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1  
Introduction 

 

 

Of the common experimental variables, pressure is by far the least used for investigating 

the properties of condensed phases, such as solutions, melts, solids and their interphases. 

For most scientists, the fact that we are born, live and die at approximately one 

atmosphere suffices to concentrate their attention on other variables such as 

composition, temperature, electric potential, etc. which often does not require an 

expensive apparatus for many years associated with high-pressure studies. However, 

they are scientists concerned with the systems below the sea level, in ocean seabed, in 

deep geological deposits or the outer space, who must necessarily expand their research 

to the thermodynamic dimension of pressure.  

For centuries, the enormous potential of high-pressure could not be exploited due 

to the lack of adequate experiments. Most of the principles of modern high-pressure 

equipment can be traced directly to P.W. Bridgman in the first half of 20th century. The 

later progress has been, in a sense, evolutionary. The attainable high pressure, and thus 

the range of possible transformations and methods expanded dramatically through the 

ingenious use of diamonds. That moment, almost 60 years ago, when Jamieson’s group at 

the University of Chicago1 and Weir’s group at the National Bureau of Standards2 

independently designed a diamond-anvil cell (DAC), was beginning of more frequent 

reports on high-pressure phenomena. The simple construction of the DAC, which was 

gradually perfected,3 opened the way to spectacular benchmark experiments. Today’s 

high-pressure research is a fusion of many disciplines from geology through chemistry 

and physics to biochemistry and molecular biology. The number of reports on high-

pressure phenomena appearing in the literature makes it difficult to summarize them in 
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a brief form. Thus, I will emphasize topics of interest to chemists with brief excursions 

into relevant aspects of statistical physics and thermodynamics. 

 

1.1 High-pressure chemistry 

 

The investigation of chemical equilibria and chemical reaction rates in solution is one of 

the most thoroughly established inputs of high-pressure research into modern 

chemistry. It was known long ago that the equilibrium position in chemical reactions may 

be shifted by the application of external pressure, both in the liquid and gaseous phase. 

This redistribution in the physical and chemical balance of a given system is an 

application of Le Chatelier’s principle, which will result in an overall smaller volume. This 

effect can be simply summarized by4  

        (
∂ln𝐾

∂𝑝
)

𝑇
=  − (

∆V

R𝑇
),              (1.1) 

where ∆V   is a volume of reaction, defined by  

∆V = ∑𝑉𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 −  ∑𝑉𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑠      (1.2) 

(In equations 1.1 and 1.2 the pressures in MPa, the temperature in K, and R = 8.314 cm3 MPa K-1 
mol-1, and so ΔV has units of cm3mol-1)  

The volume of the reaction may be measured either by determining how the pressure 

affects the reaction equilibrium or by determining the individual partial molar volumes 

of used reagents and products.5,6 In analogy, the reaction rates in solution may be 

similarly affected by the pressure according to whether the formation of transition state 

leads to an increase or decrease of the activation volume ∆V ≠. 

Equilibrium and kinetic parameters can be then combined in diagrams illustrating 

the Gibbs free energy (G), enthalpy (H) and volume (V) changes in proceeding in the 

sequence: 

      Substrates → Transition State →Products 
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also including intermediates when they are formed (Figure 1).  

 

 

Figure 1. Schematic comparison of energy and volume profiles. The number (1) indicates 

an ‘early’ transition state, possible to achieve in fast reactions under kinetic control, and 

(2) ‘late’ transition state of long equilibrated reactions.  

 

When substrates A and B form product AB and no intermediates are produced, i.e. there 

is a single-step reaction, the volume of activation, ∆V ≠, is such that the transition state is 

almost halfway between reactant and product states. However, reactions are often not 

following this simple reaction route, and yields in several products, where one is the 

major product, which is either a more stable product, or is formed at a faster reaction 

rate. Then two factors need to be taken into consideration: thermodynamic (a formation 

of the stable product is favorable) and kinetic (a product which forms faster is preferred). 

If there is enough energy to overcome all the reaction barriers for products, and the 

reaction is in equilibrium with the most stable product, the reaction is thermodynamic-

controlled. On the other hand, if the reaction tends to produce a less stable product as a 

major product, and the activation energy for this reaction pathway is smaller 

corresponding to an ‘early’ transition state, the reaction can be considered as kinetically 
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controlled. The ratio of products depends on the relative difference between their 

activation energies.  

 These general assumptions indicate a simple and lucid way of describing a 

reaction system under high-pressure in gaseous or liquid state, but with an exemption, 

that reaction mechanism is simple and leads mainly to intrinsic changes.7 Consequently, 

a reaction with a negative volume of activation is strongly accelerated by pressure, while 

the positive volume of activation is hampered.8–11 When a chemical bond is formed, the 

distance between two atoms decreases from their original van der Waals distance to the 

bonding distance. This process usually decreases the volume by about 10-20 cm3 in 1 

mole of a substance. Even the formation of interactions as weak as the hydrogen bond 

can reduce volume by approximately 5 cm3/mole.9–11 On the other hand, a homolytic 

bond cleavage has the opposite effect, of modestly increasing volume (typically 5-10 

cm3/mole).9–11 Significant contributions to volume originate from steric features of 

molecules and thus, o-substituted benzenes occupy 3-5 cm3/mole less space than their 

m or p isomers and thus the reaction where the o-substituted derivative is produced, are 

more favored.9–11 The situation becomes more complex, when charged species are 

produced or consumed during a reaction. The presence of ions or drastic polarity changes 

of reactants strongly affect the volume occupied by the solvent molecules surrounding 

the reacting system and increasing or decreasing in the solvation layer. This 

phenomenon, known as electrostriction,12 in most cases leads to a strong reduction in ∆V 

but the quantitative evaluation of its contribution is difficult. Electrostriction depends on 

the solvent environment, and is especially large in relatively non-polar solvents, where 

the range of coulombic forces is larger, and the compressibilities increase.12   

 The solvent effect is not only limited to electrostriction. The compressed liquid 

changes its physical properties: the boiling point is increased, as well as the density and 

viscosity. The electric permittivity and electric conductivity change, too. Moreover, 

increased pressure leads to the elimination of all empty spaces and thus the distances 

between isolated molecules decrease and the space necessary for thermally-induced 

motion and collisions become more tight.13,14 
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1.2 Application of high-pressure in organic synthesis 
 

There are numerus examples of pressure-induced reactions conducted in compressed 

liquid environment. The Menshutkin reaction15,16 (Figure 2a) is an example of a reaction 

occurring mainly because of high-pressure, in short time and with a high yield.17 During 

this coupling reaction, a tertiary amine is converted into a quaternary ammonium salt by 

an alkyl halide. In the case of highly nucleophilic tertiary amines, like  

1,4-diazabicyclooctane (DABCO), the substitution reaction with dichloromethane at 

room temperature and normal pressure takes several hours when heated at reflux (336-

337 K),18 and pyridines does not readily react at all. However, these reactions are greatly 

accelerated when compressed. The reason can be found in the exceptionally large ∆V, 

estimated as -50 cm3 mol-1. This results from the formation of a new bond and charge-

pair generation, which leads to the electrostriction.17 To this point, several examples of 

this reaction at high-pressure were shown.19–21 

Interestingly, the application of high-pressure seems to be especially useful for 

highly substituted reactants. A perfect example is the oximation of di-t-butylketone, not 

observed at ambient pressure because of a steric hindrance.22 The Robinson annulation23 

(Figure 2b) at ambient pressure fails when the terminal methylene group is highly 

substituted, but is easly achieved under high-pressure conditions.22 The similar effect of 

enhanced yield for sterically crowded substrates is observed during Michael 24 and 

Mannich additions.25 In Michael addition (Figure 2c) nitromethane can be attached even 

to unsaturated ketone of a steroid.26,27 In Mannich reaction (Figure 2d), normally limited 

to formaldehyde, methylene chloride28 or bis(dimethyamino)methane can be 

successfully used instead.29 Application of high-pressure in Henry reaction,30 during 

which nitroalkanes are converted to nitroalcohols in a presence of ketones, also leads to 

higher yields, on the contrary to ambient pressure, where they could be only obtained in 

a limited number of special cases. One of the most spectacular demonstrations of 
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pressure-promoted reaction was presented by Jurczak, in the synthesis of a 3-

dimensional covalent frameworks.31–33  

 

Figure 2. Schematically represented examples of (a) Menshutkin reaction; (b) Robinson 

annulation; (c) Michael and (d) Mannich additions; and (e) Diels-Alder reaction. 
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One of the most prominent types of reaction accelerated at elevated pressure is 

the Diels-Alder reaction (Figure 2e). First described by Otto Diels and Kurt Alder in 1928, 

quickly proved to be a powerful and widely applicable method in the synthesis of 

pharmaceutical products and new materials. Starting in the nineteen-thirties,34 

numerous applications of high-pressure for the Diels-Alder reaction were found.35–40 The 

initial controversies around the reaction mechanism, according to which this highly 

exothermic reaction should be hampered at high pressure were quickly dispelled. 41,42 On 

the example of the reaction between a conjugated diene and a substituted alkene,43–46 it 

was shown that because of the simultaneous formation of two new C-C bonds, the ∆V can 

be significantly reduced in the range between -25 to -50 cm3 mol-1, which is responsible 

for observed acceleration at high pressure.47 Similar mechanistic reasoning was applied 

in the understanding of cyclic reorganization of σ and π bonds, such as cheletropic 

reactions and pericyclic rearrangements.7,48,49 Despite the fact, both these reactions are 

associated with much smaller ∆V than in regular Diels-Alders reaction, they are also 

strongly favored by high-pressure conditions. This can be explained by the reduction of 

space required for the thermally-induced motion and collision of molecules which leads 

to the total restriction of the rotational degrees of freedom. A good example of such 

reaction is the trimerization of acetonitrile to 2,4,6-trimethyl-1,3,5-triazine highly 

accelerated by the pressure.50–52 

 Free-radical reactions are an intriguing example of pressure-promoted reactions. 

