On linear isometries on non-archimedean

power series spaces

WIESLAW SLIWA AND AGNIESZKA ZIEMKOWSKA

Abstract. The non-archimedean power series spaces A,(a,t) are the most
known and important examples of non-archimedean nuclear Fréchet spaces. We
study when the spaces A,(a,t) and A,(b, s) are isometrically isomorphic. Next we
determine all linear isometries on the space A,(a,t) and show that all these maps

are surjective.

1 Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field
K which is complete under the metric induced by the valuation |- | : K — [0, 00).
For fundamentals of locally convex Hausdorff spaces (lcs) and normed spaces we
refer to [2], [4] and [6].

Let I be the family of all non-decreasing unbounded sequences of positive real
numbers. Let a = (a,),b = (b,) € I'. The power series spaces of finite type A;(a)
and infinite type A (b) were studied in [1] and [7] — [9]. In [7] it has been proved
that A,(a) has the quasi-equivalence property i.e. any two Schauder bases in A,(a)
are quasi-equivalent ([7], Corollary 6).

The problem when A,(a) has a subspace (or quotient) isomorphic to A,(b) was
studied in [8]. In particular, the spaces A,(a) and A,(b) are isomorphic if and only if
p = ¢q and the sequences a, b are equivalent i.e. 0 < inf,(a,/b,) < sup,,(a,/b,) < o0
([8], Corollary 6).
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For p € (0,00] we denote by A, the family of all strictly increasing sequences
t = (tx) of real numbers such that limy ¢, = Inp (if p = oo, then Inp := o0).

Let p € (0,00],a = (a,) € I" and t = (t) € A,. Then the following linear space
Ay(a,t) = {(z,) C K:lim, |z,|e™** = 0 for all k£ € N} with the base (]| - ||x) of the
norms ||(z,)||x = max, |z,|e** k € N, is a Fréchet space with a Schauder basis.
Clearly, Ay(a) = Ai(a,t) fora = (a,) € I',t = (tx) = (In kiﬂ), and A (b) = Ax(b, 9)
for b= (b,) € I';s = (s;) = (Ink). Let ¢(p) = 1 for p € (0,00) and g(c0) = oo. It
is not hard to show that for every p € (0,00],a = (a,) € I and t = (t;) € A, the
space A,(a,t) is isomorphic to Ay () for some b € I'.

Thus we can consider the spaces A,(a,t) as power series spaces.

In this paper we study linear isometries on power series spaces.

First we show that the spaces A,(a,t) and A, (b, s), for p,q € (0,00],t = (t) €
Ap,s = (sg) € Ay and a = (a,),b = (b,) € I', are isometrically isomorphic if and
only if there exist C, D € R such that s, = Ct, + D and a; = Cb;, for all £ € N,
and for every k € N there is ¢, € K with |¢;,| = e~ (/€)% (Theorem 1).

Let p € (0,00],t = (tx) € A, and a = (a,) € T

Let (IV,) be a partition of N into non-empty finite subsets such that (1) a; = a;
for alli,j € Ns,s € N; (2) a; < aj foralli € Ny, j € Ngpq,s € N,

We prove that a linear map T': A,(a,t) — A,(a,t) with Te; = > % t;:e;,5 € N,
is an isometry if and only if (1) |t;;] < /%~ when a; < a;; (2) [t ;| < elei—a)np

=1 for

when a; > a; (e7* := 0); (3) max jyen,xn, |ti;| = 1 and | det[t; ;]G )en, xn,
s € N; (Theorem 5 and Proposition 7).

In particular, if the sequence (a,) is strictly increasing, then a linear map 7 :
Ap(a,t) = Ay(a,t) with Te; = 7 t;5e;,5 € N, is an isometry if and only if (1)
It j| < ela=ah when i < j; (2) |ti;] < e @9 MP when i > j; (3) |t;;| = 1 for i € N.

Finally we show that every linear isometry on A,(a,t) is surjective (Corollary 10
and Theorem 12). Thus the family J,(a,t) of all linear isometries on A,(a,t) forms

a group by composition of maps.

2 Preliminaries

The linear span of a subset A of a linear space E is denoted by lin A.

