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Abstract

In the thesis we study three problems related to arithmetic of abelian varieties over p-adic
�elds. The �rst part of the thesis studies the arithmetic complexity of p-torsion of an abelian
variety over the �eld of p-adic numbers. This is connected to an unproven conjecture of David
and Weston from 2008. We establish a relation between this problem and the notion of the
canonical lift of an abelian variety. We also try to verify this conjecture for elliptic curves with
complex multiplication, which leads to looking for primes in some recurrence sequences.

In the next part of the thesis we investigate the equivariant behaviour of the Hodge�de
Rham exact sequence of a curve with an action of a �nite group in positive characteristic.
We show that if its Hodge�de Rham sequence splits equivariantly then the group action is
weakly rami�ed. We also discuss converse statements and link this problem to lifting coverings
of curves to the ring of Witt vectors of length 2. This allows us to exhibit new examples of
abelian varieties without canonical lifts.

In the last part of the thesis we are concerned with the division �elds of abelian varieties
de�ned over number �elds. Using Kummer theory of abelian varieties and various p-adic
methods (such as the theory of Néron models and the classi�cation theorem for compact p-
adic Lie groups), we prove a lower bound on the class numbers of the division �elds. This
lower bound depends on the Mordell-Weil rank of A and the reduction of p-torsion points
modulo primes above p.
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Abstrakt

Celem tej pracy jest przedstawienie wyników dotycz¡cych trzech problemów zwi¡zanych z
rozmaito±ciami abelowymi nad ciaªami p-adycznymi. W pierwszej cz¦±ci rozprawy badamy
arytmetyczn¡ zªo»ono±¢ p-torsji rozmaito±ci abelowej nad ciaªem liczb p-adycznych. Jest to
zwi¡zane z otwartym problemem, postawionym przez David i Westona w 2008 r. W pracy
wskazujemy na zwi¡zek tego problemu z poj¦ciem kanonicznego podniesienia rozmaito±ci abe-
lowej. Próbujemy równie» zwery�kowa¢ hipotez¦ David i Westona dla krzywych eliptycznych
z mno»eniem zespolonym, co prowadzi do poszukiwania liczb pierwszych w ci¡gach zadanych
rekurencyjnie.

W nast¦pnej cz¦±ci pracy badamy ekwiwariantne zachowanie ci¡gu Hodge'a�de Rhama
dla krzywej z dziaªaniem grupy sko«czonej w dodatniej charakterystyce. Pokazujemy mi¦dzy
innymi, »e je»eli ci¡g Hodge'a�de Rhama tej krzywej rozszczepia si¦, to dziaªanie to musi by¢
sªabo rozgaª¦zione. Omawiamy równie» twierdzenia odwrotne oraz wskazujemy na powi¡zanie
tego problemu z podnoszeniem nakry¢ do pier±cienia wektorów Witta dªugo±ci 2. Pozwala nam
to na wskazanie nowych przykªadów rozmaito±ci abelowych bez kanonicznych podniesie«.

Ostatnia cz¦±¢ rozprawy dotyczy ciaª podziaªu rozmaito±ci abelowych zde�niowanych nad
ciaªami liczbowymi. Korzystaj¡c z teorii Kummera rozmaito±ci abelowych oraz ró»nych metod
p-adycznych (takich jak teoria modeli Nérona oraz twierdzenie klasy�kacyjne dla zwartych p-
adycznych grup Liego), dowodzimy dolnego oszacowania na liczb¦ klas ciaªa podziaªu. Osza-
cowanie to zale»y od rangi grupy Mordella�Weila rozmaito±ci abelowej oraz redukcji punktów
p-torsyjnych modulo ideaªy pierwsze le»¡ce nad p.
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Introduction

The main �eld of interest of algebraic geometry are algebraic varieties, i.e. sets of solutions
of systems of polynomial equations. An abelian variety is a projective algebraic variety, such
that the set of its points forms a group with the group law given by some rational functions.
One dimensional abelian varieties are called elliptic curves. The �rst mathematician to
consider elliptic curves was probably Diophantus of Alexandria (about 200 - 284 BC). He
invented a method of �doubling� points on them. Elliptic curves and Jacobians of higher genus
curves appeared also in the theory of complex functions, developed by nineteenth century
mathematicians. The next big step in this theory was the problem posed by Henri Poincaré:

if E is an elliptic curve de�ned over Q, is the abelian group E(Q) �nitely generated?

Poincaré's question was answered positively by Louis Mordell in 1922. This and other similar
problems led to the development of the �eld called arithmetic geometry. Arithmetic ge-
ometry deals with polynomial equations over small sets, such as integers, rational numbers,
�nite �elds or p-adic numbers. In this thesis we focus on the latter ring.

The initial motivation for introducing p-adic numbers was the Hasse principle, stated
by Helmut Hasse in 1921. It turns out that a quadratic dipohantine equation has rational
solutions if and only if it has real solutions and p-adic solutions for every prime p. Nowadays,
p-adic geometry has many more arithmetic applications and is a vast sub�eld of arithmetic
geometry. We mention only the most recent results of Scholze. He introduced a new type
of p-adic varieties, called perfectoid spaces. Perfectoid spaces allow to compare objects in
positive characteristic with objects in characteristic zero. This approach led for example to
the proof of certain cases of the weight-monodromy conjecture. For these results Scholze was
awarded the Fields Medal in 2018.

The interplay between algebraic varieties in positive characteristic and in characteristic
zero is the main topic of this thesis. We consider three problems concerning abelian varieties
over p-adic �elds and over �elds of positive characteristic.
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History of the presented results. The inital motivation for all of the results included in
this thesis was the following folklore conjecture.

Conjecture 1 (Local torsion conjecture). Let E be an elliptic curve over the �eld of rational
numbers without complex multiplication. Then for all but �nitely many primes p:

E(Qp)[p] = 0.

We started our research by introducing the notion of the (n, d)-degree of an abelian variety,
which measures the arithmetic complexity of the torsion. This enabled us to reformulate and
generalize Conjecture 1 (cf. Question A.2). Also, we established a relation between the (n, d)-
degree and the notion of the canonical lift of an abelian variety. Unfortunately, we weren't
able to prove neither Conjecture 1 nor to describe the behaviour of the (n, d)-degree. The
problem was that it was usually hard to answer the following question.

Question 2. How often is an abelian variety A/Q the canonical lift mod p2 of its reduction
mod p?

The answer to Question 2 is straightforward only for abelian varieties with complex multi-
plication. Any such abelian variety is the canonical lift of its reduction for any ordinary prime.
This allowed us to compute the (p, 1)-degree for elliptic curves with complex multiplication.
It turns out that the problems concerning local torsion of elliptic curves with complex mult-
plication lead to classical problems of number theory: searching for prime values of quadratic
polynomials and for primes in sequences given by a linear recursion.

In order to answer Question 2, we tried to distinguish an abelian variety from its canonical
lift. It turns out that canonical lift of a jacobian is usually not a jacobian. We tried to con-
struct a jacobian, whose canonical lift modulo any ordinary prime p is not a jacobian mod p2.
This lead us to studying the equivariant behaviour of the Hodge�de Rham exact sequence.
Finally, we managed only to construct non-ordinary jacobians with no �canonical liftings� in
a certain sense.

We tried also to understand the connection between the local torsion of an abelian variety
and the class numbers of its division �elds. Hiranouchi gave an estimate for the class number
of pn-th division �eld of an elliptic curve, assuming that it has no local torsion (cf. [Hir19]).
We generalized this result to abelian varieties. It turns out that the assumption on the local
torsion is super�uous.

We give now a more detailed overview of the results included in this thesis.

A. Lifts of ordinary abelian varieties.

Let k be a perfect �eld of characteristic p > 0 and let R be a local ring with k as a residue
�eld. Recall that given an abelian scheme B over R we may reduce it and obtain an abelian
variety B/k. We will say that B is a lift of B to R. The liftings of an abelian variety B to R
are described by the Serre�Tate theory. The Serre�Tate theory takes a particularly pleasant
form in the case when B is an ordinary abelian variety. The set of lifts of B to R has then
a natural group structure. The neutral element of this group is the canonical lift of the
abelian variety B to the ring R. Canonical lifts have a broad scope of applications in algo-
rithmic algebraic number theory. They are used among other things for counting points on
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elliptic curves over �nite �elds, constructing elliptic curves over �nite �elds with a prescribed
number of points, computing Hilbert class polynomials and constructing hyperelliptic curves
suitable for cryptography. One usually considers the ring R to be Wn(k), the ring of Witt
vectors of length n. It is also possible to de�ne the canonical lift of B/k to W (k).

In Chapter 2 we give the following characterization of canonical lifts via their torsion.

Theorem A.1 (Theorem 2.2.1). Let B be an abelian variety of dimension g over a perfect
�eld k of characteristic p > 0. Suppose that

B(k)[pn] ∼= (Z/pn)g

as abelian groups. Let B be a lift of B to W (k). The scheme BWn(k) is the canonical lift of B
to Wn(k), if and only if

B(W (k))[pn] ∼= (Z/pn)g.

We apply this result to the problem of the local torsion of abelian varieties. De�ne the
(n, d)-degree of an abelian variety A over a �eld K to be the number:

Dn,d(A/K) = min{[L : K] : A(L) contains a subgroup isomorphic to (Z/n)d}.

This quantity measures the arithmetic complexity of the n-torsion of A. Investigating the
(n, d)-degree is especially interesting when A is a �xed abelian variety over the �eld of rational
numbers Q, which we base change to Qp for a varying p. In particular it is natural to ask
about the asymptotic behaviour of the p-degree:

Question A.2. Let A be an abelian variety over Q. Fix two positive integers n, d. Does
Dpn,d(A/Qp) tend to in�nity as p becomes large?

We discuss related conjectures in Section 2.3. Also, we prove a theorem, which ties the
Question A.2 to the notion of the canonical lift. Let A/Qp be an abelian variety of dimension g
with good reduction. Denote by AZ/pn its reduction mod pn.

Theorem A.3 (Theorem 2.3.6). Let A be an abelian variety over Q of dimension g. Suppose
that n is a positive integer and p is a prime of good reduction for A. If

Dpn,g(A/Qp) < p− 1,

then AFp is ordinary and AZ/pn+1 is the canonical lift of AFp .

A version of Theorem A.3 for elliptic curves for n = 1 appeared in [DW08] and in [Gar18].
In Section 2.4 we compute the (p, 1)-degree of elliptic curves with complex multiplication.

Theorem A.4 (Theorem 2.4.1 ). Let E/Q be an elliptic curve with complex multplication by
an order of discriminant −D in an imaginary quadratic �eld. Then for any prime p of good
reduction:

Dp,1(E/Qp) =

ordp(±s), for
(
−D
p

)
= 1,

p2 − 1, for
(
−D
p

)
= −1,

where for p satisfying
(
−D
p

)
= 1, s is de�ned by the equation

4p = s2 +Dt2 (A.1)

and, for D = −4, by the equation (A.1) and the additional condition 4 - s.
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Previously, it was known that the condition Dp,1(E/Qp) ∈ {1, 2} for elliptic curves with
complex multiplication is related to the existence of speci�c prime values of a certain quadratic
polynomial, cf. [Qin16] and [JQ14]. Our results show that the local torsion problem is also
connected to searching for primes in a recurrence sequence.

Corollary A.5 (Corollary 2.4.5). Let E be an elliptic curve with complex multiplication by
an order in Q(i). Then for any prime p of good reduction we have Dp,1(E/Qp) = 8 if and
only if p is of the form a2

k + a2
k+1 for some k ≥ 0, where:

a0 = 0, a1 = 1, ak+2 = 4ak+1 − ak.

It seems natural to expect that the sequence (a2
k+a2

k+1)k contains in�nitely many primes.
Therefore we expect that for elliptic curves as in Corollary A.5 the answer to Question A.2 is
negative. Theorem A.4 and Corollary A.5 appeared already in [Gar16], but with a di�erent
proof, which used the main theorem of complex multiplication.

B. Lifts of non-ordinary abelian varieties.

The canonical lift of an ordinary abelian variety A/k to a ring R may be characterized as the
unique lift A/R such that

EndR(A) ∼= Endk(A) (B.2)

under the natural reduction map. In Chapter 3 of this thesis we provide new examples of
non-ordinary abelian varieties A without �canonical lifts� to W2(k), i.e. lifts satisfying (B.2)
for R = W2(k).

Theorem B.1 (Corollary 3.4.8 and Example 3.4.6). Suppose that k is an algebraically closed
�eld of characteristic p > 2. Let X/k be a smooth projective curve with the a�ne part given
by the equation:

ym = f(zp − z),

where f is a separable polynomial, p - m and m - deg f . Let A/k be the Jacobian variety of X.
Then A has no lift A to W2(k) satisfying the condition (B.2).

Examples of abelian varieties without �canonical lifts� in the above sense existed previ-
ously in the literature, see e.g. [Nak86, Corollary, Sec. 4], [CCO14, Theorem 3.8.3.] or [Oor92,
Theorem B]. However, most of this examples do not lift to characteristic 0, whereas our ex-
ample does not lift modulo p2. To the best of our knowledge, the technique that we use to
provide this example is new. To prove Theorem B.1 we use a classical result of Deligne and
Illusie concerning the de Rham cohomology. We brie�y recall it now.

Let X be a smooth proper algebraic variety over a �eld k. Recall that its de Rham
cohomology may be computed in terms of Hodge cohomology via the spectral sequence

Eij1 = Hj(X,Ωi
X/k)⇒ H i+j

dR (X/k). (B.3)

Suppose that the spectral sequence (B.3) degenerates at the �rst page. This is automatic if
char k = 0. For a �eld of positive characteristic, this happens for instance if X is a smooth pro-
jective curve or an abelian variety, or (by a celebrated result of Deligne and Illusie from [DI87])
if dimX > char k and X lifts to W2(k). Under this assumption we obtain the following exact
sequence:

0→ H0(X,ΩX/k)→ H1
dR(X/k)→ H1(X,OX)→ 0. (B.4)
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If X is equipped with an action of a �nite group G, the terms of the sequence (B.4) become
k[G]-modules. In case when char k - #G, Maschke's theorem allows one to conclude that the
sequence (B.4) splits equivariantly. However, this might not be true in case when char k =
p > 0 and p|#G, as was shown in [KT18]. In fact we prove in our thesis that for curves the
sequence (B.4) usually does not split equivariantly.

Let X be a curve over an algebraically closed �eld of characteristic p > 0 with an action of
a �nite group G. For P ∈ X, denote by GP,n the n-th rami�cation group of G at P . Following
[Köc04], we say that the action of G on X is weakly rami�ed if GP,2 = 0 for every P ∈ X.

Theorem B.2 (Theorem 3.4.5). Suppose that X is a smooth projective curve over an al-
gebraically closed �eld k of characteristic p > 2 with an action of a �nite group G. If the
sequence (B.4) for the curve X splits G-equivariantly, then the action of G on X is weakly
rami�ed.

As far as we are concerned, this criterion is new in the literature. Previous results in this
direction apply only to hyperelliptic curves (cf. [Hor12] and [KT18]). The main idea of the
proof of Theorem B.2 is to compare H1

dR(X/k)G and H1
dR(Y/k), where Y := X/G. The

discrepancy between those groups is measured by the shea��ed version of group cohomology,
introduced by Grothendieck in [Gro57]. This allows us to compute the defect

δ(X,G) := dimkH
0(X,ΩX/k)

G + dimkH
1(X,OX)G

− dimkH
1
dR(X/k)G

in terms of some local terms connected to Galois cohomology, cf. Proposition 3.2.1. We com-
pute these local terms in case of Artin-Schreier coverings (cf. Corollary 3.3.7). This special
case allows us to �nish the proof of Theorem B.2.

The natural question arises: to what extent is the converse of Theorem B.2 true? We
provide some partial answers. In characteristic 2, we were able to produce a counterexample
(cf. Subsection 3.6). We also prove some positive results. In particular, we obtain the following
theorem.

Theorem B.3 (Theorem 3.5.1). If the action of G on a smooth projective curve X over an
algebraically closed �eld k is weakly rami�ed, then the sequence

0→ H0(X,ΩX/k)
G → H1

dR(X/k)G → H1(X,OX)G → 0

is exact also on the right.

To derive Theorem B.3 we use the method of proof of Theorem B.2 and a result of Köck
from [Köc04].

We were also able to show the splitting of the Hodge-de Rham exact sequence of a curve
with a weakly rami�ed group action under some additional assumptions.

Theorem B.4 (Lemma 3.5.4, Corollary 3.4.7 and Corollary 3.4.4). Let X be a curve over
an algebraically closed �eld of characteristic p > 0 with an action of a �nite group G. The
sequence (B.4) splits, provided that at least one of the following conditions holds:

(1) the action of G on X is weakly rami�ed and the p-Sylow subgroup of G is cyclic,

(2) the action of G on X lifts to W2(k),

(3) X is ordinary.

Note that the conditions (1), (2), (3) of Theorem B.4 do not imply one another.
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C. Class numbers of division �elds.

In the �nal chapter we apply the methods from previous chapters in order to obtain lower
bounds on class numbers of division �elds of abelian varieties. Let us �x a prime p. Let A be
an abelian variety of dimension g de�ned over Q. Let us consider the pn-th division �eld of A:

Kn := Q(A[pn]).

Let Cl(Kn) be the ideal class group of Kn, de�ned as the quotient of the group of fractional
ideals of the ring of integers of Kn by the subgroup of principal ideals. Denote also the
reduction of A to Fp by Ap.

Theorem C.1 (Corollary 4.1.5 ). Let A/Q be an abelian variety of dimension g and rank r
over EndQ(A). If either of the following condition holds:

• r ≥ 1 and A has good reduction at p with positive p-rank, i.e. Ap(Fp)[p] 6= 0, or

• r > g,

then:
lim
n→∞

# Cl(Kn) =∞.

In fact, we obtained estimates on # Cl(Kn) for abelian varieties over arbitrary number
�elds (cf. Theorem 4.1.4). Previous estimates on class numbers of division �elds were given in
two cases:

• for abelian varieties with complex multiplication (cf. [Gre01] and [FKY07]),

• for elliptic curves over Q under some additional assumptions on p, including surjectivity
of the Galois representation mod p and vanishing of p-torsion in Qp (cf. [SY15], [SY18]
and [Hir19]).

The article [Ohs20] (published after [Gar19b]) proves a bound similar to that in Theorem C.1
in a more general setting, for Galois representations satisfying certain conditions. The men-
tioned article uses a di�erent method from ours, namely the theory of Selmer groups.

The basic idea of our proof of Theorem C.1 is to �nd a large unrami�ed abelian exten-
sion of Kn inside the Kummer extension Ln (cf. Section 1.2.6 for the relevant de�nitions).
The Bashmakov-Ribet theory of Kummer extensions (cf. [Bas72] and [Rib79]) provides us a
monomorphism with bounded cokernel:

Γ(∞) : Gal(L∞/K∞)→ Tp(A)⊕r,

where K∞ =
⋃
nKn, L∞ =

⋃
n Ln. This allows us to estimate the degree [Ln : Kn]. The

rest of the proof of Theorem C.1 focuses on estimating inertia groups in Kummer extensions.
The basic tools to this end are the classi�cation theorem for compact p-adic Lie groups and
the theory of Néron models. In order to illustrate our estimates of class numbers we o�er a
numerical example in Section 4.5.

Structure of the thesis. Chapter 1 presents some preliminaries for the convenience
of the reader. Sections A, B, C of the Introduction summarize the results of Chapters 2,
3 and 4 respectively. Chapter 2 partially generalizes the results of the paper [Gar18]. The
material presented in Chapters 3 and 4 follows closely the published article [Gar19b] and
preprint [Gar19a] and di�ers only in exposition.
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1
Preliminaries

In this chapter we present some preliminary results concerning algebra and geometry. First,
in Section 1.1 we treat the basics of group objects and group schemes. Then, in Section 1.2 we
recall a few necessary properties of abelian varieties and abelian schemes. Next, in Sections 1.3
and 1.4 we give a brief introduction to the de Rham cohomology and the group cohomology
of sheaves. Finally, we present in Section 1.5 some basic results in algebraic number theory.
The basic references for this chapter are [Tat97], [Sha86], [Mum08], [BLR90] and [Neu99].

