then T = T + δT = (1 + τ)T, N(T ) =

N(T ), R(T ) = R(T ). Thus δT ∈ ∆(T ).

Theorem 4.2.3 Let T ∈ B(X, Y ), N(T ) and R(T ) be Chebyshev subspaces of X

and Y , respectively. If δT ∈ ∆(T ), ‖TM‖ ‖δT‖ < 1, then

‖TM − TM‖0

‖TM‖
≤ ‖TM‖ ‖δT‖

≤ ‖TM‖ ‖δT‖
1− ‖TM‖ ‖δT‖

,

(4.13)

where both ‖TM‖ and ‖TM‖ are the norms for bounded homogenous operators, and

‖TM − TM‖0 = sup
b6=θ

b∈YδT (T )

‖(TM − TM)(b)‖
‖b‖

.

Here ‖TM − TM‖0 = θ when YδT (T ) = {θ} .

Proof By Theorem 2.2.4, there exist the Moore-Penrose metric generalized inverse

TM and T
M

of T and T , respectively, such that

D(TM) = R(T ) u F−1
Y (R(T )⊥),

D(T
M

) = R(T ) u F−1
Y (R(T )⊥).

Noting that R(T ) and R(T ) are both Chebyshev subspaces of Y , Theorem 2.1.7

shows that

D(T
M

) = D(TM) = Y.

If YδT (T ) = {θ}, then inequality (4.13) is trivial. Otherwise, we have b 6= θ and

x = T
M
b ∈ S(T , b) for all b ∈ YδT (T ). By Lemma 4.1.2, we have

dist(x, S(T, b)) ≤ ‖TM‖ ‖δT‖ ‖x‖. (4.14)

Since S(T, b) = TMb+N(T ) is a closed linear manifold, N(T ) is Chebyshev subspace

of X, then S(T, b) is a Chebyshev linear manifold. Hence

dist(x, S(T, b)) = dist(T
M
b, TMb+N(T ))

= ‖TMb− TMb− πN(T )(T
M
b− TMb)‖,

(4.15)
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where πN(T ) is a metric projector operator from X to N(T ).

Let us denote xbM := (T
M − TM)b. Since b ∈ YδT (T ) and b 6= 0, we assume

xbM 6= θ such that

FX(xbM) ∩N(T )⊥ 6= ∅. (4.16)

Take any x∗ ∈ FX(xbM) ∩N(T )⊥ such that

‖xbM‖2 = 〈x∗, xbM〉

= 〈x∗, xbM − x〉

≤ ‖x∗‖ ‖xbM − x‖

for any x ∈ N(T ). Since ‖xbM‖ = ‖x∗‖ 6= θ, we get

‖xbM − θ‖ = inf
x∈N(T )

‖xbM − x‖.

It follows from the assumption that N(T ) is a Chebyshev subspace such that

πN(T )(x
b
M) = θ. (4.17)

Next from equality (4.15), we obtain

dist(x, S(T, b)) = ‖TMb− TMb‖.

In addition, by inequality (4.14) we obtain

‖(TM − TM)b‖ ≤ ‖TM‖ ‖δT‖ ‖TM‖ ‖b‖,

whence
‖(TM − TM)b‖

‖b‖
≤ ‖TM‖ ‖δT‖ ‖TM‖. (4.18)

Taking the supremum of the left hand side over b in (4.18), we get

‖TM − TM‖0

‖TM‖
< ‖TM‖ ‖δT‖.

By the assumption that ‖TM‖ ‖δT‖ < 1, we have

‖TM − TM‖0

‖TM‖
≤ ‖TM‖ ‖δT‖,

≤ ‖TM‖ ‖δT‖
1− ‖TM‖ ‖δT‖

,

and the proof is completed. �
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In general, the metric generalized inverse is a bounded homogeneous nonlinear

operator, which suggests the discussion of nonlinear generalized inverse. In these

circumstances, we are going to change the nonlinear operator into the product of the

linear operator and quasi-linear operator, and then partially draw on the discussing

of the perturbation of the linear generalized inverses. To obtain the perturbation of

Moore-Penrose metric generalized inverse TM of T ∈ B(X, Y ). At first, we discuss

the quasi-additivity of TM .

Theorem 4.2.4 Let T ∈ B(X, Y ) and assume that N(T ) and R(T ) are Chebyshev

subspaces of X and Y , respectively, and that π−1
N(T )(θ) is a linear subspace of X.

Then:

(1) there exists a unique Moore-Penrose metric generalized inverse TM of T , and

TMy = (ID(T ) − πN(T ))T
−πR(T )y, y ∈ Y (4.19)

where T− is a linear inner inverses of T ;

(2) TM is quasi-additive (i.e, TM is quasi-additive on R(T )) and

TM(x+ y) = TMx+ TMy

for all x ∈ Y, y ∈ R(T ).

Proof (1) Since N(T ) and R(T ) are Chebyshev subspaces of X and Y , respectively,

by Lemma 2.2.2, there exists a unique Moore-Penrose meric generalized inverse TM

of T such that

TMy = (ID(T ) − πN(T ))T
−πR(T )y, y ∈ D(TM),

where D(TM) = R(T )u F−1
Y (R(T )⊥), and T− is a linear inner inverse of T . Since

R(T ) is a Chebyshev subspace of Y , so D(TM) = Y , by Theorem 2.1.7. Therefore

equality (4.19) is valid.

(2) Noticing that π−1
N(T )(θ) is a linear subspace of X, Lemma 2.1.5 implies that

πN(T ) is a linear operator. Thus ID(T )−πN(T ) is a linear operator. By Lemma 2.2.2,

there exists a linear inner T− of T . Moreover, πR(T ) = πR(T ) is bounded quasi-linear
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(quasi-additive) metric projector, which shows that TM is a bounded homogeneous

operator. Thus for each x ∈ Y, y ∈ R(T ), we have

TM(x+ y) = (ID(T ) − πN(T ))T
−πR(T )(x+ y)

= (ID(T ) − πN(T ))T
−[πR(T )x+ y]

= (ID(T ) − πN(T ))T
−πR(T )x+ (ID(T ) − πN(T ))T

−y

= TMx+ (ID(T ) − πN(T ))T
−y

= TMx+ TMy. �

Corollary 4.2.5 Let T ∈ B(X, Y ), δT ∈ B(X, Y ), N(T ) and R(T ) be Chebyshev

subspaces of X and Y , respectively. If we assume that π−1
N(T )(θ) is a linear subspace

of X and R(δT ) ⊂ R(T ), then TMδT is a linear operator.

