Wdrożenie i zastosowania probabilistycznych metod porównawczych profil-profil w rozpoznawaniu pofałdowania białek
Loading...
Date
2013-11-26
Authors
Advisor
Editor
Journal Title
Journal ISSN
Volume Title
Publisher
Title alternative
Application and implementation of probabilistic profile-profile comparison methods for protein fold recognition
Abstract
Metody rozpoznawania pofałdowania białka zwane też rozpoznawaniem foldów (eng. Fold Recognition) są metodami wykrywania i przewidywania struktury trzeciorzędowej białka, stosowanymi dla białek, które nie posiadają sekwencji homologicznych o znanej strukturze trzeciorzędowej, zdeponowanych w międzynarodowej bazie danych struktur białkowych (eng. Protein Data Bank). Metody te opierają się na założeniu, że w wyniku ewolucji oraz ogranczeń fizycznych i chemicznych w przyrodzie znajduje się określona i ograniczona liczba odmiennych zwojów białek. Uliniowienia w profilach sekwencyjnych metod profil-profil mogą być obliczane przy pomocy iloczynu skalarnego, modelu probablistycznego, stochastycznego albo przy pomocy miar teoretycznych. Zaprezentowane tu zastosowania i wdrożenia metod porównywania białek typu profil-profil wskazują na zalety zastosowania probablistycznych funkcji oceniających jakość porównania profili nad innymi metodami rozpoznawania foldów. Celem pracy jest wskazanie iż metody porównywania profil-profil mogą przewyższać inne metody rozpoznawania foldów w analizie spokrewnionych białek, i że mogą być one stosowane nie tylko do rozpoznawania foldów, ale także do innych celów takich jak wykrywanie i identyfikacja genów, granic domen białkowych oraz modelowania złożonych struktur białkowych.
Fold recognition is a method of fold detecting and protein tertiary structure prediction applied for proteins lacking homologues sequences of known fold and structure deposited in the Protein Data Bank. They are based on assumption that there is strictly limited number of different protein folds in nature, mostly as a result of evolution and due to basic physical and chemical constraints of polypeptide chains. Every newly discovered protein sequence has significant chances to be classified into one of those folds. Many different approaches have been proposed for finding the correct fold for a new sequence and it is often useful to include evolutionary information for query as well as for target proteins. These fold recognition techniques are called profile-profile methods. Here are presented applications and implementations of probabilistic profile-profile comparison methods and advantages of usage of probabilistic scoring function over comparable fold recognition techniques. The purpose of this comparison is to show that probabilistic profile-profile methods may outperform other fold recognition methods in comparison in analysis of distantly related proteins and that they can be applied not only for fold recognition but also for slightly different purposes like gene identification, detection of domain boundaries and modeling of complex proteins
Fold recognition is a method of fold detecting and protein tertiary structure prediction applied for proteins lacking homologues sequences of known fold and structure deposited in the Protein Data Bank. They are based on assumption that there is strictly limited number of different protein folds in nature, mostly as a result of evolution and due to basic physical and chemical constraints of polypeptide chains. Every newly discovered protein sequence has significant chances to be classified into one of those folds. Many different approaches have been proposed for finding the correct fold for a new sequence and it is often useful to include evolutionary information for query as well as for target proteins. These fold recognition techniques are called profile-profile methods. Here are presented applications and implementations of probabilistic profile-profile comparison methods and advantages of usage of probabilistic scoring function over comparable fold recognition techniques. The purpose of this comparison is to show that probabilistic profile-profile methods may outperform other fold recognition methods in comparison in analysis of distantly related proteins and that they can be applied not only for fold recognition but also for slightly different purposes like gene identification, detection of domain boundaries and modeling of complex proteins
Description
Wydział Chemii
Sponsor
Keywords
modelowanie molekularne, molecular modeling, przewidywanie struktury białek, protein structure prediction, rozpoznawanie pofałdowania, fold recognition