As it was already pointed out, the volume expansion should be always expected for 

homolytic bond dissociations, which is also necessary for the formation of a free radical. 

Several reports on the homolytic bond cleavages showed that this process requires 

volume expansion of nearly ∆𝑉≠ = +10 cm3 mol-1,6,53,54 which clearly contradicts the 

possible promotion by the high-pressure conditions. However it was confirmed that 

numerous free radical reactions are pressure-sensitive. The explanation can be found in 

a non-straightforward mechanism,55–57 strongly dependent on the arrangement of the 

interacting molecules in the liquid state.58 Many of radical reactions promoted by the use 

of light or ultrasounds generate a significant number of free radicals. This obviously can 

not be expected at high-pressure. More likely, the radical reactions which are accelerated 
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by pressure, occur during a self-amplifying chain of events, which progress in short-

cycles (of initiation, propagation and termination) overall leading to reduction of ∆V.  

 

1.3 Application of high-pressure in inorganic 
chemistry 

 

Pressure can be also successfully applied in the inorganic chemistry. One of the most 

famous pressure-promoted reaction, without any doubt, is the Haber–Bosch process.59 

This process named after its inventors, German chemists Fritz Haber and Carl Bosch, 

implemented in the first decade of the 20th century, is the main industrial procedure for 

the production of ammonia today.60 However, this is not the only example of pressure-

accelerated synthesis of the inorganic materials. The application of high-pressure 

significantly simplified the production of metallic nitrides61–70 and  

hydrides.71–80 At the high-pressure, these compounds can be formed by the heating of a 

pure metal in a chosen gaseous atmosphere. These findings provided not only valuable 

information about the physical characteristics of those materials but also have extended 

our understanding of the thermodynamics and dynamics of the process.81–83 

The reactivity and direction of a chemical reaction at high-pressure mostly 

depend on an electron configuration of metal cations. In the context of atomic orbitals, a 

general division into open and closed-shell electron configuration can be made. The 

closed-shell configuration, with a filled valence shell, is very stable and thus it can be 

expected that high-pressure would induce a substitution reaction. According to the best 

known classification, a substitution mechanism can be either of the dissociative (D), 

interchange (I) or associative (A) type (Figure 3). During the D process an intermediate 

of a lower coordination number is formed, while A involves a formation of a transition 

state of higher ligancy. In the I mechanism, the bond formation and bond cleavage occur 

simultaneously, however more associative (Ia) or more dissociative (Id) nature of a 

process can be distinguished. Obviously, high-pressure conditions will accelerate the 

process decreasing the molar volume of reactants, in contrast to a dissociatively activated 
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process of positive ∆𝑉≠.  It is also possible to observe a ligands-exchange reaction. In this 

case, as the bond breakage and formation occur at the same time, only a small effect in 

∆𝑉≠ can be expected (slightly negative ∆𝑉≠  for Ia and a slightly positive ∆𝑉≠ for Id). It 

has to be emphasized, that this interpretation is solely based on the consideration of 

intrinsic volume contributions, like changes in bond lengths or bond angles, and 

corresponds mainly to symmetric chemical reactions, such as solvent exchange. For 

asymmetric substitution reactions, this process is frequently accompanied by major 

changes in charge distribution, dipole moment and dipole-dipole interactions, so that the 

volume changes are mainly due to electrostriction effects.4 

 

 

Figure 3. Schematic diagram of possible mechanisms for the ligand (Y) substitution 

reaction for the complex of metal (M), substituted with a number n of ligands (L) and 

interchanging group (X).  For the dissociative (D) and associative (A) mechanisms the 

transition states indicate the degree of bond breakage or formation, respectively. For the 

associative (Ia) and dissociative (Id) interchange reactions a precursor complex in pre-

equilibrium process is formed before the interchange of X takes place.  
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On the other hand, metal ions of the open-shell configuration at high-pressure are 

prone to the spin-state changes or even to transfers of electrons between ions due to 

instabilities and switching between partly filled valence electronic states. Such 

transformations can be triggered by high-pressure effect of increasing the overlap 

between adjacent electronic orbitals, leading to redox reactions.  

 

1.4  Solid-State reactions at high pressure 
 

In general, solid-state chemistry is the field that includes a synthesis, structure, and the 

determination of properties, all focused on solid materials, particularly on molecular 

crystals. Hence the scope of topochemistry strongly overlaps with solid-state physics, 

mineralogy, crystallography, ceramics, metallurgy, thermodynamics, materials science, 

and electronics, with a focus on the synthesis of novel materials and their 

characterization. One of the most effective methods for the synthesis of materials in a 

solid form is mechanosynthesis. The term ‘mechanochemistry’ following the IUPAC 

definition is a chemical reaction induced by mechanical energy and is mostly used in the 

contexts of the solid-state processes and reactions initiated by any type of mechanical 

treatment or involving reagents, which were preliminarily activated mechanically.84 The 

mechanical energy can be also applied in a form of continuous and hydrostatically 

applied pressure.85 The mechanical treatment improves diffusion, generates strains and 

introduces structural, electronic and ionic defects in crystals.86 Moreover, if the heat of 

reaction is small and a considerable difference exists between the summed specific heats 

of reactants and products, is possible to reach a reaction equilibrium at some fixed 

temperature and pressure, which can lead to completely new products above or under 

these conditions.87   

Besides the molecules themselves are strongly affected by high-pressure. The 

increased overlap between electronic orbitals can eventually result in delocalization of 

electrons,88  broadening of the allowed energy bands and a decrease in magnitude of the 

gaps of forbidden energy between bands,89–91 leading to large changes in the outer 



 

11 | P a g e  

electron shells under high-pressure.92 Moreover, since the orbitals with different 

quantum numbers differ in shape, size and thus in their compliance to distortions, the 

compression can lead to the displacement of orbitals. This effect has consequences in a 

shift of energy from the empty π* orbital to the occupied π orbital, a change in relative 

energy of d orbitals in transition metal complexes as well as in a change of interaction 

energy between electron donor and acceptor (either in a molecular, or in a transition 

metal complex). This transformation in the solid phase at high pressure was summarized 

and connected to the Ehrenfest’s classification of phase transitions by Drickamer in 

1972.93   

 Table 1. Dirickamer’s classification of high-pressure phenomena in solid-state.93    

Class I Class II Class III Class IV 

First order 
transition 

First order 
transition 

electronic 
transition 

electronic 
transition 

Electronic 
component 
negligible 

Electronic 
component 
significant 

Significant change in 
volume and/or 

structure 

Continues with 
increasing pressure 

fcc → sc 

KCl, KBr, KI 
 
 
 

bcc → hcp 

Iron 
(ferro to 

paramagnetic 
transformation) 

s → d 
Cesium, Rubidium 

 
and  

s → d 
Cerium and other 
rare earth metals 

 
 

Spin changes in 
open shell metals 

 
Solid-state redox 

Reactions 
 Fe3+ to Fe2+  

 

fcc → hcp 

Lead 
 

Diamond → white 
tin 

Silicon, Germanium, 
InSb, GaAs etc. 

(semiconductor to 
metal 

transformation) 

disproportionation 
and  

decomposition 
reactions 

 

Reactive ground 
states of 

hydrocarbons 

electron donor-
acceptor complexes 

   Rare earth salts 
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According to this classification, Class I covers all events with atoms, ions, or 

molecular rearrangements, however with no electronic implications to their structures.  

