
On linear isometries on non-archimedean

power series spaces
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Abstract. The non-archimedean power series spaces Ap(a, t) are the most

known and important examples of non-archimedean nuclear Fréchet spaces. We

study when the spaces Ap(a, t) and Aq(b, s) are isometrically isomorphic. Next we

determine all linear isometries on the space Ap(a, t) and show that all these maps

are surjective.

1 Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field

K which is complete under the metric induced by the valuation | · | : K → [0,∞).

For fundamentals of locally convex Hausdorff spaces (lcs) and normed spaces we

refer to [2], [4] and [6].

Let Γ be the family of all non-decreasing unbounded sequences of positive real

numbers. Let a = (an), b = (bn) ∈ Γ. The power series spaces of finite type A1(a)

and infinite type A∞(b) were studied in [1] and [7] – [9]. In [7] it has been proved

that Ap(a) has the quasi-equivalence property i.e. any two Schauder bases in Ap(a)

are quasi-equivalent ([7], Corollary 6).

The problem when Ap(a) has a subspace (or quotient) isomorphic to Aq(b) was

studied in [8]. In particular, the spaces Ap(a) and Aq(b) are isomorphic if and only if

p = q and the sequences a, b are equivalent i.e. 0 < infn(an/bn) ≤ supn(an/bn) <∞
([8], Corollary 6).
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For p ∈ (0,∞] we denote by Λp the family of all strictly increasing sequences

t = (tk) of real numbers such that limk tk = ln p (if p =∞, then ln p :=∞).

Let p ∈ (0,∞], a = (an) ∈ Γ and t = (tk) ∈ Λp. Then the following linear space

Ap(a, t) = {(xn) ⊂ K : limn |xn|etkan = 0 for all k ∈ N} with the base (‖ · ‖k) of the

norms ‖(xn)‖k = maxn |xn|etkan , k ∈ N, is a Fréchet space with a Schauder basis.

Clearly, A1(a) = A1(a, t) for a = (an) ∈ Γ, t = (tk) = (ln k
k+1

), and A∞(b) = A∞(b, s)

for b = (bn) ∈ Γ, s = (sk) = (ln k). Let q(p) = 1 for p ∈ (0,∞) and q(∞) = ∞. It

is not hard to show that for every p ∈ (0,∞], a = (an) ∈ Γ and t = (tk) ∈ Λp the

space Ap(a, t) is isomorphic to Aq(p)(b) for some b ∈ Γ.

Thus we can consider the spaces Ap(a, t) as power series spaces.

In this paper we study linear isometries on power series spaces.

First we show that the spaces Ap(a, t) and Aq(b, s), for p, q ∈ (0,∞], t = (tk) ∈
Λp, s = (sk) ∈ Λq and a = (an), b = (bn) ∈ Γ, are isometrically isomorphic if and

only if there exist C,D ∈ R such that sk = Ctk + D and ak = Cbk for all k ∈ N,
and for every k ∈ N there is ψk ∈ K with |ψk| = e−(D/C)ak (Theorem 1).

Let p ∈ (0,∞], t = (tk) ∈ Λp and a = (an) ∈ Γ.

Let (Ns) be a partition of N into non-empty finite subsets such that (1) ai = aj

for all i, j ∈ Ns, s ∈ N; (2) ai < aj for all i ∈ Ns, j ∈ Ns+1, s ∈ N.
We prove that a linear map T : Ap(a, t)→ Ap(a, t) with Tej =

∑∞
i=1 ti,jei, j ∈ N,

is an isometry if and only if (1) |ti,j| ≤ e(aj−ai)t1 when ai < aj; (2) |ti,j| ≤ e(aj−ai) ln p

when ai > aj (e−∞ := 0); (3) max(i,j)∈Ns×Ns |ti,j| = 1 and | det[ti,j](i,j)∈Ns×Ns | = 1 for

s ∈ N; (Theorem 5 and Proposition 7).

In particular, if the sequence (an) is strictly increasing, then a linear map T :

Ap(a, t) → Ap(a, t) with Tej =
∑∞

i=1 ti,jei, j ∈ N, is an isometry if and only if (1)

|ti,j| ≤ e(aj−ai)t1 when i < j; (2) |ti,j| ≤ e(aj−ai) ln p when i > j; (3) |ti,i| = 1 for i ∈ N.
Finally we show that every linear isometry on Ap(a, t) is surjective (Corollary 10

and Theorem 12). Thus the family Ip(a, t) of all linear isometries on Ap(a, t) forms

a group by composition of maps.

2 Preliminaries

The linear span of a subset A of a linear space E is denoted by linA.

By a seminorm on a linear space E we mean a function p : E → [0,∞) such

that p(αx) = |α|p(x) for all α ∈ K, x ∈ E and p(x + y) ≤ max{p(x), p(y)} for all

x, y ∈ E. A seminorm p on E is a norm if {x ∈ E : p(x) = 0} = {0}.
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If p is a seminorm on a linear space E and x, y ∈ E with p(x) 6= p(y), then

p(x+ y) = max{p(x), p(y)}.
The set of all continuous seminorms on a lcs E is denoted by P(E). A non-

decreasing sequence (pk) of continuous seminorms on a metrizable lcs E is a base in

P(E) if for any p ∈ P(E) there are C > 0 and k ∈ N such that p ≤ Cpk. A complete

metrizable lcs is called a Fréchet space.

