The Invariant Subspace Problem for Non-Archimedean Banach Spaces
dc.contributor.author | Śliwa, Wiesław | |
dc.date.accessioned | 2011-01-12T10:59:58Z | |
dc.date.available | 2011-01-12T10:59:58Z | |
dc.date.issued | 2008 | |
dc.description.abstract | It is proved that every infinite-dimensional non-archimedean Banach space of countable type admits a linear continuous operator without a non-trivial closed invariant subspace. This solves a problem stated by A. C. M. van Rooij and W. H. Schikhof in 1992. | pl_PL |
dc.identifier.citation | Canad. Math. Bull., 51(2008), 604-617. | pl_PL |
dc.identifier.uri | http://hdl.handle.net/10593/798 | |
dc.language.iso | en | pl_PL |
dc.publisher | Canadian Mathematical Society | pl_PL |
dc.subject | Invariant subspaces | pl_PL |
dc.subject | Non-archimedean Banach spaces | pl_PL |
dc.title | The Invariant Subspace Problem for Non-Archimedean Banach Spaces | pl_PL |