By a seminorm on a linear space E we mean a function p : E — [0,00) such
that p(ax) = |alp(x) for all & € K, z € E and p(z + y) < max{p(z),p(y)} for all
z,y € E. A seminorm p on F is a norm if {x € F : p(x) = 0} = {0}.
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If p is a seminorm on a linear space E and z,y € E with p(x) # p(y), then
p(z +y) = max{p(z),p(y)}.

The set of all continuous seminorms on a lcs E is denoted by P(E). A non-
decreasing sequence (pg) of continuous seminorms on a metrizable lcs F is a base in
P(E) if for any p € P(E) there are C' > 0 and k € N such that p < Cpg. A complete
metrizable lcs is called a Fréchet space.

Let E and F be locally convex spaces. A map T : F — F' is called an isomor-
phism if it is linear, injective, surjective and the maps 7,7 ! are continuous. If
there exists an isomorphism 7" : E — F', then we say that E is isomorphic to F.
The family of all continuous linear maps from F to F' we denote by L(E, F).

Let E and F be Fréchet spaces with fixed bases (|| - ||,) and (||| - |||,) in P(£) and
P(F), respectively. A map T': E — F is an isometry if |||Tx — Ty||, = ||z — y||x for
all z,y € E and k € N; clearly, a linear map 7" : £ — F' is an isometry if and only if
|| Tz|||, = ||z||x for all z € E'and k € N. A linear map T': E — F is a contraction
if |||z |||, < ||z||x for all z € E and k € N. A rotation on E is a surjective isometry
T:FE — E with T(0) = 0.

By [3], Corollary 1.7, we have the following

Proposition A. Let m € N. Equip the linear space K™ with the maximum norm.
Let T : K™ — K™ be a linear map with Te; =Y t; e; for 1 < j <m. Then T is

an isometry if and only if max; ;|t; ;| =1 and | det[t; ;]| = 1.

A sequence (z,) in a les E is a Schauder basis in E if each € E can be
written uniquely as = > | a,z, with (a,) C K, and the coefficient functionals
fo: E =K oz — a,(n € N) are continuous.

The coordinate sequence (e,,) is an unconditional Schauder basis in A,(a,t).

3 Results

First we show when the power series spaces A,(a,t) and A, (b, s) are isometrically

isomorphic.

Theorem 1. Let p,q € (0,00],t = (t) € Ap,s = (sx) € Ay and a = (a,),b = (b,) €
I'. Then the spaces Ay(a,t) and Ay(b, s) are isometrically isomorphic if and only if
(1) there ezist C; D € R such that s, = Cty + D and ay = Cby, for all k € N;



(2) for every k € N there is ¢y, € K with || = e~ (P/C)ax
In this case the linear map P : Ay(a,t) = Ay(b,s), (xn) = (Ynxy) is an isometric

1somorphism.

Proof. Let T : A,(a,t) — Ay (b,s) be an isometric isomorphism and let
Te; = >.0¢ tije; for j € N. Then max;|t; j|es*% = €% for all j,k € N; so
max; |t; j|es*bi~%% = 1 for j k € N. Let j,k € N with & > 1. Then for some

oy =sibi |f, 1| < eteri@ s and g ;| < eto1mseib

i € N we have |t; j| =€

Hence we get (sp+1 — si)b; < (tip1 — t)a; and (ty — tp—1)a; < (sk — sk—1)bi; so

Sk+1 — Sk < a; < Sk — Sk—1

teyr — ke — b T ot —tho1

Thus the sequence (%) is non-increasing. Similarly we infer that the sequence

t t
(=) is non-increasing, since the map T : A,(b,s) — A,(a,t) is an isometric
Sk+1—5k ’ e P

Sk+1—Sk

) is constant, so there is
tir1—tk

isomorphism, too. It follows that the sequence (
C > 0 such that =% = C for all k € N.

Moreover, for every j € N there is ¢ € N with a;/b; = C and for every i € N
there is j € N with b;/a; = 1/C. Thus {a; : j € N} = {Cb; : i € N}.

For [ > 1 we have s, — C't; = s; — C'tq, since

-1 -1
S — S1 = Z Sk+1 — Sk CZ(tk_H — tk) == C(tl — tl).
k=1 k=1

Put D = s; — Cty, then s, = Cty + D for k € N.

