Browsing by Author "Moskalewicz, Damian"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Controls on coastal flooding in the southern Baltic Sea revealed from the late Holocene sedimentary records(2022-06-11) Leszczyńska, Karolina; Stattegger, Karl; Moskalewicz, Damian; Jagodziński, Robert; Kokociński, Mikołaj; Niedzielski, Przemysław; Szczuciński, WitoldClimate change and related sea-level rise pose significant threats to lowland coasts. However, the role of key controlling factors responsible for the frequency and landward extent of extreme storm surges is not yet fully understood. Here, we present a high-resolution sedimentary record of extreme storm surge flooding from the non-tidal southern Baltic Sea, spanning two periods: 3.6–2.9 ka BP and 0.7 ka BP until present. Sediments from coastal wetland, including sandy event layers, were analyzed by sedimentological (grain size, loss-on-ignition, micromorphology), geochronological (14C), geochemical (XRF), mineralogical (heavy minerals) and micropaleontological (diatoms) methods. The results show that both periods were characterized by high-frequency of storm surge flooding, in order of 1.3–4.2 events per century. These periods correlate with phases of enhanced storminess in northwest Europe and took place during both rising and fluctuating sea levels. The study shows that the frequency and landward extent of coastal inundation, largely depended on the development of natural barriers (e.g. beach ridges and aeolian foredunes). Thus, in the context of the future coastal storm-surge hazard, the protection of existing coastal barriers and their morphology is essential.Item River response to climate and sea level changes during the Late Saalian/Early Eemian in northern Poland – a case study of meandering river deposits in the Chłapowo cliff section(Instytut Geologii UAM, 2016-04) Moskalewicz, Damian; Sokołowski, Robert J.; Fedorowicz, StanisławFluvial sediments in the Chłapowo cliff section were studied in order to reconstruct their palaeoflow conditions and stratigraphical position. Lithofacies, textural and palaeohydraulic analyses as well as luminescence dating were performed so as to achieve the aim of study. Sedimentary successions were identified as a record of point bar cycles. The fluvial environment probably functioned during the latest Saalian, shortly after the retreat of the Scandinavian Ice Sheet. Discharge outflow was directed to the northwest. The river used the older fluvioglacial valley and probably was directly connected to the Eem Sea. Good preservation and strong aggradation of point-bar cycles were related to a rapid relative base level rise. The meandering river sediments recognised showed responses to climate and sea level changes as illustrated by stratigraphical, morphological and sedimentological features of the strata described. The present study also revealed several insights into proper interpretation of meandering fluvial successions, in which the most important were: specific lithofacies assemblage of GSt (St, Sp) → Sl → SFrc → Fm (SFr) and related architectural elements: channel/sandy bedforms CH/SB → lateral accretion deposits LA → floodplain fines with crevasse splays FF (CS); upward-fining grain size and decreasing content of denser heavy minerals; estimated low-energy flow regime with a mean depth of 1.6–3.3 m, a Froude number of 0.2–0.4 and a sinuosity of 1.5.