Let E and F be locally convex spaces. A map T : E → F is called an isomor-

phism if it is linear, injective, surjective and the maps T, T−1 are continuous. If

there exists an isomorphism T : E → F , then we say that E is isomorphic to F .

The family of all continuous linear maps from E to F we denote by L(E,F ).

Let E and F be Fréchet spaces with fixed bases (‖ · ‖k) and (‖| · ‖|k) in P(E) and

P(F ), respectively. A map T : E → F is an isometry if ‖|Tx− Ty‖|k = ‖x−y‖k for

all x, y ∈ E and k ∈ N; clearly, a linear map T : E → F is an isometry if and only if

‖|Tx‖|k = ‖x‖k for all x ∈ E and k ∈ N. A linear map T : E → F is a contraction

if ‖|Tx‖|k ≤ ‖x‖k for all x ∈ E and k ∈ N. A rotation on E is a surjective isometry

T : E → E with T (0) = 0.

By [3], Corollary 1.7, we have the following

Proposition A. Let m ∈ N. Equip the linear space Km with the maximum norm.

Let T : Km → Km be a linear map with Tej =
∑m

i=1 ti,jei for 1 ≤ j ≤ m. Then T is

an isometry if and only if maxi,j |ti,j| = 1 and | det[ti,j]| = 1.

A sequence (xn) in a lcs E is a Schauder basis in E if each x ∈ E can be

written uniquely as x =
∑∞

n=1 αnxn with (αn) ⊂ K, and the coefficient functionals

fn : E → K, x→ αn(n ∈ N) are continuous.

The coordinate sequence (en) is an unconditional Schauder basis in Ap(a, t).

3 Results

First we show when the power series spaces Ap(a, t) and Aq(b, s) are isometrically

isomorphic.

Theorem 1. Let p, q ∈ (0,∞], t = (tk) ∈ Λp, s = (sk) ∈ Λq and a = (an), b = (bn) ∈
Γ. Then the spaces Ap(a, t) and Aq(b, s) are isometrically isomorphic if and only if

(1) there exist C,D ∈ R such that sk = Ctk +D and ak = Cbk for all k ∈ N;
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(2) for every k ∈ N there is ψk ∈ K with |ψk| = e−(D/C)ak .

In this case the linear map P : Ap(a, t) → Aq(b, s), (xn) → (ψnxn) is an isometric

isomorphism.

Proof. Let T : Ap(a, t) → Aq(b, s) be an isometric isomorphism and let

Tej =
∑∞

i=1 ti,jei for j ∈ N. Then maxi |ti,j|eskbi = etkaj for all j, k ∈ N; so

maxi |ti,j|eskbi−tkaj = 1 for j, k ∈ N. Let j, k ∈ N with k > 1. Then for some

i ∈ N we have |ti,j| = etkaj−skbi , |ti,j| ≤ etk+1aj−sk+1bi and |ti,j| ≤ etk−1aj−sk−1bi .

Hence we get (sk+1 − sk)bi ≤ (tk+1 − tk)aj and (tk − tk−1)aj ≤ (sk − sk−1)bi; so

sk+1 − sk
tk+1 − tk

≤ aj
bi
≤ sk − sk−1
tk − tk−1

.

Thus the sequence ( sk+1−sk
tk+1−tk

) is non-increasing. Similarly we infer that the sequence

( tk+1−tk
sk+1−sk

) is non-increasing, since the map T−1 : Aq(b, s) → Ap(a, t) is an isometric

isomorphism, too. It follows that the sequence ( sk+1−sk
tk+1−tk

) is constant, so there is

C > 0 such that sk+1−sk
tk+1−tk

= C for all k ∈ N.

Moreover, for every j ∈ N there is i ∈ N with aj/bi = C and for every i ∈ N
there is j ∈ N with bi/aj = 1/C. Thus {aj : j ∈ N} = {Cbi : i ∈ N}.

For l > 1 we have sl − Ctl = s1 − Ct1, since

sl − s1 =
l−1∑
k=1

(sk+1 − sk) = C
l−1∑
k=1

(tk+1 − tk) = C(tl − t1).

Put D = s1 − Ct1, then sk = Ctk +D for k ∈ N.

Let (jk) ⊂ N, (ik) ⊂ N be strictly increasing sequences such that {ajk : k ∈ N} =

{aj : j ∈ N}, {bik : k ∈ N} = {bi : i ∈ N} and ajk < ajk+1, bik < bik+1 for k ∈ N.

Hence we get ajk = Cbik for k ∈ N, since {aj : j ∈ N} = {Cbi : i ∈ N}.
Put j0 = i0 = 0 and Mr = {j ∈ N : jr−1 < j ≤ jr},Wr = {i ∈ N : ir−1 < i ≤ ir}

for r ∈ N; clearly Wr = {i ∈ N : Cbi = ajr}.
Let r ∈ N and (φj)j∈Mr ⊂ K with maxj∈Mr |φj| > 0. Then we have

max
j∈Mr

|φj|etkajr = max
j∈Mr

|φj|etkaj = ‖
∑
j∈Mr

φjej‖k = ‖T (
∑
j∈Mr

φjej)‖k =

‖
∑
j∈Mr

φj

∞∑
i=1

ti,jei‖k = ‖
∞∑
i=1

(
∑
j∈Mr

ti,jφj)ei‖k = max
i
|
∑
j∈Mr

ti,jφj|eskbi .