Let (jx) C N, (i) C N be strictly increasing sequences such that {a;, : k € N} =
{aj :j €N}, {b;, : k € N} ={b; : i € N} and a;, < aj,+1,b;, < b;, 41 for k € N.

Hence we get a;, = Cb;, for k € N, since {a; : j € N} = {Cb; : i € N}.

Put jo=ig=0and M, ={j eN:j, 1 <j <4}, W, ={ieN:i, ;1 <i<i,}
for r € N; clearly W, = {i e N: Cb; = a;, }.

Let r € N and (¢;)jem, C K with maxjeps, |¢;] > 0. Then we have

JIQ%WHGM” = %g«;ﬂ%ktk% =11 > dielle = 1T dies)lln =

JEM; jEM,
0 00
1> 05D tgeille =11 (D tijoi)eill = max | > tijdslett
JEM, =1 i=1 jeM, jEM,

Thus

max | D tijoglet e = = max |¢;].
JEM,



Let £ > 1. For some 7 € N we have

| Z li 7]¢]| = max |¢ |€tka”_skb | Z t; J¢J| < maX |¢ |€tk+1ajr_sk+1b

JEM, JEM;

and

| Z tzg¢y| < max]gb ’etk 105, —8g—1bi

]EM’I‘
Hence we get (sp+1 — sk)bi < (tir1 — t)a;, and (tp — tp—1)aj, < (s — sk—1)b;; so
Cb; < aj, and a;, < Cb;. Thus a;, = Cb;, so ¢ € W,.
It follows that

max| D bl = max|,|.
" jeM,

We have sib; — tra;, = (Cty + D)a;, /C — tya;, = (D/C)aj, for i € W,; so
max | Z ti7jgz5j|e(D/C “r = max |g;|.

ieW, JEM,
JjEM,

Thus e~ P/ = |4,| for some 7, € K. Put ¢; = =, for every j € M,. Then

;] = e~ P/ for j € M,. Since max;cy, ZjeMT ti7j¢j||¢j_1| = maxjen, |¢;|, the

linear map

U:KM — K" (6))jem, = (D tig; ' ds)iew,

JEM,
is an isometry, so |M,| < |W,|. We have shown that j,. — j,._1 < i, — i, for every
r € N. Similarly we get i, — i,_y < j, — j—1 for every r € N, since 7! is an
isometric isomorphism. Thus j,. — j,_1 = i, — i,_1 for every r € N; so j, = i, for
r € N. It follows that a; = Cb; for j € N.
Now we assume that (1) and (2) hold. Then the linear map

P Ay(a,t) — Ayb,s), (v;) = (bjz;)

is an isometric isomorphism. Indeed, P is surjective since for any y = (y;) € A,(b, s)

we have x = (¢;1yj) € A,(a,t) and Pz =y. For z € A,(a,t) and k € N we have

Skbj D/C)aj—i-skbj

| Pal = ma [ e = mace ™ — max a;|e" % = ]| O

By obvious modifications of the proof of Theorem 1 we get the following two

propositions.



Proposition 2. Let p € (0,00],t € A, and a = (a,),b = (b,) € I'. Then A,(b,1)

contains a linear isometric copy of A,(a,t) if and only if a is a subsequence of b.
If (nj) C N is a strictly increasing sequence with a; = by;,j € N, then the map

T: Ay(a,t) = Ay(b,t), (z;) = (y;), where y; = xy if j = ny, for some k € N, and

y; = 0 for all other j € N, is a linear isometry.

Proposition 3. Let p,q € (0,00],t € Ay, s € A, and a,b € I'. If there exist linear
isometries T : Ap(a,t) — Ay(b,s) and S : Ay (b,s) — Ayla,t), then Ay(a,t) and

A, (b, s) are isometrically isomorphic.

Remark 4. Let p,q € (0,00],t € Ay, s € Ay and a,be . If P: Ay(a,t) — Ay(b, s)
is an isometric isomorphism, then every isometric isomorphism T : A,(a,t) —

A, (b, s) is of the form P o S where S is an isometric automorphism of Apy(a,t).

