On the quasi-equivalence of orthogonal bases in non-archimedean metrizable locally convex spaces
dc.contributor.author | Śliwa, Wiesław | |
dc.date.accessioned | 2011-03-24T07:31:49Z | |
dc.date.available | 2011-03-24T07:31:49Z | |
dc.date.issued | 2002 | |
dc.description.abstract | We prove that any non-archimedean metrizable locally convex space E with a regular orthogonal basis has the quasi-equivalence property, i.e. any two orthogonal bases in E are quasi-equivalent. In particular, the power series spaces, the most known and important examples of non-archimedean nuclear Frechet spaces, have the quasi-equivalence property. We also show that the Frechet spaces: K^N, c_0xK^N, c_0^N have the quasi-equivalence property. | pl_PL |
dc.identifier.citation | Bull. Belg. Math. Soc. 9 (2002), 465-472. | pl_PL |
dc.identifier.uri | http://hdl.handle.net/10593/940 | |
dc.language.iso | en | pl_PL |
dc.publisher | The Belgian Mathematical Society | pl_PL |
dc.subject | Guasi-equivalence property | pl_PL |
dc.subject | Non-archimedean Frechet spaces | pl_PL |
dc.title | On the quasi-equivalence of orthogonal bases in non-archimedean metrizable locally convex spaces | pl_PL |
dc.type | Artykuł | pl_PL |