Proof By Theorem 4.2.4, there exists a unique Moore-Penrose metric generalized

inverse TM of T such that

TMy = (ID(T ) − πN(T ))T
−πR(T )y, (y ∈ Y ).

By R(δT ) ⊂ R(T ), it is easy to see that

TMδT = (ID(T ) − πN(T ))T
−πR(T )δT

= (ID(T ) − πN(T ))T
−δT.

Therefore, TMδT is also a linear operator because (ID(T ) − πN(T ))T
−δT is a linear

operator. The proof is completed. �

In order to prove Theorem 4.2.8, we need the following result.

Lemma 4.2.6 Let T ∈ H(X). If T is quasi-additive on R(T ) and ‖T‖ < 1, then

the operator (I − T )−1 exists and

(1) (I − T )−1 ∈ H(X);

(2) (I − T )−1 =
∑∞

k=0 T
k;

(3) ‖(I − T )−1‖ ≤ 1
1−‖T‖ ;
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(4) ‖(I − T )−1 − I‖ ≤ ‖T‖
1−‖T‖ .

Proof Let An =
∑n

k=0 T
k for all nonnegative integers n. Then An are bounded

homogenous operators. For all n > m, we have

‖An − Am‖ = ‖
n∑

k=m

T k‖ ≤
n∑

k=m

‖T‖k → 0

as m, n → ∞. By the completeness of H(X), there exists a unique operator

A ∈ H(X) such that

A = lim
n→∞

An =
∞∑
k=0

T k.

Since T is quasi-additive on R(T ), we have

T (I + T + T 2 + · · ·+ T n) = T + T 2 + · · ·+ T n+1.

Hence

(I − T )An = (I − T )(I + T + T 2 + · · ·+ T n) = I − T n+1

and

An(I − T ) = I − T n+1,

for each n ≥ 1 . Let n→∞, we obtain that A = (I − T )−1. Therefore

‖(I − T )−1‖ = ‖A‖ ≤ 1

1− ‖T‖
,

‖(I − T )−1 − I‖ = ‖A− I‖ ≤ ‖T‖
1− ‖T‖

.

This finishes the proof. �

Lemma 4.2.7 Let T ∈ B(X, Y ), δT ∈ B(X, Y ) and T = T + δT . Assume that

π−1
N(T )(θ) is a linear subspace of X, N(T ) and R(T ) are Chebyshev subspaces of X

and Y , respectively. If δT ∈ 4(T ), ‖TM‖‖δT‖ < 1, R(δT ) ⊂ R(T ) and N(T ) ⊂
N(δT ), then

R(T ) = R(T ), N(T ) = N(T ).
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Proof By Theorem 2.2.4, there exists a unique Moore-Penrose Metric Generalized

inverse TM of T , which is a bounded homogenous operator (see Remark 2.2.5).

Since TTM = πR(T ), we have

T = T + δT = T (I + TMδT ).

By the assumption that π−1
N(T )(θ) is a linear subspace of X, it follows from Theorem

4.2.4 that TM is quasi-additive on R(T ) ⊂ Y . Moreover, R(δT ) ⊂ R(T ), therefore

TMδT is quasi-additive on R(TMδT ). Noticing that

‖TMδT‖ ≤ ‖TM‖‖δT‖ < 1 and − TMδT ∈ H(X),

by Lemma 4.2.6, the operator (I − (−TMδT ))−1 exists and (I +TMδT )−1 ∈ H(X).

Hence

T = T (I + TMδT )−1,

which means that R(T ) ⊂ R(T ). It is obvious that R(T ) ⊂ R(T ). Therefore,

R(T ) = R(T ).

By the assumption that N(T ) ⊂ N(δT ) we easily deduce that N(T ) ⊂ N(T ).

Noticing that

‖δTTM‖ ≤ ‖TM‖‖δT‖ < 1 and − δTTM ∈ H(X),

by Lemma 4.2.6, the operator (I − (−δTTM))−1 exists and (I + δTTM)−1 ∈ H(X).

By TMT = I − πN(T ), we get

T = T + δT = (I + δTTM)T.

Hence

T = (I + δTTM)−1T .

On the other hand, (I + δTTM)−1 is a homogenous operator, so for any x ∈ N(T ),

we have

Tx = (I + δTTM)−1Tx = (I + δTTM)−1θ = θ,
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which means that x ∈ N(T ). Therefore

N(T ) = N(T ).

This finishes the proof. �

Now we are ready to state our result concerning the perturbation of Moore-

Penrose metric generalized inverse TM of T .

Theorem 4.2.8 Let T ∈ B(X, Y ), δT ∈ B(X, Y ) and T = T + δT . Assume that

N(T ) and R(T ) are Chebyshev subspaces of X and Y , respectively. If δT ∈ 4(T ),

‖TM‖‖δT‖ < 1, R(δT ) ⊂ R(T ), N(T ) ⊂ N(δT ), and π−1
N(T )(θ) is a linear subspace

of X, then TM and T
M

exist. Moreover, we have

‖TM − TM‖
‖TM‖

≤ ‖TM‖‖δT‖ ≤ ‖TM‖‖δT‖
1− ‖TM‖‖δT‖

,

‖TM‖ ≤ ‖TM‖
1− ‖TM‖‖δT‖

,

where ‖TM‖ is the bounded homogenous operator norm of TM .

Proof By Theorem 2.2.4, TM and T
M

exist and

D(TM) = R(T )u F−1
Y (R(T )⊥),

D(T
M

) = R(T )u F−1
Y (R(T )⊥),

where FY : Y ⇒ Y ∗ is the duality mapping of Y .

Since R(T ) and R(T ) are Chebyshev subspaces of Y , by Theorem 2.1.7,

D(T
M

) = D(TM) = Y.