Class II refers to all phenomena associated with polymorphism leading to a drastic 

change in electrical or magnetic properties.  Transformations of Classes I and II are of the 

most common phenomena at extremely high pressure.93–96 Among them high-pressure 

spin transitions attract a lot of attention, due to their wide spectrum of applications.97–102 

An example, well illustrating the features of Class II transformation can be found in a 

nonphotomagnetic cyano-bridged Fe2+−Nb4+ coordination polymer 

Fe2+(pyrazole)4]2[Nb4+(CN)8]·4H2O, which under compression becomes a pressure-

induced spin-crossover photomagnet.97  

Class III consists mainly of electronic transitions, which occur discontinuously and 

are accompanied by a volume discontinuity. Typical earth metals such as Ca and Sr of fcc 

structure at ambient conditions, transform under compression (to 20 GPa for Ca and 3.5 

GPa for Sr) to the bcc structure, surprisingly reducing their coordination number.88 It was 

explained however, that due to pressure-induced mixing of 3d and 4s orbitals, Ca and Sr 

acquire the character of transition metals. Decomposition and solid-state redox reactions 

are less frequently reported.103 The compression above 1 GPa of H3BO3 was sufficient to 

induce a phase transition, followed by a chemical decomposition into cubic HBO2 and ice-

VI (transformed into ice-VII at 2 GPa). The large drop of volume and strong structural 

changes in the layered triclinic structure of H3BO3, accompanying the decomposition, 

suggests that due to the high activation energy a phase composition is highly dependent 

on the specific pressure–time path followed by the sample104 A pressure-induced solid-

state disproportionation was found also in α-DmaFe2+Fe3+For6 (Dma = (CH3)2NH2+, For = 

HCOO−) compressed in methanol or ethanol.105  

Class IV contains new ground states established over a range of pressures, co-

operative phenomena, or events involving a continuous change in the degree of 

configuration interaction. To this class, also some pressure-induced reactions in solids 

can be included. The examples of dimerization and polymerization are often found in the 

literature, as the tendency of the unsaturated molecules to form more saturated 

polymers with extended structure, and higher density can be expected.106–111  
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An exceptional example of the Class IV transformation, shedding a new light on the 

behavior of aromatics compounds, was recently reported.112 A gradual compression of  

syn-1,6:8,13-biscarbonyl[14]annulene leads to stabilization of the one of resonant 

mesomers.112 Another example is carbon disulfide, where compression to 8 GPa leads to 

a strong anisotropic structural distortion and increasion of the intermolecular S···S and 

C···S interactions energy which results in the polymerization.113 An organic polyiodide 

salt when compressed above 10 GPa, initially adds iodines to triiodide anion till discrete 

heptaiodide units are formed, which on the further compression leads topolymerized 

into a 3D polyanionic network.114 Numerous examples of izomerisation115–118 or 

substitution119–129 can also be found in the literature.103 The reduction of oxidation state 

in iron ions has been evidenced in pressure-induced reaction leading to a series of oxides 

Fe2O3, Fe3O4, Fe4O5 and FeO presently regarded as the engine of chemical transformation 

in the crust of our planet.130 Interestingly, Prussian Blue, ferric ferrocyanide, along with 

increasing pressure is capable for the electron transfer between iron atoms of two 

oxidation states.102,131,132 This complicated process consists of several steps, where the 

first one is a reduction of high spin Fe(III) by the electron transfer from the ligand, which 

is followed by a transfer of an electron from the low spin Fe(II) ion to high spin Fe(III) 

through the cyanide bridge. This results in an increase of high spin Fe(II) content at the 

site coordinated to the nitrogen and leads to the production of low spin Fe(III) at the site 

coordinated to the carbon.131,133 Similar effect was observed in Cs2[PdX4]·I2 (X = Cl, Br, or 

I),134 where Cs2[Pd2+I4]·I2 reacts to Cs2[Pd4+I6] at 2.5 GPa134 and α-DmaFe2+Fe3+For6  

(Dma = (CH3)2NH2+, For = HCOO−) compressed in glycerol.105 
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1.5 Purpose and goals  
 

According to the concepts of ‘green’ chemistry, modern science is focused on improving 

existing, and exploring new techniques leading to sustainable synthesis of chemical 

compounds.135–137 Traditionally, new materials are produced by solvothermal and 

solution-based methods. However, both these approaches require considerable amounts 

of energy and generates a lot of wastes. Some of these problems can be overcome by 

taking the inspiration from nature. Mankind has always dependent on mineral resources, 

many of which were formed in the unique high-pressure and high-temperature 

environment in Earth's crust. What is more, the energy required for compressing a 

sample to a considerable pressure of about 500 MPa (5 times higher than that at the 

bottom of the Mariana Trench) is a small fraction, about an order of magnitude less, 

compared to the energy needed for heating the sample by about 70 K. The high-pressure 

technologies clearly paved their way in the food industry, where pressure up to nearly 

1000 MPa is routinely used for preserving the products, without loss of the edibles 

qualities. Thus, in my work, I was interested in mimicking such extreme conditions, in 

order to synthesize novel materials. 

The results of the research performed within my PhD have been published in a 

series of 18 papers; seven of them have been chosen for describing my main 

achievements. These 7 articles, labeled R1-R7, are listed below and their copies are 

included in Appendix B. Several types of transformations described in this thesis are 

schematically presented on Figure 4. Some of these reactions (2, 4, 5, and 6) require the 

dissolution of substrates, while reactions 1 and 3 are solid-solid transformations. I have 

studied the reactivity of different systems, such as inorganic, reactions 4 and 5, the 

reactions of hybrid inorganic-organic materials (1, 2, and 3), as well as the exchange 

reaction of the disulfide bond (6). In my thesis, I was focused on the general description 

of the subject, I have avoided repeating the material of articles R1-R7 and I have referred 

to their figures, tables, and sections.  
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Figure 4. Main types of chemical reactions performed within this thesis.  
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2  
Methods 

 

 

Each of my articles describes in detail the experimental and theoretical methods applied 

in my research. Thus, in the following sections I will only briefly summarize the 

experiments and calculations. 

 

2.1 High-pressure apparatus 
 

Although the diamond anvil-cell (DAC) was invented over 60 years ago, this simple device 

remains to be the most efficient for generating high static pressure. Numerous different 

DAC designs have been used since then.138–141 In my work I applied mainly a Merrill-

Bassett DAC,3 modified by supporting the diamonds directly on the steel discs with 

conical windows. Owing to the large spectral transparency of the diamond and low 

absorption of X-ray and neutrons, the DAC can be used for in-situ direct observations of 

a sample and for investigation of its structure by diffraction methods as well as by 

complementary UV-VIS, IR or Raman spectroscopy.142 There is a vast literature dedicated 

to the DAC designs and their applications and this ingenious device has been described 

only briefly in my thesis. 

 The simplest construction of the DAC consists of (Figure 5); 

 Force-generating component — screws or an externally controlled gas 

membrane; 

 Two opposed diamond anvils (D) supported on discs (DS); 

 A steel gasket (G). 
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Figure 5. (a) A cross-section of the DAC with a solid sample, a ruby and a pressure-

transmitting medium (PTM) inside a metal gasket (G). The force on diamonds (D), 

directly mounted in supporting discs (DS), is generated by tightening the screws; and (b) 

single crystal of (H3O)PbI3·4H2O crystallized at 0.11 GPa, a ruby sphere for pressure 

calibration lie by the upper edge of the gasket.  

 

The preparation of a high-pressure experiment starts with mounting a solid sample, 

together with a pressure calibrant, inside a spark-eroded hole in a metal gasket, placed 

between two diamonds. The gasket used for my experiments was made of a thin stainless 

steel foil or tungsten, 0.3 mm thick, with a hole of 0.45 mm in diameter. The remaining 

volume filled by a liquid, allows for transferring uniformly force generated by diamonds 

and also, when it was needed, acts as a solvent. Pressure was calibrated by the ruby-

fluorescence method, which is based on the redshift of the two narrow bands (692.8 and 

694.2 nm at ambient conditions) of ruby fluorescence, occurring due to the presence of 

Cr3+ ions.143,144 The fluorescence of the ruby chip excited with a laser of λ = 532 nm, was 

measured with an enhanced-resolution Photon Control spectrometer. For high-pressure 

studies at elevated temperatures, an internal DAC heater was used. Due to the mounting 

the heater directly on the diamonds, the temperature was transferred to the studied 

sample with negligible heat losses.  

(a) (b) 



 

19 | P a g e  

For experiments in compressed liquid phase, a high-pressure piston-and-cylinder 

device was used, where pressure is generated by using a manually operated hydraulic 

press. The experimental chamber was enclosed in a cylindrical steel vessel supported 

mechanically by two outer steel shells and closed from below by a stopper supported on 

a detachable bottom. To ensure the constant starting volume of 9.80 ml, the pressure 

vessel was equipped with a neck with an overflow outlet. Both the piston and the stopper 

were sealed by wedge-type brass seals and rubber or Teflon O-rings.145 All this piston-

and-cylinder experimental setup was produced at the Institute of Physical Chemistry of 

the Polish Academy of Sciences in Warsaw. 

 

2.2 “Lab in a DAC”  
2.2.1.1.1.1.1.1.1.  

The DAC is a versatile multi-purpose apparatus adaptable for various types of 

experiments.85 However, to use it as a high-pressure reactor I had to develop a procedure, 

according to which I could operate on reactants in micromolar scale.  