Now we determine all linear isometries on the space A,(a,t). Recall that (V)
is a partition of N into non-empty finite subsets such that (1) a; = a; for all 4, j €

N, s € N; (2) a; < a; for all i € Ny, j € Ngyq,5s € N.

Theorem 5. Let p € (0,00],t = (tx) € A, and a = (a,) € I'. Let T : A,(a,t) —
Ay(a,t) be a continuous linear map and let Te; =Y 2 t; e; for j € N.
Then T is an isometry if and only if

(1) tij| < 9= when a; < aj, and |t; ;| < e(@=DMP when a; > a;;

ti =1 for all s € N.

(2) max jyen,x N, =1 and | det[t; ;] j)en.xn.

tpa;

Proof. (=) For k,j € N we have ||Te;||, = max;

tijle and |lejllr = e
Thus max; |ti7j\etk(“i_“1) = 1for all j, k € N. Hence |t; ;| < etr@i=a) for all i, j, k € N;
80 |t; ;| < infy et*(@=a) for all i, j € N. It follows (1); moreover |t; ;| < 1 when a; = aj.

Let s € N, j, = min Ny and (5;)jen, C K with maxjen, |5;| > 0. Then we have

1T Bieslle = 1Y B D tageills = 1) (D Bitigeills = max | > Biti

JENS JEN =1 i=1 jEN; JEN

etkai

and || ZjeNs Bie;llk = maxjen, |B;|e"*% = (maxjen, |5;])e*%s for all k& € N. Thus
mlaxl Z 5jti7j’etk(a¢fajs) = ?é?v)f ’ﬁj‘; k eN;

JENs

hence max;¢ ZjGNS Bjti,j\ < maxjen, 5j|'



Let k£ > 1. For some 7;, € N we have

| Z Bt umj|€tk i) — maX 18;.
]eNs
If a;, < @y, then

max (8] > | D Bitie

JEN; JEN;

etk_l(aik—ajs) > | Z /BJ Zk]|etk alk_a]s) e ma;X|/B]|
JENs

it a;, > a;,, then

%?V§|BJ| Z ‘ Z /Bjtik’j’etk+1(aik*ajs) > ‘ Z ﬁ] zk]|etk gy — ajs) — rgﬁ[x'/@]‘

JEN, JEN,

It follows that a;, = a;,, so ix € Ny and |3,y Bjti, ;| = maxjen,

Bil.

Thus the following linear map is an isometry

S KNS — KN BJ JEN, —7 Z /Bj i,j ZENS

JEN,

By PI‘OpOSitiOl’l A we get maX(m)eNsts |ti,j| =1 and |det[ti,j](i7j)€Nsts\ =1.

(<) Let z = (8;) € Ap(a,t) and k € N. Clearly, ||Tz ||y = lim,, [T (3272, Bjej)lx
and [|z||y = lim,, | Y72, Bje;llx- Thus to prove that [|[Tz[|y = [|z|x it is enough to
show that [T(3_72, Bie)lle = | 2272, Bjejllx for all m € N. Let m € N. We have

T Bies) =D B ) tiges =D (Y Bitis)es
j=1 j=1 =1 =1 j=1
so L= T(X20L, Bie)lle = max; [ Y70, Bytijle's®; clearly P = || 3700, Biejllx =
maxi<;<m |5;|e"*%. We shall prove that L = P.
By (1) and (2) we have |t; ;] < e*(@%~9) for all 4, j € N. Hence for i € N we get

m
. . ‘
|25jti,j|€t’““’ < max. |B;|e"% = P;
]:

so L< P.If P=0, then L = P. Assume that P > 0.

Put jo = max{1 < j < m: |B;|le"% = P} and §; = 0 for j > m. Let ¢,s € N
with m € Ny, jo € Ns. Put Wy = J{N,: 1 <l <s}and My =J{N,:s<l<q}
Then |B;le"% < |5 le™%0 for j € Wy, |Bjle% < |B;,le"%0 for j € M, and

max,en, |5;| = |5j,] > 0. By (2) and Proposition A, the linear map

. RN Ns E
S . K — K x] ]ENg t,]J?] 1€EN

]ENS



is an isometry, so maxien, | _ ey, tijBil = maxjen, |85] = [8j,]. Thus for some

io € N5, we have [ Y. tio;8;] = |Bj|; clearly a;, = aj,. If j € W, then
18;l[ti0.5] < |Bj0|6tk(ajo—aj)e(aj—aj0)1np - |Bj0|€(aj—ajo)(1np—tk) < 1Bjol;