Notations and conventions: by a ring we will always mean a commutative ring with
unity. For a given category A , Ob(A ) denotes the class of its objects and HomA (A,B) is
the class of morphisms between two objects A and B of A . Regarding algebraic geometry, we
follow the notation of [Har77]. For a more complete list of notation, see page 69.

1.1. Group schemes

1.1.1. De�nitions and examples

Let A be a category with an initial object 1 and with �nite products.

De�nition 1.1.1. We say that an object G of A together with morphisms

µ ∈ HomA (G×G,G), ε ∈ HomA (1, G), inv ∈ HomA (G,G)

is a group object in the category A , if for every T ∈ Ob(A ) the set G(T ) := HomA (T,G)
has a group structure given by µ, ε, inv.

Let S be a noetherian scheme. An S-group scheme is de�ned to be a group object in
Sch/S, the category of schemes over S. In case when S = SpecR for a ring R, we will refer
to S-group schemes simply as R-group schemes. One may de�ne a morphism of S-group
schemes as a morphism of S-schemes commuting with µ, ε and inv. Below we give standard
examples of group schemes:

• the additive group scheme Ga,S over S,

• the multiplicative group scheme Gm,S over S,

• the constant group scheme ΓS with �ber Γ (where Γ is an abstract group),

• the group scheme of n-th roots of unity µn,S .

15



By abuse of notation, we will write Gm instead of Gm,S , etc. if no confusion can arise. Sup-
pose that G is a commutative group scheme over a base scheme S and n is an integer. The
multiplication�by�n morphism

[n] : G→ G

is de�ned by letting [n] : G(T )→ G(T ) to be the multiplication by n for any T ∈ Ob(Sch/S).
Its kernel is denoted by G[n].

1.1.2. Algebraic groups

Let K be a �eld. A K-algebraic group is a group object in the category of algebraic varieties
over K. The group schemes Ga, Gm, Gln are algebraic groups. Algebraic groups share many
properties with Lie groups. In particular, one can de�ne the Lie algebra LieG of an algebraic
group G. The dimension of LieG as aK-vector space equals the dimension of G. The following
lemma will be used in the sequel.

Lemma 1.1.2. Let G be a connected commutative algebraic group over an algebraically closed
�eld K. Then for any n relatively prime to charK the multiplication-by-n morphism

[n] : G(K)→ G(K)

is surjective.

Proof. Let H := [n]G be the image of G under the multiplication-by-n morphism. Note
that H is a closed subgroup (images of morphisms of algebraic groups are closed, cf. [MT11,
Proposition 1.5]). The di�erential d[n] : Lie(G) → Lie(G) is the multiplication by n on the
Lie algebra of G. Since charK - n, it is an isomorphism on Lie(G) and thus:

Lie(ker d[n]) = ker (d[n] : Lie(G)→ Lie(G)) = 0.

Hence dim ker[n] = 0 and dimH = dimG. This yields H = G.

A�ne algebraic groups are usually referred to as the linear algebraic groups. Every
linear algebraic group is a closed subgroup of Gln for some n. An abelian variety is a
projective algebraic group over K. It turns out that the group law on an abelian variety must
be automatically commutative. We discuss more properties of abelian varieties in Section 1.2.
By a theorem of Chevalley (cf. [Con02]) any connected algebraic group over an algebraically
closed �eld is an extension of an abelian variety by a connected linear algebraic group.

1.1.3. Finite �at group schemes

Another important class of group schemes consists of those that are �nite and �at over the
base scheme S, since they share many properties with abstract �nite groups. For example, for
any �nite �at group scheme G/S it is possible to de�ne its rank, which we denote by #G. We
refer to [Tat97] or [Sha86] for relevant de�nitions. Here are two simple examples of �nite �at
group schemes:

• if Γ is a �nite group then Γ is a �nite �at group scheme and #Γ = #Γ,

• µn is a �nite �at group scheme of rank n.

From now on, we will focus on group schemes over an a�ne base scheme S = SpecR.
Also, we will use the following notation (unless stated otherwise).
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Setup 1.1.3. R is a complete local ring with a maximal ideal p and a perfect residue �eld k
of characteristic p > 0.

Recall that if Γ is a topological group and its connected component of identity Γ0 is open,
then the group of components Γ/Γ0 is discrete. A similar theorem might be stated for �nite
�at group schemes over R.

Proposition 1.1.4 (connected-étale exact sequence, [Sha86, p. 43]). Let R and k be as de�ned
in Setup 1.1.3. Let G be a commutative �nite �at group scheme over R with the connected
component of identity G0. Then G0 is a normal subgroup and the quotient Get := G/G0 is
étale over R. The exact sequence:

0→ G0 → G→ Get → 0

is called the connected-étale exact sequence of G. If R = k, then the sequence splits.

Let GS/S denote the category of �nite �at commutative S-group schemes. The category
GS/S is abelian and thus we may de�ne the Ext functors in the sense of Yoneda (cf. [Wei94,
Vista 3.4.6]). Equivalently, one may compute Ext of commutative group schemes as the usual
Ext in the category of abelian fppf-sheaves on S. The following result will be used in the
sequel.

Proposition 1.1.5. Let R be as in the Setup 1.1.3. Then for every n ≥ 1:

Ext1
GS/R(Z/n, µn) ∼= R×/R×n.

Proof. Note that Γ(SpecR,−) = Hom(Z/n,−) as functors on the category of n-torsion
abelian fppf sheaves on R. Thus:

Ext1
GS/R(Z/n, µn) ∼= R1 Hom(Z/n,−)(µn) ∼= R1Γ(SpecR,−)(µn) ∼= H1

fppf (SpecR,µn)

and the proof follows by [Mil80, example II.2.18. (b), p. 66].

Let G be a commutative �nite �at R-group scheme. The functor Hom(G,Gm) is repre-
sented by a commutative �nite �at group scheme G∨, called the Cartier dual of G. One
checks that (G∨)∨ ∼= G and that #G∨ = #G. We say that a group scheme G is of mul-
tiplicative type, if G∨ is an étale group scheme. A crucial property of group schemes of
multiplicative type is that they are �rigid�, i.e. they can not be deformed in an appropriate
sense.

Proposition 1.1.6 ([Lan13, Theorem 3.1.1.1]). Let G be a group scheme of multiplicative
type over a �eld k and let R be an Artin local ring with k as a residue �eld.

(1) There exists (up to a unique isomorphism) a unique group scheme Gcan over R such that
Gcan ×R k ∼= G. We call it the canonical lift of G to R.

(2) Let H be an R-group scheme and let H := H ×R k. Each morphism of k-group schemes
f : G→ H can be uniquely lifted to a morphism f : Gcan → H.

The following proposition is a consequence of results of Raynaud from [Ray74].

Proposition 1.1.7 ([Tat97, Theorem 4.5.1.]). Let L/Qp be a �nite extension with the rami-
�cation index e < p− 1. Let G1,G2 be commutative �nite �at OL-group schemes of p-power
order. If (G1)K ∼= (G2)K , then G1

∼= G2.
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We introduce now p-divisible groups. A p-divisible group is a special kind of formal group,
that is a �limit� of �nite �at group schemes of p-power order.

De�nition 1.1.8. A p-divisible group of height h over R is a sequence (Gn)n of commu-
tative �nite �at group schemes over R such that #Gn = pnh, Gn ⊂ Gn+1 and Gn = ker([pn] :
Gn+1 → Gn+1). We will denote the category of p-divisible groups over R by p-div/R.

The two most important examples of p-divisible groups, from our point of view, are
Qp/Zp := (Z/pn)n and µp∞ := (µpn)n. Many properties of �nite �at group schemes may
be generalized to p-divisible groups. A p-divisible group (Gn)n is étale (resp. connected, ...), if
Gn is étale (resp. connected, ...) for all n. In particular, one may also de�ne the connected-
étale exact sequence for a p-divisible group.

1.1.4. Formal groups

For a reference of the mentioned facts see [Ser92]. Keep the Setup 1.1.3.

De�nition 1.1.9. A formal group over R is a group object in the category of formal schemes
over Spf R, the formal spectrum of R. We say that a formal group G over R is smooth of
dimension g, if its underlying formal scheme is isomorphic to Spf R[[x1, . . . , xg]] for some
g ≥ 0.

Note that every smooth formal group G over R is given by a collection of g power series:

FG = (Fi(x,y))i=1,...,g,

(where Fi ∈ R[[x,y]], x = (x1, . . . , xg) and y = (y1, . . . , yg)) such that:

• FG(x,y) = x+ y+ terms of higher degree,

• (associativity) FG(x, FG(y, z)) = FG(FG(x,y), z),

• (neutral element) FG(x, 0) = x, FG(0,y) = y,

• (inverse element) there exists a unique tuple of power series without constant terms
i(x) = (i1(x), . . . , ig(x)) such that FG(x, i(x)) = FG(i(y),y) = 0.

A smooth formal group G is commutative, if FG(x,y) = FG(y,x). It turns out that for a
smooth formal group G, the group G(R) has p⊕g as the underlying set and the group law:

x⊕G y := FG(x,y). (1.1)

By abuse of notation, we denote by G(pi) the topological group with the underlying space
(pi)⊕g and the group law given by the formula (1.1), in particular G(R) = G(p).

Suppose now that G is a smooth group scheme over R. Then the completion of G along
the identity section, denoted Ĝ, is a smooth formal group.

Proposition 1.1.10 ([CX08, 2.5]). Keep the Setup 1.1.3 and let G, Ĝ be as above. The kernel
of the reduction homomorphism:

G(R)→ G(R/pn)

is topologically isomorphic to Ĝ(pn).
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Suppose now that G is a commutative smooth formal group. Just as in the case of group
schemes, one de�nes the multiplication-by-n morphism [n] : G → G. For a future use we
note the following properties.

(1.2) One has:
[n](x) = nx+ terms of higher degree.

(1.3) If p - n then [n] : G → G is an isomorphism of formal groups. In particular, G(R)
has no prime-to-p torsion.

(1.4) Suppose that v is a discrete valuation on R, v(R \ {0}) = {0} ∪ Z+. Then for
i > v(p)

p−1 we have an isomorphism of topological groups:

G(pi) ∼= (pi)⊕g.

We end this section with the following de�nition.

De�nition 1.1.11. Let R be a ring of characteristic p > 0 and suppose that G is a commu-
tative smooth formal group of dimension g over R. The height of G is de�ned as the largest
integer h such that:

[p](x) = (H1(xp
h
), . . . ,Hg(x

ph))

for some H1, . . . ,Hg ∈ R[x1, . . . , xg] (where xn := (xn1 , . . . , x
n
g )).

1.2. Abelian varieties and abelian schemes

The notion of an abelian variety may be generalized to an arbitrary base scheme S: an abelian
scheme over S is a smooth group scheme over S, the �bres of which are abelian varieties.
The goal of this section is to give a brief overview of the most important facts concerning
abelian varieties and abelian schemes which we will use in the sequel. For a detailed account
of the theory of abelian varieties we refer to [Mum08].

Setup 1.2.1. Throughout this section, A will be an abelian variety of dimension g over a
�eld K, unless stated otherwise. In case when A1, A2 are abelian varieties over K, we will
denote by HomK(A1, A2) the set of morphisms A1 → A2 of algebraic groups over K. In
particular, we denote EndK(A) := HomK(A,A).

1.2.1. Abelian varieties over complete �elds

In this subsection we discuss the structure of A(K) for some complete �elds K.
In case when K = C every abelian variety is isomorphic (as a complex Lie group) to a

manifold of the form Cg/Γ, where Γ ⊂ Cg is a lattice of a full rank. In particular, we may
decribe the group structure of the n-torsion:

A[n] ∼= (Z/n)2g. (1.5)

Consider now the case K = R. In this case A(K) is a compact Lie group, and thus its
identity component must be isomorphic to the group (S1)g, where S1 denotes the unit circle.
It turns out that it is possible to describe the group of components of A(R).
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Proposition 1.2.2 (cf. [GH81, Proposition 1.1 (c)]). Suppose that A is an abelian variety
over R of dimension g. Then, as Lie groups:

A(R) ∼= (S1)g × (Z/2)t

for some 0 ≤ t ≤ g.

Finally, we come to the case of the p-adic �elds. In this case we can use the classi�cation
theorem of compact p-adic Lie groups (cf. [CL19, Thm. 21]) to deduce the following fact.

Theorem 1.2.3. Let K/Qp be a �nite extension of Qp with ring of integers OK . Let A be an
abelian variety of dimension g. Then A(K)tors is a �nite group and we have an isomorphism
of topological groups:

A(K) ∼= A(K)tors ⊕OgK .

1.2.2. Torsion of abelian varieties

It turns out that for an algebraically closed �eld we have a description of torsion analogous
to (1.5):

• if charK - n:
A[n](K) ∼= (Z/n)2g,

• if charK = p > 0, then there exists a number 0 ≤ r(A) ≤ g (the p-rank of A), such
that for every a ≥ 1:

A[pa](K) ∼= (Z/pa)r(A). (1.6)

De�nition 1.2.4. Suppose that charK = p > 0. We say that an abelian variety A is ordi-
nary, if r(A) = g.

Lemma 1.2.5. Let K be a �eld of characteristic p > 0. The following conditions are equiva-
lent:

(1) A is ordinary,

(2) A[pn] is a group scheme of multiplicative type for some (equivalently all) n,

(3) the étale-connected sequence for the �nite �at group scheme AK [pn] is of the form:

0→ µ⊕gpn → AK [pn]→ (Z/pn)⊕g → 0

for some (equivalently all) n,

(4) the étale-connected sequence for the p-divisible group AK [p∞] is of the form:

0→ µ⊕gp∞ → AK [p∞]→ (Qp/Zp)⊕g → 0.

It turns out that a generic abelian variety over an algebraically closed �eld of characteristic
p > 0 is ordinary, see e.g. [Pri08, �3.1] for a precise statement. An unproven conjecture of
Serre asserts that for any abelian variety A over a number �eld K there exist in�nitely many
primes p such that A has good ordinary reduction at p. This is known to be true for elliptic
curves (cf. [Ser89]) and for abelian surfaces (cf. [Ogu81]).

The following de�nition allows to gather the information about the `-primary torsion into
one object.
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De�nition 1.2.6. Let ` be a prime. The `-adic Tate module of an abelian variety A/K is
de�ned as:

T`A := lim
←
A[`n](K).

Let GK := Gal(K/K) be the absolute Galois group of K. One easily checks that T`A is
a GK-module. Therefore we obtain the `-adic representation of GK :

ρ` : GK → Aut(T`A)

Note that when ` 6= charK and A is principally polarized, Aut(T`A) ∼= GSp2g(Z`). It turns
out that in many cases the image of ρ` is as big as possible. Indeed, if one of the following
conditions is satis�ed:

• g equals 2, 6 or is odd and A is a principally polarized abelian variety of dimension g
with EndK(A) = Z (cf. [Ser13, Theorem 3]),

• EndK(A) = Z, K is �nitely generated over its prime �eld and K has a discrete valuation
at which A has a semistable reduction of toric dimension one (this follows from [Hal11]
or [AdRGP13, Main Theorem] and [Lar95, Theorem 1.1]),

then ρ`(GK) contains Sp2g(Z`) for almost all `. For elliptic curves and abelian surfaces with
EndK(A) = Z one can determine numerically the �nite set of primes, outside of which the
representation is surjective (cf. [Sut16] for elliptic curves and [Die02] for abelian surfaces).

1.2.3. Complex multiplication

Recall that a number �eld M is a CM-�eld if it is a totally imaginary quadratic extension
of a totally real number �eld M+. We say that an abelian variety A/K of dimension g has
complex multiplication byM , if EndK(A) is an order inM and [M : Q] = 2g. In the sequel
we will need the following two facts regarding abelian varieties with complex multiplication.

Lemma 1.2.7 (Deuring's criterion for abelian varieties, cf. [Bla14]). Suppose that K is a
�nite �eld of characteristic p > 0 and that A/K has complex multiplication by a CM �eld M .

(1) If p splits completely in M , then A is ordinary.

(2) If p splits completely in M+ and every prime of M+ above p stays inert in M , then
r(A) = 0.

Lemma 1.2.8. Let A be an abelian variety de�ned over a �eld K Galois over Q and with
complex multiplication by the CM �eld L ⊂ K. Then:

EndK(A) = EndLK(A).

Recall that there are �nitely many Q-isomorphism classes of elliptic curves E/Q with
complex multiplication (cf. [Sil94, A �3] for a full list of them). Each of them has a complex
multiplication by an order in an imaginary quadratic �eld of class number one.
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1.2.4. Reduction of an abelian variety

The main reference for this subsection is [BLR90]. We will use the following notation.

Setup 1.2.9. Let K be a �eld of fractions of a Dedekind domain R with a maximal ideal p.
Suppose that k := R/p is a perfect �eld of characteristic p > 0.

De�nition 1.2.10. A Néron model of A over R is a smooth group scheme A over R such that
AK ∼= A and that the following Néron mapping property holds: for any smooth separated
R-scheme X, any K-morphism XK → A may be extended to a unique R-morphism X→ A.

Any abelian variety over K has a Néron model over R, which is unique up to an isomor-
phism. Let A/R be the Néron model of an abelian variety A/K. For any R-algebra B we will
denote by abuse of notation AB := AB. Also, let Ap := AR/p be the �ber of A over p. The
scheme Ap is an algebraic group over k. We denote the connected component of the identity
in Ap by A0

p and by ΦAp = Ap/A
0
p the group scheme of geometric components. The group

ΦAp(Fp) is �nite and its order is called the Tamagawa number of A at p.
The Néron model allows us to reduce the points of A modulo any prime ideal p of R.

Note that using the Néron mapping property we obtain an isomorphism A(K) ∼= A(R).
Moreover, by the universal property of �ber product, A(k) ∼= Ap(k). This allows us to de�ne
the reduction homomorphisms:

redp : A(K) ∼= A(R)→ A(k) ∼= Ap(k)

and
redp,n : A(K) ∼= A(R)→ A(R/mn).

The following result is a geometric version of Hensel's lemma.

Lemma 1.2.11 ([BLR90, 2.3, Proposition 5]). If R is a complete local ring, then the maps
redp,n are surjective for all n ≥ 0.

De�nition 1.2.12. If there exists an abelian scheme A/R with A as the generic �ber, we
say that A/K has good reduction over R. We say that A has good reduction at p, if it
has good reduction over Rp (the localisation of R at p). Otherwise, we say that A/K has bad
reduction at p.

Lemma 1.2.13 ([BLR90, 7.4, Theorem 5]). The following conditions are equivalent:

(1) A has good reduction at p,

(2) Ap is an abelian variety,

(3) the Néron model of A over Rp is proper,

(4) the Néron model of A over Rp is an abelian scheme,

(5) (Néron-Ogg-Shafarevich criterion) the inertia group

IK := ker
(
G
K̂p
→ Gk

)
(where K̂p is the completion of K at p) acts trivially on T`A for ` 6= p.

Note also that any abelian scheme over R is the Néron model of its generic �ber.
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Remark 1.2.14. Let L/K be an algebraic extension of �elds and let B be the integral closure
of R in L. Let P be a prime ideal of B over p. Suppose that AB is the Néron model of AL
over B. This happens for example if one of the following conditions holds:

• L/K is unrami�ed (since the formation of the Néron model commutes with étale base
change � cf. [BLR90, Proposition 1.2.2]),

• A has good reduction (since AB is an abelian scheme over B).

Under this assumption the reduction homomorphism extends to

redp : A(L) ∼= A(B)→ A(B/P) ∼= Ap(B/P).