Thus

max
i
|
∑
j∈Mr

ti,jφj|eskbi−tkajr = max
j∈Mr

|φj|.
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Let k > 1. For some i ∈ N we have

|
∑
j∈Mr

ti,jφj| = max
j∈Mr

|φj|etkajr−skbi , |
∑
j∈Mr

ti,jφj| ≤ max
j∈Mr

|φj|etk+1ajr−sk+1bi

and

|
∑
j∈Mr

ti,jφj| ≤ max
j∈Mr

|φj|etk−1ajr−sk−1bi .

Hence we get (sk+1 − sk)bi ≤ (tk+1 − tk)ajr and (tk − tk−1)ajr ≤ (sk − sk−1)bi; so

Cbi ≤ ajr and ajr ≤ Cbi. Thus ajr = Cbi, so i ∈ Wr.

It follows that

max
i∈Wr

|
∑
j∈Mr

ti,jφj|eskbi−tkajr = max
j∈Mr

|φj|.

We have skbi − tkajr = (Ctk +D)ajr/C − tkajr = (D/C)ajr for i ∈ Wr; so

max
i∈Wr

|
∑
j∈Mr

ti,jφj|e(D/C)ajr = max
j∈Mr

|φj|.

Thus e−(D/C)ajr = |γr| for some γr ∈ K. Put ψj = γr for every j ∈ Mr. Then

|ψj| = e−(D/C)aj for j ∈ Mr. Since maxi∈Wr |
∑

j∈Mr
ti,jφj||ψ−1j | = maxj∈Mr |φj|, the

linear map

U : KMr → KWr , (φj)j∈Mr → (
∑
j∈Mr

ti,jψ
−1
j φj)i∈Wr

is an isometry, so |Mr| ≤ |Wr|. We have shown that jr − jr−1 ≤ ir − ir−1 for every

r ∈ N. Similarly we get ir − ir−1 ≤ jr − jr−1 for every r ∈ N, since T−1 is an

isometric isomorphism. Thus jr − jr−1 = ir − ir−1 for every r ∈ N; so jr = ir for

r ∈ N. It follows that aj = Cbj for j ∈ N.

Now we assume that (1) and (2) hold. Then the linear map

P : Ap(a, t)→ Aq(b, s), (xj)→ (ψjxj)

is an isometric isomorphism. Indeed, P is surjective since for any y = (yj) ∈ Aq(b, s)
we have x = (ψ−1j yj) ∈ Ap(a, t) and Px = y. For x ∈ Ap(a, t) and k ∈ N we have

‖Px‖k = max
j
|ψj||xj|eskbj = max

j
|xj|e−(D/C)aj+skbj = max

j
|xj|etkaj = ‖x‖k. 2

By obvious modifications of the proof of Theorem 1 we get the following two

propositions.
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Proposition 2. Let p ∈ (0,∞], t ∈ Λp and a = (an), b = (bn) ∈ Γ. Then Ap(b, t)

contains a linear isometric copy of Ap(a, t) if and only if a is a subsequence of b.

If (nj) ⊂ N is a strictly increasing sequence with aj = bnj
, j ∈ N, then the map

T : Ap(a, t) → Ap(b, t), (xj) → (yj), where yj = xk if j = nk for some k ∈ N, and

yj = 0 for all other j ∈ N, is a linear isometry.

Proposition 3. Let p, q ∈ (0,∞], t ∈ Λp, s ∈ Λq and a, b ∈ Γ. If there exist linear

isometries T : Ap(a, t) → Aq(b, s) and S : Aq(b, s) → Ap(a, t), then Ap(a, t) and

Aq(b, s) are isometrically isomorphic.

Remark 4. Let p, q ∈ (0,∞], t ∈ Λp, s ∈ Λq and a, b ∈ Γ. If P : Ap(a, t)→ Aq(b, s)

is an isometric isomorphism, then every isometric isomorphism T : Ap(a, t) →
Aq(b, s) is of the form P ◦ S where S is an isometric automorphism of Ap(a, t).

Now we determine all linear isometries on the space Ap(a, t). Recall that (Ns)

is a partition of N into non-empty finite subsets such that (1) ai = aj for all i, j ∈
Ns, s ∈ N; (2) ai < aj for all i ∈ Ns, j ∈ Ns+1, s ∈ N.

Theorem 5. Let p ∈ (0,∞], t = (tk) ∈ Λp and a = (an) ∈ Γ. Let T : Ap(a, t) →
Ap(a, t) be a continuous linear map and let Tej =

∑∞
i=1 ti,jei for j ∈ N.

Then T is an isometry if and only if

(1) |ti,j| ≤ e(aj−ai)t1 when ai < aj, and |ti,j| ≤ e(aj−ai) ln p when ai > aj;

(2) max(i,j)∈Ns×Ns |ti,j| = 1 and | det[ti,j](i,j)∈Ns×Ns| = 1 for all s ∈ N.

