Predykcja szeregów czasowych w warunkach autokorelacji składników losowych

Loading...
Thumbnail Image

Date

1976

Advisor

Editor

Journal Title

Journal ISSN

Volume Title

Publisher

Wydział Prawa i Administracji UAM

Title alternative

Prediction Problems, in the Situation when Disturbances are Autocorrelated in the Linear Model

Abstract

In the article the autor discusses prediction problems in the general linear model where disturbances are autocorrelated. Suppose we have sample data for periods 1 to n from the model y=Xß+u with E(u)=0 and E(uu')=V. Suppose further that we are given the row vector xn + 1 of values of the explanatory variables in period n+1. The problem now how to estimate yn+s when E(uu')=V=σ2 uΩ, where Ω is assumed to be known, symmetric, positivedefinite matrix. If the disturbances follows a first-order scheme ut=γ1ut-1+εt where |γ1|<1, then we can see that the best linear unbiased predictor is ŷn+1=xn+sb+(γ1)s·en where b is the generalized least-squares estimator and en is the last row of the vector e=y—Xb of generalized least-squares residuals. When the elements of Ω (that is, the value of γ1) were unknown formula pictured above should still be used for prediction purposes with b and γ1 replaced by estimates.

Description

Sponsor

Digitalizacja i deponowanie archiwalnych zeszytów RPEiS sfinansowane przez MNiSW w ramach realizacji umowy nr 541/P-DUN/2016

Keywords

Citation

Ruch Prawniczy, Ekonomiczny i Socjologiczny 38, 1976, z. 3, s. 199-208

Seria

ISBN

ISSN

0035-9629

DOI

Title Alternative

Rights Creative Commons

Creative Commons License

Uniwersytet im. Adama Mickiewicza w Poznaniu
Biblioteka Uniwersytetu im. Adama Mickiewicza w Poznaniu
Ministerstwo Nauki i Szkolnictwa Wyższego