In some cases we can describe the kernel of the reduction homomorphism, using the theory
from Subsection 1.1.4. Let A/R be the Néron model of an abelian variety A/K and let Â be
the completion of A along the zero section. Then:

(1.7) if R is a complete discrete valuation ring, then by Proposition 1.1.10:

ker redp,n = Â(pn),

(1.8) if R = k is a perfect �eld of characteristic p, then the height of Â/k equals:

2g − r(A)

(this may be proven using (1.7)).

1.2.5. Lifts of an abelian variety

Let A be an abelian variety of dimension g over a perfect �eld K of positive characteristic p.
Denote by ArtK the category of local Artin rings with K as a residue �eld. We say that an
abelian scheme A over R ∈ Ob(ArtK) together with an isomorphism is

By a lift of A to a ring R ∈ Ob(ArtK) we will understand any abelian scheme A over R
together with an isomorphism A×R K ∼= A. In this way we obtain a functor:

DefA/K : ArtK −→ Set (1.9)

R 7−→
{

isomorphism classes
of lifts of A to R

}
.

Let A be an abelian scheme over a ring R of relative dimension g. The group scheme A[n]
is �nite �at of rank n2g over R. Thus for any prime p we can associate to A its p-divisible
group A[p∞] := (A[pn])n. The height of A[p∞] equals 2g. It turns out that the lifts of A/K
to R are determined by the lifts of the p-divisible group of A. For an arbitrary p-divisible
group G over K, we de�ne the functor DefG/K : ArtK → Set in analogy with (1.9).

Theorem 1.2.15 (Serre-Tate, cf. [Kat81, Theorem 1.2.1]). If A is an abelian variety over
a perfect �eld K of characteristic p, then the natural transformation of functors:

DefA/K → DefA[p∞]/K

A 7→ A[p∞]

is an isomorphism.
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1.2.6. Kummer theory for abelian varieties

We �x a prime p. Denote by K a number �eld with the ring of integers OK . Let A be an
abelian variety of dimension g de�ned over K. Let Kn denote the pn-th division �eld of A:

Kn := K(A[pn]).

For any point P ∈ A(K) and N ∈ N, the symbol 1
NP will denote an arbitrary point T ,

such that NT = P . Note that there are N2 such points. Fix some points P1, . . . , Pr ∈ A(K)
linearly independent over EndK(A). We de�ne:

Ln := Kn

(
1

pn
P1, . . . ,

1

pn
Pr

)
.

Observe that the �eld Ln does not depend on the choice of the points 1
pnP1, . . . ,

1
pnPr.

The extension Ln/Kn is abelian, since there exists a monomorphism

Γ(n) : Gal(Ln/Kn)→ A[pn]⊕r, Γ(n)(σ) =
r⊕
i=1

κn(Pi, σ),

where:

κn : A(K)×Gal(Ln/Kn)→ A[pn], κn(P, σ) =

(
1

pn
P

)σ
−
(

1

pn
P

)
is the Kummer pairing. It turns out that for n large enough, the homomorphism Γ(n) is �almost
an isomorphism�. More precisely, consider the �elds:

K∞ =
⋃
n

Kn, L∞ =
⋃
n

Ln.

The inverse limit over n of homomorphisms Γ(n) : Gal(Ln/Kn) → A[pn]⊕r is the monomor-
phism:

Γ(∞) : Gal(L∞/K∞)→ Tp(A)⊕r.

The map Γ(∞) is continuous if we endow Gal(L∞/K∞) and Tp(A)⊕r with the usual pro�nite
topologies. The following theorem is based on results of Bashmakov [Bas72] and Ribet [Rib79].

Theorem 1.2.16 ([BGK05, Lemma 2.13]). Γ(∞)(Gal(L∞/K∞)) is an open subgroup of �nite
index in Tp(A)⊕r.

De�ne the integer mp by the equality:

pmp := [Tp(A)⊕r : Γ(∞)(Gal(L∞/K∞))] (1.10)

(observe that this index must be a power of p, since Tp(A)⊕r is a pro-p group).

Corollary 1.2.17.

p2grn−mp ≤ [Ln : Kn] ≤ p2grn.

Proof. Note that [Ln : Kn] ≤ p2grn, since Γ(n) is injective. Let us denote K ′n := Ln ∩ K∞.
Observe that Kn ⊂ K ′n and thus

Gal(Ln/K
′
n) ⊂ Gal(Ln/Kn).

The commutative diagram:
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Gal(L∞/K∞) Tp(A)⊕r

Gal(Ln/K
′
n) A[pn]⊕r

Γ(∞)

Γ(n)|Gal(Ln/K′n)

implies that

Tp(A)⊕r/Γ(∞)(Gal(L∞/K∞)) � A[pn]⊕r/Γ(n)(Gal(Ln/Kn)).

It follows that:

[Ln : Kn] ≥ [Ln : K ′n] ≥ #A[pn]⊕r/pmp = p2grn−mp .

1.3. The de Rham cohomology

Let A be an abelian category with enough injectives. Denote by C(A ) the category of cochain
complexes. This category is also abelian and has enough injectives (cf. [Rot09, Theorem 10.43.
and the following Remark]). For an arbitrary C• ∈ Ob(C(A )) we denote by hi(C•) the i-th
cohomology of the complex C•. Also, if A is any object of A , let A[i] ∈ Ob(C(A )) denote
the complex satisfying:

A[i]j =

{
A, j = i,

0, j 6= i.

We denote the category of non-negative complexes by C+(A ).
For the convenience of the reader we recall the theory of de Rham cohomology over

an arbitrary �eld k. See e.g. [Wei94, 5.7], [Har75] or [Wed08] for a precise treatment. Let
X be an algebraic variety and let OX -mod denote the category of OX -modules. The i-th
hypercohomology group Hi(X,F•) of a complex F• ∈ Ob(C+(OX -mod)) is de�ned as the
i-th derived functor of

H0 : C+(OX -mod)→ k -mod, H0(X,F•) := h0(H0(X,F•)) = H0(X,h0(F•)).

The hypercohomology may be computed in terms of the usual cohomology using the spectral
sequences

IE
ij
1 = Hj(X,F i) ⇒ Hi+j(X,F•), (1.11)

IIE
ij
2 = H i(X,hj(F•)) ⇒ Hi+j(X,F•). (1.12)

One de�nes the de Rham cohomology H i
dR(X/k) of the variety X/k as the hypercoho-

mology of the de Rham complex:

Ω•X/k := (. . .→ 0→ OX → ΩX/k
d→ Ω2

X/k
d→ . . .).

In particular, we obtain from (1.11) and (1.12) the Hodge�de Rham spectral sequence

and the conjugate spectral sequence:

IE
ij
1 = Hj(X,Ωi

X/k) ⇒ H i+j
dR (X/k), (1.13)

IIE
ij
1 = H i(X,hj(Ω•X/k)) ⇒ H i+j

dR (X/k). (1.14)
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Let k be a perfect �eld of characteristic p > 0 and let X/k be a smooth projective variety.
Denote by X ′ the Frobenius twist of X and by F : X → X ′ the relative Frobenius. For
any k-vector space V , let the symbol V ′ denote the k-vector space with the same underlying
abelian group as V and the scalar multiplication (λ, v) 7→ λp · v. Then one easily checks that
H i(X ′,Ωj

X′)
∼= H i(X,Ωj

X)′. Cartier proved in [Car57] that there exists an isomorphism of
OX′-modules:

C−1 : Ωi
X′ → hi(F∗Ω

•
X)

(note the strange convention � it is denoted C−1 rather then C). Therefore the spectral se-
quence (1.14) becomes:

IIE
ij = H i(X,Ωj

X)′ ⇒ H i+j
dR (X/k). (1.15)

Using the classical Hodge�de Rham decomposition of compact Kähler manifolds (cf. [Voi02,
�6]), one can prove that for char k = 0 the spectral sequence (1.13) degenerates at the �rst
page. A celebrated theorem proven by Deligne and Illusie in [DI87] provides an analogous
statement in positive characteristic under certain liftability condition. To state this theorem,
we need the notion of Witt vectors.

The ring of Witt vectors W (k) is the cartesian product
∏∞
n=0 k with addition and

multiplication given by Witt polynomials (cf. [Ser79, II �6] for de�nitions). In particular, if
k/Fp is a �nite extension, W (k) is the ring of integers in the unique unrami�ed extension of
Qp having k as the residue �eld. The ring of Witt vectors of length n, Wn(k), is de�ned
as Wn(k) := W (k)/pnW (k).

Theorem 1.3.1 ([DI87, Théoréme 2.1]). Keep the above notation and suppose that dimX < p.
For every smooth lifting X̃ of X to W2(k) there exists an isomorphism:

ϕ•
X̃

: F∗Ω
•
X/k
∼=
⊕
i

Ωi
X′/k[−i],

in the derived category of coherent OX′-modules. This isomorphism is functorial with respect
to X̃.

It is a folklore result that for an abelian variety the spectral sequence (1.13) always de-
generates on the �rst page (cf. [Oda69, Prop. 5.1]).

Suppose that X/k is an algebraic variety, for which the spectral sequence (1.13) degener-
ates on the �rst page. Then, in particular, we obtain the exact sequence:

0→ H0(X,ΩX/k)→ H1
dR(X/k)→ H1(X,OX)→ 0.

We refer to this sequence as the Hodge�de Rham exact sequence. Similarly, if the spectral
sequence (1.15) degenerates on the second page, we obtain the conjugate Hodge�de Rham
exact sequence:

0→ H1(X,OX)′ → H1
dR(X/k)→ H0(X,ΩX/k)

′ → 0.

1.4. Group cohomology of sheaves

Let R be any ring and G a �nite group. We de�ne the i-th group cohomology, H i
R(G,−),

as the i-th derived functor of the functor

(−)G : R[G] -mod→ R -mod, M 7→MG := {m ∈M : g ·m = m}.

26



One checks that if R → B is a homomorphism of rings and M is a B[G]-module then
H i
B(G,M) and H i

R(G,M) are isomorphic R-modules for all i ≥ 0 (cf. [Sta16, Lemma 0DVD]).
Thus without ambiguity we drop the index from notation and write H i(G,M). For a future
use we note the following properties of group cohomology.

(1.16) If M = IndGH N is an induced module (which for �nite groups is equivalent to
being a coinduced module), then

H i(G,M) ∼= H i(H,N).

This property is known as Shapiro lemma, cf. [Ser79, Proposition VIII.2.1].

(1.17) If M is a Fp[G]-module and G has a normal p-Sylow subgroup P then:

H i(G,M) ∼= H i(P,M).

For a proof observe that H i(G/P,N) is killed by multiplication by p for any Fp[G]-
module N and use [Ser79, Theorem IX.2.4.] to obtain H i(G/P,N) = 0 for i ≥ 1. Then
use Lyndon�Hochschild�Serre spectral sequence for group cohomology.

(1.18) Suppose that R is a �nitely generated algebra over a �eld k and that R is a local
ring with maximal ideal p. If M is a �nitely generated R-module then

H i(G,M) ∼= H i(G, M̂p),

where M̂p denotes the completion of M with respect to m (cf. proof of [BM00, Lemme
3.3.1] for a brief justi�cation).

Properties of group cohomology described above extend to sheaves, as explained in [Gro57]
and [BM00]. We brie�y recall this theory. Let (Y,O) be a ringed space and let G be a �nite
group. By an O[G]-sheaf on (Y,O) we understand a sheaf F equipped with an O-linear action
of G on F(U) for every open subset U ⊂ Y , compatible with respect to the restrictions. The
O[G]-sheaves form a category O[G] -mod, which is abelian and has enough injectives. For any
O[G]-sheaf F one may de�ne a sheaf FG by the formula

U 7→ F(U)G := {f ∈ F(U) : ∀g∈G g · f = f}.

We denote the i-th derived functor of

(−)G : O[G] -mod→ O -mod

by Hi(Y,O)(G,−). Similarly as in the case of modules, one may neglect the dependence on the

sheaf O and write simply Hi(G,M). If F = M̃ is a quasicoherent O[G]-module coming from
a O(Y )[G]-module M , one may compute the group cohomology of sheaves via the standard
group cohomology:

Hi(G,F) ∼= ˜H i(G,M).

In particular, group cohomology of a quasicoherent O[G]-sheaf is a quasicoherent O-module.
Moreover for any Q ∈ Y we have the following isomorphism:

Hi(G,F)Q ∼= H i(G,FQ). (1.19)
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1.5. Number theory preliminaries

We refer to [Neu99] for all the quoted facts. Let OK be the ring of integers in a number
�eld K. Recall that the class group of OK (denoted by Cl(OK)) is de�ned as the quotient
of the group of non-zero fractional ideals of OK by the subgroup of principal ideals. By abuse
of notation we often write Cl(K) := Cl(OK). The group Cl(K) is �nite and abelian; its rank
is called the class number of K.

De�nition 1.5.1. An absolute value on K is a map | · | : K → R satisfying the following
conditions:

(1) |x| ≥ 0 for all x ∈ K, with an equality if and only if x = 0,

(2) |x · y| = |x| · |y| for all x, y ∈ K,

(3) |x+ y| ≤ |x|+ |y| for all x, y ∈ K.

Two absolute values on K are equivalent if they give rise to the same topology. The trivial
absolute value is given by |0| = 0 and |x| = 1 for all x ∈ K×. An equivalence class of
non-trivial absolute values on K is called a place of K.

There are three types of places:

• �nite places, i.e. places corresponding to non-archimedean absolute values. They are
in bijection with the maximal ideals in OK ,

• in�nite complex places, which are in bijection with pairs {σ, σ} of conjugated em-
beddings of K into C, such that σ 6= σ,

• in�nite real places, which correspond to embeddings of K into R.

We say that an extension of number �elds L/K is unrami�ed at a place v of K, if one of
the following conditions holds:

• v is a �nite place, corresponding to a prime ideal pv, which factors in OL as P1 . . .Pg
for distinct �nite prime ideals Pi of OL,

• v is an in�nite complex place,

• v is an in�nite real place corresponding to σ : K ↪→ R and σ might be extended to an
embedding σL : L ↪→ R.

An extension L/K is called abelian, if it is Galois and the group Gal(L/K) is abelian.

Theorem 1.5.2. Let K be a number �eld. There exists a maximal abelian unrami�ed exten-
sion of K, called the Hilbert class �eld of K. Its degree over K equals # Cl(K).

In the sequel we will need also the notion of the power residue symbol. Fix an integer
n > 1. Suppose that K contains that contains a primitive n-th root of unity ζn. Let p be a
maximal ideal of OK and assume that p - n and #(OK/p) ≡ 1 (mod n).

De�nition 1.5.3. The n-th power residue symbol for α modp, denoted
(
α
p

)
n
is the

unique n-th root of unity ζsn such that:

α
#(OK/p)−1

n ≡ ζsn (mod p).
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2
Lifts of ordinary abelian varieties

In this chapter we focus on ordinary abelian varieties. In Sections 2.1 and 2.2 we consider
the deformation theory of an ordinary abelian variety B of dimension g over a perfect �eld
k of characteristic p > 0. We recall the notion of canonical lift of an ordinary abelian variety
and characterize canonical lifts via their p-primary torsion (Theorem 2.2.1). In Section 2.3
we apply the characterization of canonical lifts to the problem of local torsion of abelian va-
rieties. In particular, we will study the local torsion of an abelian variety A of dimension g
over Qp with good reduction. For this purpose, we introduce the notion of (n, d)-degree and
tie it to the canonical lift of A (Theorem 2.3.6). In Section 2.4 we compute the (p, 1)-degree
of an elliptic curve E/Q with complex multplication (Theorem 2.4.1). This chapter partially
extends the results of [Gar18] to abelian varieties.

Setup 2.0.1. Let p, k, B, A, g be as above. Let also:

• R denote an Artin local ring with residue �eld k and B be a lift of B to R,

• A be an abelian scheme over Zp, whose generic �ber is A. We will use the notation
introduced in Subsection 1.2.4.

• O := EndQE be an order of discriminant −D in a quadratic imaginary �eld. We suppose
also that E has good reduction at p and that p - D.

2.1. Serre�Tate theory

It turns out that ordinary abelian varieties have particularly nice deformation theory. Let us
assume that k, R, B, B are objects de�ned in Setup 2.0.1. One can prove that the connected�
étale sequence of B[p∞] is of the form:

0→ G0 → B[p∞]→ Get → 0,

where G0 is the canonical lift of B[p∞]0 (in the sense of Subsection 1.1.3) and Get is the
Cartier dual of G0. Thus, by Theorem 1.2.15:

DefB/k(R) ∼= Extp-div/R(Get, G0). (2.1)

Therefore the set DefB/k(R) has a natural structure of a group. This observation allows us to
pick a �distinguished� lift of B to R.
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De�nition 2.1.1. A lift B/R corresponding to the neutral element of the group DefB(R) is
called the canonical lift of B to R.

One easily proves that the canonical lift is functorial, i.e. for any ordinary abelian varieties
B1, B2 over k with canonical lifts B1, B2 to R:

HomR(B1,B2) ∼= Homk(B1, B2).

In particular, if B is the canonical lift of B to R, the natural monomorphism:

EndRB→ Endk B (2.2)

becomes an isomorphism. It follows from [Mes72, Appendix, Corollary (1.3)] that this con-
dition characterizes the canonical lift completely. For a �nite �eld k = Fq one can prove a
stronger statement. Let πB denote the Frobenius endomorphism of B, i.e. the endomorphism
of B induced by the map x 7→ xq on k.

Lemma 2.1.2 ([dJN91, Lemma 3.3]). Keep the Setup 2.0.1 and suppose that k = Fq is a
�nite �eld. Then B is the canonical lift of B if and only if the image of (2.2) contains πB.

We want now to see what happens, if we allow the ring R to vary. Recall that a functor
F : Artk → Set is pro-represented by a formal scheme M de�ned over W (k), if it is
isomorphic to the functor

R 7→ M(R) := Hom(Spf R,M).

Using the isomorphism (2.1) one can prove that the functor DefB/k : Artk → Set is pro-
represented by a formal torusMB/k de�ned over W (k), i.e. by a formal group satisfying:

(MB/k)W (k)
∼= Ĝd

m,W (k)

for some d ≥ 0 (cf.[Kat81, Theorem 2.1]).

We consider now the lifts of an ordinary abelian variety to the ring of Witt vectors. One
easily sees that the canonical lifts Bn of B to Wn(k) are compatible in the sense that

Bn+1 ×Wn+1(k) Wn(k) ∼= Bn.

Thus, by taking a limit, we obtain a formal abelian scheme B̂ → Spf W (k). Every polariza-
tion of B/k canonically lifts to its canonical lift. Thus, by the Grothendieck's algebraization
theorem (cf. [GD71, 5.4.5]) B̂ comes from a unique abelian scheme B→ SpecW (k). We will
refer both to the abelian scheme B/W (k) and to its generic �ber as the canonical lift of B
to W (k).

Lemma 2.1.3. Let A, A be as in the Setup 2.0.1. Suppose that O := EndQp
(A) is an order

in a CM-�eld M and that p splits completely in M . Then A is the canonical lift of AFp .

Proof. Since p splits completely in M , AFp is ordinary by Lemma 1.2.8. Moreover, M ↪→
Qp and by Lemma 1.2.7 we have O = EndQp(A). Let M := MAFp/Fp

. Suppose that A ∈
lim
←

DefA(Z/pn) corresponds to q ∈ M(Zp). Let πAFp ∈ EndFp AFp be the Frobenius element

of A. Let m ∈ Z \ {0} be such that
m · πAFp ∈ O
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(note that O and EndFp AFp are both orders in M � therefore [EndFp AFp : O] is �nite). Let
A′ ∈ lim

←
DefA(Z/pn) be the (formal) lift corresponding to qm ∈M. Then, since m ·πAFp ∈ O,

by functoriality of M, πAFp lifts to A′. Thus, by Lemma 2.1.2, A′ is the canonical lift of A
and qm = 1. ButM has no non-trivial torsion elements, since

Ĝm(W (Fp)) = 1 + pW (Fp)

is torsion-free. Thus, since p - m, q = 1 and A is the canonical lift of AFp .