Proof. (⇒) For k, j ∈ N we have ‖Tej‖k = maxi |ti,j|etkai and ‖ej‖k = etkaj .

Thus maxi |ti,j|etk(ai−aj) = 1 for all j, k ∈ N. Hence |ti,j| ≤ etk(aj−ai) for all i, j, k ∈ N;

so |ti,j| ≤ infk e
tk(aj−ai) for all i, j ∈ N. It follows (1); moreover |ti,j| ≤ 1 when ai = aj.

Let s ∈ N, js = minNs and (βj)j∈Ns ⊂ K with maxj∈Ns |βj| > 0. Then we have

‖T (
∑
j∈Ns

βjej‖k = ‖
∑
j∈Ns

βj

∞∑
i=1

ti,jei‖k = ‖
∞∑
i=1

(
∑
j∈Ns

βjti,j)ei‖k = max
i
|
∑
j∈Ns

βjti,j|etkai

and ‖
∑

j∈Ns
βjej‖k = maxj∈Ns |βj|etkaj = (maxj∈Ns |βj|)etkajs for all k ∈ N. Thus

max
i
|
∑
j∈Ns

βjti,j|etk(ai−ajs ) = max
j∈Ns

|βj|, k ∈ N;

hence maxi∈Ns |
∑

j∈Ns
βjti,j| ≤ maxj∈Ns |βj|.
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Let k > 1. For some ik ∈ N we have

|
∑
j∈Ns

βjtik,j|etk(aik−ajs ) = max
j∈Ns

|βj|.

If aik < ajs , then

max
j∈Ns

|βj| ≥ |
∑
j∈Ns

βjtik,j|etk−1(aik−ajs ) > |
∑
j∈Ns

βjtik,j|etk(aik−ajs ) = max
j∈Ns

|βj|;

if aik > ajs , then

max
j∈Ns

|βj| ≥ |
∑
j∈Ns

βjtik,j|etk+1(aik−ajs ) > |
∑
j∈Ns

βjtik,j|etk(aik−ajs ) = max
j∈Ns

|βj|.

It follows that aik = ajs , so ik ∈ Ns and |
∑

j∈Ns
βjtik,j| = maxj∈Ns |βj|.

Thus the following linear map is an isometry

S : KNs → KNs , (βj)j∈Ns → (
∑
j∈Ns

βjti,j)i∈Ns .

By Proposition A we get max(i,j)∈Ns×Ns |ti,j| = 1 and | det[ti,j](i,j)∈Ns×Ns| = 1.

(⇐) Let x = (βj) ∈ Ap(a, t) and k ∈ N. Clearly, ‖Tx‖k = limm ‖T (
∑m

j=1 βjej)‖k
and ‖x‖k = limm ‖

∑m
j=1 βjej‖k. Thus to prove that ‖Tx‖k = ‖x‖k it is enough to

show that ‖T (
∑m

j=1 βjej)‖k = ‖
∑m

j=1 βjej‖k for all m ∈ N. Let m ∈ N. We have

T (
m∑
j=1

βjej) =
m∑
j=1

βj

∞∑
i=1

ti,jei =
∞∑
i=1

(
m∑
j=1

βjti,j)ei,

so L := ‖T (
∑m

j=1 βjej)‖k = maxi |
∑m

j=1 βjti,j|etkai ; clearly P := ‖
∑m

j=1 βjej‖k =

max1≤j≤m |βj|etkaj . We shall prove that L = P .

By (1) and (2) we have |ti,j| ≤ etk(aj−ai) for all i, j ∈ N. Hence for i ∈ N we get

|
m∑
j=1

βjti,j|etkai ≤ max
1≤j≤m

|βj|etkaj = P ;

so L ≤ P . If P = 0, then L = P . Assume that P > 0.

Put j0 = max{1 ≤ j ≤ m : |βj|etkaj = P} and βj = 0 for j > m. Let q, s ∈ N
with m ∈ Nq, j0 ∈ Ns. Put Ws =

⋃
{Nl : 1 ≤ l < s} and Ms =

⋃
{Nl : s < l ≤ q}.

Then |βj|etkaj ≤ |βj0|etkaj0 for j ∈ Ws, |βj|etkaj < |βj0|etkaj0 for j ∈ Ms and

maxj∈Ns |βj| = |βj0| > 0. By (2) and Proposition A, the linear map

S : KNs → KNs , (xj)j∈Ns → (
∑
j∈Ns

ti,jxj)i∈Ns
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is an isometry, so maxi∈Ns |
∑

j∈Ns
ti,jβj| = maxj∈Ns |βj| = |βj0|. Thus for some

i0 ∈ Ns, we have |
∑

j∈Ns
ti0,jβj| = |βj0 |; clearly ai0 = aj0 . If j ∈ Ws, then

|βj||ti0,j| ≤ |βj0|etk(aj0−aj)e(aj−aj0 ) ln p = |βj0|e(aj−aj0 )(ln p−tk) < |βj0|,

so |
∑

j∈Ws
βjti0,j| < |βj0|. If j ∈Ms, then

|βj||ti0,j| < |βj0 |etk(aj0−aj)et1(aj−aj0 ) = |βj0|e(aj−aj0 )(t1−tk) ≤ |βj0|,

so |
∑

j∈Ms
βjti0,j| < |βj0 |.

