On linear isometries on non-archimedean powerseries spaces
| dc.contributor.author | Śliwa, Wiesław | |
| dc.contributor.author | Ziemkowska, Agnieszka | |
| dc.date.accessioned | 2013-02-05T20:53:33Z | |
| dc.date.available | 2013-02-05T20:53:33Z | |
| dc.date.issued | 2012-05 | |
| dc.description.abstract | The non-archimedean power series spaces Ap(a; t) are the most known and important examples of non-archimedean nuclear Frechet spaces. We study when the spaces Ap(a; t) and Aq(b; s) are isometrically isomorphic. Next we determine all linear isometries on the space Ap(a; t) and show that all these maps are surjective. | pl_PL |
| dc.description.sponsorship | National Centre of Science, Poland (grants no. N N201 605340; no. N N201 610040) | pl_PL |
| dc.identifier.citation | J. Convex Anal., 19(2012), 453-466 | pl_PL |
| dc.identifier.uri | http://hdl.handle.net/10593/4324 | |
| dc.language.iso | en | pl_PL |
| dc.subject | non-archimedean power series space | pl_PL |
| dc.subject | linear isometry | pl_PL |
| dc.subject | Schauder basis | pl_PL |
| dc.title | On linear isometries on non-archimedean powerseries spaces | pl_PL |