We will also need the following lemma in the sequel.

Lemma 2.1.4. Let B, k be as in the Setup 2.0.1. Let also B1,B2 ∈ DefB/k(Wn(k)). If
(B1)Wn(k)

∼= (B2)Wn(k) then B1
∼= B2.

Proof. We want to show that the natural map:

DefB/k(Wn(k))→ DefBk/k
(Wn(k)), B 7→ BWn(k)

is injective. One easily proves that (MB/k)W (k)
∼=MBk/k

. Therefore we are left with proving
that the map:

M(Wn(k))→M(Wn(k)) ∼=MW (k)(Wn(k))

is injective, which is immediate.

2.2. Characterisation of canonical lifts via torsion

The goal of this section is to prove the following characterisation of the canonical lift of an
ordinary abelian variety in terms of its p-primary torsion.

Theorem 2.2.1. We use the Setup 2.0.1. Suppose that

B(k)[pn] ∼= (Z/pn)g

as abelian groups. Let B be a lift of B to W (k). Then BWn(k) is the canonical lift of B to
Wn(k) if and only if

B(W (k))[pn] ∼= (Z/pn)g.

In order to prove this, we will need the following auxilliary result.

Lemma 2.2.2. Keep the Setup 2.0.1.The natural maps:

Ext1
GS/W (k)(Z/p

n, µpn) → Ext1
GS/Wn+1(k)(Z/p

n, µpn) (2.3)

Ext1
p-div/Wn+1(k)(Qp/Zp, µp∞) → Ext1

GS/Wn+1(k)(Z/p
n, µpn) (2.4)

are isomorphisms.

Proof. In order to prove that the map (2.3) is an isomorphism, it su�ces to check that the
reduction map:

W (k)×/W (k)×p
n →Wn+1(k)×/Wn+1(k)×p

n

is an injection. Let a ∈ W (k)× and suppose that a ≡ bp
n

(mod pn+1). We will show that for
i ≥ n

a ≡ bp
n

i (mod pi+1)
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for some bi ∈ W (k)× by induction on i. For i = n this is immediate. Suppose now that
a = bp

n

i + pi+1 · c. Consider the equation:

(bi + pi−n · x)p
n ≡ a (mod pi+2)

with a variable x. Recall that by a theorem of Kummer (cf. [Kum52]) for 1 ≤ j ≤ pn − 1:

vp

((
pn

j

))
= n− vp(j). (2.5)

Let us expand the left hand side using (2.5):

(bi + pi−n · x)p
n

=

pn∑
j=0

(
pn

j

)
bp

n−j
i (pi−nx)j

≡ bp
n

i + pi · bp
n−1
i x (mod pi+2),

since by (2.5) for j ≥ 2:

vp

((
pn

j

)
bp

n−j
i pj·(i−n)

)
≥ i+ 2.

Thus we may take x ≡ c · (bp
n−1
i )−1 and de�ne:

bi+1 := bi + pi−n · x.

This ends the proof of (2.3). In order to show (2.4), it su�ces to prove that the projection:

ϕ : lim←−
i

Wn+1(k)×/Wn+1(k)×p
i →Wn+1(k)×/Wn+1(k)×p

n

is an injection. Let (ai) ∈ lim←−iWn+1(k)×/Wn+1(k)×p
i
and suppose that ϕ(([ai])i) = 1, i.e.

that an = 1. We will show inductively that

ai ≡ bp
i

i (mod pn+1) (2.6)

for i ≥ n and some bi ∈ Wi(k)×. Indeed, suppose that the equality (2.6) is true. Note that
since k is perfect, bi ≡ bpi+1 (mod p) for some bi+1 ∈ Wi(k)×, i.e. bi = bpi+1 + p · c for some c.
Then:

ai ≡ (bpi+1 + p · c)pi

≡ bp
i+1

i+1 +
∑
j≥1

(
pi

j

)
b
p·(pi−j)
i+1 · (pc)j

≡ bp
i+1

i+1 (mod pn+1),

since by (2.5):

vp

((
pi

j

)
b
p·(pi−j)
i+1 · (pc)j

)
≥ n+ 1

for j ≥ 1. This ends the induction. Therefore ([ai])i = ([bp
i

i ])i is trivial in lim←−
i

Wn+1(k)×/Wn+1(k)×p
i

and ϕ is injective.

Proof of Theorem 2.2.1. Note that by assumption, B[pn] ∼= (Z/pn)⊕g ⊕ (µpn)⊕g.
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(⇒) The assumption implies that the class of B[pn]Wn+1(k) is trivial in

Ext1
GS/Wn+1(k)(B[pn]etWn+1(k),B[pn]0Wn+1(k))

∼= Ext1
GS/Wn+1(k)(Z/p

n, µpn)⊕g
2
.

Therefore the isomorphism (2.3) implies that the class of B[pn]W (k) is trivial in

Ext1
GS/W (k)(B[pn]et,B[pn]0) ∼= Ext1

GS/W (k)(Z/p
n, µpn)⊕g

2
,

i.e. that B[pn] ∼= (Z/pn)⊕g ⊕ µ⊕gpn . This implies the desired result.

(⇐) By Lemma 2.1.4 we can replace k by k. Then, by (2.1):

DefB/k(Wn(k)) ∼= Ext1
p-div/Wn(k)(Qp/Zp, µp∞)⊕g

2
.

The assumption implies that we have an embedding (Z/pn)⊕g → B[pn]W (k)[1/p]. Let
G be the scheme�theoretic closure of the image of this embedding in B[pn]. Then,
by Raynaud's theorem (cf. Proposition 1.1.7), G ∼= (Z/pn)⊕g and we obtain an em-
bedding ϕ : (Z/pn)⊕g → B[pn]. By modifying ϕ by an automorphism of (Z/pn)⊕g,
we may assume that ϕ is a section of the connected-étale exact sequence for B[pn].
Thus B[pn] ∼= µ⊕gpn ⊕ Z/pn⊕g and in particular, the class of B[pn]Wn+1(k) is trivial in

Ext1
GS/Wn+1(k)(Z/p

n, µpn)⊕g
2
. By using isomorphism (2.4), we see that B[p∞]Wn+1(k)

corresponds to the trivial extension of Qp/Zp by µp∞ . Thus BWn+1(k) is the canonical
lift of Bk.

2.3. Local torsion of abelian varieties

De�ne the (n, d)-degree of an abelian variety A over a �eld K to be the number:

Dn,d(A/K) = min{[L : K] : A(L) contains a subgroup isomorphic to (Z/n)d}

(we put Dn,d(A/K) = ∞ if (Z/n)d is not a subgroup of A(K)). Note that for any abelian
variety A/K, Dn,1(A/K) ≤ n2g − 1. A classical result of Faltings and Zarhin (cf. [Zar85],
[FWG+86, p. 118, p. 204]) implies that if EndK(A) = Z, then for su�ciently large p the
Fp[GK ]-module A[p] is irreducible (cf. [AdRGP13, Proposition 3.1]) and therefore, if p 6=
charK, then Dp,1(A/K) = p2g − 1. However, if we allow the �eld of de�nition to vary, the
behaviour of torsion is not easy to predict. We say that p is a local torsion prime for an abelian
variety A/Q, if A(Qp)[p] 6= 0. The following conjecture is part of the folklore:

Conjecture 2.3.1. An elliptic curve E/Q without complex multiplication has only �nitely
many local torsion primes.

Note that p is a local torsion prime for A/Q if and only if Dp,1(A/Qp) = 1. Hence the
following natural question arises:

Question 2.3.2. Fix an abelian variety A/Q of dimension g and natural numbers n and
1 ≤ d ≤ 2g. What is the asymptotic behaviour of Dpn,d(A/Qp) as p tends to in�nity over
primes?
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The following conjecture treats the case (n, d) = (1, 1).

Conjecture 2.3.3 ([Gam14, Conjecture 1.1]). Let A be an abelian variety over Q with an
endomorphism ring that embeds into a totally real �eld. Then:

lim
p→∞

Dp,1(A/Qp) =∞,

where the limit is taken over prime numbers.

This conjecture was proposed by David and Weston in [DW08] for elliptic curves and
by Gamzon in [Gam14] in general. Both articles justi�ed Conjecture 2.3.3 by some simple
heuristics and averaging results. The primary motivation for Conjecture 2.3.3 is the theory
of deformations of Galois representations. Let E be an elliptic curve over Q. If the represen-
tation ρE,p is absolutely irreducible, then one can associate to ρE,p its universal deformation
ring RunivE,p , parameterizing all lifts of ρE,p to Artinian local rings with the residue �eld Fp.
Mazur in [Maz97] asked if the deformation theory of ρE,p is unobstructed (so that RunivE,p is
non-canonically isomorphic to a power series ring in three variables over Zp) for all but �nitely
many primes p. He showed that this is the case as long as one excludes those primes p for
which E has a point of order p over a quadratic extension of Qp, which leads to Conjec-
ture 2.3.3. The whole reasoning may be repeated for an arbitrary abelian variety (cf. [Gam14,
Proposition 2.4.]).

We will show now that the Question 2.3.2 may be easily answered for d > g. To this end
we need to tie the (p, d)-degree of an abelian variety to the p-rank of its reduction.

Lemma 2.3.4. Let A/Qp be an abelian variety of dimension g with good reduction. Then for
d > r(Ap):

Dp,d(A/Qp) ≥ p2g − 1.

In particular, if r(Ap) = 0 then Dp,1(A/Qp) = p2g − 1.

Proof. Suppose that K/Qp is a �nite �eld extension such that (Z/p)r(Ap)+1 ≤ A(K)[p]. We
will give a lower bound for [K : Qp]. Let OK be the ring of integers in K with the maximal
ideal p. Then there exists P ∈ A(K)[p], P 6= 0, such that

P ∈ ker (redp : A(K)→ Ap(OK/p)) = Â(p)

(here we used (1.7)). Note that the multiplication-by-p morphism on Â must be of the form:

[p](x) = p(F1(x), . . . , Fg(x)) + (G1(xp
g
), . . . , Gg(x

pg))

where Fi, Gi ∈ RJxK, Gi(0) = 0, Fi(x) = xi + . . ., cf. (1.2) and (1.8). Thus P corresponds to
some a = (a1, . . . , ag) ∈ pg, a 6= 0, satisfying:

0 = [p](a) = p · (F1(a), . . . , Fg(a)) + (G1(ap
2g

), . . . , Gg(a
p2g)).

Let v be a discrete valuation on K, satisfying v(K×) = Z. Let e := v(p) be the rami�cation
index of K. Suppose that i is such that v(ai) = minj v(aj). Then:

e+ v(ai) = v(pFi(a)) = v(−Gi(ap
2g

)) ≥ v(ap
2g

i ) = p2g · v(ai).

Thus we obtain:
[K : Qp] ≥ e ≥ (p2g − 1) · v(ai) ≥ p2g − 1.

This ends the proof of the �rst claim. The second claim is immediate.
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Since r(Ap) ≤ g, we obtain the following corollary.

Corollary 2.3.5. Let A/Q be an abelian variety of dimension g. Then:

lim
p→∞

Dp,g+1(A/Qp) =∞.

We will now focus on the (p, d)-degree for the �boundary� value d = g. The goal of this
Section is to prove the following Theorem, which ties the (pn, g)-degree of an abelian variety
of dimension g with its canonical lift.

Theorem 2.3.6. Keep the Setup 2.0.1. Consider the following conditions:

(1) Dpn,g(A/Qp) < p− 1,

(2) (Z/pn)g ≤ A(Qun
p ),

(3) AFp is ordinary and A is the canonical lift of AFp (mod pn+1),

(4) AFp is ordinary and Dpn,g(A/Qp) ≤ Dpn,g(AFp/Fp).

Then (1) implies (2), (2) and (3) are equivalent, and (3) implies (4).

Lemma 2.3.7. Let A be as in the Setup 2.0.1 and let K/Qp be a �nite extension with the
rami�cation index e < p− 1. Then the following groups are equal:

A(K)[p∞] = A(K ∩Qun
p )[p∞].

Proof. We mimic the proof of [Gam14, Lemma 4.10]. Keep the Setup 2.0.1. Suppose that
A(K)[p∞] = A(K)[pd] and let G := A(K)[pd] be an abstract group. We will show that A[pd]
contains a �nite étale subgroup scheme G such that G(K) ∼= A(K)[pd]. Let L be the Galois
closure of K over Qp. Note that by Abhyankar's lemma (cf. [Sti93, Proposition III.8.9]) its
rami�cation index equals e as well. The Gal(L/Qp)-orbit of A(K)[pd] corresponds to an étale
group scheme G ≤ A[pd]Qp . Let G be the scheme-theoretic closure of G in A[pd]. By the as-
sumption, GL is a constant group scheme. Thus, by Raynaud theorem (cf. Proposition 1.1.7),
since e < p− 1, GOL

is a constant group scheme. Hence G is an étale group scheme. On the
other hand, the category of étale group schemes over Zp is equivalent to the category of étale
group schemes over Fp (cf. [Mil80, Proposition I.4.4]). Thus, since GOK

contains a �nite étale
subgroup isomorphic to A[pd](K), GW (k) must also contain such a subgroup. This ends the
proof.

Proof of Theorem 2.3.6.

(1) ⇒ (2): Suppose that K/Qp is a �nite extension such that [K : Qp] < p − 1 and
A(K)[p] contains a subgroup isomorphic to (Z/pn)g. Then by Lemma 2.3.7

A(K ∩Qur
p )[p∞] = A(K)[p∞],

which implies (2).

(2)⇒ (3): Suppose that (Z/pn)g ≤ A(Qun
p ). By Theorem 2.2.1, AWn+1(Fp) is the canon-

ical lift of AFp
. Using Lemma 2.1.4, we deduce that AZ/pn+1 is the canonical lift of AFp .

(3) ⇒ (2): By assumption, AQur
p

is the canonical lift of AFp
(mod pn). Thus the proof

follows by Theorem 2.2.1.
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(3) ⇒ (4): Suppose that A is the canonical lift of AFp (mod pn+1) and that for a
�nite extension k/Fp we have A(k)[pn] ∼= (Z/pn)g. Then, by Theorem 2.2.1 we obtain:
A(W (k))[p∞] ∼= (Z/pn)g. The equality [W (k) : Qp] = [k : Fp] concludes the proof.

Theorem 2.3.6 naturally leads to the following question, which appeared already in [AWZ17,
Remark 4.4.2].

Question 2.3.8. Fix an abelian variety A/Q. Are there in�nitely many primes p such that
AZ/p2 is the canonical lift of AFp?

Note that Question 2.3.8 may be positively answered for abelian varieties with complex
multiplication.

Proposition 2.3.9. Suppose that A/Q has complex multiplication by an order O := EndQA
in a CM-�eld M . Then there exist in�nitely many primes p such that A/Qp is the canonical
lift of AFp .

Proof. Let p be a prime of good reduction for A that splits completely in M . Then A is the
canonical lift of AFp by Lemma 2.1.3.

We explain now the relation between Conjecture 2.3.3 and Question 2.3.8. Suppose that
for an abelian variety A/Q of dimension g without complex multiplication the answer to
Question 2.3.8 is negative. Then, for almost all primes p, AZ/p2 is not the canonical lift of AFp

and by Theorem 2.3.6 Dp,g(A/Qp) ≥ p− 1. In particular, Dp,g(A/Qp) tends to in�nity with p
tending to in�nity.

2.4. (p, 1)-degree of elliptic curves

The goal of this section is to compute the (p, 1)-degree of elliptic curves with complex multi-
plication.

Theorem 2.4.1. Keep the Setup 2.0.1, in particular E has complex multiplication by an order
O of discriminant −D in a quadratic imaginary �eld. Then:

Dp,1(E/Qp) =

ordp(±s), for
(
−D
p

)
= 1,

p2 − 1, for
(
−D
p

)
= −1,

where for p satisfying
(
−D
p

)
= 1, s is de�ned by the equation

4p = s2 +Dt2 (2.7)

and, for D = −4, by the equation (2.7) and the additional condition 4 - s.

Theorem 2.4.1 is a consequence of Theorem 2.3.6 and of the following lemma.

Lemma 2.4.2. Let E/Qp be an elliptic curve with good ordinary reduction.

(1) Let us denote by apd(EFp) the pd-Frobenius trace of EFp for any d ≥ 1. Let also ordp a be
the multiplicative order of a ∈ F×p . Then Dp,1(EFp/Fp) = ordp ap(EFp).
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(2) If EZ/p2 is the canonical lift of EFp , then we have:

Dp,1(E/Qp) = Dp,1(EFp/Fp).

Proof. (1) It su�ces to prove that

EFp(Fpd)[p] 6= 0 if and only if ap(EFp)d ≡ 1 (mod p).

Recall that
#EFp(Fpd) = pd + 1− (αd1 + αd2)

where α1, α2 ∈ C are the roots of the characteristic polynomial x2 − ap(EFp)x+ p. After
muliplying the equality α2

i = ap(EFp) · αi − p by αd−2
i we obtain for d ≥ 2:

apd(EFp) = αd1 + αd2 = ap(EFp) · (αd−1
1 + αd−1

2 )− p · (αd−2
1 + αd−2

2 )

= ap(EFp) · apd−1(EFp)− p · apd−2(EFp)

≡ ap(EFp) · apd−1(EFp) (mod p).

By repeating this calculation we obtain: apd(EFp) ≡ ap(EFp)d (mod p). Therefore:

EFp(Fpd)[p] 6= 0 ⇔ p|#EFp(Fpd) = pd + 1− apd(EFp)

⇔ p|(ap(EFp)d − 1).

(2) By Theorem 2.3.6 and part (1):

Dp,1(E/Qp) ≤ Dp,1(EFp/Fp) = ordp ap(E). (2.8)

Suppose to the contrary that the inequality (2.8) is strict. Then:

Dp,1(E/Qp) < ordp ap(E) ≤ p− 1.

Therefore E(K)[p] 6= 0 for some extension K/Qp of degree Dp,1(E/Qp). By (1.4) and
Lemma 1.2.11, E[p](K) ∼= EFp [p](k), where k is the residue �eld of OK . Thus EFp [p](k) 6=
0 and:

Dp,1(EFp/Fp) ≤ [k : Fp] ≤ [K : Qp] = Dp,1(E/Qp).

This contradiction ends the proof.

Proof of Theorem 2.4.1. Suppose �rstly that
(
−D
p

)
= −1. Then p stays inert in O and thus

by Deuring's criterion (cf. Lemma 1.2.7), E has supersingular reduction at p. Therefore, by
Lemma 2.3.4:

Dp,1(E/Qp) = p2 − 1.

Suppose now that
(
−D
p

)
= 1. By analogous reasoning, E has an ordinary reduction at p. More-

over, E is the canonical lift of EFp by Lemma 2.1.3. Therefore by Lemma 2.4.2 Dp,1(E/Qp) =
ordp ap(EFp). Observe that 4p is of the form (2.7), since it splits in the quadratic order of
discriminant −D with class number equal to one (cf. Subsection 1.2.3). The proof follows
by [Ish04, p. 126], which gives an explicit formula for ap(EFp).

Remark 2.4.3. Theorem 2.4.1 may also be proven using the main theorem of complex mul-
tiplication, cf. [Gar16, Theorem 3.2.2].
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We apply now Theorem 2.4.1 to investigate Question 2.3.2 for elliptic curves with complex
multiplication.

Corollary 2.4.4. Keep the Setup 2.0.1 and suppose that p ≥ 5. Then Dp,1(E/Qp) ∈ {1, 2} if
and only if for some t ∈ N:

p =
1

4
(1 +D · t2).

Proof. By Theorem 2.4.1, the condition Dp,1(E/Qp) ∈ {1, 2} holds if and only if
(
−D
p

)
= 1

and
s2 ≡ 1 (mod p) (2.9)

(recall that s, t are de�ned by (2.7)). The condition (2.9) is easily seen to be equivalent to
the equality p = 1

4(1 +Dt2).