Thus

|
m∑
j=1

βjti0,j| = |
∑
j∈Ws

βjti0,j +
∑
j∈Ns

βjti0,j +
∑
j∈Ms

βjti0,j| = |βj0|,

so |
∑m

j=1 βjti0,j|etkai0 = |βj0|etkaj0 = P . Hence P ≤ L. Thus L = P . 2

By the proof of Theorem 5 we get the following.

Corollary 6. Let p ∈ (0,∞], t = (tk) ∈ Λp and a = (an) ∈ Γ. Let T ∈ L(Ap(a, t))

and Tej =
∑∞

i=1 ti,jei for j ∈ N. Then T is a contraction if and only if |ti,j| ≤
e(aj−ai)t1 when ai ≤ aj and |ti,j| ≤ e(aj−ai) ln p when ai > aj.

Proposition 7. Let p ∈ (0,∞], t = (tk) ∈ Λp and a = (an) ∈ Γ. Let (ti,j) ⊂ K with

(1) |ti,j| ≤ e(aj−ai)t1 when ai < aj, and |ti,j| ≤ e(aj−ai) ln p when ai > aj;

(2) max(i,j)∈Ns×Ns |ti,j| = 1 and | det[ti,j](i,j)∈Ns×Ns| = 1 for all s ∈ N.

Then there exists a linear isometry T on Ap(a, t) such that Tej =
∑∞

i=1 ti,jei, j ∈ N.

Proof. Let j ∈ N and k ∈ N. For i ∈ N with ai > aj we have |ti,j|etkai ≤
e(aj−ai) ln p+tkai = eaj ln p+ai(tk−ln p) if p ∈ (0,∞), and |ti,j|etkai = 0, if p = ∞. Thus

limi ‖ti,jei‖k = 0 for k ∈ N; so limi ti,jei = 0. Therefore the series
∑∞

i=1 ti,jei is

convergent in Ap(a, t) to some element Tej. Let x = (xj) ∈ Ap(a, t).
We shall prove that limj xjTej = 0 in Ap(a, t). By (1) and (2) we have |ti,j| ≤

etk(aj−ai) for all i, j, k ∈ N. Let k ∈ N and j ∈ N. Then |xj| ≤ e−tk+1aj‖x‖k+1;

moreover ‖Tej‖k = maxi |ti,j|etkai ≤ etkaj . Hence ‖xjTej‖k ≤ e(tk−tk+1)aj‖x‖k+1 for

j, k ∈ N; so limj xjTej = 0.

Thus the series
∑∞

j=1 xjTej is convergent in Ap(a, t) to some Tx for every x ∈
Ap(a, t). Clearly Tx = limn Tnx, where Tn : Ap(a, t)→ Ap(a, t), Tnx =

∑n
j=1 xjTej.

The linear operators Tn, n ∈ N, are continuous, so using the Banach-Steinhaus

theorem we infer that the operator T : Ap(a, t) → Ap(a, t), x → Tx is linear and

continuous. By Theorem 5, T is an isometry. 2

By Proposition 7 and the proof of Theorem 5 we get the following.
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Corollary 8. Let p ∈ (0,∞], t ∈ Λp and a ∈ Γ. Then a linear map T : Ap(a, t) →
Ap(a, t) is an isometry if and only if ‖Tej‖k = ‖ej‖k for all j, k ∈ N.

Finally we shall show that every linear isometry on the space Ap(a, t) is a surjec-

tion. For p =∞ it follows from Theorem 5 and our next proposition. For p ∈ (0,∞)

the proof is much more complicated.

Let p ∈ (0,∞], t = (tk) ∈ Λp and a = (an) ∈ Γ. Put Wk =
⋃k
i=1Ni,Mk =

⋃∞
i=kNi

for k ∈ N and Nk,m = Nk×Nm for all k,m ∈ N. For every m ∈ N there is v(m) ∈ N
with m ∈ Nv(m).

Proposition 9. Let p ∈ (0,∞], t = (tk) ∈ Λp and a = (an) ∈ Γ. Let D ∈ L(Ap(a, t))

with Dej =
∑∞

i=1 di,jei for j ∈ N. Assume that

(1) |di,j| ≤ et1(aj−ai) when ai < aj, and di,j = 0 when ai > aj;

(2) max(i,j)∈Ns,s |di,j| = 1 and | det[di,j](i,j)∈Ns,s| = 1 for all s ∈ N.

Then D is surjective.

Proof. We have lin{Dej : j ∈ Wk} ⊂ lin{ei : i ∈ Wk} for k ∈ N, since Dej =∑
i∈Wk

di,jei for j ∈ Nk, k ∈ N. By Theorem 5 the operator D is a linear isometry,

so D(Ap(a, t)) is a closed subspace of Ap(a, t) and the sequence (Dej)j∈Wk
is linearly

independent for every k ∈ N. Thus lin{Dej : j ∈ Wk} = lin{ei : i ∈ Wk}, k ∈ N; so

D(Ap(a, t)) ⊃ lin{ei : i ∈ N}. It follows that D is surjective. 2

Corollary 10. Let t = (tk) ∈ Λ∞ and a = (an) ∈ Γ. Every linear isometry on

A∞(a, t) is surjective.