Since R(δT ) ⊂ R(T ), by the Lemma 4.2.7, we deduce that R(T ) = R(T ). For all

b ∈ R(T ) = R(T ), x = TMb ∈ S(T, b), x = T
M
b ∈ S(T , b). Lemma 4.1.2 implies

that

dist(x, S(T, b)) ≤ ‖TM‖‖δT‖‖x‖. (4.20)

Noticing that

S(T, b) = TMb+N(T ),
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and furthermore that N(T ) is a Chebyshev subspace of X, we obtain that S(T, b)

is a Chebyshev linear manifold in X. Therefore

dist(x, S(T, b)) = dist(T
M
b, TMb+N(T ))

= ‖TMb− TMb− πN(T )(T
M
b− TMb)‖, (4.21)

where πN(T ) is a metric project operator from X into N(T ). Since N(T ) is a

Chebyshev subspace of X, by Theorem 2.1.7, we obtain that

X = πN(T )(x) u C(T ), ∀x ∈ X,

where C(T ) = F−1
X (N(T )⊥). This implies that for all x1 ∈ C(T ), we have πN(T )(x1) =

θ. Indeed, the following relation is clearly true

x1 = θ + x1, θ ∈ N(T ), (x1 ∈ C(T )).

By Theorem 2.1.7, we have

x1 = πN(T )(x1) + x2, (x2 ∈ C(T )).

Moreover, since the decomposition is a unique, we have

πN(T )(x1) = θ.

Since N(T ) ⊂ N(δT ), by Lemma 4.2.7, we obtain that N(T ) = N(T ). Hence

C(T ) = C(T ). Since π−1
N(T )(θ) is a linear subspace of X, by Lemma 2.1.5, πN(T ) is

also a linear operator. Since T
M
b ∈ C(T ) = C(T ) and TMb ∈ C(T ), we have

πN(T )(T
M
b− TMb) = πN(T )(T

M
b)− πN(T )(T

Mb) = θ.

By (4.21), there holds

dist(x, S(T, b)) = ‖TMb− TMb‖.

By (4.20) and ‖x‖ = ‖TMb‖, we have

‖(TM − TM)b‖ ≤ ‖TM‖‖δT‖‖TMb‖.
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For all y ∈ Y \ {θ}, there exists a unique b ∈ R(T ) = R(T ) such that

b = πR(T )(y) = πR(T )(y).

It follows from Theorem 2.2.4 that

T
M
πR(T )(y) = T

M
(y),

TMπR(T )(y) = TM(y).

Hence

‖(TM − TM)y‖ = ‖TM(y)− TM(y)‖

= ‖TMπR(T )(y)− TMπR(T )(y)‖

= ‖(TM − TM)b‖

≤ ‖TM‖‖δT‖‖TMb‖

= ‖TM‖‖δT‖‖TMπR(T )(y)‖

= ‖TM‖‖δT‖‖TM(y)‖

≤ ‖TM‖‖δT‖‖TM‖‖(y)‖.

Therefore

sup
‖y‖6=θ

‖(TM − TM)y‖
‖y‖

≤ ‖TM‖‖δT‖|TM‖,

and
‖TM − TM‖
‖TM‖

≤ ‖TM‖‖δT‖.

Since ‖TM‖‖δT‖ < 1, we have θ < 1− ‖TM‖‖δT‖ < 1 and

‖TM − TM‖
‖TM‖

≤ ‖TM‖‖δT‖
1− ‖TM‖‖δT‖

.

Moreover,

‖TMy‖ ≤ ‖TMy − TMy‖+ ‖TMy‖

= ‖(TM − TM)y‖+ ‖TMy‖

≤ ‖TM‖‖δT‖‖TMy‖+ ‖TMy‖.
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Therefore

(1− ‖TM‖‖δT‖)‖TMy‖ ≤ ‖TMy‖,

which implies that

‖TMy‖ ≤ ‖TM‖‖y‖
1− ‖TM‖‖δT‖

or equivalently

‖TMy‖
‖y‖

≤ ‖TM‖
1− ‖TM‖‖δT‖

.

Taking the supremum over y ∈ Y \ {θ}, we have

‖TM‖ ≤ ‖TM‖
1− ‖TM‖‖δT‖

,

and the proof is completed. �

If X and Y are Hilbert spaces, then the Moore-Penrose metric generalized

inverses of linear operators between Banach spaces coincide with Moore-Penrose

generalized inverses under usual sense since the metric projector is linear orthogonal

projector. It is easy to deduce the following well-known perturbation result from

our above result.

Corollary 4.2.9 Let X and Y be Hilbert spaces, T ∈ B(X, Y ) be with D(T ) =

D(T ) = X, R(T ) be a closed subspace of Y . Then there exists the Moore-Penrose

generalized inverse T+ of T . If δT ∈ B(X, Y ), ‖T+‖‖δT‖ < 1 and R(T )∩N(T+) =

{θ}, then the Moore-Penrose generalized inverse T
+

of T exists and

‖T+‖ ≤ ‖T+‖
1− ‖T+‖‖δT‖

,

‖T+ − T+‖
‖T+‖

≤ ‖T+‖‖δT‖
1− ‖T+‖‖δT‖

.

Proof Since T ∈ B(X, Y ) and R(T ) is closed, the Moore-Penrose metric general-

ized inverse T+ of T exists. Since ‖T+‖‖δT‖ < 1 and R(T ) ∩N(T+) = {θ}, there

exists the Moore-Penrose generalized inverse T
+

of T (see [112]), which implies that
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the condition of Theorem 4.2.8 is satisfied. Take TM = T+ and T
M

= T
+

. Then it

follows from Theorem 4.2.8 that

‖T+‖ ≤ ‖T+‖
1− ‖T+‖‖δT‖

and
‖T+ − T+‖
‖T+‖

≤ ‖T+‖‖δT‖
1− ‖T+‖‖δT‖

,

which finishes the proof. �

4.3 The Error Bound Estimate of Perturbation

for Moore-Penrose Metric Generalized In-

verse

Theorem 4.3.1 Let T ∈ B(X, Y ), N(T ) and R(T ) be Chebyshev subspaces of

X and Y , respectively. If π−1
N(T )(θ) is a linear subspace of X and R(T ) is ap-

proximatively compact, then T has a unique and continuous Moore-Penrose metric

generalized inverse TM .

Proof By Theorem 4.2.4, there exists a unique Moore-Penrose metric generalized

inverse TM of T such that

TMy = (ID(T ) − πN(T ))T
−πR(T )y, y ∈ Y.

Since R(T ) is a approximatively compact Chebyshev subspace of Y , it follows from

Lemma 2.1.10 that πR(T ) is continuous. Since ID(T ) − πN(T ) and T− are bounded

linear operators, the operator (ID(T ) − πN(T ))T
−πR(T ) is bounded and continuous.