Corollary 2.4.5. Keep the Setup 2.0.1 and suppose that D = −4 and p ≥ 5. Then Dp,1(E/Qp) =
8 if and only if p is of the form a2

k + a2
k+1 for some k ≥ 0, where:

a0 = 0, a1 = 1, ak+2 = 4ak+1 − ak.

Proof. Note thatDp,1(E/Qp) < p2−1 implies that p ≡ 1 (mod 4). Let s, t be de�ned by (2.7).
Then Dp,1(E/Qp) = 8 if and only if ordp(s) = 8. The proof follows now from [CD14, Theorem
3, Corollary 1].

A version of Corollary 2.4.4 may be found in [Qin16] and in [JQ14]. Corollary 2.4.5 was proven
in [Gar16] and [Gar18].

Therefore we see that Question 2.3.2 for elliptic curves with complex multiplication leads
to two classical problems of number theory:

• looking for prime values of a quadratic polynomial,

• looking for primes in sequences, given by a linear recurrence.

Both problems are in general very hard. The �rst problem has not been solved even for a single
quadratic polynomial. For example, at present, we do not know whether the polynomial x2 +1
represents in�nitely many primes. This is one of Landau's four problems which were presented
at the 1912 International Congress of Mathematicians, all of which remain unsolved today.
See [Qin16] for related statements. Regarding the second problem, note that it is still not
known whether Fibbonacci sequence contains in�nitely many primes. Numerical computations
show that the elements of the sequence (a2

k + a2
k+1)k for 1 ≤ k ≤ 100000 are prime for:

k ∈ {1, 2, 3, 4, 5, 131, 200, 296, 350, 519, 704, 950, 5598, 6683, 7445, 8775, 8786, 11565, 12483}.

It turns out that for 4p = s2 + t2 one has s ≡ (p−1
4 )! (mod p), which was proven by Gauss.

The proof of this fact and other facts related to computing ordp(s) for O = Z[i] may be found
in [CD14].
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3
Lifts of non-ordinary abelian varieties

In this chapter we will consider a smooth projective curve X with an action of a �nite group G
over an algebraically closed �eld k of characteristic p > 0. We would like to investigate the
G-equivariant behaviour of the Hodge�de Rham and conjugate exact sequences:

0→ H0(X,ΩX/k)→ H1
dR(X/k)→ H1(X,OX)→ 0, (3.1)

0→ H1(X,OX)′ → H1
dR(X/k)→ H0(X,ΩX/k)

′ → 0 (3.2)

de�ned in Section 1.3. The main result concerning this problem is Theorem 3.4.5. This theorem
will allow us to construct non-ordinary abelian varieties without �canonical lifts� to W2(k),
cf. Corollary 3.4.8. This chapter of the thesis is based on the article [Gar19a], which has been
submitted for publication.

Setup 3.0.1. We will keep the above assumptions on k, G and X. Let Y := X/G be the
quotient of X by the action of G and let π : X → Y be the quotient morphism. Note that
Y is a smooth projective curve. Its underlying space is the topological quotient X/G and its
structure sheaf is given by πG∗ (OX). Additionally, we will use the following notation (unless
stated otherwise):

• gY is the genus of the curve Y ,

• R ∈ Div(X) is the rami�cation divisor of π,

• R′ :=
[
π∗R
#G

]
∈ Div(Y ), where for δ ∈ Div(Y ) ⊗Z Q, we denote by [δ] the integral part

taken coe�cient by coe�cient,

• k(X), k(Y ) are the function �elds of X and Y ,

• vQ(f) denotes the order of vanishing of a function f at a point Q,

• RX denotes the constant sheaf on X associated to a ring R.

Fix now a (closed) point P in X. Denote:

• GP,i � the i-th rami�cation group of π at P , i.e.

GP,i := {g ∈ G : g(f) ≡ f (mod mi+1
X,P ) for all f ∈ OX,P }.
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Note that (since k is algebraically closed) the inertia group GP,0 coincides with the
decomposition group at P , i.e. the stabilizer of P in G. De�ne also:

dP =
∑
i≥0

(#GP,i − 1).

Then (by [Ser79, IV �1, Proposition 4]) R =
∑

P∈X dP · (P ).

• eP � the rami�cation index of π at P , i.e. eP = #GP,0.

• nP is given by the formula:

nP := max{n : GP,n 6= 0}.

Also, by abuse of notation, for Q ∈ Y we write eQ := eP , dQ := dP , nQ := nP for any
P ∈ π−1(Q). Note that these quantities don't depend on the choice of P , since the covering
π : X → Y is Galois.

Finally, recall that for any k-vector space V , V ′ denotes the k-vector space with the same
underlying abelian group as V and the scalar multiplication (λ, v) 7→ λp · v.

3.1. G-sheaves on a curve

Keep the Setup 3.0.1. In order to investigate the equivariant behaviour of the sequences (3.1)
and (3.2), we consider the following �defect�:

δ(X,G) := dimkH
0(X,ΩX/k)

G + dimkH
1(X,OX)G − dimkH

1
dR(X/k)G.

Observe that if either of the exact sequences (3.1) and (3.2) splits G-equivariantly, then we
have δ(X,G) = 0. Thus δ(X,G) may be considered as an 'obstruction to the splitting'.

In order to compute δ(X,G), we need to work with the group cohomology of sheaves (cf.
Section 1.4). We start by investigating the G-sheaves on Y coming from G-coverings. Let F be
an OX -module with a G-action compatible with that on X. Then π∗F is an OY [G]-module.
It is natural to try to relate the group cohomology of π∗F to the rami�cation of π. Suppose
for a while that the action of G on X is free, i.e. that π : X → Y is unrami�ed. In this case
the functors

F 7→ πG∗ (F),

π∗(G) ←[ G

are exact and provide an equivalence between the category of coherent OY -modules and
coherent OX -modules (cf. [Mum08, Proposition II.7.2, p. 70]). In particular, Hi(G, π∗F) = 0
for all i ≥ 1 and every coherent OX -module F . The following Proposition treats the general
case of not necessarily free G-action.

Proposition 3.1.1. Keep the Setup 3.0.1. Let F be a coherent OX-module with a G-action
lifting that on X. Then, for every i ≥ 1, Hi(G, π∗F) is a torsion sheaf supported on the wild
rami�cation locus of π.

Recall that the wild rami�cation locus of π is the set of points Q ∈ Y with nQ ≥ 1. To prove
Proposition 3.1.1 we shall need the following lemma involving group cohomology of modules
over Dedekind domains.
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Lemma 3.1.2. Let k be an algebraically closed �eld of an arbitrary characteristic. Let B be
a �nitely generated k-algebra, which is a Dedekind domain equipped with a k-linear action of
the group G. Suppose that A := BG is a principal ideal domain with a maximal ideal q. Let
Gp,i denote the i-th higher rami�cation group of a prime ideal p ∈ SpecB over q. Then for
every B-module M we have an isomorphism of B-modules:

H i(G,M) ∼= H i(Gp,1,Mp),

where Mp denotes the localisation of M at p.

Proof. By (1.18) we have: H i(G,M) ∼= H i(G, M̂q). One easily sees that we have an isomor-
phism of B[G]-modules:

M̂q
∼= IndGGp,0

M̂p

(see [Ser79, II �3, Proposition 4] for a proof for M = B. The general case follows by tensoring
both sides by M). Therefore by (1.16) and (1.18) H i(G,M) ∼= H i(Gp,0, M̂p) ∼= H i(Gp,0,Mp).
Moreover, Gp,1 is a normal p-Sylow subgroup of Gp,0 (cf. [Ser79, Corollary 4.2.3., p. 67]).
Hence the proof follows by (1.17).

Proof of Proposition 3.1.1. Denote by ξ the generic point of Y . Recall that by the normal
base theorem (cf. [Jac85, sec. 4.14]), k(X) = IndG k(Y ) is an induced G-module. Therefore
(π∗F)ξ is also an induced G-module (since it is a k(X)-vector space of �nite dimension) and
by (1.16):

Hi(G, π∗F)ξ = H i(G, (π∗F)ξ) = 0 for i ≥ 1.

Thus, since the sheaf Hi(G, π∗F) is coherent, it must be a torsion sheaf. Note that if a point
Q ∈ Y is tamely rami�ed then GP,1 = 0 for any P ∈ π−1(Q) and thus Hi(G, π∗F)Q = 0 by
Lemma 3.1.2. This concludes the proof.

We will recall now a standard formula describing G-invariants of an OY [G]-module coming
from an invertible OX -module. For a proof see [BM00, Proposition 5.3.2].

Lemma 3.1.3. For any G-invariant divisor D ∈ Div(X):

πG∗ (OX(D)) = OY
([

π∗D

#G

])
,

where for δ ∈ Div(Y )⊗Z Q, we denote by [δ] the integral part taken coe�cient by coe�cient.

Corollary 3.1.4. Keep the Setup 3.0.1. Let:

R′ =

[
π∗R

#G

]
∈ Div(Y ).

Then:
πG∗ ΩX/k = ΩY/k ⊗OY (R′).

In particular:

dimkH
0(X,Ω1

X/k)
G =

{
gY , if R′ = 0,

gY − 1 + degR′, otherwise.
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Proof. The �rst claim follows from Lemma 3.1.3 if one takes for D the canonical divisor of X
and uses the Riemann-Hurwitz formula. To prove the second claim we observe that

H0(X,ΩX/k)
G = H0(Y, πG∗ ΩX/k) = H0(Y,ΩY/k ⊗OY (R′))

and apply the Riemann-Roch theorem (cf. [Har77, Theorem IV.1.3]).

We end this section with one more elementary observation.

Lemma 3.1.5. The divisor R′ vanishes, if and only if, the morphism π : X → Y is tamely
rami�ed.

Proof. Recall that R =
∑

P∈X dP · (P ). Hence

R′ =
∑
Q∈Y

[
dQ ·#π−1(Q)

#G

]
(Q)

=
∑
Q∈Y

[
dQ
eQ

]
(Q).

On the other hand, we have: dQ ≥ eQ − 1 with an equality if and only if π is tamely rami�ed
at Q. This completes the proof.

3.2. Computing the defect

The goal of this section is to compute the defect δ(X,G) in terms of cetain group cohomologies.

Proposition 3.2.1. Keep the Setup 3.0.1. We have:

δ(X,G) =
∑
Q∈Y

dimk im

(
H1(G, (π∗OX)Q)→ H1(G, (π∗ΩX/k)Q)

)
,

where

H1(G, (π∗OX)Q)→ H1(G, (π∗ΩX/k)Q)

is the map induced by the derivation map OX → ΩX/k.

Note that π is an a�ne morphism. Therefore π∗ is an exact functor on the category of
quasi-coherent sheaves. Thus using the spectral sequence (1.11) we obtain:

H i
dR(X/k) = Hi(X,Ω•X/k) = Hi(Y, π∗Ω

•
X/k).

We start with the following observation.

Lemma 3.2.2. The spectral sequence

Eij1 = Hj(Y, πG∗ Ωi
X/k)⇒ Hi+j(Y, πG∗ Ω•X/k)

degenerates at the �rst page.
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Proof. We have a morphism of complexes Ω•Y/k → πG∗ Ω•X/k, which is an isomorphism on the
zeroth term. Thus for j = 0, 1 we obtain a commutative diagram:

Hj(Y,OY ) Hj(Y, πG∗ OX)

Hj(Y,ΩY/k) Hj(Y, πG∗ ΩX/k),

∼=

(3.3)

where the upper arrow is an isomorphism. Note also that the left arrow in the diagram (3.3)
is zero for j = 0, 1. Indeed, this is immediate for the map:

d : k ∼= H0(Y,OY )→ H0(Y,ΩY/k) (3.4)

(since the di�erential of a constant is zero) and the map d : H1(Y,OY )→ H1(Y,ΩY/k) is the
dual of (3.4). Therefore the diagram (3.3) shows that for j = 0, 1 the maps

Hj(Y, πG∗ OX)→ Hj(Y, πG∗ ΩX/k)

are zero. This implies the desired conclusion.

Corollary 3.2.3.

δ(X,G) =

(
dimkH1(Y, πG∗ Ω•X/k)− dimkH1(Y, π∗Ω

•
X/k)

G

)
−

(
dimkH

1(Y, πG∗ OX)− dimkH
1(Y, π∗OX)G

)
.

Proof. By Lemma 3.2.2 we obtain an exact sequence:

0→ H0(Y, πG∗ ΩX/k)→ H1(Y, πG∗ Ω•X/k)→ H1(Y, πG∗ OX/k)→ 0.

Recall also that (since π is a�ne)H1(X,OX) ∼= H1(Y, π∗OX) andH1
dR(X/k) ∼= H1(Y, π∗Ω

•
X/k).

Hence:

δ(X,G) = dimkH
0(X,ΩX/k)

G + dimkH
1(X,OX)G − dimkH

1
dR(X/k)G

=
(

dimkH1(Y, πG∗ Ω•X/k)− dimkH
1(Y, πG∗ OX)

)
+ dimkH

1(X,OX)G − dimkH
1
dR(X/k)G

= (dimkH1(Y, πG∗ Ω•X/k)− dimkH1(Y, π∗Ω
•
X/k)

G)

− (dimkH
1(Y, πG∗ OX)− dimkH

1(Y, π∗OX)G).

Corollary 3.2.3 implies that we need to compare the hypercohomology groups

Hi(Y, (F•)G) and Hi(Y,F•)G.

for F• = π∗OX [0] and F• = π∗Ω
•
X/k (note that the latter is a complex of kY [G]-modules

rather than OY [G]-modules, since the di�erentials in the de Rham complex are not OY -
linear). Consider the commutative diagram of functors:

kY [G] -mod kY -mod

k[G] -mod k -mod .

(−)G

Γ(Y,−) Γ(Y,−)

(−)G
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By applying the Grothendieck spectral sequence to compositions of the functors in the dia-
gram, we obtain two spectral sequences:

IE
ij
2 = Hi(Y,Hj(G,F•))⇒ Ri+jΓG(F•), (3.5)

IIE
ij
2 = H i(G,Hj(Y,F•))⇒ Ri+jΓG(F•)., (3.6)

Note that hereHj(G,F•) denotes a complex of kY -modules with the l-th term beingHj(G,F l).
For motivation, suppose at �rst that the 'obstructions'

Hi(G,F l) and H i(G,Hl(Y,F•))

vanish for all i ≥ 1 and l ≥ 0 (this happens e.g. if char k = 0). Then the spectral sequences (3.5)
and (3.6) lead us to the isomorphisms:

Hi(Y, (F•)G) ∼= RiΓG(F•) ∼= (Hi(Y,F•))G.

In general, the relation between Hi(Y, (F•)G) and Hi(Y,F•)G is more complicated. However,
in the case of the �rst hypercohomology group, one can extract some information from the
low-degree exact sequences of spectral sequences (3.5) and (3.6):

0 → H1(Y, (F•)G)→ R1ΓG(F•)→ (3.7)

→ H0(Y,H1(G,F•))→ H2(Y, (F•)G)→
→ R2ΓG(F•)

and respectively:

0 → H1(G,H0(Y,F•))→ R1ΓG(F•)→ (3.8)

→ H1(Y,F•)G → H2(G,H0(Y,F•))→
→ R2ΓG(F•).

This will be done separately in the case of wild and tame rami�cation.

Proof � the wild case. Consider �rst the case when π is wildly rami�ed, i.e. by Lemma 3.1.5
when R′ 6= 0. Then, as one easily sees by Lemma 3.2.2:

H2(Y, πG∗ Ω•X/k)
∼= H1(Y, πG∗ ΩX/k).

Therefore, using Corollary 3.1.4 and Riemann�Roch theorem (cf. [Har77, Theorem IV.1.3]):

H2(Y, πG∗ Ω•X/k)
∼= H1(Y,ΩY/k ⊗OY (R′)) ∼= 0. (3.9)

By (3.7) and (3.9) we see that

dimk R1ΓG(π∗Ω
•
X/k) = dimkH1(Y, (π∗Ω

•
X/k)

G) (3.10)

+ dimkH0(Y,H1(G, π∗Ω
•
X/k)).

On the other hand, (3.8) yields:

dimk R1ΓG(π∗Ω
•
X/k) = dimkH

1(G,H0(Y, π∗Ω
•
X/k)) (3.11)

+ dimkH1(Y, π∗Ω
•
X/k)

G − c1,
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where

c1 = dimk ker
(
H2(G,H0(Y, π∗Ω

•
X/k))→ R2ΓG(π∗Ω

•
X/k)

)
. (3.12)

Thus by comparing (3.10) and (3.11):

dimkH1(Y, π∗Ω
•
X/k)

G = dimkH1(Y, (π∗Ω
•
X/k)

G) (3.13)

+ dimkH0(Y,H1(G, π∗Ω
•
X/k))

− dimkH
1(G,H0(Y, π∗Ω

•
X/k)) + c1.

By repeating the same argument for π∗OX , we obtain:

dimkH
1(Y, π∗OX)G = dimkH

1(Y, (π∗OX)G) (3.14)

+ dimkH
0(Y,H1(G, π∗OX))

− dimkH
1(G,H0(Y, π∗OX)) + c2,

where:

c2 = dimk ker

(
H2(G,H0(Y, π∗OX))→ R2ΓG(π∗OX)

)
. (3.15)

By combining (3.13), (3.14) and Corollary 3.2.3 we obtain:

δ(X,G) = dimk im

(
H0(Y,H1(G, π∗OX))→ H0(Y,H1(G, π∗ΩX/k))

)
+ (c2 − c1).

Note that since H1(G, π∗OX), H1(G, π∗ΩX/k) are torsion sheaves, we can compute their sec-
tions by taking stalks and using (1.19):

dimk im

(
H0(Y,H1(G, π∗OX))→ H0(Y,H1(G, π∗ΩX/k))

)
=∑

Q∈Y
dimk im

(
H1(G, (π∗OX)Q)→ H1(G, (π∗ΩX/k)Q)

)
.

Thus we are left with showing that c1 = c2. This will be done at the end of this Section.

Proof � the tame case. Consider now the case of tame rami�cation, i.e. R′ = 0. Then by
Propostion 3.1.1 we see that Hi(G, π∗Ωj

X/k) = 0 for i ≥ 1, j ≥ 0. Thus it is evident by (3.5)
that

RiΓG(π∗Ω
•
X/k)

∼= Hi(Y, (π∗Ω
•
X/k)

G).

Therefore the exact sequence (3.8) implies that:

dimkH1(Y, π∗Ω
•
X/k)

G = dimkH1(Y, πG∗ Ω•X/k) + dimkH
1(G, k) + c1,

where c1 is given by (3.12). One proceeds analogously as in the wildly rami�ed case to obtain:

δ(X,G) = (c2 − c1).

Again, it remains to prove that c1 = c2.
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Proof � the end. Recall that in order to prove Proposition 3.2.1 we have to investigate
the map

H2(G,H0(Y,F•))→ R2ΓG(F•) (3.16)

arising in the exact sequence (3.8).

Lemma 3.2.4. Let F• be complex of O[G]-sheaves on a ringed space (Y,O), which is a
noetherian topological space of dimension 1. Suppose that F j = 0 for j 6= 0, 1 and that the
support of the sheaf Hi(G,F j) is a �nite subset of Y for i ≥ 1 and j ∈ {0, 1}. There exists a
natural monomorphism

H0(Y,H2(G,F•)) ↪→ R2ΓG(F•).

It is an isomorphism, provided that F• is a complex concentrated in degree 0.

Proof. Note that for i ≥ 2, j ≥ 1 in the spectral sequence (3.5):

IE
ij
2 = Hi(Y,Hj(G,F•)) = 0.

Indeed, this follows from (1.11), since for every l, H i(Y,Hj(G,F l)) = 0 for i, j ≥ 1 (cf.
[Har77, Theorem III.2.7]), for i ≥ 2 and for j ≥ 2. Thus it is evident that there exists a
natural monomorphism

H0(Y,H2(G,F•)) = IE
02
2 = IE

02
∞ ↪→ R2ΓG(F•).