Proposition 11. Let p ∈ (0,∞], t = (tk) ∈ Λp and a = (an) ∈ Γ. Let S ∈
L(Ap(a, t)) with Sej =

∑∞
i=1 si,jei for j ∈ N. Assume that

(1) si,j = 0 when ai < aj, and |si,j| ≤ e(aj−ai) ln p when ai > aj;

(2) max(i,j)∈Nk,k
|si,j| = 1 and | det[si,j](i,j)∈Nk,k

| = 1 for k ∈ N.

Then S is surjective.

Proof. For x = (xj) ∈ Ap(a, t) we have

Sx =
∞∑
j=1

xjSej =
∞∑
j=1

xj

∞∑
i=1

si,jei =
∞∑
i=1

(
∞∑
j=1

si,jxj)ei =
∞∑
i=1

(
∑

j∈Wv(i)

si,jxj)ei.

Let y = (yi) ∈ Ap(a, t). By (2) and Proposition A, there exists (xi)i∈N1 ⊂ K with

maxi∈N1 |xi| = maxi∈N1 |yi| such that
∑

j∈N1
si,jxj = yi for i ∈ N1.

Assume that for some l ∈ N with l > 1 we have chosen (xj)j∈Ns ⊂ K for 1 ≤ s < l.
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By (2) and Proposition A, there exists (xj)j∈Nl
⊂ K with

max
i∈Nl

|xi| = max
i∈Nl

|yi −
∑

j∈Wl−1

si,jxj|

such that
∑

j∈Nl
si,jxj = yi −

∑
j∈Wl−1

si,jxj for i ∈ Nl. Thus by induction we get

x = (xj) ∈ KN such that
∑

j∈Wl
si,jxj = yi for all i ∈ Nl, l ∈ N and

max
i∈N1

|xi| = max
i∈N1

|yi|, and max
i∈Nl

|xi| = max
i∈Nl

|yi −
∑

j∈Wl−1

si,jxj| for l > 1.

Let k ∈ N. Clearly, maxi∈W1 |xi|etkai = maxi∈W1 |yi|etkai . For l > 1, i ∈ Nl, j ∈ Wl−1

we have

|si,j||xj|etkai ≤ e(aj−ai) ln p+tkai |xj| = e(aj−ai)(ln p−tk)|xj|etkaj ≤ |xj|etkaj .

Thus by induction we get maxi∈Wl
|xi|etkai ≤ maxi∈Wl

|yi|etkai for all l ∈ N.

It follows that x ∈ Ap(a, t). We have

Sx =
∞∑
l=1

∑
i∈Nl

(
∑
j∈Wl

si,jxj)ei =
∞∑
l=1

∑
i∈Nl

yiei =
∞∑
i=1

yiei = y.

Thus S is a surjection. 2

Theorem 12. Let p ∈ (0,∞), t = (tk) ∈ Λp and a = (an) ∈ Γ. Every linear

isometry T on Ap(a, t) is surjective.

Proof. Let k,m ∈ N. Denote by Mk,m the family of all matrixes B =

[βi,j](i,j)∈Nk,m
with (βi,j) ⊂ K such that

a) |βi,j| ≤ e(aj−ai) ln p for (i, j) ∈ Nk,m, if k > m;

b) |βi,j| ≤ et1(aj−ai) for (i, j) ∈ Nk,m, if k < m;

c) |βi,j| ≤ 1 for (i, j) ∈ Nk,m and | det[βi,j](i,j)∈Nk,m
| = 1, if k = m.

By Proposition A, for every k ∈ N and B ∈ Mk,k we have B−1 ∈ Mk,k. Let

Tej =
∑∞

i=1 ti,jei for j ∈ N. Put Tk,m = [ti,j](i,j)∈Nk,m
and Ik,m = [δi,j](i,j)∈Nk,m

for all

k,m ∈ N. We define matrixes Dk,m, Sk,m ∈Mk,m for k ∈ N and m = 1, 2, 3, ... .

Put Dk,1 = Ik,1 and Sk,1 = Tk,1 for k ∈ N; clearly Dk,1, Sk,1 ∈ Mk,1 for k ∈ N.

Assume that for some m ∈ N with m > 1 we have Dk,j, Sk,j ∈ Mk,j for k ∈ N
and 1 ≤ j < m. Let D1,m = S−11,1T1,m. It is easy to see that D1,m ∈ M1,m, since

S−11,1 ∈M1,1 and T1,m ∈M1,m.
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Let Ck,m =
∑k−1

v=1 Sk,vDv,m and Dk,m = S−1k,k[Tk,m − Ck,m] for k = 2, 3, ...,m − 1.

Let 1 < k < m. Let [si,n](i,n)∈Nk,v
= Sk,v and [dn,j](n,j)∈Nv,m = Dv,m for 1 ≤ v < k.