80 | X iew. Bitingl < [Bjol- If j € M, then
18 1tio.5
50 | 22 jenr, Bitiosl < 1Bjol-

Thus .
Y Bitiogl = 1 D Bitios + Y Bitios + Y Bitios| = 1B5l;
j=1

JEWS JENS; JEM,

< |Bj0|etk(ajo*“j)et1(aj*ajo) — |Bj0|e(“j*ajo)(t1*tk) < |6j0|7

80 | D00 Bitig jle o = |Bj |0 = P. Hence P < L. Thus L = P. O

By the proof of Theorem 5 we get the following.

Corollary 6. Let p € (0,00],t = (tx) € A, and a = (a,) € I'. Let T' € L(A,(a,t))
and Te; = Y 2 tie; for j € N. Then T is a contraction if and only if |t; ;| <

el@=a)t yhen q; < a; and |t; ;] < elai=a)np yphen g, > aj.

Proposition 7. Let p € (0,00|,t = (tx) € A, and a = (a,) € I'. Let (t; ;) C K with
(1) |tij| < e9=ah when a; < aj, and |t; ;| < e~ DMP when a; > a;;
(2) max; jyen,xn, |t =1 for all s € N.

Then there exists a linear isometry T on A,(a,t) such that Te; = 2, t; e, j € N.

ijl =1 and [det[t: ;] yen.xn,

Proof. Let j € Nand k € N. For i € N with a; > a; we have |t; ;|e"* <
elasma)npttuai — eajinprailti=lnp) if p € (0, 00), and |t; j|e'*% = 0, if p = co. Thus
lim; ||¢; jeills = O for k& € N; so lim;¢; ;¢; = 0. Therefore the series »".°, ¢; je; is
convergent in A,(a,t) to some element Te;. Let z = (z;) € A,(a,t).

We shall prove that lim; z;7e; = 0 in A,(a,t). By (1) and (2) we have |¢; ;| <
etv(@=a) for all 4,5,k € N. Let k € N and j € N. Then |z;| < e %1% ||x||p;
moreover ||Te;||x = max; [t; ;j|efx% < et%. Hence |lz;Te;||p < e+ |||,y for
J,k € Ny so lim; x;Te; = 0.

Thus the series ) 77, x;Te; is convergent in A,(a,t) to some Tz for every x €
Ap(a,t). Clearly Tw = lim, T,x, where T,, : Ap(a,t) — Ap(a,t), Tox => " x;Te;.

j=1
The linear operators T,,,n € N, are continuous, so using the Banach-Steinhaus
theorem we infer that the operator 7' : A,(a,t) — A,(a,t),x — Tz is linear and

continuous. By Theorem 5, T" is an isometry. O

By Proposition 7 and the proof of Theorem 5 we get the following.
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Corollary 8. Let p € (0,00],t € A, and a € T'. Then a linear map T : A,(a,t) —
A,(a,t) is an isometry if and only if ||Te;||lr = |le;llx for all 5,k € N.

Finally we shall show that every linear isometry on the space A,(a,t) is a surjec-
tion. For p = oo it follows from Theorem 5 and our next proposition. For p € (0, c0)

the proof is much more complicated.

Letp € (0,00],t = (t;) € Ap and a = (a,) € ['. Put W, = Ule N;, My ==, N;
for k € N and Ny, = N x N, for all k,m € N. For every m € N there is v(m) € N
with m € Nym)-

Proposition 9. Letp € (0,00],t = (t) € Ay anda = (a,) € I'. Let D € L(Ay(a,t))
with De; =% 22, d; je; for j € N. Assume that

(1) |d; ;| < et%=%) when a; < a;, and d;; = 0 when a; > aj;

(2) max jien,, |di;| =1 and | det[d; ;] jyen,,| =1 for all s € N.

Then D 1is surjective.

