On Universal Schauder Bases in Non-Archimedean Frechet Spaces
dc.contributor.author | Śliwa, Wiesław | |
dc.date.accessioned | 2011-01-13T15:49:25Z | |
dc.date.available | 2011-01-13T15:49:25Z | |
dc.date.issued | 2004 | |
dc.description.abstract | We prove that there exists a non-archimedean Frechet space U with a basis $(u_n)$ such that any basis $(x_n)$ in a non-archimedean Frechet space X is equivalent to a subbasis $(u_k_n)$ of $(u_n)$. Then any non-archimedean Frechet space with a basis is isomorphic to a complemented subspace of U. Next we prove that there is no nuclear non-archimedean Frechet space H with a basis $(h_n)$ such that any basis $(y_n)$ in a nuclear non-archimedean Frechet space Y is equivalent to a subbasis $(h_k_n)$ of $(h_n)$. | pl_PL |
dc.identifier.citation | Canad. Math. Bull. 47(2004), 108-118. | pl_PL |
dc.identifier.uri | http://hdl.handle.net/10593/800 | |
dc.language.iso | en | pl_PL |
dc.publisher | Canadian Mathematical Society | pl_PL |
dc.subject | Universal bases | pl_PL |
dc.subject | Complemented subspaces with bases | pl_PL |
dc.title | On Universal Schauder Bases in Non-Archimedean Frechet Spaces | pl_PL |