Put [ci,j](i,j)∈Nk,m
= Ck,m. Then

|ci,j| = |
k−1∑
v=1

∑
n∈Nv

si,ndn,j| ≤ max
n∈Wk−1

|si,ndn,j|

for (i, j) ∈ Nk,m. For i ∈ Nk, j ∈ Nm and n ∈ Wk−1 we have

|si,ndn,j| ≤ e(an−ai) ln p+t1(aj−an) = e(an−ai)(ln p−t1)+t1(aj−ai) ≤ et1(aj−ai);

hence Ck,m ∈Mk,m. Since S−1k,k ∈Mk,k and Tk,m ∈Mk,m, we infer that Dk,m ∈Mk,m

for k = 2, ...,m− 1.

Let Dk,m = Ik,m for k ≥ m; clearly Dk,m ∈Mk,m. Let Sk,m = Ik,m for 1 ≤ k < m;

then Sk,m ∈Mk,m. Let Ck,m =
∑m−1

v=1 Sk,vDv,m and Sk,m = Tk,m − Ck,m for k ≥ m.

Let k ≥ m. Let [si,n](i,n)∈Nk,v
= Sk,v and [dn,j](n,j)∈Nv,m = Dv,m for 1 ≤ v < m.

Put [ci,j](i,j)∈Nk,m
= Ck,m. Then

|ci,j| = |
m−1∑
v=1

∑
n∈Nv

si,ndn,j| ≤ max
n∈Wm−1

|si,ndn,j|

for (i, j) ∈ Nk,m. For i ∈ Nk, j ∈ Nm and n ∈ Wm−1 we have

|si,ndn,j| ≤ e(an−ai) ln p+t1(aj−an) = e(an−aj)(ln p−t1)+ln p(aj−ai) < e(aj−ai) ln p;

hence Ck,m ∈ Mk,m. Since |ti,j| ≤ e(aj−ai) ln p for (i, j) ∈ Nk,m, we get Sk,m ∈ Mk,m

for k > m and |ci,j| < 1 for all (i, j) ∈ Nm,m.

Thus for some (ϕσ)σ∈S(Nm) ⊂ {α ∈ K : |α| < 1} we have

| detSm,m| = |
∑

σ∈S(Nm)

sgnσ
∏
i∈Nm

(ti,σ(i)−ci,σ(i))| = |
∑

σ∈S(Nm)

sgnσ[(
∏
i∈Nm

ti,σ(i))−ϕσ]| =

| det(Tm,m)−
∑

σ∈S(Nm)

sgnσ ϕσ| = | det(Tm,m)| = 1.

It follows that Sm,m ∈Mm,m.

By definition of Dk,m and Sk,m we get

a) Tk,1 = Sk,1 =
∑k

v=1 Sk,vDv,1 for k ∈ N;

b) S1,1D1,m = T1,m for m ≥ 2 and Sk,kDk,m = Tk,m −
∑k−1

v=1 Sk,vDv,m for 2 ≤ k < m,

so Tk,m =
∑k

v=1 Sk,vDv,m for 1 ≤ k < m;

c) Sk,mDm,m = Sk,m = Tk,m −
∑m−1

v=1 Sk,vDv,m for k ≥ m > 1,

11



so Tk,m =
∑m

v=1 Sk,vDv,m =
∑k

v=1 Sk,vDv,m for k ≥ m > 1.

Thus (∗) Tk,m =
∑k

v=1 Sk,vDv,m =
∑∞

v=1 Sk,vDv,m for all k,m ∈ N.

Let [si,j](i,j)∈N×N and [di,j](i,j)∈N×N be matrixes such that [si,j](i,j)∈Nk,m
= Sk,m and

[di,j](i,j)∈Nk,m
= Dk,m for all k,m ∈ N.

By Theorem 5 and Proposition 7, there exist linear isometries S andD on Ap(a, t)

such that Sej =
∑∞

i=1 si,jei and Dej =
∑∞

i=1 di,jei for all j ∈ N; by Propositions 9

and 11, these isometries are surjective. Using (∗) we get

ti,j =
k∑
v=1

∑
n∈Nv

si,ndn,j =
∞∑
v=1

∑
n∈Nv

si,ndn,j =
∞∑
n=1

si,ndn,j

for (i, j) ∈ Nk,m and k,m ∈ N. Hence for j ∈ N we get

SDej = S(
∞∑
n=1

dn,jen) =
∞∑
n=1

dn,j(
∞∑
i=1

si,nei) =
∞∑
i=1

(
∞∑
n=1

si,ndn,j)ei =
∞∑
i=1

ti,jei = Tej;

so T = SD. Thus T is surjective. 2

Let p ∈ (0,∞], t = (tk) ∈ Λp and a = (an) ∈ Γ.

For every m ∈ N there is v(m) with m ∈ Nv(m).

Denote by Dp(a, t),Kp(a, t) and Sp(a, t) the families of all linear isometries on

Ap(a, t) such that Tej =
∑

i∈Wv(j)
ti,jei, T ej =

∑
i∈Nv(j)

ti,jei and Tej =
∑

i∈Mv(j)
ti,jei

for j ∈ N, respectively.

We have the following two propositions.

