Descriptive Topology in non-Archimedean Function Spaces Cp(X, K). Part I

dc.contributor.authorŚliwa, Wiesław
dc.contributor.authorKąkol, Jerzy
dc.date.accessioned2013-02-06T08:24:11Z
dc.date.available2013-02-06T08:24:11Z
dc.date.issued2012
dc.description.abstractLet $K$ be a non-archimedean field and let $X$ be an ultraregular space. We study the non-archimedean locally convex space $C_p(X;K)$ of all $K$-valued continuous functions on $X$ endowed with the pointwise topology. We show that $K$ is spherically complete if and only if every polar metrizable locally convex space $E$ over $K$ is weakly angelic. This extends a result of Kiyosawa - Schikhof for polar Banach spaces. For any compact ultraregular space $X$ we prove that $C_p(X;K)$ is Frechet-Urysohn if and only if $X$ is scattered (a non-archimedean variant of Gerlits - Pytkeev's result). If $K$ is locally compact we show the following: (1) For any ultraregular space $X$ the space $C_p(X;K)$ is K-analytic if and only if it has a compact resolution (a non-archimedean variant of Tkachuk's theorem); (2) For any ultrametrizable space $X$ the space $C_p(X;K)$ is analytic if and only if $X$ is $\sigma$-compact (a non-archimedean variant of Christensen's theorem).pl_PL
dc.description.sponsorshipThe National Centre of Science, Poland (grant no. N N201 605340)pl_PL
dc.identifier.citationBull. London Math. Soc., 44(2012), 899-912pl_PL
dc.identifier.urihttp://hdl.handle.net/10593/4327
dc.language.isoenpl_PL
dc.titleDescriptive Topology in non-Archimedean Function Spaces Cp(X, K). Part Ipl_PL

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sliwa 46.pdf
Size:
366.58 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.49 KB
Format:
Item-specific license agreed upon to submission
Description:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Biblioteka Uniwersytetu im. Adama Mickiewicza w Poznaniu
Ministerstwo Nauki i Szkolnictwa Wyższego