Proof. We have lin{De; : j € Wy} C lin{e; : i € Wy} for k € N, since De; =
ZieWk d; je; for j € Ni, k € N. By Theorem 5 the operator D is a linear isometry,
so D(Ay(a,t)) is a closed subspace of A,(a,t) and the sequence (De;);ecw, is linearly
independent for every k € N. Thus lin{De; : j € Wy} =lin{e; : i € Wi}, k € N; so
D(A,(a,t)) D lin{e; : ¢ € N}. It follows that D is surjective. O

Corollary 10. Let t = (tx) € A and a = (a,) € T. Every linear isometry on

Ao (a,t) is surjective.

Proposition 11. Let p € (0,00],t = () € A, and a = (a,) € I'. Let S €
L(A,(a,t)) with Se; = >"°, sie; for j € N. Assume that

(1) s;; =0 when a; < a;, and |s; ;| < %90 when a; > a;;

(2) max(; jien, , |Sij| = 1 and | det[s; ;] jen, | =1 for k € N.

Then S is surjective.

Proof. For z = (z;) € Ay(a,t) we have

[eS) %) [eS) oo o) %)
S$ = E :ch€j = E .fL'j si’jei = E ( E smxj)ei = E ( E Si,jxj)€i~
j=1 7j=1 i—=1 i=1 j=1 i=1 jEW,()

Let y = (v;) € Ap(a,t). By (2) and Proposition A, there exists (x;);en, C K with
max;en, |7;| = max;en, |y;| such that ZjeNl s;jx; =y, for i € Ny.

Assume that for some [ € N with [ > 1 we have chosen (z;)jen, C Kfor 1 <s <.
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By (2) and Proposition A, there exists (z;);en, C K with

max |z;| = max |y; — E SijT;
e ] o i ‘ %51
JEW, 1
such that >y 8i;7; = yi — Y ey, | Sijx; for i € Ni. Thus by induction we get

x = (z;) € KN such that 3.y, s; 525 = y; for all i € Nj,1 € N and

Zeja\%(m = Izrel%f)f‘yz” and rzré?\[)l(\le = Izré]a\i(‘yl - Z sijx;| for [ >1.

JEWI 1

Let k € N. Clearly, max;ew, |:|e'** = max;ew, |y;|e™*®. For I > 1,i € N;,j € Wi_4

we have

a]-—ai)lnp—i-tkai x]| — e(a]-—ai)(lnp—tk)|xj|etkaj S |l’j|€tkaj.

|5; 5] e < el

Thus by induction we get max;ew, |x;|e*% < max;ew, |y;|e™** for all I € N.
It follows that z € A,(a,t). We have

Sz = Z Z(Z Sij%j)€; = Z Z yiei = Zyiei =Y.
i=1

=1 i€EN, jEW, =1 i€N,

Thus S is a surjection. O

Theorem 12. Let p € (0,00),t = (t) € A, and a = (a,) € I'. Every linear

isometry T on A,(a,t) is surjective.

Proof. Let k,m € N. Denote by My,, the family of all matrixes B =
[Biiljen.. with (B;;) C K such that
a) |B;;] < elw=amP for (i, 5) € Ny, if k > m;

b) |8i,] < €= for (i, j) € Ny, if k < m;

c) |Bi;] < 1for (i,7) € Ny and |det[Bi ] jen,..| = 1, if & =m.

By Proposition A, for every k¥ € N and B € My, we have B~! € M. Let
Te; =3 72, tije; for j € N Put T = [ti ;] .5)en a0 Tim = [0i]6.5)en,.,, for all
k,m € N. We define matrixes Dy, Sm € My, for k € Nand m=1,2,3, ...

Put Dy, = Iy and Sy = Ty for k € N; clearly Dy 1, Sp1 € My, for k € N.
Assume that for some m € N with m > 1 we have Dy, Sy; € My, for k € N
and 1 < j < m. Let Dy,, = SillT1,m- It is easy to see that D, € M, ,,, since
Sfll € My, and T3, € My .
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Let Crm = vt SkwDum and Dy = Spi[Tem — Chm) for k =2,3,.,m — 1.
Let 1 <k <m. Let [sin]@men,, = Skw and [dnjl(nj)eN,,, = Dom for 1 < v < k.
Put [Ci,j](i,j)ENkym = Ck,m~ Then