Suppose now that F• is concentrated in degree 0. Then IE
ij
2 = 0 for i, j ≥ 1 and for i ≥ 2.

Therefore IE
11
∞ = IE

11
2 = 0 and IE

20
∞ = IE

20
2 = 0, which leads to the conclusion.

Corollary 3.2.5. There exists a commutative diagram

H2(G,H0(Y,F•)) R2ΓG(F•)

H0(Y,H2(G,F•)),

where the upper arrow is (3.16), and the diagonal arrow is as in Lemma 3.2.4.

Proof. The morphism F• → F0[0] yields by functoriality the commutative diagram:

H2(G,H0(Y,F•)) R2ΓG(F•) H0(Y,H2(G,F•))

H2(G,H0(Y,F0)) R2ΓG(F0) H0(Y,H2(G,F0)).
∼=

By composing the maps from the diagram we obtain a map

H2(G,H0(Y,F•)) → H2(G,H0(Y,F0)) (3.17)

→ R2ΓG(F0) ∼= H0(Y,H2(G,F0)).

One easily checks that the image of the map (3.17) lies in the image of

H0(Y,H2(G,F•)) ↪→ H0(Y,H2(G,F0)).

This clearly completes the proof.
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We are now ready to �nish the proof of Proposition 3.2.1. Recall that we are left with
showing that c1 = c2 (where c1 and c2 are given by (3.12) and (3.15) respectively). By using
Corollary 3.2.5 for F• = π∗Ω

•
X/k, Lemma 3.2.4 and the equality

H0(Y, π∗Ω
•
X/k) = H0(Y, π∗OX) = k

we obtain:

c1 = dimk ker

(
H2(G,H0(Y, π∗Ω

•
X/k))→ R2ΓG(π∗Ω

•
X/k)

)
= dimk ker

(
H2(G,H0(Y, π∗Ω

•
X/k))→ H0(Y,H2(G, π∗Ω

•
X/k))

)
= dimk ker

(
H2(G,H0(Y, π∗OX))→ H0(Y,H2(G, π∗OX))

)
= dimk ker

(
H2(G,H0(Y, π∗OX))→ R2ΓG(π∗OX)

)
= c2.

3.3. Local terms for the Artin-Schreier coverings

The main goal of this section is to compute the local terms occuring in Proposition 3.2.1 in
case when G = Z/p. We start by recalling the most important facts concerning Artin�Schreier
coverings. For a reference see e.g. [PZ12, sec. 2.2]. Let X be a smooth algebraic curve with an
action of G = Z/p over an algebraically closed �eld k of characteristic p and let Y := X/G.
By Artin�Schreier theory, the function �eld of X equals k(Y )(z), where:

zp − z = f (3.18)

for some f ∈ k(Y ). The action of G = 〈σ〉 ∼= Z/p is then given by σ(z) := z + 1. Let P ⊂ Y
denote the branch locus of the quotient morphism π : X → Y . Note that P is contained in
the set of poles of f and moreover for any Q ∈ Y :

#π−1(Q) =

{
p, for Q 6∈ P,
1, otherwise.

Lemma 3.3.1. Keep the above setting. Fix a point Q ∈ P and let π−1(Q) = {P}. Suppose
that p - n := vQ(f). Then for some t ∈ ÔX,P and x ∈ ÔY,Q:

• ÔX,P = k[[t]], ÔY,Q = k[[x]],

• t−np − t−n = x−n,

• the action of G ∼= Z/p on t is given by an automorphism:

σ(t) =
t

(1 + tn)1/n
= t− 1

n
tn+1 + (terms of order ≥ n+ 2). (3.19)

In particular, n is equal to nQ as de�ned in the Setup 3.0.1.
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Proof. Let x, t be arbitrary uniformizers at Q and P respectively. Then ÔY,Q = k[[x]] and
ÔX,P = k[[t]]. Before the proof observe that for h ∈ k[[x]] the equation um = h(x) has a
solution u ∈ k[[x]], whenever p - m and m|vQ(h) (this follows easily from Hensel's lemma).
We will denote a �xed solution by h(x)1/m. Note that:

f−1 =
z−p

1− z1−p .

By comparing the valuations we see that vP (z) = −n. Thus we may replace t by z−1/n to
ensure that z = t−n. Then:

σ(t)n = σ(tn) = σ

(
1

z

)
=

1

z + 1
=

1

t−n + 1
=

tn

1 + tn

and thus we can assume without loss of generality (by replacing σ by its power if necessary)
that σ(t) = t

(1+tn)1/n
. Finally, we replace x by f(x)−1/n to ensure that t−np− t−n = x−n.

Example 3.3.2. Let X/k be the smooth projective curve with the a�ne part given by the
equation:

ym = f(zp − z),

where f is a separable polynomial and p - m. Denote by P the set of points of X at in�nity (i.e.
of points of X that do not belong to the a�ne part). One checks that #P = GCD(m,deg f) =:
δ (cf. [Tow96, Section 1]). The group G = Z/p acts on X via the automorphism ϕ(z, y) =
(z + 1, y). Then X is a Z/p-covering of a curve Y with the a�ne equation:

ym = f(x).

The function �eld of X is k(Y )(z), where zp − z = x. As proven in [Tow96] the function
x ∈ k(Y ) has δ poles, each of them of order m/δ. This establishes the formula:

nP =

{
m/δ, if P ∈ P,
0, otherwise.

(3.20)

In particular, the action of G on X is weakly rami�ed if and only if m|deg f .

Remark 3.3.3. Suppose that π : X → Y is an Artin-Schreier covering. For every point
Q ∈ P we can �nd functions fQ ∈ k(Y ), zQ ∈ k(X) such that the function �eld of X is
given by the equation zpQ − zQ = fQ and either fQ ∈ OY,Q or p - vQ(fQ). Indeed, in order
to obtain fQ one can repeatedly subtract from f a function of the form hp − h, where h is a
power of a uniformizer at Q.

Example 3.3.4. It might not be possible to �nd a function f such that the function �eld of
X is given by (3.18) and for any pole Q of f one has p - vQ(f). Take for example an ordinary
elliptic curve X/Fp. Let τ : X → X be the translation by a p-torsion point. Consider the
action of G = 〈τ〉 ∼= Z/p on X. This group action is free and hence nP = 0 for all P ∈ X.
Thus, if k(X) would have an equation of the form zp − z = f , where p - vQ(f) for all Q ∈ P,
then f would have no poles. This easily leads to a contradiction.

Keep the notation of Lemma 3.3.1. Fix an integer a ∈ Z and denote:

48



• B := ÔY,Q = k[[t]], L := k((t)), I := taB,

• A := ÔX,P = k[[x]], K := k((x)).

In the Lemma below we will computeH1(G, I). The dimension ofH1(G, I) is computed also in
[BM00, Théoréme 4.1.1] and [Kon07, formula (18)]. However, we need an explicit description
of a basis of H1(G, I).

Lemma 3.3.5. Keep the notation introduced in Lemma 3.3.1 and above.

(1) H1(G, I) may be identi�ed with

M := coker(LG → (L/I)G).

(2) A basis of H1(G, I) is given by the images of the elements (ti)i∈J in M , where

J := {a− n ≤ i ≤ a− 1 : p - i}.

(3) dimkH
1(G, I) = n−

[
a−1
p

]
+
[
a−1−n

p

]
.

(4) The images of the elements:

ti for a− n ≤ i ≤ a− 1 where p|i

are zero in M .

Proof. For any h ∈ L, we will denote its images in L/I andM by [h]L/I and [h]M , respectively.

(1) The proof follows by taking the long exact sequence of cohomology for the short exact
sequence of k[G]-modules:

0→ I → L→ L/I → 0

and using the Normal Base Theorem (cf. [Jac85, sec. 4.14]).

(2) Note that for any a− n ≤ i ≤ a− 1, we have [ti]L/I ∈ (L/I)G, since

σ([ti]L/I) = [σ(ti)]L/I = [(t− 1

n
tn+1 +O(t2n))i]L/I =

= [ti − i

n
ti+n +O(t2n)]L/I = [ti]L/I .

We will show now that the set ([ti]M )i∈J spans M . Note that LG = K. Therefore it
su�ces to show that for any [h]L/I ∈ (L/I)G, one has

h ∈ K +
⊕
i∈J

k · ti. (3.21)

Let h =
∑a−1

i=N ait
i ∈ L, where aN 6= 0. Observe that if p|j and aj 6= 0, then we may

replace h by h− c · xj/p for a suitable constant c ∈ k, since valuation of x in L equals p.
Thus without loss of generality we may assume that aj = 0 for p|j and that p - N . The
equality σ([h]L/I) = [h]L/I is equivalent to

a−1∑
i=N

aiσ(t)i =
a−1∑
i=N

ait
i +

∞∑
i=a

bit
i
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for some ba, ba+1, . . . ∈ k. By using equality (3.19) this implies:

a−1∑
i=N

ait
i ·
(

1− i

n
tn +O(t2n)

)
=

a−1∑
i=N

ait
i +

∞∑
i=a

bit
i.

By comparing coe�cients of tN+n, we see that either N + n ≥ a, or

aN ·
(
−N
n

)
+ aN+n = aN+n.

The second possibility easily leads to a contradiction. This proves (3.21). We check now
linear independence of the considered elements. Suppose that for some ai ∈ k not all equal
to zero: ∑

i∈J
ai[t

i]M = 0

or equivalently, ∑
i∈J

ait
i =

∑
j≥N

bjx
j +

∑
j≥a

cjt
j (3.22)

for some bj , cj ∈ k, bN 6= 0. Consider the coe�cient of tpN in (3.22). Observe that
x = tp +O(tp+1), since vP (x) = p. We see that either pN ≥ a (which is impossible, since∑

i∈J ait
i 6∈ I) or 0 = bN + 0, which also leads to a contradiction. This ends the proof.

(3) Follows immediately from (2).

(4) Note that

x =
1

(t−np − t−n)1/n
=

tp

(1− tn·(p−1))1/n

= tp · (1 +O(tn·(p−1)))

and thus for any a− n ≤ i ≤ a− 1, p|i:

xi/p = ti · (1 +O(tn·(p−1))) = ti +O(ta)

and [ti]L/I = [xi/p]L/I , which shows that [ti]M = 0.

Proposition 3.3.6. Keep the Setup 3.0.1 and suppose that G ∼= Z/p. Then for any Q ∈ Y
the dimension of

im

(
H1(G, (π∗OX)Q)→ H1(G, (π∗ΩX/k)Q)

)
equals [

(nQ + 1) · (p− 1)

p

]
− 1−

[
nQ − 1

p

]
.

Proof. Fix a point Q ∈ P and keep the above notation. Note that ̂(π∗OX)Q ∼= B, π̂∗ΩX/k =

B dt. Moreover, note that dt
tn+1 is a G-invariant form, since from the equation t−np−t−n = x−n

one obtains:

dt

tn+1
= − dx

xn+1
.
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Thus we have the following isomorphism of B[G]-modules:

B dt −→ tn+1B

h(t) dt = tn+1h(t) · dt

tn+1
7−→ tn+1h(t)

(cf. [Kon07, proof of Lemma 1.11.] for the �dual� version of this isomorphism). Lemma 3.3.5
implies that H1(G,B) and H1(G,B dt) may be identi�ed with

M1 := coker(LG → (L/B)G) and M2 := coker((Ldt)G → (Ldt/B dt)G),

respectively. One easily checks that the morphism d : H1(G,B) → H1(G,B dt) corresponds
to

d : M1 →M2, d([h(t)]M1) = [dh(t)]M2 = [h′(t) dt]M2 .

By using Lemma 3.3.5 (2), (4) for a = 0 and a = n+1 we see that the basis of im(d : M1 →M2)
is

[dti]M2 = [iti−1 dt]M2 for i = −n,−n+ 1, . . . ,−1, p - i, i+ n 6≡ 0 (mod p).

An elementary calculation allows one to compute the dimension of this space.

Corollary 3.3.7. Suppose that X is a smooth projective curve over an algebraically closed
�eld k of characteristic p > 0 with an action of the group G = Z/p. Then:

δ(X,G) =
∑
P∈X

([
(p− 1) · (nP + 1)

p

]
− 1−

[
nP − 1

p

])
.

Proof. Corollary 3.3.7 follows immediately by combining Propositions 3.2.1 and 3.3.6.

3.4. Equivariant splitting of the Hodge�de Rham exact sequence

Let X be a smooth algebraic variety over k equipped with an action of a �nite group G. We
say that the pair (X,G) lifts to W2(k), if there exists a smooth scheme X̃ over W2(k) and a
homomorphism G→ AutW2(k)(X̃) such that

(X̃,G→ AutW2(k)(X̃))×W2(k) k = (X,G→ Autk(X)).

The following proposition is a G-equivariant version of Theorem 1.3.1 and follows easily from
the functoriality of the result of Deligne and Illusie.

Theorem 3.4.1. Suppose that the pair (X,G) lifts to W2(k) and that dimX < p. Then the
exact sequence (3.2) of k[G]-modules splits.

Proof. Since dimX < p, we can apply Theorem 1.3.1 to obtain the isomorphism:

ϕ•
X̃

:
⊕
i

Ωi
X′/k[−i]→ F∗Ω

•
X/k. (3.23)

By tracing through the proof of [DI87, Théoréme 2.1], one sees that ϕ0
X̃
, the zeroth component

of ϕ•
X̃
, is the composition of maps:

OX′ [0]
C−1

→ h0(F∗Ω•X/k)[0] ↪→ F∗Ω•X/k.
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Thus, by applying the �rst cohomology to (3.23) we obtain an isomorphism:

φ
X̃

: H0(X ′,Ω1
X′/k)⊕H

1(X ′,OX′)→ H1(X ′, F∗Ω•X/k)
∼= H1(X,Ω•X/k) (3.24)

which yields a splitting of (3.2). Now, observe that ϕ
X̃
and φ

X̃
are functorial with respect to

X̃. Thus, if (X,G) lifts to W2(k), (3.24) becomes an isomorphism of k[G]-modules.

Remark 3.4.2. If G is a cyclic p-group and V is a k[G]-module with dimk V <∞, one may
easily prove that V ∼= V ′ as k[G]-modules.

The following important question remains open.

Question 3.4.3. Suppose that the pair (X,G) lifts to W2(k). Does it follow that the exact
sequence of k[G]-modules (3.1) splits?

Corollary 3.4.4. Suppose that a �nite group G acts on an ordinary curve X. Then the exact
sequences (3.1) and (3.2) split G-equivariantly and

H0(X,ΩX/k)
′ ∼= H0(X,ΩX/k), H1(X,OX)′ ∼= H1(X,OX).

as k[G]-modules.

Proof. Let A be the Jacobian variety of X. Observe that the Abel-Jacobi map induces an iso-
morphism between the Hodge-de Rham sequences of X and A (cf. [Mil08, Proposition III.2.1,
Lemma III.9.5.]). The same applies to the conjugate Hodge-de Rham sequence. Moreover, A
is ordinary, and thus the natural inclusions:

H0(A,ΩA/k)→ H1
dR(A/k), H1(A,OA)′ → H1

dR(A/k)

induce an isomorphism H1
dR(A/k) ∼= H0(A,ΩA/k) ⊕ H1(A,OA)′ (cf. [Wed08, �2.1]). This

isomorphism is clearly functorial and thus is an isomorphism of k[G]-modules. The remaining
statement is clear.

Let X be a curve. Following [Köc04], we say that the action of G on X is weakly rami�ed

if nP ∈ {0, 1} for every P ∈ X.

Theorem 3.4.5. Keep the Setup 3.0.1. If p > 2 and either of the sequences (3.1) and (3.2)
splits G-equivariantly, then the action of G on X is weakly rami�ed.

Proof. We start by proving the result for the exact sequence (3.1). We consider �rst the case
G = Z/p. An easy computation shows that for any n ≥ 1, p ≥ 3 one has:[

(p− 1) · (n+ 1)

p

]
≥ 1 +

[
n− 1

p

]
with an equality only for n = 1 (here is where we use the assumption p > 2). Thus by Corol-
lary 3.3.7, δ(X,G) = 0 holds if and only if π is weakly rami�ed.

Suppose now that G is arbitrary and GP,2 6= 0 for some P ∈ X. Note that GP,2 is a
�nite p-group (cf. [Ser79, Corollary 4.2.3., p. 67]) and thus contains a subgroup H of order p.
Observe that π : X → X/H is an Artin-Schreier covering and it is not weakly rami�ed, since
HP,2 = H 6= 0. Therefore by the �rst paragraph of the proof, the sequence (3.1) does not split
H-equivariantly and therefore it cannot split as a sequence of k[G]-modules.

Note that for a k[G]-module V of �nite k-dimension, dimV G = dim(V ′)G. Thus for the
sequence (3.2) the proof is analogous.
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The example below is a direct generalization of results proven in [KT18].

Example 3.4.6. Let X be the curve considered in Example 3.3.2. If the Hodge�de Rham
exact sequence of X splits G-equivariantly, then by Theorem 3.4.5 and the formula (3.20) we
have either p = 2, or m| deg f .

We give now some applications of Theorem 3.4.5. The following is an immediate conse-
quence of Theorem 3.4.5 and Theorem 3.4.1.

Corollary 3.4.7. Suppose that p > 2, X is a smooth projective curve over k and the pair
(X,G) lifts to W2(k). Then the action of G on X is weakly rami�ed.

Note that it was known previously that non-weakly rami�ed actions on curves do not lift
to W (k) (cf. [Nak86, Corollary, Sec. 4]). Observe also that Corollary 3.4.4 and Theorem 3.4.5
imply that ordinary curves admit only weakly rami�ed group actions. This follows also from
the Deuring-Shafarevich formula (cf. [Sub75]). We will show now that the Jacobian of a curve
with a non-weakly rami�ed group action has no �canonical lifting�.

Corollary 3.4.8. In the above notation, suppose that the action of G on X is non-weakly ram-
i�ed. Then the Hodge�de Rham exact sequence of A := Jac(X) does not split G-equivariantly.
In particular, A has no lifting A to W2(k) such that the natural map:

EndW2(k)(A)→ Endk(A)

is an isomorphism.

Proof. To prove the �rst statement, it su�ces to note that the Abel-Jacobi map induces
an isomorphism between the Hodge-de Rham sequences of a curve and its Jacobian variety
(cf. [Mil08, Proposition III.2.1, Lemma III.9.5.]). The second statement follows from Theo-
rem 3.4.1.

3.5. The G-�xed subspaces

This section will be devoted to proving a partial converse statement to Theorem 3.4.5.
The methods used to prove Theorem 3.4.5 seem to be insu�cient to obtain a positive

result regarding splitting of the exact sequence (3.1). However, we may say something about
the G-�xed subspaces of the vector spaces in the sequence (3.1).

Theorem 3.5.1. Keep the Setup 3.0.1. If the action of G is weakly rami�ed then the sequence

0→ H0(X,ΩX/k)
G → H1

dR(X/k)G → H1(X,OX)G → 0

is exact also on the right.

Proof. By Proposition 3.2.1 it is su�cient to show that the map

H1(G, (π∗OX)π(P ))→ H1(G, (π∗ΩX/k)π(P ))

is zero for every P ∈ X. Just as in the proof of Proposition 3.7.1 we observe that

H1(G, (π∗OX)π(P )) ∼= H1(GP,0, k)⊕H1(GP ,mX,P ).

However, the map d : k → ΩX/k is zero and thus the induced map

d : H1(GP,0, k)→ H1(G, (π∗ΩX/k)π(P ))

is also zero. Moreover, since π is weakly rami�ed, by a result of Köck (cf. [Köc04, Theorem
1.1]), H1(GP,0,mX,P ) = 0. This ends the proof.
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Note that if an action of a �nite group G on X is weakly rami�ed then the action of any
subgroup ofG onX is also weakly rami�ed. Therefore the condition imposed by Theorem 3.5.1
on the Hodge�de Rham exact sequence of X seems to be strong from the group theoretical
point of view. This raises the following question:

Question 3.5.2. Suppose that k is a �eld of characteristic p > 0 and G is a �nite group. Let

0→ A→ B → C → 0 (3.25)

be an exact sequence of k[G]-modules of �nite dimension over k. Assume that for every sub-
group H ≤ G the sequence

0→ AH → BH → CH → 0

is exact. Does it follow that the exact sequence (3.25) splits G-equivariantly?