First, each of substrate’s single-crystals, of Vsi di / Msi (Vsi, di and Msi are the grain 

volume, density and molecular weight of substrate, respectively) was precisely measured 

under the microscope and selected to obtain the required molarity (Figure 6). Next, 

crystals were loaded into the DAC together with a small ruby sphere, filled with a solvent 

and sealed. The solvent volume (Vsol) was calculated as follows: 

𝑉𝑠𝑜𝑙  =  𝑉𝐷𝐴𝐶  −  [(𝑉si  +  𝑉sii )  +  𝑉𝑟 ], 

were 𝑉𝐷𝐴𝐶 is the DAC chamber volume, and 𝑉𝑟 is the volume of the ruby sphere, and the 

molar concertation (ci) of substrate No. i is: 

𝑐𝑖 =  (𝑉si  ×  𝑑𝑠𝑖/𝑀𝑠𝑖)/𝑉sol. 
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Figure 6. (a) Olympus MVX10 microscope used for substrates measurements before they 

were loaded into the DAC; and (b-c) single-crystals of homodimeric disulphides. 

 

The chemical and physical properties of the used solvent, are an important 

element for obtaining reproducible results under the hydrostatic pressure in a DAC. The 

PTM can greatly affect the reaction mechanism and thus change its outcome. Many of 

common solvents, such as benzene, t-butanol, dimethyl sulfoxide or cyclohexane, quickly 

solidify at elevated pressure at room temperature, as the pressure tends to increase their 

melting points of about 15-20°C per 1 kbar.4 The viscosity of liquid also increases 

approximately twice every kilobar, which can strongly affects the reaction. Moreover, the 

polarity of the solvent has an enormous influence on the electrostriction volume. For 

example, in the non-polar solvents, during the reactions with ionic species, the 

electrostriction effect is usually magnified. On the other hand, in the polar solvents, 

usually denser than non-polar ones because of the interactions between the molecules 

themselves, this effect cannot lead to a significant decrease of ∆V.7 

Particularly important is the temperature control over during the high-pressure 

reactions. In my experiments, the solid substrates, loaded into the DAC chamber, were 

dissolved by increasing the temperature by an internal DAC heater. This device, 
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developed in our group, can be mounted directly on the diamond allowing for an accurate 

(up to 0.2°C) control over the temperature inside the chamber.    

The optimization of the reaction conditions, due to the quick analysis of the crude 

solid recovered from DAC, was possible by the application of a mass spectrometer using 

the direct injection probe (described in section 2.4). The reaction conditions were 

optimized by repeating the reaction several times for different concentrations, solvents, 

pressures and temperatures. 

 

2.3 Structural studies 
 

X-Ray diffraction experiments at high pressure were carried out on a 4-circle KUMA KM4 

and Oxford Diffraction Xcalibur Eos diffractometers with graphite-monochromated 

MoKα (λ = 0.71073 Å) radiation and a CCD detector. The DAC was aligned with a gasket-

shadow centering procedure.146 The reflection intensities were corrected for the DAC 

absorption and gasket shadowing, and the diamond-anvils reflections were 

eliminated.147,148 

The ambient-pressure structural experiments were performed on SuperNova CCD 

diffractometer equipped with X-ray micro-source (Cu Kα=1.54178 Å).   

Low-temperature structural studies were performed on Xcalibur EOS CCD 

diffractometer with a CryoStream attachment cooling a sample with the stream 

of gaseous nitrogen down to 100 K. 

For the collection and reduction of data program CrysAlisPro was used.149 The 

structures were solved by using direct methods in program SHELXS and refined by full-

matrix least-squares with SHELXL150 implemented in the OLEX2 interface.151 

Powder X-ray diffraction (XRD) measurements were performed on a Bruker AXS 

D8 Advance diffractometer equipped with a Johansson monochromator (CuKα1 = 

1.54060 Å) and a silicon-stripe LynxEye detector. 
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2.4 Complementary characterization method 
 

DSC measurements were performed on a Mettler-Toledo DSC823 module in sealed 

aluminum crucibles (40 L), heated in flowing nitrogen (150 mL min1) at a rate of  

10°C min1. TG measurements were performed on a Mettler-Toledo TGA/SDTA 851 

module in sealed aluminum crucibles (40 L), heated at a rate of 10°C min1.  

Mass spectra were recorded with a Bruker 320-MS tandem triple quadrupole 

mass spectrometer using the direct injection probe (DIP-MS) method. This technique is 

based on the introduction of a sample directly into the ionization chamber, followed by 

their vaporization and eventual ionization by the electronic impact. Because it is often 

mentioned as a fast alternative for samples that do not require gas chromatographic 

separation,152 this technique has been applied as an alternative method of analyzing 

crude solids directly recovered from the DAC.  

The 13C NMR spectra were collected on Varian VC NMR-S 400 MHz spectrometer. 

Spectra were corrected accordingly to the used solvent and processed in the MestReNova 

program.  

 

2.5 Quantum mechanical calculations 
 

The quantum-mechanical calculations have been carried out in order to investigate the 

thermodynamic behavior of the molecules, interplay between molecular conformation 

and intra- or intermolecular interaction on the potential energy. The calculations on 

molecular systems were performed using Gaussian software.153 This widely used 

program, utilizes fundamental laws of quantum mechanics to predict energies, molecular 

structures and spectroscopic data (NMR, IR, UV, etc). It has the ability to use DFT, semi-

empirical, perturbation and many other methods.  
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3  
Results   

 

 

My research was aimed at understanding and applying the high-pressure 

transformations in various materials, to modify their structure and properties. I 

investigated both, inorganic and organic systems, either in the compressed solid and in 

the liquid state. I chose the materials that represent the abovementioned fundamental 

classes and were mainly studied at normal conditions, in order to describe their behavior 

and possible reactivity under high-pressure, and to find and describe the mechanisms of 

their responses. Accordingly, in my thesis the reactions occurring in the solid-state, such 

as in closed-shell hybrid metal−organic coordination polymer: Cd(APP)2NO3·NO3 [APP = 

1,4-bis(3-aminopropyl)piperazine], described in Półrolniczak, A.; Sobczak, S.; Katrusiak, 

A. Solid-State Associative Reactions and the Coordination Compression Mechanism. 

Inorg. Chem. 2018, 57 (15), 8942–8950 (hereafter referred as R1) are discussed along 

the reactions in an open-shell compound α-DmaFe2+Fe3+For6 (Dma = (CH3)2NH2+, For = 

HCOO−). The discussion is further explored by the liquid-mediated redox reaction α-

DmaFe2+Fe3+For6 leading to the precipitation of Dma3Fe2+3Fe3+For12·CO2 crystals, stable 

at the ambient conditions, published as Sobczak, S.; Katrusiak, A. Environment-

Controlled Postsynthetic Modifications of Iron Formate Frameworks. Inorg. Chem. 2019, 

58 (17), 11773–11781 (R2). The topic of high-pressure reactions in compressed liquid 

environment has been extended by the reactions in compressed saturated solution of 

PbI2 in concentrated HI. Was included in Sobczak, S.; Fidelli, A.; Do, J.-L. Demopoulos, G.; 

Moores, A.; Friščić, T.; Katrusiak A. Toward elusive iodoplumbic acid 'HPbI3': first 

observation of hydronium salts of the PbI3
- anion through high-energy isochoric 

synthesis at elevated temperature and pressure. ChemRxiv – archived 2021 (R3). Next, 

the aryl disulfide exchange reactions at high-pressure, have been investigated and 
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described in two articles: Sobczak, S.; Drożdż, W.; Lampronti, G. I.; Belenguer, A. M. A.; 

Katrusiak, A.; Stefankiewicz, A. R. Dynamic Covalent Chemistry under High-Pressure: A 

New Route to Disulfide Metathesis. Chem. - A Eur. J. 2018, 24 (35), 8769–8773 (R4); and 

Sobczak, S.; Ratajczyk, P.; Katrusiak, A.; Squeezing out the catalysts: the disulfide bond 

exchange in aryl disulfides at high hydrostatic pressure ChemRxiv - archived 2020, 

doi.org/10.26434/chemrxiv.13160996.v2 (R5). The explanation of the high-pressure 

phenomena accompanying the disulfide exchange reaction, has been described in two 

articles: Sobczak, S.; Katrusiak, A. Colossal Strain Release by Conformational Energy Up-

Conversion in a Compressed Molecular Crystal. J. Phys. Chem. C 2017, 121 (5), 2539–2545 

(R6) as well as Sobczak, S.; Ratajczyk, P.; Katrusiak, A.; High-pressure nucleation of low-

density polymorphs Chem. – A Eur. J. 2021, 10.1002/chem.202005121 (R7). The series 

of publications R1-R7, constituting this thesis, are enclosed in Appendix B.  

 

3.1 Pressure-induced reactions of solids 
 

As stressed in Introduction, the behavior of the metal-containing compounds at high-

pressure strongly depends on electron configuration of the valence shell. The 

substitution reactions of complexes, frequently observed and described for a liquid 

environment, were also reported in the solid state.61,133,154 However mechanism of such 

pressure-induced reactions was not fully understood. From many experimental and 

theoretical studies, a clear perspective emerges on the factors determining the 

transformations in response to the squeezing of an ambient-pressure molecular solid. 

