Browsing by Author "Gajda, Wojciech Jerzy. Promotor"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Abelian varieties over p-adic fields(2020) Garnek, Jędrzej; Gajda, Wojciech Jerzy. Promotor; Naskręcki, Bartosz. PromotorCelem tej pracy jest przedstawienie wyników dotyczących trzech problemów związanych z rozmaitościami abelowymi nad ciałami p-adycznymi. W pierwszej części rozprawy badamy arytmetyczną złożoność p-torsji rozmaitości abelowej nad ciałem liczb p-adycznych. Jest to związane z otwartym problemem, postawionym przez David i Westona w 2008 r. W pracy wskazujemy na związek tego problemu z pojęciem kanonicznego podniesienia rozmaitości abelowej. Próbujemy również zweryfikować hipotezę David i Westona dla krzywych eliptycznych z mnożeniem zespolonym, co prowadzi do poszukiwania liczb pierwszych w ciągach zadanych rekurencyjnie. W następnej części pracy badamy ekwiwariantne zachowanie ciągu Hodge'a-de Rhama dla krzywej z działaniem grupy skończonej w dodatniej charakterystyce. Pokazujemy między innymi, że jeżeli ciąg Hodge'a-de Rhama tej krzywej rozszczepia się, to działanie to musi być słabo rozgałęzione. Omawiamy również twierdzenia odwrotne oraz wskazujemy na powiązanie tego problemu z podnoszeniem nakryć do pierścienia wektorów Witta długości 2. Pozwala nam to na wskazanie nowych przykładów rozmaitości abelowych bez kanonicznych podniesień. W ostatniej części pracy dowodzimy dolnego oszacowania na liczbę klas ciała podziału. Oszacowanie to zależy od rangi grupy Mordella-Weila rozmaitości abelowej oraz redukcji punktów p-torsyjnych.