We will show in the next subsection that the answer to the Question 3.5.2 is negative for
char k = 2. The following lemma reduces the Question 3.5.2 to the case of p-groups.

Lemma 3.5.3. Let k be a �eld of characteristic p > 0 and let G be a �nite group with a
p-Sylow subgroup P . Suppose that

0→ A→ B → C → 0 (3.26)

is an exact sequence of k[G]-modules. Then (3.26) splits as an exact sequence of k[G]-modules
if and only if it splits as an exact sequence of k[P ]-modules.

Proof. The proof is adapted from the proof of Maschke's theorem. Suppose that s : C → B
is a k[P ]-equivariant section of the map B → C. Let P \G = {Pg1, . . . , Pgm}, where p - m =
[G : P ]. Then, as one easily checks

s̃ : C → B, s̃(x) :=
1

m

m∑
i=1

g−1
i s(gix)

is a k[G]-equivariant section of B → C.

Unfortunately we are able to answer Question 3.5.2 only for the class of groups that have
'tame' modular representation theory, i.e. for groups with a cyclic p-Sylow subgroup.

Lemma 3.5.4. Suppose that k is a �eld of characteristic p > 0 and G is a �nite group with
a cyclic p-Sylow subgroup. Let

0→ A→ B → C → 0 (3.27)

be an exact sequence of k[G]-modules. If the sequence

0→ AG → BG → CG → 0

is exact on the right, then the exact sequence (3.27) splits G-equivariantly.

Proof. Without loss of generality we can assume that G = Z/pn is a cyclic p-group (by
Lemma 3.5.3). Note that k[Z/pn] ∼= k[x]/(x − 1)p

n
. The classi�cation theorem of �nitely

generated modules over the principal ideal domain k[x] (cf. [DF04, Theorem 12.1.5]) implies
that every �nitely generated indecomposable k[Z/pn]-module is of the form:

Ji = k[x]/(x− 1)i for some i = 1, . . . , pn.

Let also J0 denote the zero module. Using the Smith's normal form theorem (cf. [DF04,
Theorem 12.1.4]) we obtain a commutative diagram:
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A B

⊕l
i=1 Jai

⊕m
i=1 Jbi ,

∼= ∼=

where l ≤ m, ai ≤ bi and Jai ↪→ Jbi is the natural inclusion. Hence, we are reduced to proving
the claim for the exact sequence:

0→ Ja → Jb → Jc → 0,

where a+ b = c, 0 ≤ a, b, c ≤ pn. However, the equality

dimk J
G
s =

{
1, if s 6= 0,

0, otherwise

makes it obvious that a = 0 or c = 0. This �nishes the proof.

3.6. A counterexample

In this section we give an example of an elliptic curve over a �eld of characteristic 2 with
a weakly rami�ed group action, for which the sequence (3.1) does not split equivariantly. It
remains unclear whether similar counterexamples will arise over �elds of odd characteristic.

Consider an elliptic curve X over the �eld k := F2 with the a�ne part U0 given by the
equation:

y2 + y = x3.

Note that X \ U0 = {O}, where O is the point at in�nity. The group G of automorphisms of
X that �x O is of order 24 and is isomorphic to Sl2(F3). In particular its 2-Sylow subgroup is
isomorphic to the quaternion group Q8. This group action may be given explicitly, cf. [Sil09,
Appendix A] or [KST17, Section 3]. Let:

A := {(u, r, t) : u ∈ F×4 , t ∈ F4, t2 + t+ r3 = 0}.

De�ne for any (u, r, t) ∈ A an automorphism gu,r,t ∈ Aut(X) by:

gu,r,t · (x, y) := (u2x+ r, y + u2r2x+ t).

We will compute H1
dR(X/k) using �ech cohomology. Recall that if a curve X may be covered

by a�ne subsets U0, U∞, then:

H1
dR(X/k) ∼=

{(ω0, ω∞, f0∞) : df0∞ = ω0 − ω∞}
{(df0, df∞, f0 − f∞) : fi ∈ OX(Ui)}

,

where we take ωi ∈ ΩX(Ui) for i = 0,∞ and f0∞ ∈ OX(U0 ∩ U∞). In our case, we may take
U0 as above and U∞ = X ∩{x 6= 0}. Then, by [KT18, Theorem 2.2.], one sees that H1

dR(X/k)

is a k-vector space of dimension 2, generated by v1 := [(dx, dx, 0)] and v2 := [(x dx, y dx
x2
, yx)].

Lemma 3.6.1. In the above situation:

(1) H1
dR(X/k) is an indecomposable k[G]-module,

(2) the action of G on X is weakly rami�ed.
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Proof. (1) Suppose that V is a G-invariant proper subspace of H1
dR(X/k). We will show that

V = Spank(v1). Indeed, otherwise we would have V = Spank(v) for some v = α · v1 + v2

and α ∈ k. Note that for g = gu,r,t:

gv1 = u2v1

gv2 = u2tv1 + uv2.

Thus:

g · v = (α · u2 + u2 · t) · v1 + uv2.

Therefore g · v ∈ V if and only if α · u2 + u2 · t = uα, which leads to the equation:

(1− u) · α = ut.

The last equality is however impossible to hold for all (u, r, t) ∈ A and a �xed α ∈ k.
Indeed, one can take e.g. (u, r, t) = (1, 0, 1), (1, 1, ζ) for any ζ ∈ F4 \F2 to obtain a desired
contradition.

(2) One easily sees that if gP = P and g 6= id then P = O. Thus we are left with showing
that GO,2 = 0. Observe that ordO(x) = −2 and ordO(y) = −3. Hence the function t := x

y
is the uniformizer at O. For g = gu,r,t one has:

g(t)− t =
(u2 + 1) · xy + u2r2 · x2 + r · y + t · x

y · (y + u2r2x+ t)

and

ordO(g(t)− t) =

{
2, if u = 1,

1, if u 6= 1.

Therefore GO,2 = 0 and

GO,1 = {g1,r,s : (1, r, s) ∈ A} ∼= Q8.

3.7. Computing the dimension of H1(X,OX)G

For completeness we include also the following proposition, which allows in many situations to
compute dimensions of H0(X,ΩX/k)

G, H1(X,OX)G and H1
dR(X/k)G in terms of invariants

of Y and group cohomology of sheaves. Note that by Corollary 3.1.4 and Proposition 3.2.1 we
are left with computing the dimension of H1(X,OX)G.

Proposition 3.7.1. Keep the Setup 3.0.1, in particular G acts on X and π : X → Y is the
quotient map. Suppose that there exists Q0 ∈ Y such that p - #π−1(Q0). Then:

dimkH
1(X,OX)G = gY +

∑
Q∈Y

H1(G, (π∗OX)Q)

− dimkH
1(G, k).
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Proof. By substituting F0 = π∗OX in the formula (3.14) and using Lemma 3.2.4 and Corol-
lary 3.2.5 it su�ces to prove that the natural map

H2(G, k) ∼= H2(G,H0(Y, π∗OX))→ H0(Y,H2(G, π∗OX)) (3.28)

is injective. One easily sees that

H2(G, π∗OX) ∼=
⊕
Q∈Y

(iQ)∗

(
H2(G, (π∗OX)Q)

)
is a direct sum of skyscraper sheaves. Choose any P0 ∈ π−1(Q0). Observe that by Lemma 3.1.2
we have:

H2(G, (π∗OX)Q) ∼= H2(GP0,1,OX,P0).

But OX,P0
∼= k ⊕mX,P0 as a k[GP0,1]-module and therefore

H2(GP0,1,OX,P0) ∼= H2(GP0,1, k)⊕H2(GP0,1,mX,P0).

One easily sees that the map (3.28) factors as

H2(G, k)→ H2(GP0,1, k) ↪→ H2(GP0,1, k)⊕H2(GP0,1,mX,P0),

where the �rst map is the restriction resGGP0,1
. Note that p - #π−1(Q0) = [G : GP0 ] and thus

GP0,1 is a p-Sylow subgroup of G by [Ser79, Corollary 4.2.3., p. 67]. Thus by (1.17) resGGP0,1

is an isomorphism. This ends the proof.

Example 3.7.2. Keep the Setup 3.0.1 and suppose that G ∼= Z/p. Then by Lemma 3.3.1, one
has dQ = (nQ + 1) · p for all Q ∈ Y and therefore:

R′ =
∑
Q∈Y

[
(nQ + 1) · (p− 1)

p

]
(Q). (3.29)

Moreover, by Lemma 3.3.5:

dimkH
1(G, (π∗OX)Q) =

[
(nQ + 1) · (p− 1)

p

]
.

Suppose that the action of G on X is not free. Then by Corollary 3.1.4, Proposition 3.7.1 and
(3.29) we obtain:

dimkH
0(X,ΩX/k)

G = dimkH
1(X,OX)G

= gY − 1 +
∑
Q∈Y

[
(nQ + 1) · (p− 1)

p

]
.

Moreover, by previous computations and by Proposition 3.2.1 we obtain:

dimkH
1
dR(X/k)G = 2(gY − 1)

+
∑
Q∈Y

([
(nQ + 1) · (p− 1)

p

]
+ 1 +

[
nQ − 1

p

])
.

If the action of G is free, then a similar reasoning leads to the formulas:

dimkH
0(X,ΩX/k)

G = dimkH
1(X,OX)G = gY ,

dimkH
1
dR(X/k)G = 2gY .
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4
Class numbers of division �elds

Let A be an abelian variety of dimension g over a number �eld K. Fix a rational prime p.
Denote by Kn := K(A[pn]) the pn-th division �eld of A. We de�ne the number kn by the
equality:

# Cl(Kn)[p∞] = pkn .

The goal of this chapter is to prove a lower bound for kn. In order to achieve this, we use
Kummer theory of abelian varieties to produce large unrami�ed abelian extensions of abelian
varieties. In order to bound inertia groups in the Kummer extension we will base change a
given abelian variety to a p-adic �eld and then use methods such as the theory of Néron
models and classi�cation theorem for compact p-adic Lie groups. This chapter is based on the
article [Gar19b].

Setup 4.0.1. Keep the above setting. Denote by r the rank of A(K) over EndK(A). Let Ln
be the Kummer extension of Kn, κn be the Kummer pairing and Γ(n) be the Kummer map,
as de�ned in Subsection 1.2.6. Let I(P) denote the inertia group of the extension Ln/Kn at
a prime P ∈ Spec(OLn). Let us �x p ∈ Spec(OK). We introduce the following notation:

• Fp := OK/p � a �nite �eld of characteristic ` (in the sequel we will consider two separate
cases: ` 6= p and ` = p),

• K̂p � completion of K at p with the ring of integers O
K̂p

,

• I(n)
p := 〈

⋃
P I(P)〉 � the subgroup of Gal(Ln/Kn) generated by the inertia groups of all

primes P of Ln over p,

• A � the Néron model of A over K̂p with the special �ber Ap, the connected component
of the identity A0

p and the group of geometric components ΦAp (cf. Subsections 1.2.4
and 1.1.4 for the relevant de�nitions),

• pαp � the exponent of the group ΦAp(Fp)[p
∞],

• pβp � the exponent of the group A(K̂p)[p
∞],

• hp := 2g − r(Ap), if A has good reduction at p (where r(Ap) is de�ned by (1.6)) and
hp := 2g, if A has bad reduction at p,

• mp is de�ned by the condition (1.10).
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Note that αp = 0 whenever A has good reduction at p. Also, βp is �nite, since A(K̂p) contains
a subgroup of �nite index isomorphic to Od

K̂p
, cf. Theorem 1.2.3. However, it is unknown

whether βp = 0 holds for almost all p, even in the case of elliptic curves over Q, cf. Conjec-
ture 2.3.1.

Finally, de�ne I(n) to be the subgroup of Gal(Ln/Kn), generated by all the subgroups I(n)
p :

I(n) :=

〈 ⋃
p∈Spec(OK)

I
(n)
p

〉
.

4.1. Proof of the bounds

In this Section we prove a lower bound for kn, assuming some bounds on inertia groups, which
will be proven later. The main idea behind the proof is to control the rami�cation in Ln/Kn.
A standard argument used in the proof of the weak Mordell-Weil theorem shows that the only
possible rami�ed primes of Ln/Kn, are the primes lying over primes of bad reduction for A
or primes over p (see e.g. [HS00, Proposition C.1.5]). We need to bound the inertia group for
those primes. We will estimate the order of interia groups I(n)

p separately for p - p and for
p|p. In order to do this, we will work in the local setting. Keep the Setup 4.0.1. We have the
following proposition:

Proposition 4.1.1. If p - p, then:

#I
(n)
p ≤ p2grmin{αp,βp}.

Note that in particular this bound is independent of n and that it equals 1 for primes p of
good reduction for A. Proposition 4.1.1 will be proven in Section 4.2. In Section 4.3 we will
estimate the order of I(n)

p for p|p and will prove the following result.

Proposition 4.1.2. If p|p, then:

#I
(n)
p ≤ php·min{d·[K̂p:Qp], r}·n+rhpβp .

Before the proof of the bound on kn we need one more lemma:

Lemma 4.1.3. The �eld Kn has no real embeddings for (p, n) 6= (2, 1).

Proof. Suppose to the contrary that σ : Kn ↪→ R is a real place of Kn. Then one may view A
as an abelian variety over the �eld R, satisfying A(R)[pn] = (Z/pn)2g. On the other hand, we
have by Proposition 1.2.2:

A(R) ∼= (S1)g × (Z/2)t

for some integer 0 ≤ t ≤ g. Thus:

A(R)[pn] ∼= (Z/pn)g × (Z/2)t[pn],

which leads to a contradiction for (p, n) 6= (2, 1).

The result proved below may be considered as the main theorem of this chapter.
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Theorem 4.1.4. Let A/K be an abelian variety of dimension g. Denote by r the maximal
possible number of EndK(A)-independent points of A(K). Then:

kn ≥

2rg −
∑
p|p

hp ·min
{

[K̂p : Qp] · g, r
} · n− C,

where the constant C depends on K, A and p.

Proof. Let L̃n be the maximal unrami�ed extension ofKn inside Ln. Then it must be a sub�eld
of the Hilbert class �eld of Kn. The degree of the Hilbert class �eld of Kn is # Cl(Kn) and
thus:

[L̃n : Kn] divides # Cl(Kn). (4.1)

Note that by Propositions 4.1.1 and 4.1.2:

#I(n) ≤
∏
p

#I
(n)
p =

∏
p|p

#I
(n)
p ·

∏
p-p

#I
(n)
p ≤

≤ p
∑

p|p(hp min{g·[K̂p:Qp], r}·n+rhpβp)+2gr·
∑

p-p min{αp, βp}. (4.2)

By Lemma 4.1.3 Kn has no real places and thus any extension of Kn is unrami�ed at in�nite
places. Therefore L̃n = (Ln)I

(n)
, which yields (using Corollary 1.2.17):

[L̃n : Kn] = [Ln : Kn]/#I(n) ≥ p2gnr−mp/#I(n) (4.3)
(4.2)

≥ p(2gr−
∑

p|p hp min{g·[K̂p:Qp],r})·n−C ,

where for (p, n) 6= (2, 1) one can take:

C := 2gr
∑
p-p

min{αp, βp}+ r
∑
p|p

hpβp +mp. (4.4)

The proof follows by combining (4.1), (4.3) and noting that [L̃n : Kn] must be a power of p,
since [Ln : Kn] is a power of p.

Corollary 4.1.5. Let A/Q be an abelian variety of dimension g. If either of the following
condition holds:

• r ≥ 1, A has good reduction at p and r(Ap) > 0,

• r > g,

then:

lim
n→∞

# Cl(Kn) =∞.

Proof. By Theorem 4.1.4:
kn ≥ (2rg − hp min{g, r}) · n.

If any of the above conditions holds then the right-hand side tends to in�nity.

61



4.2. Inertia groups over ` 6= p

In this section we estimate the order of the inertia group I(n)
p for a prime p ∈ Spec(OK), p - p.

We use the Setup 4.0.1.

Proposition 4.2.1. If p - p, then
#I

(n)
p ≤ p2grβp .

Proof. Let us �x a point P ∈ A(K̂p). Recall that ` is the rational prime below p. By the
classi�cation theorem of compact `-adic Lie groups (cf. Theorem 1.2.3):

A(K̂p) ∼= Og
K̂p
×A(K̂p)tors ∼= Zg·[K̂p:Q`]

` ×A(K̂p)tors

as topological groups. Note that multiplication by p is an isomorphism on Z`. Therefore and
by the de�nition of βp:

pβpA(K̂p) ∼= Zg·[K̂p:Q`]
` × T,

where T is a �nite group satisfying p - #T . This implies that multiplication by p on pβpA(K̂p)
is an isomorphism and

pβpP = pnR

for some R ∈ A(K̂p). Thus for the Kummer map κn:

pβpκn(P, σ) = κn(pβpP, σ) = κn(pnR, σ) =

= Rσ −R = 0

for any σ ∈ Ip. In particular, taking P = Pi for i = 1, . . . , r we obtain:

Γ(n)(I
(n)
p ) ⊂ A[pβp ]⊕r.

This ends the proof, since Γ(n) is injective.

We now move on to prove the second estimate on the order of I(n)
p . Let K̂ur

p be the maximal
unrami�ed extension of K̂p inside Q`. We denote its ring of integers by Our and the maximal
ideal of Our by mur. Recall that the reduction morphism extends to K̂ur

p (cf. Remark 1.2.14).

Proposition 4.2.2. If p - p then

#I
(n)
p ≤ p2grαp .

Proof. Consider A as the Néron model for A over Our. Let α := αp and

c := #ΦAp(Fp).

Fix P ∈ Ap(K̂p). We have c · redp(P ) ∈ A0
p(Fp). But A0

p is a connected commutative group
scheme over Fp, an algebraically closed �eld of characteristic ` 6= p and thus by Lemma 1.1.2:

c · redp(P ) = pnR′

for some R′ ∈ A0
p(Fp). But the reduction homomorphism is surjective (cf. Lemma 1.2.11) and

thus R′ = redp(R) for some R ∈ A(R′), i.e.

cP − pnR ∈ ker
(
redp : A(Kur)→ Ap(Fp)

)
= Â(mur)
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(cf. (1.7) for the last equality). Note that p is invertible in Our. Thus the multiplication
by p is an automorphism of the formal group Â(mur) (cf. Lemma 1.3) and Â(mur) is p-
divisible. Therefore (modifying R by some element of Â(mur) if necessary) we can assume
that cP = pnR. Note that c = pα · c′, where p - c′. Thus we can modify R by a multiple of P
to obtain:

pαP = pnR,

where R ∈ A(K̂ur
p ). This implies for the Kummer map κn:

pακn(P, σ) = κn(pαP, σ) = κn(pnR, σ) =

= Rσ −R = 0

for any σ ∈ I(n)
p . Therefore Γ(n)(I

(n)
p ) ⊂ A[pα]⊕r and we are done.

Proof of Proposition 4.1.1. It follows by combining Propositions 4.2.1 and 4.2.2.

Remark 4.2.3. The form of the bound in Proposition 4.1.1 raises a natural question: are
both inequalities αp < βp and αp > βp possible? The answer is yes. It turns out that in the
case of elliptic curves with split multiplicative reduction both cases are possible.

• Let vp(x) denote the p-adic valuation of x. We choose primes `, p such that vp(` −
1) = k ≥ 2. Consider the Tate curve Eq/Q`, where q = `. Then by [Sil94, Corollary
IV.9.2.(d)] Φ`(F`) is trivial. On the other hand, one easily checks that

Eq(Q`)[p] ∼= (Q`/q
Z)[p] = 〈ζpk〉 ∼= Z/pk,

thus α` = 0 < β` = k.