Thus, there exists a unique and continuous Moore-Penrose metric generalized inverse

TM of T . �

Lemma 4.3.2 Let T, δT ∈ B(X, Y ), N(T ) and R(T ) be Chebyshev subspaces

of X and Y , respectively. Assume that ‖TM‖‖δT‖ < 1, N(T ) ⊂ N(δT ) and

R(δT ) ⊂ R(T ). If π−1
N(T )(θ) is a linear subspace of X, and R(T ) is approximatively

compact, then the following results are true:
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(1) (I + δTTM) : Y → Y is bounded, invertible and

(I + δTTM)−1 =
∞∑
k=0

(−1)k(δTTM)k, (4.22)

where (I + δTTM)−1 ∈ H(Y ).

(2)
∑∞

k=0(−1)k(TMδT )kTM is convergent in H(Y,X) and

∞∑
k=0

(−1)k(TMδT )kTM = TM(I + δTTM)−1. (4.23)

(3) (I + TMδT ) : X → F−1
X (N(T )⊥) is bounded, invertible and

(I + TMδT )−1 =
∞∑
k=0

(−1)k(TMδT )k, (4.24)

where(I + TMδT )−1 ∈ B(X,X).

(4)

TM(I + δTTM)−1 = (I + TMδT )−1TM . (4.25)

Proof (1) Since N(T ) and R(T ) are Chebyshev subspaces of X and Y , respectively,

there exists a unique Moore-Penrose metric generalized inverse TM ∈ H(Y,X) of

T , where R(T ) is a closed set, D(TM) = Y and R(TM) = F−1
X (N(T )⊥). Since

‖TM‖‖δT‖ ≤ r < 1, δTTM is quasi-additive on R(δTTM) ⊂ R(T ), it follows from

Lemma 4.2.6 that (I + δTTM) is invertible and

(I + δTTM)−1 =
∞∑
k=0

(−1)k(δTTM)k,

where (I + δTTM)−1 ∈ H(Y ).

(2) Since ‖TM‖‖δT‖ ≤ r < 1, by Corollary 4.2.5, we have TMδT ∈ L(X) and

‖(−1)k(TMδT )kTM‖ = ‖(−1)kTM(δTTM)k‖

≤ ‖TM‖‖δTTM‖k

≤ ‖TM‖ rk

for all k = 0, 1, 2 · · · . Hence the series
∑∞

k=0(−1)k(TMδT )kTM is absolutely conver-

gent in H(Y,X). Since π−1
N(T )(θ) is a linear subspace of X and R(T ) is approxima-

tively compact, it follows from Theorem 4.3.1 that TM is continuous. By Theorem
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4.2.4, TM is quasi-additive on R(T ). Hence, by R(δT ) ⊂ R(T ), we deduce that

TM(I + δTTM)−1 = TM
∞∑
k=0

(−1)k(δTTM)k

=
∞∑
k=0

TM(−1)k(δTTM)k

= lim
k→∞

[TM − TMδTTM + ...+ (−1)kTM(δTTM)k]

=
∞∑
k=0

(−1)k(TMδT )kTM .

(3) It is obvious that
∑∞

k=0(−1)k(TMδT )k is a bounded operator acting from

X to F−1
X (N(T )⊥). We claim that

(I + TMδT )−1 =
∞∑
k=0

(−1)k(TMδT )k.

Indeed, taking arbitrary x ∈ X, we have

x = (I − TMT )x+ TMTx.

Since N(T ) ⊂ N(δT ), thus δT (I − TMT ) = θ. It follows from Corollary 4.2.5

that TMδT is a bounded linear operator. Hence, by equalities (4.22), (4.23) and

the inclusion N(T ) ⊂ N(δT ), we obtain[
∞∑
k=0

(−1)k(TMδT )k

]
(I + TMδT )x

=
∞∑
k=0

(−1)k(TMδT )k(I − TMT )x+

[
∞∑
k=0

(−1)k(TMδT )k

]
(I + TMδT )TMTx

= (I − TMT )x+

[
∞∑
k=0

(−1)k(TMδT )k

]
TM(I + δTTM)Tx

= (I − TMT )x+ TM

[
∞∑
k=0

(−1)k(δTTM)k

]
(I + δTTM)Tx

= (I − TMT )x+ TM(I + δTTM)−1(I + δTTM)Tx

= x.

It is easy to see that

x = (I − TMT )x+ TMTx, x ∈ F−1
X (N(T )⊥) = R(TM).

– 46 –



Chapter 4 Perturbations of Moore-Penrose Metric Generalized Inverses of Linear Operators

Since δT (I − TMT ) = θ, TM is continuous and quasi-additive on R(T ), so

(I + TMδT )

[
∞∑
k=0

(−1)k(TMδT )k

]
x

= (I + TMδT )

[
x+

∞∑
k=1

(−1)k(TMδT )kTMTx

]

= (I + TMδT )

[
x+ TM

∞∑
k=1

(−1)k(δTTM)kTx

]
= (I + TMδT )

[
x+ TM((I + δTTM)−1Tx− Tx)

]
= (I + TMδT )

[
x+ TM(I + δTTM)−1Tx− TMTx

]
= (I + TMδT )x+ (I + TMδT )TM(I + δTTM)−1Tx− (I + TMδT )TMTx

= (I + TMδT )x+ TM(I + δTTM)(I + δTTM)−1Tx− (I + TMδT )TMTx

= (I + TMδT )x+ TMTx− (I + TMδT )TMTx

= x+ TMδT (I − TMT )x

= x.

by (4.22) and (4.23). Therefore

(I + TMδT )−1 =
∞∑
k=0

(−1)k(TMδT )k ∈ B(X),

where (I + TMδT )−1 ∈ B(X,X).

The last statement (4) follows easily from (4.22), (4.23) and (4.24), and proof

is completed. �

Theorem 4.3.3 Let T ∈ B(X, Y ), δT ∈ B(X, Y ), and T = T + δT . Assume that

N(T ) and R(T ) are Chebyshev subspaces of X and Y , respectively, δT ∈ 4(T ),

‖TM‖‖δT‖ < 1, N(T ) ⊂ N(δT ) and R(δT ) ⊂ R(T ). If π−1
N(T )(θ) is a linear subspace

of X and R(T ) is approximatively compact, then:

(1) N(T ) = N(T ), R(T ) = R(T );

(2) T
M

= TM(I + δTTM)−1 = (I + TMδT )−1TM ;

(3) ‖TM‖ ≤ ‖TM‖
1−‖δTTM‖ ;

(4) ‖TM − TM‖ ≤ ‖TM‖‖δTTM‖
1−‖δTTM‖ .
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Proof (1) By Lemma 4.2.7, we have N(T ) = N(T ), R(T ) = R(T ).

