Browsing by Author "Rzonsowski, Piotr"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Arytmetyka Grupy Mordella-Weila na rozmaitości abelowej nad ciałem skończenie generowanym nad Q(2010-06-07T08:48:40Z) Rzonsowski, Piotr; Banaszak, Grzegorz. PromotorNiniejsza rozprawa jest poświęcona rozwiązaniu dwóch problemów. Pierwszym zagadnieniem jakie jest rozważany w rozprawie jest problem nośnika. Jako pierwszy sformułował go P. Erdös w następujący sposób: Załóżmy, że dla pewnych liczb całkowitych x, y następujący warunek jest spełniony:Supp(xn − 1) implikuje Supp(yn − 1),dla wszystkich liczb naturalnych n. Czy z tego wynika, że x = y.Problem ten został rozwiązany przez C. Corrales-Rodrigáñez i R. Schoof. Następnie problem ten został uogólniony na rozmaitości abelowe nad ciałem liczbowym i był rozwiązany dla szczególnych klas rozmaitości abelowych przez Banaszaka, Gajdę, Krasonia, Khare, Prasada i innych.W swojej rozprawie rozszerzam ten wynik dla abelowych rozmaitości nad ciałem skończenie generowanym nad Q.Drugi problem dotyczy liniowej zależności punktów na rozmaitości abelowej. Pytanie to sformułował W. Gajda w 2002 r. w następujący sposób:Czy dla rozmaitości abelowej A i jej podgrupy G następujące warunki są równoważne:· P należy do podgrupy G;· rv(P) należy do rv(G), dla prawie wszystkich v z pierścienia OFProblematyka ta była rozważana w przeciągu kilku następnych lat. Jednakże wszystkie wyniki uzyskiwane w tych pracach były dla rozmaitości abelowych nad ciałem liczbowym. W rozprawie rozszerzam ten problem na ciała skończenie generowane nad Q.