Mantle-crust differentiation of chalcophile elements in the oceanic lithosphere

dc.contributor.authorCiazela, Jakub
dc.contributor.authorDick, Henry
dc.contributor.authorKoepke, Juergen
dc.contributor.authorKuhn, Thomas
dc.contributor.authorMuszynski, Andrzej
dc.contributor.authorKubiak, Marta
dc.date.accessioned2015-05-07T13:48:48Z
dc.date.available2015-05-07T13:48:48Z
dc.date.issued2014
dc.description.abstractThe chalcophile elements, as associated with sulfides, are believed mainly from the study of ophiolites to be generally enriched in the upper mantle, but depleted by magmatic processes in the lower and upper ocean crust. However, studies of some orogenic lherzolites suggest a copper depletion of peridotites in relation to the primitive mantle, suggesting that a portion of the sulfides is melted during decompression and incorporated into the ascending magmas. The rarity of abyssal peridotites and the high degree of their alteration have not allowed these results to be verified in situ in the oceans. Here, we present the first complete study of chalcophile elements based on a suite of rocks from an oceanic core complex (OCC), the Kane Megamullion at 22°30’N at the MidAtlantic Ridge. OCCs provide large exposures of mantle and lower crustal rocks on the seafloor on detachment fault footwalls at slow and ultraslow spreading ridges. The Kane Megamullion is one of the best sampled OCCs in the world, with 1342 rocks from 28 dredge sites and 14 dives. We have made XRF, TDMS and INAA analyses of 129 representative peridotites, gabbroic rocks, diabases and basalts. Our results suggest a depletion of some peridotites in relation to the primitive mantle (28 ppm Cu). Dunites, troctolites and olivine gabbros are relatively enriched in chalcophile elements. The amount of sulfides decreases gradually with progressive differentiation, reaching a minimum in gabbronorites and diabases. The highest bulk abundance of chalcophile elements in our sample suite was observed in dunites (up to ~ 300 ppm Cu in several samples) and a contact zone between residual peridotite and a mafic vein (294 ppm Cu). Plagioclasebearing harzburgites, generally formed by latestage melt impregnation in the mantle, are typically more enriched in Cu than unimpregnated residual peridotites. For these reasons, our initial results indicate sulfide melting during mantle melting, and their local precipitation in the mantle lithosphere due to late-stage melt impregnation.pl_PL
dc.identifier.citationCiazela, J., Dick, H., Koepke, J., Kuhn, T., Muszynski, A., & Kubiak., M., 2014. Mantle-crust differentiation of chalcophile elements in the oceanic lithosphere. Abstract V31B-4756 presented at AGU Fall Meeting, San Francisco, Calif., 15-19 Dec.pl_PL
dc.identifier.urihttp://hdl.handle.net/10593/12978
dc.rightsinfo:eu-repo/semantics/openAccesspl_PL
dc.subjectChalcophile elementspl_PL
dc.subjectMantlepl_PL
dc.subjectLower crustpl_PL
dc.subjectKane Megamullionpl_PL
dc.titleMantle-crust differentiation of chalcophile elements in the oceanic lithospherepl_PL
dc.typeArticlepl_PL

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A13_Mantle-crust_differentiation_of_chalcophile_elements_in_the_oceanic_lithosphere.pdf
Size:
113.28 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.47 KB
Format:
Item-specific license agreed upon to submission
Description:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Biblioteka Uniwersytetu im. Adama Mickiewicza w Poznaniu
Ministerstwo Nauki i Szkolnictwa Wyższego