The first set of reliable rules, allowing to predict the possible reactions in compressed 

solid, were constructed by Prewitt and Downs.155 Their original concept of 9 rules of 

thumb, was further broaden by Grochala et al.156 This huge and thorough background 

provided us with valuable information we applied in the search of the underlying 

mechanism of complexes reactions at high-pressure. 

Article R1 describes Cd(APP)2NO3·NO3, a closed-shell metal-based coordination 

polymer with a guest counter-balancing the charge of the framework. Its structure 
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possesses all structural features according to which the increase of coordination number 

can be predicted: (i) the presence of a potential ligand in the close vicinity of (ii) a closed-

shell metal cation; which is (iii) coordinately unsaturated and capable of increasing its 

coordination number. The synthetic procedure for Cd(APP)2NO3·NO3 as well as the 

crystal structure with its topological features have been described in details in article R1. 

Figure 2 in R1 shows the anomalous change in the unit-cell parameters in 

Cd(APP)2NO3·NO3 as a function of pressure. During the isothermal compression to 0.4 

GPa a significant drop in the unit-cell volume of 80 Å3 (Table 1 in R1) was observed. The 

structural determinations revealed a transformation between the low-pressure phase 

Cd(APP)2NO3·NO3 and high-pressure phase Cd(APP)2(NO3)2. The strong strain caused by 

the significantly reduced distance between Cd2+ and NO3− resulted in fragmentation of 

the crystal sample. The formation of a new bond increases the Cd-coordination number 

from 6 to 7, which is connected with systematic changes of the coordination polyhedron: 

the six original Cd−N and Cd−O bonds become somewhat longer and angles between 

them decrease in order to accommodate the seventh bond (Figures 3a and b in R1). The 

formation of additional Cd−O coordination bond can be classified as associative type of 

substitution mechanism.  

My detailed survey of the Cambridge Structural Database157 revealed numerous 

other examples of similar reactions leading to the increased coordination number under 

high pressure in the solid-state. The analogous transformations occur also at low-

temperature, which is consistent with the rule of inverse pressure and temperature 

effects158 (Figures 4 and 5 in R1). Moreover, all these transformations consistently 

indicated a common reaction mechanism, which could be associated to the radius−ratio 

rule of Gustav F. Huttig, often attributed to Goldschmidt or Pauling.159 In the structural 

model the metal cation and its ligands, anions or atoms, are treated as sphere with 

characteristic radii. The compression affects the system by reducing atomic radii, 

however, the anions are more compressed than the cation at the center, because 

electrons in anions are further away from the nucleus due to the excess of negative 

charge, while the electrons in cations are strongly affected by the nucleus. Moreover, the 

another sphere of the anions protects the central cation from the effect of pressure. The 
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different compression of cation and anions reduces the ratio of anionic-to-cationic radii 

which explains the high-pressure tendency for association reactions coupled to an 

increase of a coordination number. The reduced ratio at some point of compression 

favors the increased coordination number achieved by associative substitution.  

 A different behavior at high-pressure was expected for the open-shell metal 

cations like Fe2+ and Fe3+ in α-DmaFe2+Fe3+For6. Its high-pressure study has been 

reported in article R2. Due to the presence of a short linker capable to mediate electron 

transfers between two Fe-atoms of different oxidation states, this compound revealed 

several possible transformations (Figure 1 in R2). We have found that α-

DmaFe2+Fe3+For6 does not dissolve in Daphne Oil 7474, 2-propanol and glycerol, which 

are the pressure transmitting media (PTM) frequently used in high-pressure research 

due to their high hydrostatic limits.160–162 In all these three media α-DmaFe2+Fe3+For6 can 

be compressed up to 1.40 GPa without inducing anomalous changes in the crystal 

structure, as illustrated in Figure 3 of R2. Above this pressure point, two different 

transitions occur, depending on the applied PTM. In Daphne Oil 7474 and in 2-propanol, 

the α-DmaFe2+Fe3+For6 crystal transforms, above 1.40 GPa, to a new high-pressure phase 

γ. The full description of the α to γ phase transition has been described in detailes in the 

section “Compression in Oil and in Isopropanol” of article R2. It must be stressed that 

this transition has a dual nature, of reconstructive and order−disorder types. The 

pressure-induced bond isomerization occurs due to the change in configuration of every 

sixth formate anion from anti−anti to anti−syn (Figure 5 in article R2). This reduces 

volume of the voids and stops the rotations of Dma counter-cations in phase γ. 

The compression of α-DmaFe2+Fe3+For6 in glycerol, above 1.40 GPa, in a reversible 

process induces the reduction of all Fe3+ cations, and below the critical pressure the 

crystal transforms back to phase α. The transformation can be observed visually, as the 

black crystals become transparent, starting from the crystal edges, and this change is 

progressing toward the center of the compressed crystal (Figure 7 in R2). 

Simultaneously, in the diffraction pattern new reflections appear, and the solution of this 

new structure revealed compound hp-DmaFe2+For3 of the trigonal space group R3̅c (a 

detailed description can be found in the Supporting Information to article R2 as well as 
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in the section “Squeezing Dma off α-DmaFe2+Fe3+For6 in Glycerol” in R2). The 

occurrence of the reduction reaction is corroborated by the charged balance between 

Dma+ cations, for anions and Fe atoms, as well as by the length of Fe2+−O bonds (Figure 

2 in R2). Remarkably, this high-pressure phase of DmaFe2+For3 is identical, in all terms 

of chemical, structural and physical features, with that obtained at ambient conditions 

(Figure 3 in article R2). It appears that different stability regions of these phases 

determined in different experiments are due to different crystal environment, e.g. the 

PTM in the high-pressure experiment. The mechanism for this reversible reduction was 

rationalized by the “breathing-like behavior” associated to a partial “zone-collapse”163 of 

the α-DmaFe2+Fe3+For6 structure, as no new Bragg reflections other than those from hp-

DmaFe2+For3 could be found in the recorded diffraction images (Figure S1 in the 

Supporting Information of R2). The more profound understanding of the reaction 

reversibility requires additional data and investigations with complementary high-

pressure techniques.   

 

3.2 Pressure-induced reactions in solutions 
 

Some structural analogies between α-DmaFe2+Fe3+For6 and Prussian Blue164 justify the 

assumption that the dissolution of this material can change the Fe oxidation states. At 

ambient conditions, α-DmaFe2+Fe3+For6 hardly dissolves in simple alcohols, like 

methanol or ethanol. Although the solubility of most substances decreases at the high 

pressure,165 we found that single crystals of α-DmaFe2+Fe3+For6 can be compressed in 

both these alcohols only to 1.10 GPa, above which the dissolution starts. The dissolution 

process is followed by the precipitation of small green cubic crystals (Figure 8 in R2). 

These new in situ grown crystals survived the pressure release and could be recovered 

to the ambient conditions. The structural analysis by the X-ray diffraction revealed the 

formation of Dma3Fe2+3Fe3+For12·CO2, analogous to Mn3+, Fe3+, Al3+, Ga3+ and In3+ 

formates, synthesized previously at ambient conditions (Figure 8 in R2). Their crystal 

structure is similar, however there are several significant chemical differences. Most 
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apparent is different oxidation state of the metal center. In Dma3Fe2+3Fe3+For12·CO2, Fe2+ 

and Fe3+ cations are in the 3:1 ratio. In the compounds reported before,166 all metals are 

at the (III) oxidation state. The mixed oxidation state of cations in 

Dma3Fe2+3Fe3+For12·CO2, similarly as it was done for hp-DmaFe2+For3, has been 

established according to the charge balance of the whole network as well as to the Fe−O 

bond lengths, directly corresponding to the weighted average distance of 

[3Fe(II)+Fe(III)]/4···O (Figure 2 in R2). Another difference is the contents of voids. In 

Dma3Fe2+3Fe3+For12·CO2 the neutral CO2 molecules and Dma cations are trapped in the 

framework, while in the M3+ analogues their voids are occupied by molecules HCOOH, 

H2O and CO2. The presence of CO2 in Dma3Fe2+3Fe3+For12·CO2 molecules is consistent 

with the voids volume and with the number of electrons (e-) located inside and 

determined by the SQUEEZE algorithm implemented in Platon.167 It should be stressed 

that the reaction took place in the sealed DAC chamber, which is a closed system and no 

other elements than C, N, O, H and Fe can be found inside. The linear conformation and 

molecular dimensions of the refined CO2 molecule perfectly match the peaks in the 

electron-density map. The determined C=O bonds, as well as the O=C=O angle, agree with 

those in the CO2 molecule and at the same time the observed dimensions are inconsistent 

with those in the formate anion or the formic acid molecule. The results observed for α-

DmaFe2+Fe3+For6 clearly indicated that the liquid-mediated high-pressure reactions can 

provide means to access the new forms of the materials which are unattainable by the 

conventional methods.  