k—1
il = |Z Z Sintn,j| < max. |85y, ;

v=1 neN,

for (i,5) € Ngm. Fori € Ny, j € N, and n € Wj,_; we have

an—a;) Inp+ty(a;—an) (an—a;)(Inp—t1)+t1(a;—a;) < etl(aj—ai) :

|8indn ;| < el =e

hence Cj,,, € My . Since Sk_,i € My, and T}, € My, 1, we infer that Dy, € My,
for k=2,....m—1.
Let Dy, = I for k > m; clearly Dy, € My . Let Si o = I for 1 < k < m;
then Sy, € M. Let Chp = 327 Stw Dy and Sm = Ty — Chom for k > m.
Let & > m. Let [sinin)en,, = Sko and [dyj](nj)en, m = Dom for 1 < v < m.
Put [c;;](ij)eNm = Ckom- Then

m—1
=)0 Sindngl £ max |sindyl
TLeWm—l

v=1 'rLGNv

|ci j

for (i,7) € Ngm. For i € Ny, j € N,, and n € W,,,_; we have

|5i,ndn,j‘ < e(an—ai)lnp—l—tl(a]-—an) _ e(an—aj)(lnp—tl)—l—lnp(aj—(zi) < e(aj—ai)lnp;

hence Cj,,, € My, . Since [t ;] < elai—ai)np fo (1,7) € Nim, we get Sgm € Mym
for k > m and |¢; ;| < 1 for all (4, ) € Nypm-
Thus for some (¢,)ses(n,) C {0 € K: |a| < 1} we have

| det Sy m| = | Z sgnaH i0(6) —Cio))| = | Z sgno| Hth ool =

0€S(Nm) 1€ENM 0€S(Nm) 1ENm

|det(Tnm) — Y sgnog,|=|det(Tpm)| = 1.
c€S(Nm)

It follows that Sy, € My m.
By definition of Dy, and Sy, we get

a) Tyq = Sk1 = 25:1 SkwDyq for k€ N;

b) S11D1m = T for m > 2 and Sy Dy = Thom — Zi;i SkwDym for 2 <k <m,
50 Thm = 3¢ _ SkwDym for 1 < k < m;

¢) Sk.mDmm = Skm = Thm — va:_ll SkwDym for k>m > 1,

)
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8O Thm = D ey SkwDym = Zle SkwDym for k> m > 1.
Thus (%) Ty, = 25:1 SkvDom =Y ooy SkwDym for all k,m € N.

Let [sij](i,j)enxn and [d ;] j)enxn be matrixes such that [s; ;] yen, . = Skm and
(i 1)iyens . = D for all k,m € N.

By Theorem 5 and Proposition 7, there exist linear isometries S and D on A,(a,t)
such that Se; =Y o0, s;;¢; and De; = Y2, d; je; for all j € N; by Propositions 9

and 11, these isometries are surjective. Using (%) we get

k o0 o0
= E E Si,ndn,j = E E Si,ndn,j - E Si,ndn,j
n=1

v=1 n€N, v=1 n€Ny,

for (i,5) € Nim and k,m € N. Hence for j € N we get

SDej = S(Z dn,jen) = Zdn,](z Si,nei) Z Zszn n] Ztljel Tej)

n=1 n=1 i=1 i=1 n=1

so T'= SD. Thus T is surjective. O

Let p € (0,00],t = (tx) € A, and a = (a,) € T

For every m € N there is v(m) with m € Nyp).

Denote by D,(a,t),K,(a,t) and §,(a,t) the families of all linear isometries on
Ap(a,t) such that Te; = 37, o tigei Tej = ZieNv(j) tije;and Te; =37y ot
for j € N, respectively.

We have the following two propositions.

Proposition 13. D,(a,t),XK,(a,t) and 8,(a,t) are subgroups of the group I,(a,t)
of all linear isometries on A,(a,t). Moreover Do(a,t) = I(a,t) and S8 (a,t) =
Koola,t). For every T € Jy(a,t) there exist D € Dy(a,t) and S € 8,(a,t) such that
T=SoD.