(2) Since N(T ) and N(T ) are Chebyshev subspaces of X, R(T ) and R(T ) are

Chebyshev subspaces of Y , thus TM and T
M

exist. It follows from Lemma 4.3.2

that the operator (I + δTTM) is invertible and

(I + δTTM)−1 =
∞∑
k=0

(−1)k(δTTM)k,

where (I + δTTM)−1 ∈ H(Y ). Denoting T# := TM(I + δTTM)−1 ∈ H(Y,X), we

claim that T# = TM(I + δTTM)−1 is the Moore-Penrose metric generalized inverse

of T and

T
M

= TM(I + δTTM)−1 = (I + TMδT )−1TM .

Indeed,

(i) Since N(T ) ⊂ N(δT ), so δT (I − TMT ) = θ. Hence

T − TT#T

= [I − TTM(I + δTTM)−1]T

= [I − (T + δT )TM(I + δTTM)−1](T + δT )

= [(I + δTTM)− (T + δT )TM ](I + δTTM)−1(T + δT )

= (I − TTM)(I + δTTM)−1(T + δT )

= (I − TTM)(I + δTTM)−1(T + δTTMT + δT − δTTMT )

= (I − TTM)(I + δTTM)−1[(I + δTTM)T + δT (I − TMT )]

= (I − TTM)(I + δTTM)−1(I + δTTM)T = θ,

i.e.

T = TT#T , on X.

(ii) It follows from (4.25) that

TM(I + δTTM)−1 = (I + TMδT )−1TM .

TM is quasi-additive on R(T ), which implies that TM(TTM − I) = θ and

T#TT# − T#

= TM(I + δTTM)−1TTM(I + δTTM)−1 − TM(I + δTTM)−1
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= (I + TMδT )−1TMTTM(I + δTTM)−1 − (I + TMδT )−1TM .

Furthermore, R(δT ) ⊂ R(T ). Thus, (I + TMδT ) is a linear operator such that

T#TT# − T#

= (I + TMδT )−1TM [(T + δT )TM(I + δTTM)−1 − I]

= (I + TMδT )−1TM [TTM + δTTM − I − δTTM ](I + δTTM)−1

= (I + TMδT )−1TM(TTM − I)(I + δTTM)−1

= θ,

which means that T#TT# = T# on Y .

(iii) Noting that N(T ) ⊂ N(δT ), then N(T ) = N(T ) and δT = δTTMT . Since

TMT = I − πN(T ), we deduce that

T = T + δT = (I + δTTM)T.

Hence

T#T = TM(I + δTTM)−1(I + δTTM)T

= TMT

= I − πN(T )

= I − πN(T ).

(iv) It follows from the inclusion R(δT ) ⊂ R(T ) that R(T ) = R(T ). Hence

δT = TTMδT . Since TTM = πR(T ), we have

T = T + δT = T (I + TMδT ),

and

TT# = T (I + TMδT )(I + TMδT )−1TM

= TTM = πR(T ) = πR(T ).

Therefore, T# = TM(I + δTTM)−1 is the Moore-Penrose metric generalized inverse

of T , and

T
M

= TM(I + δTTM)−1 = (I + TMδT )−1TM .
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Therefore, we have shown that (2) is valid.

(3) Lemma 4.2.6 shows that

‖TM‖ = ‖TM(I + δTTM)−1‖

≤ ‖TM‖‖(I + δTTM)−1‖

≤ ‖TM‖
1− ‖δTTM‖

.

(4) Lemma 4.2.6 assures that

‖TM − TM‖ = ‖(I + TMδT )−1TM − TM‖

= ‖((I + TMδT )−1 − I)TM‖

≤ ‖(I + TMδT )−1 − I‖‖TM‖

≤ ‖T
MδT‖‖TM‖

1− ‖TMδT‖
.

By Theorem 4.3.3 , we assert that

T
M

= (I + TMδT )−1TM =
(
I − TMT + TM(I + δTTM)−1T

)
TM . (4.26)

Indeed

(
I − TMT + TM(I + δTTM)−1T

)
TM

= TM − TMTTM + TM(I + δTTM)−1TTM

= (I + TMδT )−1TM . �

Theorem 4.3.4 Let T and δT belong to B(X, Y ) and T = T + δT . Assume that

N(T ) and R(T ) are Chebyshev subspaces of X and Y , respectively, δT ∈ 4(T ),

‖TM‖‖δT‖ < 1,N(T ) ⊂ N(δT ) and R(δT ) ⊂ R(T ). If π−1
N(T )(θ) is a linear subspace

of X, R(T ) is approximatively compact and y := y + δy ∈ R(T ) for all y ∈ R(T ),

then
‖x− x‖
‖x‖

≤ κ

1− κεT

(
εy
‖y‖
‖T‖‖x‖

+ εT

)
,

where κ = ‖T‖‖TM‖, εT = ‖δT‖/‖T‖, εy = ‖δy‖/‖y‖, x = T
M
y and x = TMy.
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Proof Noticing that T
M

is linear on R(T ) = R(T ), it follows from Theorem 4.3.3

and (4.26) that

‖x− x‖ = ‖TMy − TMy‖

= ‖TMδy + (T
M − TM)y‖

= ‖TMδy +
[
(I + TMδT )−1 − I

]
TMy‖

≤ ‖TM‖‖δy‖+ ‖(I + TMδT )−1 − I‖‖TMy‖

≤ ‖TM‖
1− ‖TM‖‖δT‖

‖δy‖+
‖TM‖‖δT‖‖x‖
1− ‖TM‖‖δT‖

=
‖TM‖‖T‖

1− ‖TM‖‖δT‖
‖δy‖
‖y‖

‖y‖
‖T‖

+
‖TM‖‖T‖‖x‖

1− ‖TM‖‖δT‖
‖δT‖
‖T‖

=
κ

1− κεT

(
εy
‖y‖
‖T‖

+ εT‖x‖
)
,

which finished the proof. �

Corollary 4.3.5 If T satisfies the assumptions of Theorem 4.3.4 and T is surjective,

then
‖x− x‖
‖x‖

≤ κ

1− κεT
(εy + εT , ) .

where κ = ‖T‖‖TM‖, εT = ‖δT‖/‖T‖, εy = ‖δy‖/‖y‖.