Proposition 13. Dp(a, t),Kp(a, t) and Sp(a, t) are subgroups of the group Ip(a, t)

of all linear isometries on Ap(a, t). Moreover D∞(a, t) = I∞(a, t) and S∞(a, t) =

K∞(a, t). For every T ∈ Ip(a, t) there exist D ∈ Dp(a, t) and S ∈ Sp(a, t) such that

T = S ◦D.

Proof. The last part of the proposition follows by the proof of Theorem 12.

Clearly, Ip(a, t) is a subgroup of the group of all automorphisms of Ap(a, t); moreover

D∞(a, t) = I∞(a, t) and S∞(a, t) = K∞(a, t).

Let S, T ∈ Sp(a, t). Let j ∈ N. We have

STej = S(
∞∑
i=1

ti,jei) =
∞∑
i=1

ti,j(
∞∑
k=1

sk,iek) =
∞∑
k=1

(
∞∑
i=1

sk,iti,j)ek.
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If ak < aj, then for every i ∈ N we have ak < ai or ai < aj; so sk,i = 0 or ti,j = 0 for

i ∈ N. Thus
∑∞

i=1 sk,iti,j = 0 for k ∈ N with ak < aj; so ST ∈ Sp(a, t).

Let k ∈ N. For some xk = (xj,k) ∈ Ap(a, t) we have Sxk = ek. By the proof of

Proposition 11 we have max{|xj,k|et1aj : aj < ak} = 0, so xj,k = 0 for j ∈ N with

aj < ak. Hence S−1(ek) =
∑

j∈Mv(k)
xj,kej, so S−1 ∈ Sp(a, t). We have shown that

Sp(a, t) is a subgroup of Ip(a, t).

Let D,T ∈ Dp(a, t). Let j ∈ N. We have DTej =
∑∞

k=1(
∑∞

i=1 dk,iti,j)ek. If

ak > aj, then for every i ∈ N we have ak > ai or ai > aj; so dk,i = 0 or ti,j = 0 for

i ∈ N. Thus
∑∞

i=1 dk,iti,j = 0 for every k ∈ N with ak > aj, so DT ∈ Dp(a, t).

Let k ∈ N. Put Fk = lin{ei : ai ≤ ak}. We know that D(Fk) = Fk. Thus there

exists xk = (xj,k) ∈ Fk such that Dxk = ek. Then xj,k = 0 for j ∈ N with aj > ak

and D−1(ek) = xk =
∑

j∈Wv(k)
xj,kej, so D−1 ∈ Dp(a, t). Thus Dp(a, t) is a subgroup

of Ip(a, t). Clearly, Kp(a, t) = Sp(a, t) ∩Dp(a, t), so Kp(a, t) is subgroup of Ip(a, t).

2

Proposition 14. Ip(a, t) ⊂ Ip(a, s) if and only if t1 ≤ s1. In particular, Ip(a, t) =

Ip(a, s) if and only if t1 = s1.

Proof. If t1 ≤ s1, then using Theorem 5 we get Ip(a, t) ⊂ Ip(a, s). Assume that

t1 > s1. Then limj e
(t1−s1)(aj−a1) = ∞, so there exists j0 > 1 and β0 ∈ K such that

es1(aj0−a1) < |β0| ≤ et1(aj0−a1). Let T ∈ L(Ap(a, t)) with Tej = ej + β0δj0,je1 for

j ∈ N. By Theorem 5 , we have T ∈ Ip(a, t) and T /∈ Ip(a, s). 2

In relation with Corollary 10 and Theorem 12 we give the following two examples

and state one open problem.

Let p ∈ (0,∞], t = (tk) ∈ Λp and a = (an) ∈ Γ.

For every isometry F on K the map TF : Ap(a, t)→ Ap(a, t), (xn)→ (Fxn) is an

isometry on Ap(a, t).

Example 1. Assume that the field K is not spherically complete or the residue

class field of K is infinite. Then there exists an isometry on Ap(a, t) which is not a

surjection.

Indeed, by [5], Theorem 2, there is an isometry F on K which is not surjective.

Then the map TF is an isometry on Ap(a, t) which is not a surjection. 2

Problem. Assume that K is spherically complete with finite residue class. Does

every isometry on Ap(a, t) is surjective?
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Example 2. On Ap(a, t) there exists a non-linear rotation.

Indeed, put SK = {β ∈ K : |β| = 1} and let f : [0,∞) → SK be a function

which is not constant on the set {|α| : α ∈ K with |α| > 0}. Then the map

F : K→ K, F (x) = f(|x|)x is a non-linear surjective isometry with F (0) = 0.

In fact, let x, y ∈ K. If |x| = |y|, then

|F (x)− F (y)| = |f(|x|)x− f(|y|)y| = |f(|x|)||x− y| = |x− y|.

If |x| 6= |y|, then |F (x)| = |x| 6= |y| = |F (y)|, so

|F (x)− F (y)| = max{|F (x)|, |F (y)|} = max{|x|, |y|} = |x− y|.

If α ∈ SK, then F (αx) = αF (x), so F (x/f(|x|)) = (1/f(|x|))f(|x|)x = x for every

x ∈ K. Let α ∈ (K \ {0}) with f(|α|) 6= f(1), then F (α1) 6= αF (1).

Then TF is an nonlinear surjective isometry on Ap(a, t) with TF (0) = 0. 2
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