Proof. The last part of the proposition follows by the proof of Theorem 12.
Clearly, J,(a, t) is a subgroup of the group of all automorphisms of A,(a, t); moreover
Doo(a,t) = I(a,t) and 8 (a,t) = Ko(a,t).

Let S,T € §,(a,t). Let j € N. We have

STe; = S(Z tije) = Zt”(z Sk,iCk) = Z Zskz ij)
=1 k

i=1 = =1 k=1 i=1

12



If ar, < a;, then for every ¢ € N we have a, < a; or a; < a;; so s;; = 0 or t; ; =0 for
i € N. Thus )72, sgiti; = 0 for k € N with a;, < a;; so ST € 8,(a,t).

Let £ € N. For some z;, = (z;1) € A,(a,t) we have Sz = e,. By the proof of
Proposition 11 we have max{|z;zle""% : a; < ar} =0, so x; = 0 for j € N with
a; < ag. Hence S~(ey) = D jeM, ) Tik€sr SO S~ e 8,(a,t). We have shown that
8,(a,t) is a subgroup of J,(a, t).

Let D, T € Dy(a,t). Let j € N. We have DTe; = > 7 (302, dyitijex. If
ay > aj, then for every ¢ € N we have a;, > a; or a; > a;; so dp; = 0 or t; ; = 0 for
i € N. Thus )2, dyt;j = 0 for every k € N with a > a;, so DT € D,(a,t).

Let k € N. Put Fy, = lin{e; : a; < a}. We know that D(Fy) = F). Thus there
exists x, = (z;%) € F), such that Dz = e;. Then z;;, = 0 for j € N with a; > a;,
and D !(ey,) = xp = 2 jew, 4, Tik€j, SO D' € D,(a,t). Thus D,(a,t) is a subgroup
of J,(a,t). Clearly, X,(a,t) = 8,(a,t) N Dy(a,t), so K,(a,t) is subgroup of J,(a,1).
O

Proposition 14. J,(a,t) C J,(a,s) if and only if t; < s1. In particular, 3,(a,t) =
Jp(a, s) if and only if t, = sq.

Proof. If t; < sq, then using Theorem 5 we get J,(a,t) C J,(a,s). Assume that
t1 > s1. Then lim; ethi=s1)(a—a1) — 5 g0 there exists jo > 1 and By € K such that
est(@io=a) < || < et@o=a) Let T € L(Ay(a,t)) with Te; = e; + Bydj, jer for
j € N. By Theorem 5 , we have T' € J,(a,t) and T ¢ J,(a,s). O

In relation with Corollary 10 and Theorem 12 we give the following two examples

and state one open problem.

Let p € (0,00],t = (tx) € A, and a = (a,) € I'.
For every isometry F' on K the map Ty : Ay(a,t) = Ay(a,t), (z,) = (Fz,,) is an

isometry on A,(a,t).

Example 1. Assume that the field K is not spherically complete or the residue
class field of K is infinite. Then there exists an isometry on A,(a,t) which is not a
surjection.

Indeed, by [5], Theorem 2, there is an isometry F' on K which is not surjective.

Then the map Ty is an isometry on A,(a,t) which is not a surjection. O

Problem. Assume that K is spherically complete with finite residue class. Does

every isometry on Apy(a,t) is surjective?

13



Example 2. On A,(a,t) there exists a non-linear rotation.

Indeed, put Sx = {# € K : || = 1} and let f : [0,00) — Sk be a function
which is not constant on the set {|a] : @ € K with |a] > 0}. Then the map
F:K— K, F(z) = f(|x|)z is a non-linear surjective isometry with F'(0) = 0.

In fact, let z,y € K. If |z| = |y|, then

[F(x) = F(y)| = [f(lzDz = f(yDyl = [f(xDllz =yl = |z —yl.
If | # ly], then [F(z)] = [x] # |y = [F(y)], so
|F(z) = F(y)| = max{|F(z)|, [F(y)[} = max{|z], [y|} = [z —y].

If o € Sk, then F(azx) = aF(z), so F(x/f(|z])) = (1/f(|z])) f(|x])z = x for every
r € K. Let a € (K\ {0}) with f(|a]) # f(1), then F(al) # aF(1).

Then T is an nonlinear surjective isometry on A,(a,t) with Tp(0) = 0. O
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