Proof Since T is surjective, for any y ∈ Y , there exists x such that Tx = y, i.e.,

y − Tx = θ, and ‖y‖ ≤ ‖T‖‖x‖. Thus by the proof of Theorem 4.3.4, we have

‖x− x‖ ≤ κ

1− κεT

(
εy
‖y‖
‖T‖

+ εT‖x‖
)

≤ κ

1− κεT
(εy + εT ) ‖x‖,

which finished the proof. �
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Chapter 5 Narrow Spectrum

5.1 Locally Fine Points

In recent years, Professor Jipu Ma introduced the concept of locally fine points

for operator valve maps(see [61, 63]). This concept has been extensively studied in

the last years (see [61, 62, 63, 64, 65, 67]). In this Chapter, two new concepts that

generalize the notions of regular points and narrow spectrum points for bounded

linear operators on Hilbert spaces are studied by using the concept of locally fine

points. At first, some definition and theories of locally fine points will be shown in

the followings.

Definition 5.1.1 [61] Let E be a topological space, Tx : E → B(X, Y ) be an

operator-valued map continuous at x0 ∈ E, Tx0 be double splited and T+
0 be a

generalized inverse of Tx0 . Then x0 is said to be a locally fine point for Tx provided

there exists a neighborhood U ⊂ X of x0 such that for any x ∈ U , the following

equality holds

R(Tx) ∩R(IY − T0T
+
0 ) = {θ}.

Remark 5.1.1 The concept of locally fine point involves formally a generalized

inverse of Tx0 . However, it is independent of the choice of generalized inverses of

Tx0 by Theorem 1.6 in [63]. Thus, it presents a behavior just for Tx near x0 in the

case when is double splited Tx0 .

Lemma 5.1.2 [63] Let Tx : E → B(X, Y ) be continuous at x0 and Tx0 := T0 be

double splited. Assume that T0 has a generalized inverse T+
0 ∈ B(Y,X). Then

there exists a neighborhood V0 of x0 such that the followings hold true:

(i) for each x ∈ V0, Tx has a generalized inverse T+
x ∈ B(E,F );
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(ii) the equality limx→x0 T
+
x = T+

0 is satisfied if and only if x0 is a locally fine

point with respect to T+
0 .

Lemma 5.1.3 [63] Assume that T0 ∈ B(X, Y ) has a generalized inverse T+
0 ∈ B(X, Y ).

If T ∈ B(Y,X) satisfies the inequality ‖T+
0 ‖‖T − T0‖ < 1, then the following con-

ditions are equivalent:

(1) B = [IX+T+
0 (T−T0)]−1T+

0 = T+
0 [IY +(T−T0T

+
0 )]−1 is a generalized inverse of T ;

(2) R(T ) ∩N(T+
0 ) = {θ};

(3) (IE − T+
0 T0)N(T ) = N(T0).

5.2 Generalized regular points and narrow spec-

trum points

In this chapter, let H be a Hilbert space, B(H) be the set of all bounded linear

operators from H into itself and A ∈ B(H). Let σ(A), ρ(A) denote the sets of

spectrum points and of generalized regular points of A ∈ B(H), respectively. For

any A ∈ B(H), let us define Aλ := A− λ, ∀λ ∈ C (C denotes the field of complex

numbers).

Definition 5.2.1 If µ ∈ C is a locally fine point of Aλ, then µ is said to be a

generalized regular point of A ∈ B(H), if the range R(Aµ) of Aµ is closed and

there exists a positive δ > such that

R(Aλ) ∩N⊥ = {θ}

whenever | µ − λ |< δ, where N⊥ denotes the orthogonal complement of R(Aµ).

The set of generalized regular points of A is denoted by ρg(A) in the sequel.

Definition 5.2.2 Any point from C \ ρg(A) is said to be a narrow spectrum point

and the set of all narrow spectrum points of A is denoted in the sequel by σN(A).

Proposition 5.2.1 For any A ∈ B(H), there holds the inclusion ρg(A) ⊃ ρ(A).
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Proof SinceA−λI for any λ ∈ ρ(A) is a regular operator, R(Aλ) = H and R(Aλ)

is closed, so that R(Aλ)
⊥ = {θ}. Then

R(Aµ) ∩R(Aλ)
⊥ = R(Aµ) ∩ {θ} = {θ}, ∀µ ∈ C.

Hereby, we can conclude that λ ∈ ρg(A). �

Proposition 5.2.2 The narrow spectrum σN(A) is a closed set for any A ∈ B(H).

Proof Since it is proved in [96] that ρg(A) is an open set, the proposition follows

immediately. �

The following theorem gives some relationships between σN(A), σ(A) and ρg(A).

Theorem 5.2.3 For each A ∈ B(H), there holds the equality σ(A) \ σN(A) =

ρg(A) ∩ σ(A).

Proof λ ∈ σ(A) \ σN(A) implies that λ ∈ σ(A) and λ /∈ σN(A), so that λ ∈
ρg(A) ∩ σ(A), which means that

σ(A) \ σN(A) ⊂ ρg(A) ∩ σ(A).

On the other hand, if λ ∈ ρg(A) ∩ σ(A), then λ /∈ σN(A) and λ ∈ σ(A), that is,

λ ∈ σ(A) \ σN(A), which means that

σ(A) \ σN(A) ⊃ ρg(A) ∩ σ(A).

Thus we conclude that σ(A) \ σN(A) = ρg(A) ∩ σ(A). �

Corollary 5.2.4 For any A ∈ B(H), we have λ ∈ σ(A) \ σN(A) if and only if the

following conditions are satisfied:

1. dimN(Aλ) + dimN(A+
λ ) 6= θ;

2. λ ∈ ρg(A).

Proof It follows from Theorem 5.2.3 that λ ∈ σ(A)\σN(A)⇐⇒ λ ∈ ρg(A)∩σ(A)

⇐⇒ λ ∈ ρg(A) and dimN(Aλ) + dimN(A+
λ ) 6= θ. �

Proposition 5.2.5 The equality ρg(A) = ρ(A)∪ (σ(A)\σN(A)) holds true for any

A ∈ B(H).
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Proof Obviously, ρg(A) = ρ(A) ∪ (ρg(A) \ ρ(A)). Meanwhile, it is not difficult to

verify that

ρg(A) \ ρ(A) = σ(A) \ σN(A).

