The Invariant Subspace Problem for Non-Archimedean Banach Spaces

dc.contributor.authorŚliwa, Wiesław
dc.date.accessioned2011-01-12T10:59:58Z
dc.date.available2011-01-12T10:59:58Z
dc.date.issued2008
dc.description.abstractIt is proved that every infinite-dimensional non-archimedean Banach space of countable type admits a linear continuous operator without a non-trivial closed invariant subspace. This solves a problem stated by A. C. M. van Rooij and W. H. Schikhof in 1992.pl_PL
dc.identifier.citationCanad. Math. Bull., 51(2008), 604-617.pl_PL
dc.identifier.urihttp://hdl.handle.net/10593/798
dc.language.isoenpl_PL
dc.publisherCanadian Mathematical Societypl_PL
dc.subjectInvariant subspacespl_PL
dc.subjectNon-archimedean Banach spacespl_PL
dc.titleThe Invariant Subspace Problem for Non-Archimedean Banach Spacespl_PL

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sliwa 31.pdf
Size:
147.47 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.59 KB
Format:
Item-specific license agreed upon to submission
Description:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Biblioteka Uniwersytetu im. Adama Mickiewicza w Poznaniu
Ministerstwo Nauki i Szkolnictwa Wyższego