The recent development of the solar-cell devices has inspired the extensive 

studies on the existence of iodoplumbic(II) acid. It was attempted in multiple 

investigations to prove its existence, however to this point the acid composition and 

stability remained controversial.168,169  

 Goldschmidt’s classical Tolerance Factor (defined as 𝑇𝐹 = 𝑟𝐴 + 𝑟𝑋 √2(𝑟𝑀 + 𝑟𝑋)⁄ , 

where rA , rM and rX represent the radii of cation, metal and halide ions, respectively) is 

often used to predict the dimensionality of either hybrid or inorganic halide perovskites 

system.170 The TF values between 0.8 ≤ TF ≤1 favor the stable 3-dimensional (3D) AMX3 

perovskite structures, while those out of this range promote structures of lower 
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dimensionalities: 2D, 1D or 0D.171–173 As it is highly unlikely to observe a free form of 

proton in the aqueous solution (H+) due to its extremely high charge density  

(≈ 2·1010 times that of Na+), the probable structure of iodoplumbic(II) acid can be 

supported only by the hydronium cation H3O+. The TF factor estimated for that 

iodoplumbic(II) acid, assuming the effective ionic radius of hydronium cation as 100 

pm,174 equals 0.667. That suggests that at ambient conditions that material, supported by 

the hydronium cation, will be rather unstable.  

Thus, we have focused our investigations on the effect of the ball milling and high-

pressure, both using the mechanical energy, on the reaction system of PbI2 dissolved in 

concentrated aqueous HI, hoping that the energy introduced to the system in this way 

will result in the formation of the desired product. As the result of the milling 

experiments, we have obtained crystalline compound (H3O)2Pb3I8·6H2O (Figure 1 in 

article R3). This material was reported before, yielding of the gas phase reaction of HI 

with PbI2.175 The structure of (H3O)2Pb3I8·6H2O consists of trimeric chains of [Pb3I8]2– 

with water molecules between these chains. Nevertheless, the compression to 0.11 GPa 

of this same starting system, of PbI2 in concentrated HI(aq), resulted in the formation of a 

new (H3O)PbI3·4H2O salt (Figure 1 in article R3). The structure of (H3O)PbI3·4H2O is built 

of the polyanionic PbI3- tapes extending in one dimension, in the form of dimeric, edge-

sharing chains and of intercalated H2O and H3O+ molecules. The structure of 

(H3O)PbI3·4H2O represents the NH4CdCl3-type double-chains topology, isostructural to 

other one-dimensional iodoplumbate structures incorporating for example ammonium, 

cesium and rubidium cations (NH4PbI3, CsPbI3 and RbPbI3).176–178 However, in 

(H3O)PbI3·4H2O the negative charge of the framework is counterbalanced by hydronium 

cations. Although the presence of heavy atoms in the structure hinders the precise 

location of hydrogen atoms and makes it difficult to distinguish water molecules from 

H3O+ cations, it is reasonable to assume that the H3O+ cations form the shortest contacts 

to the iodine anions (Figure 2b in article R3). When the pressure is increased above 1.20 

GPa, a new hydronium salt, (H3O)PbI3·3H2O, crystallizes (Figure 1 in article R3). This new 

compound is based on identical polymeric anions with the edge-sharing PbI6-octahedra, 
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like those in (H3O)PbI3·4H2O, but with a lower content of water between the anionic 

sheets (Figure 2c in article R3).  

Interestingly, the stability region favoring the existence of the hydronium salts is 

clearly distinguishable (Figure 5 in article R3). Above 1.2 GPa and at temperature above 

420 K, a pink-colored crystalline material (Figure 4 in article R3), different from the 

colorless crystals of (H3O)PbI3·4H2O and (H3O)PbI3·3H2O is formed. The X-ray diffraction 

measurements for this crystal at 2.05 GPa and above 320 K, revealed a new polymorph 

of PbI2, hereafter denoted as the polymorph β. The high-pressure β-PbI2, unlike the well-

known 2D layered PbI2 structure (α- PbI2), assumes a three-dimensional (3D) framework 

of alternating six- and seven-coordinated lead cations.  The opposite side of the 

hydronium salts stability region is revealed by a single-crystal-to-single-crystal 

transformation from (H3O)PbI3·4H2O to [H3O]2x[Pb1–xI2]‧(2–2x)H2O (Figure 3 in article 

R3), while the pressure is released to 0.1 MPa. 

 The successful pressure-induced reactions in the hybrid, as well as in the purely 

inorganic systems, encouraged us to attempt on triggering the organic reaction. Our 

interest focused on disulfide exchange reactions, which are intensely studied due to their 

potential applications. However, these reactions require long equilibration times, often 

combined with the use of a strong base or a reductor to induce an attack of a free thiolate 

at the disulfide bond.179 Only recently some progress towards more environmental-

friendly methods has been achieved.180,181 Improved methods of green chemistry require 

the exploration of new paths leading to reactions of high conversion rates, decreased 

amount of used energy and minimal amounts of necessary reactants.135–137 Our first 

attempt to induce an exchange reaction was undertaken on the two homodimeric aryl 

disulfides: bis(4-chlorophenyl)disulfide and bis(2-nitrophenyl)disulfide, described in 

article R4. At ambient conditions in order to obtain high yield, this reaction needs to be 

conducted under mechanical grinding with a base catalyst 1,8-diazabicycloundec-7-ene 

(DBU). On the contrary, the solution-based methods for this process, result in almost 

perfect equilibrium between substrates and products (Figure 1 and Supporting 

Information in article R4), accelerating after application of the reducing agent combined 

with an excess of heat. For the high-pressure reactions, an equimolar amount of both 
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homodimers were used and by strictly following the same reaction procedure we have 

conducted 21 reactions in various conditions of pressure, temperature and different 

solvents environments (for molarity calculations and reaction procedure see Supporting 

Information in R4 and “Reaction procedure and optimization” section in R5). We found 

that by changing the molar concentration of substrates we were able not only to obtain 

almost 100% conversion to the heterodimeric product, subsequently grown in the form 

of single-crystals (Figure 2 in R4), but also by modifying the solvent chemical character 

(from polar protic to polar aprotic), we could control the polymorphic form of the 

product.  

In order to fully understand the mechanism of exchange reactions at high-

pressure, we have extended our original investigation to another 15 different 

homodimeric aryl disulfides described in article R5. The variety of substrates, differing 

in the types, positions, and chemical character of substituents (Figure 1 in R5) were 

combined together to produce an overview of high-pressure reactivity, illustrated in 

Figure 2 in article R5. The obtained 21 different heterodimeric products provided the 

basis for understanding the pressure-induced disulfide bond exchange mechanism. 

Contrary to the previously postulated mechanism of [2+2] metathesis, our high-pressure 

results confirm that this reaction occurs according to the radical-mediated 

mechanism.182 In this model the high-pressure conditions allow to overcome the 

energetic barrier needed to the cleavage of a disulfide bond and formation of two sulfur-

centered radicals (Scheme 1 in R5). Of course, the homolytic disulfide bond dissociation 

is a process connected with the volume expansion and undoubtedly it is a rate-

determining step.  

Our previous studies on one of the most basic representatives of aromatic 

disulfides, di-p-tolyl disulfide described in article R6, has shown that at high-pressure 

disulfides can absorb a significant amount of energy due to conformational changes. The 

isothermal compression of the ambient-pressure phase α di-p-tolyl disulfide induces a 

first-order transition to phase β at 1.60 GPa, which differentiates the conformers of 

molecules. On the other hand, the isochoric recrystallization already at 0.45 GPa results 

in the formation of a new polymorph γ (Table 1 and Figure 3 in article R6). In the 
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structure of polymorph γ, all shortest intermolecular contacts S···H and C···C (Figure 7 in 

R6) are longer compared to those in phases α and β. This expansion of all the shortest 

contacts results from the strong conformational conversion, after which the molecular 

shape is better suited for closely packing in the crystal. However, this conformational 

conversion requires the energy, provided when the compound is dissolved at high-

pressure. These results show, that even high-energetic barriers of conformers can be 

overcome by the high-pressure treatment. It suggests that the higher potential energy 

(Ep) conformers can be regarded as steps reducing the distance to the next Ep barrier 

required to dissociate the disulfide bond, which is necessary for the reaction to 

occur.183,184 

In order to investigate if the disulfide-exchange reactions at high-pressure occur 

under thermodynamic or kinetic control, we performed a series of experiments on 

compressed solutions, where several homodimeric systems (corresponding to the 

successfully performed reactions in the DAC) were well mixed, and in the next stage, 

compressed in the piston-cylinder press (details are described in the Supporting 

Information in R5). The amounts of heterodimeric products traced by 13C-NMR, before 

and just after the sample was compressed (all related spectra can be found also in the 

Supporting Information in R5), showed that while four systems equilibrated already at 

ambient conditions, in seven others the product was not formed. Moreover, the 

compression accelerated the conversion to heterodimers in only one of the attempted 

reactions. That result, somewhat surprising, contrasts with the calculated reaction 

volume diagrams (Figure 3 in R5). According to the van der Waals volume calculations 

(for details see the Supporting Information in R5), in most reactions the product is 

smaller than at least one of the starting substrates. It seems reasonable to assume that 

the volume reduction of -8.26 Å3, calculated between the substrate and product molecule, 

is not enough to compensate the reaction volume (Δ𝑉o) gain, associated with the 

formation of radicals.  