In fact,

λ ∈ ρg(A) \ ρ(A)⇐⇒ λ ∈ σ(A) and λ /∈ σN(A)

⇐⇒ λ ∈ σ(A) \ σN(A). �

Proposition 5.2.6 Let A ∈ B(H). The set σ(A) \ σN(A) is an open set in C.

Proof Theorem 5.2.3 means that λ ∈ σ(A)\σN(A), i.e., λ ∈ ρg(A). By Proposition

5.2.2, it is easy to see that there exist δ0 > 0 such that

{µ | |µ− λ| < δ0} ⊂ ρg(A).

It follows from Lemma 5.1.3 that there exist δ1 > 0 such that

PN(Aλ)N(Aµ) = N(Aλ)

whenever |µ−λ| < δ1. Meanwhile we can conclude that there exist a positive number

δ2 such that

PN(A+
λ )N(A+

µ ) = N(A+
λ )

whenever | µ− λ |< δ2.

In fact, by Lemma 5.1.2, there exist δ2 > 0 such that A+
µ exists for any µ with

| µ− λ |< δ2 and limµ→λA
+
µ = A+

λ , whence

I − AµA+
µ → I − AλA+

λ , µ→ λ,

i.e.,

PN(A+
µ ) → PN(A+

λ ), µ→ λ.

Thus, one can conclude that there exists a positive number δ3 such that

‖PN(A+
µ ) − PN(A+

λ )‖ < 1

for any µ with | µ− λ |< δ3. It follows from [51] that

PN(A+
λ )N(A+

µ ) = N(A+
λ )
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whenever |µ− λ| < δ3.

Defining δ := min{δ0, δ1, δ2, δ3}, we have

PN(Aλ)N(Aµ) = N(Aλ), PN(A+
λ )N(A+

µ ) = N(A+
λ )

and

C(λ, δ) = {µ : |µ− λ| < δ} ⊂ ρg(A)

whenever |µ− λ| < δ. By the assumption that λ ∈ ρg(A) ∩ σ(A) = σ(A) \ σN(A)

and Corollary 5.2.4, this implies that

dimN(Aµ) + dimN(A+
µ ) 6= θ

and

C(λ, δ) ⊂ ρg(A), µ ∈ C(λ, δ).

So C(λ, δ) ⊂ σ(A) \ σN(A). �

The translation invariance of the spectrum is an important property in the

operator theory. The next proposition shows that the narrow spectrum has also

this property.

Proposition 5.2.7 If a is a fixed constant and A is an operator from B(H), then

for any λ ∈ σN(A), we have

λ− a ∈ σN(A− aI).

Proof If λ− a /∈ σN(A− aI), then λ− a ∈ ρg(A− aI). By Definition 5.1.1, there is

a neighborhood Uλ−a of λ− a such that

R((A− aI)− µI) ∩R((A− aI)− (λ− a)I)⊥ = {θ}, ∀µ ∈ Uλ−a.

Furthermore, for the neighborhood Uλ = Uλ−a + a of λ, we have

R((A− aI)− (µ− a)I) ∩R((A− aI)− (λ− a)I)⊥ = {θ}, ∀µ ∈ Uλ,

i.e.,

R(A− µI) ∩R(A− λI)⊥ = {θ}, ∀µ ∈ Uλ.

By Definition 5.1.1, λ ∈ ρg(A), which contradicts the assumption that λ ∈ σN(A).�
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It is well known that if A is a bounded linear operator on a Hilbert space, then

σ(A) is a nonempty set. We will show that σN(A) is also a nonempty set in this

situation.

Theorem 5.2.8 The set σN(A) is nonempty for any A ∈ B(H).

Proof Assume that σN(A) = ∅. Then by Proposition 5.2.6, σ(A) is an open set

in C. This means the σ(A) is open and closed set simultaneously. In addition,

since σ(A) is a nonempty set, σ(A) = C, which means that ρ(A) = ∅, which is a

contradiction. �

Proposition 5.2.9 Let A ∈ B(H) and ∂σ(A) be the boundary of σ(A). Then

∂σ(A) ⊂ σN(A).

Proof Assume that λ ∈ ∂σ(A) and λ /∈ σN(A). Noting that σ(A) is a closed set

and λ ∈ σ(A) \ σN(A). By Proposition 5.2.6, one can assert that σ(A) \ σN(A) is

an open set. This yields that λ is the interior point of σ(A), which contradicts the

assumption that λ ∈ ∂σ(A). So ∂σ(A) ⊂ σN(A). �

Let γσ(A) and γσN (A) be the spectrum radius of σ(A) and σN(A), respectively.

In what just follows, we will show that γσ(A) = γσN (A).

Proposition 5.2.10 For any A ∈ B(H) there holds the equality γσ(A) = γσN (A).

Proof Obviously, γσ(A) ≥ γσN (A). Moreover, since σ(A) is a bounded closed set, it

follows that there exist λ ∈ σ(A) such that γσ(A) = |λ| and λ ∈ ∂σ(A) ⊂ σN(A) .

Hereby, one can concludes that γσ(A) = γσN (A). �

In what follows, we give one condition of the extension of non-trivial invariant

subspace of linear bounded operators on Hilbert space.

Theorem 5.2.11 If A ∈ B(H) and σ(A) \ σN(A) 6= ∅, there exists a non-trivial

invariant subspace of A.

Proof By Theorem 5.2.3, we have the equality σ(A) \ σN(A) = ρg(A) ∩ σ(A). So,

there exists one point λ0 ∈ σ(A) such that R(λ0) is closed. It is easy to check that

dimN(Aλ0) + dimN(A∗λ0) 6= θ. Indeed, if both of them are zero, then λ0 ∈ ρ(A).

This yields a contradiction to λ0 ∈ σ(A).
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Let H0 = N(Aλ0). If dimN(Aλ0) > 0, then

Ah = λ0h, ∀h ∈ H0.

In the case of H = H0, we have A = λ0I. There exists obviously a non-trivial

invariant subspace of A. Hence we can assume that {θ}  H0  H. Then we have

{θ}  H⊥0  H. Hereby it follows that H0 is the non-trivial invariant subspace of

A. In fact,

Ah = λ0h ∈ H0, h ∈ H0

in this case. Let H0 = N(A∗λ0), if dimN(A∗λ0) > θ. Then in the case of H = H0,

we have

A∗λ0h = θ, h ∈ H,

that is,

A∗ = λ0I.