• Let `, p be primes such that vp(`− 1) = 1. Note that not every element of Q×` is a p-th

power, since F×` /(F
×
` )p 6= 1. Let a ∈ Q×` \ (Q×` )p and q := `p

k · a for some k ≥ 2.
Consider the Tate curve Eq/Q`. Using again [Sil94, Corollary IV.9.2.(d)] we obtain:

Φ`(F`) ∼= Z/(v`(q)) ∼= Z/pk.

On the other hand, one easily checks that

Eq(Q`)[p] ∼= (Q`/q
Z)[p] = 〈ζp〉 ∼= Z/p,

thus β` = 1 < α` = k.

However, it turns out that it is possible to compare the exponents of Φ`(F`)[p∞] andA(K̂ur
p )[p∞].

Proposition 4.2.4. Let pγp be the exponent of A(K̂ur
p )[p∞]. Then

αp ≤ γp.

Proof. Let F/Fp be a �nite �eld extension such that ΦAp(F) = ΦAp(Fp) and let K̂ ′p be the
�nite unrami�ed extension of K̂p with F as the residue �eld. By a similar argument as in
proof of Proposition 4.2.1 the group pγpA(K̂ ′p) is p-divisible. Therefore pγpΦAp(F) must also
be p-divisible and thus (since it is a �nite group) it contains no p-torsion. It follows that
αp ≤ γp.
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4.3. Inertia groups over p

In this section we estimate the order of I(n)
p in the remaining case when p|p. Again, we use the

Setup 4.0.1. Assume for a while that A has good reduction at p. In this case we can extend
the reduction homorphism to the algebraic closure Kp of K̂p (cf. Remark 1.2.14). Let:

Hn :=

{
ker
(
redp : A(Kp)[p

n]→ Ap(Fp)
)
, if A has good reduction at p,

A[pn], otherwise.

One easily sees that |Hn| = pnhp .

Proof of Proposition 4.1.2. Observe that Γ(n)(I
(n)
p ) ⊂ H⊕rn . If A has bad reduction at p, then

this obviously holds true. If A has good reduction at p, then for all σ ∈ I(n)
p :

redp(κn(Pi, σ)) = redp(Pi)
σ − redp(Pi) = 0

by Néron�Ogg�Shafarevich criterion (cf. Lemma 1.2.13). This yields the bound:

#I
(n)
p ≤ #H⊕rn = phprn.

We put b := g · [K̂p : Qp]. Using the classi�cation theorem of compact p-adic Lie groups (cf.
Theorem 1.2.3) we obtain:

A(K̂p) ∼= Og
K̂p
×A(K̂p)tors ∼= Zbp ×A(K̂p)tors.

Let G be the group generated by the images of pβpP1, . . . , p
βpPr inside the group

pβpA(K̂p)/p
n+βpA(K̂p) ∼= (Z/pn)b.

The group G is generated by images of at most b elements Q1, . . . , Qb ∈ A(K̂p). Suppose

pβpPi ≡
∑
j

aijQj (mod pnA(K̂p)) for some ai ∈ Z.

Then for σ ∈ I(n)
p we have:

pβpκn(Pi, σ) =
∑
j

aijκn(Qj , σ). (4.5)

Consider the homomorphism Ψ(n) : I
(n)
p → H⊕bn , Ψ(n)(σ) =

⊕b
i=1 κn(Qi, σ). Note that the

equality (4.5) implies that Γ(n)(ker Ψ(n)) ⊂ H⊕rβp and thus, since Γ(n) is injective, #(ker Ψ(n)) ≤
phprβp . Finally we obtain:

#I
(n)
p = #Ψ(n)(I

(n)
p ) ·#(ker Ψ(n)) ≤

≤ phpbn · phprβp = phpbn+hprβp .
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4.4. Kummer theory and the surjectivity of ρA,p

The results presented in previous sections are insu�cient to obtain any e�ective bound on mp.
We will prove a criterion for mp to vanish. This will allow us to give an explicit numerical
example in Section 4.5.

Theorem 4.4.1. Suppose that the image of the p-adic representation

ρA,p : GK → GSp2g(Zp)

associated to the abelian variety A contains Sp2g(Zp). Then the map Γ(∞) is an isomorphism.

The proof of Theorem 4.4.1 will occupy the rest of this section. First, we need few pre-
liminary lemmas concerning the symplectic groups. Recall that for any commutative unital
ring R:

GSp2g(R) := {M ∈M2g(R) : MΩMT = λ(M) · Ω for some λ(M) ∈ R×},

where Ω =

(
0 Ig
−Ig 0

)
. Note that λ(M) may be considered as a surjective homomorphism

GSp2g(R) → R×. Its kernel is denoted by Sp2g(R). For any local ring R with the maximal
ideal m we introduce the following notation:

GSp2g(R)n := {M ∈ GSp2g(R) : M ≡ I2g (mod mn)}
= ker

(
GSp2g(R)→ GSp2g(R/m

n)
)
.

We de�ne Sp2g(R)n in a similar manner.

Lemma 4.4.2. If R is a local ring, then for any positive integers m,n:

[GSp2g(R)n,GSp2g(R)m] = [Sp2g(R)n,Sp2g(R)m] = Sp2g(R)n+m.

Proof. The �rst equality is immediate. The second equality follows from [Sos78, Theorem,
page 843] by taking br := mr, f(i, j, k) = k and by noting that a maximal ideal in a local ring
must be quasi-regular.

Lemma 4.4.3. The representation of Sp2g(Fp) on the Fp-vector space:

sp2g(Fp) = {M ∈M2g(Fp) : MΩ + ΩMT = 0}

(given by conjugation) is irreducible.

Proof. Let S(2) be the space of symmetric matrices in M2g(Fp) with an action of Sp2g(Fp)
given by:

(A,M) 7→ AMAT

Note that one may also identify S(2) with the space of quadratic forms over Fp in 2g variables.
The maps:

S(2)→ sp2g(Fp), M 7→MΩ

sp2g(Fp)→ S(2), N 7→ −NΩ

provide isomorphisms of Fp[Sp2g(Fp)]-modules. It su�ces now to note that S(2) is a simple
Fp[Sp2g(Fp)]-module by [SZ, Proposition 2.2.].
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The following proposition is a generalization of [SY15, Lemma 2.2] to the case of abelian
varieties.

Proposition 4.4.4. If the image of ρA,p : Gal(K/K) → GSp2g(Zp) contains Sp2g(Zp) then
L1 ∩K∞ = K1.

Proof. Let N := L1 ∩K∞. Let K(p)
1 be the maximal abelian extension of exponent p of K1

inside of K∞. Then obviously N ⊂ K
(p)
1 . Moreover, both Gal(K

(p)
1 /K1) and Gal(N/K1) are

Fp[Gal(K1/K)]-modules. We will compare their structure as Fp[Sp2g(Fp)]-modules. Note that
by assumption

Sp2g(Zp)1 ⊂ Gal(K∞/K1) ⊂ GSp2g(Zp)1.

By Lemma 4.4.2 we see that

[Gal(K∞/K1),Gal(K∞/K1)] = [Sp2g(Zp)1,Sp2g(Zp)1]

= [GSp2g(Zp)1,GSp2g(Zp)1]

= Sp2g(Zp)2.

Therefore we have:
Sp2g(Zp)ab1 ≤ Gal(K∞/K1)ab ≤ GSp2g(Zp)ab1

and

GSp2g(Zp)ab1
∼= GSp2g(Zp)1/Sp2g(Zp)2

∼= Sp2g(Z/p2)1 × (1 + pZp)
∼= sp2g(Fp)× Zp,

where:

• the isomorphism GSp2g(Zp)1/ Sp2g(Zp)2
∼= Sp2g(Z/p2)1 × (1 + pZp) is given by

A 7→ (λ(A)−1 ·A, λ(A)),

• the isomorphism Sp2g(Z/p2)1
∼= sp2g(Fp) is given by I + pM 7→M .

Analogously, we have: Sp2g(Zp)ab1
∼= sp2g(Fp). This implies easily that

Gal(K
(p)
1 /K1) ∼= sp2g(Fp)× (Z/p)i for i ∈ {0, 1}

as Fp[Sp2g(Fp)]-modules (with trivial action on Z/p and action on sp2g(Fp) given by conjuga-
tion). The assumption implies thatA[p] is an irreducible Sp2g(Fp)-module. Thus Gal(L1/K1) ∼=
A[p]⊕r

′
for some r′ ≤ r. Moreover, since

Gal(L1/K1) ∼= A[p]⊕r
′
� Gal(N/K1),

we obtain Gal(N/K) ∼= A[p]⊕s for some s ≤ r′. On the other hand:

Gal(K
(p)
1 /K1) ∼= sp2g(Fp)× (Z/p)i � Gal(N/K1),

and since sp2g(Fp) and Z/p are simple Fp[Sp2g(Fp)]-modules, which are non-isomorphic to
A[p], we obtain s = 0 and N = K1.
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Proof of Theorem 4.4.1. It su�ces to check that Γ(∞) is surjective. One easily checks that
Sp2g(Zp) ⊂ ρp(GK) implies that the axioms B1, B2 and B3 from [Rib79] are satis�ed. Thus
by [Rib79, Theorem 1.2] Γ(1) is an isomorphism. By Proposition 4.4.4 we obtain L1∩K∞ = K1.
Consider the commutative diagram:

Gal(L∞/K∞) Tp(A)⊕r

Gal(L1/L1 ∩K∞) = Gal(L1/K1) A[p]⊕r.

Γ(∞)

Γ(1)

∼=
Note that the Zp-modules

M := Γ(∞)(Gal(L∞/K∞)) and N := Tp(A)⊕r

satisfy M ⊂ N and

M ⊗Zp Zp/pZp = Γ(1)(Gal(L1/K1)) ∼= A[p]⊕r = N ⊗Zp Zp/pZp.

Therefore M = N by Nakayama's lemma, which ends the proof.

4.5. A numerical example

In order to illustrate our estimates of class numbers we o�er a numerical example. Consider
the genus two curve over Q with label 25913.a.25913 in [LMF20]. Its a�ne part is given by
the equation:

X : y2 + (x3 + x+ 1)y = x3 − x2 − 2x.

Let A = Jac(X) be the Jacobian variety of X. Its endomorphism ring EndQ(A) equals Z. By
using Magma we compute that A(Q) ∼= Z3. By Theorem 4.1.4 for each prime we have the
following estimate (since hp ≤ 4):

kn ≥ 2 · (2 · 3− 4) · n− C = 4n− C,

where C = C(p) is a constant. We compute now the constant C for almost all primes p.
The conductor of A is 25913, which is a prime number. Let p be a prime outside of the set
S := {2, 3, 5, 7, 25913}.

• Using algorithm described in [Die02], we check that the Galois representation ρ` : GQ →
GSp4(Z`) is surjective for primes ` outside S (note that the primality of the conductor
simpli�es the calculations � cf. [Die02, Remark 5.14]). Thus by Theorem 4.4.1 we have
mp = 0.

• Using Magma we check that for every prime p the Tamagawa number of A at p is trivial
and thus αp = 0.

• By (1.4) the formal group Â(pZp) ∼= ker (redp : A(Qp)→ Ap(Fp)) is torsion-free and
thus pβp divides the exponent of Ap(Fp). Therefore by Weil's estimate we obtain βp ≤ 2.

Finally, using (4.4) it follows that we may take C = 24 in this case, i.e.

kn ≥ 4n− 24.
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Notation

• categories:

� Ob(A ) � the class of objects in a category A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 15

� HomA (A,B) � the class of morphisms between two objects of A . . . . . . . . . . p. 15

� Sch/S � the category of schemes over a base scheme S . . . . . . . . . . . . . . . . . . . . p. 15

� GS/S � the category of �nite �at commutative group schemes over S . . . . . . p. 17

� p-div/S � the category of p-divisible groups over S . . . . . . . . . . . . . . . . . . . . . . . . p. 18

� Sch/R (resp. GS/R, etc.) � the category of schemes (resp. group schemes, etc.)
over SpecR

� Artk � the category of local Artin rings with k as a residue �eld . . . . . . . . . . .p . 23

� R -mod � the category of modules over a ring R

� O -mod � the category of modules over a sheaf O
� ExtiA (A,B) � the i-th Ext functor in a category A . . . . . . . . . . . . . . . . . . . . . . . p . 17

� RiF � the i-th derived functor of a functor F

• homological algebra:

� C(A ) � the category of cochain complexes of an abelian category A . . . . . . . p. 25

� C+(A ) � the category of non-negative cochain complexes . . . . . . . . . . . . . . . . . . p. 25

� hi(C•) � the i-th cohomology of a complex C• ∈ Ob(C(A )) . . . . . . . . . . . . . . . . p. 25

� A[i] � the cochain complex satisfying

A[i]j =

{
A, j = i

0, j 6= i.

for a �xed object A ∈ Ob(A ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 25

• schemes:

� XT � the base change of an S-scheme X via a morphism T → S

� Ω•X/k � the de Rham complex of a k-scheme X . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 25
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� Hi(X,F•) � the i-th hypercohomology of a complex F• ∈ Ob(C(OX -mod)) p. 25

� X ′ � the Frobenius twist of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 26

� F = FX/k : X → X ′ � the relative Frobenius of X/k . . . . . . . . . . . . . . . . . . . . . . . p. 26

� C−1 : Ωi
X′ → hi(F∗Ω

•
X) � the Cartier isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . .p. 26

� Hi(G,F) � the i-th group cohomology of a G-sheaf F . . . . . . . . . . . . . . . . . . . . . p. 27

� RX � the constant sheaf on X associated to a ring R . . . . . . . . . . . . . . . . . . . . . . p. 39

� k(X) � the function �eld of an integral k-scheme X . . . . . . . . . . . . . . . . . . . . . . . . p. 39

� Div(X) � the group of divisors on X

� Spf R � the formal spectrum of a ring R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 18

• group schemes:

� Lie(G) � the Lie algebra of an algebraic group G . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 16

� [n] : G→ G � the multiplication-by-n morphism . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 16

� #G � the order of the �nite �at group scheme G . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 16

� G[n] � the kernel of [n] : G→ G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 16

� G0 � the connected component of identity of a �nite �at group scheme G . . p. 17

� Get � the maximal étale quotient of a �nite �at group scheme G . . . . . . . . . . . p. 17

� G∨ � the Cartier dual of a �nite �at group scheme . . . . . . . . . . . . . . . . . . . . . . . . . p. 17

� Ĝ � the completion of a group scheme G along the identity section . . . . . . . . .p. 18

� Ga = Ga,S � the additive group scheme over S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 15

� Gm = Gm,S � the multiplicative group scheme over S . . . . . . . . . . . . . . . . . . . . . . p. 15

� Γ = ΓS � the constant group scheme with �ber Γ over S . . . . . . . . . . . . . . . . . . . p. 15

� µn = µn,S � the group scheme of n-th roots of unity . . . . . . . . . . . . . . . . . . . . . . . p. 15

� Qp/Zp � the p-divisible group given by (Z/pn)n . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 18

� µp∞ � the p-divisible group given by (µpn)n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 18

• number theory:

� ordp x � the multiplicative order of x ∈ F×p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 36

� vp(x) � the valuation associated to a maximal ideal p in a Dedekind ring

� IK := ker(GK → Gk) � the inertia group of a local �eld K . . . . . . . . . . . . . . . . . . . .22

� W (k) � the ring of Witt vectors over a �eld k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

� Wn(k) � the ring of Witt vectors of length over a �eld k . . . . . . . . . . . . . . . . . . . p. 26

� OK � the ring of integers in a number �eld/local �eld K . . . . . . . . . . . . . . . . . . . p. 28

� Cl(K) � the class group of a �eld K (i.e. the class group of OK) . . . . . . . . . . . p. 28

� ζn � a primitive n-th root of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 28

� Knr � the maximal unrami�ed extension of a local �eld K

� K̂p � the completion of a �eld K with respect to a prime ideal p ∈ SpecOK p. 22

• abelian varieties and abelian schemes:

� HomK(A1, A2) � algebraic group morphisms A1 → A2 . . . . . . . . . . . . . . . . . . . . . p. 19
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� EndK(A) := HomK(A,A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 19

� T`A � the `-adic Tate module of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 21

� ρ` � the `-adic Galois representation of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 21

� r(A) � the p-rank of an abelian variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 20

� πA � the Frobenius endomorphism of A/Fq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 30

� Kn := K(A[pn]) � the pn-th divison �eld of A/k . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 24

� Ln � the pn-th Kummer �eld of A/k (for some �xed P1, . . . , Pr ∈ A(K)) . . . p. 24

� K∞ =
⋃
nKn, L∞ =

⋃
n Ln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 24

� κn � the Kummer pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 24

� Γ(n) � the Kummer representation of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 24

� mp � the number de�ned by pmp = [Tp(A)⊕r : Γ(∞)(Gal(L∞/K∞))] . . . . . . . . p. 24

� A � the Néron model of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 22

� AB := AB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 22

� Ap := AR/p � the �ber of A over p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 22

� ΦAp � the group scheme of geometric components . . . . . . . . . . . . . . . . . . . . . . . . . . p. 22

� Â � the formal group associated to A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 22

� redp, redp,n � reduction homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 22

� DefA/k(R) � deformations of an abelian variety A/k to R . . . . . . . . . . . . . . . . . . p. 23

� MA/k � the formal torus pro-representing DefA/k . . . . . . . . . . . . . . . . . . . . . . . . . . p. 30

� Dn,d(A/K) � the (n, d)-degree of A over K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 33

� apd(E) � the pd-Frobenius trace of an elliptic curve E/Fp . . . . . . . . . . . . . . . . . . p. 36

� pαp � the exponent of the group ΦAp(Fp)[p
∞] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 59

� pβp � the exponent of the group A(Kp)[p
∞] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 59

� hp := 2g−r(Ap), if A has good reduction at p and hp := 2g, if A has bad reduction
at p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 59

• abstract algebra:

� H ≤ G � H is a subgroup of G

� G[n] � the n-torsion subgroup of an abelian group G

� Gtors � the subgroup of torsion elements of an abelian group G

� Q8 � the quaternion group on 8 elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 55

� M̂ � the completion of a module over a local ring w.r.t. its maximal ideal . . p. 27

� MG � the set of G-�xed points for an R[G]-module M . . . . . . . . . . . . . . . . . . . . . p. 26

� H i(G,M) � group cohomology of a G-module M . . . . . . . . . . . . . . . . . . . . . . . . . . p. 26

� IndGHM � G-module induced from an H-module M . . . . . . . . . . . . . . . . . . . . . . . .p. 27

� GK := Gal(Ksep/K) � the absolute Galois group of a �eld K . . . . . . . . . . . . . . p. 21

� Sp2g(R) � the symplectic group of dimension 2g over a ring R . . . . . . . . . . . . . p. 65

� GSp2g(R) � the general symplectic group of dimension 2g over a ring R . . . . p. 65

� GSp2g(R)n = ker
(
GSp2g(R)→ GSp2g(R/m

n)
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 65
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� sp2g � the Lie algebra of Sp2g

� V ′ � the k-vector space with the same underlying abelian group as V and the scalar
multiplication (λ, v) 7→ λp · v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 26

� R× � the subgroup of units in a ring R

• coverings of curves:

� π : X → Y := X/G � the quotient morphism by an action of a group G . . . . p. 39

� gY � the genus of the curve Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 39

� R =
∑

P∈X dP · (P ) � the rami�cation divisor of π . . . . . . . . . . . . . . . . . . . . . . . . . p. 39

� R′ :=
[
π∗R
#G

]
∈ Div(Y ) (the integral part taken coe�cient by coe�cient) . . . . p. 39

� GP,i � the i-th rami�cation group of π at P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 39

� eP � the rami�cation index of π at P ∈ X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 39

� nP := max{n : GP,n 6= 0} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 39
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