For explaining the nature of this phenomenon, we have focused our attention on 

the reactions conducted in the DAC, with a special concern for the solid form of obtained 

products. Using the example of bis-3-nitrophenyl disulfide described in article R7, we 
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have investigated the process of high-pressure crystallization (described within this 

thesis in section 2.2 as well as in the “Experimental” section in R7 and “Reaction 

procedure and optimization” in R5). Following the same protocol as it was applied for 

the crystallization of reaction products, we obtained two new polymorphs β and γ of bis-

3-nitrophenyl disulfide (Figure 1 and Table 1 in R7). Both these new polymorphs display 

characteristic features of kinetic polymorphs, such as: (i) lower symmetry; (ii) lower 

density and (iii) higher number Z’ of symmetry-independent molecules; as well as (iv) 

higher potential energy of the conformers, compared to those obtained under dynamic-

regime. Interestingly, polymorph A, the product obtained in a high-pressure reaction in 

isopropanol described in the article R4, also displays all characteristic features (i-iv) of 

the kinetic polymorph. That led us to the conclusion that the nucleation occurring under 

high-pressure/high-temperature conditions, is the crucial point for initiating a high-

conversion rate of the disulfide exchange reactions. As described in section “Control by 

the Entropy” of article R5, the full conversion to heterodimeric disulfide originates from 

an entropy-driven kinetic process (Figure 4 in R5). The system maximizes its entropy at 

high-pressure and high-temperature, which is achieved when the dissolved and 

conformationally differentiates substrates start to dissociate into the sulfenyl radicals. 

Then the reaction follows to minimize the reaction volume, which leads to the formation 

of the product. By reducing the temperature, the kinetic regime of precipitation is 

imposed. The nucleation takes place in the extreme conditions for the highly excited 

molecules, which can be described as the high-entropy environment, hence the high-

entropy nucleation (R4). Naturally, for equilibrium reactions, there must be some 

systematic factor favoring the desired product. In this case of disulfide exchange 

reactions, this is the increased dipole moments of the heterodimers, compared to the 

dipoles of homodimeric substrates, that favors the nucleation of the products due to the 

stronger electrostatic attraction. Once the nuclei of heterodimeric products are more 

likely to be formed, the reaction equilibrium is shifted and the conversion rate increases. 

This stokes up on the kinetic crystallization that preserves in the crystals the high-

entropy features and high-Ep conformers nucleated at extreme conditions of high-

temperature and high-pressure environment.  Moreover, due to the increased viscosity 

of the solution under high-pressure, the time scale required for the kinetic crystallization 
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expands compared to normal conditions. The described process provides the molecular-

level illustration of Ostwald’s rule of stages. The process of the entropy-driven 

equilibrium redistribution has been described in section “Control by the Entropy” in 

article R6 and nucleation leading to kinetic polymorphs in section “Discussion” of article 

R7.  
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4  
Conclusions 

 

 

In the series of 7 publications, I have shown how the high pressure can be used for 

inducing a chemical reaction, leading to new materials. The described examples illustrate 

that high pressure is an efficient stimulus activating reactions of organic, inorganic and 

hybrid organic-inorganic systems, to the point that the catalysts, indispensable at 

ambient conditions, are no longer needed. The detailed investigations of several reaction 

systems in the solid and liquid states, by combining several analytic methods, allowed 

me to better understand the observed processes and to apply this understanding in 

practice. Some of the most significant results of this thesis are summarized below. 

 The structural changes and chemical reactions in the closed-shell metal 

coordination complexes can be predicted based on the pressure dependence of the radii 

of metal cation and ligands, according to the radius−ratio rule, with consideration of the 

arrangement of ligands around the central cation, and the presence of other potential 

ligands in the vicinity of a metal cation. High-pressure can increase the coordination 

number of cations in those systems, without changing their oxidation state.  

 One of the unexpected results of my research was the observation of the effects of 

the pressure-transmitting media on the solid-state transformations, so far connected 

with the sample material only. The introduction of an open-shell metal cation 

coordinated by ligands capable to mediate an electron transfer can lead to a variety of 

pressure-induced transformations, depending on the liquid environment. The 

compression of α-DmaFe2+Fe3+For6 resulted in three different types of transformations: 

(i) order−disorder and displacive reversible phase transition (between phases α and γ); 
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(ii) reversible chemical reaction involving the reduction of Fe3+ cations (yielding 

DmaFe2+For3); and (iii) irreversible redox reaction with reduction of organic ligands, 

leading to single-crystalline Dma3Fe2+3Fe3+For12·CO2. While the reactions involving the 

closed-shell metals lead to increased coordination number and can be conducted in the 

solid-state or via the liquid state, as observed for Cd(APP)2NO3·NO3 and PbI2 dissolved in 

concentrated HI(aq), respectively, the high-pressure redox reactions depend on physical 

and chemical properties of the liquid environment. 

The example of a system extremely sensitive to the external stimuli, depending 

not only on the acidity, iodine and water contents as well as the pressure and 

temperature, was found in the series of structurally closely related lead halide PbI2 

polymorphs α and β, as well as their hydronium salts. All these structures consist of the 

PbI6 octahedra shearing edges in common polymeric sheets (2D) and ribbons (1D) Pb–I 

bonded motives, consisting of the scaffolds for all of those structures. The weakest of the 

cohesion forces occur between the polyanions. In all these related structures the close 

positions and short contacts of the electronegative iodine atoms lead to the high 

susceptibility of the interanionic regions to the compressed environment. We have 

shown that the compensation of these electrostatically unfavored close locations of 

iodine atoms can be achieved by the intercalation, either by water molecules and/or by 

hydronium cations that form OH‧‧‧I- and OH+‧‧‧I- hydrogen bonds. In this way, the sort I‧‧‧I 

contacts between polyanions are eliminated.    

 In the disulfide exchange reaction, we have successfully applied a novel approach, 

where the effect of pressure was used instead of catalytic or reducing agents. We have 

presented the explanation for the radical-mediated mechanism of this reaction at high-

pressure, by connecting it to the effects of increased entropy of the system. In this project 

we have used advantages of the DAC used as a high-pressure reactor for carrying out the 

synthesis, compared to the large-volume piston-cylinder press.  

 We have also connected high-pressure behavior of aryl disulfides, capable of 

absorbing the mechanical energy of compression by exciting higher states of these 

molecules. In the case study on di-p-tolyl disulfide, it was shown that disulfide molecules 
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can absorb the stress energy, of about 6 kJmol−1 by conformational conversion in the 

compressed liquid environment.   

 Finally, we have explained how the reaction equilibrium in aryl disulfide exchange 

reaction is shifted toward the heterodimeric products, by the process of high-entropy 

nucleation. The closed system of the DAC allowed us to investigate the high-pressure and 

high-temperature recrystallization of homodimeric bis-3-nitrophenyl disulfide. As a 

result, we crystallized polymorphs β and γ of bis-3-nitrophenyl disulfide, which were 

obtained under high pressure but were less dense than polymorph α obtained at ambient 

conditions. At first glance, these results seemed to contradict one of the main paradigms 

of thermodynamics. Generally, the high-pressure crystallizations and syntheses lead to 

high-density polymorphs and products. In fact, the high-pressure techniques are aimed 

at obtaining hard, high-density materials. However, such processes are performed slowly 

under the dynamic regime, allowing the system to equilibrate. We found, that the high-

pressure conditions can be effectively used to expand the thermodynamic space of 

temperature and concertation, where the kinetic polymorphs can be formed. At the high-

pressure, viscosity of the system is significantly increased, which affects the molecular 

conformations and leaves no sufficient time for the molecules to reorient or change the 

positions of their substituents, thus directing the crystallization to kinetic polymorphs. 

This observation provides a rational explanation for the puzzling density relation of 

polymorphs A and B of 4-chlorophenyl-2'-nitrophenyl-disulfide, from which form A was 

the less-dense polymorph obtained in the pressure-induced disulfide exchange reaction. 

Owing to the confined reaction space, the entropy of the system can be increased in a 

controlled manner to a stage when the substrates are dissolved and the molecules are 

excited into high energy conformers and rota-vibrational states leading to the 

dissociation of the S−S bond. Then, by lowering the temperature, the high-entropy 

nucleation and subsequent kinetic crystallization can offset the thermodynamic 

equilibrium, resulting in high yields of exchanged disulfides for catalyst-free, high-

pressure reactions.  