So, there is non-trivial invariant subspace of A in this case. Hence, we can assume

that {θ}  H⊥0  H. Obviously,

θ = 〈H⊥0 , A∗λ0H0〉 = 〈Aλ0H⊥0 , H0〉,

so that

g = Aλ0h = Ah− λ0h ∈ H⊥0 , h ∈ H⊥0 ,

i.e.,

Ah = g + λ0h ∈ H⊥0 , h ∈ H⊥0 .

This shows that H⊥0 is a non-trivial invariant subspace of A. �

The theorem that we just proved shows that every operator A satisfying σ(A)\
σN(A) 6= ∅ has a non-trivial invariant subspace. Therefore, because of Theorem

5.2.11, the non-trivial invariant subspace problem is reduced to the problem con-

cerning operators with pure narrow spectrum.
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Chapter 6 Some Applications of

Generalized Inverses

By the methods of metric generalized inverse in Banach space and Schauder

fixed point theorem, X. L. Wang, H. Wang, G. Q. Liu and Y. W. Wang proved the

existence of the least extremal solution of an ill-posed Neumann boundary value

problem for semilinear elliptic equations in Lp (1 < p < 2n
n−2

) and gave a neces-

sary and sufficient condition for a function to be the least extremal solution of the

ill-posed Neumann boundary value problem. In order to present some theorems

applications of generalized inverses, we need first to give some definitions that will

be used in the first two theorems.

Let Ω ⊂ Rn (n ≥ 3) be a bounded domain, and its boundary Γ be a C2-

manifold. We consider the Neumann boundary value problem

 −
∑n

i,j=1
∂
∂xi

(aij
∂u(x)
∂xj

) = f(x, u(x)), x ∈ Ω,

∂u
∂νA

(x) = 0, x ∈ Γ,
(6.1)

where aij = aji ∈ C∞(Ω) (i, j = 1, 2, . . . , n), and the function f : Ω × R → R

satisfies the Caratheodory conditions (see Chapter 2 in [118]), i.e.,

1. x→ f(x, u) is measurable for all u ∈ R;

2. u→ f(x, u) is continuous for almost every x ∈ Ω;

and the inequality

| f(x, u) |≤ a | u |
p
q + b(x), for a.e. x ∈ Ω, ∀u ∈ R
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where a > 0, b ∈ Lq(Ω), 1
p

+ 1
q

= 1, and 2n
n+2
≤ q <∞. Then

∂u(x)

∂νA
=

n∑
i,j=1

ai,j
∂u(x)

∂xj
cos(ν̂, xi),

where ν is the unit outer normal vector on Γ and (ν̂, xi) is the angle between the

vector ν and the direction xi.

In general, the Neumann boundary value problem (6.1) is ill-posed. We should

study the extremal solution or least extremal solution of the boundary problem.

Now let

D(A) = {u ∈ H1(Ω) ⊂ Lp(Ω) : Au ∈ Lq(Ω),
∂u

∂νA
|Γ= 0},

where  Au = −
∑n

i,j=1
∂
∂xi

(aij
∂u(x)
∂xj

),

∂u
∂νA

=
∑n

i,j=1 aij
∂u(x)
∂xj

cos (̂ν, xi), u ∈ H1(Ω).

In this case, the Neumann boundary value problem (6.1) is equivalent to the fol-

lowing semilinear operator equation:

Au = F (u), u ∈ D(A).

Theorem 6.1.1 [104] If 1 < p < 2n
n−2

(n ≥ 3), 1
p

+ 1
q

= 1, p < q < ∞ and the

conditions of the introduction in this section are satisfied, then there exists a least

extremal solution of the Neumann boundary value problem for the semilinear elliptic

equation (6.1).

Theorem 6.1.2 [104] Assume that the hypotheses in Theorem 6.1.1 hold. Then a

function u ∈ D(A) is the least extremal solution of the Neumann boundary value

problem (6.1) if and only if u satisfies∫
Ω

|u(x)|p−1sgnu(x)dx = 0

and is the weak solution of the equation −
∑n

i,j=1
∂
∂xi

(aij
∂u(x)
∂xj

) = f(x, u(x))− 1
|Ω|

∫
Ω
f(x, u(x))dx, x ∈ Ω,

∂u
∂νA

(x) = 0, x ∈ Γ.
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In 2009, Y. H. Zhao and Y. W. Wang studied the problem of the ill-posed

operator equation Tx = y with codimR(T ) = 1 in normed linear spaces. The

structure of the set of extremal solutions of the equation has been obtained by the

maximal elements in N(T ∗) and the generalized inverse T+ of T . Furthermore, the

representation of the set of the extremal solutions of the equation is given formally.

Theorem 6.1.3[117] Let X, Y be Banach spaces, and let T : D(T ) ⊂ X → Y be

a closed densely defined linear operator. Suppose that codimR(T ) = 1, R(T ) is

closed, and N(T ) is topologically complemented in X. Then for any y ∈ Y \R(T ),

there exists an extremal solution x0 of the ill-posed linear operator equation Tx = y

if and only if for any y∗ ∈ N(T ∗) ⊂ Y ∗, y∗ achieves its norm on S(Y ), i.e., there

exists a y0 ∈ S(Y ) such that

〈y∗, y0〉 = ‖y∗‖,

where S(Y ) = {y ∈ Y : ‖y‖ = 1} is the unit sphere in Y .

Theorem 6.1.4[117] Let X, Y be normed linear spaces, and let T be a closed densely

defined linear operator from X to Y . Suppose that codimR(T ) = 1, R(T ) is

closed, and N(T ) is topologically complemented in X . Let us define for any y∗0 ∈
N(T ∗)\{0}, let

S0 = {y0 ∈ S(Y ) : y0 is the maximal element of y∗0, i.e., 〈y∗0, y0〉 = ‖y∗0‖}.

Then for any y ∈ Y \R(T ), we have:

1. Tx = y has an extremal solution if and only if S0 6= ∅;

2. Tx = y has at most one extremal solution in M ∩ D(T ) if and only if S0

has at most one element, where M is a closed subspace of X such that

X = N(T )⊕M ;

3. If S0 6= ∅, then the set Extry(T ) of extremal solutions of the ill-posed linear

operator equation Tx = y is represented as

Extry(T ) =
⋃
y0∈S0

T+[y − 〈y
∗
0, y0〉
‖y∗0‖

y0] +N(T ),

where T+ is the generalized inverse of T .
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