On Universal Schauder Bases in Non-Archimedean Frechet Spaces

dc.contributor.authorŚliwa, Wiesław
dc.date.accessioned2011-01-13T15:49:25Z
dc.date.available2011-01-13T15:49:25Z
dc.date.issued2004
dc.description.abstractWe prove that there exists a non-archimedean Frechet space U with a basis $(u_n)$ such that any basis $(x_n)$ in a non-archimedean Frechet space X is equivalent to a subbasis $(u_k_n)$ of $(u_n)$. Then any non-archimedean Frechet space with a basis is isomorphic to a complemented subspace of U. Next we prove that there is no nuclear non-archimedean Frechet space H with a basis $(h_n)$ such that any basis $(y_n)$ in a nuclear non-archimedean Frechet space Y is equivalent to a subbasis $(h_k_n)$ of $(h_n)$.pl_PL
dc.identifier.citationCanad. Math. Bull. 47(2004), 108-118.pl_PL
dc.identifier.urihttp://hdl.handle.net/10593/800
dc.language.isoenpl_PL
dc.publisherCanadian Mathematical Societypl_PL
dc.subjectUniversal basespl_PL
dc.subjectComplemented subspaces with basespl_PL
dc.titleOn Universal Schauder Bases in Non-Archimedean Frechet Spacespl_PL

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sliwa 21.pdf
Size:
169.52 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.59 KB
Format:
Item-specific license agreed upon to submission
Description:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Biblioteka Uniwersytetu im. Adama Mickiewicza w Poznaniu
Ministerstwo Nauki i Szkolnictwa Wyższego