This result shows that most of the common technological difficulties and their 

dangerous consequences for the environment, like purification of the products, 
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considerable large heat-energy consumption, wasting the solvents, the troublesome 

processes of dissolution and evaporation of solvents, often damaging the environment 

etc. can be circumvented by performing reactions under high pressure in confined space. 

Importantly, the pressure-induced exchange of the disulfide bond meets 7 out of 12 green 

chemistry principles,185 in particular: 

 The process uses less solvent, which results in a cleaner reaction profile and less 

waste left after the synthesis process; 

 Our reaction is designed to account for every atom because the catalyst is 

eliminated, while the conversion rates and selectivity reaches 100%; 

 Contact with all chemical catalysts used before to accelerate the disulfide 

exchange is highly hazardous for the living organisms. Just to mention DBU (1,8-

diazabicycloundec-7-ene), which is carcinogenic and corrosive or phosphine 

compounds that may cause, nausea, vomits, stomach pain, thirst, muscle pain, 

difficulty breathing, etc.; 

 The high-pressure method not only requires less solvent but in contrary to the 

ultrasound-accelerated disulfide exchange, does not require CHCl3 or CHBr3 and 

can proceed in simple alcohols, like methanol or isopropanol;  

 We have significantly shortened the long reaction time required for the exchange 

reactions at normal pressure, even when intensive heating is applied; 

 We have shown how to apply analytical methodologies for the real-time and 

ongoing high-pressure process monitoring and control; 

 The closed vessel can prevent releasing any toxic gases. 

Undoubtedly, reactions under elevated pressure are interesting, but they still 

remain an unexplored area requiring more investigation. The few examples of different 

reactions presented in this thesis illustrate some potential of pressure-induced reactions. 

It has been demonstrated that new chemical compounds and new forms of materials can 

be obtained by using high-pressure techniques. They can overcome some of the problems 

of the traditional synthetic methods, like the generation of waste or the consumption of 
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considerable amounts of energy. It appears that the new aspects of high-pressure 

technique can be attractive to the industry, as these methods offer high reaction yields 

and provide a more environmentally responsible manner for obtaining new materials, 

frequently attained in a form of single-crystal, and thus not requiring any additional 

purification. It should be stressed that the environment protection and following the 

principles of green chemistry are increasingly urgent in the modern world. Undoubtedly, 

the cost of energy and waste disposal can be considerably reduced by applying high-

pressure methods. Also, a smaller number of reaction steps and shorter processes, 

ascribed for the pressure-induced reactions, are important for the environment. 

Therefore, the high-pressure methods can provide means to achieving more efficient, 

safer and more environmentally friendly chemical reactions and transformations of 

various materials.  
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Appendix A: Streszczenie 
 

 

W serii siedmiu publikacji pokazałem, w jaki sposób wysokie ciśnienie można 

wykorzystać do indukowania i akcelerowania reakcji chemicznych, prowadzących do 

powstania nowych materiałów. Opisane przykłady ilustrują, iż ciśnienie może z 

powodzeniem zostać zastosowane do przeprowadzania reakcji w układach 

organicznych, nieorganicznych, a także w hybrydowych układach organiczno-

nieorganicznych. Co więcej, moje badania pokazują, iż reakcje prowadzone w warunkach 

wysokiego ciśnienia mogą być efektywne do tego stopnia, że niewymagany jest w nich 

katalizator. Dzięki zastosowaniu wielu metod analitycznych określiłem mechanizmy 

reakcji przebiegających w ciele stałym oraz w fazie ciekłej, co pozwoliło na szczegółowe 

i dogłębne zrozumienie obserwowanych procesów. Poniżej podsumowałem niektóre z 

najważniejszych wyników opisanych w ramach mojej rozprawy doktorskiej. 

Zmiany w strukturze związków oraz powiązane z nimi reakcje chemiczne w 

kompleksach koordynacyjnych metali o zamkniętej powłoce walencyjnej dążą do 

wzrostu liczby koordynacyjnej jonu metalu centralnego. Opierając się o regułę 

Goldschmidta i Paulinga możliwe staje się zatem zaprojektowanie materiału zdolnego do 

takich przemian, co zostało opisane w artykule R1. Wykazałem, że zmieniający się wraz 

ze wzrostem ciśnienia stosunek promieni kationów metali i ligandów, przy odpowiednim 

rozmieszczeniu ligandów wokół atomu centralnego oraz kationie metalu, który ma 

możliwość zwiększenia swojej liczby koordynacyjnej, z dużym prawdopodobieństwem 

doprowadzi do reakcji asocjacji dodatkowego liganda.   

Natomiast w materiałach w których obecne są centra metaliczne o otwartej 

powłoce walencyjnej, wraz z ligandami zdolnymi do pośredniczenia w transporcie 

elektronów, wzrost ciśnienia może doprowadzić do znacznie bardziej skomplikowanych 

przekształceń, będących tematem artykułu R2. W zależności od ciekłego środowiska w 

którym analog błękitu pruskiego α-DmaFe2+Fe3+For6 zostaje poddany działaniu 

wysokiego cisnienia, mogą zostać wywołane trzy odmienne procesy prowadzące do: 
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odwracalnego przejścia fazowego (między fazami α i γ), odwracalnej redukcji wszystkich 

jonów Fe3+, a także do nieodwracalnej reakcji redoks, związanej z redukcją ligandów 

mrówczanowych. 

Podobną wrażliwość na warunki środowiskowe opisałem dla układu PbI2 

rozpuszczonego w stężonym kwasie HI poddanemu wpływowi wysokiego ciśnienia i 

temperatury. Opisane w artykule R3 przemiany wskazują, iż zależnie od kwasowości 

układu, zawartości jodu i wody, a także od panującego ciśnienia i temperatury, możliwe 

jest otrzymanie szeregu ściśle powiązanych strukturalnie polimorfów α-PbI2 i β-PbI2 

oraz ich soli hydroniowych.  

W reakcjach wymiany dwusiarczków arylowych z powodzeniem zastosowałem 

nowatorskie podejście, w którym zamiast czynników katalityczno-redukujących 

wykorzystany został efekt wysokiego ciśnienia. Badania wstępne zamieszczone w 

artykule R4, zostały następnie rozwinięte i szczegółowo opisane w artykule R5. Prace te, 

pozwoliły poznać mechanizm indukowanej wysokim ciśnieniem reakcji wymiany 

między dwusiarczkami arylowymi. W ramach prac wykazałem niewątpliwe korzyści z 

prowadzenia badań naukowych przy zastosowaniu komory diamentowej jako reaktora 

wysokociśnieniowego, w porównaniu z prasą tłok-cylinder, tradycyjnie 

wykorzystywaną do prowadzenia reakcji w warunkach wysokiego ciśnienienia.   

W pracy R6 połączyłem zmiany strukturalne zachodzące w dwusiarczkach 

arylowych poddanych działaniu wysokiego ciśnienienia, z ich aplikacyjnym 

wykorzystaniem jako składników zmniejszających tarcie w smarach i olejach.  Na 

przykładzie disiarczku di-p-tolylu wykazałem, że cząsteczki te mogą absorbować energię 

około 6 kJmol-1, poprzez konformacyjną konwersję w środowisku sprężonej cieczy. 

Na przykładzie polimorfów β i γ disiarczku bis-3-nitrofenylu opisanych w 

artykule R7, wyjaśniłem w jaki sposób warunki wysokiego ciśnienia można skutecznie 

wykorzystać do tworzenia polimorfów kinetycznych. Polimorfy te posiadają niższą 

gęstość niż te otrzymane w warunkach niskiego ciśnienia. Początkowo, zdawało się to 

przeczyć podstawom termodynamiki, ale w efekcie pozwoliło na opisanie nukleacji 

wysokoentropowej i następującej krystalizacji kinetycznej. Co więcej, powiązanie 
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obserwacji związanych z procesem nukleacji w warunkach wysokiego ciśnienia i 

wysokiej temperatury, z dwoma formami polimorficznych produktów otrzymanych w 

artykule R4, pozwoliło wyjaśnić jak w procesie wysokociśnieniowego zarodkowania 

krystalitów równowaga reakcji przesuwa się na stronę produktów.  

Reakcje przebiegające z zastosowaniem wysokiego ciśnienia, choć są niezwykle 

interesujące i wykazują spory potencjał, nadal pozostają w dużej części niezbadanym 

obszarem wymagającym wielu dalszych badań. Jednakże, przedstawione w tej rozprawie 

przykłady różnych układów reakcyjnych udowadniają, że zastosowanie wysokiego 

ciśnienia pozwala przezwyciężyć niektóre z najczęstszych problemów tradycyjnych 

metod syntezy, takich jak powstawanie produktów ubocznych i szkodliwych oparów, 

zużywanie znacznych ilości energii i rozpuszczalników, czy stosowania katalizatorów, 

których usunięcie z produktów często przewyższa koszty samej reakcji. Ponadto, 

dodatkowymi zaletami płynącymi ze stosowania tej metody są wysoka wydajność oraz 

możliwość otrzymania monokrystalicznych form produktów, które nie wymagają 

dodatkowego oczyszczania. 
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