Fast light-driven motion of polydopamine nanomembranes

dc.contributor.authorVasileiadis, Thomas
dc.contributor.authorD’Alvise, Tommaso Marchesi
dc.contributor.authorSaak, Clara-Magdalena
dc.contributor.authorPochylski, Mikolaj
dc.contributor.authorHarvey, Sean
dc.contributor.authorSynatschke, Christopher V.
dc.contributor.authorGapinski, Jacek
dc.contributor.authorFytas, George
dc.contributor.authorBackus, Ellen H.G.
dc.contributor.authorWeil, Tanja
dc.contributor.authorGraczykowski, Bartlomiej
dc.date.accessioned2023-03-15T12:40:25Z
dc.date.available2023-03-15T12:40:25Z
dc.date.issued2021-12-14
dc.descriptionA study of light-to-motion conversion with polydopamine nanomembranes.pl
dc.description.abstractThe actuation of micro- and nanostructures controlled by external stimuli remains one of the exciting challenges in nanotechnology due to the wealth of fundamental questions and potential applications in energy harvesting, robotics, sensing, biomedicine, and tunable metamaterials. Photoactuation utilizes the conversion of light into motion through reversible chemical and physical processes and enables remote and spatiotemporal control of the actuation. Here, we report a fast light-to-motion conversion in few-nanometer thick bare polydopamine (PDA) membranes stimulated by visible light. Light-induced heating of PDA leads to desorption of water molecules and contraction of membranes in less than 140 μs. Switching off the light leads to a spontaneous expansion in less than 20 ms due to heat dissipation and water adsorption. Our findings demonstrate that pristine PDA membranes are multiresponsive materials that can be harnessed as robust building blocks for soft, micro-, and nanoscale actuators stimulated by light, temperature, and moisture level.pl
dc.description.sponsorshipThis work was supported by the Foundation for Polish Science (POIR.04.04.00-00-5D1B/18). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Action Grant Agreements 101003436 - PLASMMONS (T.V.), 813863 - BORGES (T.W., C.V.S., T.M.) and 847693 - REWIRE (C.M.S.). C.V.S. acknowledges funding from the Sino-German mobility program M-0424. G.F. acknowledges the support by ERC AdG SmartPhon (Grant 694977).pl
dc.identifier.citationNano Lett. 2022, 22, 2, 578–585.pl
dc.identifier.doihttps://doi.org/10.1021/acs.nanolett.1c03165
dc.identifier.urihttps://hdl.handle.net/10593/27226
dc.language.isoengpl
dc.publisherAmerican Chemical Societypl
dc.relation.ispartofseriesPhononic and plasmonic materials;3
dc.rightsinfo:eu-repo/semantics/openAccesspl
dc.subjectLaserspl
dc.subjectLightpl
dc.subjectMembranespl
dc.subjectPolymerspl
dc.subjectPlasticspl
dc.subjectPhotoactuationpl
dc.titleFast light-driven motion of polydopamine nanomembranespl
dc.typePreprintpl

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Vasileiadis_et_al__PDA_Final.pdf
Size:
18.55 MB
Format:
Adobe Portable Document Format
Description:
Main article (PDF)
Loading...
Thumbnail Image
Name:
SupInf_Vasileiadis_et_al_PDA_final.pdf
Size:
823.37 KB
Format:
Adobe Portable Document Format
Description:
Supporting Information (PDF)
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.47 KB
Format:
Item-specific license agreed upon to submission
Description:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Biblioteka Uniwersytetu im. Adama Mickiewicza w Poznaniu
Ministerstwo Nauki i Szkolnictwa Wyższego